Enable support for the AArch64 dot-prod instruction in the Cortex A55 and A75 cpus.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70
71 /* Prototypes for local functions */
72
73 static void info_signals_command (char *, int);
74
75 static void handle_command (char *, int);
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void resume_cleanups (void *);
82
83 static int hook_stop_stub (void *);
84
85 static int restore_selected_frame (void *);
86
87 static int follow_fork (void);
88
89 static int follow_fork_inferior (int follow_child, int detach_fork);
90
91 static void follow_inferior_reset_breakpoints (void);
92
93 static void set_schedlock_func (char *args, int from_tty,
94 struct cmd_list_element *c);
95
96 static int currently_stepping (struct thread_info *tp);
97
98 void _initialize_infrun (void);
99
100 void nullify_last_target_wait_ptid (void);
101
102 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
103
104 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
105
106 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
107
108 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
109
110 /* Asynchronous signal handler registered as event loop source for
111 when we have pending events ready to be passed to the core. */
112 static struct async_event_handler *infrun_async_inferior_event_token;
113
114 /* Stores whether infrun_async was previously enabled or disabled.
115 Starts off as -1, indicating "never enabled/disabled". */
116 static int infrun_is_async = -1;
117
118 /* See infrun.h. */
119
120 void
121 infrun_async (int enable)
122 {
123 if (infrun_is_async != enable)
124 {
125 infrun_is_async = enable;
126
127 if (debug_infrun)
128 fprintf_unfiltered (gdb_stdlog,
129 "infrun: infrun_async(%d)\n",
130 enable);
131
132 if (enable)
133 mark_async_event_handler (infrun_async_inferior_event_token);
134 else
135 clear_async_event_handler (infrun_async_inferior_event_token);
136 }
137 }
138
139 /* See infrun.h. */
140
141 void
142 mark_infrun_async_event_handler (void)
143 {
144 mark_async_event_handler (infrun_async_inferior_event_token);
145 }
146
147 /* When set, stop the 'step' command if we enter a function which has
148 no line number information. The normal behavior is that we step
149 over such function. */
150 int step_stop_if_no_debug = 0;
151 static void
152 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
156 }
157
158 /* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
161
162 static ptid_t previous_inferior_ptid;
163
164 /* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169 static int detach_fork = 1;
170
171 int debug_displaced = 0;
172 static void
173 show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177 }
178
179 unsigned int debug_infrun = 0;
180 static void
181 show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185 }
186
187
188 /* Support for disabling address space randomization. */
189
190 int disable_randomization = 1;
191
192 static void
193 show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205 }
206
207 static void
208 set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210 {
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215 }
216
217 /* User interface for non-stop mode. */
218
219 int non_stop = 0;
220 static int non_stop_1 = 0;
221
222 static void
223 set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233 }
234
235 static void
236 show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242 }
243
244 /* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
248 int observer_mode = 0;
249 static int observer_mode_1 = 0;
250
251 static void
252 set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254 {
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285 }
286
287 static void
288 show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290 {
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292 }
293
294 /* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300 void
301 update_observer_mode (void)
302 {
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317 }
318
319 /* Tables of how to react to signals; the user sets them. */
320
321 static unsigned char *signal_stop;
322 static unsigned char *signal_print;
323 static unsigned char *signal_program;
324
325 /* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329 static unsigned char *signal_catch;
330
331 /* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334 static unsigned char *signal_pass;
335
336 #define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344 #define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
352 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355 void
356 update_signals_program_target (void)
357 {
358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
359 }
360
361 /* Value to pass to target_resume() to cause all threads to resume. */
362
363 #define RESUME_ALL minus_one_ptid
364
365 /* Command list pointer for the "stop" placeholder. */
366
367 static struct cmd_list_element *stop_command;
368
369 /* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
371 int stop_on_solib_events;
372
373 /* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376 static void
377 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378 {
379 update_solib_breakpoints ();
380 }
381
382 static void
383 show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388 }
389
390 /* Nonzero after stop if current stack frame should be printed. */
391
392 static int stop_print_frame;
393
394 /* This is a cached copy of the pid/waitstatus of the last event
395 returned by target_wait()/deprecated_target_wait_hook(). This
396 information is returned by get_last_target_status(). */
397 static ptid_t target_last_wait_ptid;
398 static struct target_waitstatus target_last_waitstatus;
399
400 static void context_switch (ptid_t ptid);
401
402 void init_thread_stepping_state (struct thread_info *tss);
403
404 static const char follow_fork_mode_child[] = "child";
405 static const char follow_fork_mode_parent[] = "parent";
406
407 static const char *const follow_fork_mode_kind_names[] = {
408 follow_fork_mode_child,
409 follow_fork_mode_parent,
410 NULL
411 };
412
413 static const char *follow_fork_mode_string = follow_fork_mode_parent;
414 static void
415 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c, const char *value)
417 {
418 fprintf_filtered (file,
419 _("Debugger response to a program "
420 "call of fork or vfork is \"%s\".\n"),
421 value);
422 }
423 \f
424
425 /* Handle changes to the inferior list based on the type of fork,
426 which process is being followed, and whether the other process
427 should be detached. On entry inferior_ptid must be the ptid of
428 the fork parent. At return inferior_ptid is the ptid of the
429 followed inferior. */
430
431 static int
432 follow_fork_inferior (int follow_child, int detach_fork)
433 {
434 int has_vforked;
435 ptid_t parent_ptid, child_ptid;
436
437 has_vforked = (inferior_thread ()->pending_follow.kind
438 == TARGET_WAITKIND_VFORKED);
439 parent_ptid = inferior_ptid;
440 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
441
442 if (has_vforked
443 && !non_stop /* Non-stop always resumes both branches. */
444 && current_ui->prompt_state == PROMPT_BLOCKED
445 && !(follow_child || detach_fork || sched_multi))
446 {
447 /* The parent stays blocked inside the vfork syscall until the
448 child execs or exits. If we don't let the child run, then
449 the parent stays blocked. If we're telling the parent to run
450 in the foreground, the user will not be able to ctrl-c to get
451 back the terminal, effectively hanging the debug session. */
452 fprintf_filtered (gdb_stderr, _("\
453 Can not resume the parent process over vfork in the foreground while\n\
454 holding the child stopped. Try \"set detach-on-fork\" or \
455 \"set schedule-multiple\".\n"));
456 /* FIXME output string > 80 columns. */
457 return 1;
458 }
459
460 if (!follow_child)
461 {
462 /* Detach new forked process? */
463 if (detach_fork)
464 {
465 /* Before detaching from the child, remove all breakpoints
466 from it. If we forked, then this has already been taken
467 care of by infrun.c. If we vforked however, any
468 breakpoint inserted in the parent is visible in the
469 child, even those added while stopped in a vfork
470 catchpoint. This will remove the breakpoints from the
471 parent also, but they'll be reinserted below. */
472 if (has_vforked)
473 {
474 /* Keep breakpoints list in sync. */
475 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
476 }
477
478 if (info_verbose || debug_infrun)
479 {
480 /* Ensure that we have a process ptid. */
481 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
482
483 target_terminal_ours_for_output ();
484 fprintf_filtered (gdb_stdlog,
485 _("Detaching after %s from child %s.\n"),
486 has_vforked ? "vfork" : "fork",
487 target_pid_to_str (process_ptid));
488 }
489 }
490 else
491 {
492 struct inferior *parent_inf, *child_inf;
493
494 /* Add process to GDB's tables. */
495 child_inf = add_inferior (ptid_get_pid (child_ptid));
496
497 parent_inf = current_inferior ();
498 child_inf->attach_flag = parent_inf->attach_flag;
499 copy_terminal_info (child_inf, parent_inf);
500 child_inf->gdbarch = parent_inf->gdbarch;
501 copy_inferior_target_desc_info (child_inf, parent_inf);
502
503 scoped_restore_current_pspace_and_thread restore_pspace_thread;
504
505 inferior_ptid = child_ptid;
506 add_thread (inferior_ptid);
507 set_current_inferior (child_inf);
508 child_inf->symfile_flags = SYMFILE_NO_READ;
509
510 /* If this is a vfork child, then the address-space is
511 shared with the parent. */
512 if (has_vforked)
513 {
514 child_inf->pspace = parent_inf->pspace;
515 child_inf->aspace = parent_inf->aspace;
516
517 /* The parent will be frozen until the child is done
518 with the shared region. Keep track of the
519 parent. */
520 child_inf->vfork_parent = parent_inf;
521 child_inf->pending_detach = 0;
522 parent_inf->vfork_child = child_inf;
523 parent_inf->pending_detach = 0;
524 }
525 else
526 {
527 child_inf->aspace = new_address_space ();
528 child_inf->pspace = add_program_space (child_inf->aspace);
529 child_inf->removable = 1;
530 set_current_program_space (child_inf->pspace);
531 clone_program_space (child_inf->pspace, parent_inf->pspace);
532
533 /* Let the shared library layer (e.g., solib-svr4) learn
534 about this new process, relocate the cloned exec, pull
535 in shared libraries, and install the solib event
536 breakpoint. If a "cloned-VM" event was propagated
537 better throughout the core, this wouldn't be
538 required. */
539 solib_create_inferior_hook (0);
540 }
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634 set_current_inferior (child_inf);
635
636 /* If this is a vfork child, then the address-space is shared
637 with the parent. If we detached from the parent, then we can
638 reuse the parent's program/address spaces. */
639 if (has_vforked || detach_fork)
640 {
641 child_inf->pspace = parent_pspace;
642 child_inf->aspace = child_inf->pspace->aspace;
643 }
644 else
645 {
646 child_inf->aspace = new_address_space ();
647 child_inf->pspace = add_program_space (child_inf->aspace);
648 child_inf->removable = 1;
649 child_inf->symfile_flags = SYMFILE_NO_READ;
650 set_current_program_space (child_inf->pspace);
651 clone_program_space (child_inf->pspace, parent_pspace);
652
653 /* Let the shared library layer (e.g., solib-svr4) learn
654 about this new process, relocate the cloned exec, pull in
655 shared libraries, and install the solib event breakpoint.
656 If a "cloned-VM" event was propagated better throughout
657 the core, this wouldn't be required. */
658 solib_create_inferior_hook (0);
659 }
660 }
661
662 return target_follow_fork (follow_child, detach_fork);
663 }
664
665 /* Tell the target to follow the fork we're stopped at. Returns true
666 if the inferior should be resumed; false, if the target for some
667 reason decided it's best not to resume. */
668
669 static int
670 follow_fork (void)
671 {
672 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
673 int should_resume = 1;
674 struct thread_info *tp;
675
676 /* Copy user stepping state to the new inferior thread. FIXME: the
677 followed fork child thread should have a copy of most of the
678 parent thread structure's run control related fields, not just these.
679 Initialized to avoid "may be used uninitialized" warnings from gcc. */
680 struct breakpoint *step_resume_breakpoint = NULL;
681 struct breakpoint *exception_resume_breakpoint = NULL;
682 CORE_ADDR step_range_start = 0;
683 CORE_ADDR step_range_end = 0;
684 struct frame_id step_frame_id = { 0 };
685 struct thread_fsm *thread_fsm = NULL;
686
687 if (!non_stop)
688 {
689 ptid_t wait_ptid;
690 struct target_waitstatus wait_status;
691
692 /* Get the last target status returned by target_wait(). */
693 get_last_target_status (&wait_ptid, &wait_status);
694
695 /* If not stopped at a fork event, then there's nothing else to
696 do. */
697 if (wait_status.kind != TARGET_WAITKIND_FORKED
698 && wait_status.kind != TARGET_WAITKIND_VFORKED)
699 return 1;
700
701 /* Check if we switched over from WAIT_PTID, since the event was
702 reported. */
703 if (!ptid_equal (wait_ptid, minus_one_ptid)
704 && !ptid_equal (inferior_ptid, wait_ptid))
705 {
706 /* We did. Switch back to WAIT_PTID thread, to tell the
707 target to follow it (in either direction). We'll
708 afterwards refuse to resume, and inform the user what
709 happened. */
710 switch_to_thread (wait_ptid);
711 should_resume = 0;
712 }
713 }
714
715 tp = inferior_thread ();
716
717 /* If there were any forks/vforks that were caught and are now to be
718 followed, then do so now. */
719 switch (tp->pending_follow.kind)
720 {
721 case TARGET_WAITKIND_FORKED:
722 case TARGET_WAITKIND_VFORKED:
723 {
724 ptid_t parent, child;
725
726 /* If the user did a next/step, etc, over a fork call,
727 preserve the stepping state in the fork child. */
728 if (follow_child && should_resume)
729 {
730 step_resume_breakpoint = clone_momentary_breakpoint
731 (tp->control.step_resume_breakpoint);
732 step_range_start = tp->control.step_range_start;
733 step_range_end = tp->control.step_range_end;
734 step_frame_id = tp->control.step_frame_id;
735 exception_resume_breakpoint
736 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
737 thread_fsm = tp->thread_fsm;
738
739 /* For now, delete the parent's sr breakpoint, otherwise,
740 parent/child sr breakpoints are considered duplicates,
741 and the child version will not be installed. Remove
742 this when the breakpoints module becomes aware of
743 inferiors and address spaces. */
744 delete_step_resume_breakpoint (tp);
745 tp->control.step_range_start = 0;
746 tp->control.step_range_end = 0;
747 tp->control.step_frame_id = null_frame_id;
748 delete_exception_resume_breakpoint (tp);
749 tp->thread_fsm = NULL;
750 }
751
752 parent = inferior_ptid;
753 child = tp->pending_follow.value.related_pid;
754
755 /* Set up inferior(s) as specified by the caller, and tell the
756 target to do whatever is necessary to follow either parent
757 or child. */
758 if (follow_fork_inferior (follow_child, detach_fork))
759 {
760 /* Target refused to follow, or there's some other reason
761 we shouldn't resume. */
762 should_resume = 0;
763 }
764 else
765 {
766 /* This pending follow fork event is now handled, one way
767 or another. The previous selected thread may be gone
768 from the lists by now, but if it is still around, need
769 to clear the pending follow request. */
770 tp = find_thread_ptid (parent);
771 if (tp)
772 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
773
774 /* This makes sure we don't try to apply the "Switched
775 over from WAIT_PID" logic above. */
776 nullify_last_target_wait_ptid ();
777
778 /* If we followed the child, switch to it... */
779 if (follow_child)
780 {
781 switch_to_thread (child);
782
783 /* ... and preserve the stepping state, in case the
784 user was stepping over the fork call. */
785 if (should_resume)
786 {
787 tp = inferior_thread ();
788 tp->control.step_resume_breakpoint
789 = step_resume_breakpoint;
790 tp->control.step_range_start = step_range_start;
791 tp->control.step_range_end = step_range_end;
792 tp->control.step_frame_id = step_frame_id;
793 tp->control.exception_resume_breakpoint
794 = exception_resume_breakpoint;
795 tp->thread_fsm = thread_fsm;
796 }
797 else
798 {
799 /* If we get here, it was because we're trying to
800 resume from a fork catchpoint, but, the user
801 has switched threads away from the thread that
802 forked. In that case, the resume command
803 issued is most likely not applicable to the
804 child, so just warn, and refuse to resume. */
805 warning (_("Not resuming: switched threads "
806 "before following fork child."));
807 }
808
809 /* Reset breakpoints in the child as appropriate. */
810 follow_inferior_reset_breakpoints ();
811 }
812 else
813 switch_to_thread (parent);
814 }
815 }
816 break;
817 case TARGET_WAITKIND_SPURIOUS:
818 /* Nothing to follow. */
819 break;
820 default:
821 internal_error (__FILE__, __LINE__,
822 "Unexpected pending_follow.kind %d\n",
823 tp->pending_follow.kind);
824 break;
825 }
826
827 return should_resume;
828 }
829
830 static void
831 follow_inferior_reset_breakpoints (void)
832 {
833 struct thread_info *tp = inferior_thread ();
834
835 /* Was there a step_resume breakpoint? (There was if the user
836 did a "next" at the fork() call.) If so, explicitly reset its
837 thread number. Cloned step_resume breakpoints are disabled on
838 creation, so enable it here now that it is associated with the
839 correct thread.
840
841 step_resumes are a form of bp that are made to be per-thread.
842 Since we created the step_resume bp when the parent process
843 was being debugged, and now are switching to the child process,
844 from the breakpoint package's viewpoint, that's a switch of
845 "threads". We must update the bp's notion of which thread
846 it is for, or it'll be ignored when it triggers. */
847
848 if (tp->control.step_resume_breakpoint)
849 {
850 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
851 tp->control.step_resume_breakpoint->loc->enabled = 1;
852 }
853
854 /* Treat exception_resume breakpoints like step_resume breakpoints. */
855 if (tp->control.exception_resume_breakpoint)
856 {
857 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
858 tp->control.exception_resume_breakpoint->loc->enabled = 1;
859 }
860
861 /* Reinsert all breakpoints in the child. The user may have set
862 breakpoints after catching the fork, in which case those
863 were never set in the child, but only in the parent. This makes
864 sure the inserted breakpoints match the breakpoint list. */
865
866 breakpoint_re_set ();
867 insert_breakpoints ();
868 }
869
870 /* The child has exited or execed: resume threads of the parent the
871 user wanted to be executing. */
872
873 static int
874 proceed_after_vfork_done (struct thread_info *thread,
875 void *arg)
876 {
877 int pid = * (int *) arg;
878
879 if (ptid_get_pid (thread->ptid) == pid
880 && is_running (thread->ptid)
881 && !is_executing (thread->ptid)
882 && !thread->stop_requested
883 && thread->suspend.stop_signal == GDB_SIGNAL_0)
884 {
885 if (debug_infrun)
886 fprintf_unfiltered (gdb_stdlog,
887 "infrun: resuming vfork parent thread %s\n",
888 target_pid_to_str (thread->ptid));
889
890 switch_to_thread (thread->ptid);
891 clear_proceed_status (0);
892 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
893 }
894
895 return 0;
896 }
897
898 /* Save/restore inferior_ptid, current program space and current
899 inferior. Only use this if the current context points at an exited
900 inferior (and therefore there's no current thread to save). */
901 class scoped_restore_exited_inferior
902 {
903 public:
904 scoped_restore_exited_inferior ()
905 : m_saved_ptid (&inferior_ptid)
906 {}
907
908 private:
909 scoped_restore_tmpl<ptid_t> m_saved_ptid;
910 scoped_restore_current_program_space m_pspace;
911 scoped_restore_current_inferior m_inferior;
912 };
913
914 /* Called whenever we notice an exec or exit event, to handle
915 detaching or resuming a vfork parent. */
916
917 static void
918 handle_vfork_child_exec_or_exit (int exec)
919 {
920 struct inferior *inf = current_inferior ();
921
922 if (inf->vfork_parent)
923 {
924 int resume_parent = -1;
925
926 /* This exec or exit marks the end of the shared memory region
927 between the parent and the child. If the user wanted to
928 detach from the parent, now is the time. */
929
930 if (inf->vfork_parent->pending_detach)
931 {
932 struct thread_info *tp;
933 struct program_space *pspace;
934 struct address_space *aspace;
935
936 /* follow-fork child, detach-on-fork on. */
937
938 inf->vfork_parent->pending_detach = 0;
939
940 gdb::optional<scoped_restore_exited_inferior>
941 maybe_restore_inferior;
942 gdb::optional<scoped_restore_current_pspace_and_thread>
943 maybe_restore_thread;
944
945 /* If we're handling a child exit, then inferior_ptid points
946 at the inferior's pid, not to a thread. */
947 if (!exec)
948 maybe_restore_inferior.emplace ();
949 else
950 maybe_restore_thread.emplace ();
951
952 /* We're letting loose of the parent. */
953 tp = any_live_thread_of_process (inf->vfork_parent->pid);
954 switch_to_thread (tp->ptid);
955
956 /* We're about to detach from the parent, which implicitly
957 removes breakpoints from its address space. There's a
958 catch here: we want to reuse the spaces for the child,
959 but, parent/child are still sharing the pspace at this
960 point, although the exec in reality makes the kernel give
961 the child a fresh set of new pages. The problem here is
962 that the breakpoints module being unaware of this, would
963 likely chose the child process to write to the parent
964 address space. Swapping the child temporarily away from
965 the spaces has the desired effect. Yes, this is "sort
966 of" a hack. */
967
968 pspace = inf->pspace;
969 aspace = inf->aspace;
970 inf->aspace = NULL;
971 inf->pspace = NULL;
972
973 if (debug_infrun || info_verbose)
974 {
975 target_terminal_ours_for_output ();
976
977 if (exec)
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("Detaching vfork parent process "
981 "%d after child exec.\n"),
982 inf->vfork_parent->pid);
983 }
984 else
985 {
986 fprintf_filtered (gdb_stdlog,
987 _("Detaching vfork parent process "
988 "%d after child exit.\n"),
989 inf->vfork_parent->pid);
990 }
991 }
992
993 target_detach (NULL, 0);
994
995 /* Put it back. */
996 inf->pspace = pspace;
997 inf->aspace = aspace;
998 }
999 else if (exec)
1000 {
1001 /* We're staying attached to the parent, so, really give the
1002 child a new address space. */
1003 inf->pspace = add_program_space (maybe_new_address_space ());
1004 inf->aspace = inf->pspace->aspace;
1005 inf->removable = 1;
1006 set_current_program_space (inf->pspace);
1007
1008 resume_parent = inf->vfork_parent->pid;
1009
1010 /* Break the bonds. */
1011 inf->vfork_parent->vfork_child = NULL;
1012 }
1013 else
1014 {
1015 struct program_space *pspace;
1016
1017 /* If this is a vfork child exiting, then the pspace and
1018 aspaces were shared with the parent. Since we're
1019 reporting the process exit, we'll be mourning all that is
1020 found in the address space, and switching to null_ptid,
1021 preparing to start a new inferior. But, since we don't
1022 want to clobber the parent's address/program spaces, we
1023 go ahead and create a new one for this exiting
1024 inferior. */
1025
1026 /* Switch to null_ptid while running clone_program_space, so
1027 that clone_program_space doesn't want to read the
1028 selected frame of a dead process. */
1029 scoped_restore restore_ptid
1030 = make_scoped_restore (&inferior_ptid, null_ptid);
1031
1032 /* This inferior is dead, so avoid giving the breakpoints
1033 module the option to write through to it (cloning a
1034 program space resets breakpoints). */
1035 inf->aspace = NULL;
1036 inf->pspace = NULL;
1037 pspace = add_program_space (maybe_new_address_space ());
1038 set_current_program_space (pspace);
1039 inf->removable = 1;
1040 inf->symfile_flags = SYMFILE_NO_READ;
1041 clone_program_space (pspace, inf->vfork_parent->pspace);
1042 inf->pspace = pspace;
1043 inf->aspace = pspace->aspace;
1044
1045 resume_parent = inf->vfork_parent->pid;
1046 /* Break the bonds. */
1047 inf->vfork_parent->vfork_child = NULL;
1048 }
1049
1050 inf->vfork_parent = NULL;
1051
1052 gdb_assert (current_program_space == inf->pspace);
1053
1054 if (non_stop && resume_parent != -1)
1055 {
1056 /* If the user wanted the parent to be running, let it go
1057 free now. */
1058 scoped_restore_current_thread restore_thread;
1059
1060 if (debug_infrun)
1061 fprintf_unfiltered (gdb_stdlog,
1062 "infrun: resuming vfork parent process %d\n",
1063 resume_parent);
1064
1065 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1066 }
1067 }
1068 }
1069
1070 /* Enum strings for "set|show follow-exec-mode". */
1071
1072 static const char follow_exec_mode_new[] = "new";
1073 static const char follow_exec_mode_same[] = "same";
1074 static const char *const follow_exec_mode_names[] =
1075 {
1076 follow_exec_mode_new,
1077 follow_exec_mode_same,
1078 NULL,
1079 };
1080
1081 static const char *follow_exec_mode_string = follow_exec_mode_same;
1082 static void
1083 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1084 struct cmd_list_element *c, const char *value)
1085 {
1086 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1087 }
1088
1089 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1090
1091 static void
1092 follow_exec (ptid_t ptid, char *exec_file_target)
1093 {
1094 struct thread_info *th, *tmp;
1095 struct inferior *inf = current_inferior ();
1096 int pid = ptid_get_pid (ptid);
1097 ptid_t process_ptid;
1098 char *exec_file_host;
1099 struct cleanup *old_chain;
1100
1101 /* This is an exec event that we actually wish to pay attention to.
1102 Refresh our symbol table to the newly exec'd program, remove any
1103 momentary bp's, etc.
1104
1105 If there are breakpoints, they aren't really inserted now,
1106 since the exec() transformed our inferior into a fresh set
1107 of instructions.
1108
1109 We want to preserve symbolic breakpoints on the list, since
1110 we have hopes that they can be reset after the new a.out's
1111 symbol table is read.
1112
1113 However, any "raw" breakpoints must be removed from the list
1114 (e.g., the solib bp's), since their address is probably invalid
1115 now.
1116
1117 And, we DON'T want to call delete_breakpoints() here, since
1118 that may write the bp's "shadow contents" (the instruction
1119 value that was overwritten witha TRAP instruction). Since
1120 we now have a new a.out, those shadow contents aren't valid. */
1121
1122 mark_breakpoints_out ();
1123
1124 /* The target reports the exec event to the main thread, even if
1125 some other thread does the exec, and even if the main thread was
1126 stopped or already gone. We may still have non-leader threads of
1127 the process on our list. E.g., on targets that don't have thread
1128 exit events (like remote); or on native Linux in non-stop mode if
1129 there were only two threads in the inferior and the non-leader
1130 one is the one that execs (and nothing forces an update of the
1131 thread list up to here). When debugging remotely, it's best to
1132 avoid extra traffic, when possible, so avoid syncing the thread
1133 list with the target, and instead go ahead and delete all threads
1134 of the process but one that reported the event. Note this must
1135 be done before calling update_breakpoints_after_exec, as
1136 otherwise clearing the threads' resources would reference stale
1137 thread breakpoints -- it may have been one of these threads that
1138 stepped across the exec. We could just clear their stepping
1139 states, but as long as we're iterating, might as well delete
1140 them. Deleting them now rather than at the next user-visible
1141 stop provides a nicer sequence of events for user and MI
1142 notifications. */
1143 ALL_THREADS_SAFE (th, tmp)
1144 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1145 delete_thread (th->ptid);
1146
1147 /* We also need to clear any left over stale state for the
1148 leader/event thread. E.g., if there was any step-resume
1149 breakpoint or similar, it's gone now. We cannot truly
1150 step-to-next statement through an exec(). */
1151 th = inferior_thread ();
1152 th->control.step_resume_breakpoint = NULL;
1153 th->control.exception_resume_breakpoint = NULL;
1154 th->control.single_step_breakpoints = NULL;
1155 th->control.step_range_start = 0;
1156 th->control.step_range_end = 0;
1157
1158 /* The user may have had the main thread held stopped in the
1159 previous image (e.g., schedlock on, or non-stop). Release
1160 it now. */
1161 th->stop_requested = 0;
1162
1163 update_breakpoints_after_exec ();
1164
1165 /* What is this a.out's name? */
1166 process_ptid = pid_to_ptid (pid);
1167 printf_unfiltered (_("%s is executing new program: %s\n"),
1168 target_pid_to_str (process_ptid),
1169 exec_file_target);
1170
1171 /* We've followed the inferior through an exec. Therefore, the
1172 inferior has essentially been killed & reborn. */
1173
1174 gdb_flush (gdb_stdout);
1175
1176 breakpoint_init_inferior (inf_execd);
1177
1178 exec_file_host = exec_file_find (exec_file_target, NULL);
1179 old_chain = make_cleanup (xfree, exec_file_host);
1180
1181 /* If we were unable to map the executable target pathname onto a host
1182 pathname, tell the user that. Otherwise GDB's subsequent behavior
1183 is confusing. Maybe it would even be better to stop at this point
1184 so that the user can specify a file manually before continuing. */
1185 if (exec_file_host == NULL)
1186 warning (_("Could not load symbols for executable %s.\n"
1187 "Do you need \"set sysroot\"?"),
1188 exec_file_target);
1189
1190 /* Reset the shared library package. This ensures that we get a
1191 shlib event when the child reaches "_start", at which point the
1192 dld will have had a chance to initialize the child. */
1193 /* Also, loading a symbol file below may trigger symbol lookups, and
1194 we don't want those to be satisfied by the libraries of the
1195 previous incarnation of this process. */
1196 no_shared_libraries (NULL, 0);
1197
1198 if (follow_exec_mode_string == follow_exec_mode_new)
1199 {
1200 /* The user wants to keep the old inferior and program spaces
1201 around. Create a new fresh one, and switch to it. */
1202
1203 /* Do exit processing for the original inferior before adding
1204 the new inferior so we don't have two active inferiors with
1205 the same ptid, which can confuse find_inferior_ptid. */
1206 exit_inferior_num_silent (current_inferior ()->num);
1207
1208 inf = add_inferior_with_spaces ();
1209 inf->pid = pid;
1210 target_follow_exec (inf, exec_file_target);
1211
1212 set_current_inferior (inf);
1213 set_current_program_space (inf->pspace);
1214 add_thread (ptid);
1215 }
1216 else
1217 {
1218 /* The old description may no longer be fit for the new image.
1219 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1220 old description; we'll read a new one below. No need to do
1221 this on "follow-exec-mode new", as the old inferior stays
1222 around (its description is later cleared/refetched on
1223 restart). */
1224 target_clear_description ();
1225 }
1226
1227 gdb_assert (current_program_space == inf->pspace);
1228
1229 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1230 because the proper displacement for a PIE (Position Independent
1231 Executable) main symbol file will only be computed by
1232 solib_create_inferior_hook below. breakpoint_re_set would fail
1233 to insert the breakpoints with the zero displacement. */
1234 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
1235
1236 do_cleanups (old_chain);
1237
1238 /* If the target can specify a description, read it. Must do this
1239 after flipping to the new executable (because the target supplied
1240 description must be compatible with the executable's
1241 architecture, and the old executable may e.g., be 32-bit, while
1242 the new one 64-bit), and before anything involving memory or
1243 registers. */
1244 target_find_description ();
1245
1246 solib_create_inferior_hook (0);
1247
1248 jit_inferior_created_hook ();
1249
1250 breakpoint_re_set ();
1251
1252 /* Reinsert all breakpoints. (Those which were symbolic have
1253 been reset to the proper address in the new a.out, thanks
1254 to symbol_file_command...). */
1255 insert_breakpoints ();
1256
1257 /* The next resume of this inferior should bring it to the shlib
1258 startup breakpoints. (If the user had also set bp's on
1259 "main" from the old (parent) process, then they'll auto-
1260 matically get reset there in the new process.). */
1261 }
1262
1263 /* The queue of threads that need to do a step-over operation to get
1264 past e.g., a breakpoint. What technique is used to step over the
1265 breakpoint/watchpoint does not matter -- all threads end up in the
1266 same queue, to maintain rough temporal order of execution, in order
1267 to avoid starvation, otherwise, we could e.g., find ourselves
1268 constantly stepping the same couple threads past their breakpoints
1269 over and over, if the single-step finish fast enough. */
1270 struct thread_info *step_over_queue_head;
1271
1272 /* Bit flags indicating what the thread needs to step over. */
1273
1274 enum step_over_what_flag
1275 {
1276 /* Step over a breakpoint. */
1277 STEP_OVER_BREAKPOINT = 1,
1278
1279 /* Step past a non-continuable watchpoint, in order to let the
1280 instruction execute so we can evaluate the watchpoint
1281 expression. */
1282 STEP_OVER_WATCHPOINT = 2
1283 };
1284 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1285
1286 /* Info about an instruction that is being stepped over. */
1287
1288 struct step_over_info
1289 {
1290 /* If we're stepping past a breakpoint, this is the address space
1291 and address of the instruction the breakpoint is set at. We'll
1292 skip inserting all breakpoints here. Valid iff ASPACE is
1293 non-NULL. */
1294 struct address_space *aspace;
1295 CORE_ADDR address;
1296
1297 /* The instruction being stepped over triggers a nonsteppable
1298 watchpoint. If true, we'll skip inserting watchpoints. */
1299 int nonsteppable_watchpoint_p;
1300
1301 /* The thread's global number. */
1302 int thread;
1303 };
1304
1305 /* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329 static struct step_over_info step_over_info;
1330
1331 /* Record the address of the breakpoint/instruction we're currently
1332 stepping over.
1333 N.B. We record the aspace and address now, instead of say just the thread,
1334 because when we need the info later the thread may be running. */
1335
1336 static void
1337 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1338 int nonsteppable_watchpoint_p,
1339 int thread)
1340 {
1341 step_over_info.aspace = aspace;
1342 step_over_info.address = address;
1343 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1344 step_over_info.thread = thread;
1345 }
1346
1347 /* Called when we're not longer stepping over a breakpoint / an
1348 instruction, so all breakpoints are free to be (re)inserted. */
1349
1350 static void
1351 clear_step_over_info (void)
1352 {
1353 if (debug_infrun)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "infrun: clear_step_over_info\n");
1356 step_over_info.aspace = NULL;
1357 step_over_info.address = 0;
1358 step_over_info.nonsteppable_watchpoint_p = 0;
1359 step_over_info.thread = -1;
1360 }
1361
1362 /* See infrun.h. */
1363
1364 int
1365 stepping_past_instruction_at (struct address_space *aspace,
1366 CORE_ADDR address)
1367 {
1368 return (step_over_info.aspace != NULL
1369 && breakpoint_address_match (aspace, address,
1370 step_over_info.aspace,
1371 step_over_info.address));
1372 }
1373
1374 /* See infrun.h. */
1375
1376 int
1377 thread_is_stepping_over_breakpoint (int thread)
1378 {
1379 return (step_over_info.thread != -1
1380 && thread == step_over_info.thread);
1381 }
1382
1383 /* See infrun.h. */
1384
1385 int
1386 stepping_past_nonsteppable_watchpoint (void)
1387 {
1388 return step_over_info.nonsteppable_watchpoint_p;
1389 }
1390
1391 /* Returns true if step-over info is valid. */
1392
1393 static int
1394 step_over_info_valid_p (void)
1395 {
1396 return (step_over_info.aspace != NULL
1397 || stepping_past_nonsteppable_watchpoint ());
1398 }
1399
1400 \f
1401 /* Displaced stepping. */
1402
1403 /* In non-stop debugging mode, we must take special care to manage
1404 breakpoints properly; in particular, the traditional strategy for
1405 stepping a thread past a breakpoint it has hit is unsuitable.
1406 'Displaced stepping' is a tactic for stepping one thread past a
1407 breakpoint it has hit while ensuring that other threads running
1408 concurrently will hit the breakpoint as they should.
1409
1410 The traditional way to step a thread T off a breakpoint in a
1411 multi-threaded program in all-stop mode is as follows:
1412
1413 a0) Initially, all threads are stopped, and breakpoints are not
1414 inserted.
1415 a1) We single-step T, leaving breakpoints uninserted.
1416 a2) We insert breakpoints, and resume all threads.
1417
1418 In non-stop debugging, however, this strategy is unsuitable: we
1419 don't want to have to stop all threads in the system in order to
1420 continue or step T past a breakpoint. Instead, we use displaced
1421 stepping:
1422
1423 n0) Initially, T is stopped, other threads are running, and
1424 breakpoints are inserted.
1425 n1) We copy the instruction "under" the breakpoint to a separate
1426 location, outside the main code stream, making any adjustments
1427 to the instruction, register, and memory state as directed by
1428 T's architecture.
1429 n2) We single-step T over the instruction at its new location.
1430 n3) We adjust the resulting register and memory state as directed
1431 by T's architecture. This includes resetting T's PC to point
1432 back into the main instruction stream.
1433 n4) We resume T.
1434
1435 This approach depends on the following gdbarch methods:
1436
1437 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1438 indicate where to copy the instruction, and how much space must
1439 be reserved there. We use these in step n1.
1440
1441 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1442 address, and makes any necessary adjustments to the instruction,
1443 register contents, and memory. We use this in step n1.
1444
1445 - gdbarch_displaced_step_fixup adjusts registers and memory after
1446 we have successfuly single-stepped the instruction, to yield the
1447 same effect the instruction would have had if we had executed it
1448 at its original address. We use this in step n3.
1449
1450 - gdbarch_displaced_step_free_closure provides cleanup.
1451
1452 The gdbarch_displaced_step_copy_insn and
1453 gdbarch_displaced_step_fixup functions must be written so that
1454 copying an instruction with gdbarch_displaced_step_copy_insn,
1455 single-stepping across the copied instruction, and then applying
1456 gdbarch_displaced_insn_fixup should have the same effects on the
1457 thread's memory and registers as stepping the instruction in place
1458 would have. Exactly which responsibilities fall to the copy and
1459 which fall to the fixup is up to the author of those functions.
1460
1461 See the comments in gdbarch.sh for details.
1462
1463 Note that displaced stepping and software single-step cannot
1464 currently be used in combination, although with some care I think
1465 they could be made to. Software single-step works by placing
1466 breakpoints on all possible subsequent instructions; if the
1467 displaced instruction is a PC-relative jump, those breakpoints
1468 could fall in very strange places --- on pages that aren't
1469 executable, or at addresses that are not proper instruction
1470 boundaries. (We do generally let other threads run while we wait
1471 to hit the software single-step breakpoint, and they might
1472 encounter such a corrupted instruction.) One way to work around
1473 this would be to have gdbarch_displaced_step_copy_insn fully
1474 simulate the effect of PC-relative instructions (and return NULL)
1475 on architectures that use software single-stepping.
1476
1477 In non-stop mode, we can have independent and simultaneous step
1478 requests, so more than one thread may need to simultaneously step
1479 over a breakpoint. The current implementation assumes there is
1480 only one scratch space per process. In this case, we have to
1481 serialize access to the scratch space. If thread A wants to step
1482 over a breakpoint, but we are currently waiting for some other
1483 thread to complete a displaced step, we leave thread A stopped and
1484 place it in the displaced_step_request_queue. Whenever a displaced
1485 step finishes, we pick the next thread in the queue and start a new
1486 displaced step operation on it. See displaced_step_prepare and
1487 displaced_step_fixup for details. */
1488
1489 /* Per-inferior displaced stepping state. */
1490 struct displaced_step_inferior_state
1491 {
1492 /* Pointer to next in linked list. */
1493 struct displaced_step_inferior_state *next;
1494
1495 /* The process this displaced step state refers to. */
1496 int pid;
1497
1498 /* True if preparing a displaced step ever failed. If so, we won't
1499 try displaced stepping for this inferior again. */
1500 int failed_before;
1501
1502 /* If this is not null_ptid, this is the thread carrying out a
1503 displaced single-step in process PID. This thread's state will
1504 require fixing up once it has completed its step. */
1505 ptid_t step_ptid;
1506
1507 /* The architecture the thread had when we stepped it. */
1508 struct gdbarch *step_gdbarch;
1509
1510 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1511 for post-step cleanup. */
1512 struct displaced_step_closure *step_closure;
1513
1514 /* The address of the original instruction, and the copy we
1515 made. */
1516 CORE_ADDR step_original, step_copy;
1517
1518 /* Saved contents of copy area. */
1519 gdb_byte *step_saved_copy;
1520 };
1521
1522 /* The list of states of processes involved in displaced stepping
1523 presently. */
1524 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1525
1526 /* Get the displaced stepping state of process PID. */
1527
1528 static struct displaced_step_inferior_state *
1529 get_displaced_stepping_state (int pid)
1530 {
1531 struct displaced_step_inferior_state *state;
1532
1533 for (state = displaced_step_inferior_states;
1534 state != NULL;
1535 state = state->next)
1536 if (state->pid == pid)
1537 return state;
1538
1539 return NULL;
1540 }
1541
1542 /* Returns true if any inferior has a thread doing a displaced
1543 step. */
1544
1545 static int
1546 displaced_step_in_progress_any_inferior (void)
1547 {
1548 struct displaced_step_inferior_state *state;
1549
1550 for (state = displaced_step_inferior_states;
1551 state != NULL;
1552 state = state->next)
1553 if (!ptid_equal (state->step_ptid, null_ptid))
1554 return 1;
1555
1556 return 0;
1557 }
1558
1559 /* Return true if thread represented by PTID is doing a displaced
1560 step. */
1561
1562 static int
1563 displaced_step_in_progress_thread (ptid_t ptid)
1564 {
1565 struct displaced_step_inferior_state *displaced;
1566
1567 gdb_assert (!ptid_equal (ptid, null_ptid));
1568
1569 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1570
1571 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1572 }
1573
1574 /* Return true if process PID has a thread doing a displaced step. */
1575
1576 static int
1577 displaced_step_in_progress (int pid)
1578 {
1579 struct displaced_step_inferior_state *displaced;
1580
1581 displaced = get_displaced_stepping_state (pid);
1582 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1583 return 1;
1584
1585 return 0;
1586 }
1587
1588 /* Add a new displaced stepping state for process PID to the displaced
1589 stepping state list, or return a pointer to an already existing
1590 entry, if it already exists. Never returns NULL. */
1591
1592 static struct displaced_step_inferior_state *
1593 add_displaced_stepping_state (int pid)
1594 {
1595 struct displaced_step_inferior_state *state;
1596
1597 for (state = displaced_step_inferior_states;
1598 state != NULL;
1599 state = state->next)
1600 if (state->pid == pid)
1601 return state;
1602
1603 state = XCNEW (struct displaced_step_inferior_state);
1604 state->pid = pid;
1605 state->next = displaced_step_inferior_states;
1606 displaced_step_inferior_states = state;
1607
1608 return state;
1609 }
1610
1611 /* If inferior is in displaced stepping, and ADDR equals to starting address
1612 of copy area, return corresponding displaced_step_closure. Otherwise,
1613 return NULL. */
1614
1615 struct displaced_step_closure*
1616 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1617 {
1618 struct displaced_step_inferior_state *displaced
1619 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1620
1621 /* If checking the mode of displaced instruction in copy area. */
1622 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1623 && (displaced->step_copy == addr))
1624 return displaced->step_closure;
1625
1626 return NULL;
1627 }
1628
1629 /* Remove the displaced stepping state of process PID. */
1630
1631 static void
1632 remove_displaced_stepping_state (int pid)
1633 {
1634 struct displaced_step_inferior_state *it, **prev_next_p;
1635
1636 gdb_assert (pid != 0);
1637
1638 it = displaced_step_inferior_states;
1639 prev_next_p = &displaced_step_inferior_states;
1640 while (it)
1641 {
1642 if (it->pid == pid)
1643 {
1644 *prev_next_p = it->next;
1645 xfree (it);
1646 return;
1647 }
1648
1649 prev_next_p = &it->next;
1650 it = *prev_next_p;
1651 }
1652 }
1653
1654 static void
1655 infrun_inferior_exit (struct inferior *inf)
1656 {
1657 remove_displaced_stepping_state (inf->pid);
1658 }
1659
1660 /* If ON, and the architecture supports it, GDB will use displaced
1661 stepping to step over breakpoints. If OFF, or if the architecture
1662 doesn't support it, GDB will instead use the traditional
1663 hold-and-step approach. If AUTO (which is the default), GDB will
1664 decide which technique to use to step over breakpoints depending on
1665 which of all-stop or non-stop mode is active --- displaced stepping
1666 in non-stop mode; hold-and-step in all-stop mode. */
1667
1668 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1669
1670 static void
1671 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1672 struct cmd_list_element *c,
1673 const char *value)
1674 {
1675 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1676 fprintf_filtered (file,
1677 _("Debugger's willingness to use displaced stepping "
1678 "to step over breakpoints is %s (currently %s).\n"),
1679 value, target_is_non_stop_p () ? "on" : "off");
1680 else
1681 fprintf_filtered (file,
1682 _("Debugger's willingness to use displaced stepping "
1683 "to step over breakpoints is %s.\n"), value);
1684 }
1685
1686 /* Return non-zero if displaced stepping can/should be used to step
1687 over breakpoints of thread TP. */
1688
1689 static int
1690 use_displaced_stepping (struct thread_info *tp)
1691 {
1692 struct regcache *regcache = get_thread_regcache (tp->ptid);
1693 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1694 struct displaced_step_inferior_state *displaced_state;
1695
1696 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1697
1698 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1699 && target_is_non_stop_p ())
1700 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1701 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1702 && find_record_target () == NULL
1703 && (displaced_state == NULL
1704 || !displaced_state->failed_before));
1705 }
1706
1707 /* Clean out any stray displaced stepping state. */
1708 static void
1709 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1710 {
1711 /* Indicate that there is no cleanup pending. */
1712 displaced->step_ptid = null_ptid;
1713
1714 xfree (displaced->step_closure);
1715 displaced->step_closure = NULL;
1716 }
1717
1718 static void
1719 displaced_step_clear_cleanup (void *arg)
1720 {
1721 struct displaced_step_inferior_state *state
1722 = (struct displaced_step_inferior_state *) arg;
1723
1724 displaced_step_clear (state);
1725 }
1726
1727 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1728 void
1729 displaced_step_dump_bytes (struct ui_file *file,
1730 const gdb_byte *buf,
1731 size_t len)
1732 {
1733 int i;
1734
1735 for (i = 0; i < len; i++)
1736 fprintf_unfiltered (file, "%02x ", buf[i]);
1737 fputs_unfiltered ("\n", file);
1738 }
1739
1740 /* Prepare to single-step, using displaced stepping.
1741
1742 Note that we cannot use displaced stepping when we have a signal to
1743 deliver. If we have a signal to deliver and an instruction to step
1744 over, then after the step, there will be no indication from the
1745 target whether the thread entered a signal handler or ignored the
1746 signal and stepped over the instruction successfully --- both cases
1747 result in a simple SIGTRAP. In the first case we mustn't do a
1748 fixup, and in the second case we must --- but we can't tell which.
1749 Comments in the code for 'random signals' in handle_inferior_event
1750 explain how we handle this case instead.
1751
1752 Returns 1 if preparing was successful -- this thread is going to be
1753 stepped now; 0 if displaced stepping this thread got queued; or -1
1754 if this instruction can't be displaced stepped. */
1755
1756 static int
1757 displaced_step_prepare_throw (ptid_t ptid)
1758 {
1759 struct cleanup *ignore_cleanups;
1760 struct thread_info *tp = find_thread_ptid (ptid);
1761 struct regcache *regcache = get_thread_regcache (ptid);
1762 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1763 struct address_space *aspace = get_regcache_aspace (regcache);
1764 CORE_ADDR original, copy;
1765 ULONGEST len;
1766 struct displaced_step_closure *closure;
1767 struct displaced_step_inferior_state *displaced;
1768 int status;
1769
1770 /* We should never reach this function if the architecture does not
1771 support displaced stepping. */
1772 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1773
1774 /* Nor if the thread isn't meant to step over a breakpoint. */
1775 gdb_assert (tp->control.trap_expected);
1776
1777 /* Disable range stepping while executing in the scratch pad. We
1778 want a single-step even if executing the displaced instruction in
1779 the scratch buffer lands within the stepping range (e.g., a
1780 jump/branch). */
1781 tp->control.may_range_step = 0;
1782
1783 /* We have to displaced step one thread at a time, as we only have
1784 access to a single scratch space per inferior. */
1785
1786 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1787
1788 if (!ptid_equal (displaced->step_ptid, null_ptid))
1789 {
1790 /* Already waiting for a displaced step to finish. Defer this
1791 request and place in queue. */
1792
1793 if (debug_displaced)
1794 fprintf_unfiltered (gdb_stdlog,
1795 "displaced: deferring step of %s\n",
1796 target_pid_to_str (ptid));
1797
1798 thread_step_over_chain_enqueue (tp);
1799 return 0;
1800 }
1801 else
1802 {
1803 if (debug_displaced)
1804 fprintf_unfiltered (gdb_stdlog,
1805 "displaced: stepping %s now\n",
1806 target_pid_to_str (ptid));
1807 }
1808
1809 displaced_step_clear (displaced);
1810
1811 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1812 inferior_ptid = ptid;
1813
1814 original = regcache_read_pc (regcache);
1815
1816 copy = gdbarch_displaced_step_location (gdbarch);
1817 len = gdbarch_max_insn_length (gdbarch);
1818
1819 if (breakpoint_in_range_p (aspace, copy, len))
1820 {
1821 /* There's a breakpoint set in the scratch pad location range
1822 (which is usually around the entry point). We'd either
1823 install it before resuming, which would overwrite/corrupt the
1824 scratch pad, or if it was already inserted, this displaced
1825 step would overwrite it. The latter is OK in the sense that
1826 we already assume that no thread is going to execute the code
1827 in the scratch pad range (after initial startup) anyway, but
1828 the former is unacceptable. Simply punt and fallback to
1829 stepping over this breakpoint in-line. */
1830 if (debug_displaced)
1831 {
1832 fprintf_unfiltered (gdb_stdlog,
1833 "displaced: breakpoint set in scratch pad. "
1834 "Stepping over breakpoint in-line instead.\n");
1835 }
1836
1837 return -1;
1838 }
1839
1840 /* Save the original contents of the copy area. */
1841 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1842 ignore_cleanups = make_cleanup (free_current_contents,
1843 &displaced->step_saved_copy);
1844 status = target_read_memory (copy, displaced->step_saved_copy, len);
1845 if (status != 0)
1846 throw_error (MEMORY_ERROR,
1847 _("Error accessing memory address %s (%s) for "
1848 "displaced-stepping scratch space."),
1849 paddress (gdbarch, copy), safe_strerror (status));
1850 if (debug_displaced)
1851 {
1852 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1853 paddress (gdbarch, copy));
1854 displaced_step_dump_bytes (gdb_stdlog,
1855 displaced->step_saved_copy,
1856 len);
1857 };
1858
1859 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1860 original, copy, regcache);
1861 if (closure == NULL)
1862 {
1863 /* The architecture doesn't know how or want to displaced step
1864 this instruction or instruction sequence. Fallback to
1865 stepping over the breakpoint in-line. */
1866 do_cleanups (ignore_cleanups);
1867 return -1;
1868 }
1869
1870 /* Save the information we need to fix things up if the step
1871 succeeds. */
1872 displaced->step_ptid = ptid;
1873 displaced->step_gdbarch = gdbarch;
1874 displaced->step_closure = closure;
1875 displaced->step_original = original;
1876 displaced->step_copy = copy;
1877
1878 make_cleanup (displaced_step_clear_cleanup, displaced);
1879
1880 /* Resume execution at the copy. */
1881 regcache_write_pc (regcache, copy);
1882
1883 discard_cleanups (ignore_cleanups);
1884
1885 if (debug_displaced)
1886 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1887 paddress (gdbarch, copy));
1888
1889 return 1;
1890 }
1891
1892 /* Wrapper for displaced_step_prepare_throw that disabled further
1893 attempts at displaced stepping if we get a memory error. */
1894
1895 static int
1896 displaced_step_prepare (ptid_t ptid)
1897 {
1898 int prepared = -1;
1899
1900 TRY
1901 {
1902 prepared = displaced_step_prepare_throw (ptid);
1903 }
1904 CATCH (ex, RETURN_MASK_ERROR)
1905 {
1906 struct displaced_step_inferior_state *displaced_state;
1907
1908 if (ex.error != MEMORY_ERROR
1909 && ex.error != NOT_SUPPORTED_ERROR)
1910 throw_exception (ex);
1911
1912 if (debug_infrun)
1913 {
1914 fprintf_unfiltered (gdb_stdlog,
1915 "infrun: disabling displaced stepping: %s\n",
1916 ex.message);
1917 }
1918
1919 /* Be verbose if "set displaced-stepping" is "on", silent if
1920 "auto". */
1921 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1922 {
1923 warning (_("disabling displaced stepping: %s"),
1924 ex.message);
1925 }
1926
1927 /* Disable further displaced stepping attempts. */
1928 displaced_state
1929 = get_displaced_stepping_state (ptid_get_pid (ptid));
1930 displaced_state->failed_before = 1;
1931 }
1932 END_CATCH
1933
1934 return prepared;
1935 }
1936
1937 static void
1938 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1939 const gdb_byte *myaddr, int len)
1940 {
1941 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1942
1943 inferior_ptid = ptid;
1944 write_memory (memaddr, myaddr, len);
1945 }
1946
1947 /* Restore the contents of the copy area for thread PTID. */
1948
1949 static void
1950 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1951 ptid_t ptid)
1952 {
1953 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1954
1955 write_memory_ptid (ptid, displaced->step_copy,
1956 displaced->step_saved_copy, len);
1957 if (debug_displaced)
1958 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1959 target_pid_to_str (ptid),
1960 paddress (displaced->step_gdbarch,
1961 displaced->step_copy));
1962 }
1963
1964 /* If we displaced stepped an instruction successfully, adjust
1965 registers and memory to yield the same effect the instruction would
1966 have had if we had executed it at its original address, and return
1967 1. If the instruction didn't complete, relocate the PC and return
1968 -1. If the thread wasn't displaced stepping, return 0. */
1969
1970 static int
1971 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1972 {
1973 struct cleanup *old_cleanups;
1974 struct displaced_step_inferior_state *displaced
1975 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1976 int ret;
1977
1978 /* Was any thread of this process doing a displaced step? */
1979 if (displaced == NULL)
1980 return 0;
1981
1982 /* Was this event for the pid we displaced? */
1983 if (ptid_equal (displaced->step_ptid, null_ptid)
1984 || ! ptid_equal (displaced->step_ptid, event_ptid))
1985 return 0;
1986
1987 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1988
1989 displaced_step_restore (displaced, displaced->step_ptid);
1990
1991 /* Fixup may need to read memory/registers. Switch to the thread
1992 that we're fixing up. Also, target_stopped_by_watchpoint checks
1993 the current thread. */
1994 switch_to_thread (event_ptid);
1995
1996 /* Did the instruction complete successfully? */
1997 if (signal == GDB_SIGNAL_TRAP
1998 && !(target_stopped_by_watchpoint ()
1999 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2000 || target_have_steppable_watchpoint)))
2001 {
2002 /* Fix up the resulting state. */
2003 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2004 displaced->step_closure,
2005 displaced->step_original,
2006 displaced->step_copy,
2007 get_thread_regcache (displaced->step_ptid));
2008 ret = 1;
2009 }
2010 else
2011 {
2012 /* Since the instruction didn't complete, all we can do is
2013 relocate the PC. */
2014 struct regcache *regcache = get_thread_regcache (event_ptid);
2015 CORE_ADDR pc = regcache_read_pc (regcache);
2016
2017 pc = displaced->step_original + (pc - displaced->step_copy);
2018 regcache_write_pc (regcache, pc);
2019 ret = -1;
2020 }
2021
2022 do_cleanups (old_cleanups);
2023
2024 displaced->step_ptid = null_ptid;
2025
2026 return ret;
2027 }
2028
2029 /* Data to be passed around while handling an event. This data is
2030 discarded between events. */
2031 struct execution_control_state
2032 {
2033 ptid_t ptid;
2034 /* The thread that got the event, if this was a thread event; NULL
2035 otherwise. */
2036 struct thread_info *event_thread;
2037
2038 struct target_waitstatus ws;
2039 int stop_func_filled_in;
2040 CORE_ADDR stop_func_start;
2041 CORE_ADDR stop_func_end;
2042 const char *stop_func_name;
2043 int wait_some_more;
2044
2045 /* True if the event thread hit the single-step breakpoint of
2046 another thread. Thus the event doesn't cause a stop, the thread
2047 needs to be single-stepped past the single-step breakpoint before
2048 we can switch back to the original stepping thread. */
2049 int hit_singlestep_breakpoint;
2050 };
2051
2052 /* Clear ECS and set it to point at TP. */
2053
2054 static void
2055 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2056 {
2057 memset (ecs, 0, sizeof (*ecs));
2058 ecs->event_thread = tp;
2059 ecs->ptid = tp->ptid;
2060 }
2061
2062 static void keep_going_pass_signal (struct execution_control_state *ecs);
2063 static void prepare_to_wait (struct execution_control_state *ecs);
2064 static int keep_going_stepped_thread (struct thread_info *tp);
2065 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2066
2067 /* Are there any pending step-over requests? If so, run all we can
2068 now and return true. Otherwise, return false. */
2069
2070 static int
2071 start_step_over (void)
2072 {
2073 struct thread_info *tp, *next;
2074
2075 /* Don't start a new step-over if we already have an in-line
2076 step-over operation ongoing. */
2077 if (step_over_info_valid_p ())
2078 return 0;
2079
2080 for (tp = step_over_queue_head; tp != NULL; tp = next)
2081 {
2082 struct execution_control_state ecss;
2083 struct execution_control_state *ecs = &ecss;
2084 step_over_what step_what;
2085 int must_be_in_line;
2086
2087 gdb_assert (!tp->stop_requested);
2088
2089 next = thread_step_over_chain_next (tp);
2090
2091 /* If this inferior already has a displaced step in process,
2092 don't start a new one. */
2093 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2094 continue;
2095
2096 step_what = thread_still_needs_step_over (tp);
2097 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2098 || ((step_what & STEP_OVER_BREAKPOINT)
2099 && !use_displaced_stepping (tp)));
2100
2101 /* We currently stop all threads of all processes to step-over
2102 in-line. If we need to start a new in-line step-over, let
2103 any pending displaced steps finish first. */
2104 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2105 return 0;
2106
2107 thread_step_over_chain_remove (tp);
2108
2109 if (step_over_queue_head == NULL)
2110 {
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog,
2113 "infrun: step-over queue now empty\n");
2114 }
2115
2116 if (tp->control.trap_expected
2117 || tp->resumed
2118 || tp->executing)
2119 {
2120 internal_error (__FILE__, __LINE__,
2121 "[%s] has inconsistent state: "
2122 "trap_expected=%d, resumed=%d, executing=%d\n",
2123 target_pid_to_str (tp->ptid),
2124 tp->control.trap_expected,
2125 tp->resumed,
2126 tp->executing);
2127 }
2128
2129 if (debug_infrun)
2130 fprintf_unfiltered (gdb_stdlog,
2131 "infrun: resuming [%s] for step-over\n",
2132 target_pid_to_str (tp->ptid));
2133
2134 /* keep_going_pass_signal skips the step-over if the breakpoint
2135 is no longer inserted. In all-stop, we want to keep looking
2136 for a thread that needs a step-over instead of resuming TP,
2137 because we wouldn't be able to resume anything else until the
2138 target stops again. In non-stop, the resume always resumes
2139 only TP, so it's OK to let the thread resume freely. */
2140 if (!target_is_non_stop_p () && !step_what)
2141 continue;
2142
2143 switch_to_thread (tp->ptid);
2144 reset_ecs (ecs, tp);
2145 keep_going_pass_signal (ecs);
2146
2147 if (!ecs->wait_some_more)
2148 error (_("Command aborted."));
2149
2150 gdb_assert (tp->resumed);
2151
2152 /* If we started a new in-line step-over, we're done. */
2153 if (step_over_info_valid_p ())
2154 {
2155 gdb_assert (tp->control.trap_expected);
2156 return 1;
2157 }
2158
2159 if (!target_is_non_stop_p ())
2160 {
2161 /* On all-stop, shouldn't have resumed unless we needed a
2162 step over. */
2163 gdb_assert (tp->control.trap_expected
2164 || tp->step_after_step_resume_breakpoint);
2165
2166 /* With remote targets (at least), in all-stop, we can't
2167 issue any further remote commands until the program stops
2168 again. */
2169 return 1;
2170 }
2171
2172 /* Either the thread no longer needed a step-over, or a new
2173 displaced stepping sequence started. Even in the latter
2174 case, continue looking. Maybe we can also start another
2175 displaced step on a thread of other process. */
2176 }
2177
2178 return 0;
2179 }
2180
2181 /* Update global variables holding ptids to hold NEW_PTID if they were
2182 holding OLD_PTID. */
2183 static void
2184 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2185 {
2186 struct displaced_step_inferior_state *displaced;
2187
2188 if (ptid_equal (inferior_ptid, old_ptid))
2189 inferior_ptid = new_ptid;
2190
2191 for (displaced = displaced_step_inferior_states;
2192 displaced;
2193 displaced = displaced->next)
2194 {
2195 if (ptid_equal (displaced->step_ptid, old_ptid))
2196 displaced->step_ptid = new_ptid;
2197 }
2198 }
2199
2200 \f
2201 /* Resuming. */
2202
2203 /* Things to clean up if we QUIT out of resume (). */
2204 static void
2205 resume_cleanups (void *ignore)
2206 {
2207 if (!ptid_equal (inferior_ptid, null_ptid))
2208 delete_single_step_breakpoints (inferior_thread ());
2209
2210 normal_stop ();
2211 }
2212
2213 static const char schedlock_off[] = "off";
2214 static const char schedlock_on[] = "on";
2215 static const char schedlock_step[] = "step";
2216 static const char schedlock_replay[] = "replay";
2217 static const char *const scheduler_enums[] = {
2218 schedlock_off,
2219 schedlock_on,
2220 schedlock_step,
2221 schedlock_replay,
2222 NULL
2223 };
2224 static const char *scheduler_mode = schedlock_replay;
2225 static void
2226 show_scheduler_mode (struct ui_file *file, int from_tty,
2227 struct cmd_list_element *c, const char *value)
2228 {
2229 fprintf_filtered (file,
2230 _("Mode for locking scheduler "
2231 "during execution is \"%s\".\n"),
2232 value);
2233 }
2234
2235 static void
2236 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2237 {
2238 if (!target_can_lock_scheduler)
2239 {
2240 scheduler_mode = schedlock_off;
2241 error (_("Target '%s' cannot support this command."), target_shortname);
2242 }
2243 }
2244
2245 /* True if execution commands resume all threads of all processes by
2246 default; otherwise, resume only threads of the current inferior
2247 process. */
2248 int sched_multi = 0;
2249
2250 /* Try to setup for software single stepping over the specified location.
2251 Return 1 if target_resume() should use hardware single step.
2252
2253 GDBARCH the current gdbarch.
2254 PC the location to step over. */
2255
2256 static int
2257 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2258 {
2259 int hw_step = 1;
2260
2261 if (execution_direction == EXEC_FORWARD
2262 && gdbarch_software_single_step_p (gdbarch))
2263 hw_step = !insert_single_step_breakpoints (gdbarch);
2264
2265 return hw_step;
2266 }
2267
2268 /* See infrun.h. */
2269
2270 ptid_t
2271 user_visible_resume_ptid (int step)
2272 {
2273 ptid_t resume_ptid;
2274
2275 if (non_stop)
2276 {
2277 /* With non-stop mode on, threads are always handled
2278 individually. */
2279 resume_ptid = inferior_ptid;
2280 }
2281 else if ((scheduler_mode == schedlock_on)
2282 || (scheduler_mode == schedlock_step && step))
2283 {
2284 /* User-settable 'scheduler' mode requires solo thread
2285 resume. */
2286 resume_ptid = inferior_ptid;
2287 }
2288 else if ((scheduler_mode == schedlock_replay)
2289 && target_record_will_replay (minus_one_ptid, execution_direction))
2290 {
2291 /* User-settable 'scheduler' mode requires solo thread resume in replay
2292 mode. */
2293 resume_ptid = inferior_ptid;
2294 }
2295 else if (!sched_multi && target_supports_multi_process ())
2296 {
2297 /* Resume all threads of the current process (and none of other
2298 processes). */
2299 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2300 }
2301 else
2302 {
2303 /* Resume all threads of all processes. */
2304 resume_ptid = RESUME_ALL;
2305 }
2306
2307 return resume_ptid;
2308 }
2309
2310 /* Return a ptid representing the set of threads that we will resume,
2311 in the perspective of the target, assuming run control handling
2312 does not require leaving some threads stopped (e.g., stepping past
2313 breakpoint). USER_STEP indicates whether we're about to start the
2314 target for a stepping command. */
2315
2316 static ptid_t
2317 internal_resume_ptid (int user_step)
2318 {
2319 /* In non-stop, we always control threads individually. Note that
2320 the target may always work in non-stop mode even with "set
2321 non-stop off", in which case user_visible_resume_ptid could
2322 return a wildcard ptid. */
2323 if (target_is_non_stop_p ())
2324 return inferior_ptid;
2325 else
2326 return user_visible_resume_ptid (user_step);
2327 }
2328
2329 /* Wrapper for target_resume, that handles infrun-specific
2330 bookkeeping. */
2331
2332 static void
2333 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2334 {
2335 struct thread_info *tp = inferior_thread ();
2336
2337 gdb_assert (!tp->stop_requested);
2338
2339 /* Install inferior's terminal modes. */
2340 target_terminal_inferior ();
2341
2342 /* Avoid confusing the next resume, if the next stop/resume
2343 happens to apply to another thread. */
2344 tp->suspend.stop_signal = GDB_SIGNAL_0;
2345
2346 /* Advise target which signals may be handled silently.
2347
2348 If we have removed breakpoints because we are stepping over one
2349 in-line (in any thread), we need to receive all signals to avoid
2350 accidentally skipping a breakpoint during execution of a signal
2351 handler.
2352
2353 Likewise if we're displaced stepping, otherwise a trap for a
2354 breakpoint in a signal handler might be confused with the
2355 displaced step finishing. We don't make the displaced_step_fixup
2356 step distinguish the cases instead, because:
2357
2358 - a backtrace while stopped in the signal handler would show the
2359 scratch pad as frame older than the signal handler, instead of
2360 the real mainline code.
2361
2362 - when the thread is later resumed, the signal handler would
2363 return to the scratch pad area, which would no longer be
2364 valid. */
2365 if (step_over_info_valid_p ()
2366 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2367 target_pass_signals (0, NULL);
2368 else
2369 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2370
2371 target_resume (resume_ptid, step, sig);
2372
2373 target_commit_resume ();
2374 }
2375
2376 /* Resume the inferior, but allow a QUIT. This is useful if the user
2377 wants to interrupt some lengthy single-stepping operation
2378 (for child processes, the SIGINT goes to the inferior, and so
2379 we get a SIGINT random_signal, but for remote debugging and perhaps
2380 other targets, that's not true).
2381
2382 SIG is the signal to give the inferior (zero for none). */
2383 void
2384 resume (enum gdb_signal sig)
2385 {
2386 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2387 struct regcache *regcache = get_current_regcache ();
2388 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2389 struct thread_info *tp = inferior_thread ();
2390 CORE_ADDR pc = regcache_read_pc (regcache);
2391 struct address_space *aspace = get_regcache_aspace (regcache);
2392 ptid_t resume_ptid;
2393 /* This represents the user's step vs continue request. When
2394 deciding whether "set scheduler-locking step" applies, it's the
2395 user's intention that counts. */
2396 const int user_step = tp->control.stepping_command;
2397 /* This represents what we'll actually request the target to do.
2398 This can decay from a step to a continue, if e.g., we need to
2399 implement single-stepping with breakpoints (software
2400 single-step). */
2401 int step;
2402
2403 gdb_assert (!tp->stop_requested);
2404 gdb_assert (!thread_is_in_step_over_chain (tp));
2405
2406 QUIT;
2407
2408 if (tp->suspend.waitstatus_pending_p)
2409 {
2410 if (debug_infrun)
2411 {
2412 char *statstr;
2413
2414 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2415 fprintf_unfiltered (gdb_stdlog,
2416 "infrun: resume: thread %s has pending wait status %s "
2417 "(currently_stepping=%d).\n",
2418 target_pid_to_str (tp->ptid), statstr,
2419 currently_stepping (tp));
2420 xfree (statstr);
2421 }
2422
2423 tp->resumed = 1;
2424
2425 /* FIXME: What should we do if we are supposed to resume this
2426 thread with a signal? Maybe we should maintain a queue of
2427 pending signals to deliver. */
2428 if (sig != GDB_SIGNAL_0)
2429 {
2430 warning (_("Couldn't deliver signal %s to %s."),
2431 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2432 }
2433
2434 tp->suspend.stop_signal = GDB_SIGNAL_0;
2435 discard_cleanups (old_cleanups);
2436
2437 if (target_can_async_p ())
2438 target_async (1);
2439 return;
2440 }
2441
2442 tp->stepped_breakpoint = 0;
2443
2444 /* Depends on stepped_breakpoint. */
2445 step = currently_stepping (tp);
2446
2447 if (current_inferior ()->waiting_for_vfork_done)
2448 {
2449 /* Don't try to single-step a vfork parent that is waiting for
2450 the child to get out of the shared memory region (by exec'ing
2451 or exiting). This is particularly important on software
2452 single-step archs, as the child process would trip on the
2453 software single step breakpoint inserted for the parent
2454 process. Since the parent will not actually execute any
2455 instruction until the child is out of the shared region (such
2456 are vfork's semantics), it is safe to simply continue it.
2457 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2458 the parent, and tell it to `keep_going', which automatically
2459 re-sets it stepping. */
2460 if (debug_infrun)
2461 fprintf_unfiltered (gdb_stdlog,
2462 "infrun: resume : clear step\n");
2463 step = 0;
2464 }
2465
2466 if (debug_infrun)
2467 fprintf_unfiltered (gdb_stdlog,
2468 "infrun: resume (step=%d, signal=%s), "
2469 "trap_expected=%d, current thread [%s] at %s\n",
2470 step, gdb_signal_to_symbol_string (sig),
2471 tp->control.trap_expected,
2472 target_pid_to_str (inferior_ptid),
2473 paddress (gdbarch, pc));
2474
2475 /* Normally, by the time we reach `resume', the breakpoints are either
2476 removed or inserted, as appropriate. The exception is if we're sitting
2477 at a permanent breakpoint; we need to step over it, but permanent
2478 breakpoints can't be removed. So we have to test for it here. */
2479 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2480 {
2481 if (sig != GDB_SIGNAL_0)
2482 {
2483 /* We have a signal to pass to the inferior. The resume
2484 may, or may not take us to the signal handler. If this
2485 is a step, we'll need to stop in the signal handler, if
2486 there's one, (if the target supports stepping into
2487 handlers), or in the next mainline instruction, if
2488 there's no handler. If this is a continue, we need to be
2489 sure to run the handler with all breakpoints inserted.
2490 In all cases, set a breakpoint at the current address
2491 (where the handler returns to), and once that breakpoint
2492 is hit, resume skipping the permanent breakpoint. If
2493 that breakpoint isn't hit, then we've stepped into the
2494 signal handler (or hit some other event). We'll delete
2495 the step-resume breakpoint then. */
2496
2497 if (debug_infrun)
2498 fprintf_unfiltered (gdb_stdlog,
2499 "infrun: resume: skipping permanent breakpoint, "
2500 "deliver signal first\n");
2501
2502 clear_step_over_info ();
2503 tp->control.trap_expected = 0;
2504
2505 if (tp->control.step_resume_breakpoint == NULL)
2506 {
2507 /* Set a "high-priority" step-resume, as we don't want
2508 user breakpoints at PC to trigger (again) when this
2509 hits. */
2510 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2511 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2512
2513 tp->step_after_step_resume_breakpoint = step;
2514 }
2515
2516 insert_breakpoints ();
2517 }
2518 else
2519 {
2520 /* There's no signal to pass, we can go ahead and skip the
2521 permanent breakpoint manually. */
2522 if (debug_infrun)
2523 fprintf_unfiltered (gdb_stdlog,
2524 "infrun: resume: skipping permanent breakpoint\n");
2525 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2526 /* Update pc to reflect the new address from which we will
2527 execute instructions. */
2528 pc = regcache_read_pc (regcache);
2529
2530 if (step)
2531 {
2532 /* We've already advanced the PC, so the stepping part
2533 is done. Now we need to arrange for a trap to be
2534 reported to handle_inferior_event. Set a breakpoint
2535 at the current PC, and run to it. Don't update
2536 prev_pc, because if we end in
2537 switch_back_to_stepped_thread, we want the "expected
2538 thread advanced also" branch to be taken. IOW, we
2539 don't want this thread to step further from PC
2540 (overstep). */
2541 gdb_assert (!step_over_info_valid_p ());
2542 insert_single_step_breakpoint (gdbarch, aspace, pc);
2543 insert_breakpoints ();
2544
2545 resume_ptid = internal_resume_ptid (user_step);
2546 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2547 discard_cleanups (old_cleanups);
2548 tp->resumed = 1;
2549 return;
2550 }
2551 }
2552 }
2553
2554 /* If we have a breakpoint to step over, make sure to do a single
2555 step only. Same if we have software watchpoints. */
2556 if (tp->control.trap_expected || bpstat_should_step ())
2557 tp->control.may_range_step = 0;
2558
2559 /* If enabled, step over breakpoints by executing a copy of the
2560 instruction at a different address.
2561
2562 We can't use displaced stepping when we have a signal to deliver;
2563 the comments for displaced_step_prepare explain why. The
2564 comments in the handle_inferior event for dealing with 'random
2565 signals' explain what we do instead.
2566
2567 We can't use displaced stepping when we are waiting for vfork_done
2568 event, displaced stepping breaks the vfork child similarly as single
2569 step software breakpoint. */
2570 if (tp->control.trap_expected
2571 && use_displaced_stepping (tp)
2572 && !step_over_info_valid_p ()
2573 && sig == GDB_SIGNAL_0
2574 && !current_inferior ()->waiting_for_vfork_done)
2575 {
2576 int prepared = displaced_step_prepare (inferior_ptid);
2577
2578 if (prepared == 0)
2579 {
2580 if (debug_infrun)
2581 fprintf_unfiltered (gdb_stdlog,
2582 "Got placed in step-over queue\n");
2583
2584 tp->control.trap_expected = 0;
2585 discard_cleanups (old_cleanups);
2586 return;
2587 }
2588 else if (prepared < 0)
2589 {
2590 /* Fallback to stepping over the breakpoint in-line. */
2591
2592 if (target_is_non_stop_p ())
2593 stop_all_threads ();
2594
2595 set_step_over_info (get_regcache_aspace (regcache),
2596 regcache_read_pc (regcache), 0, tp->global_num);
2597
2598 step = maybe_software_singlestep (gdbarch, pc);
2599
2600 insert_breakpoints ();
2601 }
2602 else if (prepared > 0)
2603 {
2604 struct displaced_step_inferior_state *displaced;
2605
2606 /* Update pc to reflect the new address from which we will
2607 execute instructions due to displaced stepping. */
2608 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2609
2610 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2611 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2612 displaced->step_closure);
2613 }
2614 }
2615
2616 /* Do we need to do it the hard way, w/temp breakpoints? */
2617 else if (step)
2618 step = maybe_software_singlestep (gdbarch, pc);
2619
2620 /* Currently, our software single-step implementation leads to different
2621 results than hardware single-stepping in one situation: when stepping
2622 into delivering a signal which has an associated signal handler,
2623 hardware single-step will stop at the first instruction of the handler,
2624 while software single-step will simply skip execution of the handler.
2625
2626 For now, this difference in behavior is accepted since there is no
2627 easy way to actually implement single-stepping into a signal handler
2628 without kernel support.
2629
2630 However, there is one scenario where this difference leads to follow-on
2631 problems: if we're stepping off a breakpoint by removing all breakpoints
2632 and then single-stepping. In this case, the software single-step
2633 behavior means that even if there is a *breakpoint* in the signal
2634 handler, GDB still would not stop.
2635
2636 Fortunately, we can at least fix this particular issue. We detect
2637 here the case where we are about to deliver a signal while software
2638 single-stepping with breakpoints removed. In this situation, we
2639 revert the decisions to remove all breakpoints and insert single-
2640 step breakpoints, and instead we install a step-resume breakpoint
2641 at the current address, deliver the signal without stepping, and
2642 once we arrive back at the step-resume breakpoint, actually step
2643 over the breakpoint we originally wanted to step over. */
2644 if (thread_has_single_step_breakpoints_set (tp)
2645 && sig != GDB_SIGNAL_0
2646 && step_over_info_valid_p ())
2647 {
2648 /* If we have nested signals or a pending signal is delivered
2649 immediately after a handler returns, might might already have
2650 a step-resume breakpoint set on the earlier handler. We cannot
2651 set another step-resume breakpoint; just continue on until the
2652 original breakpoint is hit. */
2653 if (tp->control.step_resume_breakpoint == NULL)
2654 {
2655 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2656 tp->step_after_step_resume_breakpoint = 1;
2657 }
2658
2659 delete_single_step_breakpoints (tp);
2660
2661 clear_step_over_info ();
2662 tp->control.trap_expected = 0;
2663
2664 insert_breakpoints ();
2665 }
2666
2667 /* If STEP is set, it's a request to use hardware stepping
2668 facilities. But in that case, we should never
2669 use singlestep breakpoint. */
2670 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2671
2672 /* Decide the set of threads to ask the target to resume. */
2673 if (tp->control.trap_expected)
2674 {
2675 /* We're allowing a thread to run past a breakpoint it has
2676 hit, either by single-stepping the thread with the breakpoint
2677 removed, or by displaced stepping, with the breakpoint inserted.
2678 In the former case, we need to single-step only this thread,
2679 and keep others stopped, as they can miss this breakpoint if
2680 allowed to run. That's not really a problem for displaced
2681 stepping, but, we still keep other threads stopped, in case
2682 another thread is also stopped for a breakpoint waiting for
2683 its turn in the displaced stepping queue. */
2684 resume_ptid = inferior_ptid;
2685 }
2686 else
2687 resume_ptid = internal_resume_ptid (user_step);
2688
2689 if (execution_direction != EXEC_REVERSE
2690 && step && breakpoint_inserted_here_p (aspace, pc))
2691 {
2692 /* There are two cases where we currently need to step a
2693 breakpoint instruction when we have a signal to deliver:
2694
2695 - See handle_signal_stop where we handle random signals that
2696 could take out us out of the stepping range. Normally, in
2697 that case we end up continuing (instead of stepping) over the
2698 signal handler with a breakpoint at PC, but there are cases
2699 where we should _always_ single-step, even if we have a
2700 step-resume breakpoint, like when a software watchpoint is
2701 set. Assuming single-stepping and delivering a signal at the
2702 same time would takes us to the signal handler, then we could
2703 have removed the breakpoint at PC to step over it. However,
2704 some hardware step targets (like e.g., Mac OS) can't step
2705 into signal handlers, and for those, we need to leave the
2706 breakpoint at PC inserted, as otherwise if the handler
2707 recurses and executes PC again, it'll miss the breakpoint.
2708 So we leave the breakpoint inserted anyway, but we need to
2709 record that we tried to step a breakpoint instruction, so
2710 that adjust_pc_after_break doesn't end up confused.
2711
2712 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2713 in one thread after another thread that was stepping had been
2714 momentarily paused for a step-over. When we re-resume the
2715 stepping thread, it may be resumed from that address with a
2716 breakpoint that hasn't trapped yet. Seen with
2717 gdb.threads/non-stop-fair-events.exp, on targets that don't
2718 do displaced stepping. */
2719
2720 if (debug_infrun)
2721 fprintf_unfiltered (gdb_stdlog,
2722 "infrun: resume: [%s] stepped breakpoint\n",
2723 target_pid_to_str (tp->ptid));
2724
2725 tp->stepped_breakpoint = 1;
2726
2727 /* Most targets can step a breakpoint instruction, thus
2728 executing it normally. But if this one cannot, just
2729 continue and we will hit it anyway. */
2730 if (gdbarch_cannot_step_breakpoint (gdbarch))
2731 step = 0;
2732 }
2733
2734 if (debug_displaced
2735 && tp->control.trap_expected
2736 && use_displaced_stepping (tp)
2737 && !step_over_info_valid_p ())
2738 {
2739 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2740 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2741 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2742 gdb_byte buf[4];
2743
2744 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2745 paddress (resume_gdbarch, actual_pc));
2746 read_memory (actual_pc, buf, sizeof (buf));
2747 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2748 }
2749
2750 if (tp->control.may_range_step)
2751 {
2752 /* If we're resuming a thread with the PC out of the step
2753 range, then we're doing some nested/finer run control
2754 operation, like stepping the thread out of the dynamic
2755 linker or the displaced stepping scratch pad. We
2756 shouldn't have allowed a range step then. */
2757 gdb_assert (pc_in_thread_step_range (pc, tp));
2758 }
2759
2760 do_target_resume (resume_ptid, step, sig);
2761 tp->resumed = 1;
2762 discard_cleanups (old_cleanups);
2763 }
2764 \f
2765 /* Proceeding. */
2766
2767 /* See infrun.h. */
2768
2769 /* Counter that tracks number of user visible stops. This can be used
2770 to tell whether a command has proceeded the inferior past the
2771 current location. This allows e.g., inferior function calls in
2772 breakpoint commands to not interrupt the command list. When the
2773 call finishes successfully, the inferior is standing at the same
2774 breakpoint as if nothing happened (and so we don't call
2775 normal_stop). */
2776 static ULONGEST current_stop_id;
2777
2778 /* See infrun.h. */
2779
2780 ULONGEST
2781 get_stop_id (void)
2782 {
2783 return current_stop_id;
2784 }
2785
2786 /* Called when we report a user visible stop. */
2787
2788 static void
2789 new_stop_id (void)
2790 {
2791 current_stop_id++;
2792 }
2793
2794 /* Clear out all variables saying what to do when inferior is continued.
2795 First do this, then set the ones you want, then call `proceed'. */
2796
2797 static void
2798 clear_proceed_status_thread (struct thread_info *tp)
2799 {
2800 if (debug_infrun)
2801 fprintf_unfiltered (gdb_stdlog,
2802 "infrun: clear_proceed_status_thread (%s)\n",
2803 target_pid_to_str (tp->ptid));
2804
2805 /* If we're starting a new sequence, then the previous finished
2806 single-step is no longer relevant. */
2807 if (tp->suspend.waitstatus_pending_p)
2808 {
2809 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2810 {
2811 if (debug_infrun)
2812 fprintf_unfiltered (gdb_stdlog,
2813 "infrun: clear_proceed_status: pending "
2814 "event of %s was a finished step. "
2815 "Discarding.\n",
2816 target_pid_to_str (tp->ptid));
2817
2818 tp->suspend.waitstatus_pending_p = 0;
2819 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2820 }
2821 else if (debug_infrun)
2822 {
2823 char *statstr;
2824
2825 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2826 fprintf_unfiltered (gdb_stdlog,
2827 "infrun: clear_proceed_status_thread: thread %s "
2828 "has pending wait status %s "
2829 "(currently_stepping=%d).\n",
2830 target_pid_to_str (tp->ptid), statstr,
2831 currently_stepping (tp));
2832 xfree (statstr);
2833 }
2834 }
2835
2836 /* If this signal should not be seen by program, give it zero.
2837 Used for debugging signals. */
2838 if (!signal_pass_state (tp->suspend.stop_signal))
2839 tp->suspend.stop_signal = GDB_SIGNAL_0;
2840
2841 thread_fsm_delete (tp->thread_fsm);
2842 tp->thread_fsm = NULL;
2843
2844 tp->control.trap_expected = 0;
2845 tp->control.step_range_start = 0;
2846 tp->control.step_range_end = 0;
2847 tp->control.may_range_step = 0;
2848 tp->control.step_frame_id = null_frame_id;
2849 tp->control.step_stack_frame_id = null_frame_id;
2850 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2851 tp->control.step_start_function = NULL;
2852 tp->stop_requested = 0;
2853
2854 tp->control.stop_step = 0;
2855
2856 tp->control.proceed_to_finish = 0;
2857
2858 tp->control.stepping_command = 0;
2859
2860 /* Discard any remaining commands or status from previous stop. */
2861 bpstat_clear (&tp->control.stop_bpstat);
2862 }
2863
2864 void
2865 clear_proceed_status (int step)
2866 {
2867 /* With scheduler-locking replay, stop replaying other threads if we're
2868 not replaying the user-visible resume ptid.
2869
2870 This is a convenience feature to not require the user to explicitly
2871 stop replaying the other threads. We're assuming that the user's
2872 intent is to resume tracing the recorded process. */
2873 if (!non_stop && scheduler_mode == schedlock_replay
2874 && target_record_is_replaying (minus_one_ptid)
2875 && !target_record_will_replay (user_visible_resume_ptid (step),
2876 execution_direction))
2877 target_record_stop_replaying ();
2878
2879 if (!non_stop)
2880 {
2881 struct thread_info *tp;
2882 ptid_t resume_ptid;
2883
2884 resume_ptid = user_visible_resume_ptid (step);
2885
2886 /* In all-stop mode, delete the per-thread status of all threads
2887 we're about to resume, implicitly and explicitly. */
2888 ALL_NON_EXITED_THREADS (tp)
2889 {
2890 if (!ptid_match (tp->ptid, resume_ptid))
2891 continue;
2892 clear_proceed_status_thread (tp);
2893 }
2894 }
2895
2896 if (!ptid_equal (inferior_ptid, null_ptid))
2897 {
2898 struct inferior *inferior;
2899
2900 if (non_stop)
2901 {
2902 /* If in non-stop mode, only delete the per-thread status of
2903 the current thread. */
2904 clear_proceed_status_thread (inferior_thread ());
2905 }
2906
2907 inferior = current_inferior ();
2908 inferior->control.stop_soon = NO_STOP_QUIETLY;
2909 }
2910
2911 observer_notify_about_to_proceed ();
2912 }
2913
2914 /* Returns true if TP is still stopped at a breakpoint that needs
2915 stepping-over in order to make progress. If the breakpoint is gone
2916 meanwhile, we can skip the whole step-over dance. */
2917
2918 static int
2919 thread_still_needs_step_over_bp (struct thread_info *tp)
2920 {
2921 if (tp->stepping_over_breakpoint)
2922 {
2923 struct regcache *regcache = get_thread_regcache (tp->ptid);
2924
2925 if (breakpoint_here_p (get_regcache_aspace (regcache),
2926 regcache_read_pc (regcache))
2927 == ordinary_breakpoint_here)
2928 return 1;
2929
2930 tp->stepping_over_breakpoint = 0;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /* Check whether thread TP still needs to start a step-over in order
2937 to make progress when resumed. Returns an bitwise or of enum
2938 step_over_what bits, indicating what needs to be stepped over. */
2939
2940 static step_over_what
2941 thread_still_needs_step_over (struct thread_info *tp)
2942 {
2943 step_over_what what = 0;
2944
2945 if (thread_still_needs_step_over_bp (tp))
2946 what |= STEP_OVER_BREAKPOINT;
2947
2948 if (tp->stepping_over_watchpoint
2949 && !target_have_steppable_watchpoint)
2950 what |= STEP_OVER_WATCHPOINT;
2951
2952 return what;
2953 }
2954
2955 /* Returns true if scheduler locking applies. STEP indicates whether
2956 we're about to do a step/next-like command to a thread. */
2957
2958 static int
2959 schedlock_applies (struct thread_info *tp)
2960 {
2961 return (scheduler_mode == schedlock_on
2962 || (scheduler_mode == schedlock_step
2963 && tp->control.stepping_command)
2964 || (scheduler_mode == schedlock_replay
2965 && target_record_will_replay (minus_one_ptid,
2966 execution_direction)));
2967 }
2968
2969 /* Basic routine for continuing the program in various fashions.
2970
2971 ADDR is the address to resume at, or -1 for resume where stopped.
2972 SIGGNAL is the signal to give it, or 0 for none,
2973 or -1 for act according to how it stopped.
2974 STEP is nonzero if should trap after one instruction.
2975 -1 means return after that and print nothing.
2976 You should probably set various step_... variables
2977 before calling here, if you are stepping.
2978
2979 You should call clear_proceed_status before calling proceed. */
2980
2981 void
2982 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2983 {
2984 struct regcache *regcache;
2985 struct gdbarch *gdbarch;
2986 struct thread_info *tp;
2987 CORE_ADDR pc;
2988 struct address_space *aspace;
2989 ptid_t resume_ptid;
2990 struct execution_control_state ecss;
2991 struct execution_control_state *ecs = &ecss;
2992 struct cleanup *old_chain;
2993 struct cleanup *defer_resume_cleanup;
2994 int started;
2995
2996 /* If we're stopped at a fork/vfork, follow the branch set by the
2997 "set follow-fork-mode" command; otherwise, we'll just proceed
2998 resuming the current thread. */
2999 if (!follow_fork ())
3000 {
3001 /* The target for some reason decided not to resume. */
3002 normal_stop ();
3003 if (target_can_async_p ())
3004 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3005 return;
3006 }
3007
3008 /* We'll update this if & when we switch to a new thread. */
3009 previous_inferior_ptid = inferior_ptid;
3010
3011 regcache = get_current_regcache ();
3012 gdbarch = get_regcache_arch (regcache);
3013 aspace = get_regcache_aspace (regcache);
3014 pc = regcache_read_pc (regcache);
3015 tp = inferior_thread ();
3016
3017 /* Fill in with reasonable starting values. */
3018 init_thread_stepping_state (tp);
3019
3020 gdb_assert (!thread_is_in_step_over_chain (tp));
3021
3022 if (addr == (CORE_ADDR) -1)
3023 {
3024 if (pc == stop_pc
3025 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3026 && execution_direction != EXEC_REVERSE)
3027 /* There is a breakpoint at the address we will resume at,
3028 step one instruction before inserting breakpoints so that
3029 we do not stop right away (and report a second hit at this
3030 breakpoint).
3031
3032 Note, we don't do this in reverse, because we won't
3033 actually be executing the breakpoint insn anyway.
3034 We'll be (un-)executing the previous instruction. */
3035 tp->stepping_over_breakpoint = 1;
3036 else if (gdbarch_single_step_through_delay_p (gdbarch)
3037 && gdbarch_single_step_through_delay (gdbarch,
3038 get_current_frame ()))
3039 /* We stepped onto an instruction that needs to be stepped
3040 again before re-inserting the breakpoint, do so. */
3041 tp->stepping_over_breakpoint = 1;
3042 }
3043 else
3044 {
3045 regcache_write_pc (regcache, addr);
3046 }
3047
3048 if (siggnal != GDB_SIGNAL_DEFAULT)
3049 tp->suspend.stop_signal = siggnal;
3050
3051 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3052
3053 /* If an exception is thrown from this point on, make sure to
3054 propagate GDB's knowledge of the executing state to the
3055 frontend/user running state. */
3056 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3057
3058 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3059 threads (e.g., we might need to set threads stepping over
3060 breakpoints first), from the user/frontend's point of view, all
3061 threads in RESUME_PTID are now running. Unless we're calling an
3062 inferior function, as in that case we pretend the inferior
3063 doesn't run at all. */
3064 if (!tp->control.in_infcall)
3065 set_running (resume_ptid, 1);
3066
3067 if (debug_infrun)
3068 fprintf_unfiltered (gdb_stdlog,
3069 "infrun: proceed (addr=%s, signal=%s)\n",
3070 paddress (gdbarch, addr),
3071 gdb_signal_to_symbol_string (siggnal));
3072
3073 annotate_starting ();
3074
3075 /* Make sure that output from GDB appears before output from the
3076 inferior. */
3077 gdb_flush (gdb_stdout);
3078
3079 /* In a multi-threaded task we may select another thread and
3080 then continue or step.
3081
3082 But if a thread that we're resuming had stopped at a breakpoint,
3083 it will immediately cause another breakpoint stop without any
3084 execution (i.e. it will report a breakpoint hit incorrectly). So
3085 we must step over it first.
3086
3087 Look for threads other than the current (TP) that reported a
3088 breakpoint hit and haven't been resumed yet since. */
3089
3090 /* If scheduler locking applies, we can avoid iterating over all
3091 threads. */
3092 if (!non_stop && !schedlock_applies (tp))
3093 {
3094 struct thread_info *current = tp;
3095
3096 ALL_NON_EXITED_THREADS (tp)
3097 {
3098 /* Ignore the current thread here. It's handled
3099 afterwards. */
3100 if (tp == current)
3101 continue;
3102
3103 /* Ignore threads of processes we're not resuming. */
3104 if (!ptid_match (tp->ptid, resume_ptid))
3105 continue;
3106
3107 if (!thread_still_needs_step_over (tp))
3108 continue;
3109
3110 gdb_assert (!thread_is_in_step_over_chain (tp));
3111
3112 if (debug_infrun)
3113 fprintf_unfiltered (gdb_stdlog,
3114 "infrun: need to step-over [%s] first\n",
3115 target_pid_to_str (tp->ptid));
3116
3117 thread_step_over_chain_enqueue (tp);
3118 }
3119
3120 tp = current;
3121 }
3122
3123 /* Enqueue the current thread last, so that we move all other
3124 threads over their breakpoints first. */
3125 if (tp->stepping_over_breakpoint)
3126 thread_step_over_chain_enqueue (tp);
3127
3128 /* If the thread isn't started, we'll still need to set its prev_pc,
3129 so that switch_back_to_stepped_thread knows the thread hasn't
3130 advanced. Must do this before resuming any thread, as in
3131 all-stop/remote, once we resume we can't send any other packet
3132 until the target stops again. */
3133 tp->prev_pc = regcache_read_pc (regcache);
3134
3135 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3136
3137 started = start_step_over ();
3138
3139 if (step_over_info_valid_p ())
3140 {
3141 /* Either this thread started a new in-line step over, or some
3142 other thread was already doing one. In either case, don't
3143 resume anything else until the step-over is finished. */
3144 }
3145 else if (started && !target_is_non_stop_p ())
3146 {
3147 /* A new displaced stepping sequence was started. In all-stop,
3148 we can't talk to the target anymore until it next stops. */
3149 }
3150 else if (!non_stop && target_is_non_stop_p ())
3151 {
3152 /* In all-stop, but the target is always in non-stop mode.
3153 Start all other threads that are implicitly resumed too. */
3154 ALL_NON_EXITED_THREADS (tp)
3155 {
3156 /* Ignore threads of processes we're not resuming. */
3157 if (!ptid_match (tp->ptid, resume_ptid))
3158 continue;
3159
3160 if (tp->resumed)
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: proceed: [%s] resumed\n",
3165 target_pid_to_str (tp->ptid));
3166 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3167 continue;
3168 }
3169
3170 if (thread_is_in_step_over_chain (tp))
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: [%s] needs step-over\n",
3175 target_pid_to_str (tp->ptid));
3176 continue;
3177 }
3178
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "infrun: proceed: resuming %s\n",
3182 target_pid_to_str (tp->ptid));
3183
3184 reset_ecs (ecs, tp);
3185 switch_to_thread (tp->ptid);
3186 keep_going_pass_signal (ecs);
3187 if (!ecs->wait_some_more)
3188 error (_("Command aborted."));
3189 }
3190 }
3191 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3192 {
3193 /* The thread wasn't started, and isn't queued, run it now. */
3194 reset_ecs (ecs, tp);
3195 switch_to_thread (tp->ptid);
3196 keep_going_pass_signal (ecs);
3197 if (!ecs->wait_some_more)
3198 error (_("Command aborted."));
3199 }
3200
3201 do_cleanups (defer_resume_cleanup);
3202 target_commit_resume ();
3203
3204 discard_cleanups (old_chain);
3205
3206 /* Tell the event loop to wait for it to stop. If the target
3207 supports asynchronous execution, it'll do this from within
3208 target_resume. */
3209 if (!target_can_async_p ())
3210 mark_async_event_handler (infrun_async_inferior_event_token);
3211 }
3212 \f
3213
3214 /* Start remote-debugging of a machine over a serial link. */
3215
3216 void
3217 start_remote (int from_tty)
3218 {
3219 struct inferior *inferior;
3220
3221 inferior = current_inferior ();
3222 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3223
3224 /* Always go on waiting for the target, regardless of the mode. */
3225 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3226 indicate to wait_for_inferior that a target should timeout if
3227 nothing is returned (instead of just blocking). Because of this,
3228 targets expecting an immediate response need to, internally, set
3229 things up so that the target_wait() is forced to eventually
3230 timeout. */
3231 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3232 differentiate to its caller what the state of the target is after
3233 the initial open has been performed. Here we're assuming that
3234 the target has stopped. It should be possible to eventually have
3235 target_open() return to the caller an indication that the target
3236 is currently running and GDB state should be set to the same as
3237 for an async run. */
3238 wait_for_inferior ();
3239
3240 /* Now that the inferior has stopped, do any bookkeeping like
3241 loading shared libraries. We want to do this before normal_stop,
3242 so that the displayed frame is up to date. */
3243 post_create_inferior (&current_target, from_tty);
3244
3245 normal_stop ();
3246 }
3247
3248 /* Initialize static vars when a new inferior begins. */
3249
3250 void
3251 init_wait_for_inferior (void)
3252 {
3253 /* These are meaningless until the first time through wait_for_inferior. */
3254
3255 breakpoint_init_inferior (inf_starting);
3256
3257 clear_proceed_status (0);
3258
3259 target_last_wait_ptid = minus_one_ptid;
3260
3261 previous_inferior_ptid = inferior_ptid;
3262
3263 /* Discard any skipped inlined frames. */
3264 clear_inline_frame_state (minus_one_ptid);
3265 }
3266
3267 \f
3268
3269 static void handle_inferior_event (struct execution_control_state *ecs);
3270
3271 static void handle_step_into_function (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
3273 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3274 struct execution_control_state *ecs);
3275 static void handle_signal_stop (struct execution_control_state *ecs);
3276 static void check_exception_resume (struct execution_control_state *,
3277 struct frame_info *);
3278
3279 static void end_stepping_range (struct execution_control_state *ecs);
3280 static void stop_waiting (struct execution_control_state *ecs);
3281 static void keep_going (struct execution_control_state *ecs);
3282 static void process_event_stop_test (struct execution_control_state *ecs);
3283 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3284
3285 /* This function is attached as a "thread_stop_requested" observer.
3286 Cleanup local state that assumed the PTID was to be resumed, and
3287 report the stop to the frontend. */
3288
3289 static void
3290 infrun_thread_stop_requested (ptid_t ptid)
3291 {
3292 struct thread_info *tp;
3293
3294 /* PTID was requested to stop. If the thread was already stopped,
3295 but the user/frontend doesn't know about that yet (e.g., the
3296 thread had been temporarily paused for some step-over), set up
3297 for reporting the stop now. */
3298 ALL_NON_EXITED_THREADS (tp)
3299 if (ptid_match (tp->ptid, ptid))
3300 {
3301 if (tp->state != THREAD_RUNNING)
3302 continue;
3303 if (tp->executing)
3304 continue;
3305
3306 /* Remove matching threads from the step-over queue, so
3307 start_step_over doesn't try to resume them
3308 automatically. */
3309 if (thread_is_in_step_over_chain (tp))
3310 thread_step_over_chain_remove (tp);
3311
3312 /* If the thread is stopped, but the user/frontend doesn't
3313 know about that yet, queue a pending event, as if the
3314 thread had just stopped now. Unless the thread already had
3315 a pending event. */
3316 if (!tp->suspend.waitstatus_pending_p)
3317 {
3318 tp->suspend.waitstatus_pending_p = 1;
3319 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3320 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3321 }
3322
3323 /* Clear the inline-frame state, since we're re-processing the
3324 stop. */
3325 clear_inline_frame_state (tp->ptid);
3326
3327 /* If this thread was paused because some other thread was
3328 doing an inline-step over, let that finish first. Once
3329 that happens, we'll restart all threads and consume pending
3330 stop events then. */
3331 if (step_over_info_valid_p ())
3332 continue;
3333
3334 /* Otherwise we can process the (new) pending event now. Set
3335 it so this pending event is considered by
3336 do_target_wait. */
3337 tp->resumed = 1;
3338 }
3339 }
3340
3341 static void
3342 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3343 {
3344 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3345 nullify_last_target_wait_ptid ();
3346 }
3347
3348 /* Delete the step resume, single-step and longjmp/exception resume
3349 breakpoints of TP. */
3350
3351 static void
3352 delete_thread_infrun_breakpoints (struct thread_info *tp)
3353 {
3354 delete_step_resume_breakpoint (tp);
3355 delete_exception_resume_breakpoint (tp);
3356 delete_single_step_breakpoints (tp);
3357 }
3358
3359 /* If the target still has execution, call FUNC for each thread that
3360 just stopped. In all-stop, that's all the non-exited threads; in
3361 non-stop, that's the current thread, only. */
3362
3363 typedef void (*for_each_just_stopped_thread_callback_func)
3364 (struct thread_info *tp);
3365
3366 static void
3367 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3368 {
3369 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3370 return;
3371
3372 if (target_is_non_stop_p ())
3373 {
3374 /* If in non-stop mode, only the current thread stopped. */
3375 func (inferior_thread ());
3376 }
3377 else
3378 {
3379 struct thread_info *tp;
3380
3381 /* In all-stop mode, all threads have stopped. */
3382 ALL_NON_EXITED_THREADS (tp)
3383 {
3384 func (tp);
3385 }
3386 }
3387 }
3388
3389 /* Delete the step resume and longjmp/exception resume breakpoints of
3390 the threads that just stopped. */
3391
3392 static void
3393 delete_just_stopped_threads_infrun_breakpoints (void)
3394 {
3395 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3396 }
3397
3398 /* Delete the single-step breakpoints of the threads that just
3399 stopped. */
3400
3401 static void
3402 delete_just_stopped_threads_single_step_breakpoints (void)
3403 {
3404 for_each_just_stopped_thread (delete_single_step_breakpoints);
3405 }
3406
3407 /* A cleanup wrapper. */
3408
3409 static void
3410 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3411 {
3412 delete_just_stopped_threads_infrun_breakpoints ();
3413 }
3414
3415 /* See infrun.h. */
3416
3417 void
3418 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3419 const struct target_waitstatus *ws)
3420 {
3421 char *status_string = target_waitstatus_to_string (ws);
3422 string_file stb;
3423
3424 /* The text is split over several lines because it was getting too long.
3425 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3426 output as a unit; we want only one timestamp printed if debug_timestamp
3427 is set. */
3428
3429 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3430 ptid_get_pid (waiton_ptid),
3431 ptid_get_lwp (waiton_ptid),
3432 ptid_get_tid (waiton_ptid));
3433 if (ptid_get_pid (waiton_ptid) != -1)
3434 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3435 stb.printf (", status) =\n");
3436 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3437 ptid_get_pid (result_ptid),
3438 ptid_get_lwp (result_ptid),
3439 ptid_get_tid (result_ptid),
3440 target_pid_to_str (result_ptid));
3441 stb.printf ("infrun: %s\n", status_string);
3442
3443 /* This uses %s in part to handle %'s in the text, but also to avoid
3444 a gcc error: the format attribute requires a string literal. */
3445 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3446
3447 xfree (status_string);
3448 }
3449
3450 /* Select a thread at random, out of those which are resumed and have
3451 had events. */
3452
3453 static struct thread_info *
3454 random_pending_event_thread (ptid_t waiton_ptid)
3455 {
3456 struct thread_info *event_tp;
3457 int num_events = 0;
3458 int random_selector;
3459
3460 /* First see how many events we have. Count only resumed threads
3461 that have an event pending. */
3462 ALL_NON_EXITED_THREADS (event_tp)
3463 if (ptid_match (event_tp->ptid, waiton_ptid)
3464 && event_tp->resumed
3465 && event_tp->suspend.waitstatus_pending_p)
3466 num_events++;
3467
3468 if (num_events == 0)
3469 return NULL;
3470
3471 /* Now randomly pick a thread out of those that have had events. */
3472 random_selector = (int)
3473 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3474
3475 if (debug_infrun && num_events > 1)
3476 fprintf_unfiltered (gdb_stdlog,
3477 "infrun: Found %d events, selecting #%d\n",
3478 num_events, random_selector);
3479
3480 /* Select the Nth thread that has had an event. */
3481 ALL_NON_EXITED_THREADS (event_tp)
3482 if (ptid_match (event_tp->ptid, waiton_ptid)
3483 && event_tp->resumed
3484 && event_tp->suspend.waitstatus_pending_p)
3485 if (random_selector-- == 0)
3486 break;
3487
3488 return event_tp;
3489 }
3490
3491 /* Wrapper for target_wait that first checks whether threads have
3492 pending statuses to report before actually asking the target for
3493 more events. */
3494
3495 static ptid_t
3496 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3497 {
3498 ptid_t event_ptid;
3499 struct thread_info *tp;
3500
3501 /* First check if there is a resumed thread with a wait status
3502 pending. */
3503 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3504 {
3505 tp = random_pending_event_thread (ptid);
3506 }
3507 else
3508 {
3509 if (debug_infrun)
3510 fprintf_unfiltered (gdb_stdlog,
3511 "infrun: Waiting for specific thread %s.\n",
3512 target_pid_to_str (ptid));
3513
3514 /* We have a specific thread to check. */
3515 tp = find_thread_ptid (ptid);
3516 gdb_assert (tp != NULL);
3517 if (!tp->suspend.waitstatus_pending_p)
3518 tp = NULL;
3519 }
3520
3521 if (tp != NULL
3522 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3523 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3524 {
3525 struct regcache *regcache = get_thread_regcache (tp->ptid);
3526 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3527 CORE_ADDR pc;
3528 int discard = 0;
3529
3530 pc = regcache_read_pc (regcache);
3531
3532 if (pc != tp->suspend.stop_pc)
3533 {
3534 if (debug_infrun)
3535 fprintf_unfiltered (gdb_stdlog,
3536 "infrun: PC of %s changed. was=%s, now=%s\n",
3537 target_pid_to_str (tp->ptid),
3538 paddress (gdbarch, tp->prev_pc),
3539 paddress (gdbarch, pc));
3540 discard = 1;
3541 }
3542 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3543 {
3544 if (debug_infrun)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "infrun: previous breakpoint of %s, at %s gone\n",
3547 target_pid_to_str (tp->ptid),
3548 paddress (gdbarch, pc));
3549
3550 discard = 1;
3551 }
3552
3553 if (discard)
3554 {
3555 if (debug_infrun)
3556 fprintf_unfiltered (gdb_stdlog,
3557 "infrun: pending event of %s cancelled.\n",
3558 target_pid_to_str (tp->ptid));
3559
3560 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3561 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3562 }
3563 }
3564
3565 if (tp != NULL)
3566 {
3567 if (debug_infrun)
3568 {
3569 char *statstr;
3570
3571 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3572 fprintf_unfiltered (gdb_stdlog,
3573 "infrun: Using pending wait status %s for %s.\n",
3574 statstr,
3575 target_pid_to_str (tp->ptid));
3576 xfree (statstr);
3577 }
3578
3579 /* Now that we've selected our final event LWP, un-adjust its PC
3580 if it was a software breakpoint (and the target doesn't
3581 always adjust the PC itself). */
3582 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3583 && !target_supports_stopped_by_sw_breakpoint ())
3584 {
3585 struct regcache *regcache;
3586 struct gdbarch *gdbarch;
3587 int decr_pc;
3588
3589 regcache = get_thread_regcache (tp->ptid);
3590 gdbarch = get_regcache_arch (regcache);
3591
3592 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3593 if (decr_pc != 0)
3594 {
3595 CORE_ADDR pc;
3596
3597 pc = regcache_read_pc (regcache);
3598 regcache_write_pc (regcache, pc + decr_pc);
3599 }
3600 }
3601
3602 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3603 *status = tp->suspend.waitstatus;
3604 tp->suspend.waitstatus_pending_p = 0;
3605
3606 /* Wake up the event loop again, until all pending events are
3607 processed. */
3608 if (target_is_async_p ())
3609 mark_async_event_handler (infrun_async_inferior_event_token);
3610 return tp->ptid;
3611 }
3612
3613 /* But if we don't find one, we'll have to wait. */
3614
3615 if (deprecated_target_wait_hook)
3616 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3617 else
3618 event_ptid = target_wait (ptid, status, options);
3619
3620 return event_ptid;
3621 }
3622
3623 /* Prepare and stabilize the inferior for detaching it. E.g.,
3624 detaching while a thread is displaced stepping is a recipe for
3625 crashing it, as nothing would readjust the PC out of the scratch
3626 pad. */
3627
3628 void
3629 prepare_for_detach (void)
3630 {
3631 struct inferior *inf = current_inferior ();
3632 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3633 struct displaced_step_inferior_state *displaced;
3634
3635 displaced = get_displaced_stepping_state (inf->pid);
3636
3637 /* Is any thread of this process displaced stepping? If not,
3638 there's nothing else to do. */
3639 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3640 return;
3641
3642 if (debug_infrun)
3643 fprintf_unfiltered (gdb_stdlog,
3644 "displaced-stepping in-process while detaching");
3645
3646 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3647
3648 while (!ptid_equal (displaced->step_ptid, null_ptid))
3649 {
3650 struct cleanup *old_chain_2;
3651 struct execution_control_state ecss;
3652 struct execution_control_state *ecs;
3653
3654 ecs = &ecss;
3655 memset (ecs, 0, sizeof (*ecs));
3656
3657 overlay_cache_invalid = 1;
3658 /* Flush target cache before starting to handle each event.
3659 Target was running and cache could be stale. This is just a
3660 heuristic. Running threads may modify target memory, but we
3661 don't get any event. */
3662 target_dcache_invalidate ();
3663
3664 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3665
3666 if (debug_infrun)
3667 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3668
3669 /* If an error happens while handling the event, propagate GDB's
3670 knowledge of the executing state to the frontend/user running
3671 state. */
3672 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3673 &minus_one_ptid);
3674
3675 /* Now figure out what to do with the result of the result. */
3676 handle_inferior_event (ecs);
3677
3678 /* No error, don't finish the state yet. */
3679 discard_cleanups (old_chain_2);
3680
3681 /* Breakpoints and watchpoints are not installed on the target
3682 at this point, and signals are passed directly to the
3683 inferior, so this must mean the process is gone. */
3684 if (!ecs->wait_some_more)
3685 {
3686 restore_detaching.release ();
3687 error (_("Program exited while detaching"));
3688 }
3689 }
3690
3691 restore_detaching.release ();
3692 }
3693
3694 /* Wait for control to return from inferior to debugger.
3695
3696 If inferior gets a signal, we may decide to start it up again
3697 instead of returning. That is why there is a loop in this function.
3698 When this function actually returns it means the inferior
3699 should be left stopped and GDB should read more commands. */
3700
3701 void
3702 wait_for_inferior (void)
3703 {
3704 struct cleanup *old_cleanups;
3705 struct cleanup *thread_state_chain;
3706
3707 if (debug_infrun)
3708 fprintf_unfiltered
3709 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3710
3711 old_cleanups
3712 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3713 NULL);
3714
3715 /* If an error happens while handling the event, propagate GDB's
3716 knowledge of the executing state to the frontend/user running
3717 state. */
3718 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3719
3720 while (1)
3721 {
3722 struct execution_control_state ecss;
3723 struct execution_control_state *ecs = &ecss;
3724 ptid_t waiton_ptid = minus_one_ptid;
3725
3726 memset (ecs, 0, sizeof (*ecs));
3727
3728 overlay_cache_invalid = 1;
3729
3730 /* Flush target cache before starting to handle each event.
3731 Target was running and cache could be stale. This is just a
3732 heuristic. Running threads may modify target memory, but we
3733 don't get any event. */
3734 target_dcache_invalidate ();
3735
3736 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3737
3738 if (debug_infrun)
3739 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3740
3741 /* Now figure out what to do with the result of the result. */
3742 handle_inferior_event (ecs);
3743
3744 if (!ecs->wait_some_more)
3745 break;
3746 }
3747
3748 /* No error, don't finish the state yet. */
3749 discard_cleanups (thread_state_chain);
3750
3751 do_cleanups (old_cleanups);
3752 }
3753
3754 /* Cleanup that reinstalls the readline callback handler, if the
3755 target is running in the background. If while handling the target
3756 event something triggered a secondary prompt, like e.g., a
3757 pagination prompt, we'll have removed the callback handler (see
3758 gdb_readline_wrapper_line). Need to do this as we go back to the
3759 event loop, ready to process further input. Note this has no
3760 effect if the handler hasn't actually been removed, because calling
3761 rl_callback_handler_install resets the line buffer, thus losing
3762 input. */
3763
3764 static void
3765 reinstall_readline_callback_handler_cleanup (void *arg)
3766 {
3767 struct ui *ui = current_ui;
3768
3769 if (!ui->async)
3770 {
3771 /* We're not going back to the top level event loop yet. Don't
3772 install the readline callback, as it'd prep the terminal,
3773 readline-style (raw, noecho) (e.g., --batch). We'll install
3774 it the next time the prompt is displayed, when we're ready
3775 for input. */
3776 return;
3777 }
3778
3779 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3780 gdb_rl_callback_handler_reinstall ();
3781 }
3782
3783 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3784 that's just the event thread. In all-stop, that's all threads. */
3785
3786 static void
3787 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3788 {
3789 struct thread_info *thr = ecs->event_thread;
3790
3791 if (thr != NULL && thr->thread_fsm != NULL)
3792 thread_fsm_clean_up (thr->thread_fsm, thr);
3793
3794 if (!non_stop)
3795 {
3796 ALL_NON_EXITED_THREADS (thr)
3797 {
3798 if (thr->thread_fsm == NULL)
3799 continue;
3800 if (thr == ecs->event_thread)
3801 continue;
3802
3803 switch_to_thread (thr->ptid);
3804 thread_fsm_clean_up (thr->thread_fsm, thr);
3805 }
3806
3807 if (ecs->event_thread != NULL)
3808 switch_to_thread (ecs->event_thread->ptid);
3809 }
3810 }
3811
3812 /* Helper for all_uis_check_sync_execution_done that works on the
3813 current UI. */
3814
3815 static void
3816 check_curr_ui_sync_execution_done (void)
3817 {
3818 struct ui *ui = current_ui;
3819
3820 if (ui->prompt_state == PROMPT_NEEDED
3821 && ui->async
3822 && !gdb_in_secondary_prompt_p (ui))
3823 {
3824 target_terminal_ours ();
3825 observer_notify_sync_execution_done ();
3826 ui_register_input_event_handler (ui);
3827 }
3828 }
3829
3830 /* See infrun.h. */
3831
3832 void
3833 all_uis_check_sync_execution_done (void)
3834 {
3835 SWITCH_THRU_ALL_UIS ()
3836 {
3837 check_curr_ui_sync_execution_done ();
3838 }
3839 }
3840
3841 /* See infrun.h. */
3842
3843 void
3844 all_uis_on_sync_execution_starting (void)
3845 {
3846 SWITCH_THRU_ALL_UIS ()
3847 {
3848 if (current_ui->prompt_state == PROMPT_NEEDED)
3849 async_disable_stdin ();
3850 }
3851 }
3852
3853 /* Asynchronous version of wait_for_inferior. It is called by the
3854 event loop whenever a change of state is detected on the file
3855 descriptor corresponding to the target. It can be called more than
3856 once to complete a single execution command. In such cases we need
3857 to keep the state in a global variable ECSS. If it is the last time
3858 that this function is called for a single execution command, then
3859 report to the user that the inferior has stopped, and do the
3860 necessary cleanups. */
3861
3862 void
3863 fetch_inferior_event (void *client_data)
3864 {
3865 struct execution_control_state ecss;
3866 struct execution_control_state *ecs = &ecss;
3867 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3868 struct cleanup *ts_old_chain;
3869 int cmd_done = 0;
3870 ptid_t waiton_ptid = minus_one_ptid;
3871
3872 memset (ecs, 0, sizeof (*ecs));
3873
3874 /* Events are always processed with the main UI as current UI. This
3875 way, warnings, debug output, etc. are always consistently sent to
3876 the main console. */
3877 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3878
3879 /* End up with readline processing input, if necessary. */
3880 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3881
3882 /* We're handling a live event, so make sure we're doing live
3883 debugging. If we're looking at traceframes while the target is
3884 running, we're going to need to get back to that mode after
3885 handling the event. */
3886 if (non_stop)
3887 {
3888 make_cleanup_restore_current_traceframe ();
3889 set_current_traceframe (-1);
3890 }
3891
3892 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3893
3894 if (non_stop)
3895 /* In non-stop mode, the user/frontend should not notice a thread
3896 switch due to internal events. Make sure we reverse to the
3897 user selected thread and frame after handling the event and
3898 running any breakpoint commands. */
3899 maybe_restore_thread.emplace ();
3900
3901 overlay_cache_invalid = 1;
3902 /* Flush target cache before starting to handle each event. Target
3903 was running and cache could be stale. This is just a heuristic.
3904 Running threads may modify target memory, but we don't get any
3905 event. */
3906 target_dcache_invalidate ();
3907
3908 scoped_restore save_exec_dir
3909 = make_scoped_restore (&execution_direction, target_execution_direction ());
3910
3911 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3912 target_can_async_p () ? TARGET_WNOHANG : 0);
3913
3914 if (debug_infrun)
3915 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3916
3917 /* If an error happens while handling the event, propagate GDB's
3918 knowledge of the executing state to the frontend/user running
3919 state. */
3920 if (!target_is_non_stop_p ())
3921 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3922 else
3923 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3924
3925 /* Get executed before make_cleanup_restore_current_thread above to apply
3926 still for the thread which has thrown the exception. */
3927 make_bpstat_clear_actions_cleanup ();
3928
3929 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3930
3931 /* Now figure out what to do with the result of the result. */
3932 handle_inferior_event (ecs);
3933
3934 if (!ecs->wait_some_more)
3935 {
3936 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3937 int should_stop = 1;
3938 struct thread_info *thr = ecs->event_thread;
3939 int should_notify_stop = 1;
3940
3941 delete_just_stopped_threads_infrun_breakpoints ();
3942
3943 if (thr != NULL)
3944 {
3945 struct thread_fsm *thread_fsm = thr->thread_fsm;
3946
3947 if (thread_fsm != NULL)
3948 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3949 }
3950
3951 if (!should_stop)
3952 {
3953 keep_going (ecs);
3954 }
3955 else
3956 {
3957 clean_up_just_stopped_threads_fsms (ecs);
3958
3959 if (thr != NULL && thr->thread_fsm != NULL)
3960 {
3961 should_notify_stop
3962 = thread_fsm_should_notify_stop (thr->thread_fsm);
3963 }
3964
3965 if (should_notify_stop)
3966 {
3967 int proceeded = 0;
3968
3969 /* We may not find an inferior if this was a process exit. */
3970 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3971 proceeded = normal_stop ();
3972
3973 if (!proceeded)
3974 {
3975 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3976 cmd_done = 1;
3977 }
3978 }
3979 }
3980 }
3981
3982 /* No error, don't finish the thread states yet. */
3983 discard_cleanups (ts_old_chain);
3984
3985 /* Revert thread and frame. */
3986 do_cleanups (old_chain);
3987
3988 /* If a UI was in sync execution mode, and now isn't, restore its
3989 prompt (a synchronous execution command has finished, and we're
3990 ready for input). */
3991 all_uis_check_sync_execution_done ();
3992
3993 if (cmd_done
3994 && exec_done_display_p
3995 && (ptid_equal (inferior_ptid, null_ptid)
3996 || !is_running (inferior_ptid)))
3997 printf_unfiltered (_("completed.\n"));
3998 }
3999
4000 /* Record the frame and location we're currently stepping through. */
4001 void
4002 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4003 {
4004 struct thread_info *tp = inferior_thread ();
4005
4006 tp->control.step_frame_id = get_frame_id (frame);
4007 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4008
4009 tp->current_symtab = sal.symtab;
4010 tp->current_line = sal.line;
4011 }
4012
4013 /* Clear context switchable stepping state. */
4014
4015 void
4016 init_thread_stepping_state (struct thread_info *tss)
4017 {
4018 tss->stepped_breakpoint = 0;
4019 tss->stepping_over_breakpoint = 0;
4020 tss->stepping_over_watchpoint = 0;
4021 tss->step_after_step_resume_breakpoint = 0;
4022 }
4023
4024 /* Set the cached copy of the last ptid/waitstatus. */
4025
4026 void
4027 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4028 {
4029 target_last_wait_ptid = ptid;
4030 target_last_waitstatus = status;
4031 }
4032
4033 /* Return the cached copy of the last pid/waitstatus returned by
4034 target_wait()/deprecated_target_wait_hook(). The data is actually
4035 cached by handle_inferior_event(), which gets called immediately
4036 after target_wait()/deprecated_target_wait_hook(). */
4037
4038 void
4039 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4040 {
4041 *ptidp = target_last_wait_ptid;
4042 *status = target_last_waitstatus;
4043 }
4044
4045 void
4046 nullify_last_target_wait_ptid (void)
4047 {
4048 target_last_wait_ptid = minus_one_ptid;
4049 }
4050
4051 /* Switch thread contexts. */
4052
4053 static void
4054 context_switch (ptid_t ptid)
4055 {
4056 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4057 {
4058 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4059 target_pid_to_str (inferior_ptid));
4060 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4061 target_pid_to_str (ptid));
4062 }
4063
4064 switch_to_thread (ptid);
4065 }
4066
4067 /* If the target can't tell whether we've hit breakpoints
4068 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4069 check whether that could have been caused by a breakpoint. If so,
4070 adjust the PC, per gdbarch_decr_pc_after_break. */
4071
4072 static void
4073 adjust_pc_after_break (struct thread_info *thread,
4074 struct target_waitstatus *ws)
4075 {
4076 struct regcache *regcache;
4077 struct gdbarch *gdbarch;
4078 struct address_space *aspace;
4079 CORE_ADDR breakpoint_pc, decr_pc;
4080
4081 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4082 we aren't, just return.
4083
4084 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4085 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4086 implemented by software breakpoints should be handled through the normal
4087 breakpoint layer.
4088
4089 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4090 different signals (SIGILL or SIGEMT for instance), but it is less
4091 clear where the PC is pointing afterwards. It may not match
4092 gdbarch_decr_pc_after_break. I don't know any specific target that
4093 generates these signals at breakpoints (the code has been in GDB since at
4094 least 1992) so I can not guess how to handle them here.
4095
4096 In earlier versions of GDB, a target with
4097 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4098 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4099 target with both of these set in GDB history, and it seems unlikely to be
4100 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4101
4102 if (ws->kind != TARGET_WAITKIND_STOPPED)
4103 return;
4104
4105 if (ws->value.sig != GDB_SIGNAL_TRAP)
4106 return;
4107
4108 /* In reverse execution, when a breakpoint is hit, the instruction
4109 under it has already been de-executed. The reported PC always
4110 points at the breakpoint address, so adjusting it further would
4111 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4112 architecture:
4113
4114 B1 0x08000000 : INSN1
4115 B2 0x08000001 : INSN2
4116 0x08000002 : INSN3
4117 PC -> 0x08000003 : INSN4
4118
4119 Say you're stopped at 0x08000003 as above. Reverse continuing
4120 from that point should hit B2 as below. Reading the PC when the
4121 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4122 been de-executed already.
4123
4124 B1 0x08000000 : INSN1
4125 B2 PC -> 0x08000001 : INSN2
4126 0x08000002 : INSN3
4127 0x08000003 : INSN4
4128
4129 We can't apply the same logic as for forward execution, because
4130 we would wrongly adjust the PC to 0x08000000, since there's a
4131 breakpoint at PC - 1. We'd then report a hit on B1, although
4132 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4133 behaviour. */
4134 if (execution_direction == EXEC_REVERSE)
4135 return;
4136
4137 /* If the target can tell whether the thread hit a SW breakpoint,
4138 trust it. Targets that can tell also adjust the PC
4139 themselves. */
4140 if (target_supports_stopped_by_sw_breakpoint ())
4141 return;
4142
4143 /* Note that relying on whether a breakpoint is planted in memory to
4144 determine this can fail. E.g,. the breakpoint could have been
4145 removed since. Or the thread could have been told to step an
4146 instruction the size of a breakpoint instruction, and only
4147 _after_ was a breakpoint inserted at its address. */
4148
4149 /* If this target does not decrement the PC after breakpoints, then
4150 we have nothing to do. */
4151 regcache = get_thread_regcache (thread->ptid);
4152 gdbarch = get_regcache_arch (regcache);
4153
4154 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4155 if (decr_pc == 0)
4156 return;
4157
4158 aspace = get_regcache_aspace (regcache);
4159
4160 /* Find the location where (if we've hit a breakpoint) the
4161 breakpoint would be. */
4162 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4163
4164 /* If the target can't tell whether a software breakpoint triggered,
4165 fallback to figuring it out based on breakpoints we think were
4166 inserted in the target, and on whether the thread was stepped or
4167 continued. */
4168
4169 /* Check whether there actually is a software breakpoint inserted at
4170 that location.
4171
4172 If in non-stop mode, a race condition is possible where we've
4173 removed a breakpoint, but stop events for that breakpoint were
4174 already queued and arrive later. To suppress those spurious
4175 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4176 and retire them after a number of stop events are reported. Note
4177 this is an heuristic and can thus get confused. The real fix is
4178 to get the "stopped by SW BP and needs adjustment" info out of
4179 the target/kernel (and thus never reach here; see above). */
4180 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4181 || (target_is_non_stop_p ()
4182 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4183 {
4184 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4185
4186 if (record_full_is_used ())
4187 record_full_gdb_operation_disable_set ();
4188
4189 /* When using hardware single-step, a SIGTRAP is reported for both
4190 a completed single-step and a software breakpoint. Need to
4191 differentiate between the two, as the latter needs adjusting
4192 but the former does not.
4193
4194 The SIGTRAP can be due to a completed hardware single-step only if
4195 - we didn't insert software single-step breakpoints
4196 - this thread is currently being stepped
4197
4198 If any of these events did not occur, we must have stopped due
4199 to hitting a software breakpoint, and have to back up to the
4200 breakpoint address.
4201
4202 As a special case, we could have hardware single-stepped a
4203 software breakpoint. In this case (prev_pc == breakpoint_pc),
4204 we also need to back up to the breakpoint address. */
4205
4206 if (thread_has_single_step_breakpoints_set (thread)
4207 || !currently_stepping (thread)
4208 || (thread->stepped_breakpoint
4209 && thread->prev_pc == breakpoint_pc))
4210 regcache_write_pc (regcache, breakpoint_pc);
4211
4212 do_cleanups (old_cleanups);
4213 }
4214 }
4215
4216 static int
4217 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4218 {
4219 for (frame = get_prev_frame (frame);
4220 frame != NULL;
4221 frame = get_prev_frame (frame))
4222 {
4223 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4224 return 1;
4225 if (get_frame_type (frame) != INLINE_FRAME)
4226 break;
4227 }
4228
4229 return 0;
4230 }
4231
4232 /* If the event thread has the stop requested flag set, pretend it
4233 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4234 target_stop). */
4235
4236 static bool
4237 handle_stop_requested (struct execution_control_state *ecs)
4238 {
4239 if (ecs->event_thread->stop_requested)
4240 {
4241 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4242 ecs->ws.value.sig = GDB_SIGNAL_0;
4243 handle_signal_stop (ecs);
4244 return true;
4245 }
4246 return false;
4247 }
4248
4249 /* Auxiliary function that handles syscall entry/return events.
4250 It returns 1 if the inferior should keep going (and GDB
4251 should ignore the event), or 0 if the event deserves to be
4252 processed. */
4253
4254 static int
4255 handle_syscall_event (struct execution_control_state *ecs)
4256 {
4257 struct regcache *regcache;
4258 int syscall_number;
4259
4260 if (!ptid_equal (ecs->ptid, inferior_ptid))
4261 context_switch (ecs->ptid);
4262
4263 regcache = get_thread_regcache (ecs->ptid);
4264 syscall_number = ecs->ws.value.syscall_number;
4265 stop_pc = regcache_read_pc (regcache);
4266
4267 if (catch_syscall_enabled () > 0
4268 && catching_syscall_number (syscall_number) > 0)
4269 {
4270 if (debug_infrun)
4271 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4272 syscall_number);
4273
4274 ecs->event_thread->control.stop_bpstat
4275 = bpstat_stop_status (get_regcache_aspace (regcache),
4276 stop_pc, ecs->ptid, &ecs->ws);
4277
4278 if (handle_stop_requested (ecs))
4279 return 0;
4280
4281 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4282 {
4283 /* Catchpoint hit. */
4284 return 0;
4285 }
4286 }
4287
4288 if (handle_stop_requested (ecs))
4289 return 0;
4290
4291 /* If no catchpoint triggered for this, then keep going. */
4292 keep_going (ecs);
4293 return 1;
4294 }
4295
4296 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4297
4298 static void
4299 fill_in_stop_func (struct gdbarch *gdbarch,
4300 struct execution_control_state *ecs)
4301 {
4302 if (!ecs->stop_func_filled_in)
4303 {
4304 /* Don't care about return value; stop_func_start and stop_func_name
4305 will both be 0 if it doesn't work. */
4306 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4307 &ecs->stop_func_start, &ecs->stop_func_end);
4308 ecs->stop_func_start
4309 += gdbarch_deprecated_function_start_offset (gdbarch);
4310
4311 if (gdbarch_skip_entrypoint_p (gdbarch))
4312 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4313 ecs->stop_func_start);
4314
4315 ecs->stop_func_filled_in = 1;
4316 }
4317 }
4318
4319
4320 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4321
4322 static enum stop_kind
4323 get_inferior_stop_soon (ptid_t ptid)
4324 {
4325 struct inferior *inf = find_inferior_ptid (ptid);
4326
4327 gdb_assert (inf != NULL);
4328 return inf->control.stop_soon;
4329 }
4330
4331 /* Wait for one event. Store the resulting waitstatus in WS, and
4332 return the event ptid. */
4333
4334 static ptid_t
4335 wait_one (struct target_waitstatus *ws)
4336 {
4337 ptid_t event_ptid;
4338 ptid_t wait_ptid = minus_one_ptid;
4339
4340 overlay_cache_invalid = 1;
4341
4342 /* Flush target cache before starting to handle each event.
4343 Target was running and cache could be stale. This is just a
4344 heuristic. Running threads may modify target memory, but we
4345 don't get any event. */
4346 target_dcache_invalidate ();
4347
4348 if (deprecated_target_wait_hook)
4349 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4350 else
4351 event_ptid = target_wait (wait_ptid, ws, 0);
4352
4353 if (debug_infrun)
4354 print_target_wait_results (wait_ptid, event_ptid, ws);
4355
4356 return event_ptid;
4357 }
4358
4359 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4360 instead of the current thread. */
4361 #define THREAD_STOPPED_BY(REASON) \
4362 static int \
4363 thread_stopped_by_ ## REASON (ptid_t ptid) \
4364 { \
4365 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4366 inferior_ptid = ptid; \
4367 \
4368 return target_stopped_by_ ## REASON (); \
4369 }
4370
4371 /* Generate thread_stopped_by_watchpoint. */
4372 THREAD_STOPPED_BY (watchpoint)
4373 /* Generate thread_stopped_by_sw_breakpoint. */
4374 THREAD_STOPPED_BY (sw_breakpoint)
4375 /* Generate thread_stopped_by_hw_breakpoint. */
4376 THREAD_STOPPED_BY (hw_breakpoint)
4377
4378 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4379
4380 static void
4381 switch_to_thread_cleanup (void *ptid_p)
4382 {
4383 ptid_t ptid = *(ptid_t *) ptid_p;
4384
4385 switch_to_thread (ptid);
4386 }
4387
4388 /* Save the thread's event and stop reason to process it later. */
4389
4390 static void
4391 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4392 {
4393 struct regcache *regcache;
4394 struct address_space *aspace;
4395
4396 if (debug_infrun)
4397 {
4398 char *statstr;
4399
4400 statstr = target_waitstatus_to_string (ws);
4401 fprintf_unfiltered (gdb_stdlog,
4402 "infrun: saving status %s for %d.%ld.%ld\n",
4403 statstr,
4404 ptid_get_pid (tp->ptid),
4405 ptid_get_lwp (tp->ptid),
4406 ptid_get_tid (tp->ptid));
4407 xfree (statstr);
4408 }
4409
4410 /* Record for later. */
4411 tp->suspend.waitstatus = *ws;
4412 tp->suspend.waitstatus_pending_p = 1;
4413
4414 regcache = get_thread_regcache (tp->ptid);
4415 aspace = get_regcache_aspace (regcache);
4416
4417 if (ws->kind == TARGET_WAITKIND_STOPPED
4418 && ws->value.sig == GDB_SIGNAL_TRAP)
4419 {
4420 CORE_ADDR pc = regcache_read_pc (regcache);
4421
4422 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4423
4424 if (thread_stopped_by_watchpoint (tp->ptid))
4425 {
4426 tp->suspend.stop_reason
4427 = TARGET_STOPPED_BY_WATCHPOINT;
4428 }
4429 else if (target_supports_stopped_by_sw_breakpoint ()
4430 && thread_stopped_by_sw_breakpoint (tp->ptid))
4431 {
4432 tp->suspend.stop_reason
4433 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4434 }
4435 else if (target_supports_stopped_by_hw_breakpoint ()
4436 && thread_stopped_by_hw_breakpoint (tp->ptid))
4437 {
4438 tp->suspend.stop_reason
4439 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4440 }
4441 else if (!target_supports_stopped_by_hw_breakpoint ()
4442 && hardware_breakpoint_inserted_here_p (aspace,
4443 pc))
4444 {
4445 tp->suspend.stop_reason
4446 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4447 }
4448 else if (!target_supports_stopped_by_sw_breakpoint ()
4449 && software_breakpoint_inserted_here_p (aspace,
4450 pc))
4451 {
4452 tp->suspend.stop_reason
4453 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4454 }
4455 else if (!thread_has_single_step_breakpoints_set (tp)
4456 && currently_stepping (tp))
4457 {
4458 tp->suspend.stop_reason
4459 = TARGET_STOPPED_BY_SINGLE_STEP;
4460 }
4461 }
4462 }
4463
4464 /* A cleanup that disables thread create/exit events. */
4465
4466 static void
4467 disable_thread_events (void *arg)
4468 {
4469 target_thread_events (0);
4470 }
4471
4472 /* See infrun.h. */
4473
4474 void
4475 stop_all_threads (void)
4476 {
4477 /* We may need multiple passes to discover all threads. */
4478 int pass;
4479 int iterations = 0;
4480 ptid_t entry_ptid;
4481 struct cleanup *old_chain;
4482
4483 gdb_assert (target_is_non_stop_p ());
4484
4485 if (debug_infrun)
4486 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4487
4488 entry_ptid = inferior_ptid;
4489 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4490
4491 target_thread_events (1);
4492 make_cleanup (disable_thread_events, NULL);
4493
4494 /* Request threads to stop, and then wait for the stops. Because
4495 threads we already know about can spawn more threads while we're
4496 trying to stop them, and we only learn about new threads when we
4497 update the thread list, do this in a loop, and keep iterating
4498 until two passes find no threads that need to be stopped. */
4499 for (pass = 0; pass < 2; pass++, iterations++)
4500 {
4501 if (debug_infrun)
4502 fprintf_unfiltered (gdb_stdlog,
4503 "infrun: stop_all_threads, pass=%d, "
4504 "iterations=%d\n", pass, iterations);
4505 while (1)
4506 {
4507 ptid_t event_ptid;
4508 struct target_waitstatus ws;
4509 int need_wait = 0;
4510 struct thread_info *t;
4511
4512 update_thread_list ();
4513
4514 /* Go through all threads looking for threads that we need
4515 to tell the target to stop. */
4516 ALL_NON_EXITED_THREADS (t)
4517 {
4518 if (t->executing)
4519 {
4520 /* If already stopping, don't request a stop again.
4521 We just haven't seen the notification yet. */
4522 if (!t->stop_requested)
4523 {
4524 if (debug_infrun)
4525 fprintf_unfiltered (gdb_stdlog,
4526 "infrun: %s executing, "
4527 "need stop\n",
4528 target_pid_to_str (t->ptid));
4529 target_stop (t->ptid);
4530 t->stop_requested = 1;
4531 }
4532 else
4533 {
4534 if (debug_infrun)
4535 fprintf_unfiltered (gdb_stdlog,
4536 "infrun: %s executing, "
4537 "already stopping\n",
4538 target_pid_to_str (t->ptid));
4539 }
4540
4541 if (t->stop_requested)
4542 need_wait = 1;
4543 }
4544 else
4545 {
4546 if (debug_infrun)
4547 fprintf_unfiltered (gdb_stdlog,
4548 "infrun: %s not executing\n",
4549 target_pid_to_str (t->ptid));
4550
4551 /* The thread may be not executing, but still be
4552 resumed with a pending status to process. */
4553 t->resumed = 0;
4554 }
4555 }
4556
4557 if (!need_wait)
4558 break;
4559
4560 /* If we find new threads on the second iteration, restart
4561 over. We want to see two iterations in a row with all
4562 threads stopped. */
4563 if (pass > 0)
4564 pass = -1;
4565
4566 event_ptid = wait_one (&ws);
4567 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4568 {
4569 /* All resumed threads exited. */
4570 }
4571 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4572 || ws.kind == TARGET_WAITKIND_EXITED
4573 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4574 {
4575 if (debug_infrun)
4576 {
4577 ptid_t ptid = pid_to_ptid (ws.value.integer);
4578
4579 fprintf_unfiltered (gdb_stdlog,
4580 "infrun: %s exited while "
4581 "stopping threads\n",
4582 target_pid_to_str (ptid));
4583 }
4584 }
4585 else
4586 {
4587 struct inferior *inf;
4588
4589 t = find_thread_ptid (event_ptid);
4590 if (t == NULL)
4591 t = add_thread (event_ptid);
4592
4593 t->stop_requested = 0;
4594 t->executing = 0;
4595 t->resumed = 0;
4596 t->control.may_range_step = 0;
4597
4598 /* This may be the first time we see the inferior report
4599 a stop. */
4600 inf = find_inferior_ptid (event_ptid);
4601 if (inf->needs_setup)
4602 {
4603 switch_to_thread_no_regs (t);
4604 setup_inferior (0);
4605 }
4606
4607 if (ws.kind == TARGET_WAITKIND_STOPPED
4608 && ws.value.sig == GDB_SIGNAL_0)
4609 {
4610 /* We caught the event that we intended to catch, so
4611 there's no event pending. */
4612 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4613 t->suspend.waitstatus_pending_p = 0;
4614
4615 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4616 {
4617 /* Add it back to the step-over queue. */
4618 if (debug_infrun)
4619 {
4620 fprintf_unfiltered (gdb_stdlog,
4621 "infrun: displaced-step of %s "
4622 "canceled: adding back to the "
4623 "step-over queue\n",
4624 target_pid_to_str (t->ptid));
4625 }
4626 t->control.trap_expected = 0;
4627 thread_step_over_chain_enqueue (t);
4628 }
4629 }
4630 else
4631 {
4632 enum gdb_signal sig;
4633 struct regcache *regcache;
4634
4635 if (debug_infrun)
4636 {
4637 char *statstr;
4638
4639 statstr = target_waitstatus_to_string (&ws);
4640 fprintf_unfiltered (gdb_stdlog,
4641 "infrun: target_wait %s, saving "
4642 "status for %d.%ld.%ld\n",
4643 statstr,
4644 ptid_get_pid (t->ptid),
4645 ptid_get_lwp (t->ptid),
4646 ptid_get_tid (t->ptid));
4647 xfree (statstr);
4648 }
4649
4650 /* Record for later. */
4651 save_waitstatus (t, &ws);
4652
4653 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4654 ? ws.value.sig : GDB_SIGNAL_0);
4655
4656 if (displaced_step_fixup (t->ptid, sig) < 0)
4657 {
4658 /* Add it back to the step-over queue. */
4659 t->control.trap_expected = 0;
4660 thread_step_over_chain_enqueue (t);
4661 }
4662
4663 regcache = get_thread_regcache (t->ptid);
4664 t->suspend.stop_pc = regcache_read_pc (regcache);
4665
4666 if (debug_infrun)
4667 {
4668 fprintf_unfiltered (gdb_stdlog,
4669 "infrun: saved stop_pc=%s for %s "
4670 "(currently_stepping=%d)\n",
4671 paddress (target_gdbarch (),
4672 t->suspend.stop_pc),
4673 target_pid_to_str (t->ptid),
4674 currently_stepping (t));
4675 }
4676 }
4677 }
4678 }
4679 }
4680
4681 do_cleanups (old_chain);
4682
4683 if (debug_infrun)
4684 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4685 }
4686
4687 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4688
4689 static int
4690 handle_no_resumed (struct execution_control_state *ecs)
4691 {
4692 struct inferior *inf;
4693 struct thread_info *thread;
4694
4695 if (target_can_async_p ())
4696 {
4697 struct ui *ui;
4698 int any_sync = 0;
4699
4700 ALL_UIS (ui)
4701 {
4702 if (ui->prompt_state == PROMPT_BLOCKED)
4703 {
4704 any_sync = 1;
4705 break;
4706 }
4707 }
4708 if (!any_sync)
4709 {
4710 /* There were no unwaited-for children left in the target, but,
4711 we're not synchronously waiting for events either. Just
4712 ignore. */
4713
4714 if (debug_infrun)
4715 fprintf_unfiltered (gdb_stdlog,
4716 "infrun: TARGET_WAITKIND_NO_RESUMED "
4717 "(ignoring: bg)\n");
4718 prepare_to_wait (ecs);
4719 return 1;
4720 }
4721 }
4722
4723 /* Otherwise, if we were running a synchronous execution command, we
4724 may need to cancel it and give the user back the terminal.
4725
4726 In non-stop mode, the target can't tell whether we've already
4727 consumed previous stop events, so it can end up sending us a
4728 no-resumed event like so:
4729
4730 #0 - thread 1 is left stopped
4731
4732 #1 - thread 2 is resumed and hits breakpoint
4733 -> TARGET_WAITKIND_STOPPED
4734
4735 #2 - thread 3 is resumed and exits
4736 this is the last resumed thread, so
4737 -> TARGET_WAITKIND_NO_RESUMED
4738
4739 #3 - gdb processes stop for thread 2 and decides to re-resume
4740 it.
4741
4742 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4743 thread 2 is now resumed, so the event should be ignored.
4744
4745 IOW, if the stop for thread 2 doesn't end a foreground command,
4746 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4747 event. But it could be that the event meant that thread 2 itself
4748 (or whatever other thread was the last resumed thread) exited.
4749
4750 To address this we refresh the thread list and check whether we
4751 have resumed threads _now_. In the example above, this removes
4752 thread 3 from the thread list. If thread 2 was re-resumed, we
4753 ignore this event. If we find no thread resumed, then we cancel
4754 the synchronous command show "no unwaited-for " to the user. */
4755 update_thread_list ();
4756
4757 ALL_NON_EXITED_THREADS (thread)
4758 {
4759 if (thread->executing
4760 || thread->suspend.waitstatus_pending_p)
4761 {
4762 /* There were no unwaited-for children left in the target at
4763 some point, but there are now. Just ignore. */
4764 if (debug_infrun)
4765 fprintf_unfiltered (gdb_stdlog,
4766 "infrun: TARGET_WAITKIND_NO_RESUMED "
4767 "(ignoring: found resumed)\n");
4768 prepare_to_wait (ecs);
4769 return 1;
4770 }
4771 }
4772
4773 /* Note however that we may find no resumed thread because the whole
4774 process exited meanwhile (thus updating the thread list results
4775 in an empty thread list). In this case we know we'll be getting
4776 a process exit event shortly. */
4777 ALL_INFERIORS (inf)
4778 {
4779 if (inf->pid == 0)
4780 continue;
4781
4782 thread = any_live_thread_of_process (inf->pid);
4783 if (thread == NULL)
4784 {
4785 if (debug_infrun)
4786 fprintf_unfiltered (gdb_stdlog,
4787 "infrun: TARGET_WAITKIND_NO_RESUMED "
4788 "(expect process exit)\n");
4789 prepare_to_wait (ecs);
4790 return 1;
4791 }
4792 }
4793
4794 /* Go ahead and report the event. */
4795 return 0;
4796 }
4797
4798 /* Given an execution control state that has been freshly filled in by
4799 an event from the inferior, figure out what it means and take
4800 appropriate action.
4801
4802 The alternatives are:
4803
4804 1) stop_waiting and return; to really stop and return to the
4805 debugger.
4806
4807 2) keep_going and return; to wait for the next event (set
4808 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4809 once). */
4810
4811 static void
4812 handle_inferior_event_1 (struct execution_control_state *ecs)
4813 {
4814 enum stop_kind stop_soon;
4815
4816 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4817 {
4818 /* We had an event in the inferior, but we are not interested in
4819 handling it at this level. The lower layers have already
4820 done what needs to be done, if anything.
4821
4822 One of the possible circumstances for this is when the
4823 inferior produces output for the console. The inferior has
4824 not stopped, and we are ignoring the event. Another possible
4825 circumstance is any event which the lower level knows will be
4826 reported multiple times without an intervening resume. */
4827 if (debug_infrun)
4828 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4829 prepare_to_wait (ecs);
4830 return;
4831 }
4832
4833 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4834 {
4835 if (debug_infrun)
4836 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4837 prepare_to_wait (ecs);
4838 return;
4839 }
4840
4841 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4842 && handle_no_resumed (ecs))
4843 return;
4844
4845 /* Cache the last pid/waitstatus. */
4846 set_last_target_status (ecs->ptid, ecs->ws);
4847
4848 /* Always clear state belonging to the previous time we stopped. */
4849 stop_stack_dummy = STOP_NONE;
4850
4851 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4852 {
4853 /* No unwaited-for children left. IOW, all resumed children
4854 have exited. */
4855 if (debug_infrun)
4856 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4857
4858 stop_print_frame = 0;
4859 stop_waiting (ecs);
4860 return;
4861 }
4862
4863 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4864 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4865 {
4866 ecs->event_thread = find_thread_ptid (ecs->ptid);
4867 /* If it's a new thread, add it to the thread database. */
4868 if (ecs->event_thread == NULL)
4869 ecs->event_thread = add_thread (ecs->ptid);
4870
4871 /* Disable range stepping. If the next step request could use a
4872 range, this will be end up re-enabled then. */
4873 ecs->event_thread->control.may_range_step = 0;
4874 }
4875
4876 /* Dependent on valid ECS->EVENT_THREAD. */
4877 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4878
4879 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4880 reinit_frame_cache ();
4881
4882 breakpoint_retire_moribund ();
4883
4884 /* First, distinguish signals caused by the debugger from signals
4885 that have to do with the program's own actions. Note that
4886 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4887 on the operating system version. Here we detect when a SIGILL or
4888 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4889 something similar for SIGSEGV, since a SIGSEGV will be generated
4890 when we're trying to execute a breakpoint instruction on a
4891 non-executable stack. This happens for call dummy breakpoints
4892 for architectures like SPARC that place call dummies on the
4893 stack. */
4894 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4895 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4896 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4897 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4898 {
4899 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4900
4901 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4902 regcache_read_pc (regcache)))
4903 {
4904 if (debug_infrun)
4905 fprintf_unfiltered (gdb_stdlog,
4906 "infrun: Treating signal as SIGTRAP\n");
4907 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4908 }
4909 }
4910
4911 /* Mark the non-executing threads accordingly. In all-stop, all
4912 threads of all processes are stopped when we get any event
4913 reported. In non-stop mode, only the event thread stops. */
4914 {
4915 ptid_t mark_ptid;
4916
4917 if (!target_is_non_stop_p ())
4918 mark_ptid = minus_one_ptid;
4919 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4920 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4921 {
4922 /* If we're handling a process exit in non-stop mode, even
4923 though threads haven't been deleted yet, one would think
4924 that there is nothing to do, as threads of the dead process
4925 will be soon deleted, and threads of any other process were
4926 left running. However, on some targets, threads survive a
4927 process exit event. E.g., for the "checkpoint" command,
4928 when the current checkpoint/fork exits, linux-fork.c
4929 automatically switches to another fork from within
4930 target_mourn_inferior, by associating the same
4931 inferior/thread to another fork. We haven't mourned yet at
4932 this point, but we must mark any threads left in the
4933 process as not-executing so that finish_thread_state marks
4934 them stopped (in the user's perspective) if/when we present
4935 the stop to the user. */
4936 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4937 }
4938 else
4939 mark_ptid = ecs->ptid;
4940
4941 set_executing (mark_ptid, 0);
4942
4943 /* Likewise the resumed flag. */
4944 set_resumed (mark_ptid, 0);
4945 }
4946
4947 switch (ecs->ws.kind)
4948 {
4949 case TARGET_WAITKIND_LOADED:
4950 if (debug_infrun)
4951 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4952 if (!ptid_equal (ecs->ptid, inferior_ptid))
4953 context_switch (ecs->ptid);
4954 /* Ignore gracefully during startup of the inferior, as it might
4955 be the shell which has just loaded some objects, otherwise
4956 add the symbols for the newly loaded objects. Also ignore at
4957 the beginning of an attach or remote session; we will query
4958 the full list of libraries once the connection is
4959 established. */
4960
4961 stop_soon = get_inferior_stop_soon (ecs->ptid);
4962 if (stop_soon == NO_STOP_QUIETLY)
4963 {
4964 struct regcache *regcache;
4965
4966 regcache = get_thread_regcache (ecs->ptid);
4967
4968 handle_solib_event ();
4969
4970 ecs->event_thread->control.stop_bpstat
4971 = bpstat_stop_status (get_regcache_aspace (regcache),
4972 stop_pc, ecs->ptid, &ecs->ws);
4973
4974 if (handle_stop_requested (ecs))
4975 return;
4976
4977 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4978 {
4979 /* A catchpoint triggered. */
4980 process_event_stop_test (ecs);
4981 return;
4982 }
4983
4984 /* If requested, stop when the dynamic linker notifies
4985 gdb of events. This allows the user to get control
4986 and place breakpoints in initializer routines for
4987 dynamically loaded objects (among other things). */
4988 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4989 if (stop_on_solib_events)
4990 {
4991 /* Make sure we print "Stopped due to solib-event" in
4992 normal_stop. */
4993 stop_print_frame = 1;
4994
4995 stop_waiting (ecs);
4996 return;
4997 }
4998 }
4999
5000 /* If we are skipping through a shell, or through shared library
5001 loading that we aren't interested in, resume the program. If
5002 we're running the program normally, also resume. */
5003 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5004 {
5005 /* Loading of shared libraries might have changed breakpoint
5006 addresses. Make sure new breakpoints are inserted. */
5007 if (stop_soon == NO_STOP_QUIETLY)
5008 insert_breakpoints ();
5009 resume (GDB_SIGNAL_0);
5010 prepare_to_wait (ecs);
5011 return;
5012 }
5013
5014 /* But stop if we're attaching or setting up a remote
5015 connection. */
5016 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5017 || stop_soon == STOP_QUIETLY_REMOTE)
5018 {
5019 if (debug_infrun)
5020 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5021 stop_waiting (ecs);
5022 return;
5023 }
5024
5025 internal_error (__FILE__, __LINE__,
5026 _("unhandled stop_soon: %d"), (int) stop_soon);
5027
5028 case TARGET_WAITKIND_SPURIOUS:
5029 if (debug_infrun)
5030 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5031 if (handle_stop_requested (ecs))
5032 return;
5033 if (!ptid_equal (ecs->ptid, inferior_ptid))
5034 context_switch (ecs->ptid);
5035 resume (GDB_SIGNAL_0);
5036 prepare_to_wait (ecs);
5037 return;
5038
5039 case TARGET_WAITKIND_THREAD_CREATED:
5040 if (debug_infrun)
5041 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5042 if (handle_stop_requested (ecs))
5043 return;
5044 if (!ptid_equal (ecs->ptid, inferior_ptid))
5045 context_switch (ecs->ptid);
5046 if (!switch_back_to_stepped_thread (ecs))
5047 keep_going (ecs);
5048 return;
5049
5050 case TARGET_WAITKIND_EXITED:
5051 case TARGET_WAITKIND_SIGNALLED:
5052 if (debug_infrun)
5053 {
5054 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5055 fprintf_unfiltered (gdb_stdlog,
5056 "infrun: TARGET_WAITKIND_EXITED\n");
5057 else
5058 fprintf_unfiltered (gdb_stdlog,
5059 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5060 }
5061
5062 inferior_ptid = ecs->ptid;
5063 set_current_inferior (find_inferior_ptid (ecs->ptid));
5064 set_current_program_space (current_inferior ()->pspace);
5065 handle_vfork_child_exec_or_exit (0);
5066 target_terminal_ours (); /* Must do this before mourn anyway. */
5067
5068 /* Clearing any previous state of convenience variables. */
5069 clear_exit_convenience_vars ();
5070
5071 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5072 {
5073 /* Record the exit code in the convenience variable $_exitcode, so
5074 that the user can inspect this again later. */
5075 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5076 (LONGEST) ecs->ws.value.integer);
5077
5078 /* Also record this in the inferior itself. */
5079 current_inferior ()->has_exit_code = 1;
5080 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5081
5082 /* Support the --return-child-result option. */
5083 return_child_result_value = ecs->ws.value.integer;
5084
5085 observer_notify_exited (ecs->ws.value.integer);
5086 }
5087 else
5088 {
5089 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5090 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5091
5092 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5093 {
5094 /* Set the value of the internal variable $_exitsignal,
5095 which holds the signal uncaught by the inferior. */
5096 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5097 gdbarch_gdb_signal_to_target (gdbarch,
5098 ecs->ws.value.sig));
5099 }
5100 else
5101 {
5102 /* We don't have access to the target's method used for
5103 converting between signal numbers (GDB's internal
5104 representation <-> target's representation).
5105 Therefore, we cannot do a good job at displaying this
5106 information to the user. It's better to just warn
5107 her about it (if infrun debugging is enabled), and
5108 give up. */
5109 if (debug_infrun)
5110 fprintf_filtered (gdb_stdlog, _("\
5111 Cannot fill $_exitsignal with the correct signal number.\n"));
5112 }
5113
5114 observer_notify_signal_exited (ecs->ws.value.sig);
5115 }
5116
5117 gdb_flush (gdb_stdout);
5118 target_mourn_inferior (inferior_ptid);
5119 stop_print_frame = 0;
5120 stop_waiting (ecs);
5121 return;
5122
5123 /* The following are the only cases in which we keep going;
5124 the above cases end in a continue or goto. */
5125 case TARGET_WAITKIND_FORKED:
5126 case TARGET_WAITKIND_VFORKED:
5127 if (debug_infrun)
5128 {
5129 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5130 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5131 else
5132 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5133 }
5134
5135 /* Check whether the inferior is displaced stepping. */
5136 {
5137 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5138 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5139
5140 /* If checking displaced stepping is supported, and thread
5141 ecs->ptid is displaced stepping. */
5142 if (displaced_step_in_progress_thread (ecs->ptid))
5143 {
5144 struct inferior *parent_inf
5145 = find_inferior_ptid (ecs->ptid);
5146 struct regcache *child_regcache;
5147 CORE_ADDR parent_pc;
5148
5149 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5150 indicating that the displaced stepping of syscall instruction
5151 has been done. Perform cleanup for parent process here. Note
5152 that this operation also cleans up the child process for vfork,
5153 because their pages are shared. */
5154 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5155 /* Start a new step-over in another thread if there's one
5156 that needs it. */
5157 start_step_over ();
5158
5159 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5160 {
5161 struct displaced_step_inferior_state *displaced
5162 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5163
5164 /* Restore scratch pad for child process. */
5165 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5166 }
5167
5168 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5169 the child's PC is also within the scratchpad. Set the child's PC
5170 to the parent's PC value, which has already been fixed up.
5171 FIXME: we use the parent's aspace here, although we're touching
5172 the child, because the child hasn't been added to the inferior
5173 list yet at this point. */
5174
5175 child_regcache
5176 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5177 gdbarch,
5178 parent_inf->aspace);
5179 /* Read PC value of parent process. */
5180 parent_pc = regcache_read_pc (regcache);
5181
5182 if (debug_displaced)
5183 fprintf_unfiltered (gdb_stdlog,
5184 "displaced: write child pc from %s to %s\n",
5185 paddress (gdbarch,
5186 regcache_read_pc (child_regcache)),
5187 paddress (gdbarch, parent_pc));
5188
5189 regcache_write_pc (child_regcache, parent_pc);
5190 }
5191 }
5192
5193 if (!ptid_equal (ecs->ptid, inferior_ptid))
5194 context_switch (ecs->ptid);
5195
5196 /* Immediately detach breakpoints from the child before there's
5197 any chance of letting the user delete breakpoints from the
5198 breakpoint lists. If we don't do this early, it's easy to
5199 leave left over traps in the child, vis: "break foo; catch
5200 fork; c; <fork>; del; c; <child calls foo>". We only follow
5201 the fork on the last `continue', and by that time the
5202 breakpoint at "foo" is long gone from the breakpoint table.
5203 If we vforked, then we don't need to unpatch here, since both
5204 parent and child are sharing the same memory pages; we'll
5205 need to unpatch at follow/detach time instead to be certain
5206 that new breakpoints added between catchpoint hit time and
5207 vfork follow are detached. */
5208 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5209 {
5210 /* This won't actually modify the breakpoint list, but will
5211 physically remove the breakpoints from the child. */
5212 detach_breakpoints (ecs->ws.value.related_pid);
5213 }
5214
5215 delete_just_stopped_threads_single_step_breakpoints ();
5216
5217 /* In case the event is caught by a catchpoint, remember that
5218 the event is to be followed at the next resume of the thread,
5219 and not immediately. */
5220 ecs->event_thread->pending_follow = ecs->ws;
5221
5222 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5223
5224 ecs->event_thread->control.stop_bpstat
5225 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5226 stop_pc, ecs->ptid, &ecs->ws);
5227
5228 if (handle_stop_requested (ecs))
5229 return;
5230
5231 /* If no catchpoint triggered for this, then keep going. Note
5232 that we're interested in knowing the bpstat actually causes a
5233 stop, not just if it may explain the signal. Software
5234 watchpoints, for example, always appear in the bpstat. */
5235 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5236 {
5237 ptid_t parent;
5238 ptid_t child;
5239 int should_resume;
5240 int follow_child
5241 = (follow_fork_mode_string == follow_fork_mode_child);
5242
5243 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5244
5245 should_resume = follow_fork ();
5246
5247 parent = ecs->ptid;
5248 child = ecs->ws.value.related_pid;
5249
5250 /* At this point, the parent is marked running, and the
5251 child is marked stopped. */
5252
5253 /* If not resuming the parent, mark it stopped. */
5254 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5255 set_running (parent, 0);
5256
5257 /* If resuming the child, mark it running. */
5258 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5259 set_running (child, 1);
5260
5261 /* In non-stop mode, also resume the other branch. */
5262 if (!detach_fork && (non_stop
5263 || (sched_multi && target_is_non_stop_p ())))
5264 {
5265 if (follow_child)
5266 switch_to_thread (parent);
5267 else
5268 switch_to_thread (child);
5269
5270 ecs->event_thread = inferior_thread ();
5271 ecs->ptid = inferior_ptid;
5272 keep_going (ecs);
5273 }
5274
5275 if (follow_child)
5276 switch_to_thread (child);
5277 else
5278 switch_to_thread (parent);
5279
5280 ecs->event_thread = inferior_thread ();
5281 ecs->ptid = inferior_ptid;
5282
5283 if (should_resume)
5284 keep_going (ecs);
5285 else
5286 stop_waiting (ecs);
5287 return;
5288 }
5289 process_event_stop_test (ecs);
5290 return;
5291
5292 case TARGET_WAITKIND_VFORK_DONE:
5293 /* Done with the shared memory region. Re-insert breakpoints in
5294 the parent, and keep going. */
5295
5296 if (debug_infrun)
5297 fprintf_unfiltered (gdb_stdlog,
5298 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5299
5300 if (!ptid_equal (ecs->ptid, inferior_ptid))
5301 context_switch (ecs->ptid);
5302
5303 current_inferior ()->waiting_for_vfork_done = 0;
5304 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5305
5306 if (handle_stop_requested (ecs))
5307 return;
5308
5309 /* This also takes care of reinserting breakpoints in the
5310 previously locked inferior. */
5311 keep_going (ecs);
5312 return;
5313
5314 case TARGET_WAITKIND_EXECD:
5315 if (debug_infrun)
5316 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5317
5318 if (!ptid_equal (ecs->ptid, inferior_ptid))
5319 context_switch (ecs->ptid);
5320
5321 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5322
5323 /* Do whatever is necessary to the parent branch of the vfork. */
5324 handle_vfork_child_exec_or_exit (1);
5325
5326 /* This causes the eventpoints and symbol table to be reset.
5327 Must do this now, before trying to determine whether to
5328 stop. */
5329 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5330
5331 /* In follow_exec we may have deleted the original thread and
5332 created a new one. Make sure that the event thread is the
5333 execd thread for that case (this is a nop otherwise). */
5334 ecs->event_thread = inferior_thread ();
5335
5336 ecs->event_thread->control.stop_bpstat
5337 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5338 stop_pc, ecs->ptid, &ecs->ws);
5339
5340 /* Note that this may be referenced from inside
5341 bpstat_stop_status above, through inferior_has_execd. */
5342 xfree (ecs->ws.value.execd_pathname);
5343 ecs->ws.value.execd_pathname = NULL;
5344
5345 if (handle_stop_requested (ecs))
5346 return;
5347
5348 /* If no catchpoint triggered for this, then keep going. */
5349 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5350 {
5351 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5352 keep_going (ecs);
5353 return;
5354 }
5355 process_event_stop_test (ecs);
5356 return;
5357
5358 /* Be careful not to try to gather much state about a thread
5359 that's in a syscall. It's frequently a losing proposition. */
5360 case TARGET_WAITKIND_SYSCALL_ENTRY:
5361 if (debug_infrun)
5362 fprintf_unfiltered (gdb_stdlog,
5363 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5364 /* Getting the current syscall number. */
5365 if (handle_syscall_event (ecs) == 0)
5366 process_event_stop_test (ecs);
5367 return;
5368
5369 /* Before examining the threads further, step this thread to
5370 get it entirely out of the syscall. (We get notice of the
5371 event when the thread is just on the verge of exiting a
5372 syscall. Stepping one instruction seems to get it back
5373 into user code.) */
5374 case TARGET_WAITKIND_SYSCALL_RETURN:
5375 if (debug_infrun)
5376 fprintf_unfiltered (gdb_stdlog,
5377 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5378 if (handle_syscall_event (ecs) == 0)
5379 process_event_stop_test (ecs);
5380 return;
5381
5382 case TARGET_WAITKIND_STOPPED:
5383 if (debug_infrun)
5384 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5385 handle_signal_stop (ecs);
5386 return;
5387
5388 case TARGET_WAITKIND_NO_HISTORY:
5389 if (debug_infrun)
5390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5391 /* Reverse execution: target ran out of history info. */
5392
5393 /* Switch to the stopped thread. */
5394 if (!ptid_equal (ecs->ptid, inferior_ptid))
5395 context_switch (ecs->ptid);
5396 if (debug_infrun)
5397 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5398
5399 delete_just_stopped_threads_single_step_breakpoints ();
5400 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5401
5402 if (handle_stop_requested (ecs))
5403 return;
5404
5405 observer_notify_no_history ();
5406 stop_waiting (ecs);
5407 return;
5408 }
5409 }
5410
5411 /* A wrapper around handle_inferior_event_1, which also makes sure
5412 that all temporary struct value objects that were created during
5413 the handling of the event get deleted at the end. */
5414
5415 static void
5416 handle_inferior_event (struct execution_control_state *ecs)
5417 {
5418 struct value *mark = value_mark ();
5419
5420 handle_inferior_event_1 (ecs);
5421 /* Purge all temporary values created during the event handling,
5422 as it could be a long time before we return to the command level
5423 where such values would otherwise be purged. */
5424 value_free_to_mark (mark);
5425 }
5426
5427 /* Restart threads back to what they were trying to do back when we
5428 paused them for an in-line step-over. The EVENT_THREAD thread is
5429 ignored. */
5430
5431 static void
5432 restart_threads (struct thread_info *event_thread)
5433 {
5434 struct thread_info *tp;
5435
5436 /* In case the instruction just stepped spawned a new thread. */
5437 update_thread_list ();
5438
5439 ALL_NON_EXITED_THREADS (tp)
5440 {
5441 if (tp == event_thread)
5442 {
5443 if (debug_infrun)
5444 fprintf_unfiltered (gdb_stdlog,
5445 "infrun: restart threads: "
5446 "[%s] is event thread\n",
5447 target_pid_to_str (tp->ptid));
5448 continue;
5449 }
5450
5451 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5452 {
5453 if (debug_infrun)
5454 fprintf_unfiltered (gdb_stdlog,
5455 "infrun: restart threads: "
5456 "[%s] not meant to be running\n",
5457 target_pid_to_str (tp->ptid));
5458 continue;
5459 }
5460
5461 if (tp->resumed)
5462 {
5463 if (debug_infrun)
5464 fprintf_unfiltered (gdb_stdlog,
5465 "infrun: restart threads: [%s] resumed\n",
5466 target_pid_to_str (tp->ptid));
5467 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5468 continue;
5469 }
5470
5471 if (thread_is_in_step_over_chain (tp))
5472 {
5473 if (debug_infrun)
5474 fprintf_unfiltered (gdb_stdlog,
5475 "infrun: restart threads: "
5476 "[%s] needs step-over\n",
5477 target_pid_to_str (tp->ptid));
5478 gdb_assert (!tp->resumed);
5479 continue;
5480 }
5481
5482
5483 if (tp->suspend.waitstatus_pending_p)
5484 {
5485 if (debug_infrun)
5486 fprintf_unfiltered (gdb_stdlog,
5487 "infrun: restart threads: "
5488 "[%s] has pending status\n",
5489 target_pid_to_str (tp->ptid));
5490 tp->resumed = 1;
5491 continue;
5492 }
5493
5494 gdb_assert (!tp->stop_requested);
5495
5496 /* If some thread needs to start a step-over at this point, it
5497 should still be in the step-over queue, and thus skipped
5498 above. */
5499 if (thread_still_needs_step_over (tp))
5500 {
5501 internal_error (__FILE__, __LINE__,
5502 "thread [%s] needs a step-over, but not in "
5503 "step-over queue\n",
5504 target_pid_to_str (tp->ptid));
5505 }
5506
5507 if (currently_stepping (tp))
5508 {
5509 if (debug_infrun)
5510 fprintf_unfiltered (gdb_stdlog,
5511 "infrun: restart threads: [%s] was stepping\n",
5512 target_pid_to_str (tp->ptid));
5513 keep_going_stepped_thread (tp);
5514 }
5515 else
5516 {
5517 struct execution_control_state ecss;
5518 struct execution_control_state *ecs = &ecss;
5519
5520 if (debug_infrun)
5521 fprintf_unfiltered (gdb_stdlog,
5522 "infrun: restart threads: [%s] continuing\n",
5523 target_pid_to_str (tp->ptid));
5524 reset_ecs (ecs, tp);
5525 switch_to_thread (tp->ptid);
5526 keep_going_pass_signal (ecs);
5527 }
5528 }
5529 }
5530
5531 /* Callback for iterate_over_threads. Find a resumed thread that has
5532 a pending waitstatus. */
5533
5534 static int
5535 resumed_thread_with_pending_status (struct thread_info *tp,
5536 void *arg)
5537 {
5538 return (tp->resumed
5539 && tp->suspend.waitstatus_pending_p);
5540 }
5541
5542 /* Called when we get an event that may finish an in-line or
5543 out-of-line (displaced stepping) step-over started previously.
5544 Return true if the event is processed and we should go back to the
5545 event loop; false if the caller should continue processing the
5546 event. */
5547
5548 static int
5549 finish_step_over (struct execution_control_state *ecs)
5550 {
5551 int had_step_over_info;
5552
5553 displaced_step_fixup (ecs->ptid,
5554 ecs->event_thread->suspend.stop_signal);
5555
5556 had_step_over_info = step_over_info_valid_p ();
5557
5558 if (had_step_over_info)
5559 {
5560 /* If we're stepping over a breakpoint with all threads locked,
5561 then only the thread that was stepped should be reporting
5562 back an event. */
5563 gdb_assert (ecs->event_thread->control.trap_expected);
5564
5565 clear_step_over_info ();
5566 }
5567
5568 if (!target_is_non_stop_p ())
5569 return 0;
5570
5571 /* Start a new step-over in another thread if there's one that
5572 needs it. */
5573 start_step_over ();
5574
5575 /* If we were stepping over a breakpoint before, and haven't started
5576 a new in-line step-over sequence, then restart all other threads
5577 (except the event thread). We can't do this in all-stop, as then
5578 e.g., we wouldn't be able to issue any other remote packet until
5579 these other threads stop. */
5580 if (had_step_over_info && !step_over_info_valid_p ())
5581 {
5582 struct thread_info *pending;
5583
5584 /* If we only have threads with pending statuses, the restart
5585 below won't restart any thread and so nothing re-inserts the
5586 breakpoint we just stepped over. But we need it inserted
5587 when we later process the pending events, otherwise if
5588 another thread has a pending event for this breakpoint too,
5589 we'd discard its event (because the breakpoint that
5590 originally caused the event was no longer inserted). */
5591 context_switch (ecs->ptid);
5592 insert_breakpoints ();
5593
5594 restart_threads (ecs->event_thread);
5595
5596 /* If we have events pending, go through handle_inferior_event
5597 again, picking up a pending event at random. This avoids
5598 thread starvation. */
5599
5600 /* But not if we just stepped over a watchpoint in order to let
5601 the instruction execute so we can evaluate its expression.
5602 The set of watchpoints that triggered is recorded in the
5603 breakpoint objects themselves (see bp->watchpoint_triggered).
5604 If we processed another event first, that other event could
5605 clobber this info. */
5606 if (ecs->event_thread->stepping_over_watchpoint)
5607 return 0;
5608
5609 pending = iterate_over_threads (resumed_thread_with_pending_status,
5610 NULL);
5611 if (pending != NULL)
5612 {
5613 struct thread_info *tp = ecs->event_thread;
5614 struct regcache *regcache;
5615
5616 if (debug_infrun)
5617 {
5618 fprintf_unfiltered (gdb_stdlog,
5619 "infrun: found resumed threads with "
5620 "pending events, saving status\n");
5621 }
5622
5623 gdb_assert (pending != tp);
5624
5625 /* Record the event thread's event for later. */
5626 save_waitstatus (tp, &ecs->ws);
5627 /* This was cleared early, by handle_inferior_event. Set it
5628 so this pending event is considered by
5629 do_target_wait. */
5630 tp->resumed = 1;
5631
5632 gdb_assert (!tp->executing);
5633
5634 regcache = get_thread_regcache (tp->ptid);
5635 tp->suspend.stop_pc = regcache_read_pc (regcache);
5636
5637 if (debug_infrun)
5638 {
5639 fprintf_unfiltered (gdb_stdlog,
5640 "infrun: saved stop_pc=%s for %s "
5641 "(currently_stepping=%d)\n",
5642 paddress (target_gdbarch (),
5643 tp->suspend.stop_pc),
5644 target_pid_to_str (tp->ptid),
5645 currently_stepping (tp));
5646 }
5647
5648 /* This in-line step-over finished; clear this so we won't
5649 start a new one. This is what handle_signal_stop would
5650 do, if we returned false. */
5651 tp->stepping_over_breakpoint = 0;
5652
5653 /* Wake up the event loop again. */
5654 mark_async_event_handler (infrun_async_inferior_event_token);
5655
5656 prepare_to_wait (ecs);
5657 return 1;
5658 }
5659 }
5660
5661 return 0;
5662 }
5663
5664 /* Come here when the program has stopped with a signal. */
5665
5666 static void
5667 handle_signal_stop (struct execution_control_state *ecs)
5668 {
5669 struct frame_info *frame;
5670 struct gdbarch *gdbarch;
5671 int stopped_by_watchpoint;
5672 enum stop_kind stop_soon;
5673 int random_signal;
5674
5675 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5676
5677 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5678
5679 /* Do we need to clean up the state of a thread that has
5680 completed a displaced single-step? (Doing so usually affects
5681 the PC, so do it here, before we set stop_pc.) */
5682 if (finish_step_over (ecs))
5683 return;
5684
5685 /* If we either finished a single-step or hit a breakpoint, but
5686 the user wanted this thread to be stopped, pretend we got a
5687 SIG0 (generic unsignaled stop). */
5688 if (ecs->event_thread->stop_requested
5689 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5690 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5691
5692 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5693
5694 if (debug_infrun)
5695 {
5696 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5697 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5698 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5699
5700 inferior_ptid = ecs->ptid;
5701
5702 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5703 paddress (gdbarch, stop_pc));
5704 if (target_stopped_by_watchpoint ())
5705 {
5706 CORE_ADDR addr;
5707
5708 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5709
5710 if (target_stopped_data_address (&current_target, &addr))
5711 fprintf_unfiltered (gdb_stdlog,
5712 "infrun: stopped data address = %s\n",
5713 paddress (gdbarch, addr));
5714 else
5715 fprintf_unfiltered (gdb_stdlog,
5716 "infrun: (no data address available)\n");
5717 }
5718 }
5719
5720 /* This is originated from start_remote(), start_inferior() and
5721 shared libraries hook functions. */
5722 stop_soon = get_inferior_stop_soon (ecs->ptid);
5723 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5724 {
5725 if (!ptid_equal (ecs->ptid, inferior_ptid))
5726 context_switch (ecs->ptid);
5727 if (debug_infrun)
5728 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5729 stop_print_frame = 1;
5730 stop_waiting (ecs);
5731 return;
5732 }
5733
5734 /* This originates from attach_command(). We need to overwrite
5735 the stop_signal here, because some kernels don't ignore a
5736 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5737 See more comments in inferior.h. On the other hand, if we
5738 get a non-SIGSTOP, report it to the user - assume the backend
5739 will handle the SIGSTOP if it should show up later.
5740
5741 Also consider that the attach is complete when we see a
5742 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5743 target extended-remote report it instead of a SIGSTOP
5744 (e.g. gdbserver). We already rely on SIGTRAP being our
5745 signal, so this is no exception.
5746
5747 Also consider that the attach is complete when we see a
5748 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5749 the target to stop all threads of the inferior, in case the
5750 low level attach operation doesn't stop them implicitly. If
5751 they weren't stopped implicitly, then the stub will report a
5752 GDB_SIGNAL_0, meaning: stopped for no particular reason
5753 other than GDB's request. */
5754 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5755 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5756 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5757 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5758 {
5759 stop_print_frame = 1;
5760 stop_waiting (ecs);
5761 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5762 return;
5763 }
5764
5765 /* See if something interesting happened to the non-current thread. If
5766 so, then switch to that thread. */
5767 if (!ptid_equal (ecs->ptid, inferior_ptid))
5768 {
5769 if (debug_infrun)
5770 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5771
5772 context_switch (ecs->ptid);
5773
5774 if (deprecated_context_hook)
5775 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5776 }
5777
5778 /* At this point, get hold of the now-current thread's frame. */
5779 frame = get_current_frame ();
5780 gdbarch = get_frame_arch (frame);
5781
5782 /* Pull the single step breakpoints out of the target. */
5783 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5784 {
5785 struct regcache *regcache;
5786 struct address_space *aspace;
5787 CORE_ADDR pc;
5788
5789 regcache = get_thread_regcache (ecs->ptid);
5790 aspace = get_regcache_aspace (regcache);
5791 pc = regcache_read_pc (regcache);
5792
5793 /* However, before doing so, if this single-step breakpoint was
5794 actually for another thread, set this thread up for moving
5795 past it. */
5796 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5797 aspace, pc))
5798 {
5799 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5800 {
5801 if (debug_infrun)
5802 {
5803 fprintf_unfiltered (gdb_stdlog,
5804 "infrun: [%s] hit another thread's "
5805 "single-step breakpoint\n",
5806 target_pid_to_str (ecs->ptid));
5807 }
5808 ecs->hit_singlestep_breakpoint = 1;
5809 }
5810 }
5811 else
5812 {
5813 if (debug_infrun)
5814 {
5815 fprintf_unfiltered (gdb_stdlog,
5816 "infrun: [%s] hit its "
5817 "single-step breakpoint\n",
5818 target_pid_to_str (ecs->ptid));
5819 }
5820 }
5821 }
5822 delete_just_stopped_threads_single_step_breakpoints ();
5823
5824 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5825 && ecs->event_thread->control.trap_expected
5826 && ecs->event_thread->stepping_over_watchpoint)
5827 stopped_by_watchpoint = 0;
5828 else
5829 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5830
5831 /* If necessary, step over this watchpoint. We'll be back to display
5832 it in a moment. */
5833 if (stopped_by_watchpoint
5834 && (target_have_steppable_watchpoint
5835 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5836 {
5837 /* At this point, we are stopped at an instruction which has
5838 attempted to write to a piece of memory under control of
5839 a watchpoint. The instruction hasn't actually executed
5840 yet. If we were to evaluate the watchpoint expression
5841 now, we would get the old value, and therefore no change
5842 would seem to have occurred.
5843
5844 In order to make watchpoints work `right', we really need
5845 to complete the memory write, and then evaluate the
5846 watchpoint expression. We do this by single-stepping the
5847 target.
5848
5849 It may not be necessary to disable the watchpoint to step over
5850 it. For example, the PA can (with some kernel cooperation)
5851 single step over a watchpoint without disabling the watchpoint.
5852
5853 It is far more common to need to disable a watchpoint to step
5854 the inferior over it. If we have non-steppable watchpoints,
5855 we must disable the current watchpoint; it's simplest to
5856 disable all watchpoints.
5857
5858 Any breakpoint at PC must also be stepped over -- if there's
5859 one, it will have already triggered before the watchpoint
5860 triggered, and we either already reported it to the user, or
5861 it didn't cause a stop and we called keep_going. In either
5862 case, if there was a breakpoint at PC, we must be trying to
5863 step past it. */
5864 ecs->event_thread->stepping_over_watchpoint = 1;
5865 keep_going (ecs);
5866 return;
5867 }
5868
5869 ecs->event_thread->stepping_over_breakpoint = 0;
5870 ecs->event_thread->stepping_over_watchpoint = 0;
5871 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5872 ecs->event_thread->control.stop_step = 0;
5873 stop_print_frame = 1;
5874 stopped_by_random_signal = 0;
5875
5876 /* Hide inlined functions starting here, unless we just performed stepi or
5877 nexti. After stepi and nexti, always show the innermost frame (not any
5878 inline function call sites). */
5879 if (ecs->event_thread->control.step_range_end != 1)
5880 {
5881 struct address_space *aspace =
5882 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5883
5884 /* skip_inline_frames is expensive, so we avoid it if we can
5885 determine that the address is one where functions cannot have
5886 been inlined. This improves performance with inferiors that
5887 load a lot of shared libraries, because the solib event
5888 breakpoint is defined as the address of a function (i.e. not
5889 inline). Note that we have to check the previous PC as well
5890 as the current one to catch cases when we have just
5891 single-stepped off a breakpoint prior to reinstating it.
5892 Note that we're assuming that the code we single-step to is
5893 not inline, but that's not definitive: there's nothing
5894 preventing the event breakpoint function from containing
5895 inlined code, and the single-step ending up there. If the
5896 user had set a breakpoint on that inlined code, the missing
5897 skip_inline_frames call would break things. Fortunately
5898 that's an extremely unlikely scenario. */
5899 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5900 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5901 && ecs->event_thread->control.trap_expected
5902 && pc_at_non_inline_function (aspace,
5903 ecs->event_thread->prev_pc,
5904 &ecs->ws)))
5905 {
5906 skip_inline_frames (ecs->ptid);
5907
5908 /* Re-fetch current thread's frame in case that invalidated
5909 the frame cache. */
5910 frame = get_current_frame ();
5911 gdbarch = get_frame_arch (frame);
5912 }
5913 }
5914
5915 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5916 && ecs->event_thread->control.trap_expected
5917 && gdbarch_single_step_through_delay_p (gdbarch)
5918 && currently_stepping (ecs->event_thread))
5919 {
5920 /* We're trying to step off a breakpoint. Turns out that we're
5921 also on an instruction that needs to be stepped multiple
5922 times before it's been fully executing. E.g., architectures
5923 with a delay slot. It needs to be stepped twice, once for
5924 the instruction and once for the delay slot. */
5925 int step_through_delay
5926 = gdbarch_single_step_through_delay (gdbarch, frame);
5927
5928 if (debug_infrun && step_through_delay)
5929 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5930 if (ecs->event_thread->control.step_range_end == 0
5931 && step_through_delay)
5932 {
5933 /* The user issued a continue when stopped at a breakpoint.
5934 Set up for another trap and get out of here. */
5935 ecs->event_thread->stepping_over_breakpoint = 1;
5936 keep_going (ecs);
5937 return;
5938 }
5939 else if (step_through_delay)
5940 {
5941 /* The user issued a step when stopped at a breakpoint.
5942 Maybe we should stop, maybe we should not - the delay
5943 slot *might* correspond to a line of source. In any
5944 case, don't decide that here, just set
5945 ecs->stepping_over_breakpoint, making sure we
5946 single-step again before breakpoints are re-inserted. */
5947 ecs->event_thread->stepping_over_breakpoint = 1;
5948 }
5949 }
5950
5951 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5952 handles this event. */
5953 ecs->event_thread->control.stop_bpstat
5954 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5955 stop_pc, ecs->ptid, &ecs->ws);
5956
5957 /* Following in case break condition called a
5958 function. */
5959 stop_print_frame = 1;
5960
5961 /* This is where we handle "moribund" watchpoints. Unlike
5962 software breakpoints traps, hardware watchpoint traps are
5963 always distinguishable from random traps. If no high-level
5964 watchpoint is associated with the reported stop data address
5965 anymore, then the bpstat does not explain the signal ---
5966 simply make sure to ignore it if `stopped_by_watchpoint' is
5967 set. */
5968
5969 if (debug_infrun
5970 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5971 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5972 GDB_SIGNAL_TRAP)
5973 && stopped_by_watchpoint)
5974 fprintf_unfiltered (gdb_stdlog,
5975 "infrun: no user watchpoint explains "
5976 "watchpoint SIGTRAP, ignoring\n");
5977
5978 /* NOTE: cagney/2003-03-29: These checks for a random signal
5979 at one stage in the past included checks for an inferior
5980 function call's call dummy's return breakpoint. The original
5981 comment, that went with the test, read:
5982
5983 ``End of a stack dummy. Some systems (e.g. Sony news) give
5984 another signal besides SIGTRAP, so check here as well as
5985 above.''
5986
5987 If someone ever tries to get call dummys on a
5988 non-executable stack to work (where the target would stop
5989 with something like a SIGSEGV), then those tests might need
5990 to be re-instated. Given, however, that the tests were only
5991 enabled when momentary breakpoints were not being used, I
5992 suspect that it won't be the case.
5993
5994 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5995 be necessary for call dummies on a non-executable stack on
5996 SPARC. */
5997
5998 /* See if the breakpoints module can explain the signal. */
5999 random_signal
6000 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6001 ecs->event_thread->suspend.stop_signal);
6002
6003 /* Maybe this was a trap for a software breakpoint that has since
6004 been removed. */
6005 if (random_signal && target_stopped_by_sw_breakpoint ())
6006 {
6007 if (program_breakpoint_here_p (gdbarch, stop_pc))
6008 {
6009 struct regcache *regcache;
6010 int decr_pc;
6011
6012 /* Re-adjust PC to what the program would see if GDB was not
6013 debugging it. */
6014 regcache = get_thread_regcache (ecs->event_thread->ptid);
6015 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6016 if (decr_pc != 0)
6017 {
6018 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6019
6020 if (record_full_is_used ())
6021 record_full_gdb_operation_disable_set ();
6022
6023 regcache_write_pc (regcache, stop_pc + decr_pc);
6024
6025 do_cleanups (old_cleanups);
6026 }
6027 }
6028 else
6029 {
6030 /* A delayed software breakpoint event. Ignore the trap. */
6031 if (debug_infrun)
6032 fprintf_unfiltered (gdb_stdlog,
6033 "infrun: delayed software breakpoint "
6034 "trap, ignoring\n");
6035 random_signal = 0;
6036 }
6037 }
6038
6039 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6040 has since been removed. */
6041 if (random_signal && target_stopped_by_hw_breakpoint ())
6042 {
6043 /* A delayed hardware breakpoint event. Ignore the trap. */
6044 if (debug_infrun)
6045 fprintf_unfiltered (gdb_stdlog,
6046 "infrun: delayed hardware breakpoint/watchpoint "
6047 "trap, ignoring\n");
6048 random_signal = 0;
6049 }
6050
6051 /* If not, perhaps stepping/nexting can. */
6052 if (random_signal)
6053 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6054 && currently_stepping (ecs->event_thread));
6055
6056 /* Perhaps the thread hit a single-step breakpoint of _another_
6057 thread. Single-step breakpoints are transparent to the
6058 breakpoints module. */
6059 if (random_signal)
6060 random_signal = !ecs->hit_singlestep_breakpoint;
6061
6062 /* No? Perhaps we got a moribund watchpoint. */
6063 if (random_signal)
6064 random_signal = !stopped_by_watchpoint;
6065
6066 /* Always stop if the user explicitly requested this thread to
6067 remain stopped. */
6068 if (ecs->event_thread->stop_requested)
6069 {
6070 random_signal = 1;
6071 if (debug_infrun)
6072 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6073 }
6074
6075 /* For the program's own signals, act according to
6076 the signal handling tables. */
6077
6078 if (random_signal)
6079 {
6080 /* Signal not for debugging purposes. */
6081 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6082 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6083
6084 if (debug_infrun)
6085 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6086 gdb_signal_to_symbol_string (stop_signal));
6087
6088 stopped_by_random_signal = 1;
6089
6090 /* Always stop on signals if we're either just gaining control
6091 of the program, or the user explicitly requested this thread
6092 to remain stopped. */
6093 if (stop_soon != NO_STOP_QUIETLY
6094 || ecs->event_thread->stop_requested
6095 || (!inf->detaching
6096 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6097 {
6098 stop_waiting (ecs);
6099 return;
6100 }
6101
6102 /* Notify observers the signal has "handle print" set. Note we
6103 returned early above if stopping; normal_stop handles the
6104 printing in that case. */
6105 if (signal_print[ecs->event_thread->suspend.stop_signal])
6106 {
6107 /* The signal table tells us to print about this signal. */
6108 target_terminal_ours_for_output ();
6109 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6110 target_terminal_inferior ();
6111 }
6112
6113 /* Clear the signal if it should not be passed. */
6114 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6115 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6116
6117 if (ecs->event_thread->prev_pc == stop_pc
6118 && ecs->event_thread->control.trap_expected
6119 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6120 {
6121 /* We were just starting a new sequence, attempting to
6122 single-step off of a breakpoint and expecting a SIGTRAP.
6123 Instead this signal arrives. This signal will take us out
6124 of the stepping range so GDB needs to remember to, when
6125 the signal handler returns, resume stepping off that
6126 breakpoint. */
6127 /* To simplify things, "continue" is forced to use the same
6128 code paths as single-step - set a breakpoint at the
6129 signal return address and then, once hit, step off that
6130 breakpoint. */
6131 if (debug_infrun)
6132 fprintf_unfiltered (gdb_stdlog,
6133 "infrun: signal arrived while stepping over "
6134 "breakpoint\n");
6135
6136 insert_hp_step_resume_breakpoint_at_frame (frame);
6137 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6138 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6139 ecs->event_thread->control.trap_expected = 0;
6140
6141 /* If we were nexting/stepping some other thread, switch to
6142 it, so that we don't continue it, losing control. */
6143 if (!switch_back_to_stepped_thread (ecs))
6144 keep_going (ecs);
6145 return;
6146 }
6147
6148 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6149 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6150 || ecs->event_thread->control.step_range_end == 1)
6151 && frame_id_eq (get_stack_frame_id (frame),
6152 ecs->event_thread->control.step_stack_frame_id)
6153 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6154 {
6155 /* The inferior is about to take a signal that will take it
6156 out of the single step range. Set a breakpoint at the
6157 current PC (which is presumably where the signal handler
6158 will eventually return) and then allow the inferior to
6159 run free.
6160
6161 Note that this is only needed for a signal delivered
6162 while in the single-step range. Nested signals aren't a
6163 problem as they eventually all return. */
6164 if (debug_infrun)
6165 fprintf_unfiltered (gdb_stdlog,
6166 "infrun: signal may take us out of "
6167 "single-step range\n");
6168
6169 clear_step_over_info ();
6170 insert_hp_step_resume_breakpoint_at_frame (frame);
6171 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6172 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6173 ecs->event_thread->control.trap_expected = 0;
6174 keep_going (ecs);
6175 return;
6176 }
6177
6178 /* Note: step_resume_breakpoint may be non-NULL. This occures
6179 when either there's a nested signal, or when there's a
6180 pending signal enabled just as the signal handler returns
6181 (leaving the inferior at the step-resume-breakpoint without
6182 actually executing it). Either way continue until the
6183 breakpoint is really hit. */
6184
6185 if (!switch_back_to_stepped_thread (ecs))
6186 {
6187 if (debug_infrun)
6188 fprintf_unfiltered (gdb_stdlog,
6189 "infrun: random signal, keep going\n");
6190
6191 keep_going (ecs);
6192 }
6193 return;
6194 }
6195
6196 process_event_stop_test (ecs);
6197 }
6198
6199 /* Come here when we've got some debug event / signal we can explain
6200 (IOW, not a random signal), and test whether it should cause a
6201 stop, or whether we should resume the inferior (transparently).
6202 E.g., could be a breakpoint whose condition evaluates false; we
6203 could be still stepping within the line; etc. */
6204
6205 static void
6206 process_event_stop_test (struct execution_control_state *ecs)
6207 {
6208 struct symtab_and_line stop_pc_sal;
6209 struct frame_info *frame;
6210 struct gdbarch *gdbarch;
6211 CORE_ADDR jmp_buf_pc;
6212 struct bpstat_what what;
6213
6214 /* Handle cases caused by hitting a breakpoint. */
6215
6216 frame = get_current_frame ();
6217 gdbarch = get_frame_arch (frame);
6218
6219 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6220
6221 if (what.call_dummy)
6222 {
6223 stop_stack_dummy = what.call_dummy;
6224 }
6225
6226 /* A few breakpoint types have callbacks associated (e.g.,
6227 bp_jit_event). Run them now. */
6228 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6229
6230 /* If we hit an internal event that triggers symbol changes, the
6231 current frame will be invalidated within bpstat_what (e.g., if we
6232 hit an internal solib event). Re-fetch it. */
6233 frame = get_current_frame ();
6234 gdbarch = get_frame_arch (frame);
6235
6236 switch (what.main_action)
6237 {
6238 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6239 /* If we hit the breakpoint at longjmp while stepping, we
6240 install a momentary breakpoint at the target of the
6241 jmp_buf. */
6242
6243 if (debug_infrun)
6244 fprintf_unfiltered (gdb_stdlog,
6245 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6246
6247 ecs->event_thread->stepping_over_breakpoint = 1;
6248
6249 if (what.is_longjmp)
6250 {
6251 struct value *arg_value;
6252
6253 /* If we set the longjmp breakpoint via a SystemTap probe,
6254 then use it to extract the arguments. The destination PC
6255 is the third argument to the probe. */
6256 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6257 if (arg_value)
6258 {
6259 jmp_buf_pc = value_as_address (arg_value);
6260 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6261 }
6262 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6263 || !gdbarch_get_longjmp_target (gdbarch,
6264 frame, &jmp_buf_pc))
6265 {
6266 if (debug_infrun)
6267 fprintf_unfiltered (gdb_stdlog,
6268 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6269 "(!gdbarch_get_longjmp_target)\n");
6270 keep_going (ecs);
6271 return;
6272 }
6273
6274 /* Insert a breakpoint at resume address. */
6275 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6276 }
6277 else
6278 check_exception_resume (ecs, frame);
6279 keep_going (ecs);
6280 return;
6281
6282 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6283 {
6284 struct frame_info *init_frame;
6285
6286 /* There are several cases to consider.
6287
6288 1. The initiating frame no longer exists. In this case we
6289 must stop, because the exception or longjmp has gone too
6290 far.
6291
6292 2. The initiating frame exists, and is the same as the
6293 current frame. We stop, because the exception or longjmp
6294 has been caught.
6295
6296 3. The initiating frame exists and is different from the
6297 current frame. This means the exception or longjmp has
6298 been caught beneath the initiating frame, so keep going.
6299
6300 4. longjmp breakpoint has been placed just to protect
6301 against stale dummy frames and user is not interested in
6302 stopping around longjmps. */
6303
6304 if (debug_infrun)
6305 fprintf_unfiltered (gdb_stdlog,
6306 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6307
6308 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6309 != NULL);
6310 delete_exception_resume_breakpoint (ecs->event_thread);
6311
6312 if (what.is_longjmp)
6313 {
6314 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6315
6316 if (!frame_id_p (ecs->event_thread->initiating_frame))
6317 {
6318 /* Case 4. */
6319 keep_going (ecs);
6320 return;
6321 }
6322 }
6323
6324 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6325
6326 if (init_frame)
6327 {
6328 struct frame_id current_id
6329 = get_frame_id (get_current_frame ());
6330 if (frame_id_eq (current_id,
6331 ecs->event_thread->initiating_frame))
6332 {
6333 /* Case 2. Fall through. */
6334 }
6335 else
6336 {
6337 /* Case 3. */
6338 keep_going (ecs);
6339 return;
6340 }
6341 }
6342
6343 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6344 exists. */
6345 delete_step_resume_breakpoint (ecs->event_thread);
6346
6347 end_stepping_range (ecs);
6348 }
6349 return;
6350
6351 case BPSTAT_WHAT_SINGLE:
6352 if (debug_infrun)
6353 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6354 ecs->event_thread->stepping_over_breakpoint = 1;
6355 /* Still need to check other stuff, at least the case where we
6356 are stepping and step out of the right range. */
6357 break;
6358
6359 case BPSTAT_WHAT_STEP_RESUME:
6360 if (debug_infrun)
6361 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6362
6363 delete_step_resume_breakpoint (ecs->event_thread);
6364 if (ecs->event_thread->control.proceed_to_finish
6365 && execution_direction == EXEC_REVERSE)
6366 {
6367 struct thread_info *tp = ecs->event_thread;
6368
6369 /* We are finishing a function in reverse, and just hit the
6370 step-resume breakpoint at the start address of the
6371 function, and we're almost there -- just need to back up
6372 by one more single-step, which should take us back to the
6373 function call. */
6374 tp->control.step_range_start = tp->control.step_range_end = 1;
6375 keep_going (ecs);
6376 return;
6377 }
6378 fill_in_stop_func (gdbarch, ecs);
6379 if (stop_pc == ecs->stop_func_start
6380 && execution_direction == EXEC_REVERSE)
6381 {
6382 /* We are stepping over a function call in reverse, and just
6383 hit the step-resume breakpoint at the start address of
6384 the function. Go back to single-stepping, which should
6385 take us back to the function call. */
6386 ecs->event_thread->stepping_over_breakpoint = 1;
6387 keep_going (ecs);
6388 return;
6389 }
6390 break;
6391
6392 case BPSTAT_WHAT_STOP_NOISY:
6393 if (debug_infrun)
6394 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6395 stop_print_frame = 1;
6396
6397 /* Assume the thread stopped for a breapoint. We'll still check
6398 whether a/the breakpoint is there when the thread is next
6399 resumed. */
6400 ecs->event_thread->stepping_over_breakpoint = 1;
6401
6402 stop_waiting (ecs);
6403 return;
6404
6405 case BPSTAT_WHAT_STOP_SILENT:
6406 if (debug_infrun)
6407 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6408 stop_print_frame = 0;
6409
6410 /* Assume the thread stopped for a breapoint. We'll still check
6411 whether a/the breakpoint is there when the thread is next
6412 resumed. */
6413 ecs->event_thread->stepping_over_breakpoint = 1;
6414 stop_waiting (ecs);
6415 return;
6416
6417 case BPSTAT_WHAT_HP_STEP_RESUME:
6418 if (debug_infrun)
6419 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6420
6421 delete_step_resume_breakpoint (ecs->event_thread);
6422 if (ecs->event_thread->step_after_step_resume_breakpoint)
6423 {
6424 /* Back when the step-resume breakpoint was inserted, we
6425 were trying to single-step off a breakpoint. Go back to
6426 doing that. */
6427 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6428 ecs->event_thread->stepping_over_breakpoint = 1;
6429 keep_going (ecs);
6430 return;
6431 }
6432 break;
6433
6434 case BPSTAT_WHAT_KEEP_CHECKING:
6435 break;
6436 }
6437
6438 /* If we stepped a permanent breakpoint and we had a high priority
6439 step-resume breakpoint for the address we stepped, but we didn't
6440 hit it, then we must have stepped into the signal handler. The
6441 step-resume was only necessary to catch the case of _not_
6442 stepping into the handler, so delete it, and fall through to
6443 checking whether the step finished. */
6444 if (ecs->event_thread->stepped_breakpoint)
6445 {
6446 struct breakpoint *sr_bp
6447 = ecs->event_thread->control.step_resume_breakpoint;
6448
6449 if (sr_bp != NULL
6450 && sr_bp->loc->permanent
6451 && sr_bp->type == bp_hp_step_resume
6452 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6453 {
6454 if (debug_infrun)
6455 fprintf_unfiltered (gdb_stdlog,
6456 "infrun: stepped permanent breakpoint, stopped in "
6457 "handler\n");
6458 delete_step_resume_breakpoint (ecs->event_thread);
6459 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6460 }
6461 }
6462
6463 /* We come here if we hit a breakpoint but should not stop for it.
6464 Possibly we also were stepping and should stop for that. So fall
6465 through and test for stepping. But, if not stepping, do not
6466 stop. */
6467
6468 /* In all-stop mode, if we're currently stepping but have stopped in
6469 some other thread, we need to switch back to the stepped thread. */
6470 if (switch_back_to_stepped_thread (ecs))
6471 return;
6472
6473 if (ecs->event_thread->control.step_resume_breakpoint)
6474 {
6475 if (debug_infrun)
6476 fprintf_unfiltered (gdb_stdlog,
6477 "infrun: step-resume breakpoint is inserted\n");
6478
6479 /* Having a step-resume breakpoint overrides anything
6480 else having to do with stepping commands until
6481 that breakpoint is reached. */
6482 keep_going (ecs);
6483 return;
6484 }
6485
6486 if (ecs->event_thread->control.step_range_end == 0)
6487 {
6488 if (debug_infrun)
6489 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6490 /* Likewise if we aren't even stepping. */
6491 keep_going (ecs);
6492 return;
6493 }
6494
6495 /* Re-fetch current thread's frame in case the code above caused
6496 the frame cache to be re-initialized, making our FRAME variable
6497 a dangling pointer. */
6498 frame = get_current_frame ();
6499 gdbarch = get_frame_arch (frame);
6500 fill_in_stop_func (gdbarch, ecs);
6501
6502 /* If stepping through a line, keep going if still within it.
6503
6504 Note that step_range_end is the address of the first instruction
6505 beyond the step range, and NOT the address of the last instruction
6506 within it!
6507
6508 Note also that during reverse execution, we may be stepping
6509 through a function epilogue and therefore must detect when
6510 the current-frame changes in the middle of a line. */
6511
6512 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6513 && (execution_direction != EXEC_REVERSE
6514 || frame_id_eq (get_frame_id (frame),
6515 ecs->event_thread->control.step_frame_id)))
6516 {
6517 if (debug_infrun)
6518 fprintf_unfiltered
6519 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6520 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6521 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6522
6523 /* Tentatively re-enable range stepping; `resume' disables it if
6524 necessary (e.g., if we're stepping over a breakpoint or we
6525 have software watchpoints). */
6526 ecs->event_thread->control.may_range_step = 1;
6527
6528 /* When stepping backward, stop at beginning of line range
6529 (unless it's the function entry point, in which case
6530 keep going back to the call point). */
6531 if (stop_pc == ecs->event_thread->control.step_range_start
6532 && stop_pc != ecs->stop_func_start
6533 && execution_direction == EXEC_REVERSE)
6534 end_stepping_range (ecs);
6535 else
6536 keep_going (ecs);
6537
6538 return;
6539 }
6540
6541 /* We stepped out of the stepping range. */
6542
6543 /* If we are stepping at the source level and entered the runtime
6544 loader dynamic symbol resolution code...
6545
6546 EXEC_FORWARD: we keep on single stepping until we exit the run
6547 time loader code and reach the callee's address.
6548
6549 EXEC_REVERSE: we've already executed the callee (backward), and
6550 the runtime loader code is handled just like any other
6551 undebuggable function call. Now we need only keep stepping
6552 backward through the trampoline code, and that's handled further
6553 down, so there is nothing for us to do here. */
6554
6555 if (execution_direction != EXEC_REVERSE
6556 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6557 && in_solib_dynsym_resolve_code (stop_pc))
6558 {
6559 CORE_ADDR pc_after_resolver =
6560 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6561
6562 if (debug_infrun)
6563 fprintf_unfiltered (gdb_stdlog,
6564 "infrun: stepped into dynsym resolve code\n");
6565
6566 if (pc_after_resolver)
6567 {
6568 /* Set up a step-resume breakpoint at the address
6569 indicated by SKIP_SOLIB_RESOLVER. */
6570 struct symtab_and_line sr_sal;
6571
6572 init_sal (&sr_sal);
6573 sr_sal.pc = pc_after_resolver;
6574 sr_sal.pspace = get_frame_program_space (frame);
6575
6576 insert_step_resume_breakpoint_at_sal (gdbarch,
6577 sr_sal, null_frame_id);
6578 }
6579
6580 keep_going (ecs);
6581 return;
6582 }
6583
6584 if (ecs->event_thread->control.step_range_end != 1
6585 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6586 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6587 && get_frame_type (frame) == SIGTRAMP_FRAME)
6588 {
6589 if (debug_infrun)
6590 fprintf_unfiltered (gdb_stdlog,
6591 "infrun: stepped into signal trampoline\n");
6592 /* The inferior, while doing a "step" or "next", has ended up in
6593 a signal trampoline (either by a signal being delivered or by
6594 the signal handler returning). Just single-step until the
6595 inferior leaves the trampoline (either by calling the handler
6596 or returning). */
6597 keep_going (ecs);
6598 return;
6599 }
6600
6601 /* If we're in the return path from a shared library trampoline,
6602 we want to proceed through the trampoline when stepping. */
6603 /* macro/2012-04-25: This needs to come before the subroutine
6604 call check below as on some targets return trampolines look
6605 like subroutine calls (MIPS16 return thunks). */
6606 if (gdbarch_in_solib_return_trampoline (gdbarch,
6607 stop_pc, ecs->stop_func_name)
6608 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6609 {
6610 /* Determine where this trampoline returns. */
6611 CORE_ADDR real_stop_pc;
6612
6613 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6614
6615 if (debug_infrun)
6616 fprintf_unfiltered (gdb_stdlog,
6617 "infrun: stepped into solib return tramp\n");
6618
6619 /* Only proceed through if we know where it's going. */
6620 if (real_stop_pc)
6621 {
6622 /* And put the step-breakpoint there and go until there. */
6623 struct symtab_and_line sr_sal;
6624
6625 init_sal (&sr_sal); /* initialize to zeroes */
6626 sr_sal.pc = real_stop_pc;
6627 sr_sal.section = find_pc_overlay (sr_sal.pc);
6628 sr_sal.pspace = get_frame_program_space (frame);
6629
6630 /* Do not specify what the fp should be when we stop since
6631 on some machines the prologue is where the new fp value
6632 is established. */
6633 insert_step_resume_breakpoint_at_sal (gdbarch,
6634 sr_sal, null_frame_id);
6635
6636 /* Restart without fiddling with the step ranges or
6637 other state. */
6638 keep_going (ecs);
6639 return;
6640 }
6641 }
6642
6643 /* Check for subroutine calls. The check for the current frame
6644 equalling the step ID is not necessary - the check of the
6645 previous frame's ID is sufficient - but it is a common case and
6646 cheaper than checking the previous frame's ID.
6647
6648 NOTE: frame_id_eq will never report two invalid frame IDs as
6649 being equal, so to get into this block, both the current and
6650 previous frame must have valid frame IDs. */
6651 /* The outer_frame_id check is a heuristic to detect stepping
6652 through startup code. If we step over an instruction which
6653 sets the stack pointer from an invalid value to a valid value,
6654 we may detect that as a subroutine call from the mythical
6655 "outermost" function. This could be fixed by marking
6656 outermost frames as !stack_p,code_p,special_p. Then the
6657 initial outermost frame, before sp was valid, would
6658 have code_addr == &_start. See the comment in frame_id_eq
6659 for more. */
6660 if (!frame_id_eq (get_stack_frame_id (frame),
6661 ecs->event_thread->control.step_stack_frame_id)
6662 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6663 ecs->event_thread->control.step_stack_frame_id)
6664 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6665 outer_frame_id)
6666 || (ecs->event_thread->control.step_start_function
6667 != find_pc_function (stop_pc)))))
6668 {
6669 CORE_ADDR real_stop_pc;
6670
6671 if (debug_infrun)
6672 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6673
6674 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6675 {
6676 /* I presume that step_over_calls is only 0 when we're
6677 supposed to be stepping at the assembly language level
6678 ("stepi"). Just stop. */
6679 /* And this works the same backward as frontward. MVS */
6680 end_stepping_range (ecs);
6681 return;
6682 }
6683
6684 /* Reverse stepping through solib trampolines. */
6685
6686 if (execution_direction == EXEC_REVERSE
6687 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6688 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6689 || (ecs->stop_func_start == 0
6690 && in_solib_dynsym_resolve_code (stop_pc))))
6691 {
6692 /* Any solib trampoline code can be handled in reverse
6693 by simply continuing to single-step. We have already
6694 executed the solib function (backwards), and a few
6695 steps will take us back through the trampoline to the
6696 caller. */
6697 keep_going (ecs);
6698 return;
6699 }
6700
6701 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6702 {
6703 /* We're doing a "next".
6704
6705 Normal (forward) execution: set a breakpoint at the
6706 callee's return address (the address at which the caller
6707 will resume).
6708
6709 Reverse (backward) execution. set the step-resume
6710 breakpoint at the start of the function that we just
6711 stepped into (backwards), and continue to there. When we
6712 get there, we'll need to single-step back to the caller. */
6713
6714 if (execution_direction == EXEC_REVERSE)
6715 {
6716 /* If we're already at the start of the function, we've either
6717 just stepped backward into a single instruction function,
6718 or stepped back out of a signal handler to the first instruction
6719 of the function. Just keep going, which will single-step back
6720 to the caller. */
6721 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6722 {
6723 struct symtab_and_line sr_sal;
6724
6725 /* Normal function call return (static or dynamic). */
6726 init_sal (&sr_sal);
6727 sr_sal.pc = ecs->stop_func_start;
6728 sr_sal.pspace = get_frame_program_space (frame);
6729 insert_step_resume_breakpoint_at_sal (gdbarch,
6730 sr_sal, null_frame_id);
6731 }
6732 }
6733 else
6734 insert_step_resume_breakpoint_at_caller (frame);
6735
6736 keep_going (ecs);
6737 return;
6738 }
6739
6740 /* If we are in a function call trampoline (a stub between the
6741 calling routine and the real function), locate the real
6742 function. That's what tells us (a) whether we want to step
6743 into it at all, and (b) what prologue we want to run to the
6744 end of, if we do step into it. */
6745 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6746 if (real_stop_pc == 0)
6747 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6748 if (real_stop_pc != 0)
6749 ecs->stop_func_start = real_stop_pc;
6750
6751 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6752 {
6753 struct symtab_and_line sr_sal;
6754
6755 init_sal (&sr_sal);
6756 sr_sal.pc = ecs->stop_func_start;
6757 sr_sal.pspace = get_frame_program_space (frame);
6758
6759 insert_step_resume_breakpoint_at_sal (gdbarch,
6760 sr_sal, null_frame_id);
6761 keep_going (ecs);
6762 return;
6763 }
6764
6765 /* If we have line number information for the function we are
6766 thinking of stepping into and the function isn't on the skip
6767 list, step into it.
6768
6769 If there are several symtabs at that PC (e.g. with include
6770 files), just want to know whether *any* of them have line
6771 numbers. find_pc_line handles this. */
6772 {
6773 struct symtab_and_line tmp_sal;
6774
6775 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6776 if (tmp_sal.line != 0
6777 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6778 tmp_sal))
6779 {
6780 if (execution_direction == EXEC_REVERSE)
6781 handle_step_into_function_backward (gdbarch, ecs);
6782 else
6783 handle_step_into_function (gdbarch, ecs);
6784 return;
6785 }
6786 }
6787
6788 /* If we have no line number and the step-stop-if-no-debug is
6789 set, we stop the step so that the user has a chance to switch
6790 in assembly mode. */
6791 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6792 && step_stop_if_no_debug)
6793 {
6794 end_stepping_range (ecs);
6795 return;
6796 }
6797
6798 if (execution_direction == EXEC_REVERSE)
6799 {
6800 /* If we're already at the start of the function, we've either just
6801 stepped backward into a single instruction function without line
6802 number info, or stepped back out of a signal handler to the first
6803 instruction of the function without line number info. Just keep
6804 going, which will single-step back to the caller. */
6805 if (ecs->stop_func_start != stop_pc)
6806 {
6807 /* Set a breakpoint at callee's start address.
6808 From there we can step once and be back in the caller. */
6809 struct symtab_and_line sr_sal;
6810
6811 init_sal (&sr_sal);
6812 sr_sal.pc = ecs->stop_func_start;
6813 sr_sal.pspace = get_frame_program_space (frame);
6814 insert_step_resume_breakpoint_at_sal (gdbarch,
6815 sr_sal, null_frame_id);
6816 }
6817 }
6818 else
6819 /* Set a breakpoint at callee's return address (the address
6820 at which the caller will resume). */
6821 insert_step_resume_breakpoint_at_caller (frame);
6822
6823 keep_going (ecs);
6824 return;
6825 }
6826
6827 /* Reverse stepping through solib trampolines. */
6828
6829 if (execution_direction == EXEC_REVERSE
6830 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6831 {
6832 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6833 || (ecs->stop_func_start == 0
6834 && in_solib_dynsym_resolve_code (stop_pc)))
6835 {
6836 /* Any solib trampoline code can be handled in reverse
6837 by simply continuing to single-step. We have already
6838 executed the solib function (backwards), and a few
6839 steps will take us back through the trampoline to the
6840 caller. */
6841 keep_going (ecs);
6842 return;
6843 }
6844 else if (in_solib_dynsym_resolve_code (stop_pc))
6845 {
6846 /* Stepped backward into the solib dynsym resolver.
6847 Set a breakpoint at its start and continue, then
6848 one more step will take us out. */
6849 struct symtab_and_line sr_sal;
6850
6851 init_sal (&sr_sal);
6852 sr_sal.pc = ecs->stop_func_start;
6853 sr_sal.pspace = get_frame_program_space (frame);
6854 insert_step_resume_breakpoint_at_sal (gdbarch,
6855 sr_sal, null_frame_id);
6856 keep_going (ecs);
6857 return;
6858 }
6859 }
6860
6861 stop_pc_sal = find_pc_line (stop_pc, 0);
6862
6863 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6864 the trampoline processing logic, however, there are some trampolines
6865 that have no names, so we should do trampoline handling first. */
6866 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6867 && ecs->stop_func_name == NULL
6868 && stop_pc_sal.line == 0)
6869 {
6870 if (debug_infrun)
6871 fprintf_unfiltered (gdb_stdlog,
6872 "infrun: stepped into undebuggable function\n");
6873
6874 /* The inferior just stepped into, or returned to, an
6875 undebuggable function (where there is no debugging information
6876 and no line number corresponding to the address where the
6877 inferior stopped). Since we want to skip this kind of code,
6878 we keep going until the inferior returns from this
6879 function - unless the user has asked us not to (via
6880 set step-mode) or we no longer know how to get back
6881 to the call site. */
6882 if (step_stop_if_no_debug
6883 || !frame_id_p (frame_unwind_caller_id (frame)))
6884 {
6885 /* If we have no line number and the step-stop-if-no-debug
6886 is set, we stop the step so that the user has a chance to
6887 switch in assembly mode. */
6888 end_stepping_range (ecs);
6889 return;
6890 }
6891 else
6892 {
6893 /* Set a breakpoint at callee's return address (the address
6894 at which the caller will resume). */
6895 insert_step_resume_breakpoint_at_caller (frame);
6896 keep_going (ecs);
6897 return;
6898 }
6899 }
6900
6901 if (ecs->event_thread->control.step_range_end == 1)
6902 {
6903 /* It is stepi or nexti. We always want to stop stepping after
6904 one instruction. */
6905 if (debug_infrun)
6906 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6907 end_stepping_range (ecs);
6908 return;
6909 }
6910
6911 if (stop_pc_sal.line == 0)
6912 {
6913 /* We have no line number information. That means to stop
6914 stepping (does this always happen right after one instruction,
6915 when we do "s" in a function with no line numbers,
6916 or can this happen as a result of a return or longjmp?). */
6917 if (debug_infrun)
6918 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6919 end_stepping_range (ecs);
6920 return;
6921 }
6922
6923 /* Look for "calls" to inlined functions, part one. If the inline
6924 frame machinery detected some skipped call sites, we have entered
6925 a new inline function. */
6926
6927 if (frame_id_eq (get_frame_id (get_current_frame ()),
6928 ecs->event_thread->control.step_frame_id)
6929 && inline_skipped_frames (ecs->ptid))
6930 {
6931 struct symtab_and_line call_sal;
6932
6933 if (debug_infrun)
6934 fprintf_unfiltered (gdb_stdlog,
6935 "infrun: stepped into inlined function\n");
6936
6937 find_frame_sal (get_current_frame (), &call_sal);
6938
6939 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6940 {
6941 /* For "step", we're going to stop. But if the call site
6942 for this inlined function is on the same source line as
6943 we were previously stepping, go down into the function
6944 first. Otherwise stop at the call site. */
6945
6946 if (call_sal.line == ecs->event_thread->current_line
6947 && call_sal.symtab == ecs->event_thread->current_symtab)
6948 step_into_inline_frame (ecs->ptid);
6949
6950 end_stepping_range (ecs);
6951 return;
6952 }
6953 else
6954 {
6955 /* For "next", we should stop at the call site if it is on a
6956 different source line. Otherwise continue through the
6957 inlined function. */
6958 if (call_sal.line == ecs->event_thread->current_line
6959 && call_sal.symtab == ecs->event_thread->current_symtab)
6960 keep_going (ecs);
6961 else
6962 end_stepping_range (ecs);
6963 return;
6964 }
6965 }
6966
6967 /* Look for "calls" to inlined functions, part two. If we are still
6968 in the same real function we were stepping through, but we have
6969 to go further up to find the exact frame ID, we are stepping
6970 through a more inlined call beyond its call site. */
6971
6972 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6973 && !frame_id_eq (get_frame_id (get_current_frame ()),
6974 ecs->event_thread->control.step_frame_id)
6975 && stepped_in_from (get_current_frame (),
6976 ecs->event_thread->control.step_frame_id))
6977 {
6978 if (debug_infrun)
6979 fprintf_unfiltered (gdb_stdlog,
6980 "infrun: stepping through inlined function\n");
6981
6982 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6983 keep_going (ecs);
6984 else
6985 end_stepping_range (ecs);
6986 return;
6987 }
6988
6989 if ((stop_pc == stop_pc_sal.pc)
6990 && (ecs->event_thread->current_line != stop_pc_sal.line
6991 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6992 {
6993 /* We are at the start of a different line. So stop. Note that
6994 we don't stop if we step into the middle of a different line.
6995 That is said to make things like for (;;) statements work
6996 better. */
6997 if (debug_infrun)
6998 fprintf_unfiltered (gdb_stdlog,
6999 "infrun: stepped to a different line\n");
7000 end_stepping_range (ecs);
7001 return;
7002 }
7003
7004 /* We aren't done stepping.
7005
7006 Optimize by setting the stepping range to the line.
7007 (We might not be in the original line, but if we entered a
7008 new line in mid-statement, we continue stepping. This makes
7009 things like for(;;) statements work better.) */
7010
7011 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7012 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7013 ecs->event_thread->control.may_range_step = 1;
7014 set_step_info (frame, stop_pc_sal);
7015
7016 if (debug_infrun)
7017 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7018 keep_going (ecs);
7019 }
7020
7021 /* In all-stop mode, if we're currently stepping but have stopped in
7022 some other thread, we may need to switch back to the stepped
7023 thread. Returns true we set the inferior running, false if we left
7024 it stopped (and the event needs further processing). */
7025
7026 static int
7027 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7028 {
7029 if (!target_is_non_stop_p ())
7030 {
7031 struct thread_info *tp;
7032 struct thread_info *stepping_thread;
7033
7034 /* If any thread is blocked on some internal breakpoint, and we
7035 simply need to step over that breakpoint to get it going
7036 again, do that first. */
7037
7038 /* However, if we see an event for the stepping thread, then we
7039 know all other threads have been moved past their breakpoints
7040 already. Let the caller check whether the step is finished,
7041 etc., before deciding to move it past a breakpoint. */
7042 if (ecs->event_thread->control.step_range_end != 0)
7043 return 0;
7044
7045 /* Check if the current thread is blocked on an incomplete
7046 step-over, interrupted by a random signal. */
7047 if (ecs->event_thread->control.trap_expected
7048 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7049 {
7050 if (debug_infrun)
7051 {
7052 fprintf_unfiltered (gdb_stdlog,
7053 "infrun: need to finish step-over of [%s]\n",
7054 target_pid_to_str (ecs->event_thread->ptid));
7055 }
7056 keep_going (ecs);
7057 return 1;
7058 }
7059
7060 /* Check if the current thread is blocked by a single-step
7061 breakpoint of another thread. */
7062 if (ecs->hit_singlestep_breakpoint)
7063 {
7064 if (debug_infrun)
7065 {
7066 fprintf_unfiltered (gdb_stdlog,
7067 "infrun: need to step [%s] over single-step "
7068 "breakpoint\n",
7069 target_pid_to_str (ecs->ptid));
7070 }
7071 keep_going (ecs);
7072 return 1;
7073 }
7074
7075 /* If this thread needs yet another step-over (e.g., stepping
7076 through a delay slot), do it first before moving on to
7077 another thread. */
7078 if (thread_still_needs_step_over (ecs->event_thread))
7079 {
7080 if (debug_infrun)
7081 {
7082 fprintf_unfiltered (gdb_stdlog,
7083 "infrun: thread [%s] still needs step-over\n",
7084 target_pid_to_str (ecs->event_thread->ptid));
7085 }
7086 keep_going (ecs);
7087 return 1;
7088 }
7089
7090 /* If scheduler locking applies even if not stepping, there's no
7091 need to walk over threads. Above we've checked whether the
7092 current thread is stepping. If some other thread not the
7093 event thread is stepping, then it must be that scheduler
7094 locking is not in effect. */
7095 if (schedlock_applies (ecs->event_thread))
7096 return 0;
7097
7098 /* Otherwise, we no longer expect a trap in the current thread.
7099 Clear the trap_expected flag before switching back -- this is
7100 what keep_going does as well, if we call it. */
7101 ecs->event_thread->control.trap_expected = 0;
7102
7103 /* Likewise, clear the signal if it should not be passed. */
7104 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7105 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7106
7107 /* Do all pending step-overs before actually proceeding with
7108 step/next/etc. */
7109 if (start_step_over ())
7110 {
7111 prepare_to_wait (ecs);
7112 return 1;
7113 }
7114
7115 /* Look for the stepping/nexting thread. */
7116 stepping_thread = NULL;
7117
7118 ALL_NON_EXITED_THREADS (tp)
7119 {
7120 /* Ignore threads of processes the caller is not
7121 resuming. */
7122 if (!sched_multi
7123 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7124 continue;
7125
7126 /* When stepping over a breakpoint, we lock all threads
7127 except the one that needs to move past the breakpoint.
7128 If a non-event thread has this set, the "incomplete
7129 step-over" check above should have caught it earlier. */
7130 if (tp->control.trap_expected)
7131 {
7132 internal_error (__FILE__, __LINE__,
7133 "[%s] has inconsistent state: "
7134 "trap_expected=%d\n",
7135 target_pid_to_str (tp->ptid),
7136 tp->control.trap_expected);
7137 }
7138
7139 /* Did we find the stepping thread? */
7140 if (tp->control.step_range_end)
7141 {
7142 /* Yep. There should only one though. */
7143 gdb_assert (stepping_thread == NULL);
7144
7145 /* The event thread is handled at the top, before we
7146 enter this loop. */
7147 gdb_assert (tp != ecs->event_thread);
7148
7149 /* If some thread other than the event thread is
7150 stepping, then scheduler locking can't be in effect,
7151 otherwise we wouldn't have resumed the current event
7152 thread in the first place. */
7153 gdb_assert (!schedlock_applies (tp));
7154
7155 stepping_thread = tp;
7156 }
7157 }
7158
7159 if (stepping_thread != NULL)
7160 {
7161 if (debug_infrun)
7162 fprintf_unfiltered (gdb_stdlog,
7163 "infrun: switching back to stepped thread\n");
7164
7165 if (keep_going_stepped_thread (stepping_thread))
7166 {
7167 prepare_to_wait (ecs);
7168 return 1;
7169 }
7170 }
7171 }
7172
7173 return 0;
7174 }
7175
7176 /* Set a previously stepped thread back to stepping. Returns true on
7177 success, false if the resume is not possible (e.g., the thread
7178 vanished). */
7179
7180 static int
7181 keep_going_stepped_thread (struct thread_info *tp)
7182 {
7183 struct frame_info *frame;
7184 struct execution_control_state ecss;
7185 struct execution_control_state *ecs = &ecss;
7186
7187 /* If the stepping thread exited, then don't try to switch back and
7188 resume it, which could fail in several different ways depending
7189 on the target. Instead, just keep going.
7190
7191 We can find a stepping dead thread in the thread list in two
7192 cases:
7193
7194 - The target supports thread exit events, and when the target
7195 tries to delete the thread from the thread list, inferior_ptid
7196 pointed at the exiting thread. In such case, calling
7197 delete_thread does not really remove the thread from the list;
7198 instead, the thread is left listed, with 'exited' state.
7199
7200 - The target's debug interface does not support thread exit
7201 events, and so we have no idea whatsoever if the previously
7202 stepping thread is still alive. For that reason, we need to
7203 synchronously query the target now. */
7204
7205 if (is_exited (tp->ptid)
7206 || !target_thread_alive (tp->ptid))
7207 {
7208 if (debug_infrun)
7209 fprintf_unfiltered (gdb_stdlog,
7210 "infrun: not resuming previously "
7211 "stepped thread, it has vanished\n");
7212
7213 delete_thread (tp->ptid);
7214 return 0;
7215 }
7216
7217 if (debug_infrun)
7218 fprintf_unfiltered (gdb_stdlog,
7219 "infrun: resuming previously stepped thread\n");
7220
7221 reset_ecs (ecs, tp);
7222 switch_to_thread (tp->ptid);
7223
7224 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7225 frame = get_current_frame ();
7226
7227 /* If the PC of the thread we were trying to single-step has
7228 changed, then that thread has trapped or been signaled, but the
7229 event has not been reported to GDB yet. Re-poll the target
7230 looking for this particular thread's event (i.e. temporarily
7231 enable schedlock) by:
7232
7233 - setting a break at the current PC
7234 - resuming that particular thread, only (by setting trap
7235 expected)
7236
7237 This prevents us continuously moving the single-step breakpoint
7238 forward, one instruction at a time, overstepping. */
7239
7240 if (stop_pc != tp->prev_pc)
7241 {
7242 ptid_t resume_ptid;
7243
7244 if (debug_infrun)
7245 fprintf_unfiltered (gdb_stdlog,
7246 "infrun: expected thread advanced also (%s -> %s)\n",
7247 paddress (target_gdbarch (), tp->prev_pc),
7248 paddress (target_gdbarch (), stop_pc));
7249
7250 /* Clear the info of the previous step-over, as it's no longer
7251 valid (if the thread was trying to step over a breakpoint, it
7252 has already succeeded). It's what keep_going would do too,
7253 if we called it. Do this before trying to insert the sss
7254 breakpoint, otherwise if we were previously trying to step
7255 over this exact address in another thread, the breakpoint is
7256 skipped. */
7257 clear_step_over_info ();
7258 tp->control.trap_expected = 0;
7259
7260 insert_single_step_breakpoint (get_frame_arch (frame),
7261 get_frame_address_space (frame),
7262 stop_pc);
7263
7264 tp->resumed = 1;
7265 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7266 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7267 }
7268 else
7269 {
7270 if (debug_infrun)
7271 fprintf_unfiltered (gdb_stdlog,
7272 "infrun: expected thread still hasn't advanced\n");
7273
7274 keep_going_pass_signal (ecs);
7275 }
7276 return 1;
7277 }
7278
7279 /* Is thread TP in the middle of (software or hardware)
7280 single-stepping? (Note the result of this function must never be
7281 passed directly as target_resume's STEP parameter.) */
7282
7283 static int
7284 currently_stepping (struct thread_info *tp)
7285 {
7286 return ((tp->control.step_range_end
7287 && tp->control.step_resume_breakpoint == NULL)
7288 || tp->control.trap_expected
7289 || tp->stepped_breakpoint
7290 || bpstat_should_step ());
7291 }
7292
7293 /* Inferior has stepped into a subroutine call with source code that
7294 we should not step over. Do step to the first line of code in
7295 it. */
7296
7297 static void
7298 handle_step_into_function (struct gdbarch *gdbarch,
7299 struct execution_control_state *ecs)
7300 {
7301 struct compunit_symtab *cust;
7302 struct symtab_and_line stop_func_sal, sr_sal;
7303
7304 fill_in_stop_func (gdbarch, ecs);
7305
7306 cust = find_pc_compunit_symtab (stop_pc);
7307 if (cust != NULL && compunit_language (cust) != language_asm)
7308 ecs->stop_func_start
7309 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7310
7311 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7312 /* Use the step_resume_break to step until the end of the prologue,
7313 even if that involves jumps (as it seems to on the vax under
7314 4.2). */
7315 /* If the prologue ends in the middle of a source line, continue to
7316 the end of that source line (if it is still within the function).
7317 Otherwise, just go to end of prologue. */
7318 if (stop_func_sal.end
7319 && stop_func_sal.pc != ecs->stop_func_start
7320 && stop_func_sal.end < ecs->stop_func_end)
7321 ecs->stop_func_start = stop_func_sal.end;
7322
7323 /* Architectures which require breakpoint adjustment might not be able
7324 to place a breakpoint at the computed address. If so, the test
7325 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7326 ecs->stop_func_start to an address at which a breakpoint may be
7327 legitimately placed.
7328
7329 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7330 made, GDB will enter an infinite loop when stepping through
7331 optimized code consisting of VLIW instructions which contain
7332 subinstructions corresponding to different source lines. On
7333 FR-V, it's not permitted to place a breakpoint on any but the
7334 first subinstruction of a VLIW instruction. When a breakpoint is
7335 set, GDB will adjust the breakpoint address to the beginning of
7336 the VLIW instruction. Thus, we need to make the corresponding
7337 adjustment here when computing the stop address. */
7338
7339 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7340 {
7341 ecs->stop_func_start
7342 = gdbarch_adjust_breakpoint_address (gdbarch,
7343 ecs->stop_func_start);
7344 }
7345
7346 if (ecs->stop_func_start == stop_pc)
7347 {
7348 /* We are already there: stop now. */
7349 end_stepping_range (ecs);
7350 return;
7351 }
7352 else
7353 {
7354 /* Put the step-breakpoint there and go until there. */
7355 init_sal (&sr_sal); /* initialize to zeroes */
7356 sr_sal.pc = ecs->stop_func_start;
7357 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7358 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7359
7360 /* Do not specify what the fp should be when we stop since on
7361 some machines the prologue is where the new fp value is
7362 established. */
7363 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7364
7365 /* And make sure stepping stops right away then. */
7366 ecs->event_thread->control.step_range_end
7367 = ecs->event_thread->control.step_range_start;
7368 }
7369 keep_going (ecs);
7370 }
7371
7372 /* Inferior has stepped backward into a subroutine call with source
7373 code that we should not step over. Do step to the beginning of the
7374 last line of code in it. */
7375
7376 static void
7377 handle_step_into_function_backward (struct gdbarch *gdbarch,
7378 struct execution_control_state *ecs)
7379 {
7380 struct compunit_symtab *cust;
7381 struct symtab_and_line stop_func_sal;
7382
7383 fill_in_stop_func (gdbarch, ecs);
7384
7385 cust = find_pc_compunit_symtab (stop_pc);
7386 if (cust != NULL && compunit_language (cust) != language_asm)
7387 ecs->stop_func_start
7388 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7389
7390 stop_func_sal = find_pc_line (stop_pc, 0);
7391
7392 /* OK, we're just going to keep stepping here. */
7393 if (stop_func_sal.pc == stop_pc)
7394 {
7395 /* We're there already. Just stop stepping now. */
7396 end_stepping_range (ecs);
7397 }
7398 else
7399 {
7400 /* Else just reset the step range and keep going.
7401 No step-resume breakpoint, they don't work for
7402 epilogues, which can have multiple entry paths. */
7403 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7404 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7405 keep_going (ecs);
7406 }
7407 return;
7408 }
7409
7410 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7411 This is used to both functions and to skip over code. */
7412
7413 static void
7414 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7415 struct symtab_and_line sr_sal,
7416 struct frame_id sr_id,
7417 enum bptype sr_type)
7418 {
7419 /* There should never be more than one step-resume or longjmp-resume
7420 breakpoint per thread, so we should never be setting a new
7421 step_resume_breakpoint when one is already active. */
7422 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7423 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7424
7425 if (debug_infrun)
7426 fprintf_unfiltered (gdb_stdlog,
7427 "infrun: inserting step-resume breakpoint at %s\n",
7428 paddress (gdbarch, sr_sal.pc));
7429
7430 inferior_thread ()->control.step_resume_breakpoint
7431 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7432 }
7433
7434 void
7435 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7436 struct symtab_and_line sr_sal,
7437 struct frame_id sr_id)
7438 {
7439 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7440 sr_sal, sr_id,
7441 bp_step_resume);
7442 }
7443
7444 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7445 This is used to skip a potential signal handler.
7446
7447 This is called with the interrupted function's frame. The signal
7448 handler, when it returns, will resume the interrupted function at
7449 RETURN_FRAME.pc. */
7450
7451 static void
7452 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7453 {
7454 struct symtab_and_line sr_sal;
7455 struct gdbarch *gdbarch;
7456
7457 gdb_assert (return_frame != NULL);
7458 init_sal (&sr_sal); /* initialize to zeros */
7459
7460 gdbarch = get_frame_arch (return_frame);
7461 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7462 sr_sal.section = find_pc_overlay (sr_sal.pc);
7463 sr_sal.pspace = get_frame_program_space (return_frame);
7464
7465 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7466 get_stack_frame_id (return_frame),
7467 bp_hp_step_resume);
7468 }
7469
7470 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7471 is used to skip a function after stepping into it (for "next" or if
7472 the called function has no debugging information).
7473
7474 The current function has almost always been reached by single
7475 stepping a call or return instruction. NEXT_FRAME belongs to the
7476 current function, and the breakpoint will be set at the caller's
7477 resume address.
7478
7479 This is a separate function rather than reusing
7480 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7481 get_prev_frame, which may stop prematurely (see the implementation
7482 of frame_unwind_caller_id for an example). */
7483
7484 static void
7485 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7486 {
7487 struct symtab_and_line sr_sal;
7488 struct gdbarch *gdbarch;
7489
7490 /* We shouldn't have gotten here if we don't know where the call site
7491 is. */
7492 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7493
7494 init_sal (&sr_sal); /* initialize to zeros */
7495
7496 gdbarch = frame_unwind_caller_arch (next_frame);
7497 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7498 frame_unwind_caller_pc (next_frame));
7499 sr_sal.section = find_pc_overlay (sr_sal.pc);
7500 sr_sal.pspace = frame_unwind_program_space (next_frame);
7501
7502 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7503 frame_unwind_caller_id (next_frame));
7504 }
7505
7506 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7507 new breakpoint at the target of a jmp_buf. The handling of
7508 longjmp-resume uses the same mechanisms used for handling
7509 "step-resume" breakpoints. */
7510
7511 static void
7512 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7513 {
7514 /* There should never be more than one longjmp-resume breakpoint per
7515 thread, so we should never be setting a new
7516 longjmp_resume_breakpoint when one is already active. */
7517 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7518
7519 if (debug_infrun)
7520 fprintf_unfiltered (gdb_stdlog,
7521 "infrun: inserting longjmp-resume breakpoint at %s\n",
7522 paddress (gdbarch, pc));
7523
7524 inferior_thread ()->control.exception_resume_breakpoint =
7525 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7526 }
7527
7528 /* Insert an exception resume breakpoint. TP is the thread throwing
7529 the exception. The block B is the block of the unwinder debug hook
7530 function. FRAME is the frame corresponding to the call to this
7531 function. SYM is the symbol of the function argument holding the
7532 target PC of the exception. */
7533
7534 static void
7535 insert_exception_resume_breakpoint (struct thread_info *tp,
7536 const struct block *b,
7537 struct frame_info *frame,
7538 struct symbol *sym)
7539 {
7540 TRY
7541 {
7542 struct block_symbol vsym;
7543 struct value *value;
7544 CORE_ADDR handler;
7545 struct breakpoint *bp;
7546
7547 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7548 value = read_var_value (vsym.symbol, vsym.block, frame);
7549 /* If the value was optimized out, revert to the old behavior. */
7550 if (! value_optimized_out (value))
7551 {
7552 handler = value_as_address (value);
7553
7554 if (debug_infrun)
7555 fprintf_unfiltered (gdb_stdlog,
7556 "infrun: exception resume at %lx\n",
7557 (unsigned long) handler);
7558
7559 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7560 handler, bp_exception_resume);
7561
7562 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7563 frame = NULL;
7564
7565 bp->thread = tp->global_num;
7566 inferior_thread ()->control.exception_resume_breakpoint = bp;
7567 }
7568 }
7569 CATCH (e, RETURN_MASK_ERROR)
7570 {
7571 /* We want to ignore errors here. */
7572 }
7573 END_CATCH
7574 }
7575
7576 /* A helper for check_exception_resume that sets an
7577 exception-breakpoint based on a SystemTap probe. */
7578
7579 static void
7580 insert_exception_resume_from_probe (struct thread_info *tp,
7581 const struct bound_probe *probe,
7582 struct frame_info *frame)
7583 {
7584 struct value *arg_value;
7585 CORE_ADDR handler;
7586 struct breakpoint *bp;
7587
7588 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7589 if (!arg_value)
7590 return;
7591
7592 handler = value_as_address (arg_value);
7593
7594 if (debug_infrun)
7595 fprintf_unfiltered (gdb_stdlog,
7596 "infrun: exception resume at %s\n",
7597 paddress (get_objfile_arch (probe->objfile),
7598 handler));
7599
7600 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7601 handler, bp_exception_resume);
7602 bp->thread = tp->global_num;
7603 inferior_thread ()->control.exception_resume_breakpoint = bp;
7604 }
7605
7606 /* This is called when an exception has been intercepted. Check to
7607 see whether the exception's destination is of interest, and if so,
7608 set an exception resume breakpoint there. */
7609
7610 static void
7611 check_exception_resume (struct execution_control_state *ecs,
7612 struct frame_info *frame)
7613 {
7614 struct bound_probe probe;
7615 struct symbol *func;
7616
7617 /* First see if this exception unwinding breakpoint was set via a
7618 SystemTap probe point. If so, the probe has two arguments: the
7619 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7620 set a breakpoint there. */
7621 probe = find_probe_by_pc (get_frame_pc (frame));
7622 if (probe.probe)
7623 {
7624 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7625 return;
7626 }
7627
7628 func = get_frame_function (frame);
7629 if (!func)
7630 return;
7631
7632 TRY
7633 {
7634 const struct block *b;
7635 struct block_iterator iter;
7636 struct symbol *sym;
7637 int argno = 0;
7638
7639 /* The exception breakpoint is a thread-specific breakpoint on
7640 the unwinder's debug hook, declared as:
7641
7642 void _Unwind_DebugHook (void *cfa, void *handler);
7643
7644 The CFA argument indicates the frame to which control is
7645 about to be transferred. HANDLER is the destination PC.
7646
7647 We ignore the CFA and set a temporary breakpoint at HANDLER.
7648 This is not extremely efficient but it avoids issues in gdb
7649 with computing the DWARF CFA, and it also works even in weird
7650 cases such as throwing an exception from inside a signal
7651 handler. */
7652
7653 b = SYMBOL_BLOCK_VALUE (func);
7654 ALL_BLOCK_SYMBOLS (b, iter, sym)
7655 {
7656 if (!SYMBOL_IS_ARGUMENT (sym))
7657 continue;
7658
7659 if (argno == 0)
7660 ++argno;
7661 else
7662 {
7663 insert_exception_resume_breakpoint (ecs->event_thread,
7664 b, frame, sym);
7665 break;
7666 }
7667 }
7668 }
7669 CATCH (e, RETURN_MASK_ERROR)
7670 {
7671 }
7672 END_CATCH
7673 }
7674
7675 static void
7676 stop_waiting (struct execution_control_state *ecs)
7677 {
7678 if (debug_infrun)
7679 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7680
7681 /* Let callers know we don't want to wait for the inferior anymore. */
7682 ecs->wait_some_more = 0;
7683
7684 /* If all-stop, but the target is always in non-stop mode, stop all
7685 threads now that we're presenting the stop to the user. */
7686 if (!non_stop && target_is_non_stop_p ())
7687 stop_all_threads ();
7688 }
7689
7690 /* Like keep_going, but passes the signal to the inferior, even if the
7691 signal is set to nopass. */
7692
7693 static void
7694 keep_going_pass_signal (struct execution_control_state *ecs)
7695 {
7696 /* Make sure normal_stop is called if we get a QUIT handled before
7697 reaching resume. */
7698 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7699
7700 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7701 gdb_assert (!ecs->event_thread->resumed);
7702
7703 /* Save the pc before execution, to compare with pc after stop. */
7704 ecs->event_thread->prev_pc
7705 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7706
7707 if (ecs->event_thread->control.trap_expected)
7708 {
7709 struct thread_info *tp = ecs->event_thread;
7710
7711 if (debug_infrun)
7712 fprintf_unfiltered (gdb_stdlog,
7713 "infrun: %s has trap_expected set, "
7714 "resuming to collect trap\n",
7715 target_pid_to_str (tp->ptid));
7716
7717 /* We haven't yet gotten our trap, and either: intercepted a
7718 non-signal event (e.g., a fork); or took a signal which we
7719 are supposed to pass through to the inferior. Simply
7720 continue. */
7721 discard_cleanups (old_cleanups);
7722 resume (ecs->event_thread->suspend.stop_signal);
7723 }
7724 else if (step_over_info_valid_p ())
7725 {
7726 /* Another thread is stepping over a breakpoint in-line. If
7727 this thread needs a step-over too, queue the request. In
7728 either case, this resume must be deferred for later. */
7729 struct thread_info *tp = ecs->event_thread;
7730
7731 if (ecs->hit_singlestep_breakpoint
7732 || thread_still_needs_step_over (tp))
7733 {
7734 if (debug_infrun)
7735 fprintf_unfiltered (gdb_stdlog,
7736 "infrun: step-over already in progress: "
7737 "step-over for %s deferred\n",
7738 target_pid_to_str (tp->ptid));
7739 thread_step_over_chain_enqueue (tp);
7740 }
7741 else
7742 {
7743 if (debug_infrun)
7744 fprintf_unfiltered (gdb_stdlog,
7745 "infrun: step-over in progress: "
7746 "resume of %s deferred\n",
7747 target_pid_to_str (tp->ptid));
7748 }
7749
7750 discard_cleanups (old_cleanups);
7751 }
7752 else
7753 {
7754 struct regcache *regcache = get_current_regcache ();
7755 int remove_bp;
7756 int remove_wps;
7757 step_over_what step_what;
7758
7759 /* Either the trap was not expected, but we are continuing
7760 anyway (if we got a signal, the user asked it be passed to
7761 the child)
7762 -- or --
7763 We got our expected trap, but decided we should resume from
7764 it.
7765
7766 We're going to run this baby now!
7767
7768 Note that insert_breakpoints won't try to re-insert
7769 already inserted breakpoints. Therefore, we don't
7770 care if breakpoints were already inserted, or not. */
7771
7772 /* If we need to step over a breakpoint, and we're not using
7773 displaced stepping to do so, insert all breakpoints
7774 (watchpoints, etc.) but the one we're stepping over, step one
7775 instruction, and then re-insert the breakpoint when that step
7776 is finished. */
7777
7778 step_what = thread_still_needs_step_over (ecs->event_thread);
7779
7780 remove_bp = (ecs->hit_singlestep_breakpoint
7781 || (step_what & STEP_OVER_BREAKPOINT));
7782 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7783
7784 /* We can't use displaced stepping if we need to step past a
7785 watchpoint. The instruction copied to the scratch pad would
7786 still trigger the watchpoint. */
7787 if (remove_bp
7788 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7789 {
7790 set_step_over_info (get_regcache_aspace (regcache),
7791 regcache_read_pc (regcache), remove_wps,
7792 ecs->event_thread->global_num);
7793 }
7794 else if (remove_wps)
7795 set_step_over_info (NULL, 0, remove_wps, -1);
7796
7797 /* If we now need to do an in-line step-over, we need to stop
7798 all other threads. Note this must be done before
7799 insert_breakpoints below, because that removes the breakpoint
7800 we're about to step over, otherwise other threads could miss
7801 it. */
7802 if (step_over_info_valid_p () && target_is_non_stop_p ())
7803 stop_all_threads ();
7804
7805 /* Stop stepping if inserting breakpoints fails. */
7806 TRY
7807 {
7808 insert_breakpoints ();
7809 }
7810 CATCH (e, RETURN_MASK_ERROR)
7811 {
7812 exception_print (gdb_stderr, e);
7813 stop_waiting (ecs);
7814 discard_cleanups (old_cleanups);
7815 return;
7816 }
7817 END_CATCH
7818
7819 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7820
7821 discard_cleanups (old_cleanups);
7822 resume (ecs->event_thread->suspend.stop_signal);
7823 }
7824
7825 prepare_to_wait (ecs);
7826 }
7827
7828 /* Called when we should continue running the inferior, because the
7829 current event doesn't cause a user visible stop. This does the
7830 resuming part; waiting for the next event is done elsewhere. */
7831
7832 static void
7833 keep_going (struct execution_control_state *ecs)
7834 {
7835 if (ecs->event_thread->control.trap_expected
7836 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7837 ecs->event_thread->control.trap_expected = 0;
7838
7839 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7840 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7841 keep_going_pass_signal (ecs);
7842 }
7843
7844 /* This function normally comes after a resume, before
7845 handle_inferior_event exits. It takes care of any last bits of
7846 housekeeping, and sets the all-important wait_some_more flag. */
7847
7848 static void
7849 prepare_to_wait (struct execution_control_state *ecs)
7850 {
7851 if (debug_infrun)
7852 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7853
7854 ecs->wait_some_more = 1;
7855
7856 if (!target_is_async_p ())
7857 mark_infrun_async_event_handler ();
7858 }
7859
7860 /* We are done with the step range of a step/next/si/ni command.
7861 Called once for each n of a "step n" operation. */
7862
7863 static void
7864 end_stepping_range (struct execution_control_state *ecs)
7865 {
7866 ecs->event_thread->control.stop_step = 1;
7867 stop_waiting (ecs);
7868 }
7869
7870 /* Several print_*_reason functions to print why the inferior has stopped.
7871 We always print something when the inferior exits, or receives a signal.
7872 The rest of the cases are dealt with later on in normal_stop and
7873 print_it_typical. Ideally there should be a call to one of these
7874 print_*_reason functions functions from handle_inferior_event each time
7875 stop_waiting is called.
7876
7877 Note that we don't call these directly, instead we delegate that to
7878 the interpreters, through observers. Interpreters then call these
7879 with whatever uiout is right. */
7880
7881 void
7882 print_end_stepping_range_reason (struct ui_out *uiout)
7883 {
7884 /* For CLI-like interpreters, print nothing. */
7885
7886 if (uiout->is_mi_like_p ())
7887 {
7888 uiout->field_string ("reason",
7889 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7890 }
7891 }
7892
7893 void
7894 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7895 {
7896 annotate_signalled ();
7897 if (uiout->is_mi_like_p ())
7898 uiout->field_string
7899 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7900 uiout->text ("\nProgram terminated with signal ");
7901 annotate_signal_name ();
7902 uiout->field_string ("signal-name",
7903 gdb_signal_to_name (siggnal));
7904 annotate_signal_name_end ();
7905 uiout->text (", ");
7906 annotate_signal_string ();
7907 uiout->field_string ("signal-meaning",
7908 gdb_signal_to_string (siggnal));
7909 annotate_signal_string_end ();
7910 uiout->text (".\n");
7911 uiout->text ("The program no longer exists.\n");
7912 }
7913
7914 void
7915 print_exited_reason (struct ui_out *uiout, int exitstatus)
7916 {
7917 struct inferior *inf = current_inferior ();
7918 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7919
7920 annotate_exited (exitstatus);
7921 if (exitstatus)
7922 {
7923 if (uiout->is_mi_like_p ())
7924 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7925 uiout->text ("[Inferior ");
7926 uiout->text (plongest (inf->num));
7927 uiout->text (" (");
7928 uiout->text (pidstr);
7929 uiout->text (") exited with code ");
7930 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7931 uiout->text ("]\n");
7932 }
7933 else
7934 {
7935 if (uiout->is_mi_like_p ())
7936 uiout->field_string
7937 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7938 uiout->text ("[Inferior ");
7939 uiout->text (plongest (inf->num));
7940 uiout->text (" (");
7941 uiout->text (pidstr);
7942 uiout->text (") exited normally]\n");
7943 }
7944 }
7945
7946 /* Some targets/architectures can do extra processing/display of
7947 segmentation faults. E.g., Intel MPX boundary faults.
7948 Call the architecture dependent function to handle the fault. */
7949
7950 static void
7951 handle_segmentation_fault (struct ui_out *uiout)
7952 {
7953 struct regcache *regcache = get_current_regcache ();
7954 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7955
7956 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7957 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7958 }
7959
7960 void
7961 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7962 {
7963 struct thread_info *thr = inferior_thread ();
7964
7965 annotate_signal ();
7966
7967 if (uiout->is_mi_like_p ())
7968 ;
7969 else if (show_thread_that_caused_stop ())
7970 {
7971 const char *name;
7972
7973 uiout->text ("\nThread ");
7974 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7975
7976 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7977 if (name != NULL)
7978 {
7979 uiout->text (" \"");
7980 uiout->field_fmt ("name", "%s", name);
7981 uiout->text ("\"");
7982 }
7983 }
7984 else
7985 uiout->text ("\nProgram");
7986
7987 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7988 uiout->text (" stopped");
7989 else
7990 {
7991 uiout->text (" received signal ");
7992 annotate_signal_name ();
7993 if (uiout->is_mi_like_p ())
7994 uiout->field_string
7995 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7996 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7997 annotate_signal_name_end ();
7998 uiout->text (", ");
7999 annotate_signal_string ();
8000 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8001
8002 if (siggnal == GDB_SIGNAL_SEGV)
8003 handle_segmentation_fault (uiout);
8004
8005 annotate_signal_string_end ();
8006 }
8007 uiout->text (".\n");
8008 }
8009
8010 void
8011 print_no_history_reason (struct ui_out *uiout)
8012 {
8013 uiout->text ("\nNo more reverse-execution history.\n");
8014 }
8015
8016 /* Print current location without a level number, if we have changed
8017 functions or hit a breakpoint. Print source line if we have one.
8018 bpstat_print contains the logic deciding in detail what to print,
8019 based on the event(s) that just occurred. */
8020
8021 static void
8022 print_stop_location (struct target_waitstatus *ws)
8023 {
8024 int bpstat_ret;
8025 enum print_what source_flag;
8026 int do_frame_printing = 1;
8027 struct thread_info *tp = inferior_thread ();
8028
8029 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8030 switch (bpstat_ret)
8031 {
8032 case PRINT_UNKNOWN:
8033 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8034 should) carry around the function and does (or should) use
8035 that when doing a frame comparison. */
8036 if (tp->control.stop_step
8037 && frame_id_eq (tp->control.step_frame_id,
8038 get_frame_id (get_current_frame ()))
8039 && tp->control.step_start_function == find_pc_function (stop_pc))
8040 {
8041 /* Finished step, just print source line. */
8042 source_flag = SRC_LINE;
8043 }
8044 else
8045 {
8046 /* Print location and source line. */
8047 source_flag = SRC_AND_LOC;
8048 }
8049 break;
8050 case PRINT_SRC_AND_LOC:
8051 /* Print location and source line. */
8052 source_flag = SRC_AND_LOC;
8053 break;
8054 case PRINT_SRC_ONLY:
8055 source_flag = SRC_LINE;
8056 break;
8057 case PRINT_NOTHING:
8058 /* Something bogus. */
8059 source_flag = SRC_LINE;
8060 do_frame_printing = 0;
8061 break;
8062 default:
8063 internal_error (__FILE__, __LINE__, _("Unknown value."));
8064 }
8065
8066 /* The behavior of this routine with respect to the source
8067 flag is:
8068 SRC_LINE: Print only source line
8069 LOCATION: Print only location
8070 SRC_AND_LOC: Print location and source line. */
8071 if (do_frame_printing)
8072 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8073 }
8074
8075 /* See infrun.h. */
8076
8077 void
8078 print_stop_event (struct ui_out *uiout)
8079 {
8080 struct target_waitstatus last;
8081 ptid_t last_ptid;
8082 struct thread_info *tp;
8083
8084 get_last_target_status (&last_ptid, &last);
8085
8086 {
8087 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8088
8089 print_stop_location (&last);
8090
8091 /* Display the auto-display expressions. */
8092 do_displays ();
8093 }
8094
8095 tp = inferior_thread ();
8096 if (tp->thread_fsm != NULL
8097 && thread_fsm_finished_p (tp->thread_fsm))
8098 {
8099 struct return_value_info *rv;
8100
8101 rv = thread_fsm_return_value (tp->thread_fsm);
8102 if (rv != NULL)
8103 print_return_value (uiout, rv);
8104 }
8105 }
8106
8107 /* See infrun.h. */
8108
8109 void
8110 maybe_remove_breakpoints (void)
8111 {
8112 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8113 {
8114 if (remove_breakpoints ())
8115 {
8116 target_terminal_ours_for_output ();
8117 printf_filtered (_("Cannot remove breakpoints because "
8118 "program is no longer writable.\nFurther "
8119 "execution is probably impossible.\n"));
8120 }
8121 }
8122 }
8123
8124 /* The execution context that just caused a normal stop. */
8125
8126 struct stop_context
8127 {
8128 /* The stop ID. */
8129 ULONGEST stop_id;
8130
8131 /* The event PTID. */
8132
8133 ptid_t ptid;
8134
8135 /* If stopp for a thread event, this is the thread that caused the
8136 stop. */
8137 struct thread_info *thread;
8138
8139 /* The inferior that caused the stop. */
8140 int inf_num;
8141 };
8142
8143 /* Returns a new stop context. If stopped for a thread event, this
8144 takes a strong reference to the thread. */
8145
8146 static struct stop_context *
8147 save_stop_context (void)
8148 {
8149 struct stop_context *sc = XNEW (struct stop_context);
8150
8151 sc->stop_id = get_stop_id ();
8152 sc->ptid = inferior_ptid;
8153 sc->inf_num = current_inferior ()->num;
8154
8155 if (!ptid_equal (inferior_ptid, null_ptid))
8156 {
8157 /* Take a strong reference so that the thread can't be deleted
8158 yet. */
8159 sc->thread = inferior_thread ();
8160 sc->thread->incref ();
8161 }
8162 else
8163 sc->thread = NULL;
8164
8165 return sc;
8166 }
8167
8168 /* Release a stop context previously created with save_stop_context.
8169 Releases the strong reference to the thread as well. */
8170
8171 static void
8172 release_stop_context_cleanup (void *arg)
8173 {
8174 struct stop_context *sc = (struct stop_context *) arg;
8175
8176 if (sc->thread != NULL)
8177 sc->thread->decref ();
8178 xfree (sc);
8179 }
8180
8181 /* Return true if the current context no longer matches the saved stop
8182 context. */
8183
8184 static int
8185 stop_context_changed (struct stop_context *prev)
8186 {
8187 if (!ptid_equal (prev->ptid, inferior_ptid))
8188 return 1;
8189 if (prev->inf_num != current_inferior ()->num)
8190 return 1;
8191 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8192 return 1;
8193 if (get_stop_id () != prev->stop_id)
8194 return 1;
8195 return 0;
8196 }
8197
8198 /* See infrun.h. */
8199
8200 int
8201 normal_stop (void)
8202 {
8203 struct target_waitstatus last;
8204 ptid_t last_ptid;
8205 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8206 ptid_t pid_ptid;
8207
8208 get_last_target_status (&last_ptid, &last);
8209
8210 new_stop_id ();
8211
8212 /* If an exception is thrown from this point on, make sure to
8213 propagate GDB's knowledge of the executing state to the
8214 frontend/user running state. A QUIT is an easy exception to see
8215 here, so do this before any filtered output. */
8216 if (!non_stop)
8217 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8218 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8219 || last.kind == TARGET_WAITKIND_EXITED)
8220 {
8221 /* On some targets, we may still have live threads in the
8222 inferior when we get a process exit event. E.g., for
8223 "checkpoint", when the current checkpoint/fork exits,
8224 linux-fork.c automatically switches to another fork from
8225 within target_mourn_inferior. */
8226 if (!ptid_equal (inferior_ptid, null_ptid))
8227 {
8228 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8229 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8230 }
8231 }
8232 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8233 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8234
8235 /* As we're presenting a stop, and potentially removing breakpoints,
8236 update the thread list so we can tell whether there are threads
8237 running on the target. With target remote, for example, we can
8238 only learn about new threads when we explicitly update the thread
8239 list. Do this before notifying the interpreters about signal
8240 stops, end of stepping ranges, etc., so that the "new thread"
8241 output is emitted before e.g., "Program received signal FOO",
8242 instead of after. */
8243 update_thread_list ();
8244
8245 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8246 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8247
8248 /* As with the notification of thread events, we want to delay
8249 notifying the user that we've switched thread context until
8250 the inferior actually stops.
8251
8252 There's no point in saying anything if the inferior has exited.
8253 Note that SIGNALLED here means "exited with a signal", not
8254 "received a signal".
8255
8256 Also skip saying anything in non-stop mode. In that mode, as we
8257 don't want GDB to switch threads behind the user's back, to avoid
8258 races where the user is typing a command to apply to thread x,
8259 but GDB switches to thread y before the user finishes entering
8260 the command, fetch_inferior_event installs a cleanup to restore
8261 the current thread back to the thread the user had selected right
8262 after this event is handled, so we're not really switching, only
8263 informing of a stop. */
8264 if (!non_stop
8265 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8266 && target_has_execution
8267 && last.kind != TARGET_WAITKIND_SIGNALLED
8268 && last.kind != TARGET_WAITKIND_EXITED
8269 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8270 {
8271 SWITCH_THRU_ALL_UIS ()
8272 {
8273 target_terminal_ours_for_output ();
8274 printf_filtered (_("[Switching to %s]\n"),
8275 target_pid_to_str (inferior_ptid));
8276 annotate_thread_changed ();
8277 }
8278 previous_inferior_ptid = inferior_ptid;
8279 }
8280
8281 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8282 {
8283 SWITCH_THRU_ALL_UIS ()
8284 if (current_ui->prompt_state == PROMPT_BLOCKED)
8285 {
8286 target_terminal_ours_for_output ();
8287 printf_filtered (_("No unwaited-for children left.\n"));
8288 }
8289 }
8290
8291 /* Note: this depends on the update_thread_list call above. */
8292 maybe_remove_breakpoints ();
8293
8294 /* If an auto-display called a function and that got a signal,
8295 delete that auto-display to avoid an infinite recursion. */
8296
8297 if (stopped_by_random_signal)
8298 disable_current_display ();
8299
8300 SWITCH_THRU_ALL_UIS ()
8301 {
8302 async_enable_stdin ();
8303 }
8304
8305 /* Let the user/frontend see the threads as stopped. */
8306 do_cleanups (old_chain);
8307
8308 /* Select innermost stack frame - i.e., current frame is frame 0,
8309 and current location is based on that. Handle the case where the
8310 dummy call is returning after being stopped. E.g. the dummy call
8311 previously hit a breakpoint. (If the dummy call returns
8312 normally, we won't reach here.) Do this before the stop hook is
8313 run, so that it doesn't get to see the temporary dummy frame,
8314 which is not where we'll present the stop. */
8315 if (has_stack_frames ())
8316 {
8317 if (stop_stack_dummy == STOP_STACK_DUMMY)
8318 {
8319 /* Pop the empty frame that contains the stack dummy. This
8320 also restores inferior state prior to the call (struct
8321 infcall_suspend_state). */
8322 struct frame_info *frame = get_current_frame ();
8323
8324 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8325 frame_pop (frame);
8326 /* frame_pop calls reinit_frame_cache as the last thing it
8327 does which means there's now no selected frame. */
8328 }
8329
8330 select_frame (get_current_frame ());
8331
8332 /* Set the current source location. */
8333 set_current_sal_from_frame (get_current_frame ());
8334 }
8335
8336 /* Look up the hook_stop and run it (CLI internally handles problem
8337 of stop_command's pre-hook not existing). */
8338 if (stop_command != NULL)
8339 {
8340 struct stop_context *saved_context = save_stop_context ();
8341 struct cleanup *old_chain
8342 = make_cleanup (release_stop_context_cleanup, saved_context);
8343
8344 catch_errors (hook_stop_stub, stop_command,
8345 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8346
8347 /* If the stop hook resumes the target, then there's no point in
8348 trying to notify about the previous stop; its context is
8349 gone. Likewise if the command switches thread or inferior --
8350 the observers would print a stop for the wrong
8351 thread/inferior. */
8352 if (stop_context_changed (saved_context))
8353 {
8354 do_cleanups (old_chain);
8355 return 1;
8356 }
8357 do_cleanups (old_chain);
8358 }
8359
8360 /* Notify observers about the stop. This is where the interpreters
8361 print the stop event. */
8362 if (!ptid_equal (inferior_ptid, null_ptid))
8363 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8364 stop_print_frame);
8365 else
8366 observer_notify_normal_stop (NULL, stop_print_frame);
8367
8368 annotate_stopped ();
8369
8370 if (target_has_execution)
8371 {
8372 if (last.kind != TARGET_WAITKIND_SIGNALLED
8373 && last.kind != TARGET_WAITKIND_EXITED)
8374 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8375 Delete any breakpoint that is to be deleted at the next stop. */
8376 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8377 }
8378
8379 /* Try to get rid of automatically added inferiors that are no
8380 longer needed. Keeping those around slows down things linearly.
8381 Note that this never removes the current inferior. */
8382 prune_inferiors ();
8383
8384 return 0;
8385 }
8386
8387 static int
8388 hook_stop_stub (void *cmd)
8389 {
8390 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8391 return (0);
8392 }
8393 \f
8394 int
8395 signal_stop_state (int signo)
8396 {
8397 return signal_stop[signo];
8398 }
8399
8400 int
8401 signal_print_state (int signo)
8402 {
8403 return signal_print[signo];
8404 }
8405
8406 int
8407 signal_pass_state (int signo)
8408 {
8409 return signal_program[signo];
8410 }
8411
8412 static void
8413 signal_cache_update (int signo)
8414 {
8415 if (signo == -1)
8416 {
8417 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8418 signal_cache_update (signo);
8419
8420 return;
8421 }
8422
8423 signal_pass[signo] = (signal_stop[signo] == 0
8424 && signal_print[signo] == 0
8425 && signal_program[signo] == 1
8426 && signal_catch[signo] == 0);
8427 }
8428
8429 int
8430 signal_stop_update (int signo, int state)
8431 {
8432 int ret = signal_stop[signo];
8433
8434 signal_stop[signo] = state;
8435 signal_cache_update (signo);
8436 return ret;
8437 }
8438
8439 int
8440 signal_print_update (int signo, int state)
8441 {
8442 int ret = signal_print[signo];
8443
8444 signal_print[signo] = state;
8445 signal_cache_update (signo);
8446 return ret;
8447 }
8448
8449 int
8450 signal_pass_update (int signo, int state)
8451 {
8452 int ret = signal_program[signo];
8453
8454 signal_program[signo] = state;
8455 signal_cache_update (signo);
8456 return ret;
8457 }
8458
8459 /* Update the global 'signal_catch' from INFO and notify the
8460 target. */
8461
8462 void
8463 signal_catch_update (const unsigned int *info)
8464 {
8465 int i;
8466
8467 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8468 signal_catch[i] = info[i] > 0;
8469 signal_cache_update (-1);
8470 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8471 }
8472
8473 static void
8474 sig_print_header (void)
8475 {
8476 printf_filtered (_("Signal Stop\tPrint\tPass "
8477 "to program\tDescription\n"));
8478 }
8479
8480 static void
8481 sig_print_info (enum gdb_signal oursig)
8482 {
8483 const char *name = gdb_signal_to_name (oursig);
8484 int name_padding = 13 - strlen (name);
8485
8486 if (name_padding <= 0)
8487 name_padding = 0;
8488
8489 printf_filtered ("%s", name);
8490 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8491 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8492 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8493 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8494 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8495 }
8496
8497 /* Specify how various signals in the inferior should be handled. */
8498
8499 static void
8500 handle_command (char *args, int from_tty)
8501 {
8502 int digits, wordlen;
8503 int sigfirst, signum, siglast;
8504 enum gdb_signal oursig;
8505 int allsigs;
8506 int nsigs;
8507 unsigned char *sigs;
8508
8509 if (args == NULL)
8510 {
8511 error_no_arg (_("signal to handle"));
8512 }
8513
8514 /* Allocate and zero an array of flags for which signals to handle. */
8515
8516 nsigs = (int) GDB_SIGNAL_LAST;
8517 sigs = (unsigned char *) alloca (nsigs);
8518 memset (sigs, 0, nsigs);
8519
8520 /* Break the command line up into args. */
8521
8522 gdb_argv built_argv (args);
8523
8524 /* Walk through the args, looking for signal oursigs, signal names, and
8525 actions. Signal numbers and signal names may be interspersed with
8526 actions, with the actions being performed for all signals cumulatively
8527 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8528
8529 for (char *arg : built_argv)
8530 {
8531 wordlen = strlen (arg);
8532 for (digits = 0; isdigit (arg[digits]); digits++)
8533 {;
8534 }
8535 allsigs = 0;
8536 sigfirst = siglast = -1;
8537
8538 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8539 {
8540 /* Apply action to all signals except those used by the
8541 debugger. Silently skip those. */
8542 allsigs = 1;
8543 sigfirst = 0;
8544 siglast = nsigs - 1;
8545 }
8546 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8547 {
8548 SET_SIGS (nsigs, sigs, signal_stop);
8549 SET_SIGS (nsigs, sigs, signal_print);
8550 }
8551 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8552 {
8553 UNSET_SIGS (nsigs, sigs, signal_program);
8554 }
8555 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8556 {
8557 SET_SIGS (nsigs, sigs, signal_print);
8558 }
8559 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8560 {
8561 SET_SIGS (nsigs, sigs, signal_program);
8562 }
8563 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8564 {
8565 UNSET_SIGS (nsigs, sigs, signal_stop);
8566 }
8567 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8568 {
8569 SET_SIGS (nsigs, sigs, signal_program);
8570 }
8571 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8572 {
8573 UNSET_SIGS (nsigs, sigs, signal_print);
8574 UNSET_SIGS (nsigs, sigs, signal_stop);
8575 }
8576 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8577 {
8578 UNSET_SIGS (nsigs, sigs, signal_program);
8579 }
8580 else if (digits > 0)
8581 {
8582 /* It is numeric. The numeric signal refers to our own
8583 internal signal numbering from target.h, not to host/target
8584 signal number. This is a feature; users really should be
8585 using symbolic names anyway, and the common ones like
8586 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8587
8588 sigfirst = siglast = (int)
8589 gdb_signal_from_command (atoi (arg));
8590 if (arg[digits] == '-')
8591 {
8592 siglast = (int)
8593 gdb_signal_from_command (atoi (arg + digits + 1));
8594 }
8595 if (sigfirst > siglast)
8596 {
8597 /* Bet he didn't figure we'd think of this case... */
8598 signum = sigfirst;
8599 sigfirst = siglast;
8600 siglast = signum;
8601 }
8602 }
8603 else
8604 {
8605 oursig = gdb_signal_from_name (arg);
8606 if (oursig != GDB_SIGNAL_UNKNOWN)
8607 {
8608 sigfirst = siglast = (int) oursig;
8609 }
8610 else
8611 {
8612 /* Not a number and not a recognized flag word => complain. */
8613 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8614 }
8615 }
8616
8617 /* If any signal numbers or symbol names were found, set flags for
8618 which signals to apply actions to. */
8619
8620 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8621 {
8622 switch ((enum gdb_signal) signum)
8623 {
8624 case GDB_SIGNAL_TRAP:
8625 case GDB_SIGNAL_INT:
8626 if (!allsigs && !sigs[signum])
8627 {
8628 if (query (_("%s is used by the debugger.\n\
8629 Are you sure you want to change it? "),
8630 gdb_signal_to_name ((enum gdb_signal) signum)))
8631 {
8632 sigs[signum] = 1;
8633 }
8634 else
8635 {
8636 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8637 gdb_flush (gdb_stdout);
8638 }
8639 }
8640 break;
8641 case GDB_SIGNAL_0:
8642 case GDB_SIGNAL_DEFAULT:
8643 case GDB_SIGNAL_UNKNOWN:
8644 /* Make sure that "all" doesn't print these. */
8645 break;
8646 default:
8647 sigs[signum] = 1;
8648 break;
8649 }
8650 }
8651 }
8652
8653 for (signum = 0; signum < nsigs; signum++)
8654 if (sigs[signum])
8655 {
8656 signal_cache_update (-1);
8657 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8658 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8659
8660 if (from_tty)
8661 {
8662 /* Show the results. */
8663 sig_print_header ();
8664 for (; signum < nsigs; signum++)
8665 if (sigs[signum])
8666 sig_print_info ((enum gdb_signal) signum);
8667 }
8668
8669 break;
8670 }
8671 }
8672
8673 /* Complete the "handle" command. */
8674
8675 static void
8676 handle_completer (struct cmd_list_element *ignore,
8677 completion_tracker &tracker,
8678 const char *text, const char *word)
8679 {
8680 static const char * const keywords[] =
8681 {
8682 "all",
8683 "stop",
8684 "ignore",
8685 "print",
8686 "pass",
8687 "nostop",
8688 "noignore",
8689 "noprint",
8690 "nopass",
8691 NULL,
8692 };
8693
8694 signal_completer (ignore, tracker, text, word);
8695 complete_on_enum (tracker, keywords, word, word);
8696 }
8697
8698 enum gdb_signal
8699 gdb_signal_from_command (int num)
8700 {
8701 if (num >= 1 && num <= 15)
8702 return (enum gdb_signal) num;
8703 error (_("Only signals 1-15 are valid as numeric signals.\n\
8704 Use \"info signals\" for a list of symbolic signals."));
8705 }
8706
8707 /* Print current contents of the tables set by the handle command.
8708 It is possible we should just be printing signals actually used
8709 by the current target (but for things to work right when switching
8710 targets, all signals should be in the signal tables). */
8711
8712 static void
8713 info_signals_command (char *signum_exp, int from_tty)
8714 {
8715 enum gdb_signal oursig;
8716
8717 sig_print_header ();
8718
8719 if (signum_exp)
8720 {
8721 /* First see if this is a symbol name. */
8722 oursig = gdb_signal_from_name (signum_exp);
8723 if (oursig == GDB_SIGNAL_UNKNOWN)
8724 {
8725 /* No, try numeric. */
8726 oursig =
8727 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8728 }
8729 sig_print_info (oursig);
8730 return;
8731 }
8732
8733 printf_filtered ("\n");
8734 /* These ugly casts brought to you by the native VAX compiler. */
8735 for (oursig = GDB_SIGNAL_FIRST;
8736 (int) oursig < (int) GDB_SIGNAL_LAST;
8737 oursig = (enum gdb_signal) ((int) oursig + 1))
8738 {
8739 QUIT;
8740
8741 if (oursig != GDB_SIGNAL_UNKNOWN
8742 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8743 sig_print_info (oursig);
8744 }
8745
8746 printf_filtered (_("\nUse the \"handle\" command "
8747 "to change these tables.\n"));
8748 }
8749
8750 /* The $_siginfo convenience variable is a bit special. We don't know
8751 for sure the type of the value until we actually have a chance to
8752 fetch the data. The type can change depending on gdbarch, so it is
8753 also dependent on which thread you have selected.
8754
8755 1. making $_siginfo be an internalvar that creates a new value on
8756 access.
8757
8758 2. making the value of $_siginfo be an lval_computed value. */
8759
8760 /* This function implements the lval_computed support for reading a
8761 $_siginfo value. */
8762
8763 static void
8764 siginfo_value_read (struct value *v)
8765 {
8766 LONGEST transferred;
8767
8768 /* If we can access registers, so can we access $_siginfo. Likewise
8769 vice versa. */
8770 validate_registers_access ();
8771
8772 transferred =
8773 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8774 NULL,
8775 value_contents_all_raw (v),
8776 value_offset (v),
8777 TYPE_LENGTH (value_type (v)));
8778
8779 if (transferred != TYPE_LENGTH (value_type (v)))
8780 error (_("Unable to read siginfo"));
8781 }
8782
8783 /* This function implements the lval_computed support for writing a
8784 $_siginfo value. */
8785
8786 static void
8787 siginfo_value_write (struct value *v, struct value *fromval)
8788 {
8789 LONGEST transferred;
8790
8791 /* If we can access registers, so can we access $_siginfo. Likewise
8792 vice versa. */
8793 validate_registers_access ();
8794
8795 transferred = target_write (&current_target,
8796 TARGET_OBJECT_SIGNAL_INFO,
8797 NULL,
8798 value_contents_all_raw (fromval),
8799 value_offset (v),
8800 TYPE_LENGTH (value_type (fromval)));
8801
8802 if (transferred != TYPE_LENGTH (value_type (fromval)))
8803 error (_("Unable to write siginfo"));
8804 }
8805
8806 static const struct lval_funcs siginfo_value_funcs =
8807 {
8808 siginfo_value_read,
8809 siginfo_value_write
8810 };
8811
8812 /* Return a new value with the correct type for the siginfo object of
8813 the current thread using architecture GDBARCH. Return a void value
8814 if there's no object available. */
8815
8816 static struct value *
8817 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8818 void *ignore)
8819 {
8820 if (target_has_stack
8821 && !ptid_equal (inferior_ptid, null_ptid)
8822 && gdbarch_get_siginfo_type_p (gdbarch))
8823 {
8824 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8825
8826 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8827 }
8828
8829 return allocate_value (builtin_type (gdbarch)->builtin_void);
8830 }
8831
8832 \f
8833 /* infcall_suspend_state contains state about the program itself like its
8834 registers and any signal it received when it last stopped.
8835 This state must be restored regardless of how the inferior function call
8836 ends (either successfully, or after it hits a breakpoint or signal)
8837 if the program is to properly continue where it left off. */
8838
8839 struct infcall_suspend_state
8840 {
8841 struct thread_suspend_state thread_suspend;
8842
8843 /* Other fields: */
8844 CORE_ADDR stop_pc;
8845 struct regcache *registers;
8846
8847 /* Format of SIGINFO_DATA or NULL if it is not present. */
8848 struct gdbarch *siginfo_gdbarch;
8849
8850 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8851 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8852 content would be invalid. */
8853 gdb_byte *siginfo_data;
8854 };
8855
8856 struct infcall_suspend_state *
8857 save_infcall_suspend_state (void)
8858 {
8859 struct infcall_suspend_state *inf_state;
8860 struct thread_info *tp = inferior_thread ();
8861 struct regcache *regcache = get_current_regcache ();
8862 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8863 gdb_byte *siginfo_data = NULL;
8864
8865 if (gdbarch_get_siginfo_type_p (gdbarch))
8866 {
8867 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8868 size_t len = TYPE_LENGTH (type);
8869 struct cleanup *back_to;
8870
8871 siginfo_data = (gdb_byte *) xmalloc (len);
8872 back_to = make_cleanup (xfree, siginfo_data);
8873
8874 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8875 siginfo_data, 0, len) == len)
8876 discard_cleanups (back_to);
8877 else
8878 {
8879 /* Errors ignored. */
8880 do_cleanups (back_to);
8881 siginfo_data = NULL;
8882 }
8883 }
8884
8885 inf_state = XCNEW (struct infcall_suspend_state);
8886
8887 if (siginfo_data)
8888 {
8889 inf_state->siginfo_gdbarch = gdbarch;
8890 inf_state->siginfo_data = siginfo_data;
8891 }
8892
8893 inf_state->thread_suspend = tp->suspend;
8894
8895 /* run_inferior_call will not use the signal due to its `proceed' call with
8896 GDB_SIGNAL_0 anyway. */
8897 tp->suspend.stop_signal = GDB_SIGNAL_0;
8898
8899 inf_state->stop_pc = stop_pc;
8900
8901 inf_state->registers = regcache_dup (regcache);
8902
8903 return inf_state;
8904 }
8905
8906 /* Restore inferior session state to INF_STATE. */
8907
8908 void
8909 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8910 {
8911 struct thread_info *tp = inferior_thread ();
8912 struct regcache *regcache = get_current_regcache ();
8913 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8914
8915 tp->suspend = inf_state->thread_suspend;
8916
8917 stop_pc = inf_state->stop_pc;
8918
8919 if (inf_state->siginfo_gdbarch == gdbarch)
8920 {
8921 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8922
8923 /* Errors ignored. */
8924 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8925 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8926 }
8927
8928 /* The inferior can be gone if the user types "print exit(0)"
8929 (and perhaps other times). */
8930 if (target_has_execution)
8931 /* NB: The register write goes through to the target. */
8932 regcache_cpy (regcache, inf_state->registers);
8933
8934 discard_infcall_suspend_state (inf_state);
8935 }
8936
8937 static void
8938 do_restore_infcall_suspend_state_cleanup (void *state)
8939 {
8940 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8941 }
8942
8943 struct cleanup *
8944 make_cleanup_restore_infcall_suspend_state
8945 (struct infcall_suspend_state *inf_state)
8946 {
8947 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8948 }
8949
8950 void
8951 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8952 {
8953 regcache_xfree (inf_state->registers);
8954 xfree (inf_state->siginfo_data);
8955 xfree (inf_state);
8956 }
8957
8958 struct regcache *
8959 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8960 {
8961 return inf_state->registers;
8962 }
8963
8964 /* infcall_control_state contains state regarding gdb's control of the
8965 inferior itself like stepping control. It also contains session state like
8966 the user's currently selected frame. */
8967
8968 struct infcall_control_state
8969 {
8970 struct thread_control_state thread_control;
8971 struct inferior_control_state inferior_control;
8972
8973 /* Other fields: */
8974 enum stop_stack_kind stop_stack_dummy;
8975 int stopped_by_random_signal;
8976
8977 /* ID if the selected frame when the inferior function call was made. */
8978 struct frame_id selected_frame_id;
8979 };
8980
8981 /* Save all of the information associated with the inferior<==>gdb
8982 connection. */
8983
8984 struct infcall_control_state *
8985 save_infcall_control_state (void)
8986 {
8987 struct infcall_control_state *inf_status =
8988 XNEW (struct infcall_control_state);
8989 struct thread_info *tp = inferior_thread ();
8990 struct inferior *inf = current_inferior ();
8991
8992 inf_status->thread_control = tp->control;
8993 inf_status->inferior_control = inf->control;
8994
8995 tp->control.step_resume_breakpoint = NULL;
8996 tp->control.exception_resume_breakpoint = NULL;
8997
8998 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8999 chain. If caller's caller is walking the chain, they'll be happier if we
9000 hand them back the original chain when restore_infcall_control_state is
9001 called. */
9002 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9003
9004 /* Other fields: */
9005 inf_status->stop_stack_dummy = stop_stack_dummy;
9006 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9007
9008 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9009
9010 return inf_status;
9011 }
9012
9013 static int
9014 restore_selected_frame (void *args)
9015 {
9016 struct frame_id *fid = (struct frame_id *) args;
9017 struct frame_info *frame;
9018
9019 frame = frame_find_by_id (*fid);
9020
9021 /* If inf_status->selected_frame_id is NULL, there was no previously
9022 selected frame. */
9023 if (frame == NULL)
9024 {
9025 warning (_("Unable to restore previously selected frame."));
9026 return 0;
9027 }
9028
9029 select_frame (frame);
9030
9031 return (1);
9032 }
9033
9034 /* Restore inferior session state to INF_STATUS. */
9035
9036 void
9037 restore_infcall_control_state (struct infcall_control_state *inf_status)
9038 {
9039 struct thread_info *tp = inferior_thread ();
9040 struct inferior *inf = current_inferior ();
9041
9042 if (tp->control.step_resume_breakpoint)
9043 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9044
9045 if (tp->control.exception_resume_breakpoint)
9046 tp->control.exception_resume_breakpoint->disposition
9047 = disp_del_at_next_stop;
9048
9049 /* Handle the bpstat_copy of the chain. */
9050 bpstat_clear (&tp->control.stop_bpstat);
9051
9052 tp->control = inf_status->thread_control;
9053 inf->control = inf_status->inferior_control;
9054
9055 /* Other fields: */
9056 stop_stack_dummy = inf_status->stop_stack_dummy;
9057 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9058
9059 if (target_has_stack)
9060 {
9061 /* The point of catch_errors is that if the stack is clobbered,
9062 walking the stack might encounter a garbage pointer and
9063 error() trying to dereference it. */
9064 if (catch_errors
9065 (restore_selected_frame, &inf_status->selected_frame_id,
9066 "Unable to restore previously selected frame:\n",
9067 RETURN_MASK_ERROR) == 0)
9068 /* Error in restoring the selected frame. Select the innermost
9069 frame. */
9070 select_frame (get_current_frame ());
9071 }
9072
9073 xfree (inf_status);
9074 }
9075
9076 static void
9077 do_restore_infcall_control_state_cleanup (void *sts)
9078 {
9079 restore_infcall_control_state ((struct infcall_control_state *) sts);
9080 }
9081
9082 struct cleanup *
9083 make_cleanup_restore_infcall_control_state
9084 (struct infcall_control_state *inf_status)
9085 {
9086 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9087 }
9088
9089 void
9090 discard_infcall_control_state (struct infcall_control_state *inf_status)
9091 {
9092 if (inf_status->thread_control.step_resume_breakpoint)
9093 inf_status->thread_control.step_resume_breakpoint->disposition
9094 = disp_del_at_next_stop;
9095
9096 if (inf_status->thread_control.exception_resume_breakpoint)
9097 inf_status->thread_control.exception_resume_breakpoint->disposition
9098 = disp_del_at_next_stop;
9099
9100 /* See save_infcall_control_state for info on stop_bpstat. */
9101 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9102
9103 xfree (inf_status);
9104 }
9105 \f
9106 /* See infrun.h. */
9107
9108 void
9109 clear_exit_convenience_vars (void)
9110 {
9111 clear_internalvar (lookup_internalvar ("_exitsignal"));
9112 clear_internalvar (lookup_internalvar ("_exitcode"));
9113 }
9114 \f
9115
9116 /* User interface for reverse debugging:
9117 Set exec-direction / show exec-direction commands
9118 (returns error unless target implements to_set_exec_direction method). */
9119
9120 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9121 static const char exec_forward[] = "forward";
9122 static const char exec_reverse[] = "reverse";
9123 static const char *exec_direction = exec_forward;
9124 static const char *const exec_direction_names[] = {
9125 exec_forward,
9126 exec_reverse,
9127 NULL
9128 };
9129
9130 static void
9131 set_exec_direction_func (char *args, int from_tty,
9132 struct cmd_list_element *cmd)
9133 {
9134 if (target_can_execute_reverse)
9135 {
9136 if (!strcmp (exec_direction, exec_forward))
9137 execution_direction = EXEC_FORWARD;
9138 else if (!strcmp (exec_direction, exec_reverse))
9139 execution_direction = EXEC_REVERSE;
9140 }
9141 else
9142 {
9143 exec_direction = exec_forward;
9144 error (_("Target does not support this operation."));
9145 }
9146 }
9147
9148 static void
9149 show_exec_direction_func (struct ui_file *out, int from_tty,
9150 struct cmd_list_element *cmd, const char *value)
9151 {
9152 switch (execution_direction) {
9153 case EXEC_FORWARD:
9154 fprintf_filtered (out, _("Forward.\n"));
9155 break;
9156 case EXEC_REVERSE:
9157 fprintf_filtered (out, _("Reverse.\n"));
9158 break;
9159 default:
9160 internal_error (__FILE__, __LINE__,
9161 _("bogus execution_direction value: %d"),
9162 (int) execution_direction);
9163 }
9164 }
9165
9166 static void
9167 show_schedule_multiple (struct ui_file *file, int from_tty,
9168 struct cmd_list_element *c, const char *value)
9169 {
9170 fprintf_filtered (file, _("Resuming the execution of threads "
9171 "of all processes is %s.\n"), value);
9172 }
9173
9174 /* Implementation of `siginfo' variable. */
9175
9176 static const struct internalvar_funcs siginfo_funcs =
9177 {
9178 siginfo_make_value,
9179 NULL,
9180 NULL
9181 };
9182
9183 /* Callback for infrun's target events source. This is marked when a
9184 thread has a pending status to process. */
9185
9186 static void
9187 infrun_async_inferior_event_handler (gdb_client_data data)
9188 {
9189 inferior_event_handler (INF_REG_EVENT, NULL);
9190 }
9191
9192 void
9193 _initialize_infrun (void)
9194 {
9195 int i;
9196 int numsigs;
9197 struct cmd_list_element *c;
9198
9199 /* Register extra event sources in the event loop. */
9200 infrun_async_inferior_event_token
9201 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9202
9203 add_info ("signals", info_signals_command, _("\
9204 What debugger does when program gets various signals.\n\
9205 Specify a signal as argument to print info on that signal only."));
9206 add_info_alias ("handle", "signals", 0);
9207
9208 c = add_com ("handle", class_run, handle_command, _("\
9209 Specify how to handle signals.\n\
9210 Usage: handle SIGNAL [ACTIONS]\n\
9211 Args are signals and actions to apply to those signals.\n\
9212 If no actions are specified, the current settings for the specified signals\n\
9213 will be displayed instead.\n\
9214 \n\
9215 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9216 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9217 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9218 The special arg \"all\" is recognized to mean all signals except those\n\
9219 used by the debugger, typically SIGTRAP and SIGINT.\n\
9220 \n\
9221 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9222 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9223 Stop means reenter debugger if this signal happens (implies print).\n\
9224 Print means print a message if this signal happens.\n\
9225 Pass means let program see this signal; otherwise program doesn't know.\n\
9226 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9227 Pass and Stop may be combined.\n\
9228 \n\
9229 Multiple signals may be specified. Signal numbers and signal names\n\
9230 may be interspersed with actions, with the actions being performed for\n\
9231 all signals cumulatively specified."));
9232 set_cmd_completer (c, handle_completer);
9233
9234 if (!dbx_commands)
9235 stop_command = add_cmd ("stop", class_obscure,
9236 not_just_help_class_command, _("\
9237 There is no `stop' command, but you can set a hook on `stop'.\n\
9238 This allows you to set a list of commands to be run each time execution\n\
9239 of the program stops."), &cmdlist);
9240
9241 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9242 Set inferior debugging."), _("\
9243 Show inferior debugging."), _("\
9244 When non-zero, inferior specific debugging is enabled."),
9245 NULL,
9246 show_debug_infrun,
9247 &setdebuglist, &showdebuglist);
9248
9249 add_setshow_boolean_cmd ("displaced", class_maintenance,
9250 &debug_displaced, _("\
9251 Set displaced stepping debugging."), _("\
9252 Show displaced stepping debugging."), _("\
9253 When non-zero, displaced stepping specific debugging is enabled."),
9254 NULL,
9255 show_debug_displaced,
9256 &setdebuglist, &showdebuglist);
9257
9258 add_setshow_boolean_cmd ("non-stop", no_class,
9259 &non_stop_1, _("\
9260 Set whether gdb controls the inferior in non-stop mode."), _("\
9261 Show whether gdb controls the inferior in non-stop mode."), _("\
9262 When debugging a multi-threaded program and this setting is\n\
9263 off (the default, also called all-stop mode), when one thread stops\n\
9264 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9265 all other threads in the program while you interact with the thread of\n\
9266 interest. When you continue or step a thread, you can allow the other\n\
9267 threads to run, or have them remain stopped, but while you inspect any\n\
9268 thread's state, all threads stop.\n\
9269 \n\
9270 In non-stop mode, when one thread stops, other threads can continue\n\
9271 to run freely. You'll be able to step each thread independently,\n\
9272 leave it stopped or free to run as needed."),
9273 set_non_stop,
9274 show_non_stop,
9275 &setlist,
9276 &showlist);
9277
9278 numsigs = (int) GDB_SIGNAL_LAST;
9279 signal_stop = XNEWVEC (unsigned char, numsigs);
9280 signal_print = XNEWVEC (unsigned char, numsigs);
9281 signal_program = XNEWVEC (unsigned char, numsigs);
9282 signal_catch = XNEWVEC (unsigned char, numsigs);
9283 signal_pass = XNEWVEC (unsigned char, numsigs);
9284 for (i = 0; i < numsigs; i++)
9285 {
9286 signal_stop[i] = 1;
9287 signal_print[i] = 1;
9288 signal_program[i] = 1;
9289 signal_catch[i] = 0;
9290 }
9291
9292 /* Signals caused by debugger's own actions should not be given to
9293 the program afterwards.
9294
9295 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9296 explicitly specifies that it should be delivered to the target
9297 program. Typically, that would occur when a user is debugging a
9298 target monitor on a simulator: the target monitor sets a
9299 breakpoint; the simulator encounters this breakpoint and halts
9300 the simulation handing control to GDB; GDB, noting that the stop
9301 address doesn't map to any known breakpoint, returns control back
9302 to the simulator; the simulator then delivers the hardware
9303 equivalent of a GDB_SIGNAL_TRAP to the program being
9304 debugged. */
9305 signal_program[GDB_SIGNAL_TRAP] = 0;
9306 signal_program[GDB_SIGNAL_INT] = 0;
9307
9308 /* Signals that are not errors should not normally enter the debugger. */
9309 signal_stop[GDB_SIGNAL_ALRM] = 0;
9310 signal_print[GDB_SIGNAL_ALRM] = 0;
9311 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9312 signal_print[GDB_SIGNAL_VTALRM] = 0;
9313 signal_stop[GDB_SIGNAL_PROF] = 0;
9314 signal_print[GDB_SIGNAL_PROF] = 0;
9315 signal_stop[GDB_SIGNAL_CHLD] = 0;
9316 signal_print[GDB_SIGNAL_CHLD] = 0;
9317 signal_stop[GDB_SIGNAL_IO] = 0;
9318 signal_print[GDB_SIGNAL_IO] = 0;
9319 signal_stop[GDB_SIGNAL_POLL] = 0;
9320 signal_print[GDB_SIGNAL_POLL] = 0;
9321 signal_stop[GDB_SIGNAL_URG] = 0;
9322 signal_print[GDB_SIGNAL_URG] = 0;
9323 signal_stop[GDB_SIGNAL_WINCH] = 0;
9324 signal_print[GDB_SIGNAL_WINCH] = 0;
9325 signal_stop[GDB_SIGNAL_PRIO] = 0;
9326 signal_print[GDB_SIGNAL_PRIO] = 0;
9327
9328 /* These signals are used internally by user-level thread
9329 implementations. (See signal(5) on Solaris.) Like the above
9330 signals, a healthy program receives and handles them as part of
9331 its normal operation. */
9332 signal_stop[GDB_SIGNAL_LWP] = 0;
9333 signal_print[GDB_SIGNAL_LWP] = 0;
9334 signal_stop[GDB_SIGNAL_WAITING] = 0;
9335 signal_print[GDB_SIGNAL_WAITING] = 0;
9336 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9337 signal_print[GDB_SIGNAL_CANCEL] = 0;
9338 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9339 signal_print[GDB_SIGNAL_LIBRT] = 0;
9340
9341 /* Update cached state. */
9342 signal_cache_update (-1);
9343
9344 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9345 &stop_on_solib_events, _("\
9346 Set stopping for shared library events."), _("\
9347 Show stopping for shared library events."), _("\
9348 If nonzero, gdb will give control to the user when the dynamic linker\n\
9349 notifies gdb of shared library events. The most common event of interest\n\
9350 to the user would be loading/unloading of a new library."),
9351 set_stop_on_solib_events,
9352 show_stop_on_solib_events,
9353 &setlist, &showlist);
9354
9355 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9356 follow_fork_mode_kind_names,
9357 &follow_fork_mode_string, _("\
9358 Set debugger response to a program call of fork or vfork."), _("\
9359 Show debugger response to a program call of fork or vfork."), _("\
9360 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9361 parent - the original process is debugged after a fork\n\
9362 child - the new process is debugged after a fork\n\
9363 The unfollowed process will continue to run.\n\
9364 By default, the debugger will follow the parent process."),
9365 NULL,
9366 show_follow_fork_mode_string,
9367 &setlist, &showlist);
9368
9369 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9370 follow_exec_mode_names,
9371 &follow_exec_mode_string, _("\
9372 Set debugger response to a program call of exec."), _("\
9373 Show debugger response to a program call of exec."), _("\
9374 An exec call replaces the program image of a process.\n\
9375 \n\
9376 follow-exec-mode can be:\n\
9377 \n\
9378 new - the debugger creates a new inferior and rebinds the process\n\
9379 to this new inferior. The program the process was running before\n\
9380 the exec call can be restarted afterwards by restarting the original\n\
9381 inferior.\n\
9382 \n\
9383 same - the debugger keeps the process bound to the same inferior.\n\
9384 The new executable image replaces the previous executable loaded in\n\
9385 the inferior. Restarting the inferior after the exec call restarts\n\
9386 the executable the process was running after the exec call.\n\
9387 \n\
9388 By default, the debugger will use the same inferior."),
9389 NULL,
9390 show_follow_exec_mode_string,
9391 &setlist, &showlist);
9392
9393 add_setshow_enum_cmd ("scheduler-locking", class_run,
9394 scheduler_enums, &scheduler_mode, _("\
9395 Set mode for locking scheduler during execution."), _("\
9396 Show mode for locking scheduler during execution."), _("\
9397 off == no locking (threads may preempt at any time)\n\
9398 on == full locking (no thread except the current thread may run)\n\
9399 This applies to both normal execution and replay mode.\n\
9400 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9401 In this mode, other threads may run during other commands.\n\
9402 This applies to both normal execution and replay mode.\n\
9403 replay == scheduler locked in replay mode and unlocked during normal execution."),
9404 set_schedlock_func, /* traps on target vector */
9405 show_scheduler_mode,
9406 &setlist, &showlist);
9407
9408 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9409 Set mode for resuming threads of all processes."), _("\
9410 Show mode for resuming threads of all processes."), _("\
9411 When on, execution commands (such as 'continue' or 'next') resume all\n\
9412 threads of all processes. When off (which is the default), execution\n\
9413 commands only resume the threads of the current process. The set of\n\
9414 threads that are resumed is further refined by the scheduler-locking\n\
9415 mode (see help set scheduler-locking)."),
9416 NULL,
9417 show_schedule_multiple,
9418 &setlist, &showlist);
9419
9420 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9421 Set mode of the step operation."), _("\
9422 Show mode of the step operation."), _("\
9423 When set, doing a step over a function without debug line information\n\
9424 will stop at the first instruction of that function. Otherwise, the\n\
9425 function is skipped and the step command stops at a different source line."),
9426 NULL,
9427 show_step_stop_if_no_debug,
9428 &setlist, &showlist);
9429
9430 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9431 &can_use_displaced_stepping, _("\
9432 Set debugger's willingness to use displaced stepping."), _("\
9433 Show debugger's willingness to use displaced stepping."), _("\
9434 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9435 supported by the target architecture. If off, gdb will not use displaced\n\
9436 stepping to step over breakpoints, even if such is supported by the target\n\
9437 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9438 if the target architecture supports it and non-stop mode is active, but will not\n\
9439 use it in all-stop mode (see help set non-stop)."),
9440 NULL,
9441 show_can_use_displaced_stepping,
9442 &setlist, &showlist);
9443
9444 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9445 &exec_direction, _("Set direction of execution.\n\
9446 Options are 'forward' or 'reverse'."),
9447 _("Show direction of execution (forward/reverse)."),
9448 _("Tells gdb whether to execute forward or backward."),
9449 set_exec_direction_func, show_exec_direction_func,
9450 &setlist, &showlist);
9451
9452 /* Set/show detach-on-fork: user-settable mode. */
9453
9454 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9455 Set whether gdb will detach the child of a fork."), _("\
9456 Show whether gdb will detach the child of a fork."), _("\
9457 Tells gdb whether to detach the child of a fork."),
9458 NULL, NULL, &setlist, &showlist);
9459
9460 /* Set/show disable address space randomization mode. */
9461
9462 add_setshow_boolean_cmd ("disable-randomization", class_support,
9463 &disable_randomization, _("\
9464 Set disabling of debuggee's virtual address space randomization."), _("\
9465 Show disabling of debuggee's virtual address space randomization."), _("\
9466 When this mode is on (which is the default), randomization of the virtual\n\
9467 address space is disabled. Standalone programs run with the randomization\n\
9468 enabled by default on some platforms."),
9469 &set_disable_randomization,
9470 &show_disable_randomization,
9471 &setlist, &showlist);
9472
9473 /* ptid initializations */
9474 inferior_ptid = null_ptid;
9475 target_last_wait_ptid = minus_one_ptid;
9476
9477 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9478 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9479 observer_attach_thread_exit (infrun_thread_thread_exit);
9480 observer_attach_inferior_exit (infrun_inferior_exit);
9481
9482 /* Explicitly create without lookup, since that tries to create a
9483 value with a void typed value, and when we get here, gdbarch
9484 isn't initialized yet. At this point, we're quite sure there
9485 isn't another convenience variable of the same name. */
9486 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9487
9488 add_setshow_boolean_cmd ("observer", no_class,
9489 &observer_mode_1, _("\
9490 Set whether gdb controls the inferior in observer mode."), _("\
9491 Show whether gdb controls the inferior in observer mode."), _("\
9492 In observer mode, GDB can get data from the inferior, but not\n\
9493 affect its execution. Registers and memory may not be changed,\n\
9494 breakpoints may not be set, and the program cannot be interrupted\n\
9495 or signalled."),
9496 set_observer_mode,
9497 show_observer_mode,
9498 &setlist,
9499 &showlist);
9500 }
This page took 0.317818 seconds and 4 git commands to generate.