d89f8137f4a069eca70a5548366eae1f95eecd36
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observable.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70
71 /* Prototypes for local functions */
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static int follow_fork (void);
78
79 static int follow_fork_inferior (int follow_child, int detach_fork);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 void nullify_last_target_wait_ptid (void);
86
87 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
88
89 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
91 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
93 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
95 /* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97 static struct async_event_handler *infrun_async_inferior_event_token;
98
99 /* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101 static int infrun_is_async = -1;
102
103 /* See infrun.h. */
104
105 void
106 infrun_async (int enable)
107 {
108 if (infrun_is_async != enable)
109 {
110 infrun_is_async = enable;
111
112 if (debug_infrun)
113 fprintf_unfiltered (gdb_stdlog,
114 "infrun: infrun_async(%d)\n",
115 enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122 }
123
124 /* See infrun.h. */
125
126 void
127 mark_infrun_async_event_handler (void)
128 {
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 }
131
132 /* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135 int step_stop_if_no_debug = 0;
136 static void
137 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141 }
142
143 /* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147 static ptid_t previous_inferior_ptid;
148
149 /* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154 static int detach_fork = 1;
155
156 int debug_displaced = 0;
157 static void
158 show_debug_displaced (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
162 }
163
164 unsigned int debug_infrun = 0;
165 static void
166 show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
170 }
171
172
173 /* Support for disabling address space randomization. */
174
175 int disable_randomization = 1;
176
177 static void
178 show_disable_randomization (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 if (target_supports_disable_randomization ())
182 fprintf_filtered (file,
183 _("Disabling randomization of debuggee's "
184 "virtual address space is %s.\n"),
185 value);
186 else
187 fputs_filtered (_("Disabling randomization of debuggee's "
188 "virtual address space is unsupported on\n"
189 "this platform.\n"), file);
190 }
191
192 static void
193 set_disable_randomization (const char *args, int from_tty,
194 struct cmd_list_element *c)
195 {
196 if (!target_supports_disable_randomization ())
197 error (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform."));
200 }
201
202 /* User interface for non-stop mode. */
203
204 int non_stop = 0;
205 static int non_stop_1 = 0;
206
207 static void
208 set_non_stop (const char *args, int from_tty,
209 struct cmd_list_element *c)
210 {
211 if (target_has_execution)
212 {
213 non_stop_1 = non_stop;
214 error (_("Cannot change this setting while the inferior is running."));
215 }
216
217 non_stop = non_stop_1;
218 }
219
220 static void
221 show_non_stop (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file,
225 _("Controlling the inferior in non-stop mode is %s.\n"),
226 value);
227 }
228
229 /* "Observer mode" is somewhat like a more extreme version of
230 non-stop, in which all GDB operations that might affect the
231 target's execution have been disabled. */
232
233 int observer_mode = 0;
234 static int observer_mode_1 = 0;
235
236 static void
237 set_observer_mode (const char *args, int from_tty,
238 struct cmd_list_element *c)
239 {
240 if (target_has_execution)
241 {
242 observer_mode_1 = observer_mode;
243 error (_("Cannot change this setting while the inferior is running."));
244 }
245
246 observer_mode = observer_mode_1;
247
248 may_write_registers = !observer_mode;
249 may_write_memory = !observer_mode;
250 may_insert_breakpoints = !observer_mode;
251 may_insert_tracepoints = !observer_mode;
252 /* We can insert fast tracepoints in or out of observer mode,
253 but enable them if we're going into this mode. */
254 if (observer_mode)
255 may_insert_fast_tracepoints = 1;
256 may_stop = !observer_mode;
257 update_target_permissions ();
258
259 /* Going *into* observer mode we must force non-stop, then
260 going out we leave it that way. */
261 if (observer_mode)
262 {
263 pagination_enabled = 0;
264 non_stop = non_stop_1 = 1;
265 }
266
267 if (from_tty)
268 printf_filtered (_("Observer mode is now %s.\n"),
269 (observer_mode ? "on" : "off"));
270 }
271
272 static void
273 show_observer_mode (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275 {
276 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
277 }
278
279 /* This updates the value of observer mode based on changes in
280 permissions. Note that we are deliberately ignoring the values of
281 may-write-registers and may-write-memory, since the user may have
282 reason to enable these during a session, for instance to turn on a
283 debugging-related global. */
284
285 void
286 update_observer_mode (void)
287 {
288 int newval;
289
290 newval = (!may_insert_breakpoints
291 && !may_insert_tracepoints
292 && may_insert_fast_tracepoints
293 && !may_stop
294 && non_stop);
295
296 /* Let the user know if things change. */
297 if (newval != observer_mode)
298 printf_filtered (_("Observer mode is now %s.\n"),
299 (newval ? "on" : "off"));
300
301 observer_mode = observer_mode_1 = newval;
302 }
303
304 /* Tables of how to react to signals; the user sets them. */
305
306 static unsigned char *signal_stop;
307 static unsigned char *signal_print;
308 static unsigned char *signal_program;
309
310 /* Table of signals that are registered with "catch signal". A
311 non-zero entry indicates that the signal is caught by some "catch
312 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
313 signals. */
314 static unsigned char *signal_catch;
315
316 /* Table of signals that the target may silently handle.
317 This is automatically determined from the flags above,
318 and simply cached here. */
319 static unsigned char *signal_pass;
320
321 #define SET_SIGS(nsigs,sigs,flags) \
322 do { \
323 int signum = (nsigs); \
324 while (signum-- > 0) \
325 if ((sigs)[signum]) \
326 (flags)[signum] = 1; \
327 } while (0)
328
329 #define UNSET_SIGS(nsigs,sigs,flags) \
330 do { \
331 int signum = (nsigs); \
332 while (signum-- > 0) \
333 if ((sigs)[signum]) \
334 (flags)[signum] = 0; \
335 } while (0)
336
337 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
338 this function is to avoid exporting `signal_program'. */
339
340 void
341 update_signals_program_target (void)
342 {
343 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
344 }
345
346 /* Value to pass to target_resume() to cause all threads to resume. */
347
348 #define RESUME_ALL minus_one_ptid
349
350 /* Command list pointer for the "stop" placeholder. */
351
352 static struct cmd_list_element *stop_command;
353
354 /* Nonzero if we want to give control to the user when we're notified
355 of shared library events by the dynamic linker. */
356 int stop_on_solib_events;
357
358 /* Enable or disable optional shared library event breakpoints
359 as appropriate when the above flag is changed. */
360
361 static void
362 set_stop_on_solib_events (const char *args,
363 int from_tty, struct cmd_list_element *c)
364 {
365 update_solib_breakpoints ();
366 }
367
368 static void
369 show_stop_on_solib_events (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371 {
372 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
373 value);
374 }
375
376 /* Nonzero after stop if current stack frame should be printed. */
377
378 static int stop_print_frame;
379
380 /* This is a cached copy of the pid/waitstatus of the last event
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
383 static ptid_t target_last_wait_ptid;
384 static struct target_waitstatus target_last_waitstatus;
385
386 static void context_switch (ptid_t ptid);
387
388 void init_thread_stepping_state (struct thread_info *tss);
389
390 static const char follow_fork_mode_child[] = "child";
391 static const char follow_fork_mode_parent[] = "parent";
392
393 static const char *const follow_fork_mode_kind_names[] = {
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
397 };
398
399 static const char *follow_fork_mode_string = follow_fork_mode_parent;
400 static void
401 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
407 value);
408 }
409 \f
410
411 /* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417 static int
418 follow_fork_inferior (int follow_child, int detach_fork)
419 {
420 int has_vforked;
421 ptid_t parent_ptid, child_ptid;
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
430 && current_ui->prompt_state == PROMPT_BLOCKED
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439 Can not resume the parent process over vfork in the foreground while\n\
440 holding the child stopped. Try \"set detach-on-fork\" or \
441 \"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
461 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
462 }
463
464 if (info_verbose || debug_infrun)
465 {
466 /* Ensure that we have a process ptid. */
467 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
468
469 target_terminal::ours_for_output ();
470 fprintf_filtered (gdb_stdlog,
471 _("Detaching after %s from child %s.\n"),
472 has_vforked ? "vfork" : "fork",
473 target_pid_to_str (process_ptid));
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
479
480 /* Add process to GDB's tables. */
481 child_inf = add_inferior (ptid_get_pid (child_ptid));
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
490
491 inferior_ptid = child_ptid;
492 add_thread (inferior_ptid);
493 set_current_inferior (child_inf);
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = new program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (info_verbose || debug_infrun)
553 {
554 target_terminal::ours_for_output ();
555 fprintf_filtered (gdb_stdlog,
556 _("Attaching after %s %s to child %s.\n"),
557 target_pid_to_str (parent_ptid),
558 has_vforked ? "vfork" : "fork",
559 target_pid_to_str (child_ptid));
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
565 child_inf = add_inferior (ptid_get_pid (child_ptid));
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
575 /* If we're vforking, we want to hold on to the parent until the
576 child exits or execs. At child exec or exit time we can
577 remove the old breakpoints from the parent and detach or
578 resume debugging it. Otherwise, detach the parent now; we'll
579 want to reuse it's program/address spaces, but we can't set
580 them to the child before removing breakpoints from the
581 parent, otherwise, the breakpoints module could decide to
582 remove breakpoints from the wrong process (since they'd be
583 assigned to the same address space). */
584
585 if (has_vforked)
586 {
587 gdb_assert (child_inf->vfork_parent == NULL);
588 gdb_assert (parent_inf->vfork_child == NULL);
589 child_inf->vfork_parent = parent_inf;
590 child_inf->pending_detach = 0;
591 parent_inf->vfork_child = child_inf;
592 parent_inf->pending_detach = detach_fork;
593 parent_inf->waiting_for_vfork_done = 0;
594 }
595 else if (detach_fork)
596 {
597 if (info_verbose || debug_infrun)
598 {
599 /* Ensure that we have a process ptid. */
600 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
601
602 target_terminal::ours_for_output ();
603 fprintf_filtered (gdb_stdlog,
604 _("Detaching after fork from "
605 "child %s.\n"),
606 target_pid_to_str (process_ptid));
607 }
608
609 target_detach (parent_inf, 0);
610 }
611
612 /* Note that the detach above makes PARENT_INF dangling. */
613
614 /* Add the child thread to the appropriate lists, and switch to
615 this new thread, before cloning the program space, and
616 informing the solib layer about this new process. */
617
618 inferior_ptid = child_ptid;
619 add_thread (inferior_ptid);
620 set_current_inferior (child_inf);
621
622 /* If this is a vfork child, then the address-space is shared
623 with the parent. If we detached from the parent, then we can
624 reuse the parent's program/address spaces. */
625 if (has_vforked || detach_fork)
626 {
627 child_inf->pspace = parent_pspace;
628 child_inf->aspace = child_inf->pspace->aspace;
629 }
630 else
631 {
632 child_inf->aspace = new_address_space ();
633 child_inf->pspace = new program_space (child_inf->aspace);
634 child_inf->removable = 1;
635 child_inf->symfile_flags = SYMFILE_NO_READ;
636 set_current_program_space (child_inf->pspace);
637 clone_program_space (child_inf->pspace, parent_pspace);
638
639 /* Let the shared library layer (e.g., solib-svr4) learn
640 about this new process, relocate the cloned exec, pull in
641 shared libraries, and install the solib event breakpoint.
642 If a "cloned-VM" event was propagated better throughout
643 the core, this wouldn't be required. */
644 solib_create_inferior_hook (0);
645 }
646 }
647
648 return target_follow_fork (follow_child, detach_fork);
649 }
650
651 /* Tell the target to follow the fork we're stopped at. Returns true
652 if the inferior should be resumed; false, if the target for some
653 reason decided it's best not to resume. */
654
655 static int
656 follow_fork (void)
657 {
658 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
659 int should_resume = 1;
660 struct thread_info *tp;
661
662 /* Copy user stepping state to the new inferior thread. FIXME: the
663 followed fork child thread should have a copy of most of the
664 parent thread structure's run control related fields, not just these.
665 Initialized to avoid "may be used uninitialized" warnings from gcc. */
666 struct breakpoint *step_resume_breakpoint = NULL;
667 struct breakpoint *exception_resume_breakpoint = NULL;
668 CORE_ADDR step_range_start = 0;
669 CORE_ADDR step_range_end = 0;
670 struct frame_id step_frame_id = { 0 };
671 struct thread_fsm *thread_fsm = NULL;
672
673 if (!non_stop)
674 {
675 ptid_t wait_ptid;
676 struct target_waitstatus wait_status;
677
678 /* Get the last target status returned by target_wait(). */
679 get_last_target_status (&wait_ptid, &wait_status);
680
681 /* If not stopped at a fork event, then there's nothing else to
682 do. */
683 if (wait_status.kind != TARGET_WAITKIND_FORKED
684 && wait_status.kind != TARGET_WAITKIND_VFORKED)
685 return 1;
686
687 /* Check if we switched over from WAIT_PTID, since the event was
688 reported. */
689 if (!ptid_equal (wait_ptid, minus_one_ptid)
690 && !ptid_equal (inferior_ptid, wait_ptid))
691 {
692 /* We did. Switch back to WAIT_PTID thread, to tell the
693 target to follow it (in either direction). We'll
694 afterwards refuse to resume, and inform the user what
695 happened. */
696 switch_to_thread (wait_ptid);
697 should_resume = 0;
698 }
699 }
700
701 tp = inferior_thread ();
702
703 /* If there were any forks/vforks that were caught and are now to be
704 followed, then do so now. */
705 switch (tp->pending_follow.kind)
706 {
707 case TARGET_WAITKIND_FORKED:
708 case TARGET_WAITKIND_VFORKED:
709 {
710 ptid_t parent, child;
711
712 /* If the user did a next/step, etc, over a fork call,
713 preserve the stepping state in the fork child. */
714 if (follow_child && should_resume)
715 {
716 step_resume_breakpoint = clone_momentary_breakpoint
717 (tp->control.step_resume_breakpoint);
718 step_range_start = tp->control.step_range_start;
719 step_range_end = tp->control.step_range_end;
720 step_frame_id = tp->control.step_frame_id;
721 exception_resume_breakpoint
722 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
723 thread_fsm = tp->thread_fsm;
724
725 /* For now, delete the parent's sr breakpoint, otherwise,
726 parent/child sr breakpoints are considered duplicates,
727 and the child version will not be installed. Remove
728 this when the breakpoints module becomes aware of
729 inferiors and address spaces. */
730 delete_step_resume_breakpoint (tp);
731 tp->control.step_range_start = 0;
732 tp->control.step_range_end = 0;
733 tp->control.step_frame_id = null_frame_id;
734 delete_exception_resume_breakpoint (tp);
735 tp->thread_fsm = NULL;
736 }
737
738 parent = inferior_ptid;
739 child = tp->pending_follow.value.related_pid;
740
741 /* Set up inferior(s) as specified by the caller, and tell the
742 target to do whatever is necessary to follow either parent
743 or child. */
744 if (follow_fork_inferior (follow_child, detach_fork))
745 {
746 /* Target refused to follow, or there's some other reason
747 we shouldn't resume. */
748 should_resume = 0;
749 }
750 else
751 {
752 /* This pending follow fork event is now handled, one way
753 or another. The previous selected thread may be gone
754 from the lists by now, but if it is still around, need
755 to clear the pending follow request. */
756 tp = find_thread_ptid (parent);
757 if (tp)
758 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
759
760 /* This makes sure we don't try to apply the "Switched
761 over from WAIT_PID" logic above. */
762 nullify_last_target_wait_ptid ();
763
764 /* If we followed the child, switch to it... */
765 if (follow_child)
766 {
767 switch_to_thread (child);
768
769 /* ... and preserve the stepping state, in case the
770 user was stepping over the fork call. */
771 if (should_resume)
772 {
773 tp = inferior_thread ();
774 tp->control.step_resume_breakpoint
775 = step_resume_breakpoint;
776 tp->control.step_range_start = step_range_start;
777 tp->control.step_range_end = step_range_end;
778 tp->control.step_frame_id = step_frame_id;
779 tp->control.exception_resume_breakpoint
780 = exception_resume_breakpoint;
781 tp->thread_fsm = thread_fsm;
782 }
783 else
784 {
785 /* If we get here, it was because we're trying to
786 resume from a fork catchpoint, but, the user
787 has switched threads away from the thread that
788 forked. In that case, the resume command
789 issued is most likely not applicable to the
790 child, so just warn, and refuse to resume. */
791 warning (_("Not resuming: switched threads "
792 "before following fork child."));
793 }
794
795 /* Reset breakpoints in the child as appropriate. */
796 follow_inferior_reset_breakpoints ();
797 }
798 else
799 switch_to_thread (parent);
800 }
801 }
802 break;
803 case TARGET_WAITKIND_SPURIOUS:
804 /* Nothing to follow. */
805 break;
806 default:
807 internal_error (__FILE__, __LINE__,
808 "Unexpected pending_follow.kind %d\n",
809 tp->pending_follow.kind);
810 break;
811 }
812
813 return should_resume;
814 }
815
816 static void
817 follow_inferior_reset_breakpoints (void)
818 {
819 struct thread_info *tp = inferior_thread ();
820
821 /* Was there a step_resume breakpoint? (There was if the user
822 did a "next" at the fork() call.) If so, explicitly reset its
823 thread number. Cloned step_resume breakpoints are disabled on
824 creation, so enable it here now that it is associated with the
825 correct thread.
826
827 step_resumes are a form of bp that are made to be per-thread.
828 Since we created the step_resume bp when the parent process
829 was being debugged, and now are switching to the child process,
830 from the breakpoint package's viewpoint, that's a switch of
831 "threads". We must update the bp's notion of which thread
832 it is for, or it'll be ignored when it triggers. */
833
834 if (tp->control.step_resume_breakpoint)
835 {
836 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
837 tp->control.step_resume_breakpoint->loc->enabled = 1;
838 }
839
840 /* Treat exception_resume breakpoints like step_resume breakpoints. */
841 if (tp->control.exception_resume_breakpoint)
842 {
843 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
844 tp->control.exception_resume_breakpoint->loc->enabled = 1;
845 }
846
847 /* Reinsert all breakpoints in the child. The user may have set
848 breakpoints after catching the fork, in which case those
849 were never set in the child, but only in the parent. This makes
850 sure the inserted breakpoints match the breakpoint list. */
851
852 breakpoint_re_set ();
853 insert_breakpoints ();
854 }
855
856 /* The child has exited or execed: resume threads of the parent the
857 user wanted to be executing. */
858
859 static int
860 proceed_after_vfork_done (struct thread_info *thread,
861 void *arg)
862 {
863 int pid = * (int *) arg;
864
865 if (ptid_get_pid (thread->ptid) == pid
866 && is_running (thread->ptid)
867 && !is_executing (thread->ptid)
868 && !thread->stop_requested
869 && thread->suspend.stop_signal == GDB_SIGNAL_0)
870 {
871 if (debug_infrun)
872 fprintf_unfiltered (gdb_stdlog,
873 "infrun: resuming vfork parent thread %s\n",
874 target_pid_to_str (thread->ptid));
875
876 switch_to_thread (thread->ptid);
877 clear_proceed_status (0);
878 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
879 }
880
881 return 0;
882 }
883
884 /* Save/restore inferior_ptid, current program space and current
885 inferior. Only use this if the current context points at an exited
886 inferior (and therefore there's no current thread to save). */
887 class scoped_restore_exited_inferior
888 {
889 public:
890 scoped_restore_exited_inferior ()
891 : m_saved_ptid (&inferior_ptid)
892 {}
893
894 private:
895 scoped_restore_tmpl<ptid_t> m_saved_ptid;
896 scoped_restore_current_program_space m_pspace;
897 scoped_restore_current_inferior m_inferior;
898 };
899
900 /* Called whenever we notice an exec or exit event, to handle
901 detaching or resuming a vfork parent. */
902
903 static void
904 handle_vfork_child_exec_or_exit (int exec)
905 {
906 struct inferior *inf = current_inferior ();
907
908 if (inf->vfork_parent)
909 {
910 int resume_parent = -1;
911
912 /* This exec or exit marks the end of the shared memory region
913 between the parent and the child. If the user wanted to
914 detach from the parent, now is the time. */
915
916 if (inf->vfork_parent->pending_detach)
917 {
918 struct thread_info *tp;
919 struct program_space *pspace;
920 struct address_space *aspace;
921
922 /* follow-fork child, detach-on-fork on. */
923
924 inf->vfork_parent->pending_detach = 0;
925
926 gdb::optional<scoped_restore_exited_inferior>
927 maybe_restore_inferior;
928 gdb::optional<scoped_restore_current_pspace_and_thread>
929 maybe_restore_thread;
930
931 /* If we're handling a child exit, then inferior_ptid points
932 at the inferior's pid, not to a thread. */
933 if (!exec)
934 maybe_restore_inferior.emplace ();
935 else
936 maybe_restore_thread.emplace ();
937
938 /* We're letting loose of the parent. */
939 tp = any_live_thread_of_process (inf->vfork_parent->pid);
940 switch_to_thread (tp->ptid);
941
942 /* We're about to detach from the parent, which implicitly
943 removes breakpoints from its address space. There's a
944 catch here: we want to reuse the spaces for the child,
945 but, parent/child are still sharing the pspace at this
946 point, although the exec in reality makes the kernel give
947 the child a fresh set of new pages. The problem here is
948 that the breakpoints module being unaware of this, would
949 likely chose the child process to write to the parent
950 address space. Swapping the child temporarily away from
951 the spaces has the desired effect. Yes, this is "sort
952 of" a hack. */
953
954 pspace = inf->pspace;
955 aspace = inf->aspace;
956 inf->aspace = NULL;
957 inf->pspace = NULL;
958
959 if (debug_infrun || info_verbose)
960 {
961 target_terminal::ours_for_output ();
962
963 if (exec)
964 {
965 fprintf_filtered (gdb_stdlog,
966 _("Detaching vfork parent process "
967 "%d after child exec.\n"),
968 inf->vfork_parent->pid);
969 }
970 else
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exit.\n"),
975 inf->vfork_parent->pid);
976 }
977 }
978
979 target_detach (inf->vfork_parent, 0);
980
981 /* Put it back. */
982 inf->pspace = pspace;
983 inf->aspace = aspace;
984 }
985 else if (exec)
986 {
987 /* We're staying attached to the parent, so, really give the
988 child a new address space. */
989 inf->pspace = new program_space (maybe_new_address_space ());
990 inf->aspace = inf->pspace->aspace;
991 inf->removable = 1;
992 set_current_program_space (inf->pspace);
993
994 resume_parent = inf->vfork_parent->pid;
995
996 /* Break the bonds. */
997 inf->vfork_parent->vfork_child = NULL;
998 }
999 else
1000 {
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid while running clone_program_space, so
1013 that clone_program_space doesn't want to read the
1014 selected frame of a dead process. */
1015 scoped_restore restore_ptid
1016 = make_scoped_restore (&inferior_ptid, null_ptid);
1017
1018 /* This inferior is dead, so avoid giving the breakpoints
1019 module the option to write through to it (cloning a
1020 program space resets breakpoints). */
1021 inf->aspace = NULL;
1022 inf->pspace = NULL;
1023 pspace = new program_space (maybe_new_address_space ());
1024 set_current_program_space (pspace);
1025 inf->removable = 1;
1026 inf->symfile_flags = SYMFILE_NO_READ;
1027 clone_program_space (pspace, inf->vfork_parent->pspace);
1028 inf->pspace = pspace;
1029 inf->aspace = pspace->aspace;
1030
1031 resume_parent = inf->vfork_parent->pid;
1032 /* Break the bonds. */
1033 inf->vfork_parent->vfork_child = NULL;
1034 }
1035
1036 inf->vfork_parent = NULL;
1037
1038 gdb_assert (current_program_space == inf->pspace);
1039
1040 if (non_stop && resume_parent != -1)
1041 {
1042 /* If the user wanted the parent to be running, let it go
1043 free now. */
1044 scoped_restore_current_thread restore_thread;
1045
1046 if (debug_infrun)
1047 fprintf_unfiltered (gdb_stdlog,
1048 "infrun: resuming vfork parent process %d\n",
1049 resume_parent);
1050
1051 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1052 }
1053 }
1054 }
1055
1056 /* Enum strings for "set|show follow-exec-mode". */
1057
1058 static const char follow_exec_mode_new[] = "new";
1059 static const char follow_exec_mode_same[] = "same";
1060 static const char *const follow_exec_mode_names[] =
1061 {
1062 follow_exec_mode_new,
1063 follow_exec_mode_same,
1064 NULL,
1065 };
1066
1067 static const char *follow_exec_mode_string = follow_exec_mode_same;
1068 static void
1069 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1070 struct cmd_list_element *c, const char *value)
1071 {
1072 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1073 }
1074
1075 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1076
1077 static void
1078 follow_exec (ptid_t ptid, char *exec_file_target)
1079 {
1080 struct thread_info *th, *tmp;
1081 struct inferior *inf = current_inferior ();
1082 int pid = ptid_get_pid (ptid);
1083 ptid_t process_ptid;
1084
1085 /* This is an exec event that we actually wish to pay attention to.
1086 Refresh our symbol table to the newly exec'd program, remove any
1087 momentary bp's, etc.
1088
1089 If there are breakpoints, they aren't really inserted now,
1090 since the exec() transformed our inferior into a fresh set
1091 of instructions.
1092
1093 We want to preserve symbolic breakpoints on the list, since
1094 we have hopes that they can be reset after the new a.out's
1095 symbol table is read.
1096
1097 However, any "raw" breakpoints must be removed from the list
1098 (e.g., the solib bp's), since their address is probably invalid
1099 now.
1100
1101 And, we DON'T want to call delete_breakpoints() here, since
1102 that may write the bp's "shadow contents" (the instruction
1103 value that was overwritten witha TRAP instruction). Since
1104 we now have a new a.out, those shadow contents aren't valid. */
1105
1106 mark_breakpoints_out ();
1107
1108 /* The target reports the exec event to the main thread, even if
1109 some other thread does the exec, and even if the main thread was
1110 stopped or already gone. We may still have non-leader threads of
1111 the process on our list. E.g., on targets that don't have thread
1112 exit events (like remote); or on native Linux in non-stop mode if
1113 there were only two threads in the inferior and the non-leader
1114 one is the one that execs (and nothing forces an update of the
1115 thread list up to here). When debugging remotely, it's best to
1116 avoid extra traffic, when possible, so avoid syncing the thread
1117 list with the target, and instead go ahead and delete all threads
1118 of the process but one that reported the event. Note this must
1119 be done before calling update_breakpoints_after_exec, as
1120 otherwise clearing the threads' resources would reference stale
1121 thread breakpoints -- it may have been one of these threads that
1122 stepped across the exec. We could just clear their stepping
1123 states, but as long as we're iterating, might as well delete
1124 them. Deleting them now rather than at the next user-visible
1125 stop provides a nicer sequence of events for user and MI
1126 notifications. */
1127 ALL_THREADS_SAFE (th, tmp)
1128 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1129 delete_thread (th->ptid);
1130
1131 /* We also need to clear any left over stale state for the
1132 leader/event thread. E.g., if there was any step-resume
1133 breakpoint or similar, it's gone now. We cannot truly
1134 step-to-next statement through an exec(). */
1135 th = inferior_thread ();
1136 th->control.step_resume_breakpoint = NULL;
1137 th->control.exception_resume_breakpoint = NULL;
1138 th->control.single_step_breakpoints = NULL;
1139 th->control.step_range_start = 0;
1140 th->control.step_range_end = 0;
1141
1142 /* The user may have had the main thread held stopped in the
1143 previous image (e.g., schedlock on, or non-stop). Release
1144 it now. */
1145 th->stop_requested = 0;
1146
1147 update_breakpoints_after_exec ();
1148
1149 /* What is this a.out's name? */
1150 process_ptid = pid_to_ptid (pid);
1151 printf_unfiltered (_("%s is executing new program: %s\n"),
1152 target_pid_to_str (process_ptid),
1153 exec_file_target);
1154
1155 /* We've followed the inferior through an exec. Therefore, the
1156 inferior has essentially been killed & reborn. */
1157
1158 gdb_flush (gdb_stdout);
1159
1160 breakpoint_init_inferior (inf_execd);
1161
1162 gdb::unique_xmalloc_ptr<char> exec_file_host
1163 = exec_file_find (exec_file_target, NULL);
1164
1165 /* If we were unable to map the executable target pathname onto a host
1166 pathname, tell the user that. Otherwise GDB's subsequent behavior
1167 is confusing. Maybe it would even be better to stop at this point
1168 so that the user can specify a file manually before continuing. */
1169 if (exec_file_host == NULL)
1170 warning (_("Could not load symbols for executable %s.\n"
1171 "Do you need \"set sysroot\"?"),
1172 exec_file_target);
1173
1174 /* Reset the shared library package. This ensures that we get a
1175 shlib event when the child reaches "_start", at which point the
1176 dld will have had a chance to initialize the child. */
1177 /* Also, loading a symbol file below may trigger symbol lookups, and
1178 we don't want those to be satisfied by the libraries of the
1179 previous incarnation of this process. */
1180 no_shared_libraries (NULL, 0);
1181
1182 if (follow_exec_mode_string == follow_exec_mode_new)
1183 {
1184 /* The user wants to keep the old inferior and program spaces
1185 around. Create a new fresh one, and switch to it. */
1186
1187 /* Do exit processing for the original inferior before adding
1188 the new inferior so we don't have two active inferiors with
1189 the same ptid, which can confuse find_inferior_ptid. */
1190 exit_inferior_num_silent (current_inferior ()->num);
1191
1192 inf = add_inferior_with_spaces ();
1193 inf->pid = pid;
1194 target_follow_exec (inf, exec_file_target);
1195
1196 set_current_inferior (inf);
1197 set_current_program_space (inf->pspace);
1198 }
1199 else
1200 {
1201 /* The old description may no longer be fit for the new image.
1202 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1203 old description; we'll read a new one below. No need to do
1204 this on "follow-exec-mode new", as the old inferior stays
1205 around (its description is later cleared/refetched on
1206 restart). */
1207 target_clear_description ();
1208 }
1209
1210 gdb_assert (current_program_space == inf->pspace);
1211
1212 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1213 because the proper displacement for a PIE (Position Independent
1214 Executable) main symbol file will only be computed by
1215 solib_create_inferior_hook below. breakpoint_re_set would fail
1216 to insert the breakpoints with the zero displacement. */
1217 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1218
1219 /* If the target can specify a description, read it. Must do this
1220 after flipping to the new executable (because the target supplied
1221 description must be compatible with the executable's
1222 architecture, and the old executable may e.g., be 32-bit, while
1223 the new one 64-bit), and before anything involving memory or
1224 registers. */
1225 target_find_description ();
1226
1227 /* The add_thread call ends up reading registers, so do it after updating the
1228 target description. */
1229 if (follow_exec_mode_string == follow_exec_mode_new)
1230 add_thread (ptid);
1231
1232 solib_create_inferior_hook (0);
1233
1234 jit_inferior_created_hook ();
1235
1236 breakpoint_re_set ();
1237
1238 /* Reinsert all breakpoints. (Those which were symbolic have
1239 been reset to the proper address in the new a.out, thanks
1240 to symbol_file_command...). */
1241 insert_breakpoints ();
1242
1243 /* The next resume of this inferior should bring it to the shlib
1244 startup breakpoints. (If the user had also set bp's on
1245 "main" from the old (parent) process, then they'll auto-
1246 matically get reset there in the new process.). */
1247 }
1248
1249 /* The queue of threads that need to do a step-over operation to get
1250 past e.g., a breakpoint. What technique is used to step over the
1251 breakpoint/watchpoint does not matter -- all threads end up in the
1252 same queue, to maintain rough temporal order of execution, in order
1253 to avoid starvation, otherwise, we could e.g., find ourselves
1254 constantly stepping the same couple threads past their breakpoints
1255 over and over, if the single-step finish fast enough. */
1256 struct thread_info *step_over_queue_head;
1257
1258 /* Bit flags indicating what the thread needs to step over. */
1259
1260 enum step_over_what_flag
1261 {
1262 /* Step over a breakpoint. */
1263 STEP_OVER_BREAKPOINT = 1,
1264
1265 /* Step past a non-continuable watchpoint, in order to let the
1266 instruction execute so we can evaluate the watchpoint
1267 expression. */
1268 STEP_OVER_WATCHPOINT = 2
1269 };
1270 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1271
1272 /* Info about an instruction that is being stepped over. */
1273
1274 struct step_over_info
1275 {
1276 /* If we're stepping past a breakpoint, this is the address space
1277 and address of the instruction the breakpoint is set at. We'll
1278 skip inserting all breakpoints here. Valid iff ASPACE is
1279 non-NULL. */
1280 const address_space *aspace;
1281 CORE_ADDR address;
1282
1283 /* The instruction being stepped over triggers a nonsteppable
1284 watchpoint. If true, we'll skip inserting watchpoints. */
1285 int nonsteppable_watchpoint_p;
1286
1287 /* The thread's global number. */
1288 int thread;
1289 };
1290
1291 /* The step-over info of the location that is being stepped over.
1292
1293 Note that with async/breakpoint always-inserted mode, a user might
1294 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1295 being stepped over. As setting a new breakpoint inserts all
1296 breakpoints, we need to make sure the breakpoint being stepped over
1297 isn't inserted then. We do that by only clearing the step-over
1298 info when the step-over is actually finished (or aborted).
1299
1300 Presently GDB can only step over one breakpoint at any given time.
1301 Given threads that can't run code in the same address space as the
1302 breakpoint's can't really miss the breakpoint, GDB could be taught
1303 to step-over at most one breakpoint per address space (so this info
1304 could move to the address space object if/when GDB is extended).
1305 The set of breakpoints being stepped over will normally be much
1306 smaller than the set of all breakpoints, so a flag in the
1307 breakpoint location structure would be wasteful. A separate list
1308 also saves complexity and run-time, as otherwise we'd have to go
1309 through all breakpoint locations clearing their flag whenever we
1310 start a new sequence. Similar considerations weigh against storing
1311 this info in the thread object. Plus, not all step overs actually
1312 have breakpoint locations -- e.g., stepping past a single-step
1313 breakpoint, or stepping to complete a non-continuable
1314 watchpoint. */
1315 static struct step_over_info step_over_info;
1316
1317 /* Record the address of the breakpoint/instruction we're currently
1318 stepping over.
1319 N.B. We record the aspace and address now, instead of say just the thread,
1320 because when we need the info later the thread may be running. */
1321
1322 static void
1323 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1324 int nonsteppable_watchpoint_p,
1325 int thread)
1326 {
1327 step_over_info.aspace = aspace;
1328 step_over_info.address = address;
1329 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1330 step_over_info.thread = thread;
1331 }
1332
1333 /* Called when we're not longer stepping over a breakpoint / an
1334 instruction, so all breakpoints are free to be (re)inserted. */
1335
1336 static void
1337 clear_step_over_info (void)
1338 {
1339 if (debug_infrun)
1340 fprintf_unfiltered (gdb_stdlog,
1341 "infrun: clear_step_over_info\n");
1342 step_over_info.aspace = NULL;
1343 step_over_info.address = 0;
1344 step_over_info.nonsteppable_watchpoint_p = 0;
1345 step_over_info.thread = -1;
1346 }
1347
1348 /* See infrun.h. */
1349
1350 int
1351 stepping_past_instruction_at (struct address_space *aspace,
1352 CORE_ADDR address)
1353 {
1354 return (step_over_info.aspace != NULL
1355 && breakpoint_address_match (aspace, address,
1356 step_over_info.aspace,
1357 step_over_info.address));
1358 }
1359
1360 /* See infrun.h. */
1361
1362 int
1363 thread_is_stepping_over_breakpoint (int thread)
1364 {
1365 return (step_over_info.thread != -1
1366 && thread == step_over_info.thread);
1367 }
1368
1369 /* See infrun.h. */
1370
1371 int
1372 stepping_past_nonsteppable_watchpoint (void)
1373 {
1374 return step_over_info.nonsteppable_watchpoint_p;
1375 }
1376
1377 /* Returns true if step-over info is valid. */
1378
1379 static int
1380 step_over_info_valid_p (void)
1381 {
1382 return (step_over_info.aspace != NULL
1383 || stepping_past_nonsteppable_watchpoint ());
1384 }
1385
1386 \f
1387 /* Displaced stepping. */
1388
1389 /* In non-stop debugging mode, we must take special care to manage
1390 breakpoints properly; in particular, the traditional strategy for
1391 stepping a thread past a breakpoint it has hit is unsuitable.
1392 'Displaced stepping' is a tactic for stepping one thread past a
1393 breakpoint it has hit while ensuring that other threads running
1394 concurrently will hit the breakpoint as they should.
1395
1396 The traditional way to step a thread T off a breakpoint in a
1397 multi-threaded program in all-stop mode is as follows:
1398
1399 a0) Initially, all threads are stopped, and breakpoints are not
1400 inserted.
1401 a1) We single-step T, leaving breakpoints uninserted.
1402 a2) We insert breakpoints, and resume all threads.
1403
1404 In non-stop debugging, however, this strategy is unsuitable: we
1405 don't want to have to stop all threads in the system in order to
1406 continue or step T past a breakpoint. Instead, we use displaced
1407 stepping:
1408
1409 n0) Initially, T is stopped, other threads are running, and
1410 breakpoints are inserted.
1411 n1) We copy the instruction "under" the breakpoint to a separate
1412 location, outside the main code stream, making any adjustments
1413 to the instruction, register, and memory state as directed by
1414 T's architecture.
1415 n2) We single-step T over the instruction at its new location.
1416 n3) We adjust the resulting register and memory state as directed
1417 by T's architecture. This includes resetting T's PC to point
1418 back into the main instruction stream.
1419 n4) We resume T.
1420
1421 This approach depends on the following gdbarch methods:
1422
1423 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1424 indicate where to copy the instruction, and how much space must
1425 be reserved there. We use these in step n1.
1426
1427 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1428 address, and makes any necessary adjustments to the instruction,
1429 register contents, and memory. We use this in step n1.
1430
1431 - gdbarch_displaced_step_fixup adjusts registers and memory after
1432 we have successfuly single-stepped the instruction, to yield the
1433 same effect the instruction would have had if we had executed it
1434 at its original address. We use this in step n3.
1435
1436 The gdbarch_displaced_step_copy_insn and
1437 gdbarch_displaced_step_fixup functions must be written so that
1438 copying an instruction with gdbarch_displaced_step_copy_insn,
1439 single-stepping across the copied instruction, and then applying
1440 gdbarch_displaced_insn_fixup should have the same effects on the
1441 thread's memory and registers as stepping the instruction in place
1442 would have. Exactly which responsibilities fall to the copy and
1443 which fall to the fixup is up to the author of those functions.
1444
1445 See the comments in gdbarch.sh for details.
1446
1447 Note that displaced stepping and software single-step cannot
1448 currently be used in combination, although with some care I think
1449 they could be made to. Software single-step works by placing
1450 breakpoints on all possible subsequent instructions; if the
1451 displaced instruction is a PC-relative jump, those breakpoints
1452 could fall in very strange places --- on pages that aren't
1453 executable, or at addresses that are not proper instruction
1454 boundaries. (We do generally let other threads run while we wait
1455 to hit the software single-step breakpoint, and they might
1456 encounter such a corrupted instruction.) One way to work around
1457 this would be to have gdbarch_displaced_step_copy_insn fully
1458 simulate the effect of PC-relative instructions (and return NULL)
1459 on architectures that use software single-stepping.
1460
1461 In non-stop mode, we can have independent and simultaneous step
1462 requests, so more than one thread may need to simultaneously step
1463 over a breakpoint. The current implementation assumes there is
1464 only one scratch space per process. In this case, we have to
1465 serialize access to the scratch space. If thread A wants to step
1466 over a breakpoint, but we are currently waiting for some other
1467 thread to complete a displaced step, we leave thread A stopped and
1468 place it in the displaced_step_request_queue. Whenever a displaced
1469 step finishes, we pick the next thread in the queue and start a new
1470 displaced step operation on it. See displaced_step_prepare and
1471 displaced_step_fixup for details. */
1472
1473 /* Default destructor for displaced_step_closure. */
1474
1475 displaced_step_closure::~displaced_step_closure () = default;
1476
1477 /* Per-inferior displaced stepping state. */
1478 struct displaced_step_inferior_state
1479 {
1480 /* Pointer to next in linked list. */
1481 struct displaced_step_inferior_state *next;
1482
1483 /* The process this displaced step state refers to. */
1484 int pid;
1485
1486 /* True if preparing a displaced step ever failed. If so, we won't
1487 try displaced stepping for this inferior again. */
1488 int failed_before;
1489
1490 /* If this is not null_ptid, this is the thread carrying out a
1491 displaced single-step in process PID. This thread's state will
1492 require fixing up once it has completed its step. */
1493 ptid_t step_ptid;
1494
1495 /* The architecture the thread had when we stepped it. */
1496 struct gdbarch *step_gdbarch;
1497
1498 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1499 for post-step cleanup. */
1500 struct displaced_step_closure *step_closure;
1501
1502 /* The address of the original instruction, and the copy we
1503 made. */
1504 CORE_ADDR step_original, step_copy;
1505
1506 /* Saved contents of copy area. */
1507 gdb_byte *step_saved_copy;
1508 };
1509
1510 /* The list of states of processes involved in displaced stepping
1511 presently. */
1512 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1513
1514 /* Get the displaced stepping state of process PID. */
1515
1516 static struct displaced_step_inferior_state *
1517 get_displaced_stepping_state (int pid)
1518 {
1519 struct displaced_step_inferior_state *state;
1520
1521 for (state = displaced_step_inferior_states;
1522 state != NULL;
1523 state = state->next)
1524 if (state->pid == pid)
1525 return state;
1526
1527 return NULL;
1528 }
1529
1530 /* Returns true if any inferior has a thread doing a displaced
1531 step. */
1532
1533 static int
1534 displaced_step_in_progress_any_inferior (void)
1535 {
1536 struct displaced_step_inferior_state *state;
1537
1538 for (state = displaced_step_inferior_states;
1539 state != NULL;
1540 state = state->next)
1541 if (!ptid_equal (state->step_ptid, null_ptid))
1542 return 1;
1543
1544 return 0;
1545 }
1546
1547 /* Return true if thread represented by PTID is doing a displaced
1548 step. */
1549
1550 static int
1551 displaced_step_in_progress_thread (ptid_t ptid)
1552 {
1553 struct displaced_step_inferior_state *displaced;
1554
1555 gdb_assert (!ptid_equal (ptid, null_ptid));
1556
1557 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1558
1559 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1560 }
1561
1562 /* Return true if process PID has a thread doing a displaced step. */
1563
1564 static int
1565 displaced_step_in_progress (int pid)
1566 {
1567 struct displaced_step_inferior_state *displaced;
1568
1569 displaced = get_displaced_stepping_state (pid);
1570 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1571 return 1;
1572
1573 return 0;
1574 }
1575
1576 /* Add a new displaced stepping state for process PID to the displaced
1577 stepping state list, or return a pointer to an already existing
1578 entry, if it already exists. Never returns NULL. */
1579
1580 static struct displaced_step_inferior_state *
1581 add_displaced_stepping_state (int pid)
1582 {
1583 struct displaced_step_inferior_state *state;
1584
1585 for (state = displaced_step_inferior_states;
1586 state != NULL;
1587 state = state->next)
1588 if (state->pid == pid)
1589 return state;
1590
1591 state = XCNEW (struct displaced_step_inferior_state);
1592 state->pid = pid;
1593 state->next = displaced_step_inferior_states;
1594 displaced_step_inferior_states = state;
1595
1596 return state;
1597 }
1598
1599 /* If inferior is in displaced stepping, and ADDR equals to starting address
1600 of copy area, return corresponding displaced_step_closure. Otherwise,
1601 return NULL. */
1602
1603 struct displaced_step_closure*
1604 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1605 {
1606 struct displaced_step_inferior_state *displaced
1607 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1608
1609 /* If checking the mode of displaced instruction in copy area. */
1610 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1611 && (displaced->step_copy == addr))
1612 return displaced->step_closure;
1613
1614 return NULL;
1615 }
1616
1617 /* Remove the displaced stepping state of process PID. */
1618
1619 static void
1620 remove_displaced_stepping_state (int pid)
1621 {
1622 struct displaced_step_inferior_state *it, **prev_next_p;
1623
1624 gdb_assert (pid != 0);
1625
1626 it = displaced_step_inferior_states;
1627 prev_next_p = &displaced_step_inferior_states;
1628 while (it)
1629 {
1630 if (it->pid == pid)
1631 {
1632 *prev_next_p = it->next;
1633 xfree (it);
1634 return;
1635 }
1636
1637 prev_next_p = &it->next;
1638 it = *prev_next_p;
1639 }
1640 }
1641
1642 static void
1643 infrun_inferior_exit (struct inferior *inf)
1644 {
1645 remove_displaced_stepping_state (inf->pid);
1646 }
1647
1648 /* If ON, and the architecture supports it, GDB will use displaced
1649 stepping to step over breakpoints. If OFF, or if the architecture
1650 doesn't support it, GDB will instead use the traditional
1651 hold-and-step approach. If AUTO (which is the default), GDB will
1652 decide which technique to use to step over breakpoints depending on
1653 which of all-stop or non-stop mode is active --- displaced stepping
1654 in non-stop mode; hold-and-step in all-stop mode. */
1655
1656 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1657
1658 static void
1659 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1660 struct cmd_list_element *c,
1661 const char *value)
1662 {
1663 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1664 fprintf_filtered (file,
1665 _("Debugger's willingness to use displaced stepping "
1666 "to step over breakpoints is %s (currently %s).\n"),
1667 value, target_is_non_stop_p () ? "on" : "off");
1668 else
1669 fprintf_filtered (file,
1670 _("Debugger's willingness to use displaced stepping "
1671 "to step over breakpoints is %s.\n"), value);
1672 }
1673
1674 /* Return non-zero if displaced stepping can/should be used to step
1675 over breakpoints of thread TP. */
1676
1677 static int
1678 use_displaced_stepping (struct thread_info *tp)
1679 {
1680 struct regcache *regcache = get_thread_regcache (tp->ptid);
1681 struct gdbarch *gdbarch = regcache->arch ();
1682 struct displaced_step_inferior_state *displaced_state;
1683
1684 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1685
1686 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1687 && target_is_non_stop_p ())
1688 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1689 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1690 && find_record_target () == NULL
1691 && (displaced_state == NULL
1692 || !displaced_state->failed_before));
1693 }
1694
1695 /* Clean out any stray displaced stepping state. */
1696 static void
1697 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1698 {
1699 /* Indicate that there is no cleanup pending. */
1700 displaced->step_ptid = null_ptid;
1701
1702 delete displaced->step_closure;
1703 displaced->step_closure = NULL;
1704 }
1705
1706 static void
1707 displaced_step_clear_cleanup (void *arg)
1708 {
1709 struct displaced_step_inferior_state *state
1710 = (struct displaced_step_inferior_state *) arg;
1711
1712 displaced_step_clear (state);
1713 }
1714
1715 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1716 void
1717 displaced_step_dump_bytes (struct ui_file *file,
1718 const gdb_byte *buf,
1719 size_t len)
1720 {
1721 int i;
1722
1723 for (i = 0; i < len; i++)
1724 fprintf_unfiltered (file, "%02x ", buf[i]);
1725 fputs_unfiltered ("\n", file);
1726 }
1727
1728 /* Prepare to single-step, using displaced stepping.
1729
1730 Note that we cannot use displaced stepping when we have a signal to
1731 deliver. If we have a signal to deliver and an instruction to step
1732 over, then after the step, there will be no indication from the
1733 target whether the thread entered a signal handler or ignored the
1734 signal and stepped over the instruction successfully --- both cases
1735 result in a simple SIGTRAP. In the first case we mustn't do a
1736 fixup, and in the second case we must --- but we can't tell which.
1737 Comments in the code for 'random signals' in handle_inferior_event
1738 explain how we handle this case instead.
1739
1740 Returns 1 if preparing was successful -- this thread is going to be
1741 stepped now; 0 if displaced stepping this thread got queued; or -1
1742 if this instruction can't be displaced stepped. */
1743
1744 static int
1745 displaced_step_prepare_throw (ptid_t ptid)
1746 {
1747 struct cleanup *ignore_cleanups;
1748 struct thread_info *tp = find_thread_ptid (ptid);
1749 struct regcache *regcache = get_thread_regcache (ptid);
1750 struct gdbarch *gdbarch = regcache->arch ();
1751 const address_space *aspace = regcache->aspace ();
1752 CORE_ADDR original, copy;
1753 ULONGEST len;
1754 struct displaced_step_closure *closure;
1755 struct displaced_step_inferior_state *displaced;
1756 int status;
1757
1758 /* We should never reach this function if the architecture does not
1759 support displaced stepping. */
1760 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1761
1762 /* Nor if the thread isn't meant to step over a breakpoint. */
1763 gdb_assert (tp->control.trap_expected);
1764
1765 /* Disable range stepping while executing in the scratch pad. We
1766 want a single-step even if executing the displaced instruction in
1767 the scratch buffer lands within the stepping range (e.g., a
1768 jump/branch). */
1769 tp->control.may_range_step = 0;
1770
1771 /* We have to displaced step one thread at a time, as we only have
1772 access to a single scratch space per inferior. */
1773
1774 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1775
1776 if (!ptid_equal (displaced->step_ptid, null_ptid))
1777 {
1778 /* Already waiting for a displaced step to finish. Defer this
1779 request and place in queue. */
1780
1781 if (debug_displaced)
1782 fprintf_unfiltered (gdb_stdlog,
1783 "displaced: deferring step of %s\n",
1784 target_pid_to_str (ptid));
1785
1786 thread_step_over_chain_enqueue (tp);
1787 return 0;
1788 }
1789 else
1790 {
1791 if (debug_displaced)
1792 fprintf_unfiltered (gdb_stdlog,
1793 "displaced: stepping %s now\n",
1794 target_pid_to_str (ptid));
1795 }
1796
1797 displaced_step_clear (displaced);
1798
1799 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1800 inferior_ptid = ptid;
1801
1802 original = regcache_read_pc (regcache);
1803
1804 copy = gdbarch_displaced_step_location (gdbarch);
1805 len = gdbarch_max_insn_length (gdbarch);
1806
1807 if (breakpoint_in_range_p (aspace, copy, len))
1808 {
1809 /* There's a breakpoint set in the scratch pad location range
1810 (which is usually around the entry point). We'd either
1811 install it before resuming, which would overwrite/corrupt the
1812 scratch pad, or if it was already inserted, this displaced
1813 step would overwrite it. The latter is OK in the sense that
1814 we already assume that no thread is going to execute the code
1815 in the scratch pad range (after initial startup) anyway, but
1816 the former is unacceptable. Simply punt and fallback to
1817 stepping over this breakpoint in-line. */
1818 if (debug_displaced)
1819 {
1820 fprintf_unfiltered (gdb_stdlog,
1821 "displaced: breakpoint set in scratch pad. "
1822 "Stepping over breakpoint in-line instead.\n");
1823 }
1824
1825 return -1;
1826 }
1827
1828 /* Save the original contents of the copy area. */
1829 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1830 ignore_cleanups = make_cleanup (free_current_contents,
1831 &displaced->step_saved_copy);
1832 status = target_read_memory (copy, displaced->step_saved_copy, len);
1833 if (status != 0)
1834 throw_error (MEMORY_ERROR,
1835 _("Error accessing memory address %s (%s) for "
1836 "displaced-stepping scratch space."),
1837 paddress (gdbarch, copy), safe_strerror (status));
1838 if (debug_displaced)
1839 {
1840 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1841 paddress (gdbarch, copy));
1842 displaced_step_dump_bytes (gdb_stdlog,
1843 displaced->step_saved_copy,
1844 len);
1845 };
1846
1847 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1848 original, copy, regcache);
1849 if (closure == NULL)
1850 {
1851 /* The architecture doesn't know how or want to displaced step
1852 this instruction or instruction sequence. Fallback to
1853 stepping over the breakpoint in-line. */
1854 do_cleanups (ignore_cleanups);
1855 return -1;
1856 }
1857
1858 /* Save the information we need to fix things up if the step
1859 succeeds. */
1860 displaced->step_ptid = ptid;
1861 displaced->step_gdbarch = gdbarch;
1862 displaced->step_closure = closure;
1863 displaced->step_original = original;
1864 displaced->step_copy = copy;
1865
1866 make_cleanup (displaced_step_clear_cleanup, displaced);
1867
1868 /* Resume execution at the copy. */
1869 regcache_write_pc (regcache, copy);
1870
1871 discard_cleanups (ignore_cleanups);
1872
1873 if (debug_displaced)
1874 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1875 paddress (gdbarch, copy));
1876
1877 return 1;
1878 }
1879
1880 /* Wrapper for displaced_step_prepare_throw that disabled further
1881 attempts at displaced stepping if we get a memory error. */
1882
1883 static int
1884 displaced_step_prepare (ptid_t ptid)
1885 {
1886 int prepared = -1;
1887
1888 TRY
1889 {
1890 prepared = displaced_step_prepare_throw (ptid);
1891 }
1892 CATCH (ex, RETURN_MASK_ERROR)
1893 {
1894 struct displaced_step_inferior_state *displaced_state;
1895
1896 if (ex.error != MEMORY_ERROR
1897 && ex.error != NOT_SUPPORTED_ERROR)
1898 throw_exception (ex);
1899
1900 if (debug_infrun)
1901 {
1902 fprintf_unfiltered (gdb_stdlog,
1903 "infrun: disabling displaced stepping: %s\n",
1904 ex.message);
1905 }
1906
1907 /* Be verbose if "set displaced-stepping" is "on", silent if
1908 "auto". */
1909 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1910 {
1911 warning (_("disabling displaced stepping: %s"),
1912 ex.message);
1913 }
1914
1915 /* Disable further displaced stepping attempts. */
1916 displaced_state
1917 = get_displaced_stepping_state (ptid_get_pid (ptid));
1918 displaced_state->failed_before = 1;
1919 }
1920 END_CATCH
1921
1922 return prepared;
1923 }
1924
1925 static void
1926 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1927 const gdb_byte *myaddr, int len)
1928 {
1929 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1930
1931 inferior_ptid = ptid;
1932 write_memory (memaddr, myaddr, len);
1933 }
1934
1935 /* Restore the contents of the copy area for thread PTID. */
1936
1937 static void
1938 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1939 ptid_t ptid)
1940 {
1941 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1942
1943 write_memory_ptid (ptid, displaced->step_copy,
1944 displaced->step_saved_copy, len);
1945 if (debug_displaced)
1946 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1947 target_pid_to_str (ptid),
1948 paddress (displaced->step_gdbarch,
1949 displaced->step_copy));
1950 }
1951
1952 /* If we displaced stepped an instruction successfully, adjust
1953 registers and memory to yield the same effect the instruction would
1954 have had if we had executed it at its original address, and return
1955 1. If the instruction didn't complete, relocate the PC and return
1956 -1. If the thread wasn't displaced stepping, return 0. */
1957
1958 static int
1959 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1960 {
1961 struct cleanup *old_cleanups;
1962 struct displaced_step_inferior_state *displaced
1963 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1964 int ret;
1965
1966 /* Was any thread of this process doing a displaced step? */
1967 if (displaced == NULL)
1968 return 0;
1969
1970 /* Was this event for the pid we displaced? */
1971 if (ptid_equal (displaced->step_ptid, null_ptid)
1972 || ! ptid_equal (displaced->step_ptid, event_ptid))
1973 return 0;
1974
1975 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1976
1977 displaced_step_restore (displaced, displaced->step_ptid);
1978
1979 /* Fixup may need to read memory/registers. Switch to the thread
1980 that we're fixing up. Also, target_stopped_by_watchpoint checks
1981 the current thread. */
1982 switch_to_thread (event_ptid);
1983
1984 /* Did the instruction complete successfully? */
1985 if (signal == GDB_SIGNAL_TRAP
1986 && !(target_stopped_by_watchpoint ()
1987 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1988 || target_have_steppable_watchpoint)))
1989 {
1990 /* Fix up the resulting state. */
1991 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1992 displaced->step_closure,
1993 displaced->step_original,
1994 displaced->step_copy,
1995 get_thread_regcache (displaced->step_ptid));
1996 ret = 1;
1997 }
1998 else
1999 {
2000 /* Since the instruction didn't complete, all we can do is
2001 relocate the PC. */
2002 struct regcache *regcache = get_thread_regcache (event_ptid);
2003 CORE_ADDR pc = regcache_read_pc (regcache);
2004
2005 pc = displaced->step_original + (pc - displaced->step_copy);
2006 regcache_write_pc (regcache, pc);
2007 ret = -1;
2008 }
2009
2010 do_cleanups (old_cleanups);
2011
2012 displaced->step_ptid = null_ptid;
2013
2014 return ret;
2015 }
2016
2017 /* Data to be passed around while handling an event. This data is
2018 discarded between events. */
2019 struct execution_control_state
2020 {
2021 ptid_t ptid;
2022 /* The thread that got the event, if this was a thread event; NULL
2023 otherwise. */
2024 struct thread_info *event_thread;
2025
2026 struct target_waitstatus ws;
2027 int stop_func_filled_in;
2028 CORE_ADDR stop_func_start;
2029 CORE_ADDR stop_func_end;
2030 const char *stop_func_name;
2031 int wait_some_more;
2032
2033 /* True if the event thread hit the single-step breakpoint of
2034 another thread. Thus the event doesn't cause a stop, the thread
2035 needs to be single-stepped past the single-step breakpoint before
2036 we can switch back to the original stepping thread. */
2037 int hit_singlestep_breakpoint;
2038 };
2039
2040 /* Clear ECS and set it to point at TP. */
2041
2042 static void
2043 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2044 {
2045 memset (ecs, 0, sizeof (*ecs));
2046 ecs->event_thread = tp;
2047 ecs->ptid = tp->ptid;
2048 }
2049
2050 static void keep_going_pass_signal (struct execution_control_state *ecs);
2051 static void prepare_to_wait (struct execution_control_state *ecs);
2052 static int keep_going_stepped_thread (struct thread_info *tp);
2053 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2054
2055 /* Are there any pending step-over requests? If so, run all we can
2056 now and return true. Otherwise, return false. */
2057
2058 static int
2059 start_step_over (void)
2060 {
2061 struct thread_info *tp, *next;
2062
2063 /* Don't start a new step-over if we already have an in-line
2064 step-over operation ongoing. */
2065 if (step_over_info_valid_p ())
2066 return 0;
2067
2068 for (tp = step_over_queue_head; tp != NULL; tp = next)
2069 {
2070 struct execution_control_state ecss;
2071 struct execution_control_state *ecs = &ecss;
2072 step_over_what step_what;
2073 int must_be_in_line;
2074
2075 gdb_assert (!tp->stop_requested);
2076
2077 next = thread_step_over_chain_next (tp);
2078
2079 /* If this inferior already has a displaced step in process,
2080 don't start a new one. */
2081 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2082 continue;
2083
2084 step_what = thread_still_needs_step_over (tp);
2085 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2086 || ((step_what & STEP_OVER_BREAKPOINT)
2087 && !use_displaced_stepping (tp)));
2088
2089 /* We currently stop all threads of all processes to step-over
2090 in-line. If we need to start a new in-line step-over, let
2091 any pending displaced steps finish first. */
2092 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2093 return 0;
2094
2095 thread_step_over_chain_remove (tp);
2096
2097 if (step_over_queue_head == NULL)
2098 {
2099 if (debug_infrun)
2100 fprintf_unfiltered (gdb_stdlog,
2101 "infrun: step-over queue now empty\n");
2102 }
2103
2104 if (tp->control.trap_expected
2105 || tp->resumed
2106 || tp->executing)
2107 {
2108 internal_error (__FILE__, __LINE__,
2109 "[%s] has inconsistent state: "
2110 "trap_expected=%d, resumed=%d, executing=%d\n",
2111 target_pid_to_str (tp->ptid),
2112 tp->control.trap_expected,
2113 tp->resumed,
2114 tp->executing);
2115 }
2116
2117 if (debug_infrun)
2118 fprintf_unfiltered (gdb_stdlog,
2119 "infrun: resuming [%s] for step-over\n",
2120 target_pid_to_str (tp->ptid));
2121
2122 /* keep_going_pass_signal skips the step-over if the breakpoint
2123 is no longer inserted. In all-stop, we want to keep looking
2124 for a thread that needs a step-over instead of resuming TP,
2125 because we wouldn't be able to resume anything else until the
2126 target stops again. In non-stop, the resume always resumes
2127 only TP, so it's OK to let the thread resume freely. */
2128 if (!target_is_non_stop_p () && !step_what)
2129 continue;
2130
2131 switch_to_thread (tp->ptid);
2132 reset_ecs (ecs, tp);
2133 keep_going_pass_signal (ecs);
2134
2135 if (!ecs->wait_some_more)
2136 error (_("Command aborted."));
2137
2138 gdb_assert (tp->resumed);
2139
2140 /* If we started a new in-line step-over, we're done. */
2141 if (step_over_info_valid_p ())
2142 {
2143 gdb_assert (tp->control.trap_expected);
2144 return 1;
2145 }
2146
2147 if (!target_is_non_stop_p ())
2148 {
2149 /* On all-stop, shouldn't have resumed unless we needed a
2150 step over. */
2151 gdb_assert (tp->control.trap_expected
2152 || tp->step_after_step_resume_breakpoint);
2153
2154 /* With remote targets (at least), in all-stop, we can't
2155 issue any further remote commands until the program stops
2156 again. */
2157 return 1;
2158 }
2159
2160 /* Either the thread no longer needed a step-over, or a new
2161 displaced stepping sequence started. Even in the latter
2162 case, continue looking. Maybe we can also start another
2163 displaced step on a thread of other process. */
2164 }
2165
2166 return 0;
2167 }
2168
2169 /* Update global variables holding ptids to hold NEW_PTID if they were
2170 holding OLD_PTID. */
2171 static void
2172 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2173 {
2174 struct displaced_step_inferior_state *displaced;
2175
2176 if (ptid_equal (inferior_ptid, old_ptid))
2177 inferior_ptid = new_ptid;
2178
2179 for (displaced = displaced_step_inferior_states;
2180 displaced;
2181 displaced = displaced->next)
2182 {
2183 if (ptid_equal (displaced->step_ptid, old_ptid))
2184 displaced->step_ptid = new_ptid;
2185 }
2186 }
2187
2188 \f
2189
2190 static const char schedlock_off[] = "off";
2191 static const char schedlock_on[] = "on";
2192 static const char schedlock_step[] = "step";
2193 static const char schedlock_replay[] = "replay";
2194 static const char *const scheduler_enums[] = {
2195 schedlock_off,
2196 schedlock_on,
2197 schedlock_step,
2198 schedlock_replay,
2199 NULL
2200 };
2201 static const char *scheduler_mode = schedlock_replay;
2202 static void
2203 show_scheduler_mode (struct ui_file *file, int from_tty,
2204 struct cmd_list_element *c, const char *value)
2205 {
2206 fprintf_filtered (file,
2207 _("Mode for locking scheduler "
2208 "during execution is \"%s\".\n"),
2209 value);
2210 }
2211
2212 static void
2213 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2214 {
2215 if (!target_can_lock_scheduler)
2216 {
2217 scheduler_mode = schedlock_off;
2218 error (_("Target '%s' cannot support this command."), target_shortname);
2219 }
2220 }
2221
2222 /* True if execution commands resume all threads of all processes by
2223 default; otherwise, resume only threads of the current inferior
2224 process. */
2225 int sched_multi = 0;
2226
2227 /* Try to setup for software single stepping over the specified location.
2228 Return 1 if target_resume() should use hardware single step.
2229
2230 GDBARCH the current gdbarch.
2231 PC the location to step over. */
2232
2233 static int
2234 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2235 {
2236 int hw_step = 1;
2237
2238 if (execution_direction == EXEC_FORWARD
2239 && gdbarch_software_single_step_p (gdbarch))
2240 hw_step = !insert_single_step_breakpoints (gdbarch);
2241
2242 return hw_step;
2243 }
2244
2245 /* See infrun.h. */
2246
2247 ptid_t
2248 user_visible_resume_ptid (int step)
2249 {
2250 ptid_t resume_ptid;
2251
2252 if (non_stop)
2253 {
2254 /* With non-stop mode on, threads are always handled
2255 individually. */
2256 resume_ptid = inferior_ptid;
2257 }
2258 else if ((scheduler_mode == schedlock_on)
2259 || (scheduler_mode == schedlock_step && step))
2260 {
2261 /* User-settable 'scheduler' mode requires solo thread
2262 resume. */
2263 resume_ptid = inferior_ptid;
2264 }
2265 else if ((scheduler_mode == schedlock_replay)
2266 && target_record_will_replay (minus_one_ptid, execution_direction))
2267 {
2268 /* User-settable 'scheduler' mode requires solo thread resume in replay
2269 mode. */
2270 resume_ptid = inferior_ptid;
2271 }
2272 else if (!sched_multi && target_supports_multi_process ())
2273 {
2274 /* Resume all threads of the current process (and none of other
2275 processes). */
2276 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2277 }
2278 else
2279 {
2280 /* Resume all threads of all processes. */
2281 resume_ptid = RESUME_ALL;
2282 }
2283
2284 return resume_ptid;
2285 }
2286
2287 /* Return a ptid representing the set of threads that we will resume,
2288 in the perspective of the target, assuming run control handling
2289 does not require leaving some threads stopped (e.g., stepping past
2290 breakpoint). USER_STEP indicates whether we're about to start the
2291 target for a stepping command. */
2292
2293 static ptid_t
2294 internal_resume_ptid (int user_step)
2295 {
2296 /* In non-stop, we always control threads individually. Note that
2297 the target may always work in non-stop mode even with "set
2298 non-stop off", in which case user_visible_resume_ptid could
2299 return a wildcard ptid. */
2300 if (target_is_non_stop_p ())
2301 return inferior_ptid;
2302 else
2303 return user_visible_resume_ptid (user_step);
2304 }
2305
2306 /* Wrapper for target_resume, that handles infrun-specific
2307 bookkeeping. */
2308
2309 static void
2310 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2311 {
2312 struct thread_info *tp = inferior_thread ();
2313
2314 gdb_assert (!tp->stop_requested);
2315
2316 /* Install inferior's terminal modes. */
2317 target_terminal::inferior ();
2318
2319 /* Avoid confusing the next resume, if the next stop/resume
2320 happens to apply to another thread. */
2321 tp->suspend.stop_signal = GDB_SIGNAL_0;
2322
2323 /* Advise target which signals may be handled silently.
2324
2325 If we have removed breakpoints because we are stepping over one
2326 in-line (in any thread), we need to receive all signals to avoid
2327 accidentally skipping a breakpoint during execution of a signal
2328 handler.
2329
2330 Likewise if we're displaced stepping, otherwise a trap for a
2331 breakpoint in a signal handler might be confused with the
2332 displaced step finishing. We don't make the displaced_step_fixup
2333 step distinguish the cases instead, because:
2334
2335 - a backtrace while stopped in the signal handler would show the
2336 scratch pad as frame older than the signal handler, instead of
2337 the real mainline code.
2338
2339 - when the thread is later resumed, the signal handler would
2340 return to the scratch pad area, which would no longer be
2341 valid. */
2342 if (step_over_info_valid_p ()
2343 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2344 target_pass_signals (0, NULL);
2345 else
2346 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2347
2348 target_resume (resume_ptid, step, sig);
2349
2350 target_commit_resume ();
2351 }
2352
2353 /* Resume the inferior. SIG is the signal to give the inferior
2354 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2355 call 'resume', which handles exceptions. */
2356
2357 static void
2358 resume_1 (enum gdb_signal sig)
2359 {
2360 struct regcache *regcache = get_current_regcache ();
2361 struct gdbarch *gdbarch = regcache->arch ();
2362 struct thread_info *tp = inferior_thread ();
2363 CORE_ADDR pc = regcache_read_pc (regcache);
2364 const address_space *aspace = regcache->aspace ();
2365 ptid_t resume_ptid;
2366 /* This represents the user's step vs continue request. When
2367 deciding whether "set scheduler-locking step" applies, it's the
2368 user's intention that counts. */
2369 const int user_step = tp->control.stepping_command;
2370 /* This represents what we'll actually request the target to do.
2371 This can decay from a step to a continue, if e.g., we need to
2372 implement single-stepping with breakpoints (software
2373 single-step). */
2374 int step;
2375
2376 gdb_assert (!tp->stop_requested);
2377 gdb_assert (!thread_is_in_step_over_chain (tp));
2378
2379 if (tp->suspend.waitstatus_pending_p)
2380 {
2381 if (debug_infrun)
2382 {
2383 std::string statstr
2384 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2385
2386 fprintf_unfiltered (gdb_stdlog,
2387 "infrun: resume: thread %s has pending wait "
2388 "status %s (currently_stepping=%d).\n",
2389 target_pid_to_str (tp->ptid), statstr.c_str (),
2390 currently_stepping (tp));
2391 }
2392
2393 tp->resumed = 1;
2394
2395 /* FIXME: What should we do if we are supposed to resume this
2396 thread with a signal? Maybe we should maintain a queue of
2397 pending signals to deliver. */
2398 if (sig != GDB_SIGNAL_0)
2399 {
2400 warning (_("Couldn't deliver signal %s to %s."),
2401 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2402 }
2403
2404 tp->suspend.stop_signal = GDB_SIGNAL_0;
2405
2406 if (target_can_async_p ())
2407 target_async (1);
2408 return;
2409 }
2410
2411 tp->stepped_breakpoint = 0;
2412
2413 /* Depends on stepped_breakpoint. */
2414 step = currently_stepping (tp);
2415
2416 if (current_inferior ()->waiting_for_vfork_done)
2417 {
2418 /* Don't try to single-step a vfork parent that is waiting for
2419 the child to get out of the shared memory region (by exec'ing
2420 or exiting). This is particularly important on software
2421 single-step archs, as the child process would trip on the
2422 software single step breakpoint inserted for the parent
2423 process. Since the parent will not actually execute any
2424 instruction until the child is out of the shared region (such
2425 are vfork's semantics), it is safe to simply continue it.
2426 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2427 the parent, and tell it to `keep_going', which automatically
2428 re-sets it stepping. */
2429 if (debug_infrun)
2430 fprintf_unfiltered (gdb_stdlog,
2431 "infrun: resume : clear step\n");
2432 step = 0;
2433 }
2434
2435 if (debug_infrun)
2436 fprintf_unfiltered (gdb_stdlog,
2437 "infrun: resume (step=%d, signal=%s), "
2438 "trap_expected=%d, current thread [%s] at %s\n",
2439 step, gdb_signal_to_symbol_string (sig),
2440 tp->control.trap_expected,
2441 target_pid_to_str (inferior_ptid),
2442 paddress (gdbarch, pc));
2443
2444 /* Normally, by the time we reach `resume', the breakpoints are either
2445 removed or inserted, as appropriate. The exception is if we're sitting
2446 at a permanent breakpoint; we need to step over it, but permanent
2447 breakpoints can't be removed. So we have to test for it here. */
2448 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2449 {
2450 if (sig != GDB_SIGNAL_0)
2451 {
2452 /* We have a signal to pass to the inferior. The resume
2453 may, or may not take us to the signal handler. If this
2454 is a step, we'll need to stop in the signal handler, if
2455 there's one, (if the target supports stepping into
2456 handlers), or in the next mainline instruction, if
2457 there's no handler. If this is a continue, we need to be
2458 sure to run the handler with all breakpoints inserted.
2459 In all cases, set a breakpoint at the current address
2460 (where the handler returns to), and once that breakpoint
2461 is hit, resume skipping the permanent breakpoint. If
2462 that breakpoint isn't hit, then we've stepped into the
2463 signal handler (or hit some other event). We'll delete
2464 the step-resume breakpoint then. */
2465
2466 if (debug_infrun)
2467 fprintf_unfiltered (gdb_stdlog,
2468 "infrun: resume: skipping permanent breakpoint, "
2469 "deliver signal first\n");
2470
2471 clear_step_over_info ();
2472 tp->control.trap_expected = 0;
2473
2474 if (tp->control.step_resume_breakpoint == NULL)
2475 {
2476 /* Set a "high-priority" step-resume, as we don't want
2477 user breakpoints at PC to trigger (again) when this
2478 hits. */
2479 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2480 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2481
2482 tp->step_after_step_resume_breakpoint = step;
2483 }
2484
2485 insert_breakpoints ();
2486 }
2487 else
2488 {
2489 /* There's no signal to pass, we can go ahead and skip the
2490 permanent breakpoint manually. */
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint\n");
2494 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2495 /* Update pc to reflect the new address from which we will
2496 execute instructions. */
2497 pc = regcache_read_pc (regcache);
2498
2499 if (step)
2500 {
2501 /* We've already advanced the PC, so the stepping part
2502 is done. Now we need to arrange for a trap to be
2503 reported to handle_inferior_event. Set a breakpoint
2504 at the current PC, and run to it. Don't update
2505 prev_pc, because if we end in
2506 switch_back_to_stepped_thread, we want the "expected
2507 thread advanced also" branch to be taken. IOW, we
2508 don't want this thread to step further from PC
2509 (overstep). */
2510 gdb_assert (!step_over_info_valid_p ());
2511 insert_single_step_breakpoint (gdbarch, aspace, pc);
2512 insert_breakpoints ();
2513
2514 resume_ptid = internal_resume_ptid (user_step);
2515 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2516 tp->resumed = 1;
2517 return;
2518 }
2519 }
2520 }
2521
2522 /* If we have a breakpoint to step over, make sure to do a single
2523 step only. Same if we have software watchpoints. */
2524 if (tp->control.trap_expected || bpstat_should_step ())
2525 tp->control.may_range_step = 0;
2526
2527 /* If enabled, step over breakpoints by executing a copy of the
2528 instruction at a different address.
2529
2530 We can't use displaced stepping when we have a signal to deliver;
2531 the comments for displaced_step_prepare explain why. The
2532 comments in the handle_inferior event for dealing with 'random
2533 signals' explain what we do instead.
2534
2535 We can't use displaced stepping when we are waiting for vfork_done
2536 event, displaced stepping breaks the vfork child similarly as single
2537 step software breakpoint. */
2538 if (tp->control.trap_expected
2539 && use_displaced_stepping (tp)
2540 && !step_over_info_valid_p ()
2541 && sig == GDB_SIGNAL_0
2542 && !current_inferior ()->waiting_for_vfork_done)
2543 {
2544 int prepared = displaced_step_prepare (inferior_ptid);
2545
2546 if (prepared == 0)
2547 {
2548 if (debug_infrun)
2549 fprintf_unfiltered (gdb_stdlog,
2550 "Got placed in step-over queue\n");
2551
2552 tp->control.trap_expected = 0;
2553 return;
2554 }
2555 else if (prepared < 0)
2556 {
2557 /* Fallback to stepping over the breakpoint in-line. */
2558
2559 if (target_is_non_stop_p ())
2560 stop_all_threads ();
2561
2562 set_step_over_info (regcache->aspace (),
2563 regcache_read_pc (regcache), 0, tp->global_num);
2564
2565 step = maybe_software_singlestep (gdbarch, pc);
2566
2567 insert_breakpoints ();
2568 }
2569 else if (prepared > 0)
2570 {
2571 struct displaced_step_inferior_state *displaced;
2572
2573 /* Update pc to reflect the new address from which we will
2574 execute instructions due to displaced stepping. */
2575 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2576
2577 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2578 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2579 displaced->step_closure);
2580 }
2581 }
2582
2583 /* Do we need to do it the hard way, w/temp breakpoints? */
2584 else if (step)
2585 step = maybe_software_singlestep (gdbarch, pc);
2586
2587 /* Currently, our software single-step implementation leads to different
2588 results than hardware single-stepping in one situation: when stepping
2589 into delivering a signal which has an associated signal handler,
2590 hardware single-step will stop at the first instruction of the handler,
2591 while software single-step will simply skip execution of the handler.
2592
2593 For now, this difference in behavior is accepted since there is no
2594 easy way to actually implement single-stepping into a signal handler
2595 without kernel support.
2596
2597 However, there is one scenario where this difference leads to follow-on
2598 problems: if we're stepping off a breakpoint by removing all breakpoints
2599 and then single-stepping. In this case, the software single-step
2600 behavior means that even if there is a *breakpoint* in the signal
2601 handler, GDB still would not stop.
2602
2603 Fortunately, we can at least fix this particular issue. We detect
2604 here the case where we are about to deliver a signal while software
2605 single-stepping with breakpoints removed. In this situation, we
2606 revert the decisions to remove all breakpoints and insert single-
2607 step breakpoints, and instead we install a step-resume breakpoint
2608 at the current address, deliver the signal without stepping, and
2609 once we arrive back at the step-resume breakpoint, actually step
2610 over the breakpoint we originally wanted to step over. */
2611 if (thread_has_single_step_breakpoints_set (tp)
2612 && sig != GDB_SIGNAL_0
2613 && step_over_info_valid_p ())
2614 {
2615 /* If we have nested signals or a pending signal is delivered
2616 immediately after a handler returns, might might already have
2617 a step-resume breakpoint set on the earlier handler. We cannot
2618 set another step-resume breakpoint; just continue on until the
2619 original breakpoint is hit. */
2620 if (tp->control.step_resume_breakpoint == NULL)
2621 {
2622 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2623 tp->step_after_step_resume_breakpoint = 1;
2624 }
2625
2626 delete_single_step_breakpoints (tp);
2627
2628 clear_step_over_info ();
2629 tp->control.trap_expected = 0;
2630
2631 insert_breakpoints ();
2632 }
2633
2634 /* If STEP is set, it's a request to use hardware stepping
2635 facilities. But in that case, we should never
2636 use singlestep breakpoint. */
2637 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2638
2639 /* Decide the set of threads to ask the target to resume. */
2640 if (tp->control.trap_expected)
2641 {
2642 /* We're allowing a thread to run past a breakpoint it has
2643 hit, either by single-stepping the thread with the breakpoint
2644 removed, or by displaced stepping, with the breakpoint inserted.
2645 In the former case, we need to single-step only this thread,
2646 and keep others stopped, as they can miss this breakpoint if
2647 allowed to run. That's not really a problem for displaced
2648 stepping, but, we still keep other threads stopped, in case
2649 another thread is also stopped for a breakpoint waiting for
2650 its turn in the displaced stepping queue. */
2651 resume_ptid = inferior_ptid;
2652 }
2653 else
2654 resume_ptid = internal_resume_ptid (user_step);
2655
2656 if (execution_direction != EXEC_REVERSE
2657 && step && breakpoint_inserted_here_p (aspace, pc))
2658 {
2659 /* There are two cases where we currently need to step a
2660 breakpoint instruction when we have a signal to deliver:
2661
2662 - See handle_signal_stop where we handle random signals that
2663 could take out us out of the stepping range. Normally, in
2664 that case we end up continuing (instead of stepping) over the
2665 signal handler with a breakpoint at PC, but there are cases
2666 where we should _always_ single-step, even if we have a
2667 step-resume breakpoint, like when a software watchpoint is
2668 set. Assuming single-stepping and delivering a signal at the
2669 same time would takes us to the signal handler, then we could
2670 have removed the breakpoint at PC to step over it. However,
2671 some hardware step targets (like e.g., Mac OS) can't step
2672 into signal handlers, and for those, we need to leave the
2673 breakpoint at PC inserted, as otherwise if the handler
2674 recurses and executes PC again, it'll miss the breakpoint.
2675 So we leave the breakpoint inserted anyway, but we need to
2676 record that we tried to step a breakpoint instruction, so
2677 that adjust_pc_after_break doesn't end up confused.
2678
2679 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2680 in one thread after another thread that was stepping had been
2681 momentarily paused for a step-over. When we re-resume the
2682 stepping thread, it may be resumed from that address with a
2683 breakpoint that hasn't trapped yet. Seen with
2684 gdb.threads/non-stop-fair-events.exp, on targets that don't
2685 do displaced stepping. */
2686
2687 if (debug_infrun)
2688 fprintf_unfiltered (gdb_stdlog,
2689 "infrun: resume: [%s] stepped breakpoint\n",
2690 target_pid_to_str (tp->ptid));
2691
2692 tp->stepped_breakpoint = 1;
2693
2694 /* Most targets can step a breakpoint instruction, thus
2695 executing it normally. But if this one cannot, just
2696 continue and we will hit it anyway. */
2697 if (gdbarch_cannot_step_breakpoint (gdbarch))
2698 step = 0;
2699 }
2700
2701 if (debug_displaced
2702 && tp->control.trap_expected
2703 && use_displaced_stepping (tp)
2704 && !step_over_info_valid_p ())
2705 {
2706 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2707 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2708 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2709 gdb_byte buf[4];
2710
2711 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2712 paddress (resume_gdbarch, actual_pc));
2713 read_memory (actual_pc, buf, sizeof (buf));
2714 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2715 }
2716
2717 if (tp->control.may_range_step)
2718 {
2719 /* If we're resuming a thread with the PC out of the step
2720 range, then we're doing some nested/finer run control
2721 operation, like stepping the thread out of the dynamic
2722 linker or the displaced stepping scratch pad. We
2723 shouldn't have allowed a range step then. */
2724 gdb_assert (pc_in_thread_step_range (pc, tp));
2725 }
2726
2727 do_target_resume (resume_ptid, step, sig);
2728 tp->resumed = 1;
2729 }
2730
2731 /* Resume the inferior. SIG is the signal to give the inferior
2732 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2733 rolls back state on error. */
2734
2735 void
2736 resume (gdb_signal sig)
2737 {
2738 TRY
2739 {
2740 resume_1 (sig);
2741 }
2742 CATCH (ex, RETURN_MASK_ALL)
2743 {
2744 /* If resuming is being aborted for any reason, delete any
2745 single-step breakpoint resume_1 may have created, to avoid
2746 confusing the following resumption, and to avoid leaving
2747 single-step breakpoints perturbing other threads, in case
2748 we're running in non-stop mode. */
2749 if (inferior_ptid != null_ptid)
2750 delete_single_step_breakpoints (inferior_thread ());
2751 throw_exception (ex);
2752 }
2753 END_CATCH
2754 }
2755
2756 \f
2757 /* Proceeding. */
2758
2759 /* See infrun.h. */
2760
2761 /* Counter that tracks number of user visible stops. This can be used
2762 to tell whether a command has proceeded the inferior past the
2763 current location. This allows e.g., inferior function calls in
2764 breakpoint commands to not interrupt the command list. When the
2765 call finishes successfully, the inferior is standing at the same
2766 breakpoint as if nothing happened (and so we don't call
2767 normal_stop). */
2768 static ULONGEST current_stop_id;
2769
2770 /* See infrun.h. */
2771
2772 ULONGEST
2773 get_stop_id (void)
2774 {
2775 return current_stop_id;
2776 }
2777
2778 /* Called when we report a user visible stop. */
2779
2780 static void
2781 new_stop_id (void)
2782 {
2783 current_stop_id++;
2784 }
2785
2786 /* Clear out all variables saying what to do when inferior is continued.
2787 First do this, then set the ones you want, then call `proceed'. */
2788
2789 static void
2790 clear_proceed_status_thread (struct thread_info *tp)
2791 {
2792 if (debug_infrun)
2793 fprintf_unfiltered (gdb_stdlog,
2794 "infrun: clear_proceed_status_thread (%s)\n",
2795 target_pid_to_str (tp->ptid));
2796
2797 /* If we're starting a new sequence, then the previous finished
2798 single-step is no longer relevant. */
2799 if (tp->suspend.waitstatus_pending_p)
2800 {
2801 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2802 {
2803 if (debug_infrun)
2804 fprintf_unfiltered (gdb_stdlog,
2805 "infrun: clear_proceed_status: pending "
2806 "event of %s was a finished step. "
2807 "Discarding.\n",
2808 target_pid_to_str (tp->ptid));
2809
2810 tp->suspend.waitstatus_pending_p = 0;
2811 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2812 }
2813 else if (debug_infrun)
2814 {
2815 std::string statstr
2816 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2817
2818 fprintf_unfiltered (gdb_stdlog,
2819 "infrun: clear_proceed_status_thread: thread %s "
2820 "has pending wait status %s "
2821 "(currently_stepping=%d).\n",
2822 target_pid_to_str (tp->ptid), statstr.c_str (),
2823 currently_stepping (tp));
2824 }
2825 }
2826
2827 /* If this signal should not be seen by program, give it zero.
2828 Used for debugging signals. */
2829 if (!signal_pass_state (tp->suspend.stop_signal))
2830 tp->suspend.stop_signal = GDB_SIGNAL_0;
2831
2832 thread_fsm_delete (tp->thread_fsm);
2833 tp->thread_fsm = NULL;
2834
2835 tp->control.trap_expected = 0;
2836 tp->control.step_range_start = 0;
2837 tp->control.step_range_end = 0;
2838 tp->control.may_range_step = 0;
2839 tp->control.step_frame_id = null_frame_id;
2840 tp->control.step_stack_frame_id = null_frame_id;
2841 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2842 tp->control.step_start_function = NULL;
2843 tp->stop_requested = 0;
2844
2845 tp->control.stop_step = 0;
2846
2847 tp->control.proceed_to_finish = 0;
2848
2849 tp->control.stepping_command = 0;
2850
2851 /* Discard any remaining commands or status from previous stop. */
2852 bpstat_clear (&tp->control.stop_bpstat);
2853 }
2854
2855 void
2856 clear_proceed_status (int step)
2857 {
2858 /* With scheduler-locking replay, stop replaying other threads if we're
2859 not replaying the user-visible resume ptid.
2860
2861 This is a convenience feature to not require the user to explicitly
2862 stop replaying the other threads. We're assuming that the user's
2863 intent is to resume tracing the recorded process. */
2864 if (!non_stop && scheduler_mode == schedlock_replay
2865 && target_record_is_replaying (minus_one_ptid)
2866 && !target_record_will_replay (user_visible_resume_ptid (step),
2867 execution_direction))
2868 target_record_stop_replaying ();
2869
2870 if (!non_stop)
2871 {
2872 struct thread_info *tp;
2873 ptid_t resume_ptid;
2874
2875 resume_ptid = user_visible_resume_ptid (step);
2876
2877 /* In all-stop mode, delete the per-thread status of all threads
2878 we're about to resume, implicitly and explicitly. */
2879 ALL_NON_EXITED_THREADS (tp)
2880 {
2881 if (!ptid_match (tp->ptid, resume_ptid))
2882 continue;
2883 clear_proceed_status_thread (tp);
2884 }
2885 }
2886
2887 if (!ptid_equal (inferior_ptid, null_ptid))
2888 {
2889 struct inferior *inferior;
2890
2891 if (non_stop)
2892 {
2893 /* If in non-stop mode, only delete the per-thread status of
2894 the current thread. */
2895 clear_proceed_status_thread (inferior_thread ());
2896 }
2897
2898 inferior = current_inferior ();
2899 inferior->control.stop_soon = NO_STOP_QUIETLY;
2900 }
2901
2902 gdb::observers::about_to_proceed.notify ();
2903 }
2904
2905 /* Returns true if TP is still stopped at a breakpoint that needs
2906 stepping-over in order to make progress. If the breakpoint is gone
2907 meanwhile, we can skip the whole step-over dance. */
2908
2909 static int
2910 thread_still_needs_step_over_bp (struct thread_info *tp)
2911 {
2912 if (tp->stepping_over_breakpoint)
2913 {
2914 struct regcache *regcache = get_thread_regcache (tp->ptid);
2915
2916 if (breakpoint_here_p (regcache->aspace (),
2917 regcache_read_pc (regcache))
2918 == ordinary_breakpoint_here)
2919 return 1;
2920
2921 tp->stepping_over_breakpoint = 0;
2922 }
2923
2924 return 0;
2925 }
2926
2927 /* Check whether thread TP still needs to start a step-over in order
2928 to make progress when resumed. Returns an bitwise or of enum
2929 step_over_what bits, indicating what needs to be stepped over. */
2930
2931 static step_over_what
2932 thread_still_needs_step_over (struct thread_info *tp)
2933 {
2934 step_over_what what = 0;
2935
2936 if (thread_still_needs_step_over_bp (tp))
2937 what |= STEP_OVER_BREAKPOINT;
2938
2939 if (tp->stepping_over_watchpoint
2940 && !target_have_steppable_watchpoint)
2941 what |= STEP_OVER_WATCHPOINT;
2942
2943 return what;
2944 }
2945
2946 /* Returns true if scheduler locking applies. STEP indicates whether
2947 we're about to do a step/next-like command to a thread. */
2948
2949 static int
2950 schedlock_applies (struct thread_info *tp)
2951 {
2952 return (scheduler_mode == schedlock_on
2953 || (scheduler_mode == schedlock_step
2954 && tp->control.stepping_command)
2955 || (scheduler_mode == schedlock_replay
2956 && target_record_will_replay (minus_one_ptid,
2957 execution_direction)));
2958 }
2959
2960 /* Basic routine for continuing the program in various fashions.
2961
2962 ADDR is the address to resume at, or -1 for resume where stopped.
2963 SIGGNAL is the signal to give it, or 0 for none,
2964 or -1 for act according to how it stopped.
2965 STEP is nonzero if should trap after one instruction.
2966 -1 means return after that and print nothing.
2967 You should probably set various step_... variables
2968 before calling here, if you are stepping.
2969
2970 You should call clear_proceed_status before calling proceed. */
2971
2972 void
2973 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2974 {
2975 struct regcache *regcache;
2976 struct gdbarch *gdbarch;
2977 struct thread_info *tp;
2978 CORE_ADDR pc;
2979 ptid_t resume_ptid;
2980 struct execution_control_state ecss;
2981 struct execution_control_state *ecs = &ecss;
2982 struct cleanup *old_chain;
2983 int started;
2984
2985 /* If we're stopped at a fork/vfork, follow the branch set by the
2986 "set follow-fork-mode" command; otherwise, we'll just proceed
2987 resuming the current thread. */
2988 if (!follow_fork ())
2989 {
2990 /* The target for some reason decided not to resume. */
2991 normal_stop ();
2992 if (target_can_async_p ())
2993 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2994 return;
2995 }
2996
2997 /* We'll update this if & when we switch to a new thread. */
2998 previous_inferior_ptid = inferior_ptid;
2999
3000 regcache = get_current_regcache ();
3001 gdbarch = regcache->arch ();
3002 const address_space *aspace = regcache->aspace ();
3003
3004 pc = regcache_read_pc (regcache);
3005 tp = inferior_thread ();
3006
3007 /* Fill in with reasonable starting values. */
3008 init_thread_stepping_state (tp);
3009
3010 gdb_assert (!thread_is_in_step_over_chain (tp));
3011
3012 if (addr == (CORE_ADDR) -1)
3013 {
3014 if (pc == stop_pc
3015 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3016 && execution_direction != EXEC_REVERSE)
3017 /* There is a breakpoint at the address we will resume at,
3018 step one instruction before inserting breakpoints so that
3019 we do not stop right away (and report a second hit at this
3020 breakpoint).
3021
3022 Note, we don't do this in reverse, because we won't
3023 actually be executing the breakpoint insn anyway.
3024 We'll be (un-)executing the previous instruction. */
3025 tp->stepping_over_breakpoint = 1;
3026 else if (gdbarch_single_step_through_delay_p (gdbarch)
3027 && gdbarch_single_step_through_delay (gdbarch,
3028 get_current_frame ()))
3029 /* We stepped onto an instruction that needs to be stepped
3030 again before re-inserting the breakpoint, do so. */
3031 tp->stepping_over_breakpoint = 1;
3032 }
3033 else
3034 {
3035 regcache_write_pc (regcache, addr);
3036 }
3037
3038 if (siggnal != GDB_SIGNAL_DEFAULT)
3039 tp->suspend.stop_signal = siggnal;
3040
3041 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3042
3043 /* If an exception is thrown from this point on, make sure to
3044 propagate GDB's knowledge of the executing state to the
3045 frontend/user running state. */
3046 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3047
3048 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3049 threads (e.g., we might need to set threads stepping over
3050 breakpoints first), from the user/frontend's point of view, all
3051 threads in RESUME_PTID are now running. Unless we're calling an
3052 inferior function, as in that case we pretend the inferior
3053 doesn't run at all. */
3054 if (!tp->control.in_infcall)
3055 set_running (resume_ptid, 1);
3056
3057 if (debug_infrun)
3058 fprintf_unfiltered (gdb_stdlog,
3059 "infrun: proceed (addr=%s, signal=%s)\n",
3060 paddress (gdbarch, addr),
3061 gdb_signal_to_symbol_string (siggnal));
3062
3063 annotate_starting ();
3064
3065 /* Make sure that output from GDB appears before output from the
3066 inferior. */
3067 gdb_flush (gdb_stdout);
3068
3069 /* Since we've marked the inferior running, give it the terminal. A
3070 QUIT/Ctrl-C from here on is forwarded to the target (which can
3071 still detect attempts to unblock a stuck connection with repeated
3072 Ctrl-C from within target_pass_ctrlc). */
3073 target_terminal::inferior ();
3074
3075 /* In a multi-threaded task we may select another thread and
3076 then continue or step.
3077
3078 But if a thread that we're resuming had stopped at a breakpoint,
3079 it will immediately cause another breakpoint stop without any
3080 execution (i.e. it will report a breakpoint hit incorrectly). So
3081 we must step over it first.
3082
3083 Look for threads other than the current (TP) that reported a
3084 breakpoint hit and haven't been resumed yet since. */
3085
3086 /* If scheduler locking applies, we can avoid iterating over all
3087 threads. */
3088 if (!non_stop && !schedlock_applies (tp))
3089 {
3090 struct thread_info *current = tp;
3091
3092 ALL_NON_EXITED_THREADS (tp)
3093 {
3094 /* Ignore the current thread here. It's handled
3095 afterwards. */
3096 if (tp == current)
3097 continue;
3098
3099 /* Ignore threads of processes we're not resuming. */
3100 if (!ptid_match (tp->ptid, resume_ptid))
3101 continue;
3102
3103 if (!thread_still_needs_step_over (tp))
3104 continue;
3105
3106 gdb_assert (!thread_is_in_step_over_chain (tp));
3107
3108 if (debug_infrun)
3109 fprintf_unfiltered (gdb_stdlog,
3110 "infrun: need to step-over [%s] first\n",
3111 target_pid_to_str (tp->ptid));
3112
3113 thread_step_over_chain_enqueue (tp);
3114 }
3115
3116 tp = current;
3117 }
3118
3119 /* Enqueue the current thread last, so that we move all other
3120 threads over their breakpoints first. */
3121 if (tp->stepping_over_breakpoint)
3122 thread_step_over_chain_enqueue (tp);
3123
3124 /* If the thread isn't started, we'll still need to set its prev_pc,
3125 so that switch_back_to_stepped_thread knows the thread hasn't
3126 advanced. Must do this before resuming any thread, as in
3127 all-stop/remote, once we resume we can't send any other packet
3128 until the target stops again. */
3129 tp->prev_pc = regcache_read_pc (regcache);
3130
3131 {
3132 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3133
3134 started = start_step_over ();
3135
3136 if (step_over_info_valid_p ())
3137 {
3138 /* Either this thread started a new in-line step over, or some
3139 other thread was already doing one. In either case, don't
3140 resume anything else until the step-over is finished. */
3141 }
3142 else if (started && !target_is_non_stop_p ())
3143 {
3144 /* A new displaced stepping sequence was started. In all-stop,
3145 we can't talk to the target anymore until it next stops. */
3146 }
3147 else if (!non_stop && target_is_non_stop_p ())
3148 {
3149 /* In all-stop, but the target is always in non-stop mode.
3150 Start all other threads that are implicitly resumed too. */
3151 ALL_NON_EXITED_THREADS (tp)
3152 {
3153 /* Ignore threads of processes we're not resuming. */
3154 if (!ptid_match (tp->ptid, resume_ptid))
3155 continue;
3156
3157 if (tp->resumed)
3158 {
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: proceed: [%s] resumed\n",
3162 target_pid_to_str (tp->ptid));
3163 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3164 continue;
3165 }
3166
3167 if (thread_is_in_step_over_chain (tp))
3168 {
3169 if (debug_infrun)
3170 fprintf_unfiltered (gdb_stdlog,
3171 "infrun: proceed: [%s] needs step-over\n",
3172 target_pid_to_str (tp->ptid));
3173 continue;
3174 }
3175
3176 if (debug_infrun)
3177 fprintf_unfiltered (gdb_stdlog,
3178 "infrun: proceed: resuming %s\n",
3179 target_pid_to_str (tp->ptid));
3180
3181 reset_ecs (ecs, tp);
3182 switch_to_thread (tp->ptid);
3183 keep_going_pass_signal (ecs);
3184 if (!ecs->wait_some_more)
3185 error (_("Command aborted."));
3186 }
3187 }
3188 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3189 {
3190 /* The thread wasn't started, and isn't queued, run it now. */
3191 reset_ecs (ecs, tp);
3192 switch_to_thread (tp->ptid);
3193 keep_going_pass_signal (ecs);
3194 if (!ecs->wait_some_more)
3195 error (_("Command aborted."));
3196 }
3197 }
3198
3199 target_commit_resume ();
3200
3201 discard_cleanups (old_chain);
3202
3203 /* Tell the event loop to wait for it to stop. If the target
3204 supports asynchronous execution, it'll do this from within
3205 target_resume. */
3206 if (!target_can_async_p ())
3207 mark_async_event_handler (infrun_async_inferior_event_token);
3208 }
3209 \f
3210
3211 /* Start remote-debugging of a machine over a serial link. */
3212
3213 void
3214 start_remote (int from_tty)
3215 {
3216 struct inferior *inferior;
3217
3218 inferior = current_inferior ();
3219 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3220
3221 /* Always go on waiting for the target, regardless of the mode. */
3222 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3223 indicate to wait_for_inferior that a target should timeout if
3224 nothing is returned (instead of just blocking). Because of this,
3225 targets expecting an immediate response need to, internally, set
3226 things up so that the target_wait() is forced to eventually
3227 timeout. */
3228 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3229 differentiate to its caller what the state of the target is after
3230 the initial open has been performed. Here we're assuming that
3231 the target has stopped. It should be possible to eventually have
3232 target_open() return to the caller an indication that the target
3233 is currently running and GDB state should be set to the same as
3234 for an async run. */
3235 wait_for_inferior ();
3236
3237 /* Now that the inferior has stopped, do any bookkeeping like
3238 loading shared libraries. We want to do this before normal_stop,
3239 so that the displayed frame is up to date. */
3240 post_create_inferior (&current_target, from_tty);
3241
3242 normal_stop ();
3243 }
3244
3245 /* Initialize static vars when a new inferior begins. */
3246
3247 void
3248 init_wait_for_inferior (void)
3249 {
3250 /* These are meaningless until the first time through wait_for_inferior. */
3251
3252 breakpoint_init_inferior (inf_starting);
3253
3254 clear_proceed_status (0);
3255
3256 target_last_wait_ptid = minus_one_ptid;
3257
3258 previous_inferior_ptid = inferior_ptid;
3259
3260 /* Discard any skipped inlined frames. */
3261 clear_inline_frame_state (minus_one_ptid);
3262 }
3263
3264 \f
3265
3266 static void handle_inferior_event (struct execution_control_state *ecs);
3267
3268 static void handle_step_into_function (struct gdbarch *gdbarch,
3269 struct execution_control_state *ecs);
3270 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3271 struct execution_control_state *ecs);
3272 static void handle_signal_stop (struct execution_control_state *ecs);
3273 static void check_exception_resume (struct execution_control_state *,
3274 struct frame_info *);
3275
3276 static void end_stepping_range (struct execution_control_state *ecs);
3277 static void stop_waiting (struct execution_control_state *ecs);
3278 static void keep_going (struct execution_control_state *ecs);
3279 static void process_event_stop_test (struct execution_control_state *ecs);
3280 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3281
3282 /* This function is attached as a "thread_stop_requested" observer.
3283 Cleanup local state that assumed the PTID was to be resumed, and
3284 report the stop to the frontend. */
3285
3286 static void
3287 infrun_thread_stop_requested (ptid_t ptid)
3288 {
3289 struct thread_info *tp;
3290
3291 /* PTID was requested to stop. If the thread was already stopped,
3292 but the user/frontend doesn't know about that yet (e.g., the
3293 thread had been temporarily paused for some step-over), set up
3294 for reporting the stop now. */
3295 ALL_NON_EXITED_THREADS (tp)
3296 if (ptid_match (tp->ptid, ptid))
3297 {
3298 if (tp->state != THREAD_RUNNING)
3299 continue;
3300 if (tp->executing)
3301 continue;
3302
3303 /* Remove matching threads from the step-over queue, so
3304 start_step_over doesn't try to resume them
3305 automatically. */
3306 if (thread_is_in_step_over_chain (tp))
3307 thread_step_over_chain_remove (tp);
3308
3309 /* If the thread is stopped, but the user/frontend doesn't
3310 know about that yet, queue a pending event, as if the
3311 thread had just stopped now. Unless the thread already had
3312 a pending event. */
3313 if (!tp->suspend.waitstatus_pending_p)
3314 {
3315 tp->suspend.waitstatus_pending_p = 1;
3316 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3317 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3318 }
3319
3320 /* Clear the inline-frame state, since we're re-processing the
3321 stop. */
3322 clear_inline_frame_state (tp->ptid);
3323
3324 /* If this thread was paused because some other thread was
3325 doing an inline-step over, let that finish first. Once
3326 that happens, we'll restart all threads and consume pending
3327 stop events then. */
3328 if (step_over_info_valid_p ())
3329 continue;
3330
3331 /* Otherwise we can process the (new) pending event now. Set
3332 it so this pending event is considered by
3333 do_target_wait. */
3334 tp->resumed = 1;
3335 }
3336 }
3337
3338 static void
3339 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3340 {
3341 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3342 nullify_last_target_wait_ptid ();
3343 }
3344
3345 /* Delete the step resume, single-step and longjmp/exception resume
3346 breakpoints of TP. */
3347
3348 static void
3349 delete_thread_infrun_breakpoints (struct thread_info *tp)
3350 {
3351 delete_step_resume_breakpoint (tp);
3352 delete_exception_resume_breakpoint (tp);
3353 delete_single_step_breakpoints (tp);
3354 }
3355
3356 /* If the target still has execution, call FUNC for each thread that
3357 just stopped. In all-stop, that's all the non-exited threads; in
3358 non-stop, that's the current thread, only. */
3359
3360 typedef void (*for_each_just_stopped_thread_callback_func)
3361 (struct thread_info *tp);
3362
3363 static void
3364 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3365 {
3366 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3367 return;
3368
3369 if (target_is_non_stop_p ())
3370 {
3371 /* If in non-stop mode, only the current thread stopped. */
3372 func (inferior_thread ());
3373 }
3374 else
3375 {
3376 struct thread_info *tp;
3377
3378 /* In all-stop mode, all threads have stopped. */
3379 ALL_NON_EXITED_THREADS (tp)
3380 {
3381 func (tp);
3382 }
3383 }
3384 }
3385
3386 /* Delete the step resume and longjmp/exception resume breakpoints of
3387 the threads that just stopped. */
3388
3389 static void
3390 delete_just_stopped_threads_infrun_breakpoints (void)
3391 {
3392 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3393 }
3394
3395 /* Delete the single-step breakpoints of the threads that just
3396 stopped. */
3397
3398 static void
3399 delete_just_stopped_threads_single_step_breakpoints (void)
3400 {
3401 for_each_just_stopped_thread (delete_single_step_breakpoints);
3402 }
3403
3404 /* A cleanup wrapper. */
3405
3406 static void
3407 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3408 {
3409 delete_just_stopped_threads_infrun_breakpoints ();
3410 }
3411
3412 /* See infrun.h. */
3413
3414 void
3415 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3416 const struct target_waitstatus *ws)
3417 {
3418 std::string status_string = target_waitstatus_to_string (ws);
3419 string_file stb;
3420
3421 /* The text is split over several lines because it was getting too long.
3422 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3423 output as a unit; we want only one timestamp printed if debug_timestamp
3424 is set. */
3425
3426 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3427 ptid_get_pid (waiton_ptid),
3428 ptid_get_lwp (waiton_ptid),
3429 ptid_get_tid (waiton_ptid));
3430 if (ptid_get_pid (waiton_ptid) != -1)
3431 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3432 stb.printf (", status) =\n");
3433 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3434 ptid_get_pid (result_ptid),
3435 ptid_get_lwp (result_ptid),
3436 ptid_get_tid (result_ptid),
3437 target_pid_to_str (result_ptid));
3438 stb.printf ("infrun: %s\n", status_string.c_str ());
3439
3440 /* This uses %s in part to handle %'s in the text, but also to avoid
3441 a gcc error: the format attribute requires a string literal. */
3442 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3443 }
3444
3445 /* Select a thread at random, out of those which are resumed and have
3446 had events. */
3447
3448 static struct thread_info *
3449 random_pending_event_thread (ptid_t waiton_ptid)
3450 {
3451 struct thread_info *event_tp;
3452 int num_events = 0;
3453 int random_selector;
3454
3455 /* First see how many events we have. Count only resumed threads
3456 that have an event pending. */
3457 ALL_NON_EXITED_THREADS (event_tp)
3458 if (ptid_match (event_tp->ptid, waiton_ptid)
3459 && event_tp->resumed
3460 && event_tp->suspend.waitstatus_pending_p)
3461 num_events++;
3462
3463 if (num_events == 0)
3464 return NULL;
3465
3466 /* Now randomly pick a thread out of those that have had events. */
3467 random_selector = (int)
3468 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3469
3470 if (debug_infrun && num_events > 1)
3471 fprintf_unfiltered (gdb_stdlog,
3472 "infrun: Found %d events, selecting #%d\n",
3473 num_events, random_selector);
3474
3475 /* Select the Nth thread that has had an event. */
3476 ALL_NON_EXITED_THREADS (event_tp)
3477 if (ptid_match (event_tp->ptid, waiton_ptid)
3478 && event_tp->resumed
3479 && event_tp->suspend.waitstatus_pending_p)
3480 if (random_selector-- == 0)
3481 break;
3482
3483 return event_tp;
3484 }
3485
3486 /* Wrapper for target_wait that first checks whether threads have
3487 pending statuses to report before actually asking the target for
3488 more events. */
3489
3490 static ptid_t
3491 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3492 {
3493 ptid_t event_ptid;
3494 struct thread_info *tp;
3495
3496 /* First check if there is a resumed thread with a wait status
3497 pending. */
3498 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3499 {
3500 tp = random_pending_event_thread (ptid);
3501 }
3502 else
3503 {
3504 if (debug_infrun)
3505 fprintf_unfiltered (gdb_stdlog,
3506 "infrun: Waiting for specific thread %s.\n",
3507 target_pid_to_str (ptid));
3508
3509 /* We have a specific thread to check. */
3510 tp = find_thread_ptid (ptid);
3511 gdb_assert (tp != NULL);
3512 if (!tp->suspend.waitstatus_pending_p)
3513 tp = NULL;
3514 }
3515
3516 if (tp != NULL
3517 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3518 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3519 {
3520 struct regcache *regcache = get_thread_regcache (tp->ptid);
3521 struct gdbarch *gdbarch = regcache->arch ();
3522 CORE_ADDR pc;
3523 int discard = 0;
3524
3525 pc = regcache_read_pc (regcache);
3526
3527 if (pc != tp->suspend.stop_pc)
3528 {
3529 if (debug_infrun)
3530 fprintf_unfiltered (gdb_stdlog,
3531 "infrun: PC of %s changed. was=%s, now=%s\n",
3532 target_pid_to_str (tp->ptid),
3533 paddress (gdbarch, tp->prev_pc),
3534 paddress (gdbarch, pc));
3535 discard = 1;
3536 }
3537 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3538 {
3539 if (debug_infrun)
3540 fprintf_unfiltered (gdb_stdlog,
3541 "infrun: previous breakpoint of %s, at %s gone\n",
3542 target_pid_to_str (tp->ptid),
3543 paddress (gdbarch, pc));
3544
3545 discard = 1;
3546 }
3547
3548 if (discard)
3549 {
3550 if (debug_infrun)
3551 fprintf_unfiltered (gdb_stdlog,
3552 "infrun: pending event of %s cancelled.\n",
3553 target_pid_to_str (tp->ptid));
3554
3555 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3556 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3557 }
3558 }
3559
3560 if (tp != NULL)
3561 {
3562 if (debug_infrun)
3563 {
3564 std::string statstr
3565 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3566
3567 fprintf_unfiltered (gdb_stdlog,
3568 "infrun: Using pending wait status %s for %s.\n",
3569 statstr.c_str (),
3570 target_pid_to_str (tp->ptid));
3571 }
3572
3573 /* Now that we've selected our final event LWP, un-adjust its PC
3574 if it was a software breakpoint (and the target doesn't
3575 always adjust the PC itself). */
3576 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3577 && !target_supports_stopped_by_sw_breakpoint ())
3578 {
3579 struct regcache *regcache;
3580 struct gdbarch *gdbarch;
3581 int decr_pc;
3582
3583 regcache = get_thread_regcache (tp->ptid);
3584 gdbarch = regcache->arch ();
3585
3586 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3587 if (decr_pc != 0)
3588 {
3589 CORE_ADDR pc;
3590
3591 pc = regcache_read_pc (regcache);
3592 regcache_write_pc (regcache, pc + decr_pc);
3593 }
3594 }
3595
3596 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3597 *status = tp->suspend.waitstatus;
3598 tp->suspend.waitstatus_pending_p = 0;
3599
3600 /* Wake up the event loop again, until all pending events are
3601 processed. */
3602 if (target_is_async_p ())
3603 mark_async_event_handler (infrun_async_inferior_event_token);
3604 return tp->ptid;
3605 }
3606
3607 /* But if we don't find one, we'll have to wait. */
3608
3609 if (deprecated_target_wait_hook)
3610 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3611 else
3612 event_ptid = target_wait (ptid, status, options);
3613
3614 return event_ptid;
3615 }
3616
3617 /* Prepare and stabilize the inferior for detaching it. E.g.,
3618 detaching while a thread is displaced stepping is a recipe for
3619 crashing it, as nothing would readjust the PC out of the scratch
3620 pad. */
3621
3622 void
3623 prepare_for_detach (void)
3624 {
3625 struct inferior *inf = current_inferior ();
3626 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3627 struct displaced_step_inferior_state *displaced;
3628
3629 displaced = get_displaced_stepping_state (inf->pid);
3630
3631 /* Is any thread of this process displaced stepping? If not,
3632 there's nothing else to do. */
3633 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3634 return;
3635
3636 if (debug_infrun)
3637 fprintf_unfiltered (gdb_stdlog,
3638 "displaced-stepping in-process while detaching");
3639
3640 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3641
3642 while (!ptid_equal (displaced->step_ptid, null_ptid))
3643 {
3644 struct cleanup *old_chain_2;
3645 struct execution_control_state ecss;
3646 struct execution_control_state *ecs;
3647
3648 ecs = &ecss;
3649 memset (ecs, 0, sizeof (*ecs));
3650
3651 overlay_cache_invalid = 1;
3652 /* Flush target cache before starting to handle each event.
3653 Target was running and cache could be stale. This is just a
3654 heuristic. Running threads may modify target memory, but we
3655 don't get any event. */
3656 target_dcache_invalidate ();
3657
3658 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3659
3660 if (debug_infrun)
3661 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3662
3663 /* If an error happens while handling the event, propagate GDB's
3664 knowledge of the executing state to the frontend/user running
3665 state. */
3666 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3667 &minus_one_ptid);
3668
3669 /* Now figure out what to do with the result of the result. */
3670 handle_inferior_event (ecs);
3671
3672 /* No error, don't finish the state yet. */
3673 discard_cleanups (old_chain_2);
3674
3675 /* Breakpoints and watchpoints are not installed on the target
3676 at this point, and signals are passed directly to the
3677 inferior, so this must mean the process is gone. */
3678 if (!ecs->wait_some_more)
3679 {
3680 restore_detaching.release ();
3681 error (_("Program exited while detaching"));
3682 }
3683 }
3684
3685 restore_detaching.release ();
3686 }
3687
3688 /* Wait for control to return from inferior to debugger.
3689
3690 If inferior gets a signal, we may decide to start it up again
3691 instead of returning. That is why there is a loop in this function.
3692 When this function actually returns it means the inferior
3693 should be left stopped and GDB should read more commands. */
3694
3695 void
3696 wait_for_inferior (void)
3697 {
3698 struct cleanup *old_cleanups;
3699 struct cleanup *thread_state_chain;
3700
3701 if (debug_infrun)
3702 fprintf_unfiltered
3703 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3704
3705 old_cleanups
3706 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3707 NULL);
3708
3709 /* If an error happens while handling the event, propagate GDB's
3710 knowledge of the executing state to the frontend/user running
3711 state. */
3712 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3713
3714 while (1)
3715 {
3716 struct execution_control_state ecss;
3717 struct execution_control_state *ecs = &ecss;
3718 ptid_t waiton_ptid = minus_one_ptid;
3719
3720 memset (ecs, 0, sizeof (*ecs));
3721
3722 overlay_cache_invalid = 1;
3723
3724 /* Flush target cache before starting to handle each event.
3725 Target was running and cache could be stale. This is just a
3726 heuristic. Running threads may modify target memory, but we
3727 don't get any event. */
3728 target_dcache_invalidate ();
3729
3730 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3731
3732 if (debug_infrun)
3733 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3734
3735 /* Now figure out what to do with the result of the result. */
3736 handle_inferior_event (ecs);
3737
3738 if (!ecs->wait_some_more)
3739 break;
3740 }
3741
3742 /* No error, don't finish the state yet. */
3743 discard_cleanups (thread_state_chain);
3744
3745 do_cleanups (old_cleanups);
3746 }
3747
3748 /* Cleanup that reinstalls the readline callback handler, if the
3749 target is running in the background. If while handling the target
3750 event something triggered a secondary prompt, like e.g., a
3751 pagination prompt, we'll have removed the callback handler (see
3752 gdb_readline_wrapper_line). Need to do this as we go back to the
3753 event loop, ready to process further input. Note this has no
3754 effect if the handler hasn't actually been removed, because calling
3755 rl_callback_handler_install resets the line buffer, thus losing
3756 input. */
3757
3758 static void
3759 reinstall_readline_callback_handler_cleanup (void *arg)
3760 {
3761 struct ui *ui = current_ui;
3762
3763 if (!ui->async)
3764 {
3765 /* We're not going back to the top level event loop yet. Don't
3766 install the readline callback, as it'd prep the terminal,
3767 readline-style (raw, noecho) (e.g., --batch). We'll install
3768 it the next time the prompt is displayed, when we're ready
3769 for input. */
3770 return;
3771 }
3772
3773 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3774 gdb_rl_callback_handler_reinstall ();
3775 }
3776
3777 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3778 that's just the event thread. In all-stop, that's all threads. */
3779
3780 static void
3781 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3782 {
3783 struct thread_info *thr = ecs->event_thread;
3784
3785 if (thr != NULL && thr->thread_fsm != NULL)
3786 thread_fsm_clean_up (thr->thread_fsm, thr);
3787
3788 if (!non_stop)
3789 {
3790 ALL_NON_EXITED_THREADS (thr)
3791 {
3792 if (thr->thread_fsm == NULL)
3793 continue;
3794 if (thr == ecs->event_thread)
3795 continue;
3796
3797 switch_to_thread (thr->ptid);
3798 thread_fsm_clean_up (thr->thread_fsm, thr);
3799 }
3800
3801 if (ecs->event_thread != NULL)
3802 switch_to_thread (ecs->event_thread->ptid);
3803 }
3804 }
3805
3806 /* Helper for all_uis_check_sync_execution_done that works on the
3807 current UI. */
3808
3809 static void
3810 check_curr_ui_sync_execution_done (void)
3811 {
3812 struct ui *ui = current_ui;
3813
3814 if (ui->prompt_state == PROMPT_NEEDED
3815 && ui->async
3816 && !gdb_in_secondary_prompt_p (ui))
3817 {
3818 target_terminal::ours ();
3819 gdb::observers::sync_execution_done.notify ();
3820 ui_register_input_event_handler (ui);
3821 }
3822 }
3823
3824 /* See infrun.h. */
3825
3826 void
3827 all_uis_check_sync_execution_done (void)
3828 {
3829 SWITCH_THRU_ALL_UIS ()
3830 {
3831 check_curr_ui_sync_execution_done ();
3832 }
3833 }
3834
3835 /* See infrun.h. */
3836
3837 void
3838 all_uis_on_sync_execution_starting (void)
3839 {
3840 SWITCH_THRU_ALL_UIS ()
3841 {
3842 if (current_ui->prompt_state == PROMPT_NEEDED)
3843 async_disable_stdin ();
3844 }
3845 }
3846
3847 /* Asynchronous version of wait_for_inferior. It is called by the
3848 event loop whenever a change of state is detected on the file
3849 descriptor corresponding to the target. It can be called more than
3850 once to complete a single execution command. In such cases we need
3851 to keep the state in a global variable ECSS. If it is the last time
3852 that this function is called for a single execution command, then
3853 report to the user that the inferior has stopped, and do the
3854 necessary cleanups. */
3855
3856 void
3857 fetch_inferior_event (void *client_data)
3858 {
3859 struct execution_control_state ecss;
3860 struct execution_control_state *ecs = &ecss;
3861 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3862 struct cleanup *ts_old_chain;
3863 int cmd_done = 0;
3864 ptid_t waiton_ptid = minus_one_ptid;
3865
3866 memset (ecs, 0, sizeof (*ecs));
3867
3868 /* Events are always processed with the main UI as current UI. This
3869 way, warnings, debug output, etc. are always consistently sent to
3870 the main console. */
3871 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3872
3873 /* End up with readline processing input, if necessary. */
3874 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3875
3876 /* We're handling a live event, so make sure we're doing live
3877 debugging. If we're looking at traceframes while the target is
3878 running, we're going to need to get back to that mode after
3879 handling the event. */
3880 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3881 if (non_stop)
3882 {
3883 maybe_restore_traceframe.emplace ();
3884 set_current_traceframe (-1);
3885 }
3886
3887 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3888
3889 if (non_stop)
3890 /* In non-stop mode, the user/frontend should not notice a thread
3891 switch due to internal events. Make sure we reverse to the
3892 user selected thread and frame after handling the event and
3893 running any breakpoint commands. */
3894 maybe_restore_thread.emplace ();
3895
3896 overlay_cache_invalid = 1;
3897 /* Flush target cache before starting to handle each event. Target
3898 was running and cache could be stale. This is just a heuristic.
3899 Running threads may modify target memory, but we don't get any
3900 event. */
3901 target_dcache_invalidate ();
3902
3903 scoped_restore save_exec_dir
3904 = make_scoped_restore (&execution_direction, target_execution_direction ());
3905
3906 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3907 target_can_async_p () ? TARGET_WNOHANG : 0);
3908
3909 if (debug_infrun)
3910 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3911
3912 /* If an error happens while handling the event, propagate GDB's
3913 knowledge of the executing state to the frontend/user running
3914 state. */
3915 if (!target_is_non_stop_p ())
3916 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3917 else
3918 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3919
3920 /* Get executed before make_cleanup_restore_current_thread above to apply
3921 still for the thread which has thrown the exception. */
3922 make_bpstat_clear_actions_cleanup ();
3923
3924 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3925
3926 /* Now figure out what to do with the result of the result. */
3927 handle_inferior_event (ecs);
3928
3929 if (!ecs->wait_some_more)
3930 {
3931 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3932 int should_stop = 1;
3933 struct thread_info *thr = ecs->event_thread;
3934 int should_notify_stop = 1;
3935
3936 delete_just_stopped_threads_infrun_breakpoints ();
3937
3938 if (thr != NULL)
3939 {
3940 struct thread_fsm *thread_fsm = thr->thread_fsm;
3941
3942 if (thread_fsm != NULL)
3943 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3944 }
3945
3946 if (!should_stop)
3947 {
3948 keep_going (ecs);
3949 }
3950 else
3951 {
3952 clean_up_just_stopped_threads_fsms (ecs);
3953
3954 if (thr != NULL && thr->thread_fsm != NULL)
3955 {
3956 should_notify_stop
3957 = thread_fsm_should_notify_stop (thr->thread_fsm);
3958 }
3959
3960 if (should_notify_stop)
3961 {
3962 int proceeded = 0;
3963
3964 /* We may not find an inferior if this was a process exit. */
3965 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3966 proceeded = normal_stop ();
3967
3968 if (!proceeded)
3969 {
3970 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3971 cmd_done = 1;
3972 }
3973 }
3974 }
3975 }
3976
3977 /* No error, don't finish the thread states yet. */
3978 discard_cleanups (ts_old_chain);
3979
3980 /* Revert thread and frame. */
3981 do_cleanups (old_chain);
3982
3983 /* If a UI was in sync execution mode, and now isn't, restore its
3984 prompt (a synchronous execution command has finished, and we're
3985 ready for input). */
3986 all_uis_check_sync_execution_done ();
3987
3988 if (cmd_done
3989 && exec_done_display_p
3990 && (ptid_equal (inferior_ptid, null_ptid)
3991 || !is_running (inferior_ptid)))
3992 printf_unfiltered (_("completed.\n"));
3993 }
3994
3995 /* Record the frame and location we're currently stepping through. */
3996 void
3997 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3998 {
3999 struct thread_info *tp = inferior_thread ();
4000
4001 tp->control.step_frame_id = get_frame_id (frame);
4002 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4003
4004 tp->current_symtab = sal.symtab;
4005 tp->current_line = sal.line;
4006 }
4007
4008 /* Clear context switchable stepping state. */
4009
4010 void
4011 init_thread_stepping_state (struct thread_info *tss)
4012 {
4013 tss->stepped_breakpoint = 0;
4014 tss->stepping_over_breakpoint = 0;
4015 tss->stepping_over_watchpoint = 0;
4016 tss->step_after_step_resume_breakpoint = 0;
4017 }
4018
4019 /* Set the cached copy of the last ptid/waitstatus. */
4020
4021 void
4022 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4023 {
4024 target_last_wait_ptid = ptid;
4025 target_last_waitstatus = status;
4026 }
4027
4028 /* Return the cached copy of the last pid/waitstatus returned by
4029 target_wait()/deprecated_target_wait_hook(). The data is actually
4030 cached by handle_inferior_event(), which gets called immediately
4031 after target_wait()/deprecated_target_wait_hook(). */
4032
4033 void
4034 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4035 {
4036 *ptidp = target_last_wait_ptid;
4037 *status = target_last_waitstatus;
4038 }
4039
4040 void
4041 nullify_last_target_wait_ptid (void)
4042 {
4043 target_last_wait_ptid = minus_one_ptid;
4044 }
4045
4046 /* Switch thread contexts. */
4047
4048 static void
4049 context_switch (ptid_t ptid)
4050 {
4051 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4052 {
4053 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4054 target_pid_to_str (inferior_ptid));
4055 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4056 target_pid_to_str (ptid));
4057 }
4058
4059 switch_to_thread (ptid);
4060 }
4061
4062 /* If the target can't tell whether we've hit breakpoints
4063 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4064 check whether that could have been caused by a breakpoint. If so,
4065 adjust the PC, per gdbarch_decr_pc_after_break. */
4066
4067 static void
4068 adjust_pc_after_break (struct thread_info *thread,
4069 struct target_waitstatus *ws)
4070 {
4071 struct regcache *regcache;
4072 struct gdbarch *gdbarch;
4073 CORE_ADDR breakpoint_pc, decr_pc;
4074
4075 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4076 we aren't, just return.
4077
4078 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4079 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4080 implemented by software breakpoints should be handled through the normal
4081 breakpoint layer.
4082
4083 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4084 different signals (SIGILL or SIGEMT for instance), but it is less
4085 clear where the PC is pointing afterwards. It may not match
4086 gdbarch_decr_pc_after_break. I don't know any specific target that
4087 generates these signals at breakpoints (the code has been in GDB since at
4088 least 1992) so I can not guess how to handle them here.
4089
4090 In earlier versions of GDB, a target with
4091 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4092 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4093 target with both of these set in GDB history, and it seems unlikely to be
4094 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4095
4096 if (ws->kind != TARGET_WAITKIND_STOPPED)
4097 return;
4098
4099 if (ws->value.sig != GDB_SIGNAL_TRAP)
4100 return;
4101
4102 /* In reverse execution, when a breakpoint is hit, the instruction
4103 under it has already been de-executed. The reported PC always
4104 points at the breakpoint address, so adjusting it further would
4105 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4106 architecture:
4107
4108 B1 0x08000000 : INSN1
4109 B2 0x08000001 : INSN2
4110 0x08000002 : INSN3
4111 PC -> 0x08000003 : INSN4
4112
4113 Say you're stopped at 0x08000003 as above. Reverse continuing
4114 from that point should hit B2 as below. Reading the PC when the
4115 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4116 been de-executed already.
4117
4118 B1 0x08000000 : INSN1
4119 B2 PC -> 0x08000001 : INSN2
4120 0x08000002 : INSN3
4121 0x08000003 : INSN4
4122
4123 We can't apply the same logic as for forward execution, because
4124 we would wrongly adjust the PC to 0x08000000, since there's a
4125 breakpoint at PC - 1. We'd then report a hit on B1, although
4126 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4127 behaviour. */
4128 if (execution_direction == EXEC_REVERSE)
4129 return;
4130
4131 /* If the target can tell whether the thread hit a SW breakpoint,
4132 trust it. Targets that can tell also adjust the PC
4133 themselves. */
4134 if (target_supports_stopped_by_sw_breakpoint ())
4135 return;
4136
4137 /* Note that relying on whether a breakpoint is planted in memory to
4138 determine this can fail. E.g,. the breakpoint could have been
4139 removed since. Or the thread could have been told to step an
4140 instruction the size of a breakpoint instruction, and only
4141 _after_ was a breakpoint inserted at its address. */
4142
4143 /* If this target does not decrement the PC after breakpoints, then
4144 we have nothing to do. */
4145 regcache = get_thread_regcache (thread->ptid);
4146 gdbarch = regcache->arch ();
4147
4148 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4149 if (decr_pc == 0)
4150 return;
4151
4152 const address_space *aspace = regcache->aspace ();
4153
4154 /* Find the location where (if we've hit a breakpoint) the
4155 breakpoint would be. */
4156 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4157
4158 /* If the target can't tell whether a software breakpoint triggered,
4159 fallback to figuring it out based on breakpoints we think were
4160 inserted in the target, and on whether the thread was stepped or
4161 continued. */
4162
4163 /* Check whether there actually is a software breakpoint inserted at
4164 that location.
4165
4166 If in non-stop mode, a race condition is possible where we've
4167 removed a breakpoint, but stop events for that breakpoint were
4168 already queued and arrive later. To suppress those spurious
4169 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4170 and retire them after a number of stop events are reported. Note
4171 this is an heuristic and can thus get confused. The real fix is
4172 to get the "stopped by SW BP and needs adjustment" info out of
4173 the target/kernel (and thus never reach here; see above). */
4174 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4175 || (target_is_non_stop_p ()
4176 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4177 {
4178 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4179
4180 if (record_full_is_used ())
4181 restore_operation_disable.emplace
4182 (record_full_gdb_operation_disable_set ());
4183
4184 /* When using hardware single-step, a SIGTRAP is reported for both
4185 a completed single-step and a software breakpoint. Need to
4186 differentiate between the two, as the latter needs adjusting
4187 but the former does not.
4188
4189 The SIGTRAP can be due to a completed hardware single-step only if
4190 - we didn't insert software single-step breakpoints
4191 - this thread is currently being stepped
4192
4193 If any of these events did not occur, we must have stopped due
4194 to hitting a software breakpoint, and have to back up to the
4195 breakpoint address.
4196
4197 As a special case, we could have hardware single-stepped a
4198 software breakpoint. In this case (prev_pc == breakpoint_pc),
4199 we also need to back up to the breakpoint address. */
4200
4201 if (thread_has_single_step_breakpoints_set (thread)
4202 || !currently_stepping (thread)
4203 || (thread->stepped_breakpoint
4204 && thread->prev_pc == breakpoint_pc))
4205 regcache_write_pc (regcache, breakpoint_pc);
4206 }
4207 }
4208
4209 static int
4210 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4211 {
4212 for (frame = get_prev_frame (frame);
4213 frame != NULL;
4214 frame = get_prev_frame (frame))
4215 {
4216 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4217 return 1;
4218 if (get_frame_type (frame) != INLINE_FRAME)
4219 break;
4220 }
4221
4222 return 0;
4223 }
4224
4225 /* If the event thread has the stop requested flag set, pretend it
4226 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4227 target_stop). */
4228
4229 static bool
4230 handle_stop_requested (struct execution_control_state *ecs)
4231 {
4232 if (ecs->event_thread->stop_requested)
4233 {
4234 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4235 ecs->ws.value.sig = GDB_SIGNAL_0;
4236 handle_signal_stop (ecs);
4237 return true;
4238 }
4239 return false;
4240 }
4241
4242 /* Auxiliary function that handles syscall entry/return events.
4243 It returns 1 if the inferior should keep going (and GDB
4244 should ignore the event), or 0 if the event deserves to be
4245 processed. */
4246
4247 static int
4248 handle_syscall_event (struct execution_control_state *ecs)
4249 {
4250 struct regcache *regcache;
4251 int syscall_number;
4252
4253 if (!ptid_equal (ecs->ptid, inferior_ptid))
4254 context_switch (ecs->ptid);
4255
4256 regcache = get_thread_regcache (ecs->ptid);
4257 syscall_number = ecs->ws.value.syscall_number;
4258 stop_pc = regcache_read_pc (regcache);
4259
4260 if (catch_syscall_enabled () > 0
4261 && catching_syscall_number (syscall_number) > 0)
4262 {
4263 if (debug_infrun)
4264 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4265 syscall_number);
4266
4267 ecs->event_thread->control.stop_bpstat
4268 = bpstat_stop_status (regcache->aspace (),
4269 stop_pc, ecs->ptid, &ecs->ws);
4270
4271 if (handle_stop_requested (ecs))
4272 return 0;
4273
4274 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4275 {
4276 /* Catchpoint hit. */
4277 return 0;
4278 }
4279 }
4280
4281 if (handle_stop_requested (ecs))
4282 return 0;
4283
4284 /* If no catchpoint triggered for this, then keep going. */
4285 keep_going (ecs);
4286 return 1;
4287 }
4288
4289 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4290
4291 static void
4292 fill_in_stop_func (struct gdbarch *gdbarch,
4293 struct execution_control_state *ecs)
4294 {
4295 if (!ecs->stop_func_filled_in)
4296 {
4297 /* Don't care about return value; stop_func_start and stop_func_name
4298 will both be 0 if it doesn't work. */
4299 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4300 &ecs->stop_func_start, &ecs->stop_func_end);
4301 ecs->stop_func_start
4302 += gdbarch_deprecated_function_start_offset (gdbarch);
4303
4304 if (gdbarch_skip_entrypoint_p (gdbarch))
4305 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4306 ecs->stop_func_start);
4307
4308 ecs->stop_func_filled_in = 1;
4309 }
4310 }
4311
4312
4313 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4314
4315 static enum stop_kind
4316 get_inferior_stop_soon (ptid_t ptid)
4317 {
4318 struct inferior *inf = find_inferior_ptid (ptid);
4319
4320 gdb_assert (inf != NULL);
4321 return inf->control.stop_soon;
4322 }
4323
4324 /* Wait for one event. Store the resulting waitstatus in WS, and
4325 return the event ptid. */
4326
4327 static ptid_t
4328 wait_one (struct target_waitstatus *ws)
4329 {
4330 ptid_t event_ptid;
4331 ptid_t wait_ptid = minus_one_ptid;
4332
4333 overlay_cache_invalid = 1;
4334
4335 /* Flush target cache before starting to handle each event.
4336 Target was running and cache could be stale. This is just a
4337 heuristic. Running threads may modify target memory, but we
4338 don't get any event. */
4339 target_dcache_invalidate ();
4340
4341 if (deprecated_target_wait_hook)
4342 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4343 else
4344 event_ptid = target_wait (wait_ptid, ws, 0);
4345
4346 if (debug_infrun)
4347 print_target_wait_results (wait_ptid, event_ptid, ws);
4348
4349 return event_ptid;
4350 }
4351
4352 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4353 instead of the current thread. */
4354 #define THREAD_STOPPED_BY(REASON) \
4355 static int \
4356 thread_stopped_by_ ## REASON (ptid_t ptid) \
4357 { \
4358 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4359 inferior_ptid = ptid; \
4360 \
4361 return target_stopped_by_ ## REASON (); \
4362 }
4363
4364 /* Generate thread_stopped_by_watchpoint. */
4365 THREAD_STOPPED_BY (watchpoint)
4366 /* Generate thread_stopped_by_sw_breakpoint. */
4367 THREAD_STOPPED_BY (sw_breakpoint)
4368 /* Generate thread_stopped_by_hw_breakpoint. */
4369 THREAD_STOPPED_BY (hw_breakpoint)
4370
4371 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4372
4373 static void
4374 switch_to_thread_cleanup (void *ptid_p)
4375 {
4376 ptid_t ptid = *(ptid_t *) ptid_p;
4377
4378 switch_to_thread (ptid);
4379 }
4380
4381 /* Save the thread's event and stop reason to process it later. */
4382
4383 static void
4384 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4385 {
4386 struct regcache *regcache;
4387
4388 if (debug_infrun)
4389 {
4390 std::string statstr = target_waitstatus_to_string (ws);
4391
4392 fprintf_unfiltered (gdb_stdlog,
4393 "infrun: saving status %s for %d.%ld.%ld\n",
4394 statstr.c_str (),
4395 ptid_get_pid (tp->ptid),
4396 ptid_get_lwp (tp->ptid),
4397 ptid_get_tid (tp->ptid));
4398 }
4399
4400 /* Record for later. */
4401 tp->suspend.waitstatus = *ws;
4402 tp->suspend.waitstatus_pending_p = 1;
4403
4404 regcache = get_thread_regcache (tp->ptid);
4405 const address_space *aspace = regcache->aspace ();
4406
4407 if (ws->kind == TARGET_WAITKIND_STOPPED
4408 && ws->value.sig == GDB_SIGNAL_TRAP)
4409 {
4410 CORE_ADDR pc = regcache_read_pc (regcache);
4411
4412 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4413
4414 if (thread_stopped_by_watchpoint (tp->ptid))
4415 {
4416 tp->suspend.stop_reason
4417 = TARGET_STOPPED_BY_WATCHPOINT;
4418 }
4419 else if (target_supports_stopped_by_sw_breakpoint ()
4420 && thread_stopped_by_sw_breakpoint (tp->ptid))
4421 {
4422 tp->suspend.stop_reason
4423 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4424 }
4425 else if (target_supports_stopped_by_hw_breakpoint ()
4426 && thread_stopped_by_hw_breakpoint (tp->ptid))
4427 {
4428 tp->suspend.stop_reason
4429 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4430 }
4431 else if (!target_supports_stopped_by_hw_breakpoint ()
4432 && hardware_breakpoint_inserted_here_p (aspace,
4433 pc))
4434 {
4435 tp->suspend.stop_reason
4436 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4437 }
4438 else if (!target_supports_stopped_by_sw_breakpoint ()
4439 && software_breakpoint_inserted_here_p (aspace,
4440 pc))
4441 {
4442 tp->suspend.stop_reason
4443 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4444 }
4445 else if (!thread_has_single_step_breakpoints_set (tp)
4446 && currently_stepping (tp))
4447 {
4448 tp->suspend.stop_reason
4449 = TARGET_STOPPED_BY_SINGLE_STEP;
4450 }
4451 }
4452 }
4453
4454 /* A cleanup that disables thread create/exit events. */
4455
4456 static void
4457 disable_thread_events (void *arg)
4458 {
4459 target_thread_events (0);
4460 }
4461
4462 /* See infrun.h. */
4463
4464 void
4465 stop_all_threads (void)
4466 {
4467 /* We may need multiple passes to discover all threads. */
4468 int pass;
4469 int iterations = 0;
4470 ptid_t entry_ptid;
4471 struct cleanup *old_chain;
4472
4473 gdb_assert (target_is_non_stop_p ());
4474
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4477
4478 entry_ptid = inferior_ptid;
4479 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4480
4481 target_thread_events (1);
4482 make_cleanup (disable_thread_events, NULL);
4483
4484 /* Request threads to stop, and then wait for the stops. Because
4485 threads we already know about can spawn more threads while we're
4486 trying to stop them, and we only learn about new threads when we
4487 update the thread list, do this in a loop, and keep iterating
4488 until two passes find no threads that need to be stopped. */
4489 for (pass = 0; pass < 2; pass++, iterations++)
4490 {
4491 if (debug_infrun)
4492 fprintf_unfiltered (gdb_stdlog,
4493 "infrun: stop_all_threads, pass=%d, "
4494 "iterations=%d\n", pass, iterations);
4495 while (1)
4496 {
4497 ptid_t event_ptid;
4498 struct target_waitstatus ws;
4499 int need_wait = 0;
4500 struct thread_info *t;
4501
4502 update_thread_list ();
4503
4504 /* Go through all threads looking for threads that we need
4505 to tell the target to stop. */
4506 ALL_NON_EXITED_THREADS (t)
4507 {
4508 if (t->executing)
4509 {
4510 /* If already stopping, don't request a stop again.
4511 We just haven't seen the notification yet. */
4512 if (!t->stop_requested)
4513 {
4514 if (debug_infrun)
4515 fprintf_unfiltered (gdb_stdlog,
4516 "infrun: %s executing, "
4517 "need stop\n",
4518 target_pid_to_str (t->ptid));
4519 target_stop (t->ptid);
4520 t->stop_requested = 1;
4521 }
4522 else
4523 {
4524 if (debug_infrun)
4525 fprintf_unfiltered (gdb_stdlog,
4526 "infrun: %s executing, "
4527 "already stopping\n",
4528 target_pid_to_str (t->ptid));
4529 }
4530
4531 if (t->stop_requested)
4532 need_wait = 1;
4533 }
4534 else
4535 {
4536 if (debug_infrun)
4537 fprintf_unfiltered (gdb_stdlog,
4538 "infrun: %s not executing\n",
4539 target_pid_to_str (t->ptid));
4540
4541 /* The thread may be not executing, but still be
4542 resumed with a pending status to process. */
4543 t->resumed = 0;
4544 }
4545 }
4546
4547 if (!need_wait)
4548 break;
4549
4550 /* If we find new threads on the second iteration, restart
4551 over. We want to see two iterations in a row with all
4552 threads stopped. */
4553 if (pass > 0)
4554 pass = -1;
4555
4556 event_ptid = wait_one (&ws);
4557 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4558 {
4559 /* All resumed threads exited. */
4560 }
4561 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4562 || ws.kind == TARGET_WAITKIND_EXITED
4563 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4564 {
4565 if (debug_infrun)
4566 {
4567 ptid_t ptid = pid_to_ptid (ws.value.integer);
4568
4569 fprintf_unfiltered (gdb_stdlog,
4570 "infrun: %s exited while "
4571 "stopping threads\n",
4572 target_pid_to_str (ptid));
4573 }
4574 }
4575 else
4576 {
4577 struct inferior *inf;
4578
4579 t = find_thread_ptid (event_ptid);
4580 if (t == NULL)
4581 t = add_thread (event_ptid);
4582
4583 t->stop_requested = 0;
4584 t->executing = 0;
4585 t->resumed = 0;
4586 t->control.may_range_step = 0;
4587
4588 /* This may be the first time we see the inferior report
4589 a stop. */
4590 inf = find_inferior_ptid (event_ptid);
4591 if (inf->needs_setup)
4592 {
4593 switch_to_thread_no_regs (t);
4594 setup_inferior (0);
4595 }
4596
4597 if (ws.kind == TARGET_WAITKIND_STOPPED
4598 && ws.value.sig == GDB_SIGNAL_0)
4599 {
4600 /* We caught the event that we intended to catch, so
4601 there's no event pending. */
4602 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4603 t->suspend.waitstatus_pending_p = 0;
4604
4605 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4606 {
4607 /* Add it back to the step-over queue. */
4608 if (debug_infrun)
4609 {
4610 fprintf_unfiltered (gdb_stdlog,
4611 "infrun: displaced-step of %s "
4612 "canceled: adding back to the "
4613 "step-over queue\n",
4614 target_pid_to_str (t->ptid));
4615 }
4616 t->control.trap_expected = 0;
4617 thread_step_over_chain_enqueue (t);
4618 }
4619 }
4620 else
4621 {
4622 enum gdb_signal sig;
4623 struct regcache *regcache;
4624
4625 if (debug_infrun)
4626 {
4627 std::string statstr = target_waitstatus_to_string (&ws);
4628
4629 fprintf_unfiltered (gdb_stdlog,
4630 "infrun: target_wait %s, saving "
4631 "status for %d.%ld.%ld\n",
4632 statstr.c_str (),
4633 ptid_get_pid (t->ptid),
4634 ptid_get_lwp (t->ptid),
4635 ptid_get_tid (t->ptid));
4636 }
4637
4638 /* Record for later. */
4639 save_waitstatus (t, &ws);
4640
4641 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4642 ? ws.value.sig : GDB_SIGNAL_0);
4643
4644 if (displaced_step_fixup (t->ptid, sig) < 0)
4645 {
4646 /* Add it back to the step-over queue. */
4647 t->control.trap_expected = 0;
4648 thread_step_over_chain_enqueue (t);
4649 }
4650
4651 regcache = get_thread_regcache (t->ptid);
4652 t->suspend.stop_pc = regcache_read_pc (regcache);
4653
4654 if (debug_infrun)
4655 {
4656 fprintf_unfiltered (gdb_stdlog,
4657 "infrun: saved stop_pc=%s for %s "
4658 "(currently_stepping=%d)\n",
4659 paddress (target_gdbarch (),
4660 t->suspend.stop_pc),
4661 target_pid_to_str (t->ptid),
4662 currently_stepping (t));
4663 }
4664 }
4665 }
4666 }
4667 }
4668
4669 do_cleanups (old_chain);
4670
4671 if (debug_infrun)
4672 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4673 }
4674
4675 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4676
4677 static int
4678 handle_no_resumed (struct execution_control_state *ecs)
4679 {
4680 struct inferior *inf;
4681 struct thread_info *thread;
4682
4683 if (target_can_async_p ())
4684 {
4685 struct ui *ui;
4686 int any_sync = 0;
4687
4688 ALL_UIS (ui)
4689 {
4690 if (ui->prompt_state == PROMPT_BLOCKED)
4691 {
4692 any_sync = 1;
4693 break;
4694 }
4695 }
4696 if (!any_sync)
4697 {
4698 /* There were no unwaited-for children left in the target, but,
4699 we're not synchronously waiting for events either. Just
4700 ignore. */
4701
4702 if (debug_infrun)
4703 fprintf_unfiltered (gdb_stdlog,
4704 "infrun: TARGET_WAITKIND_NO_RESUMED "
4705 "(ignoring: bg)\n");
4706 prepare_to_wait (ecs);
4707 return 1;
4708 }
4709 }
4710
4711 /* Otherwise, if we were running a synchronous execution command, we
4712 may need to cancel it and give the user back the terminal.
4713
4714 In non-stop mode, the target can't tell whether we've already
4715 consumed previous stop events, so it can end up sending us a
4716 no-resumed event like so:
4717
4718 #0 - thread 1 is left stopped
4719
4720 #1 - thread 2 is resumed and hits breakpoint
4721 -> TARGET_WAITKIND_STOPPED
4722
4723 #2 - thread 3 is resumed and exits
4724 this is the last resumed thread, so
4725 -> TARGET_WAITKIND_NO_RESUMED
4726
4727 #3 - gdb processes stop for thread 2 and decides to re-resume
4728 it.
4729
4730 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4731 thread 2 is now resumed, so the event should be ignored.
4732
4733 IOW, if the stop for thread 2 doesn't end a foreground command,
4734 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4735 event. But it could be that the event meant that thread 2 itself
4736 (or whatever other thread was the last resumed thread) exited.
4737
4738 To address this we refresh the thread list and check whether we
4739 have resumed threads _now_. In the example above, this removes
4740 thread 3 from the thread list. If thread 2 was re-resumed, we
4741 ignore this event. If we find no thread resumed, then we cancel
4742 the synchronous command show "no unwaited-for " to the user. */
4743 update_thread_list ();
4744
4745 ALL_NON_EXITED_THREADS (thread)
4746 {
4747 if (thread->executing
4748 || thread->suspend.waitstatus_pending_p)
4749 {
4750 /* There were no unwaited-for children left in the target at
4751 some point, but there are now. Just ignore. */
4752 if (debug_infrun)
4753 fprintf_unfiltered (gdb_stdlog,
4754 "infrun: TARGET_WAITKIND_NO_RESUMED "
4755 "(ignoring: found resumed)\n");
4756 prepare_to_wait (ecs);
4757 return 1;
4758 }
4759 }
4760
4761 /* Note however that we may find no resumed thread because the whole
4762 process exited meanwhile (thus updating the thread list results
4763 in an empty thread list). In this case we know we'll be getting
4764 a process exit event shortly. */
4765 ALL_INFERIORS (inf)
4766 {
4767 if (inf->pid == 0)
4768 continue;
4769
4770 thread = any_live_thread_of_process (inf->pid);
4771 if (thread == NULL)
4772 {
4773 if (debug_infrun)
4774 fprintf_unfiltered (gdb_stdlog,
4775 "infrun: TARGET_WAITKIND_NO_RESUMED "
4776 "(expect process exit)\n");
4777 prepare_to_wait (ecs);
4778 return 1;
4779 }
4780 }
4781
4782 /* Go ahead and report the event. */
4783 return 0;
4784 }
4785
4786 /* Given an execution control state that has been freshly filled in by
4787 an event from the inferior, figure out what it means and take
4788 appropriate action.
4789
4790 The alternatives are:
4791
4792 1) stop_waiting and return; to really stop and return to the
4793 debugger.
4794
4795 2) keep_going and return; to wait for the next event (set
4796 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4797 once). */
4798
4799 static void
4800 handle_inferior_event_1 (struct execution_control_state *ecs)
4801 {
4802 enum stop_kind stop_soon;
4803
4804 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4805 {
4806 /* We had an event in the inferior, but we are not interested in
4807 handling it at this level. The lower layers have already
4808 done what needs to be done, if anything.
4809
4810 One of the possible circumstances for this is when the
4811 inferior produces output for the console. The inferior has
4812 not stopped, and we are ignoring the event. Another possible
4813 circumstance is any event which the lower level knows will be
4814 reported multiple times without an intervening resume. */
4815 if (debug_infrun)
4816 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4817 prepare_to_wait (ecs);
4818 return;
4819 }
4820
4821 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4822 {
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4825 prepare_to_wait (ecs);
4826 return;
4827 }
4828
4829 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4830 && handle_no_resumed (ecs))
4831 return;
4832
4833 /* Cache the last pid/waitstatus. */
4834 set_last_target_status (ecs->ptid, ecs->ws);
4835
4836 /* Always clear state belonging to the previous time we stopped. */
4837 stop_stack_dummy = STOP_NONE;
4838
4839 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4840 {
4841 /* No unwaited-for children left. IOW, all resumed children
4842 have exited. */
4843 if (debug_infrun)
4844 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4845
4846 stop_print_frame = 0;
4847 stop_waiting (ecs);
4848 return;
4849 }
4850
4851 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4852 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4853 {
4854 ecs->event_thread = find_thread_ptid (ecs->ptid);
4855 /* If it's a new thread, add it to the thread database. */
4856 if (ecs->event_thread == NULL)
4857 ecs->event_thread = add_thread (ecs->ptid);
4858
4859 /* Disable range stepping. If the next step request could use a
4860 range, this will be end up re-enabled then. */
4861 ecs->event_thread->control.may_range_step = 0;
4862 }
4863
4864 /* Dependent on valid ECS->EVENT_THREAD. */
4865 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4866
4867 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4868 reinit_frame_cache ();
4869
4870 breakpoint_retire_moribund ();
4871
4872 /* First, distinguish signals caused by the debugger from signals
4873 that have to do with the program's own actions. Note that
4874 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4875 on the operating system version. Here we detect when a SIGILL or
4876 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4877 something similar for SIGSEGV, since a SIGSEGV will be generated
4878 when we're trying to execute a breakpoint instruction on a
4879 non-executable stack. This happens for call dummy breakpoints
4880 for architectures like SPARC that place call dummies on the
4881 stack. */
4882 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4883 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4884 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4885 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4886 {
4887 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4888
4889 if (breakpoint_inserted_here_p (regcache->aspace (),
4890 regcache_read_pc (regcache)))
4891 {
4892 if (debug_infrun)
4893 fprintf_unfiltered (gdb_stdlog,
4894 "infrun: Treating signal as SIGTRAP\n");
4895 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4896 }
4897 }
4898
4899 /* Mark the non-executing threads accordingly. In all-stop, all
4900 threads of all processes are stopped when we get any event
4901 reported. In non-stop mode, only the event thread stops. */
4902 {
4903 ptid_t mark_ptid;
4904
4905 if (!target_is_non_stop_p ())
4906 mark_ptid = minus_one_ptid;
4907 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4908 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4909 {
4910 /* If we're handling a process exit in non-stop mode, even
4911 though threads haven't been deleted yet, one would think
4912 that there is nothing to do, as threads of the dead process
4913 will be soon deleted, and threads of any other process were
4914 left running. However, on some targets, threads survive a
4915 process exit event. E.g., for the "checkpoint" command,
4916 when the current checkpoint/fork exits, linux-fork.c
4917 automatically switches to another fork from within
4918 target_mourn_inferior, by associating the same
4919 inferior/thread to another fork. We haven't mourned yet at
4920 this point, but we must mark any threads left in the
4921 process as not-executing so that finish_thread_state marks
4922 them stopped (in the user's perspective) if/when we present
4923 the stop to the user. */
4924 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4925 }
4926 else
4927 mark_ptid = ecs->ptid;
4928
4929 set_executing (mark_ptid, 0);
4930
4931 /* Likewise the resumed flag. */
4932 set_resumed (mark_ptid, 0);
4933 }
4934
4935 switch (ecs->ws.kind)
4936 {
4937 case TARGET_WAITKIND_LOADED:
4938 if (debug_infrun)
4939 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4940 if (!ptid_equal (ecs->ptid, inferior_ptid))
4941 context_switch (ecs->ptid);
4942 /* Ignore gracefully during startup of the inferior, as it might
4943 be the shell which has just loaded some objects, otherwise
4944 add the symbols for the newly loaded objects. Also ignore at
4945 the beginning of an attach or remote session; we will query
4946 the full list of libraries once the connection is
4947 established. */
4948
4949 stop_soon = get_inferior_stop_soon (ecs->ptid);
4950 if (stop_soon == NO_STOP_QUIETLY)
4951 {
4952 struct regcache *regcache;
4953
4954 regcache = get_thread_regcache (ecs->ptid);
4955
4956 handle_solib_event ();
4957
4958 ecs->event_thread->control.stop_bpstat
4959 = bpstat_stop_status (regcache->aspace (),
4960 stop_pc, ecs->ptid, &ecs->ws);
4961
4962 if (handle_stop_requested (ecs))
4963 return;
4964
4965 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4966 {
4967 /* A catchpoint triggered. */
4968 process_event_stop_test (ecs);
4969 return;
4970 }
4971
4972 /* If requested, stop when the dynamic linker notifies
4973 gdb of events. This allows the user to get control
4974 and place breakpoints in initializer routines for
4975 dynamically loaded objects (among other things). */
4976 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4977 if (stop_on_solib_events)
4978 {
4979 /* Make sure we print "Stopped due to solib-event" in
4980 normal_stop. */
4981 stop_print_frame = 1;
4982
4983 stop_waiting (ecs);
4984 return;
4985 }
4986 }
4987
4988 /* If we are skipping through a shell, or through shared library
4989 loading that we aren't interested in, resume the program. If
4990 we're running the program normally, also resume. */
4991 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4992 {
4993 /* Loading of shared libraries might have changed breakpoint
4994 addresses. Make sure new breakpoints are inserted. */
4995 if (stop_soon == NO_STOP_QUIETLY)
4996 insert_breakpoints ();
4997 resume (GDB_SIGNAL_0);
4998 prepare_to_wait (ecs);
4999 return;
5000 }
5001
5002 /* But stop if we're attaching or setting up a remote
5003 connection. */
5004 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5005 || stop_soon == STOP_QUIETLY_REMOTE)
5006 {
5007 if (debug_infrun)
5008 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5009 stop_waiting (ecs);
5010 return;
5011 }
5012
5013 internal_error (__FILE__, __LINE__,
5014 _("unhandled stop_soon: %d"), (int) stop_soon);
5015
5016 case TARGET_WAITKIND_SPURIOUS:
5017 if (debug_infrun)
5018 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5019 if (handle_stop_requested (ecs))
5020 return;
5021 if (!ptid_equal (ecs->ptid, inferior_ptid))
5022 context_switch (ecs->ptid);
5023 resume (GDB_SIGNAL_0);
5024 prepare_to_wait (ecs);
5025 return;
5026
5027 case TARGET_WAITKIND_THREAD_CREATED:
5028 if (debug_infrun)
5029 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5030 if (handle_stop_requested (ecs))
5031 return;
5032 if (!ptid_equal (ecs->ptid, inferior_ptid))
5033 context_switch (ecs->ptid);
5034 if (!switch_back_to_stepped_thread (ecs))
5035 keep_going (ecs);
5036 return;
5037
5038 case TARGET_WAITKIND_EXITED:
5039 case TARGET_WAITKIND_SIGNALLED:
5040 if (debug_infrun)
5041 {
5042 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5043 fprintf_unfiltered (gdb_stdlog,
5044 "infrun: TARGET_WAITKIND_EXITED\n");
5045 else
5046 fprintf_unfiltered (gdb_stdlog,
5047 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5048 }
5049
5050 inferior_ptid = ecs->ptid;
5051 set_current_inferior (find_inferior_ptid (ecs->ptid));
5052 set_current_program_space (current_inferior ()->pspace);
5053 handle_vfork_child_exec_or_exit (0);
5054 target_terminal::ours (); /* Must do this before mourn anyway. */
5055
5056 /* Clearing any previous state of convenience variables. */
5057 clear_exit_convenience_vars ();
5058
5059 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5060 {
5061 /* Record the exit code in the convenience variable $_exitcode, so
5062 that the user can inspect this again later. */
5063 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5064 (LONGEST) ecs->ws.value.integer);
5065
5066 /* Also record this in the inferior itself. */
5067 current_inferior ()->has_exit_code = 1;
5068 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5069
5070 /* Support the --return-child-result option. */
5071 return_child_result_value = ecs->ws.value.integer;
5072
5073 gdb::observers::exited.notify (ecs->ws.value.integer);
5074 }
5075 else
5076 {
5077 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5078 struct gdbarch *gdbarch = regcache->arch ();
5079
5080 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5081 {
5082 /* Set the value of the internal variable $_exitsignal,
5083 which holds the signal uncaught by the inferior. */
5084 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5085 gdbarch_gdb_signal_to_target (gdbarch,
5086 ecs->ws.value.sig));
5087 }
5088 else
5089 {
5090 /* We don't have access to the target's method used for
5091 converting between signal numbers (GDB's internal
5092 representation <-> target's representation).
5093 Therefore, we cannot do a good job at displaying this
5094 information to the user. It's better to just warn
5095 her about it (if infrun debugging is enabled), and
5096 give up. */
5097 if (debug_infrun)
5098 fprintf_filtered (gdb_stdlog, _("\
5099 Cannot fill $_exitsignal with the correct signal number.\n"));
5100 }
5101
5102 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5103 }
5104
5105 gdb_flush (gdb_stdout);
5106 target_mourn_inferior (inferior_ptid);
5107 stop_print_frame = 0;
5108 stop_waiting (ecs);
5109 return;
5110
5111 /* The following are the only cases in which we keep going;
5112 the above cases end in a continue or goto. */
5113 case TARGET_WAITKIND_FORKED:
5114 case TARGET_WAITKIND_VFORKED:
5115 if (debug_infrun)
5116 {
5117 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5118 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5119 else
5120 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5121 }
5122
5123 /* Check whether the inferior is displaced stepping. */
5124 {
5125 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5126 struct gdbarch *gdbarch = regcache->arch ();
5127
5128 /* If checking displaced stepping is supported, and thread
5129 ecs->ptid is displaced stepping. */
5130 if (displaced_step_in_progress_thread (ecs->ptid))
5131 {
5132 struct inferior *parent_inf
5133 = find_inferior_ptid (ecs->ptid);
5134 struct regcache *child_regcache;
5135 CORE_ADDR parent_pc;
5136
5137 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5138 indicating that the displaced stepping of syscall instruction
5139 has been done. Perform cleanup for parent process here. Note
5140 that this operation also cleans up the child process for vfork,
5141 because their pages are shared. */
5142 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5143 /* Start a new step-over in another thread if there's one
5144 that needs it. */
5145 start_step_over ();
5146
5147 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5148 {
5149 struct displaced_step_inferior_state *displaced
5150 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5151
5152 /* Restore scratch pad for child process. */
5153 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5154 }
5155
5156 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5157 the child's PC is also within the scratchpad. Set the child's PC
5158 to the parent's PC value, which has already been fixed up.
5159 FIXME: we use the parent's aspace here, although we're touching
5160 the child, because the child hasn't been added to the inferior
5161 list yet at this point. */
5162
5163 child_regcache
5164 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5165 gdbarch,
5166 parent_inf->aspace);
5167 /* Read PC value of parent process. */
5168 parent_pc = regcache_read_pc (regcache);
5169
5170 if (debug_displaced)
5171 fprintf_unfiltered (gdb_stdlog,
5172 "displaced: write child pc from %s to %s\n",
5173 paddress (gdbarch,
5174 regcache_read_pc (child_regcache)),
5175 paddress (gdbarch, parent_pc));
5176
5177 regcache_write_pc (child_regcache, parent_pc);
5178 }
5179 }
5180
5181 if (!ptid_equal (ecs->ptid, inferior_ptid))
5182 context_switch (ecs->ptid);
5183
5184 /* Immediately detach breakpoints from the child before there's
5185 any chance of letting the user delete breakpoints from the
5186 breakpoint lists. If we don't do this early, it's easy to
5187 leave left over traps in the child, vis: "break foo; catch
5188 fork; c; <fork>; del; c; <child calls foo>". We only follow
5189 the fork on the last `continue', and by that time the
5190 breakpoint at "foo" is long gone from the breakpoint table.
5191 If we vforked, then we don't need to unpatch here, since both
5192 parent and child are sharing the same memory pages; we'll
5193 need to unpatch at follow/detach time instead to be certain
5194 that new breakpoints added between catchpoint hit time and
5195 vfork follow are detached. */
5196 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5197 {
5198 /* This won't actually modify the breakpoint list, but will
5199 physically remove the breakpoints from the child. */
5200 detach_breakpoints (ecs->ws.value.related_pid);
5201 }
5202
5203 delete_just_stopped_threads_single_step_breakpoints ();
5204
5205 /* In case the event is caught by a catchpoint, remember that
5206 the event is to be followed at the next resume of the thread,
5207 and not immediately. */
5208 ecs->event_thread->pending_follow = ecs->ws;
5209
5210 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5211
5212 ecs->event_thread->control.stop_bpstat
5213 = bpstat_stop_status (get_current_regcache ()->aspace (),
5214 stop_pc, ecs->ptid, &ecs->ws);
5215
5216 if (handle_stop_requested (ecs))
5217 return;
5218
5219 /* If no catchpoint triggered for this, then keep going. Note
5220 that we're interested in knowing the bpstat actually causes a
5221 stop, not just if it may explain the signal. Software
5222 watchpoints, for example, always appear in the bpstat. */
5223 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5224 {
5225 ptid_t parent;
5226 ptid_t child;
5227 int should_resume;
5228 int follow_child
5229 = (follow_fork_mode_string == follow_fork_mode_child);
5230
5231 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5232
5233 should_resume = follow_fork ();
5234
5235 parent = ecs->ptid;
5236 child = ecs->ws.value.related_pid;
5237
5238 /* At this point, the parent is marked running, and the
5239 child is marked stopped. */
5240
5241 /* If not resuming the parent, mark it stopped. */
5242 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5243 set_running (parent, 0);
5244
5245 /* If resuming the child, mark it running. */
5246 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5247 set_running (child, 1);
5248
5249 /* In non-stop mode, also resume the other branch. */
5250 if (!detach_fork && (non_stop
5251 || (sched_multi && target_is_non_stop_p ())))
5252 {
5253 if (follow_child)
5254 switch_to_thread (parent);
5255 else
5256 switch_to_thread (child);
5257
5258 ecs->event_thread = inferior_thread ();
5259 ecs->ptid = inferior_ptid;
5260 keep_going (ecs);
5261 }
5262
5263 if (follow_child)
5264 switch_to_thread (child);
5265 else
5266 switch_to_thread (parent);
5267
5268 ecs->event_thread = inferior_thread ();
5269 ecs->ptid = inferior_ptid;
5270
5271 if (should_resume)
5272 keep_going (ecs);
5273 else
5274 stop_waiting (ecs);
5275 return;
5276 }
5277 process_event_stop_test (ecs);
5278 return;
5279
5280 case TARGET_WAITKIND_VFORK_DONE:
5281 /* Done with the shared memory region. Re-insert breakpoints in
5282 the parent, and keep going. */
5283
5284 if (debug_infrun)
5285 fprintf_unfiltered (gdb_stdlog,
5286 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5287
5288 if (!ptid_equal (ecs->ptid, inferior_ptid))
5289 context_switch (ecs->ptid);
5290
5291 current_inferior ()->waiting_for_vfork_done = 0;
5292 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5293
5294 if (handle_stop_requested (ecs))
5295 return;
5296
5297 /* This also takes care of reinserting breakpoints in the
5298 previously locked inferior. */
5299 keep_going (ecs);
5300 return;
5301
5302 case TARGET_WAITKIND_EXECD:
5303 if (debug_infrun)
5304 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5305
5306 /* Note we can't read registers yet (the stop_pc), because we
5307 don't yet know the inferior's post-exec architecture.
5308 'stop_pc' is explicitly read below instead. */
5309 if (!ptid_equal (ecs->ptid, inferior_ptid))
5310 switch_to_thread_no_regs (ecs->event_thread);
5311
5312 /* Do whatever is necessary to the parent branch of the vfork. */
5313 handle_vfork_child_exec_or_exit (1);
5314
5315 /* This causes the eventpoints and symbol table to be reset.
5316 Must do this now, before trying to determine whether to
5317 stop. */
5318 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5319
5320 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5321
5322 /* In follow_exec we may have deleted the original thread and
5323 created a new one. Make sure that the event thread is the
5324 execd thread for that case (this is a nop otherwise). */
5325 ecs->event_thread = inferior_thread ();
5326
5327 ecs->event_thread->control.stop_bpstat
5328 = bpstat_stop_status (get_current_regcache ()->aspace (),
5329 stop_pc, ecs->ptid, &ecs->ws);
5330
5331 /* Note that this may be referenced from inside
5332 bpstat_stop_status above, through inferior_has_execd. */
5333 xfree (ecs->ws.value.execd_pathname);
5334 ecs->ws.value.execd_pathname = NULL;
5335
5336 if (handle_stop_requested (ecs))
5337 return;
5338
5339 /* If no catchpoint triggered for this, then keep going. */
5340 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5341 {
5342 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5343 keep_going (ecs);
5344 return;
5345 }
5346 process_event_stop_test (ecs);
5347 return;
5348
5349 /* Be careful not to try to gather much state about a thread
5350 that's in a syscall. It's frequently a losing proposition. */
5351 case TARGET_WAITKIND_SYSCALL_ENTRY:
5352 if (debug_infrun)
5353 fprintf_unfiltered (gdb_stdlog,
5354 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5355 /* Getting the current syscall number. */
5356 if (handle_syscall_event (ecs) == 0)
5357 process_event_stop_test (ecs);
5358 return;
5359
5360 /* Before examining the threads further, step this thread to
5361 get it entirely out of the syscall. (We get notice of the
5362 event when the thread is just on the verge of exiting a
5363 syscall. Stepping one instruction seems to get it back
5364 into user code.) */
5365 case TARGET_WAITKIND_SYSCALL_RETURN:
5366 if (debug_infrun)
5367 fprintf_unfiltered (gdb_stdlog,
5368 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5369 if (handle_syscall_event (ecs) == 0)
5370 process_event_stop_test (ecs);
5371 return;
5372
5373 case TARGET_WAITKIND_STOPPED:
5374 if (debug_infrun)
5375 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5376 handle_signal_stop (ecs);
5377 return;
5378
5379 case TARGET_WAITKIND_NO_HISTORY:
5380 if (debug_infrun)
5381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5382 /* Reverse execution: target ran out of history info. */
5383
5384 /* Switch to the stopped thread. */
5385 if (!ptid_equal (ecs->ptid, inferior_ptid))
5386 context_switch (ecs->ptid);
5387 if (debug_infrun)
5388 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5389
5390 delete_just_stopped_threads_single_step_breakpoints ();
5391 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5392
5393 if (handle_stop_requested (ecs))
5394 return;
5395
5396 gdb::observers::no_history.notify ();
5397 stop_waiting (ecs);
5398 return;
5399 }
5400 }
5401
5402 /* A wrapper around handle_inferior_event_1, which also makes sure
5403 that all temporary struct value objects that were created during
5404 the handling of the event get deleted at the end. */
5405
5406 static void
5407 handle_inferior_event (struct execution_control_state *ecs)
5408 {
5409 struct value *mark = value_mark ();
5410
5411 handle_inferior_event_1 (ecs);
5412 /* Purge all temporary values created during the event handling,
5413 as it could be a long time before we return to the command level
5414 where such values would otherwise be purged. */
5415 value_free_to_mark (mark);
5416 }
5417
5418 /* Restart threads back to what they were trying to do back when we
5419 paused them for an in-line step-over. The EVENT_THREAD thread is
5420 ignored. */
5421
5422 static void
5423 restart_threads (struct thread_info *event_thread)
5424 {
5425 struct thread_info *tp;
5426
5427 /* In case the instruction just stepped spawned a new thread. */
5428 update_thread_list ();
5429
5430 ALL_NON_EXITED_THREADS (tp)
5431 {
5432 if (tp == event_thread)
5433 {
5434 if (debug_infrun)
5435 fprintf_unfiltered (gdb_stdlog,
5436 "infrun: restart threads: "
5437 "[%s] is event thread\n",
5438 target_pid_to_str (tp->ptid));
5439 continue;
5440 }
5441
5442 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5443 {
5444 if (debug_infrun)
5445 fprintf_unfiltered (gdb_stdlog,
5446 "infrun: restart threads: "
5447 "[%s] not meant to be running\n",
5448 target_pid_to_str (tp->ptid));
5449 continue;
5450 }
5451
5452 if (tp->resumed)
5453 {
5454 if (debug_infrun)
5455 fprintf_unfiltered (gdb_stdlog,
5456 "infrun: restart threads: [%s] resumed\n",
5457 target_pid_to_str (tp->ptid));
5458 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5459 continue;
5460 }
5461
5462 if (thread_is_in_step_over_chain (tp))
5463 {
5464 if (debug_infrun)
5465 fprintf_unfiltered (gdb_stdlog,
5466 "infrun: restart threads: "
5467 "[%s] needs step-over\n",
5468 target_pid_to_str (tp->ptid));
5469 gdb_assert (!tp->resumed);
5470 continue;
5471 }
5472
5473
5474 if (tp->suspend.waitstatus_pending_p)
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: "
5479 "[%s] has pending status\n",
5480 target_pid_to_str (tp->ptid));
5481 tp->resumed = 1;
5482 continue;
5483 }
5484
5485 gdb_assert (!tp->stop_requested);
5486
5487 /* If some thread needs to start a step-over at this point, it
5488 should still be in the step-over queue, and thus skipped
5489 above. */
5490 if (thread_still_needs_step_over (tp))
5491 {
5492 internal_error (__FILE__, __LINE__,
5493 "thread [%s] needs a step-over, but not in "
5494 "step-over queue\n",
5495 target_pid_to_str (tp->ptid));
5496 }
5497
5498 if (currently_stepping (tp))
5499 {
5500 if (debug_infrun)
5501 fprintf_unfiltered (gdb_stdlog,
5502 "infrun: restart threads: [%s] was stepping\n",
5503 target_pid_to_str (tp->ptid));
5504 keep_going_stepped_thread (tp);
5505 }
5506 else
5507 {
5508 struct execution_control_state ecss;
5509 struct execution_control_state *ecs = &ecss;
5510
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: restart threads: [%s] continuing\n",
5514 target_pid_to_str (tp->ptid));
5515 reset_ecs (ecs, tp);
5516 switch_to_thread (tp->ptid);
5517 keep_going_pass_signal (ecs);
5518 }
5519 }
5520 }
5521
5522 /* Callback for iterate_over_threads. Find a resumed thread that has
5523 a pending waitstatus. */
5524
5525 static int
5526 resumed_thread_with_pending_status (struct thread_info *tp,
5527 void *arg)
5528 {
5529 return (tp->resumed
5530 && tp->suspend.waitstatus_pending_p);
5531 }
5532
5533 /* Called when we get an event that may finish an in-line or
5534 out-of-line (displaced stepping) step-over started previously.
5535 Return true if the event is processed and we should go back to the
5536 event loop; false if the caller should continue processing the
5537 event. */
5538
5539 static int
5540 finish_step_over (struct execution_control_state *ecs)
5541 {
5542 int had_step_over_info;
5543
5544 displaced_step_fixup (ecs->ptid,
5545 ecs->event_thread->suspend.stop_signal);
5546
5547 had_step_over_info = step_over_info_valid_p ();
5548
5549 if (had_step_over_info)
5550 {
5551 /* If we're stepping over a breakpoint with all threads locked,
5552 then only the thread that was stepped should be reporting
5553 back an event. */
5554 gdb_assert (ecs->event_thread->control.trap_expected);
5555
5556 clear_step_over_info ();
5557 }
5558
5559 if (!target_is_non_stop_p ())
5560 return 0;
5561
5562 /* Start a new step-over in another thread if there's one that
5563 needs it. */
5564 start_step_over ();
5565
5566 /* If we were stepping over a breakpoint before, and haven't started
5567 a new in-line step-over sequence, then restart all other threads
5568 (except the event thread). We can't do this in all-stop, as then
5569 e.g., we wouldn't be able to issue any other remote packet until
5570 these other threads stop. */
5571 if (had_step_over_info && !step_over_info_valid_p ())
5572 {
5573 struct thread_info *pending;
5574
5575 /* If we only have threads with pending statuses, the restart
5576 below won't restart any thread and so nothing re-inserts the
5577 breakpoint we just stepped over. But we need it inserted
5578 when we later process the pending events, otherwise if
5579 another thread has a pending event for this breakpoint too,
5580 we'd discard its event (because the breakpoint that
5581 originally caused the event was no longer inserted). */
5582 context_switch (ecs->ptid);
5583 insert_breakpoints ();
5584
5585 restart_threads (ecs->event_thread);
5586
5587 /* If we have events pending, go through handle_inferior_event
5588 again, picking up a pending event at random. This avoids
5589 thread starvation. */
5590
5591 /* But not if we just stepped over a watchpoint in order to let
5592 the instruction execute so we can evaluate its expression.
5593 The set of watchpoints that triggered is recorded in the
5594 breakpoint objects themselves (see bp->watchpoint_triggered).
5595 If we processed another event first, that other event could
5596 clobber this info. */
5597 if (ecs->event_thread->stepping_over_watchpoint)
5598 return 0;
5599
5600 pending = iterate_over_threads (resumed_thread_with_pending_status,
5601 NULL);
5602 if (pending != NULL)
5603 {
5604 struct thread_info *tp = ecs->event_thread;
5605 struct regcache *regcache;
5606
5607 if (debug_infrun)
5608 {
5609 fprintf_unfiltered (gdb_stdlog,
5610 "infrun: found resumed threads with "
5611 "pending events, saving status\n");
5612 }
5613
5614 gdb_assert (pending != tp);
5615
5616 /* Record the event thread's event for later. */
5617 save_waitstatus (tp, &ecs->ws);
5618 /* This was cleared early, by handle_inferior_event. Set it
5619 so this pending event is considered by
5620 do_target_wait. */
5621 tp->resumed = 1;
5622
5623 gdb_assert (!tp->executing);
5624
5625 regcache = get_thread_regcache (tp->ptid);
5626 tp->suspend.stop_pc = regcache_read_pc (regcache);
5627
5628 if (debug_infrun)
5629 {
5630 fprintf_unfiltered (gdb_stdlog,
5631 "infrun: saved stop_pc=%s for %s "
5632 "(currently_stepping=%d)\n",
5633 paddress (target_gdbarch (),
5634 tp->suspend.stop_pc),
5635 target_pid_to_str (tp->ptid),
5636 currently_stepping (tp));
5637 }
5638
5639 /* This in-line step-over finished; clear this so we won't
5640 start a new one. This is what handle_signal_stop would
5641 do, if we returned false. */
5642 tp->stepping_over_breakpoint = 0;
5643
5644 /* Wake up the event loop again. */
5645 mark_async_event_handler (infrun_async_inferior_event_token);
5646
5647 prepare_to_wait (ecs);
5648 return 1;
5649 }
5650 }
5651
5652 return 0;
5653 }
5654
5655 /* Come here when the program has stopped with a signal. */
5656
5657 static void
5658 handle_signal_stop (struct execution_control_state *ecs)
5659 {
5660 struct frame_info *frame;
5661 struct gdbarch *gdbarch;
5662 int stopped_by_watchpoint;
5663 enum stop_kind stop_soon;
5664 int random_signal;
5665
5666 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5667
5668 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5669
5670 /* Do we need to clean up the state of a thread that has
5671 completed a displaced single-step? (Doing so usually affects
5672 the PC, so do it here, before we set stop_pc.) */
5673 if (finish_step_over (ecs))
5674 return;
5675
5676 /* If we either finished a single-step or hit a breakpoint, but
5677 the user wanted this thread to be stopped, pretend we got a
5678 SIG0 (generic unsignaled stop). */
5679 if (ecs->event_thread->stop_requested
5680 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5681 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5682
5683 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5684
5685 if (debug_infrun)
5686 {
5687 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5688 struct gdbarch *gdbarch = regcache->arch ();
5689 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5690
5691 inferior_ptid = ecs->ptid;
5692
5693 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5694 paddress (gdbarch, stop_pc));
5695 if (target_stopped_by_watchpoint ())
5696 {
5697 CORE_ADDR addr;
5698
5699 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5700
5701 if (target_stopped_data_address (&current_target, &addr))
5702 fprintf_unfiltered (gdb_stdlog,
5703 "infrun: stopped data address = %s\n",
5704 paddress (gdbarch, addr));
5705 else
5706 fprintf_unfiltered (gdb_stdlog,
5707 "infrun: (no data address available)\n");
5708 }
5709 }
5710
5711 /* This is originated from start_remote(), start_inferior() and
5712 shared libraries hook functions. */
5713 stop_soon = get_inferior_stop_soon (ecs->ptid);
5714 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5715 {
5716 if (!ptid_equal (ecs->ptid, inferior_ptid))
5717 context_switch (ecs->ptid);
5718 if (debug_infrun)
5719 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5720 stop_print_frame = 1;
5721 stop_waiting (ecs);
5722 return;
5723 }
5724
5725 /* This originates from attach_command(). We need to overwrite
5726 the stop_signal here, because some kernels don't ignore a
5727 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5728 See more comments in inferior.h. On the other hand, if we
5729 get a non-SIGSTOP, report it to the user - assume the backend
5730 will handle the SIGSTOP if it should show up later.
5731
5732 Also consider that the attach is complete when we see a
5733 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5734 target extended-remote report it instead of a SIGSTOP
5735 (e.g. gdbserver). We already rely on SIGTRAP being our
5736 signal, so this is no exception.
5737
5738 Also consider that the attach is complete when we see a
5739 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5740 the target to stop all threads of the inferior, in case the
5741 low level attach operation doesn't stop them implicitly. If
5742 they weren't stopped implicitly, then the stub will report a
5743 GDB_SIGNAL_0, meaning: stopped for no particular reason
5744 other than GDB's request. */
5745 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5746 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5747 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5748 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5749 {
5750 stop_print_frame = 1;
5751 stop_waiting (ecs);
5752 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5753 return;
5754 }
5755
5756 /* See if something interesting happened to the non-current thread. If
5757 so, then switch to that thread. */
5758 if (!ptid_equal (ecs->ptid, inferior_ptid))
5759 {
5760 if (debug_infrun)
5761 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5762
5763 context_switch (ecs->ptid);
5764
5765 if (deprecated_context_hook)
5766 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5767 }
5768
5769 /* At this point, get hold of the now-current thread's frame. */
5770 frame = get_current_frame ();
5771 gdbarch = get_frame_arch (frame);
5772
5773 /* Pull the single step breakpoints out of the target. */
5774 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5775 {
5776 struct regcache *regcache;
5777 CORE_ADDR pc;
5778
5779 regcache = get_thread_regcache (ecs->ptid);
5780 const address_space *aspace = regcache->aspace ();
5781
5782 pc = regcache_read_pc (regcache);
5783
5784 /* However, before doing so, if this single-step breakpoint was
5785 actually for another thread, set this thread up for moving
5786 past it. */
5787 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5788 aspace, pc))
5789 {
5790 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5791 {
5792 if (debug_infrun)
5793 {
5794 fprintf_unfiltered (gdb_stdlog,
5795 "infrun: [%s] hit another thread's "
5796 "single-step breakpoint\n",
5797 target_pid_to_str (ecs->ptid));
5798 }
5799 ecs->hit_singlestep_breakpoint = 1;
5800 }
5801 }
5802 else
5803 {
5804 if (debug_infrun)
5805 {
5806 fprintf_unfiltered (gdb_stdlog,
5807 "infrun: [%s] hit its "
5808 "single-step breakpoint\n",
5809 target_pid_to_str (ecs->ptid));
5810 }
5811 }
5812 }
5813 delete_just_stopped_threads_single_step_breakpoints ();
5814
5815 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5816 && ecs->event_thread->control.trap_expected
5817 && ecs->event_thread->stepping_over_watchpoint)
5818 stopped_by_watchpoint = 0;
5819 else
5820 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5821
5822 /* If necessary, step over this watchpoint. We'll be back to display
5823 it in a moment. */
5824 if (stopped_by_watchpoint
5825 && (target_have_steppable_watchpoint
5826 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5827 {
5828 /* At this point, we are stopped at an instruction which has
5829 attempted to write to a piece of memory under control of
5830 a watchpoint. The instruction hasn't actually executed
5831 yet. If we were to evaluate the watchpoint expression
5832 now, we would get the old value, and therefore no change
5833 would seem to have occurred.
5834
5835 In order to make watchpoints work `right', we really need
5836 to complete the memory write, and then evaluate the
5837 watchpoint expression. We do this by single-stepping the
5838 target.
5839
5840 It may not be necessary to disable the watchpoint to step over
5841 it. For example, the PA can (with some kernel cooperation)
5842 single step over a watchpoint without disabling the watchpoint.
5843
5844 It is far more common to need to disable a watchpoint to step
5845 the inferior over it. If we have non-steppable watchpoints,
5846 we must disable the current watchpoint; it's simplest to
5847 disable all watchpoints.
5848
5849 Any breakpoint at PC must also be stepped over -- if there's
5850 one, it will have already triggered before the watchpoint
5851 triggered, and we either already reported it to the user, or
5852 it didn't cause a stop and we called keep_going. In either
5853 case, if there was a breakpoint at PC, we must be trying to
5854 step past it. */
5855 ecs->event_thread->stepping_over_watchpoint = 1;
5856 keep_going (ecs);
5857 return;
5858 }
5859
5860 ecs->event_thread->stepping_over_breakpoint = 0;
5861 ecs->event_thread->stepping_over_watchpoint = 0;
5862 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5863 ecs->event_thread->control.stop_step = 0;
5864 stop_print_frame = 1;
5865 stopped_by_random_signal = 0;
5866
5867 /* Hide inlined functions starting here, unless we just performed stepi or
5868 nexti. After stepi and nexti, always show the innermost frame (not any
5869 inline function call sites). */
5870 if (ecs->event_thread->control.step_range_end != 1)
5871 {
5872 const address_space *aspace =
5873 get_thread_regcache (ecs->ptid)->aspace ();
5874
5875 /* skip_inline_frames is expensive, so we avoid it if we can
5876 determine that the address is one where functions cannot have
5877 been inlined. This improves performance with inferiors that
5878 load a lot of shared libraries, because the solib event
5879 breakpoint is defined as the address of a function (i.e. not
5880 inline). Note that we have to check the previous PC as well
5881 as the current one to catch cases when we have just
5882 single-stepped off a breakpoint prior to reinstating it.
5883 Note that we're assuming that the code we single-step to is
5884 not inline, but that's not definitive: there's nothing
5885 preventing the event breakpoint function from containing
5886 inlined code, and the single-step ending up there. If the
5887 user had set a breakpoint on that inlined code, the missing
5888 skip_inline_frames call would break things. Fortunately
5889 that's an extremely unlikely scenario. */
5890 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5891 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5892 && ecs->event_thread->control.trap_expected
5893 && pc_at_non_inline_function (aspace,
5894 ecs->event_thread->prev_pc,
5895 &ecs->ws)))
5896 {
5897 skip_inline_frames (ecs->ptid);
5898
5899 /* Re-fetch current thread's frame in case that invalidated
5900 the frame cache. */
5901 frame = get_current_frame ();
5902 gdbarch = get_frame_arch (frame);
5903 }
5904 }
5905
5906 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5907 && ecs->event_thread->control.trap_expected
5908 && gdbarch_single_step_through_delay_p (gdbarch)
5909 && currently_stepping (ecs->event_thread))
5910 {
5911 /* We're trying to step off a breakpoint. Turns out that we're
5912 also on an instruction that needs to be stepped multiple
5913 times before it's been fully executing. E.g., architectures
5914 with a delay slot. It needs to be stepped twice, once for
5915 the instruction and once for the delay slot. */
5916 int step_through_delay
5917 = gdbarch_single_step_through_delay (gdbarch, frame);
5918
5919 if (debug_infrun && step_through_delay)
5920 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5921 if (ecs->event_thread->control.step_range_end == 0
5922 && step_through_delay)
5923 {
5924 /* The user issued a continue when stopped at a breakpoint.
5925 Set up for another trap and get out of here. */
5926 ecs->event_thread->stepping_over_breakpoint = 1;
5927 keep_going (ecs);
5928 return;
5929 }
5930 else if (step_through_delay)
5931 {
5932 /* The user issued a step when stopped at a breakpoint.
5933 Maybe we should stop, maybe we should not - the delay
5934 slot *might* correspond to a line of source. In any
5935 case, don't decide that here, just set
5936 ecs->stepping_over_breakpoint, making sure we
5937 single-step again before breakpoints are re-inserted. */
5938 ecs->event_thread->stepping_over_breakpoint = 1;
5939 }
5940 }
5941
5942 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5943 handles this event. */
5944 ecs->event_thread->control.stop_bpstat
5945 = bpstat_stop_status (get_current_regcache ()->aspace (),
5946 stop_pc, ecs->ptid, &ecs->ws);
5947
5948 /* Following in case break condition called a
5949 function. */
5950 stop_print_frame = 1;
5951
5952 /* This is where we handle "moribund" watchpoints. Unlike
5953 software breakpoints traps, hardware watchpoint traps are
5954 always distinguishable from random traps. If no high-level
5955 watchpoint is associated with the reported stop data address
5956 anymore, then the bpstat does not explain the signal ---
5957 simply make sure to ignore it if `stopped_by_watchpoint' is
5958 set. */
5959
5960 if (debug_infrun
5961 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5962 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5963 GDB_SIGNAL_TRAP)
5964 && stopped_by_watchpoint)
5965 fprintf_unfiltered (gdb_stdlog,
5966 "infrun: no user watchpoint explains "
5967 "watchpoint SIGTRAP, ignoring\n");
5968
5969 /* NOTE: cagney/2003-03-29: These checks for a random signal
5970 at one stage in the past included checks for an inferior
5971 function call's call dummy's return breakpoint. The original
5972 comment, that went with the test, read:
5973
5974 ``End of a stack dummy. Some systems (e.g. Sony news) give
5975 another signal besides SIGTRAP, so check here as well as
5976 above.''
5977
5978 If someone ever tries to get call dummys on a
5979 non-executable stack to work (where the target would stop
5980 with something like a SIGSEGV), then those tests might need
5981 to be re-instated. Given, however, that the tests were only
5982 enabled when momentary breakpoints were not being used, I
5983 suspect that it won't be the case.
5984
5985 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5986 be necessary for call dummies on a non-executable stack on
5987 SPARC. */
5988
5989 /* See if the breakpoints module can explain the signal. */
5990 random_signal
5991 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5992 ecs->event_thread->suspend.stop_signal);
5993
5994 /* Maybe this was a trap for a software breakpoint that has since
5995 been removed. */
5996 if (random_signal && target_stopped_by_sw_breakpoint ())
5997 {
5998 if (program_breakpoint_here_p (gdbarch, stop_pc))
5999 {
6000 struct regcache *regcache;
6001 int decr_pc;
6002
6003 /* Re-adjust PC to what the program would see if GDB was not
6004 debugging it. */
6005 regcache = get_thread_regcache (ecs->event_thread->ptid);
6006 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6007 if (decr_pc != 0)
6008 {
6009 gdb::optional<scoped_restore_tmpl<int>>
6010 restore_operation_disable;
6011
6012 if (record_full_is_used ())
6013 restore_operation_disable.emplace
6014 (record_full_gdb_operation_disable_set ());
6015
6016 regcache_write_pc (regcache, stop_pc + decr_pc);
6017 }
6018 }
6019 else
6020 {
6021 /* A delayed software breakpoint event. Ignore the trap. */
6022 if (debug_infrun)
6023 fprintf_unfiltered (gdb_stdlog,
6024 "infrun: delayed software breakpoint "
6025 "trap, ignoring\n");
6026 random_signal = 0;
6027 }
6028 }
6029
6030 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6031 has since been removed. */
6032 if (random_signal && target_stopped_by_hw_breakpoint ())
6033 {
6034 /* A delayed hardware breakpoint event. Ignore the trap. */
6035 if (debug_infrun)
6036 fprintf_unfiltered (gdb_stdlog,
6037 "infrun: delayed hardware breakpoint/watchpoint "
6038 "trap, ignoring\n");
6039 random_signal = 0;
6040 }
6041
6042 /* If not, perhaps stepping/nexting can. */
6043 if (random_signal)
6044 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6045 && currently_stepping (ecs->event_thread));
6046
6047 /* Perhaps the thread hit a single-step breakpoint of _another_
6048 thread. Single-step breakpoints are transparent to the
6049 breakpoints module. */
6050 if (random_signal)
6051 random_signal = !ecs->hit_singlestep_breakpoint;
6052
6053 /* No? Perhaps we got a moribund watchpoint. */
6054 if (random_signal)
6055 random_signal = !stopped_by_watchpoint;
6056
6057 /* Always stop if the user explicitly requested this thread to
6058 remain stopped. */
6059 if (ecs->event_thread->stop_requested)
6060 {
6061 random_signal = 1;
6062 if (debug_infrun)
6063 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6064 }
6065
6066 /* For the program's own signals, act according to
6067 the signal handling tables. */
6068
6069 if (random_signal)
6070 {
6071 /* Signal not for debugging purposes. */
6072 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6073 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6074
6075 if (debug_infrun)
6076 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6077 gdb_signal_to_symbol_string (stop_signal));
6078
6079 stopped_by_random_signal = 1;
6080
6081 /* Always stop on signals if we're either just gaining control
6082 of the program, or the user explicitly requested this thread
6083 to remain stopped. */
6084 if (stop_soon != NO_STOP_QUIETLY
6085 || ecs->event_thread->stop_requested
6086 || (!inf->detaching
6087 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6088 {
6089 stop_waiting (ecs);
6090 return;
6091 }
6092
6093 /* Notify observers the signal has "handle print" set. Note we
6094 returned early above if stopping; normal_stop handles the
6095 printing in that case. */
6096 if (signal_print[ecs->event_thread->suspend.stop_signal])
6097 {
6098 /* The signal table tells us to print about this signal. */
6099 target_terminal::ours_for_output ();
6100 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6101 target_terminal::inferior ();
6102 }
6103
6104 /* Clear the signal if it should not be passed. */
6105 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6106 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6107
6108 if (ecs->event_thread->prev_pc == stop_pc
6109 && ecs->event_thread->control.trap_expected
6110 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6111 {
6112 /* We were just starting a new sequence, attempting to
6113 single-step off of a breakpoint and expecting a SIGTRAP.
6114 Instead this signal arrives. This signal will take us out
6115 of the stepping range so GDB needs to remember to, when
6116 the signal handler returns, resume stepping off that
6117 breakpoint. */
6118 /* To simplify things, "continue" is forced to use the same
6119 code paths as single-step - set a breakpoint at the
6120 signal return address and then, once hit, step off that
6121 breakpoint. */
6122 if (debug_infrun)
6123 fprintf_unfiltered (gdb_stdlog,
6124 "infrun: signal arrived while stepping over "
6125 "breakpoint\n");
6126
6127 insert_hp_step_resume_breakpoint_at_frame (frame);
6128 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6129 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6130 ecs->event_thread->control.trap_expected = 0;
6131
6132 /* If we were nexting/stepping some other thread, switch to
6133 it, so that we don't continue it, losing control. */
6134 if (!switch_back_to_stepped_thread (ecs))
6135 keep_going (ecs);
6136 return;
6137 }
6138
6139 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6140 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6141 || ecs->event_thread->control.step_range_end == 1)
6142 && frame_id_eq (get_stack_frame_id (frame),
6143 ecs->event_thread->control.step_stack_frame_id)
6144 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6145 {
6146 /* The inferior is about to take a signal that will take it
6147 out of the single step range. Set a breakpoint at the
6148 current PC (which is presumably where the signal handler
6149 will eventually return) and then allow the inferior to
6150 run free.
6151
6152 Note that this is only needed for a signal delivered
6153 while in the single-step range. Nested signals aren't a
6154 problem as they eventually all return. */
6155 if (debug_infrun)
6156 fprintf_unfiltered (gdb_stdlog,
6157 "infrun: signal may take us out of "
6158 "single-step range\n");
6159
6160 clear_step_over_info ();
6161 insert_hp_step_resume_breakpoint_at_frame (frame);
6162 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6163 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6164 ecs->event_thread->control.trap_expected = 0;
6165 keep_going (ecs);
6166 return;
6167 }
6168
6169 /* Note: step_resume_breakpoint may be non-NULL. This occures
6170 when either there's a nested signal, or when there's a
6171 pending signal enabled just as the signal handler returns
6172 (leaving the inferior at the step-resume-breakpoint without
6173 actually executing it). Either way continue until the
6174 breakpoint is really hit. */
6175
6176 if (!switch_back_to_stepped_thread (ecs))
6177 {
6178 if (debug_infrun)
6179 fprintf_unfiltered (gdb_stdlog,
6180 "infrun: random signal, keep going\n");
6181
6182 keep_going (ecs);
6183 }
6184 return;
6185 }
6186
6187 process_event_stop_test (ecs);
6188 }
6189
6190 /* Come here when we've got some debug event / signal we can explain
6191 (IOW, not a random signal), and test whether it should cause a
6192 stop, or whether we should resume the inferior (transparently).
6193 E.g., could be a breakpoint whose condition evaluates false; we
6194 could be still stepping within the line; etc. */
6195
6196 static void
6197 process_event_stop_test (struct execution_control_state *ecs)
6198 {
6199 struct symtab_and_line stop_pc_sal;
6200 struct frame_info *frame;
6201 struct gdbarch *gdbarch;
6202 CORE_ADDR jmp_buf_pc;
6203 struct bpstat_what what;
6204
6205 /* Handle cases caused by hitting a breakpoint. */
6206
6207 frame = get_current_frame ();
6208 gdbarch = get_frame_arch (frame);
6209
6210 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6211
6212 if (what.call_dummy)
6213 {
6214 stop_stack_dummy = what.call_dummy;
6215 }
6216
6217 /* A few breakpoint types have callbacks associated (e.g.,
6218 bp_jit_event). Run them now. */
6219 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6220
6221 /* If we hit an internal event that triggers symbol changes, the
6222 current frame will be invalidated within bpstat_what (e.g., if we
6223 hit an internal solib event). Re-fetch it. */
6224 frame = get_current_frame ();
6225 gdbarch = get_frame_arch (frame);
6226
6227 switch (what.main_action)
6228 {
6229 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6230 /* If we hit the breakpoint at longjmp while stepping, we
6231 install a momentary breakpoint at the target of the
6232 jmp_buf. */
6233
6234 if (debug_infrun)
6235 fprintf_unfiltered (gdb_stdlog,
6236 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6237
6238 ecs->event_thread->stepping_over_breakpoint = 1;
6239
6240 if (what.is_longjmp)
6241 {
6242 struct value *arg_value;
6243
6244 /* If we set the longjmp breakpoint via a SystemTap probe,
6245 then use it to extract the arguments. The destination PC
6246 is the third argument to the probe. */
6247 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6248 if (arg_value)
6249 {
6250 jmp_buf_pc = value_as_address (arg_value);
6251 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6252 }
6253 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6254 || !gdbarch_get_longjmp_target (gdbarch,
6255 frame, &jmp_buf_pc))
6256 {
6257 if (debug_infrun)
6258 fprintf_unfiltered (gdb_stdlog,
6259 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6260 "(!gdbarch_get_longjmp_target)\n");
6261 keep_going (ecs);
6262 return;
6263 }
6264
6265 /* Insert a breakpoint at resume address. */
6266 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6267 }
6268 else
6269 check_exception_resume (ecs, frame);
6270 keep_going (ecs);
6271 return;
6272
6273 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6274 {
6275 struct frame_info *init_frame;
6276
6277 /* There are several cases to consider.
6278
6279 1. The initiating frame no longer exists. In this case we
6280 must stop, because the exception or longjmp has gone too
6281 far.
6282
6283 2. The initiating frame exists, and is the same as the
6284 current frame. We stop, because the exception or longjmp
6285 has been caught.
6286
6287 3. The initiating frame exists and is different from the
6288 current frame. This means the exception or longjmp has
6289 been caught beneath the initiating frame, so keep going.
6290
6291 4. longjmp breakpoint has been placed just to protect
6292 against stale dummy frames and user is not interested in
6293 stopping around longjmps. */
6294
6295 if (debug_infrun)
6296 fprintf_unfiltered (gdb_stdlog,
6297 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6298
6299 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6300 != NULL);
6301 delete_exception_resume_breakpoint (ecs->event_thread);
6302
6303 if (what.is_longjmp)
6304 {
6305 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6306
6307 if (!frame_id_p (ecs->event_thread->initiating_frame))
6308 {
6309 /* Case 4. */
6310 keep_going (ecs);
6311 return;
6312 }
6313 }
6314
6315 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6316
6317 if (init_frame)
6318 {
6319 struct frame_id current_id
6320 = get_frame_id (get_current_frame ());
6321 if (frame_id_eq (current_id,
6322 ecs->event_thread->initiating_frame))
6323 {
6324 /* Case 2. Fall through. */
6325 }
6326 else
6327 {
6328 /* Case 3. */
6329 keep_going (ecs);
6330 return;
6331 }
6332 }
6333
6334 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6335 exists. */
6336 delete_step_resume_breakpoint (ecs->event_thread);
6337
6338 end_stepping_range (ecs);
6339 }
6340 return;
6341
6342 case BPSTAT_WHAT_SINGLE:
6343 if (debug_infrun)
6344 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6345 ecs->event_thread->stepping_over_breakpoint = 1;
6346 /* Still need to check other stuff, at least the case where we
6347 are stepping and step out of the right range. */
6348 break;
6349
6350 case BPSTAT_WHAT_STEP_RESUME:
6351 if (debug_infrun)
6352 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6353
6354 delete_step_resume_breakpoint (ecs->event_thread);
6355 if (ecs->event_thread->control.proceed_to_finish
6356 && execution_direction == EXEC_REVERSE)
6357 {
6358 struct thread_info *tp = ecs->event_thread;
6359
6360 /* We are finishing a function in reverse, and just hit the
6361 step-resume breakpoint at the start address of the
6362 function, and we're almost there -- just need to back up
6363 by one more single-step, which should take us back to the
6364 function call. */
6365 tp->control.step_range_start = tp->control.step_range_end = 1;
6366 keep_going (ecs);
6367 return;
6368 }
6369 fill_in_stop_func (gdbarch, ecs);
6370 if (stop_pc == ecs->stop_func_start
6371 && execution_direction == EXEC_REVERSE)
6372 {
6373 /* We are stepping over a function call in reverse, and just
6374 hit the step-resume breakpoint at the start address of
6375 the function. Go back to single-stepping, which should
6376 take us back to the function call. */
6377 ecs->event_thread->stepping_over_breakpoint = 1;
6378 keep_going (ecs);
6379 return;
6380 }
6381 break;
6382
6383 case BPSTAT_WHAT_STOP_NOISY:
6384 if (debug_infrun)
6385 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6386 stop_print_frame = 1;
6387
6388 /* Assume the thread stopped for a breapoint. We'll still check
6389 whether a/the breakpoint is there when the thread is next
6390 resumed. */
6391 ecs->event_thread->stepping_over_breakpoint = 1;
6392
6393 stop_waiting (ecs);
6394 return;
6395
6396 case BPSTAT_WHAT_STOP_SILENT:
6397 if (debug_infrun)
6398 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6399 stop_print_frame = 0;
6400
6401 /* Assume the thread stopped for a breapoint. We'll still check
6402 whether a/the breakpoint is there when the thread is next
6403 resumed. */
6404 ecs->event_thread->stepping_over_breakpoint = 1;
6405 stop_waiting (ecs);
6406 return;
6407
6408 case BPSTAT_WHAT_HP_STEP_RESUME:
6409 if (debug_infrun)
6410 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6411
6412 delete_step_resume_breakpoint (ecs->event_thread);
6413 if (ecs->event_thread->step_after_step_resume_breakpoint)
6414 {
6415 /* Back when the step-resume breakpoint was inserted, we
6416 were trying to single-step off a breakpoint. Go back to
6417 doing that. */
6418 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6419 ecs->event_thread->stepping_over_breakpoint = 1;
6420 keep_going (ecs);
6421 return;
6422 }
6423 break;
6424
6425 case BPSTAT_WHAT_KEEP_CHECKING:
6426 break;
6427 }
6428
6429 /* If we stepped a permanent breakpoint and we had a high priority
6430 step-resume breakpoint for the address we stepped, but we didn't
6431 hit it, then we must have stepped into the signal handler. The
6432 step-resume was only necessary to catch the case of _not_
6433 stepping into the handler, so delete it, and fall through to
6434 checking whether the step finished. */
6435 if (ecs->event_thread->stepped_breakpoint)
6436 {
6437 struct breakpoint *sr_bp
6438 = ecs->event_thread->control.step_resume_breakpoint;
6439
6440 if (sr_bp != NULL
6441 && sr_bp->loc->permanent
6442 && sr_bp->type == bp_hp_step_resume
6443 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6444 {
6445 if (debug_infrun)
6446 fprintf_unfiltered (gdb_stdlog,
6447 "infrun: stepped permanent breakpoint, stopped in "
6448 "handler\n");
6449 delete_step_resume_breakpoint (ecs->event_thread);
6450 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6451 }
6452 }
6453
6454 /* We come here if we hit a breakpoint but should not stop for it.
6455 Possibly we also were stepping and should stop for that. So fall
6456 through and test for stepping. But, if not stepping, do not
6457 stop. */
6458
6459 /* In all-stop mode, if we're currently stepping but have stopped in
6460 some other thread, we need to switch back to the stepped thread. */
6461 if (switch_back_to_stepped_thread (ecs))
6462 return;
6463
6464 if (ecs->event_thread->control.step_resume_breakpoint)
6465 {
6466 if (debug_infrun)
6467 fprintf_unfiltered (gdb_stdlog,
6468 "infrun: step-resume breakpoint is inserted\n");
6469
6470 /* Having a step-resume breakpoint overrides anything
6471 else having to do with stepping commands until
6472 that breakpoint is reached. */
6473 keep_going (ecs);
6474 return;
6475 }
6476
6477 if (ecs->event_thread->control.step_range_end == 0)
6478 {
6479 if (debug_infrun)
6480 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6481 /* Likewise if we aren't even stepping. */
6482 keep_going (ecs);
6483 return;
6484 }
6485
6486 /* Re-fetch current thread's frame in case the code above caused
6487 the frame cache to be re-initialized, making our FRAME variable
6488 a dangling pointer. */
6489 frame = get_current_frame ();
6490 gdbarch = get_frame_arch (frame);
6491 fill_in_stop_func (gdbarch, ecs);
6492
6493 /* If stepping through a line, keep going if still within it.
6494
6495 Note that step_range_end is the address of the first instruction
6496 beyond the step range, and NOT the address of the last instruction
6497 within it!
6498
6499 Note also that during reverse execution, we may be stepping
6500 through a function epilogue and therefore must detect when
6501 the current-frame changes in the middle of a line. */
6502
6503 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6504 && (execution_direction != EXEC_REVERSE
6505 || frame_id_eq (get_frame_id (frame),
6506 ecs->event_thread->control.step_frame_id)))
6507 {
6508 if (debug_infrun)
6509 fprintf_unfiltered
6510 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6511 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6512 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6513
6514 /* Tentatively re-enable range stepping; `resume' disables it if
6515 necessary (e.g., if we're stepping over a breakpoint or we
6516 have software watchpoints). */
6517 ecs->event_thread->control.may_range_step = 1;
6518
6519 /* When stepping backward, stop at beginning of line range
6520 (unless it's the function entry point, in which case
6521 keep going back to the call point). */
6522 if (stop_pc == ecs->event_thread->control.step_range_start
6523 && stop_pc != ecs->stop_func_start
6524 && execution_direction == EXEC_REVERSE)
6525 end_stepping_range (ecs);
6526 else
6527 keep_going (ecs);
6528
6529 return;
6530 }
6531
6532 /* We stepped out of the stepping range. */
6533
6534 /* If we are stepping at the source level and entered the runtime
6535 loader dynamic symbol resolution code...
6536
6537 EXEC_FORWARD: we keep on single stepping until we exit the run
6538 time loader code and reach the callee's address.
6539
6540 EXEC_REVERSE: we've already executed the callee (backward), and
6541 the runtime loader code is handled just like any other
6542 undebuggable function call. Now we need only keep stepping
6543 backward through the trampoline code, and that's handled further
6544 down, so there is nothing for us to do here. */
6545
6546 if (execution_direction != EXEC_REVERSE
6547 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6548 && in_solib_dynsym_resolve_code (stop_pc))
6549 {
6550 CORE_ADDR pc_after_resolver =
6551 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6552
6553 if (debug_infrun)
6554 fprintf_unfiltered (gdb_stdlog,
6555 "infrun: stepped into dynsym resolve code\n");
6556
6557 if (pc_after_resolver)
6558 {
6559 /* Set up a step-resume breakpoint at the address
6560 indicated by SKIP_SOLIB_RESOLVER. */
6561 symtab_and_line sr_sal;
6562 sr_sal.pc = pc_after_resolver;
6563 sr_sal.pspace = get_frame_program_space (frame);
6564
6565 insert_step_resume_breakpoint_at_sal (gdbarch,
6566 sr_sal, null_frame_id);
6567 }
6568
6569 keep_going (ecs);
6570 return;
6571 }
6572
6573 if (ecs->event_thread->control.step_range_end != 1
6574 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6575 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6576 && get_frame_type (frame) == SIGTRAMP_FRAME)
6577 {
6578 if (debug_infrun)
6579 fprintf_unfiltered (gdb_stdlog,
6580 "infrun: stepped into signal trampoline\n");
6581 /* The inferior, while doing a "step" or "next", has ended up in
6582 a signal trampoline (either by a signal being delivered or by
6583 the signal handler returning). Just single-step until the
6584 inferior leaves the trampoline (either by calling the handler
6585 or returning). */
6586 keep_going (ecs);
6587 return;
6588 }
6589
6590 /* If we're in the return path from a shared library trampoline,
6591 we want to proceed through the trampoline when stepping. */
6592 /* macro/2012-04-25: This needs to come before the subroutine
6593 call check below as on some targets return trampolines look
6594 like subroutine calls (MIPS16 return thunks). */
6595 if (gdbarch_in_solib_return_trampoline (gdbarch,
6596 stop_pc, ecs->stop_func_name)
6597 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6598 {
6599 /* Determine where this trampoline returns. */
6600 CORE_ADDR real_stop_pc;
6601
6602 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6603
6604 if (debug_infrun)
6605 fprintf_unfiltered (gdb_stdlog,
6606 "infrun: stepped into solib return tramp\n");
6607
6608 /* Only proceed through if we know where it's going. */
6609 if (real_stop_pc)
6610 {
6611 /* And put the step-breakpoint there and go until there. */
6612 symtab_and_line sr_sal;
6613 sr_sal.pc = real_stop_pc;
6614 sr_sal.section = find_pc_overlay (sr_sal.pc);
6615 sr_sal.pspace = get_frame_program_space (frame);
6616
6617 /* Do not specify what the fp should be when we stop since
6618 on some machines the prologue is where the new fp value
6619 is established. */
6620 insert_step_resume_breakpoint_at_sal (gdbarch,
6621 sr_sal, null_frame_id);
6622
6623 /* Restart without fiddling with the step ranges or
6624 other state. */
6625 keep_going (ecs);
6626 return;
6627 }
6628 }
6629
6630 /* Check for subroutine calls. The check for the current frame
6631 equalling the step ID is not necessary - the check of the
6632 previous frame's ID is sufficient - but it is a common case and
6633 cheaper than checking the previous frame's ID.
6634
6635 NOTE: frame_id_eq will never report two invalid frame IDs as
6636 being equal, so to get into this block, both the current and
6637 previous frame must have valid frame IDs. */
6638 /* The outer_frame_id check is a heuristic to detect stepping
6639 through startup code. If we step over an instruction which
6640 sets the stack pointer from an invalid value to a valid value,
6641 we may detect that as a subroutine call from the mythical
6642 "outermost" function. This could be fixed by marking
6643 outermost frames as !stack_p,code_p,special_p. Then the
6644 initial outermost frame, before sp was valid, would
6645 have code_addr == &_start. See the comment in frame_id_eq
6646 for more. */
6647 if (!frame_id_eq (get_stack_frame_id (frame),
6648 ecs->event_thread->control.step_stack_frame_id)
6649 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6650 ecs->event_thread->control.step_stack_frame_id)
6651 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6652 outer_frame_id)
6653 || (ecs->event_thread->control.step_start_function
6654 != find_pc_function (stop_pc)))))
6655 {
6656 CORE_ADDR real_stop_pc;
6657
6658 if (debug_infrun)
6659 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6660
6661 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6662 {
6663 /* I presume that step_over_calls is only 0 when we're
6664 supposed to be stepping at the assembly language level
6665 ("stepi"). Just stop. */
6666 /* And this works the same backward as frontward. MVS */
6667 end_stepping_range (ecs);
6668 return;
6669 }
6670
6671 /* Reverse stepping through solib trampolines. */
6672
6673 if (execution_direction == EXEC_REVERSE
6674 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6675 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6676 || (ecs->stop_func_start == 0
6677 && in_solib_dynsym_resolve_code (stop_pc))))
6678 {
6679 /* Any solib trampoline code can be handled in reverse
6680 by simply continuing to single-step. We have already
6681 executed the solib function (backwards), and a few
6682 steps will take us back through the trampoline to the
6683 caller. */
6684 keep_going (ecs);
6685 return;
6686 }
6687
6688 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6689 {
6690 /* We're doing a "next".
6691
6692 Normal (forward) execution: set a breakpoint at the
6693 callee's return address (the address at which the caller
6694 will resume).
6695
6696 Reverse (backward) execution. set the step-resume
6697 breakpoint at the start of the function that we just
6698 stepped into (backwards), and continue to there. When we
6699 get there, we'll need to single-step back to the caller. */
6700
6701 if (execution_direction == EXEC_REVERSE)
6702 {
6703 /* If we're already at the start of the function, we've either
6704 just stepped backward into a single instruction function,
6705 or stepped back out of a signal handler to the first instruction
6706 of the function. Just keep going, which will single-step back
6707 to the caller. */
6708 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6709 {
6710 /* Normal function call return (static or dynamic). */
6711 symtab_and_line sr_sal;
6712 sr_sal.pc = ecs->stop_func_start;
6713 sr_sal.pspace = get_frame_program_space (frame);
6714 insert_step_resume_breakpoint_at_sal (gdbarch,
6715 sr_sal, null_frame_id);
6716 }
6717 }
6718 else
6719 insert_step_resume_breakpoint_at_caller (frame);
6720
6721 keep_going (ecs);
6722 return;
6723 }
6724
6725 /* If we are in a function call trampoline (a stub between the
6726 calling routine and the real function), locate the real
6727 function. That's what tells us (a) whether we want to step
6728 into it at all, and (b) what prologue we want to run to the
6729 end of, if we do step into it. */
6730 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6731 if (real_stop_pc == 0)
6732 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6733 if (real_stop_pc != 0)
6734 ecs->stop_func_start = real_stop_pc;
6735
6736 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6737 {
6738 symtab_and_line sr_sal;
6739 sr_sal.pc = ecs->stop_func_start;
6740 sr_sal.pspace = get_frame_program_space (frame);
6741
6742 insert_step_resume_breakpoint_at_sal (gdbarch,
6743 sr_sal, null_frame_id);
6744 keep_going (ecs);
6745 return;
6746 }
6747
6748 /* If we have line number information for the function we are
6749 thinking of stepping into and the function isn't on the skip
6750 list, step into it.
6751
6752 If there are several symtabs at that PC (e.g. with include
6753 files), just want to know whether *any* of them have line
6754 numbers. find_pc_line handles this. */
6755 {
6756 struct symtab_and_line tmp_sal;
6757
6758 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6759 if (tmp_sal.line != 0
6760 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6761 tmp_sal))
6762 {
6763 if (execution_direction == EXEC_REVERSE)
6764 handle_step_into_function_backward (gdbarch, ecs);
6765 else
6766 handle_step_into_function (gdbarch, ecs);
6767 return;
6768 }
6769 }
6770
6771 /* If we have no line number and the step-stop-if-no-debug is
6772 set, we stop the step so that the user has a chance to switch
6773 in assembly mode. */
6774 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6775 && step_stop_if_no_debug)
6776 {
6777 end_stepping_range (ecs);
6778 return;
6779 }
6780
6781 if (execution_direction == EXEC_REVERSE)
6782 {
6783 /* If we're already at the start of the function, we've either just
6784 stepped backward into a single instruction function without line
6785 number info, or stepped back out of a signal handler to the first
6786 instruction of the function without line number info. Just keep
6787 going, which will single-step back to the caller. */
6788 if (ecs->stop_func_start != stop_pc)
6789 {
6790 /* Set a breakpoint at callee's start address.
6791 From there we can step once and be back in the caller. */
6792 symtab_and_line sr_sal;
6793 sr_sal.pc = ecs->stop_func_start;
6794 sr_sal.pspace = get_frame_program_space (frame);
6795 insert_step_resume_breakpoint_at_sal (gdbarch,
6796 sr_sal, null_frame_id);
6797 }
6798 }
6799 else
6800 /* Set a breakpoint at callee's return address (the address
6801 at which the caller will resume). */
6802 insert_step_resume_breakpoint_at_caller (frame);
6803
6804 keep_going (ecs);
6805 return;
6806 }
6807
6808 /* Reverse stepping through solib trampolines. */
6809
6810 if (execution_direction == EXEC_REVERSE
6811 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6812 {
6813 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6814 || (ecs->stop_func_start == 0
6815 && in_solib_dynsym_resolve_code (stop_pc)))
6816 {
6817 /* Any solib trampoline code can be handled in reverse
6818 by simply continuing to single-step. We have already
6819 executed the solib function (backwards), and a few
6820 steps will take us back through the trampoline to the
6821 caller. */
6822 keep_going (ecs);
6823 return;
6824 }
6825 else if (in_solib_dynsym_resolve_code (stop_pc))
6826 {
6827 /* Stepped backward into the solib dynsym resolver.
6828 Set a breakpoint at its start and continue, then
6829 one more step will take us out. */
6830 symtab_and_line sr_sal;
6831 sr_sal.pc = ecs->stop_func_start;
6832 sr_sal.pspace = get_frame_program_space (frame);
6833 insert_step_resume_breakpoint_at_sal (gdbarch,
6834 sr_sal, null_frame_id);
6835 keep_going (ecs);
6836 return;
6837 }
6838 }
6839
6840 stop_pc_sal = find_pc_line (stop_pc, 0);
6841
6842 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6843 the trampoline processing logic, however, there are some trampolines
6844 that have no names, so we should do trampoline handling first. */
6845 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6846 && ecs->stop_func_name == NULL
6847 && stop_pc_sal.line == 0)
6848 {
6849 if (debug_infrun)
6850 fprintf_unfiltered (gdb_stdlog,
6851 "infrun: stepped into undebuggable function\n");
6852
6853 /* The inferior just stepped into, or returned to, an
6854 undebuggable function (where there is no debugging information
6855 and no line number corresponding to the address where the
6856 inferior stopped). Since we want to skip this kind of code,
6857 we keep going until the inferior returns from this
6858 function - unless the user has asked us not to (via
6859 set step-mode) or we no longer know how to get back
6860 to the call site. */
6861 if (step_stop_if_no_debug
6862 || !frame_id_p (frame_unwind_caller_id (frame)))
6863 {
6864 /* If we have no line number and the step-stop-if-no-debug
6865 is set, we stop the step so that the user has a chance to
6866 switch in assembly mode. */
6867 end_stepping_range (ecs);
6868 return;
6869 }
6870 else
6871 {
6872 /* Set a breakpoint at callee's return address (the address
6873 at which the caller will resume). */
6874 insert_step_resume_breakpoint_at_caller (frame);
6875 keep_going (ecs);
6876 return;
6877 }
6878 }
6879
6880 if (ecs->event_thread->control.step_range_end == 1)
6881 {
6882 /* It is stepi or nexti. We always want to stop stepping after
6883 one instruction. */
6884 if (debug_infrun)
6885 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6886 end_stepping_range (ecs);
6887 return;
6888 }
6889
6890 if (stop_pc_sal.line == 0)
6891 {
6892 /* We have no line number information. That means to stop
6893 stepping (does this always happen right after one instruction,
6894 when we do "s" in a function with no line numbers,
6895 or can this happen as a result of a return or longjmp?). */
6896 if (debug_infrun)
6897 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6898 end_stepping_range (ecs);
6899 return;
6900 }
6901
6902 /* Look for "calls" to inlined functions, part one. If the inline
6903 frame machinery detected some skipped call sites, we have entered
6904 a new inline function. */
6905
6906 if (frame_id_eq (get_frame_id (get_current_frame ()),
6907 ecs->event_thread->control.step_frame_id)
6908 && inline_skipped_frames (ecs->ptid))
6909 {
6910 if (debug_infrun)
6911 fprintf_unfiltered (gdb_stdlog,
6912 "infrun: stepped into inlined function\n");
6913
6914 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6915
6916 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6917 {
6918 /* For "step", we're going to stop. But if the call site
6919 for this inlined function is on the same source line as
6920 we were previously stepping, go down into the function
6921 first. Otherwise stop at the call site. */
6922
6923 if (call_sal.line == ecs->event_thread->current_line
6924 && call_sal.symtab == ecs->event_thread->current_symtab)
6925 step_into_inline_frame (ecs->ptid);
6926
6927 end_stepping_range (ecs);
6928 return;
6929 }
6930 else
6931 {
6932 /* For "next", we should stop at the call site if it is on a
6933 different source line. Otherwise continue through the
6934 inlined function. */
6935 if (call_sal.line == ecs->event_thread->current_line
6936 && call_sal.symtab == ecs->event_thread->current_symtab)
6937 keep_going (ecs);
6938 else
6939 end_stepping_range (ecs);
6940 return;
6941 }
6942 }
6943
6944 /* Look for "calls" to inlined functions, part two. If we are still
6945 in the same real function we were stepping through, but we have
6946 to go further up to find the exact frame ID, we are stepping
6947 through a more inlined call beyond its call site. */
6948
6949 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6950 && !frame_id_eq (get_frame_id (get_current_frame ()),
6951 ecs->event_thread->control.step_frame_id)
6952 && stepped_in_from (get_current_frame (),
6953 ecs->event_thread->control.step_frame_id))
6954 {
6955 if (debug_infrun)
6956 fprintf_unfiltered (gdb_stdlog,
6957 "infrun: stepping through inlined function\n");
6958
6959 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6960 keep_going (ecs);
6961 else
6962 end_stepping_range (ecs);
6963 return;
6964 }
6965
6966 if ((stop_pc == stop_pc_sal.pc)
6967 && (ecs->event_thread->current_line != stop_pc_sal.line
6968 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6969 {
6970 /* We are at the start of a different line. So stop. Note that
6971 we don't stop if we step into the middle of a different line.
6972 That is said to make things like for (;;) statements work
6973 better. */
6974 if (debug_infrun)
6975 fprintf_unfiltered (gdb_stdlog,
6976 "infrun: stepped to a different line\n");
6977 end_stepping_range (ecs);
6978 return;
6979 }
6980
6981 /* We aren't done stepping.
6982
6983 Optimize by setting the stepping range to the line.
6984 (We might not be in the original line, but if we entered a
6985 new line in mid-statement, we continue stepping. This makes
6986 things like for(;;) statements work better.) */
6987
6988 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6989 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6990 ecs->event_thread->control.may_range_step = 1;
6991 set_step_info (frame, stop_pc_sal);
6992
6993 if (debug_infrun)
6994 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6995 keep_going (ecs);
6996 }
6997
6998 /* In all-stop mode, if we're currently stepping but have stopped in
6999 some other thread, we may need to switch back to the stepped
7000 thread. Returns true we set the inferior running, false if we left
7001 it stopped (and the event needs further processing). */
7002
7003 static int
7004 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7005 {
7006 if (!target_is_non_stop_p ())
7007 {
7008 struct thread_info *tp;
7009 struct thread_info *stepping_thread;
7010
7011 /* If any thread is blocked on some internal breakpoint, and we
7012 simply need to step over that breakpoint to get it going
7013 again, do that first. */
7014
7015 /* However, if we see an event for the stepping thread, then we
7016 know all other threads have been moved past their breakpoints
7017 already. Let the caller check whether the step is finished,
7018 etc., before deciding to move it past a breakpoint. */
7019 if (ecs->event_thread->control.step_range_end != 0)
7020 return 0;
7021
7022 /* Check if the current thread is blocked on an incomplete
7023 step-over, interrupted by a random signal. */
7024 if (ecs->event_thread->control.trap_expected
7025 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7026 {
7027 if (debug_infrun)
7028 {
7029 fprintf_unfiltered (gdb_stdlog,
7030 "infrun: need to finish step-over of [%s]\n",
7031 target_pid_to_str (ecs->event_thread->ptid));
7032 }
7033 keep_going (ecs);
7034 return 1;
7035 }
7036
7037 /* Check if the current thread is blocked by a single-step
7038 breakpoint of another thread. */
7039 if (ecs->hit_singlestep_breakpoint)
7040 {
7041 if (debug_infrun)
7042 {
7043 fprintf_unfiltered (gdb_stdlog,
7044 "infrun: need to step [%s] over single-step "
7045 "breakpoint\n",
7046 target_pid_to_str (ecs->ptid));
7047 }
7048 keep_going (ecs);
7049 return 1;
7050 }
7051
7052 /* If this thread needs yet another step-over (e.g., stepping
7053 through a delay slot), do it first before moving on to
7054 another thread. */
7055 if (thread_still_needs_step_over (ecs->event_thread))
7056 {
7057 if (debug_infrun)
7058 {
7059 fprintf_unfiltered (gdb_stdlog,
7060 "infrun: thread [%s] still needs step-over\n",
7061 target_pid_to_str (ecs->event_thread->ptid));
7062 }
7063 keep_going (ecs);
7064 return 1;
7065 }
7066
7067 /* If scheduler locking applies even if not stepping, there's no
7068 need to walk over threads. Above we've checked whether the
7069 current thread is stepping. If some other thread not the
7070 event thread is stepping, then it must be that scheduler
7071 locking is not in effect. */
7072 if (schedlock_applies (ecs->event_thread))
7073 return 0;
7074
7075 /* Otherwise, we no longer expect a trap in the current thread.
7076 Clear the trap_expected flag before switching back -- this is
7077 what keep_going does as well, if we call it. */
7078 ecs->event_thread->control.trap_expected = 0;
7079
7080 /* Likewise, clear the signal if it should not be passed. */
7081 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7082 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7083
7084 /* Do all pending step-overs before actually proceeding with
7085 step/next/etc. */
7086 if (start_step_over ())
7087 {
7088 prepare_to_wait (ecs);
7089 return 1;
7090 }
7091
7092 /* Look for the stepping/nexting thread. */
7093 stepping_thread = NULL;
7094
7095 ALL_NON_EXITED_THREADS (tp)
7096 {
7097 /* Ignore threads of processes the caller is not
7098 resuming. */
7099 if (!sched_multi
7100 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7101 continue;
7102
7103 /* When stepping over a breakpoint, we lock all threads
7104 except the one that needs to move past the breakpoint.
7105 If a non-event thread has this set, the "incomplete
7106 step-over" check above should have caught it earlier. */
7107 if (tp->control.trap_expected)
7108 {
7109 internal_error (__FILE__, __LINE__,
7110 "[%s] has inconsistent state: "
7111 "trap_expected=%d\n",
7112 target_pid_to_str (tp->ptid),
7113 tp->control.trap_expected);
7114 }
7115
7116 /* Did we find the stepping thread? */
7117 if (tp->control.step_range_end)
7118 {
7119 /* Yep. There should only one though. */
7120 gdb_assert (stepping_thread == NULL);
7121
7122 /* The event thread is handled at the top, before we
7123 enter this loop. */
7124 gdb_assert (tp != ecs->event_thread);
7125
7126 /* If some thread other than the event thread is
7127 stepping, then scheduler locking can't be in effect,
7128 otherwise we wouldn't have resumed the current event
7129 thread in the first place. */
7130 gdb_assert (!schedlock_applies (tp));
7131
7132 stepping_thread = tp;
7133 }
7134 }
7135
7136 if (stepping_thread != NULL)
7137 {
7138 if (debug_infrun)
7139 fprintf_unfiltered (gdb_stdlog,
7140 "infrun: switching back to stepped thread\n");
7141
7142 if (keep_going_stepped_thread (stepping_thread))
7143 {
7144 prepare_to_wait (ecs);
7145 return 1;
7146 }
7147 }
7148 }
7149
7150 return 0;
7151 }
7152
7153 /* Set a previously stepped thread back to stepping. Returns true on
7154 success, false if the resume is not possible (e.g., the thread
7155 vanished). */
7156
7157 static int
7158 keep_going_stepped_thread (struct thread_info *tp)
7159 {
7160 struct frame_info *frame;
7161 struct execution_control_state ecss;
7162 struct execution_control_state *ecs = &ecss;
7163
7164 /* If the stepping thread exited, then don't try to switch back and
7165 resume it, which could fail in several different ways depending
7166 on the target. Instead, just keep going.
7167
7168 We can find a stepping dead thread in the thread list in two
7169 cases:
7170
7171 - The target supports thread exit events, and when the target
7172 tries to delete the thread from the thread list, inferior_ptid
7173 pointed at the exiting thread. In such case, calling
7174 delete_thread does not really remove the thread from the list;
7175 instead, the thread is left listed, with 'exited' state.
7176
7177 - The target's debug interface does not support thread exit
7178 events, and so we have no idea whatsoever if the previously
7179 stepping thread is still alive. For that reason, we need to
7180 synchronously query the target now. */
7181
7182 if (is_exited (tp->ptid)
7183 || !target_thread_alive (tp->ptid))
7184 {
7185 if (debug_infrun)
7186 fprintf_unfiltered (gdb_stdlog,
7187 "infrun: not resuming previously "
7188 "stepped thread, it has vanished\n");
7189
7190 delete_thread (tp->ptid);
7191 return 0;
7192 }
7193
7194 if (debug_infrun)
7195 fprintf_unfiltered (gdb_stdlog,
7196 "infrun: resuming previously stepped thread\n");
7197
7198 reset_ecs (ecs, tp);
7199 switch_to_thread (tp->ptid);
7200
7201 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7202 frame = get_current_frame ();
7203
7204 /* If the PC of the thread we were trying to single-step has
7205 changed, then that thread has trapped or been signaled, but the
7206 event has not been reported to GDB yet. Re-poll the target
7207 looking for this particular thread's event (i.e. temporarily
7208 enable schedlock) by:
7209
7210 - setting a break at the current PC
7211 - resuming that particular thread, only (by setting trap
7212 expected)
7213
7214 This prevents us continuously moving the single-step breakpoint
7215 forward, one instruction at a time, overstepping. */
7216
7217 if (stop_pc != tp->prev_pc)
7218 {
7219 ptid_t resume_ptid;
7220
7221 if (debug_infrun)
7222 fprintf_unfiltered (gdb_stdlog,
7223 "infrun: expected thread advanced also (%s -> %s)\n",
7224 paddress (target_gdbarch (), tp->prev_pc),
7225 paddress (target_gdbarch (), stop_pc));
7226
7227 /* Clear the info of the previous step-over, as it's no longer
7228 valid (if the thread was trying to step over a breakpoint, it
7229 has already succeeded). It's what keep_going would do too,
7230 if we called it. Do this before trying to insert the sss
7231 breakpoint, otherwise if we were previously trying to step
7232 over this exact address in another thread, the breakpoint is
7233 skipped. */
7234 clear_step_over_info ();
7235 tp->control.trap_expected = 0;
7236
7237 insert_single_step_breakpoint (get_frame_arch (frame),
7238 get_frame_address_space (frame),
7239 stop_pc);
7240
7241 tp->resumed = 1;
7242 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7243 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7244 }
7245 else
7246 {
7247 if (debug_infrun)
7248 fprintf_unfiltered (gdb_stdlog,
7249 "infrun: expected thread still hasn't advanced\n");
7250
7251 keep_going_pass_signal (ecs);
7252 }
7253 return 1;
7254 }
7255
7256 /* Is thread TP in the middle of (software or hardware)
7257 single-stepping? (Note the result of this function must never be
7258 passed directly as target_resume's STEP parameter.) */
7259
7260 static int
7261 currently_stepping (struct thread_info *tp)
7262 {
7263 return ((tp->control.step_range_end
7264 && tp->control.step_resume_breakpoint == NULL)
7265 || tp->control.trap_expected
7266 || tp->stepped_breakpoint
7267 || bpstat_should_step ());
7268 }
7269
7270 /* Inferior has stepped into a subroutine call with source code that
7271 we should not step over. Do step to the first line of code in
7272 it. */
7273
7274 static void
7275 handle_step_into_function (struct gdbarch *gdbarch,
7276 struct execution_control_state *ecs)
7277 {
7278 fill_in_stop_func (gdbarch, ecs);
7279
7280 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
7281 if (cust != NULL && compunit_language (cust) != language_asm)
7282 ecs->stop_func_start
7283 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7284
7285 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7286 /* Use the step_resume_break to step until the end of the prologue,
7287 even if that involves jumps (as it seems to on the vax under
7288 4.2). */
7289 /* If the prologue ends in the middle of a source line, continue to
7290 the end of that source line (if it is still within the function).
7291 Otherwise, just go to end of prologue. */
7292 if (stop_func_sal.end
7293 && stop_func_sal.pc != ecs->stop_func_start
7294 && stop_func_sal.end < ecs->stop_func_end)
7295 ecs->stop_func_start = stop_func_sal.end;
7296
7297 /* Architectures which require breakpoint adjustment might not be able
7298 to place a breakpoint at the computed address. If so, the test
7299 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7300 ecs->stop_func_start to an address at which a breakpoint may be
7301 legitimately placed.
7302
7303 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7304 made, GDB will enter an infinite loop when stepping through
7305 optimized code consisting of VLIW instructions which contain
7306 subinstructions corresponding to different source lines. On
7307 FR-V, it's not permitted to place a breakpoint on any but the
7308 first subinstruction of a VLIW instruction. When a breakpoint is
7309 set, GDB will adjust the breakpoint address to the beginning of
7310 the VLIW instruction. Thus, we need to make the corresponding
7311 adjustment here when computing the stop address. */
7312
7313 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7314 {
7315 ecs->stop_func_start
7316 = gdbarch_adjust_breakpoint_address (gdbarch,
7317 ecs->stop_func_start);
7318 }
7319
7320 if (ecs->stop_func_start == stop_pc)
7321 {
7322 /* We are already there: stop now. */
7323 end_stepping_range (ecs);
7324 return;
7325 }
7326 else
7327 {
7328 /* Put the step-breakpoint there and go until there. */
7329 symtab_and_line sr_sal;
7330 sr_sal.pc = ecs->stop_func_start;
7331 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7332 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7333
7334 /* Do not specify what the fp should be when we stop since on
7335 some machines the prologue is where the new fp value is
7336 established. */
7337 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7338
7339 /* And make sure stepping stops right away then. */
7340 ecs->event_thread->control.step_range_end
7341 = ecs->event_thread->control.step_range_start;
7342 }
7343 keep_going (ecs);
7344 }
7345
7346 /* Inferior has stepped backward into a subroutine call with source
7347 code that we should not step over. Do step to the beginning of the
7348 last line of code in it. */
7349
7350 static void
7351 handle_step_into_function_backward (struct gdbarch *gdbarch,
7352 struct execution_control_state *ecs)
7353 {
7354 struct compunit_symtab *cust;
7355 struct symtab_and_line stop_func_sal;
7356
7357 fill_in_stop_func (gdbarch, ecs);
7358
7359 cust = find_pc_compunit_symtab (stop_pc);
7360 if (cust != NULL && compunit_language (cust) != language_asm)
7361 ecs->stop_func_start
7362 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7363
7364 stop_func_sal = find_pc_line (stop_pc, 0);
7365
7366 /* OK, we're just going to keep stepping here. */
7367 if (stop_func_sal.pc == stop_pc)
7368 {
7369 /* We're there already. Just stop stepping now. */
7370 end_stepping_range (ecs);
7371 }
7372 else
7373 {
7374 /* Else just reset the step range and keep going.
7375 No step-resume breakpoint, they don't work for
7376 epilogues, which can have multiple entry paths. */
7377 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7378 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7379 keep_going (ecs);
7380 }
7381 return;
7382 }
7383
7384 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7385 This is used to both functions and to skip over code. */
7386
7387 static void
7388 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7389 struct symtab_and_line sr_sal,
7390 struct frame_id sr_id,
7391 enum bptype sr_type)
7392 {
7393 /* There should never be more than one step-resume or longjmp-resume
7394 breakpoint per thread, so we should never be setting a new
7395 step_resume_breakpoint when one is already active. */
7396 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7397 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7398
7399 if (debug_infrun)
7400 fprintf_unfiltered (gdb_stdlog,
7401 "infrun: inserting step-resume breakpoint at %s\n",
7402 paddress (gdbarch, sr_sal.pc));
7403
7404 inferior_thread ()->control.step_resume_breakpoint
7405 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7406 }
7407
7408 void
7409 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7410 struct symtab_and_line sr_sal,
7411 struct frame_id sr_id)
7412 {
7413 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7414 sr_sal, sr_id,
7415 bp_step_resume);
7416 }
7417
7418 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7419 This is used to skip a potential signal handler.
7420
7421 This is called with the interrupted function's frame. The signal
7422 handler, when it returns, will resume the interrupted function at
7423 RETURN_FRAME.pc. */
7424
7425 static void
7426 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7427 {
7428 gdb_assert (return_frame != NULL);
7429
7430 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7431
7432 symtab_and_line sr_sal;
7433 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7434 sr_sal.section = find_pc_overlay (sr_sal.pc);
7435 sr_sal.pspace = get_frame_program_space (return_frame);
7436
7437 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7438 get_stack_frame_id (return_frame),
7439 bp_hp_step_resume);
7440 }
7441
7442 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7443 is used to skip a function after stepping into it (for "next" or if
7444 the called function has no debugging information).
7445
7446 The current function has almost always been reached by single
7447 stepping a call or return instruction. NEXT_FRAME belongs to the
7448 current function, and the breakpoint will be set at the caller's
7449 resume address.
7450
7451 This is a separate function rather than reusing
7452 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7453 get_prev_frame, which may stop prematurely (see the implementation
7454 of frame_unwind_caller_id for an example). */
7455
7456 static void
7457 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7458 {
7459 /* We shouldn't have gotten here if we don't know where the call site
7460 is. */
7461 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7462
7463 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7464
7465 symtab_and_line sr_sal;
7466 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7467 frame_unwind_caller_pc (next_frame));
7468 sr_sal.section = find_pc_overlay (sr_sal.pc);
7469 sr_sal.pspace = frame_unwind_program_space (next_frame);
7470
7471 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7472 frame_unwind_caller_id (next_frame));
7473 }
7474
7475 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7476 new breakpoint at the target of a jmp_buf. The handling of
7477 longjmp-resume uses the same mechanisms used for handling
7478 "step-resume" breakpoints. */
7479
7480 static void
7481 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7482 {
7483 /* There should never be more than one longjmp-resume breakpoint per
7484 thread, so we should never be setting a new
7485 longjmp_resume_breakpoint when one is already active. */
7486 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7487
7488 if (debug_infrun)
7489 fprintf_unfiltered (gdb_stdlog,
7490 "infrun: inserting longjmp-resume breakpoint at %s\n",
7491 paddress (gdbarch, pc));
7492
7493 inferior_thread ()->control.exception_resume_breakpoint =
7494 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7495 }
7496
7497 /* Insert an exception resume breakpoint. TP is the thread throwing
7498 the exception. The block B is the block of the unwinder debug hook
7499 function. FRAME is the frame corresponding to the call to this
7500 function. SYM is the symbol of the function argument holding the
7501 target PC of the exception. */
7502
7503 static void
7504 insert_exception_resume_breakpoint (struct thread_info *tp,
7505 const struct block *b,
7506 struct frame_info *frame,
7507 struct symbol *sym)
7508 {
7509 TRY
7510 {
7511 struct block_symbol vsym;
7512 struct value *value;
7513 CORE_ADDR handler;
7514 struct breakpoint *bp;
7515
7516 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7517 b, VAR_DOMAIN);
7518 value = read_var_value (vsym.symbol, vsym.block, frame);
7519 /* If the value was optimized out, revert to the old behavior. */
7520 if (! value_optimized_out (value))
7521 {
7522 handler = value_as_address (value);
7523
7524 if (debug_infrun)
7525 fprintf_unfiltered (gdb_stdlog,
7526 "infrun: exception resume at %lx\n",
7527 (unsigned long) handler);
7528
7529 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7530 handler,
7531 bp_exception_resume).release ();
7532
7533 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7534 frame = NULL;
7535
7536 bp->thread = tp->global_num;
7537 inferior_thread ()->control.exception_resume_breakpoint = bp;
7538 }
7539 }
7540 CATCH (e, RETURN_MASK_ERROR)
7541 {
7542 /* We want to ignore errors here. */
7543 }
7544 END_CATCH
7545 }
7546
7547 /* A helper for check_exception_resume that sets an
7548 exception-breakpoint based on a SystemTap probe. */
7549
7550 static void
7551 insert_exception_resume_from_probe (struct thread_info *tp,
7552 const struct bound_probe *probe,
7553 struct frame_info *frame)
7554 {
7555 struct value *arg_value;
7556 CORE_ADDR handler;
7557 struct breakpoint *bp;
7558
7559 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7560 if (!arg_value)
7561 return;
7562
7563 handler = value_as_address (arg_value);
7564
7565 if (debug_infrun)
7566 fprintf_unfiltered (gdb_stdlog,
7567 "infrun: exception resume at %s\n",
7568 paddress (get_objfile_arch (probe->objfile),
7569 handler));
7570
7571 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7572 handler, bp_exception_resume).release ();
7573 bp->thread = tp->global_num;
7574 inferior_thread ()->control.exception_resume_breakpoint = bp;
7575 }
7576
7577 /* This is called when an exception has been intercepted. Check to
7578 see whether the exception's destination is of interest, and if so,
7579 set an exception resume breakpoint there. */
7580
7581 static void
7582 check_exception_resume (struct execution_control_state *ecs,
7583 struct frame_info *frame)
7584 {
7585 struct bound_probe probe;
7586 struct symbol *func;
7587
7588 /* First see if this exception unwinding breakpoint was set via a
7589 SystemTap probe point. If so, the probe has two arguments: the
7590 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7591 set a breakpoint there. */
7592 probe = find_probe_by_pc (get_frame_pc (frame));
7593 if (probe.prob)
7594 {
7595 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7596 return;
7597 }
7598
7599 func = get_frame_function (frame);
7600 if (!func)
7601 return;
7602
7603 TRY
7604 {
7605 const struct block *b;
7606 struct block_iterator iter;
7607 struct symbol *sym;
7608 int argno = 0;
7609
7610 /* The exception breakpoint is a thread-specific breakpoint on
7611 the unwinder's debug hook, declared as:
7612
7613 void _Unwind_DebugHook (void *cfa, void *handler);
7614
7615 The CFA argument indicates the frame to which control is
7616 about to be transferred. HANDLER is the destination PC.
7617
7618 We ignore the CFA and set a temporary breakpoint at HANDLER.
7619 This is not extremely efficient but it avoids issues in gdb
7620 with computing the DWARF CFA, and it also works even in weird
7621 cases such as throwing an exception from inside a signal
7622 handler. */
7623
7624 b = SYMBOL_BLOCK_VALUE (func);
7625 ALL_BLOCK_SYMBOLS (b, iter, sym)
7626 {
7627 if (!SYMBOL_IS_ARGUMENT (sym))
7628 continue;
7629
7630 if (argno == 0)
7631 ++argno;
7632 else
7633 {
7634 insert_exception_resume_breakpoint (ecs->event_thread,
7635 b, frame, sym);
7636 break;
7637 }
7638 }
7639 }
7640 CATCH (e, RETURN_MASK_ERROR)
7641 {
7642 }
7643 END_CATCH
7644 }
7645
7646 static void
7647 stop_waiting (struct execution_control_state *ecs)
7648 {
7649 if (debug_infrun)
7650 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7651
7652 /* Let callers know we don't want to wait for the inferior anymore. */
7653 ecs->wait_some_more = 0;
7654
7655 /* If all-stop, but the target is always in non-stop mode, stop all
7656 threads now that we're presenting the stop to the user. */
7657 if (!non_stop && target_is_non_stop_p ())
7658 stop_all_threads ();
7659 }
7660
7661 /* Like keep_going, but passes the signal to the inferior, even if the
7662 signal is set to nopass. */
7663
7664 static void
7665 keep_going_pass_signal (struct execution_control_state *ecs)
7666 {
7667 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7668 gdb_assert (!ecs->event_thread->resumed);
7669
7670 /* Save the pc before execution, to compare with pc after stop. */
7671 ecs->event_thread->prev_pc
7672 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7673
7674 if (ecs->event_thread->control.trap_expected)
7675 {
7676 struct thread_info *tp = ecs->event_thread;
7677
7678 if (debug_infrun)
7679 fprintf_unfiltered (gdb_stdlog,
7680 "infrun: %s has trap_expected set, "
7681 "resuming to collect trap\n",
7682 target_pid_to_str (tp->ptid));
7683
7684 /* We haven't yet gotten our trap, and either: intercepted a
7685 non-signal event (e.g., a fork); or took a signal which we
7686 are supposed to pass through to the inferior. Simply
7687 continue. */
7688 resume (ecs->event_thread->suspend.stop_signal);
7689 }
7690 else if (step_over_info_valid_p ())
7691 {
7692 /* Another thread is stepping over a breakpoint in-line. If
7693 this thread needs a step-over too, queue the request. In
7694 either case, this resume must be deferred for later. */
7695 struct thread_info *tp = ecs->event_thread;
7696
7697 if (ecs->hit_singlestep_breakpoint
7698 || thread_still_needs_step_over (tp))
7699 {
7700 if (debug_infrun)
7701 fprintf_unfiltered (gdb_stdlog,
7702 "infrun: step-over already in progress: "
7703 "step-over for %s deferred\n",
7704 target_pid_to_str (tp->ptid));
7705 thread_step_over_chain_enqueue (tp);
7706 }
7707 else
7708 {
7709 if (debug_infrun)
7710 fprintf_unfiltered (gdb_stdlog,
7711 "infrun: step-over in progress: "
7712 "resume of %s deferred\n",
7713 target_pid_to_str (tp->ptid));
7714 }
7715 }
7716 else
7717 {
7718 struct regcache *regcache = get_current_regcache ();
7719 int remove_bp;
7720 int remove_wps;
7721 step_over_what step_what;
7722
7723 /* Either the trap was not expected, but we are continuing
7724 anyway (if we got a signal, the user asked it be passed to
7725 the child)
7726 -- or --
7727 We got our expected trap, but decided we should resume from
7728 it.
7729
7730 We're going to run this baby now!
7731
7732 Note that insert_breakpoints won't try to re-insert
7733 already inserted breakpoints. Therefore, we don't
7734 care if breakpoints were already inserted, or not. */
7735
7736 /* If we need to step over a breakpoint, and we're not using
7737 displaced stepping to do so, insert all breakpoints
7738 (watchpoints, etc.) but the one we're stepping over, step one
7739 instruction, and then re-insert the breakpoint when that step
7740 is finished. */
7741
7742 step_what = thread_still_needs_step_over (ecs->event_thread);
7743
7744 remove_bp = (ecs->hit_singlestep_breakpoint
7745 || (step_what & STEP_OVER_BREAKPOINT));
7746 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7747
7748 /* We can't use displaced stepping if we need to step past a
7749 watchpoint. The instruction copied to the scratch pad would
7750 still trigger the watchpoint. */
7751 if (remove_bp
7752 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7753 {
7754 set_step_over_info (regcache->aspace (),
7755 regcache_read_pc (regcache), remove_wps,
7756 ecs->event_thread->global_num);
7757 }
7758 else if (remove_wps)
7759 set_step_over_info (NULL, 0, remove_wps, -1);
7760
7761 /* If we now need to do an in-line step-over, we need to stop
7762 all other threads. Note this must be done before
7763 insert_breakpoints below, because that removes the breakpoint
7764 we're about to step over, otherwise other threads could miss
7765 it. */
7766 if (step_over_info_valid_p () && target_is_non_stop_p ())
7767 stop_all_threads ();
7768
7769 /* Stop stepping if inserting breakpoints fails. */
7770 TRY
7771 {
7772 insert_breakpoints ();
7773 }
7774 CATCH (e, RETURN_MASK_ERROR)
7775 {
7776 exception_print (gdb_stderr, e);
7777 stop_waiting (ecs);
7778 clear_step_over_info ();
7779 return;
7780 }
7781 END_CATCH
7782
7783 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7784
7785 resume (ecs->event_thread->suspend.stop_signal);
7786 }
7787
7788 prepare_to_wait (ecs);
7789 }
7790
7791 /* Called when we should continue running the inferior, because the
7792 current event doesn't cause a user visible stop. This does the
7793 resuming part; waiting for the next event is done elsewhere. */
7794
7795 static void
7796 keep_going (struct execution_control_state *ecs)
7797 {
7798 if (ecs->event_thread->control.trap_expected
7799 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7800 ecs->event_thread->control.trap_expected = 0;
7801
7802 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7803 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7804 keep_going_pass_signal (ecs);
7805 }
7806
7807 /* This function normally comes after a resume, before
7808 handle_inferior_event exits. It takes care of any last bits of
7809 housekeeping, and sets the all-important wait_some_more flag. */
7810
7811 static void
7812 prepare_to_wait (struct execution_control_state *ecs)
7813 {
7814 if (debug_infrun)
7815 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7816
7817 ecs->wait_some_more = 1;
7818
7819 if (!target_is_async_p ())
7820 mark_infrun_async_event_handler ();
7821 }
7822
7823 /* We are done with the step range of a step/next/si/ni command.
7824 Called once for each n of a "step n" operation. */
7825
7826 static void
7827 end_stepping_range (struct execution_control_state *ecs)
7828 {
7829 ecs->event_thread->control.stop_step = 1;
7830 stop_waiting (ecs);
7831 }
7832
7833 /* Several print_*_reason functions to print why the inferior has stopped.
7834 We always print something when the inferior exits, or receives a signal.
7835 The rest of the cases are dealt with later on in normal_stop and
7836 print_it_typical. Ideally there should be a call to one of these
7837 print_*_reason functions functions from handle_inferior_event each time
7838 stop_waiting is called.
7839
7840 Note that we don't call these directly, instead we delegate that to
7841 the interpreters, through observers. Interpreters then call these
7842 with whatever uiout is right. */
7843
7844 void
7845 print_end_stepping_range_reason (struct ui_out *uiout)
7846 {
7847 /* For CLI-like interpreters, print nothing. */
7848
7849 if (uiout->is_mi_like_p ())
7850 {
7851 uiout->field_string ("reason",
7852 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7853 }
7854 }
7855
7856 void
7857 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7858 {
7859 annotate_signalled ();
7860 if (uiout->is_mi_like_p ())
7861 uiout->field_string
7862 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7863 uiout->text ("\nProgram terminated with signal ");
7864 annotate_signal_name ();
7865 uiout->field_string ("signal-name",
7866 gdb_signal_to_name (siggnal));
7867 annotate_signal_name_end ();
7868 uiout->text (", ");
7869 annotate_signal_string ();
7870 uiout->field_string ("signal-meaning",
7871 gdb_signal_to_string (siggnal));
7872 annotate_signal_string_end ();
7873 uiout->text (".\n");
7874 uiout->text ("The program no longer exists.\n");
7875 }
7876
7877 void
7878 print_exited_reason (struct ui_out *uiout, int exitstatus)
7879 {
7880 struct inferior *inf = current_inferior ();
7881 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7882
7883 annotate_exited (exitstatus);
7884 if (exitstatus)
7885 {
7886 if (uiout->is_mi_like_p ())
7887 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7888 uiout->text ("[Inferior ");
7889 uiout->text (plongest (inf->num));
7890 uiout->text (" (");
7891 uiout->text (pidstr);
7892 uiout->text (") exited with code ");
7893 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7894 uiout->text ("]\n");
7895 }
7896 else
7897 {
7898 if (uiout->is_mi_like_p ())
7899 uiout->field_string
7900 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7901 uiout->text ("[Inferior ");
7902 uiout->text (plongest (inf->num));
7903 uiout->text (" (");
7904 uiout->text (pidstr);
7905 uiout->text (") exited normally]\n");
7906 }
7907 }
7908
7909 /* Some targets/architectures can do extra processing/display of
7910 segmentation faults. E.g., Intel MPX boundary faults.
7911 Call the architecture dependent function to handle the fault. */
7912
7913 static void
7914 handle_segmentation_fault (struct ui_out *uiout)
7915 {
7916 struct regcache *regcache = get_current_regcache ();
7917 struct gdbarch *gdbarch = regcache->arch ();
7918
7919 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7920 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7921 }
7922
7923 void
7924 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7925 {
7926 struct thread_info *thr = inferior_thread ();
7927
7928 annotate_signal ();
7929
7930 if (uiout->is_mi_like_p ())
7931 ;
7932 else if (show_thread_that_caused_stop ())
7933 {
7934 const char *name;
7935
7936 uiout->text ("\nThread ");
7937 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7938
7939 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7940 if (name != NULL)
7941 {
7942 uiout->text (" \"");
7943 uiout->field_fmt ("name", "%s", name);
7944 uiout->text ("\"");
7945 }
7946 }
7947 else
7948 uiout->text ("\nProgram");
7949
7950 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7951 uiout->text (" stopped");
7952 else
7953 {
7954 uiout->text (" received signal ");
7955 annotate_signal_name ();
7956 if (uiout->is_mi_like_p ())
7957 uiout->field_string
7958 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7959 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7960 annotate_signal_name_end ();
7961 uiout->text (", ");
7962 annotate_signal_string ();
7963 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7964
7965 if (siggnal == GDB_SIGNAL_SEGV)
7966 handle_segmentation_fault (uiout);
7967
7968 annotate_signal_string_end ();
7969 }
7970 uiout->text (".\n");
7971 }
7972
7973 void
7974 print_no_history_reason (struct ui_out *uiout)
7975 {
7976 uiout->text ("\nNo more reverse-execution history.\n");
7977 }
7978
7979 /* Print current location without a level number, if we have changed
7980 functions or hit a breakpoint. Print source line if we have one.
7981 bpstat_print contains the logic deciding in detail what to print,
7982 based on the event(s) that just occurred. */
7983
7984 static void
7985 print_stop_location (struct target_waitstatus *ws)
7986 {
7987 int bpstat_ret;
7988 enum print_what source_flag;
7989 int do_frame_printing = 1;
7990 struct thread_info *tp = inferior_thread ();
7991
7992 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7993 switch (bpstat_ret)
7994 {
7995 case PRINT_UNKNOWN:
7996 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7997 should) carry around the function and does (or should) use
7998 that when doing a frame comparison. */
7999 if (tp->control.stop_step
8000 && frame_id_eq (tp->control.step_frame_id,
8001 get_frame_id (get_current_frame ()))
8002 && tp->control.step_start_function == find_pc_function (stop_pc))
8003 {
8004 /* Finished step, just print source line. */
8005 source_flag = SRC_LINE;
8006 }
8007 else
8008 {
8009 /* Print location and source line. */
8010 source_flag = SRC_AND_LOC;
8011 }
8012 break;
8013 case PRINT_SRC_AND_LOC:
8014 /* Print location and source line. */
8015 source_flag = SRC_AND_LOC;
8016 break;
8017 case PRINT_SRC_ONLY:
8018 source_flag = SRC_LINE;
8019 break;
8020 case PRINT_NOTHING:
8021 /* Something bogus. */
8022 source_flag = SRC_LINE;
8023 do_frame_printing = 0;
8024 break;
8025 default:
8026 internal_error (__FILE__, __LINE__, _("Unknown value."));
8027 }
8028
8029 /* The behavior of this routine with respect to the source
8030 flag is:
8031 SRC_LINE: Print only source line
8032 LOCATION: Print only location
8033 SRC_AND_LOC: Print location and source line. */
8034 if (do_frame_printing)
8035 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8036 }
8037
8038 /* See infrun.h. */
8039
8040 void
8041 print_stop_event (struct ui_out *uiout)
8042 {
8043 struct target_waitstatus last;
8044 ptid_t last_ptid;
8045 struct thread_info *tp;
8046
8047 get_last_target_status (&last_ptid, &last);
8048
8049 {
8050 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8051
8052 print_stop_location (&last);
8053
8054 /* Display the auto-display expressions. */
8055 do_displays ();
8056 }
8057
8058 tp = inferior_thread ();
8059 if (tp->thread_fsm != NULL
8060 && thread_fsm_finished_p (tp->thread_fsm))
8061 {
8062 struct return_value_info *rv;
8063
8064 rv = thread_fsm_return_value (tp->thread_fsm);
8065 if (rv != NULL)
8066 print_return_value (uiout, rv);
8067 }
8068 }
8069
8070 /* See infrun.h. */
8071
8072 void
8073 maybe_remove_breakpoints (void)
8074 {
8075 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8076 {
8077 if (remove_breakpoints ())
8078 {
8079 target_terminal::ours_for_output ();
8080 printf_filtered (_("Cannot remove breakpoints because "
8081 "program is no longer writable.\nFurther "
8082 "execution is probably impossible.\n"));
8083 }
8084 }
8085 }
8086
8087 /* The execution context that just caused a normal stop. */
8088
8089 struct stop_context
8090 {
8091 /* The stop ID. */
8092 ULONGEST stop_id;
8093
8094 /* The event PTID. */
8095
8096 ptid_t ptid;
8097
8098 /* If stopp for a thread event, this is the thread that caused the
8099 stop. */
8100 struct thread_info *thread;
8101
8102 /* The inferior that caused the stop. */
8103 int inf_num;
8104 };
8105
8106 /* Returns a new stop context. If stopped for a thread event, this
8107 takes a strong reference to the thread. */
8108
8109 static struct stop_context *
8110 save_stop_context (void)
8111 {
8112 struct stop_context *sc = XNEW (struct stop_context);
8113
8114 sc->stop_id = get_stop_id ();
8115 sc->ptid = inferior_ptid;
8116 sc->inf_num = current_inferior ()->num;
8117
8118 if (!ptid_equal (inferior_ptid, null_ptid))
8119 {
8120 /* Take a strong reference so that the thread can't be deleted
8121 yet. */
8122 sc->thread = inferior_thread ();
8123 sc->thread->incref ();
8124 }
8125 else
8126 sc->thread = NULL;
8127
8128 return sc;
8129 }
8130
8131 /* Release a stop context previously created with save_stop_context.
8132 Releases the strong reference to the thread as well. */
8133
8134 static void
8135 release_stop_context_cleanup (void *arg)
8136 {
8137 struct stop_context *sc = (struct stop_context *) arg;
8138
8139 if (sc->thread != NULL)
8140 sc->thread->decref ();
8141 xfree (sc);
8142 }
8143
8144 /* Return true if the current context no longer matches the saved stop
8145 context. */
8146
8147 static int
8148 stop_context_changed (struct stop_context *prev)
8149 {
8150 if (!ptid_equal (prev->ptid, inferior_ptid))
8151 return 1;
8152 if (prev->inf_num != current_inferior ()->num)
8153 return 1;
8154 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8155 return 1;
8156 if (get_stop_id () != prev->stop_id)
8157 return 1;
8158 return 0;
8159 }
8160
8161 /* See infrun.h. */
8162
8163 int
8164 normal_stop (void)
8165 {
8166 struct target_waitstatus last;
8167 ptid_t last_ptid;
8168 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8169 ptid_t pid_ptid;
8170
8171 get_last_target_status (&last_ptid, &last);
8172
8173 new_stop_id ();
8174
8175 /* If an exception is thrown from this point on, make sure to
8176 propagate GDB's knowledge of the executing state to the
8177 frontend/user running state. A QUIT is an easy exception to see
8178 here, so do this before any filtered output. */
8179 if (!non_stop)
8180 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8181 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8182 || last.kind == TARGET_WAITKIND_EXITED)
8183 {
8184 /* On some targets, we may still have live threads in the
8185 inferior when we get a process exit event. E.g., for
8186 "checkpoint", when the current checkpoint/fork exits,
8187 linux-fork.c automatically switches to another fork from
8188 within target_mourn_inferior. */
8189 if (!ptid_equal (inferior_ptid, null_ptid))
8190 {
8191 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8192 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8193 }
8194 }
8195 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8196 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8197
8198 /* As we're presenting a stop, and potentially removing breakpoints,
8199 update the thread list so we can tell whether there are threads
8200 running on the target. With target remote, for example, we can
8201 only learn about new threads when we explicitly update the thread
8202 list. Do this before notifying the interpreters about signal
8203 stops, end of stepping ranges, etc., so that the "new thread"
8204 output is emitted before e.g., "Program received signal FOO",
8205 instead of after. */
8206 update_thread_list ();
8207
8208 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8209 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8210
8211 /* As with the notification of thread events, we want to delay
8212 notifying the user that we've switched thread context until
8213 the inferior actually stops.
8214
8215 There's no point in saying anything if the inferior has exited.
8216 Note that SIGNALLED here means "exited with a signal", not
8217 "received a signal".
8218
8219 Also skip saying anything in non-stop mode. In that mode, as we
8220 don't want GDB to switch threads behind the user's back, to avoid
8221 races where the user is typing a command to apply to thread x,
8222 but GDB switches to thread y before the user finishes entering
8223 the command, fetch_inferior_event installs a cleanup to restore
8224 the current thread back to the thread the user had selected right
8225 after this event is handled, so we're not really switching, only
8226 informing of a stop. */
8227 if (!non_stop
8228 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8229 && target_has_execution
8230 && last.kind != TARGET_WAITKIND_SIGNALLED
8231 && last.kind != TARGET_WAITKIND_EXITED
8232 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8233 {
8234 SWITCH_THRU_ALL_UIS ()
8235 {
8236 target_terminal::ours_for_output ();
8237 printf_filtered (_("[Switching to %s]\n"),
8238 target_pid_to_str (inferior_ptid));
8239 annotate_thread_changed ();
8240 }
8241 previous_inferior_ptid = inferior_ptid;
8242 }
8243
8244 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8245 {
8246 SWITCH_THRU_ALL_UIS ()
8247 if (current_ui->prompt_state == PROMPT_BLOCKED)
8248 {
8249 target_terminal::ours_for_output ();
8250 printf_filtered (_("No unwaited-for children left.\n"));
8251 }
8252 }
8253
8254 /* Note: this depends on the update_thread_list call above. */
8255 maybe_remove_breakpoints ();
8256
8257 /* If an auto-display called a function and that got a signal,
8258 delete that auto-display to avoid an infinite recursion. */
8259
8260 if (stopped_by_random_signal)
8261 disable_current_display ();
8262
8263 SWITCH_THRU_ALL_UIS ()
8264 {
8265 async_enable_stdin ();
8266 }
8267
8268 /* Let the user/frontend see the threads as stopped. */
8269 do_cleanups (old_chain);
8270
8271 /* Select innermost stack frame - i.e., current frame is frame 0,
8272 and current location is based on that. Handle the case where the
8273 dummy call is returning after being stopped. E.g. the dummy call
8274 previously hit a breakpoint. (If the dummy call returns
8275 normally, we won't reach here.) Do this before the stop hook is
8276 run, so that it doesn't get to see the temporary dummy frame,
8277 which is not where we'll present the stop. */
8278 if (has_stack_frames ())
8279 {
8280 if (stop_stack_dummy == STOP_STACK_DUMMY)
8281 {
8282 /* Pop the empty frame that contains the stack dummy. This
8283 also restores inferior state prior to the call (struct
8284 infcall_suspend_state). */
8285 struct frame_info *frame = get_current_frame ();
8286
8287 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8288 frame_pop (frame);
8289 /* frame_pop calls reinit_frame_cache as the last thing it
8290 does which means there's now no selected frame. */
8291 }
8292
8293 select_frame (get_current_frame ());
8294
8295 /* Set the current source location. */
8296 set_current_sal_from_frame (get_current_frame ());
8297 }
8298
8299 /* Look up the hook_stop and run it (CLI internally handles problem
8300 of stop_command's pre-hook not existing). */
8301 if (stop_command != NULL)
8302 {
8303 struct stop_context *saved_context = save_stop_context ();
8304 struct cleanup *old_chain
8305 = make_cleanup (release_stop_context_cleanup, saved_context);
8306
8307 TRY
8308 {
8309 execute_cmd_pre_hook (stop_command);
8310 }
8311 CATCH (ex, RETURN_MASK_ALL)
8312 {
8313 exception_fprintf (gdb_stderr, ex,
8314 "Error while running hook_stop:\n");
8315 }
8316 END_CATCH
8317
8318 /* If the stop hook resumes the target, then there's no point in
8319 trying to notify about the previous stop; its context is
8320 gone. Likewise if the command switches thread or inferior --
8321 the observers would print a stop for the wrong
8322 thread/inferior. */
8323 if (stop_context_changed (saved_context))
8324 {
8325 do_cleanups (old_chain);
8326 return 1;
8327 }
8328 do_cleanups (old_chain);
8329 }
8330
8331 /* Notify observers about the stop. This is where the interpreters
8332 print the stop event. */
8333 if (!ptid_equal (inferior_ptid, null_ptid))
8334 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8335 stop_print_frame);
8336 else
8337 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8338
8339 annotate_stopped ();
8340
8341 if (target_has_execution)
8342 {
8343 if (last.kind != TARGET_WAITKIND_SIGNALLED
8344 && last.kind != TARGET_WAITKIND_EXITED)
8345 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8346 Delete any breakpoint that is to be deleted at the next stop. */
8347 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8348 }
8349
8350 /* Try to get rid of automatically added inferiors that are no
8351 longer needed. Keeping those around slows down things linearly.
8352 Note that this never removes the current inferior. */
8353 prune_inferiors ();
8354
8355 return 0;
8356 }
8357 \f
8358 int
8359 signal_stop_state (int signo)
8360 {
8361 return signal_stop[signo];
8362 }
8363
8364 int
8365 signal_print_state (int signo)
8366 {
8367 return signal_print[signo];
8368 }
8369
8370 int
8371 signal_pass_state (int signo)
8372 {
8373 return signal_program[signo];
8374 }
8375
8376 static void
8377 signal_cache_update (int signo)
8378 {
8379 if (signo == -1)
8380 {
8381 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8382 signal_cache_update (signo);
8383
8384 return;
8385 }
8386
8387 signal_pass[signo] = (signal_stop[signo] == 0
8388 && signal_print[signo] == 0
8389 && signal_program[signo] == 1
8390 && signal_catch[signo] == 0);
8391 }
8392
8393 int
8394 signal_stop_update (int signo, int state)
8395 {
8396 int ret = signal_stop[signo];
8397
8398 signal_stop[signo] = state;
8399 signal_cache_update (signo);
8400 return ret;
8401 }
8402
8403 int
8404 signal_print_update (int signo, int state)
8405 {
8406 int ret = signal_print[signo];
8407
8408 signal_print[signo] = state;
8409 signal_cache_update (signo);
8410 return ret;
8411 }
8412
8413 int
8414 signal_pass_update (int signo, int state)
8415 {
8416 int ret = signal_program[signo];
8417
8418 signal_program[signo] = state;
8419 signal_cache_update (signo);
8420 return ret;
8421 }
8422
8423 /* Update the global 'signal_catch' from INFO and notify the
8424 target. */
8425
8426 void
8427 signal_catch_update (const unsigned int *info)
8428 {
8429 int i;
8430
8431 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8432 signal_catch[i] = info[i] > 0;
8433 signal_cache_update (-1);
8434 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8435 }
8436
8437 static void
8438 sig_print_header (void)
8439 {
8440 printf_filtered (_("Signal Stop\tPrint\tPass "
8441 "to program\tDescription\n"));
8442 }
8443
8444 static void
8445 sig_print_info (enum gdb_signal oursig)
8446 {
8447 const char *name = gdb_signal_to_name (oursig);
8448 int name_padding = 13 - strlen (name);
8449
8450 if (name_padding <= 0)
8451 name_padding = 0;
8452
8453 printf_filtered ("%s", name);
8454 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8455 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8456 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8457 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8458 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8459 }
8460
8461 /* Specify how various signals in the inferior should be handled. */
8462
8463 static void
8464 handle_command (const char *args, int from_tty)
8465 {
8466 int digits, wordlen;
8467 int sigfirst, signum, siglast;
8468 enum gdb_signal oursig;
8469 int allsigs;
8470 int nsigs;
8471 unsigned char *sigs;
8472
8473 if (args == NULL)
8474 {
8475 error_no_arg (_("signal to handle"));
8476 }
8477
8478 /* Allocate and zero an array of flags for which signals to handle. */
8479
8480 nsigs = (int) GDB_SIGNAL_LAST;
8481 sigs = (unsigned char *) alloca (nsigs);
8482 memset (sigs, 0, nsigs);
8483
8484 /* Break the command line up into args. */
8485
8486 gdb_argv built_argv (args);
8487
8488 /* Walk through the args, looking for signal oursigs, signal names, and
8489 actions. Signal numbers and signal names may be interspersed with
8490 actions, with the actions being performed for all signals cumulatively
8491 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8492
8493 for (char *arg : built_argv)
8494 {
8495 wordlen = strlen (arg);
8496 for (digits = 0; isdigit (arg[digits]); digits++)
8497 {;
8498 }
8499 allsigs = 0;
8500 sigfirst = siglast = -1;
8501
8502 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8503 {
8504 /* Apply action to all signals except those used by the
8505 debugger. Silently skip those. */
8506 allsigs = 1;
8507 sigfirst = 0;
8508 siglast = nsigs - 1;
8509 }
8510 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8511 {
8512 SET_SIGS (nsigs, sigs, signal_stop);
8513 SET_SIGS (nsigs, sigs, signal_print);
8514 }
8515 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8516 {
8517 UNSET_SIGS (nsigs, sigs, signal_program);
8518 }
8519 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8520 {
8521 SET_SIGS (nsigs, sigs, signal_print);
8522 }
8523 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8524 {
8525 SET_SIGS (nsigs, sigs, signal_program);
8526 }
8527 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8528 {
8529 UNSET_SIGS (nsigs, sigs, signal_stop);
8530 }
8531 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8532 {
8533 SET_SIGS (nsigs, sigs, signal_program);
8534 }
8535 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8536 {
8537 UNSET_SIGS (nsigs, sigs, signal_print);
8538 UNSET_SIGS (nsigs, sigs, signal_stop);
8539 }
8540 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8541 {
8542 UNSET_SIGS (nsigs, sigs, signal_program);
8543 }
8544 else if (digits > 0)
8545 {
8546 /* It is numeric. The numeric signal refers to our own
8547 internal signal numbering from target.h, not to host/target
8548 signal number. This is a feature; users really should be
8549 using symbolic names anyway, and the common ones like
8550 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8551
8552 sigfirst = siglast = (int)
8553 gdb_signal_from_command (atoi (arg));
8554 if (arg[digits] == '-')
8555 {
8556 siglast = (int)
8557 gdb_signal_from_command (atoi (arg + digits + 1));
8558 }
8559 if (sigfirst > siglast)
8560 {
8561 /* Bet he didn't figure we'd think of this case... */
8562 signum = sigfirst;
8563 sigfirst = siglast;
8564 siglast = signum;
8565 }
8566 }
8567 else
8568 {
8569 oursig = gdb_signal_from_name (arg);
8570 if (oursig != GDB_SIGNAL_UNKNOWN)
8571 {
8572 sigfirst = siglast = (int) oursig;
8573 }
8574 else
8575 {
8576 /* Not a number and not a recognized flag word => complain. */
8577 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8578 }
8579 }
8580
8581 /* If any signal numbers or symbol names were found, set flags for
8582 which signals to apply actions to. */
8583
8584 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8585 {
8586 switch ((enum gdb_signal) signum)
8587 {
8588 case GDB_SIGNAL_TRAP:
8589 case GDB_SIGNAL_INT:
8590 if (!allsigs && !sigs[signum])
8591 {
8592 if (query (_("%s is used by the debugger.\n\
8593 Are you sure you want to change it? "),
8594 gdb_signal_to_name ((enum gdb_signal) signum)))
8595 {
8596 sigs[signum] = 1;
8597 }
8598 else
8599 {
8600 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8601 gdb_flush (gdb_stdout);
8602 }
8603 }
8604 break;
8605 case GDB_SIGNAL_0:
8606 case GDB_SIGNAL_DEFAULT:
8607 case GDB_SIGNAL_UNKNOWN:
8608 /* Make sure that "all" doesn't print these. */
8609 break;
8610 default:
8611 sigs[signum] = 1;
8612 break;
8613 }
8614 }
8615 }
8616
8617 for (signum = 0; signum < nsigs; signum++)
8618 if (sigs[signum])
8619 {
8620 signal_cache_update (-1);
8621 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8622 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8623
8624 if (from_tty)
8625 {
8626 /* Show the results. */
8627 sig_print_header ();
8628 for (; signum < nsigs; signum++)
8629 if (sigs[signum])
8630 sig_print_info ((enum gdb_signal) signum);
8631 }
8632
8633 break;
8634 }
8635 }
8636
8637 /* Complete the "handle" command. */
8638
8639 static void
8640 handle_completer (struct cmd_list_element *ignore,
8641 completion_tracker &tracker,
8642 const char *text, const char *word)
8643 {
8644 static const char * const keywords[] =
8645 {
8646 "all",
8647 "stop",
8648 "ignore",
8649 "print",
8650 "pass",
8651 "nostop",
8652 "noignore",
8653 "noprint",
8654 "nopass",
8655 NULL,
8656 };
8657
8658 signal_completer (ignore, tracker, text, word);
8659 complete_on_enum (tracker, keywords, word, word);
8660 }
8661
8662 enum gdb_signal
8663 gdb_signal_from_command (int num)
8664 {
8665 if (num >= 1 && num <= 15)
8666 return (enum gdb_signal) num;
8667 error (_("Only signals 1-15 are valid as numeric signals.\n\
8668 Use \"info signals\" for a list of symbolic signals."));
8669 }
8670
8671 /* Print current contents of the tables set by the handle command.
8672 It is possible we should just be printing signals actually used
8673 by the current target (but for things to work right when switching
8674 targets, all signals should be in the signal tables). */
8675
8676 static void
8677 info_signals_command (const char *signum_exp, int from_tty)
8678 {
8679 enum gdb_signal oursig;
8680
8681 sig_print_header ();
8682
8683 if (signum_exp)
8684 {
8685 /* First see if this is a symbol name. */
8686 oursig = gdb_signal_from_name (signum_exp);
8687 if (oursig == GDB_SIGNAL_UNKNOWN)
8688 {
8689 /* No, try numeric. */
8690 oursig =
8691 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8692 }
8693 sig_print_info (oursig);
8694 return;
8695 }
8696
8697 printf_filtered ("\n");
8698 /* These ugly casts brought to you by the native VAX compiler. */
8699 for (oursig = GDB_SIGNAL_FIRST;
8700 (int) oursig < (int) GDB_SIGNAL_LAST;
8701 oursig = (enum gdb_signal) ((int) oursig + 1))
8702 {
8703 QUIT;
8704
8705 if (oursig != GDB_SIGNAL_UNKNOWN
8706 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8707 sig_print_info (oursig);
8708 }
8709
8710 printf_filtered (_("\nUse the \"handle\" command "
8711 "to change these tables.\n"));
8712 }
8713
8714 /* The $_siginfo convenience variable is a bit special. We don't know
8715 for sure the type of the value until we actually have a chance to
8716 fetch the data. The type can change depending on gdbarch, so it is
8717 also dependent on which thread you have selected.
8718
8719 1. making $_siginfo be an internalvar that creates a new value on
8720 access.
8721
8722 2. making the value of $_siginfo be an lval_computed value. */
8723
8724 /* This function implements the lval_computed support for reading a
8725 $_siginfo value. */
8726
8727 static void
8728 siginfo_value_read (struct value *v)
8729 {
8730 LONGEST transferred;
8731
8732 /* If we can access registers, so can we access $_siginfo. Likewise
8733 vice versa. */
8734 validate_registers_access ();
8735
8736 transferred =
8737 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8738 NULL,
8739 value_contents_all_raw (v),
8740 value_offset (v),
8741 TYPE_LENGTH (value_type (v)));
8742
8743 if (transferred != TYPE_LENGTH (value_type (v)))
8744 error (_("Unable to read siginfo"));
8745 }
8746
8747 /* This function implements the lval_computed support for writing a
8748 $_siginfo value. */
8749
8750 static void
8751 siginfo_value_write (struct value *v, struct value *fromval)
8752 {
8753 LONGEST transferred;
8754
8755 /* If we can access registers, so can we access $_siginfo. Likewise
8756 vice versa. */
8757 validate_registers_access ();
8758
8759 transferred = target_write (&current_target,
8760 TARGET_OBJECT_SIGNAL_INFO,
8761 NULL,
8762 value_contents_all_raw (fromval),
8763 value_offset (v),
8764 TYPE_LENGTH (value_type (fromval)));
8765
8766 if (transferred != TYPE_LENGTH (value_type (fromval)))
8767 error (_("Unable to write siginfo"));
8768 }
8769
8770 static const struct lval_funcs siginfo_value_funcs =
8771 {
8772 siginfo_value_read,
8773 siginfo_value_write
8774 };
8775
8776 /* Return a new value with the correct type for the siginfo object of
8777 the current thread using architecture GDBARCH. Return a void value
8778 if there's no object available. */
8779
8780 static struct value *
8781 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8782 void *ignore)
8783 {
8784 if (target_has_stack
8785 && !ptid_equal (inferior_ptid, null_ptid)
8786 && gdbarch_get_siginfo_type_p (gdbarch))
8787 {
8788 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8789
8790 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8791 }
8792
8793 return allocate_value (builtin_type (gdbarch)->builtin_void);
8794 }
8795
8796 \f
8797 /* infcall_suspend_state contains state about the program itself like its
8798 registers and any signal it received when it last stopped.
8799 This state must be restored regardless of how the inferior function call
8800 ends (either successfully, or after it hits a breakpoint or signal)
8801 if the program is to properly continue where it left off. */
8802
8803 struct infcall_suspend_state
8804 {
8805 struct thread_suspend_state thread_suspend;
8806
8807 /* Other fields: */
8808 CORE_ADDR stop_pc;
8809 readonly_detached_regcache *registers;
8810
8811 /* Format of SIGINFO_DATA or NULL if it is not present. */
8812 struct gdbarch *siginfo_gdbarch;
8813
8814 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8815 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8816 content would be invalid. */
8817 gdb_byte *siginfo_data;
8818 };
8819
8820 struct infcall_suspend_state *
8821 save_infcall_suspend_state (void)
8822 {
8823 struct infcall_suspend_state *inf_state;
8824 struct thread_info *tp = inferior_thread ();
8825 struct regcache *regcache = get_current_regcache ();
8826 struct gdbarch *gdbarch = regcache->arch ();
8827 gdb_byte *siginfo_data = NULL;
8828
8829 if (gdbarch_get_siginfo_type_p (gdbarch))
8830 {
8831 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8832 size_t len = TYPE_LENGTH (type);
8833 struct cleanup *back_to;
8834
8835 siginfo_data = (gdb_byte *) xmalloc (len);
8836 back_to = make_cleanup (xfree, siginfo_data);
8837
8838 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8839 siginfo_data, 0, len) == len)
8840 discard_cleanups (back_to);
8841 else
8842 {
8843 /* Errors ignored. */
8844 do_cleanups (back_to);
8845 siginfo_data = NULL;
8846 }
8847 }
8848
8849 inf_state = XCNEW (struct infcall_suspend_state);
8850
8851 if (siginfo_data)
8852 {
8853 inf_state->siginfo_gdbarch = gdbarch;
8854 inf_state->siginfo_data = siginfo_data;
8855 }
8856
8857 inf_state->thread_suspend = tp->suspend;
8858
8859 /* run_inferior_call will not use the signal due to its `proceed' call with
8860 GDB_SIGNAL_0 anyway. */
8861 tp->suspend.stop_signal = GDB_SIGNAL_0;
8862
8863 inf_state->stop_pc = stop_pc;
8864
8865 inf_state->registers = new readonly_detached_regcache (*regcache);
8866
8867 return inf_state;
8868 }
8869
8870 /* Restore inferior session state to INF_STATE. */
8871
8872 void
8873 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8874 {
8875 struct thread_info *tp = inferior_thread ();
8876 struct regcache *regcache = get_current_regcache ();
8877 struct gdbarch *gdbarch = regcache->arch ();
8878
8879 tp->suspend = inf_state->thread_suspend;
8880
8881 stop_pc = inf_state->stop_pc;
8882
8883 if (inf_state->siginfo_gdbarch == gdbarch)
8884 {
8885 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8886
8887 /* Errors ignored. */
8888 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8889 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8890 }
8891
8892 /* The inferior can be gone if the user types "print exit(0)"
8893 (and perhaps other times). */
8894 if (target_has_execution)
8895 /* NB: The register write goes through to the target. */
8896 regcache->restore (inf_state->registers);
8897
8898 discard_infcall_suspend_state (inf_state);
8899 }
8900
8901 static void
8902 do_restore_infcall_suspend_state_cleanup (void *state)
8903 {
8904 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8905 }
8906
8907 struct cleanup *
8908 make_cleanup_restore_infcall_suspend_state
8909 (struct infcall_suspend_state *inf_state)
8910 {
8911 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8912 }
8913
8914 void
8915 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8916 {
8917 delete inf_state->registers;
8918 xfree (inf_state->siginfo_data);
8919 xfree (inf_state);
8920 }
8921
8922 readonly_detached_regcache *
8923 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8924 {
8925 return inf_state->registers;
8926 }
8927
8928 /* infcall_control_state contains state regarding gdb's control of the
8929 inferior itself like stepping control. It also contains session state like
8930 the user's currently selected frame. */
8931
8932 struct infcall_control_state
8933 {
8934 struct thread_control_state thread_control;
8935 struct inferior_control_state inferior_control;
8936
8937 /* Other fields: */
8938 enum stop_stack_kind stop_stack_dummy;
8939 int stopped_by_random_signal;
8940
8941 /* ID if the selected frame when the inferior function call was made. */
8942 struct frame_id selected_frame_id;
8943 };
8944
8945 /* Save all of the information associated with the inferior<==>gdb
8946 connection. */
8947
8948 struct infcall_control_state *
8949 save_infcall_control_state (void)
8950 {
8951 struct infcall_control_state *inf_status =
8952 XNEW (struct infcall_control_state);
8953 struct thread_info *tp = inferior_thread ();
8954 struct inferior *inf = current_inferior ();
8955
8956 inf_status->thread_control = tp->control;
8957 inf_status->inferior_control = inf->control;
8958
8959 tp->control.step_resume_breakpoint = NULL;
8960 tp->control.exception_resume_breakpoint = NULL;
8961
8962 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8963 chain. If caller's caller is walking the chain, they'll be happier if we
8964 hand them back the original chain when restore_infcall_control_state is
8965 called. */
8966 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8967
8968 /* Other fields: */
8969 inf_status->stop_stack_dummy = stop_stack_dummy;
8970 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8971
8972 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8973
8974 return inf_status;
8975 }
8976
8977 static void
8978 restore_selected_frame (const frame_id &fid)
8979 {
8980 frame_info *frame = frame_find_by_id (fid);
8981
8982 /* If inf_status->selected_frame_id is NULL, there was no previously
8983 selected frame. */
8984 if (frame == NULL)
8985 {
8986 warning (_("Unable to restore previously selected frame."));
8987 return;
8988 }
8989
8990 select_frame (frame);
8991 }
8992
8993 /* Restore inferior session state to INF_STATUS. */
8994
8995 void
8996 restore_infcall_control_state (struct infcall_control_state *inf_status)
8997 {
8998 struct thread_info *tp = inferior_thread ();
8999 struct inferior *inf = current_inferior ();
9000
9001 if (tp->control.step_resume_breakpoint)
9002 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9003
9004 if (tp->control.exception_resume_breakpoint)
9005 tp->control.exception_resume_breakpoint->disposition
9006 = disp_del_at_next_stop;
9007
9008 /* Handle the bpstat_copy of the chain. */
9009 bpstat_clear (&tp->control.stop_bpstat);
9010
9011 tp->control = inf_status->thread_control;
9012 inf->control = inf_status->inferior_control;
9013
9014 /* Other fields: */
9015 stop_stack_dummy = inf_status->stop_stack_dummy;
9016 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9017
9018 if (target_has_stack)
9019 {
9020 /* The point of the try/catch is that if the stack is clobbered,
9021 walking the stack might encounter a garbage pointer and
9022 error() trying to dereference it. */
9023 TRY
9024 {
9025 restore_selected_frame (inf_status->selected_frame_id);
9026 }
9027 CATCH (ex, RETURN_MASK_ERROR)
9028 {
9029 exception_fprintf (gdb_stderr, ex,
9030 "Unable to restore previously selected frame:\n");
9031 /* Error in restoring the selected frame. Select the
9032 innermost frame. */
9033 select_frame (get_current_frame ());
9034 }
9035 END_CATCH
9036 }
9037
9038 xfree (inf_status);
9039 }
9040
9041 static void
9042 do_restore_infcall_control_state_cleanup (void *sts)
9043 {
9044 restore_infcall_control_state ((struct infcall_control_state *) sts);
9045 }
9046
9047 struct cleanup *
9048 make_cleanup_restore_infcall_control_state
9049 (struct infcall_control_state *inf_status)
9050 {
9051 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9052 }
9053
9054 void
9055 discard_infcall_control_state (struct infcall_control_state *inf_status)
9056 {
9057 if (inf_status->thread_control.step_resume_breakpoint)
9058 inf_status->thread_control.step_resume_breakpoint->disposition
9059 = disp_del_at_next_stop;
9060
9061 if (inf_status->thread_control.exception_resume_breakpoint)
9062 inf_status->thread_control.exception_resume_breakpoint->disposition
9063 = disp_del_at_next_stop;
9064
9065 /* See save_infcall_control_state for info on stop_bpstat. */
9066 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9067
9068 xfree (inf_status);
9069 }
9070 \f
9071 /* See infrun.h. */
9072
9073 void
9074 clear_exit_convenience_vars (void)
9075 {
9076 clear_internalvar (lookup_internalvar ("_exitsignal"));
9077 clear_internalvar (lookup_internalvar ("_exitcode"));
9078 }
9079 \f
9080
9081 /* User interface for reverse debugging:
9082 Set exec-direction / show exec-direction commands
9083 (returns error unless target implements to_set_exec_direction method). */
9084
9085 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9086 static const char exec_forward[] = "forward";
9087 static const char exec_reverse[] = "reverse";
9088 static const char *exec_direction = exec_forward;
9089 static const char *const exec_direction_names[] = {
9090 exec_forward,
9091 exec_reverse,
9092 NULL
9093 };
9094
9095 static void
9096 set_exec_direction_func (const char *args, int from_tty,
9097 struct cmd_list_element *cmd)
9098 {
9099 if (target_can_execute_reverse)
9100 {
9101 if (!strcmp (exec_direction, exec_forward))
9102 execution_direction = EXEC_FORWARD;
9103 else if (!strcmp (exec_direction, exec_reverse))
9104 execution_direction = EXEC_REVERSE;
9105 }
9106 else
9107 {
9108 exec_direction = exec_forward;
9109 error (_("Target does not support this operation."));
9110 }
9111 }
9112
9113 static void
9114 show_exec_direction_func (struct ui_file *out, int from_tty,
9115 struct cmd_list_element *cmd, const char *value)
9116 {
9117 switch (execution_direction) {
9118 case EXEC_FORWARD:
9119 fprintf_filtered (out, _("Forward.\n"));
9120 break;
9121 case EXEC_REVERSE:
9122 fprintf_filtered (out, _("Reverse.\n"));
9123 break;
9124 default:
9125 internal_error (__FILE__, __LINE__,
9126 _("bogus execution_direction value: %d"),
9127 (int) execution_direction);
9128 }
9129 }
9130
9131 static void
9132 show_schedule_multiple (struct ui_file *file, int from_tty,
9133 struct cmd_list_element *c, const char *value)
9134 {
9135 fprintf_filtered (file, _("Resuming the execution of threads "
9136 "of all processes is %s.\n"), value);
9137 }
9138
9139 /* Implementation of `siginfo' variable. */
9140
9141 static const struct internalvar_funcs siginfo_funcs =
9142 {
9143 siginfo_make_value,
9144 NULL,
9145 NULL
9146 };
9147
9148 /* Callback for infrun's target events source. This is marked when a
9149 thread has a pending status to process. */
9150
9151 static void
9152 infrun_async_inferior_event_handler (gdb_client_data data)
9153 {
9154 inferior_event_handler (INF_REG_EVENT, NULL);
9155 }
9156
9157 void
9158 _initialize_infrun (void)
9159 {
9160 int i;
9161 int numsigs;
9162 struct cmd_list_element *c;
9163
9164 /* Register extra event sources in the event loop. */
9165 infrun_async_inferior_event_token
9166 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9167
9168 add_info ("signals", info_signals_command, _("\
9169 What debugger does when program gets various signals.\n\
9170 Specify a signal as argument to print info on that signal only."));
9171 add_info_alias ("handle", "signals", 0);
9172
9173 c = add_com ("handle", class_run, handle_command, _("\
9174 Specify how to handle signals.\n\
9175 Usage: handle SIGNAL [ACTIONS]\n\
9176 Args are signals and actions to apply to those signals.\n\
9177 If no actions are specified, the current settings for the specified signals\n\
9178 will be displayed instead.\n\
9179 \n\
9180 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9181 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9182 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9183 The special arg \"all\" is recognized to mean all signals except those\n\
9184 used by the debugger, typically SIGTRAP and SIGINT.\n\
9185 \n\
9186 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9187 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9188 Stop means reenter debugger if this signal happens (implies print).\n\
9189 Print means print a message if this signal happens.\n\
9190 Pass means let program see this signal; otherwise program doesn't know.\n\
9191 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9192 Pass and Stop may be combined.\n\
9193 \n\
9194 Multiple signals may be specified. Signal numbers and signal names\n\
9195 may be interspersed with actions, with the actions being performed for\n\
9196 all signals cumulatively specified."));
9197 set_cmd_completer (c, handle_completer);
9198
9199 if (!dbx_commands)
9200 stop_command = add_cmd ("stop", class_obscure,
9201 not_just_help_class_command, _("\
9202 There is no `stop' command, but you can set a hook on `stop'.\n\
9203 This allows you to set a list of commands to be run each time execution\n\
9204 of the program stops."), &cmdlist);
9205
9206 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9207 Set inferior debugging."), _("\
9208 Show inferior debugging."), _("\
9209 When non-zero, inferior specific debugging is enabled."),
9210 NULL,
9211 show_debug_infrun,
9212 &setdebuglist, &showdebuglist);
9213
9214 add_setshow_boolean_cmd ("displaced", class_maintenance,
9215 &debug_displaced, _("\
9216 Set displaced stepping debugging."), _("\
9217 Show displaced stepping debugging."), _("\
9218 When non-zero, displaced stepping specific debugging is enabled."),
9219 NULL,
9220 show_debug_displaced,
9221 &setdebuglist, &showdebuglist);
9222
9223 add_setshow_boolean_cmd ("non-stop", no_class,
9224 &non_stop_1, _("\
9225 Set whether gdb controls the inferior in non-stop mode."), _("\
9226 Show whether gdb controls the inferior in non-stop mode."), _("\
9227 When debugging a multi-threaded program and this setting is\n\
9228 off (the default, also called all-stop mode), when one thread stops\n\
9229 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9230 all other threads in the program while you interact with the thread of\n\
9231 interest. When you continue or step a thread, you can allow the other\n\
9232 threads to run, or have them remain stopped, but while you inspect any\n\
9233 thread's state, all threads stop.\n\
9234 \n\
9235 In non-stop mode, when one thread stops, other threads can continue\n\
9236 to run freely. You'll be able to step each thread independently,\n\
9237 leave it stopped or free to run as needed."),
9238 set_non_stop,
9239 show_non_stop,
9240 &setlist,
9241 &showlist);
9242
9243 numsigs = (int) GDB_SIGNAL_LAST;
9244 signal_stop = XNEWVEC (unsigned char, numsigs);
9245 signal_print = XNEWVEC (unsigned char, numsigs);
9246 signal_program = XNEWVEC (unsigned char, numsigs);
9247 signal_catch = XNEWVEC (unsigned char, numsigs);
9248 signal_pass = XNEWVEC (unsigned char, numsigs);
9249 for (i = 0; i < numsigs; i++)
9250 {
9251 signal_stop[i] = 1;
9252 signal_print[i] = 1;
9253 signal_program[i] = 1;
9254 signal_catch[i] = 0;
9255 }
9256
9257 /* Signals caused by debugger's own actions should not be given to
9258 the program afterwards.
9259
9260 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9261 explicitly specifies that it should be delivered to the target
9262 program. Typically, that would occur when a user is debugging a
9263 target monitor on a simulator: the target monitor sets a
9264 breakpoint; the simulator encounters this breakpoint and halts
9265 the simulation handing control to GDB; GDB, noting that the stop
9266 address doesn't map to any known breakpoint, returns control back
9267 to the simulator; the simulator then delivers the hardware
9268 equivalent of a GDB_SIGNAL_TRAP to the program being
9269 debugged. */
9270 signal_program[GDB_SIGNAL_TRAP] = 0;
9271 signal_program[GDB_SIGNAL_INT] = 0;
9272
9273 /* Signals that are not errors should not normally enter the debugger. */
9274 signal_stop[GDB_SIGNAL_ALRM] = 0;
9275 signal_print[GDB_SIGNAL_ALRM] = 0;
9276 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9277 signal_print[GDB_SIGNAL_VTALRM] = 0;
9278 signal_stop[GDB_SIGNAL_PROF] = 0;
9279 signal_print[GDB_SIGNAL_PROF] = 0;
9280 signal_stop[GDB_SIGNAL_CHLD] = 0;
9281 signal_print[GDB_SIGNAL_CHLD] = 0;
9282 signal_stop[GDB_SIGNAL_IO] = 0;
9283 signal_print[GDB_SIGNAL_IO] = 0;
9284 signal_stop[GDB_SIGNAL_POLL] = 0;
9285 signal_print[GDB_SIGNAL_POLL] = 0;
9286 signal_stop[GDB_SIGNAL_URG] = 0;
9287 signal_print[GDB_SIGNAL_URG] = 0;
9288 signal_stop[GDB_SIGNAL_WINCH] = 0;
9289 signal_print[GDB_SIGNAL_WINCH] = 0;
9290 signal_stop[GDB_SIGNAL_PRIO] = 0;
9291 signal_print[GDB_SIGNAL_PRIO] = 0;
9292
9293 /* These signals are used internally by user-level thread
9294 implementations. (See signal(5) on Solaris.) Like the above
9295 signals, a healthy program receives and handles them as part of
9296 its normal operation. */
9297 signal_stop[GDB_SIGNAL_LWP] = 0;
9298 signal_print[GDB_SIGNAL_LWP] = 0;
9299 signal_stop[GDB_SIGNAL_WAITING] = 0;
9300 signal_print[GDB_SIGNAL_WAITING] = 0;
9301 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9302 signal_print[GDB_SIGNAL_CANCEL] = 0;
9303 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9304 signal_print[GDB_SIGNAL_LIBRT] = 0;
9305
9306 /* Update cached state. */
9307 signal_cache_update (-1);
9308
9309 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9310 &stop_on_solib_events, _("\
9311 Set stopping for shared library events."), _("\
9312 Show stopping for shared library events."), _("\
9313 If nonzero, gdb will give control to the user when the dynamic linker\n\
9314 notifies gdb of shared library events. The most common event of interest\n\
9315 to the user would be loading/unloading of a new library."),
9316 set_stop_on_solib_events,
9317 show_stop_on_solib_events,
9318 &setlist, &showlist);
9319
9320 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9321 follow_fork_mode_kind_names,
9322 &follow_fork_mode_string, _("\
9323 Set debugger response to a program call of fork or vfork."), _("\
9324 Show debugger response to a program call of fork or vfork."), _("\
9325 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9326 parent - the original process is debugged after a fork\n\
9327 child - the new process is debugged after a fork\n\
9328 The unfollowed process will continue to run.\n\
9329 By default, the debugger will follow the parent process."),
9330 NULL,
9331 show_follow_fork_mode_string,
9332 &setlist, &showlist);
9333
9334 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9335 follow_exec_mode_names,
9336 &follow_exec_mode_string, _("\
9337 Set debugger response to a program call of exec."), _("\
9338 Show debugger response to a program call of exec."), _("\
9339 An exec call replaces the program image of a process.\n\
9340 \n\
9341 follow-exec-mode can be:\n\
9342 \n\
9343 new - the debugger creates a new inferior and rebinds the process\n\
9344 to this new inferior. The program the process was running before\n\
9345 the exec call can be restarted afterwards by restarting the original\n\
9346 inferior.\n\
9347 \n\
9348 same - the debugger keeps the process bound to the same inferior.\n\
9349 The new executable image replaces the previous executable loaded in\n\
9350 the inferior. Restarting the inferior after the exec call restarts\n\
9351 the executable the process was running after the exec call.\n\
9352 \n\
9353 By default, the debugger will use the same inferior."),
9354 NULL,
9355 show_follow_exec_mode_string,
9356 &setlist, &showlist);
9357
9358 add_setshow_enum_cmd ("scheduler-locking", class_run,
9359 scheduler_enums, &scheduler_mode, _("\
9360 Set mode for locking scheduler during execution."), _("\
9361 Show mode for locking scheduler during execution."), _("\
9362 off == no locking (threads may preempt at any time)\n\
9363 on == full locking (no thread except the current thread may run)\n\
9364 This applies to both normal execution and replay mode.\n\
9365 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9366 In this mode, other threads may run during other commands.\n\
9367 This applies to both normal execution and replay mode.\n\
9368 replay == scheduler locked in replay mode and unlocked during normal execution."),
9369 set_schedlock_func, /* traps on target vector */
9370 show_scheduler_mode,
9371 &setlist, &showlist);
9372
9373 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9374 Set mode for resuming threads of all processes."), _("\
9375 Show mode for resuming threads of all processes."), _("\
9376 When on, execution commands (such as 'continue' or 'next') resume all\n\
9377 threads of all processes. When off (which is the default), execution\n\
9378 commands only resume the threads of the current process. The set of\n\
9379 threads that are resumed is further refined by the scheduler-locking\n\
9380 mode (see help set scheduler-locking)."),
9381 NULL,
9382 show_schedule_multiple,
9383 &setlist, &showlist);
9384
9385 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9386 Set mode of the step operation."), _("\
9387 Show mode of the step operation."), _("\
9388 When set, doing a step over a function without debug line information\n\
9389 will stop at the first instruction of that function. Otherwise, the\n\
9390 function is skipped and the step command stops at a different source line."),
9391 NULL,
9392 show_step_stop_if_no_debug,
9393 &setlist, &showlist);
9394
9395 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9396 &can_use_displaced_stepping, _("\
9397 Set debugger's willingness to use displaced stepping."), _("\
9398 Show debugger's willingness to use displaced stepping."), _("\
9399 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9400 supported by the target architecture. If off, gdb will not use displaced\n\
9401 stepping to step over breakpoints, even if such is supported by the target\n\
9402 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9403 if the target architecture supports it and non-stop mode is active, but will not\n\
9404 use it in all-stop mode (see help set non-stop)."),
9405 NULL,
9406 show_can_use_displaced_stepping,
9407 &setlist, &showlist);
9408
9409 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9410 &exec_direction, _("Set direction of execution.\n\
9411 Options are 'forward' or 'reverse'."),
9412 _("Show direction of execution (forward/reverse)."),
9413 _("Tells gdb whether to execute forward or backward."),
9414 set_exec_direction_func, show_exec_direction_func,
9415 &setlist, &showlist);
9416
9417 /* Set/show detach-on-fork: user-settable mode. */
9418
9419 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9420 Set whether gdb will detach the child of a fork."), _("\
9421 Show whether gdb will detach the child of a fork."), _("\
9422 Tells gdb whether to detach the child of a fork."),
9423 NULL, NULL, &setlist, &showlist);
9424
9425 /* Set/show disable address space randomization mode. */
9426
9427 add_setshow_boolean_cmd ("disable-randomization", class_support,
9428 &disable_randomization, _("\
9429 Set disabling of debuggee's virtual address space randomization."), _("\
9430 Show disabling of debuggee's virtual address space randomization."), _("\
9431 When this mode is on (which is the default), randomization of the virtual\n\
9432 address space is disabled. Standalone programs run with the randomization\n\
9433 enabled by default on some platforms."),
9434 &set_disable_randomization,
9435 &show_disable_randomization,
9436 &setlist, &showlist);
9437
9438 /* ptid initializations */
9439 inferior_ptid = null_ptid;
9440 target_last_wait_ptid = minus_one_ptid;
9441
9442 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9443 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9444 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9445 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9446
9447 /* Explicitly create without lookup, since that tries to create a
9448 value with a void typed value, and when we get here, gdbarch
9449 isn't initialized yet. At this point, we're quite sure there
9450 isn't another convenience variable of the same name. */
9451 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9452
9453 add_setshow_boolean_cmd ("observer", no_class,
9454 &observer_mode_1, _("\
9455 Set whether gdb controls the inferior in observer mode."), _("\
9456 Show whether gdb controls the inferior in observer mode."), _("\
9457 In observer mode, GDB can get data from the inferior, but not\n\
9458 affect its execution. Registers and memory may not be changed,\n\
9459 breakpoints may not be set, and the program cannot be interrupted\n\
9460 or signalled."),
9461 set_observer_mode,
9462 show_observer_mode,
9463 &setlist,
9464 &showlist);
9465 }
This page took 0.292636 seconds and 4 git commands to generate.