gdb: Rework command completion on 'tui reg'.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64
65 /* Prototypes for local functions */
66
67 static void signals_info (char *, int);
68
69 static void handle_command (char *, int);
70
71 static void sig_print_info (enum gdb_signal);
72
73 static void sig_print_header (void);
74
75 static void resume_cleanups (void *);
76
77 static int hook_stop_stub (void *);
78
79 static int restore_selected_frame (void *);
80
81 static int follow_fork (void);
82
83 static int follow_fork_inferior (int follow_child, int detach_fork);
84
85 static void follow_inferior_reset_breakpoints (void);
86
87 static void set_schedlock_func (char *args, int from_tty,
88 struct cmd_list_element *c);
89
90 static int currently_stepping (struct thread_info *tp);
91
92 void _initialize_infrun (void);
93
94 void nullify_last_target_wait_ptid (void);
95
96 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
97
98 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
99
100 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
101
102 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
103
104 /* When set, stop the 'step' command if we enter a function which has
105 no line number information. The normal behavior is that we step
106 over such function. */
107 int step_stop_if_no_debug = 0;
108 static void
109 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
113 }
114
115 /* In asynchronous mode, but simulating synchronous execution. */
116
117 int sync_execution = 0;
118
119 /* proceed and normal_stop use this to notify the user when the
120 inferior stopped in a different thread than it had been running
121 in. */
122
123 static ptid_t previous_inferior_ptid;
124
125 /* If set (default for legacy reasons), when following a fork, GDB
126 will detach from one of the fork branches, child or parent.
127 Exactly which branch is detached depends on 'set follow-fork-mode'
128 setting. */
129
130 static int detach_fork = 1;
131
132 int debug_displaced = 0;
133 static void
134 show_debug_displaced (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c, const char *value)
136 {
137 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
138 }
139
140 unsigned int debug_infrun = 0;
141 static void
142 show_debug_infrun (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144 {
145 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
146 }
147
148
149 /* Support for disabling address space randomization. */
150
151 int disable_randomization = 1;
152
153 static void
154 show_disable_randomization (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 if (target_supports_disable_randomization ())
158 fprintf_filtered (file,
159 _("Disabling randomization of debuggee's "
160 "virtual address space is %s.\n"),
161 value);
162 else
163 fputs_filtered (_("Disabling randomization of debuggee's "
164 "virtual address space is unsupported on\n"
165 "this platform.\n"), file);
166 }
167
168 static void
169 set_disable_randomization (char *args, int from_tty,
170 struct cmd_list_element *c)
171 {
172 if (!target_supports_disable_randomization ())
173 error (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform."));
176 }
177
178 /* User interface for non-stop mode. */
179
180 int non_stop = 0;
181 static int non_stop_1 = 0;
182
183 static void
184 set_non_stop (char *args, int from_tty,
185 struct cmd_list_element *c)
186 {
187 if (target_has_execution)
188 {
189 non_stop_1 = non_stop;
190 error (_("Cannot change this setting while the inferior is running."));
191 }
192
193 non_stop = non_stop_1;
194 }
195
196 static void
197 show_non_stop (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file,
201 _("Controlling the inferior in non-stop mode is %s.\n"),
202 value);
203 }
204
205 /* "Observer mode" is somewhat like a more extreme version of
206 non-stop, in which all GDB operations that might affect the
207 target's execution have been disabled. */
208
209 int observer_mode = 0;
210 static int observer_mode_1 = 0;
211
212 static void
213 set_observer_mode (char *args, int from_tty,
214 struct cmd_list_element *c)
215 {
216 if (target_has_execution)
217 {
218 observer_mode_1 = observer_mode;
219 error (_("Cannot change this setting while the inferior is running."));
220 }
221
222 observer_mode = observer_mode_1;
223
224 may_write_registers = !observer_mode;
225 may_write_memory = !observer_mode;
226 may_insert_breakpoints = !observer_mode;
227 may_insert_tracepoints = !observer_mode;
228 /* We can insert fast tracepoints in or out of observer mode,
229 but enable them if we're going into this mode. */
230 if (observer_mode)
231 may_insert_fast_tracepoints = 1;
232 may_stop = !observer_mode;
233 update_target_permissions ();
234
235 /* Going *into* observer mode we must force non-stop, then
236 going out we leave it that way. */
237 if (observer_mode)
238 {
239 pagination_enabled = 0;
240 non_stop = non_stop_1 = 1;
241 }
242
243 if (from_tty)
244 printf_filtered (_("Observer mode is now %s.\n"),
245 (observer_mode ? "on" : "off"));
246 }
247
248 static void
249 show_observer_mode (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
253 }
254
255 /* This updates the value of observer mode based on changes in
256 permissions. Note that we are deliberately ignoring the values of
257 may-write-registers and may-write-memory, since the user may have
258 reason to enable these during a session, for instance to turn on a
259 debugging-related global. */
260
261 void
262 update_observer_mode (void)
263 {
264 int newval;
265
266 newval = (!may_insert_breakpoints
267 && !may_insert_tracepoints
268 && may_insert_fast_tracepoints
269 && !may_stop
270 && non_stop);
271
272 /* Let the user know if things change. */
273 if (newval != observer_mode)
274 printf_filtered (_("Observer mode is now %s.\n"),
275 (newval ? "on" : "off"));
276
277 observer_mode = observer_mode_1 = newval;
278 }
279
280 /* Tables of how to react to signals; the user sets them. */
281
282 static unsigned char *signal_stop;
283 static unsigned char *signal_print;
284 static unsigned char *signal_program;
285
286 /* Table of signals that are registered with "catch signal". A
287 non-zero entry indicates that the signal is caught by some "catch
288 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
289 signals. */
290 static unsigned char *signal_catch;
291
292 /* Table of signals that the target may silently handle.
293 This is automatically determined from the flags above,
294 and simply cached here. */
295 static unsigned char *signal_pass;
296
297 #define SET_SIGS(nsigs,sigs,flags) \
298 do { \
299 int signum = (nsigs); \
300 while (signum-- > 0) \
301 if ((sigs)[signum]) \
302 (flags)[signum] = 1; \
303 } while (0)
304
305 #define UNSET_SIGS(nsigs,sigs,flags) \
306 do { \
307 int signum = (nsigs); \
308 while (signum-- > 0) \
309 if ((sigs)[signum]) \
310 (flags)[signum] = 0; \
311 } while (0)
312
313 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
314 this function is to avoid exporting `signal_program'. */
315
316 void
317 update_signals_program_target (void)
318 {
319 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
320 }
321
322 /* Value to pass to target_resume() to cause all threads to resume. */
323
324 #define RESUME_ALL minus_one_ptid
325
326 /* Command list pointer for the "stop" placeholder. */
327
328 static struct cmd_list_element *stop_command;
329
330 /* Nonzero if we want to give control to the user when we're notified
331 of shared library events by the dynamic linker. */
332 int stop_on_solib_events;
333
334 /* Enable or disable optional shared library event breakpoints
335 as appropriate when the above flag is changed. */
336
337 static void
338 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
339 {
340 update_solib_breakpoints ();
341 }
342
343 static void
344 show_stop_on_solib_events (struct ui_file *file, int from_tty,
345 struct cmd_list_element *c, const char *value)
346 {
347 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
348 value);
349 }
350
351 /* Nonzero means expecting a trace trap
352 and should stop the inferior and return silently when it happens. */
353
354 int stop_after_trap;
355
356 /* Nonzero after stop if current stack frame should be printed. */
357
358 static int stop_print_frame;
359
360 /* This is a cached copy of the pid/waitstatus of the last event
361 returned by target_wait()/deprecated_target_wait_hook(). This
362 information is returned by get_last_target_status(). */
363 static ptid_t target_last_wait_ptid;
364 static struct target_waitstatus target_last_waitstatus;
365
366 static void context_switch (ptid_t ptid);
367
368 void init_thread_stepping_state (struct thread_info *tss);
369
370 static const char follow_fork_mode_child[] = "child";
371 static const char follow_fork_mode_parent[] = "parent";
372
373 static const char *const follow_fork_mode_kind_names[] = {
374 follow_fork_mode_child,
375 follow_fork_mode_parent,
376 NULL
377 };
378
379 static const char *follow_fork_mode_string = follow_fork_mode_parent;
380 static void
381 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file,
385 _("Debugger response to a program "
386 "call of fork or vfork is \"%s\".\n"),
387 value);
388 }
389 \f
390
391 /* Handle changes to the inferior list based on the type of fork,
392 which process is being followed, and whether the other process
393 should be detached. On entry inferior_ptid must be the ptid of
394 the fork parent. At return inferior_ptid is the ptid of the
395 followed inferior. */
396
397 static int
398 follow_fork_inferior (int follow_child, int detach_fork)
399 {
400 int has_vforked;
401 ptid_t parent_ptid, child_ptid;
402
403 has_vforked = (inferior_thread ()->pending_follow.kind
404 == TARGET_WAITKIND_VFORKED);
405 parent_ptid = inferior_ptid;
406 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
407
408 if (has_vforked
409 && !non_stop /* Non-stop always resumes both branches. */
410 && (!target_is_async_p () || sync_execution)
411 && !(follow_child || detach_fork || sched_multi))
412 {
413 /* The parent stays blocked inside the vfork syscall until the
414 child execs or exits. If we don't let the child run, then
415 the parent stays blocked. If we're telling the parent to run
416 in the foreground, the user will not be able to ctrl-c to get
417 back the terminal, effectively hanging the debug session. */
418 fprintf_filtered (gdb_stderr, _("\
419 Can not resume the parent process over vfork in the foreground while\n\
420 holding the child stopped. Try \"set detach-on-fork\" or \
421 \"set schedule-multiple\".\n"));
422 /* FIXME output string > 80 columns. */
423 return 1;
424 }
425
426 if (!follow_child)
427 {
428 /* Detach new forked process? */
429 if (detach_fork)
430 {
431 struct cleanup *old_chain;
432
433 /* Before detaching from the child, remove all breakpoints
434 from it. If we forked, then this has already been taken
435 care of by infrun.c. If we vforked however, any
436 breakpoint inserted in the parent is visible in the
437 child, even those added while stopped in a vfork
438 catchpoint. This will remove the breakpoints from the
439 parent also, but they'll be reinserted below. */
440 if (has_vforked)
441 {
442 /* Keep breakpoints list in sync. */
443 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
444 }
445
446 if (info_verbose || debug_infrun)
447 {
448 /* Ensure that we have a process ptid. */
449 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
450
451 target_terminal_ours_for_output ();
452 fprintf_filtered (gdb_stdlog,
453 _("Detaching after %s from child %s.\n"),
454 has_vforked ? "vfork" : "fork",
455 target_pid_to_str (process_ptid));
456 }
457 }
458 else
459 {
460 struct inferior *parent_inf, *child_inf;
461 struct cleanup *old_chain;
462
463 /* Add process to GDB's tables. */
464 child_inf = add_inferior (ptid_get_pid (child_ptid));
465
466 parent_inf = current_inferior ();
467 child_inf->attach_flag = parent_inf->attach_flag;
468 copy_terminal_info (child_inf, parent_inf);
469 child_inf->gdbarch = parent_inf->gdbarch;
470 copy_inferior_target_desc_info (child_inf, parent_inf);
471
472 old_chain = save_inferior_ptid ();
473 save_current_program_space ();
474
475 inferior_ptid = child_ptid;
476 add_thread (inferior_ptid);
477 child_inf->symfile_flags = SYMFILE_NO_READ;
478
479 /* If this is a vfork child, then the address-space is
480 shared with the parent. */
481 if (has_vforked)
482 {
483 child_inf->pspace = parent_inf->pspace;
484 child_inf->aspace = parent_inf->aspace;
485
486 /* The parent will be frozen until the child is done
487 with the shared region. Keep track of the
488 parent. */
489 child_inf->vfork_parent = parent_inf;
490 child_inf->pending_detach = 0;
491 parent_inf->vfork_child = child_inf;
492 parent_inf->pending_detach = 0;
493 }
494 else
495 {
496 child_inf->aspace = new_address_space ();
497 child_inf->pspace = add_program_space (child_inf->aspace);
498 child_inf->removable = 1;
499 set_current_program_space (child_inf->pspace);
500 clone_program_space (child_inf->pspace, parent_inf->pspace);
501
502 /* Let the shared library layer (e.g., solib-svr4) learn
503 about this new process, relocate the cloned exec, pull
504 in shared libraries, and install the solib event
505 breakpoint. If a "cloned-VM" event was propagated
506 better throughout the core, this wouldn't be
507 required. */
508 solib_create_inferior_hook (0);
509 }
510
511 do_cleanups (old_chain);
512 }
513
514 if (has_vforked)
515 {
516 struct inferior *parent_inf;
517
518 parent_inf = current_inferior ();
519
520 /* If we detached from the child, then we have to be careful
521 to not insert breakpoints in the parent until the child
522 is done with the shared memory region. However, if we're
523 staying attached to the child, then we can and should
524 insert breakpoints, so that we can debug it. A
525 subsequent child exec or exit is enough to know when does
526 the child stops using the parent's address space. */
527 parent_inf->waiting_for_vfork_done = detach_fork;
528 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
529 }
530 }
531 else
532 {
533 /* Follow the child. */
534 struct inferior *parent_inf, *child_inf;
535 struct program_space *parent_pspace;
536
537 if (info_verbose || debug_infrun)
538 {
539 target_terminal_ours_for_output ();
540 fprintf_filtered (gdb_stdlog,
541 _("Attaching after %s %s to child %s.\n"),
542 target_pid_to_str (parent_ptid),
543 has_vforked ? "vfork" : "fork",
544 target_pid_to_str (child_ptid));
545 }
546
547 /* Add the new inferior first, so that the target_detach below
548 doesn't unpush the target. */
549
550 child_inf = add_inferior (ptid_get_pid (child_ptid));
551
552 parent_inf = current_inferior ();
553 child_inf->attach_flag = parent_inf->attach_flag;
554 copy_terminal_info (child_inf, parent_inf);
555 child_inf->gdbarch = parent_inf->gdbarch;
556 copy_inferior_target_desc_info (child_inf, parent_inf);
557
558 parent_pspace = parent_inf->pspace;
559
560 /* If we're vforking, we want to hold on to the parent until the
561 child exits or execs. At child exec or exit time we can
562 remove the old breakpoints from the parent and detach or
563 resume debugging it. Otherwise, detach the parent now; we'll
564 want to reuse it's program/address spaces, but we can't set
565 them to the child before removing breakpoints from the
566 parent, otherwise, the breakpoints module could decide to
567 remove breakpoints from the wrong process (since they'd be
568 assigned to the same address space). */
569
570 if (has_vforked)
571 {
572 gdb_assert (child_inf->vfork_parent == NULL);
573 gdb_assert (parent_inf->vfork_child == NULL);
574 child_inf->vfork_parent = parent_inf;
575 child_inf->pending_detach = 0;
576 parent_inf->vfork_child = child_inf;
577 parent_inf->pending_detach = detach_fork;
578 parent_inf->waiting_for_vfork_done = 0;
579 }
580 else if (detach_fork)
581 {
582 if (info_verbose || debug_infrun)
583 {
584 /* Ensure that we have a process ptid. */
585 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
586
587 target_terminal_ours_for_output ();
588 fprintf_filtered (gdb_stdlog,
589 _("Detaching after fork from "
590 "child %s.\n"),
591 target_pid_to_str (process_ptid));
592 }
593
594 target_detach (NULL, 0);
595 }
596
597 /* Note that the detach above makes PARENT_INF dangling. */
598
599 /* Add the child thread to the appropriate lists, and switch to
600 this new thread, before cloning the program space, and
601 informing the solib layer about this new process. */
602
603 inferior_ptid = child_ptid;
604 add_thread (inferior_ptid);
605
606 /* If this is a vfork child, then the address-space is shared
607 with the parent. If we detached from the parent, then we can
608 reuse the parent's program/address spaces. */
609 if (has_vforked || detach_fork)
610 {
611 child_inf->pspace = parent_pspace;
612 child_inf->aspace = child_inf->pspace->aspace;
613 }
614 else
615 {
616 child_inf->aspace = new_address_space ();
617 child_inf->pspace = add_program_space (child_inf->aspace);
618 child_inf->removable = 1;
619 child_inf->symfile_flags = SYMFILE_NO_READ;
620 set_current_program_space (child_inf->pspace);
621 clone_program_space (child_inf->pspace, parent_pspace);
622
623 /* Let the shared library layer (e.g., solib-svr4) learn
624 about this new process, relocate the cloned exec, pull in
625 shared libraries, and install the solib event breakpoint.
626 If a "cloned-VM" event was propagated better throughout
627 the core, this wouldn't be required. */
628 solib_create_inferior_hook (0);
629 }
630 }
631
632 return target_follow_fork (follow_child, detach_fork);
633 }
634
635 /* Tell the target to follow the fork we're stopped at. Returns true
636 if the inferior should be resumed; false, if the target for some
637 reason decided it's best not to resume. */
638
639 static int
640 follow_fork (void)
641 {
642 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
643 int should_resume = 1;
644 struct thread_info *tp;
645
646 /* Copy user stepping state to the new inferior thread. FIXME: the
647 followed fork child thread should have a copy of most of the
648 parent thread structure's run control related fields, not just these.
649 Initialized to avoid "may be used uninitialized" warnings from gcc. */
650 struct breakpoint *step_resume_breakpoint = NULL;
651 struct breakpoint *exception_resume_breakpoint = NULL;
652 CORE_ADDR step_range_start = 0;
653 CORE_ADDR step_range_end = 0;
654 struct frame_id step_frame_id = { 0 };
655 struct interp *command_interp = NULL;
656
657 if (!non_stop)
658 {
659 ptid_t wait_ptid;
660 struct target_waitstatus wait_status;
661
662 /* Get the last target status returned by target_wait(). */
663 get_last_target_status (&wait_ptid, &wait_status);
664
665 /* If not stopped at a fork event, then there's nothing else to
666 do. */
667 if (wait_status.kind != TARGET_WAITKIND_FORKED
668 && wait_status.kind != TARGET_WAITKIND_VFORKED)
669 return 1;
670
671 /* Check if we switched over from WAIT_PTID, since the event was
672 reported. */
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* We did. Switch back to WAIT_PTID thread, to tell the
677 target to follow it (in either direction). We'll
678 afterwards refuse to resume, and inform the user what
679 happened. */
680 switch_to_thread (wait_ptid);
681 should_resume = 0;
682 }
683 }
684
685 tp = inferior_thread ();
686
687 /* If there were any forks/vforks that were caught and are now to be
688 followed, then do so now. */
689 switch (tp->pending_follow.kind)
690 {
691 case TARGET_WAITKIND_FORKED:
692 case TARGET_WAITKIND_VFORKED:
693 {
694 ptid_t parent, child;
695
696 /* If the user did a next/step, etc, over a fork call,
697 preserve the stepping state in the fork child. */
698 if (follow_child && should_resume)
699 {
700 step_resume_breakpoint = clone_momentary_breakpoint
701 (tp->control.step_resume_breakpoint);
702 step_range_start = tp->control.step_range_start;
703 step_range_end = tp->control.step_range_end;
704 step_frame_id = tp->control.step_frame_id;
705 exception_resume_breakpoint
706 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
707 command_interp = tp->control.command_interp;
708
709 /* For now, delete the parent's sr breakpoint, otherwise,
710 parent/child sr breakpoints are considered duplicates,
711 and the child version will not be installed. Remove
712 this when the breakpoints module becomes aware of
713 inferiors and address spaces. */
714 delete_step_resume_breakpoint (tp);
715 tp->control.step_range_start = 0;
716 tp->control.step_range_end = 0;
717 tp->control.step_frame_id = null_frame_id;
718 delete_exception_resume_breakpoint (tp);
719 tp->control.command_interp = NULL;
720 }
721
722 parent = inferior_ptid;
723 child = tp->pending_follow.value.related_pid;
724
725 /* Set up inferior(s) as specified by the caller, and tell the
726 target to do whatever is necessary to follow either parent
727 or child. */
728 if (follow_fork_inferior (follow_child, detach_fork))
729 {
730 /* Target refused to follow, or there's some other reason
731 we shouldn't resume. */
732 should_resume = 0;
733 }
734 else
735 {
736 /* This pending follow fork event is now handled, one way
737 or another. The previous selected thread may be gone
738 from the lists by now, but if it is still around, need
739 to clear the pending follow request. */
740 tp = find_thread_ptid (parent);
741 if (tp)
742 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
743
744 /* This makes sure we don't try to apply the "Switched
745 over from WAIT_PID" logic above. */
746 nullify_last_target_wait_ptid ();
747
748 /* If we followed the child, switch to it... */
749 if (follow_child)
750 {
751 switch_to_thread (child);
752
753 /* ... and preserve the stepping state, in case the
754 user was stepping over the fork call. */
755 if (should_resume)
756 {
757 tp = inferior_thread ();
758 tp->control.step_resume_breakpoint
759 = step_resume_breakpoint;
760 tp->control.step_range_start = step_range_start;
761 tp->control.step_range_end = step_range_end;
762 tp->control.step_frame_id = step_frame_id;
763 tp->control.exception_resume_breakpoint
764 = exception_resume_breakpoint;
765 tp->control.command_interp = command_interp;
766 }
767 else
768 {
769 /* If we get here, it was because we're trying to
770 resume from a fork catchpoint, but, the user
771 has switched threads away from the thread that
772 forked. In that case, the resume command
773 issued is most likely not applicable to the
774 child, so just warn, and refuse to resume. */
775 warning (_("Not resuming: switched threads "
776 "before following fork child.\n"));
777 }
778
779 /* Reset breakpoints in the child as appropriate. */
780 follow_inferior_reset_breakpoints ();
781 }
782 else
783 switch_to_thread (parent);
784 }
785 }
786 break;
787 case TARGET_WAITKIND_SPURIOUS:
788 /* Nothing to follow. */
789 break;
790 default:
791 internal_error (__FILE__, __LINE__,
792 "Unexpected pending_follow.kind %d\n",
793 tp->pending_follow.kind);
794 break;
795 }
796
797 return should_resume;
798 }
799
800 static void
801 follow_inferior_reset_breakpoints (void)
802 {
803 struct thread_info *tp = inferior_thread ();
804
805 /* Was there a step_resume breakpoint? (There was if the user
806 did a "next" at the fork() call.) If so, explicitly reset its
807 thread number. Cloned step_resume breakpoints are disabled on
808 creation, so enable it here now that it is associated with the
809 correct thread.
810
811 step_resumes are a form of bp that are made to be per-thread.
812 Since we created the step_resume bp when the parent process
813 was being debugged, and now are switching to the child process,
814 from the breakpoint package's viewpoint, that's a switch of
815 "threads". We must update the bp's notion of which thread
816 it is for, or it'll be ignored when it triggers. */
817
818 if (tp->control.step_resume_breakpoint)
819 {
820 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
821 tp->control.step_resume_breakpoint->loc->enabled = 1;
822 }
823
824 /* Treat exception_resume breakpoints like step_resume breakpoints. */
825 if (tp->control.exception_resume_breakpoint)
826 {
827 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
828 tp->control.exception_resume_breakpoint->loc->enabled = 1;
829 }
830
831 /* Reinsert all breakpoints in the child. The user may have set
832 breakpoints after catching the fork, in which case those
833 were never set in the child, but only in the parent. This makes
834 sure the inserted breakpoints match the breakpoint list. */
835
836 breakpoint_re_set ();
837 insert_breakpoints ();
838 }
839
840 /* The child has exited or execed: resume threads of the parent the
841 user wanted to be executing. */
842
843 static int
844 proceed_after_vfork_done (struct thread_info *thread,
845 void *arg)
846 {
847 int pid = * (int *) arg;
848
849 if (ptid_get_pid (thread->ptid) == pid
850 && is_running (thread->ptid)
851 && !is_executing (thread->ptid)
852 && !thread->stop_requested
853 && thread->suspend.stop_signal == GDB_SIGNAL_0)
854 {
855 if (debug_infrun)
856 fprintf_unfiltered (gdb_stdlog,
857 "infrun: resuming vfork parent thread %s\n",
858 target_pid_to_str (thread->ptid));
859
860 switch_to_thread (thread->ptid);
861 clear_proceed_status (0);
862 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
863 }
864
865 return 0;
866 }
867
868 /* Called whenever we notice an exec or exit event, to handle
869 detaching or resuming a vfork parent. */
870
871 static void
872 handle_vfork_child_exec_or_exit (int exec)
873 {
874 struct inferior *inf = current_inferior ();
875
876 if (inf->vfork_parent)
877 {
878 int resume_parent = -1;
879
880 /* This exec or exit marks the end of the shared memory region
881 between the parent and the child. If the user wanted to
882 detach from the parent, now is the time. */
883
884 if (inf->vfork_parent->pending_detach)
885 {
886 struct thread_info *tp;
887 struct cleanup *old_chain;
888 struct program_space *pspace;
889 struct address_space *aspace;
890
891 /* follow-fork child, detach-on-fork on. */
892
893 inf->vfork_parent->pending_detach = 0;
894
895 if (!exec)
896 {
897 /* If we're handling a child exit, then inferior_ptid
898 points at the inferior's pid, not to a thread. */
899 old_chain = save_inferior_ptid ();
900 save_current_program_space ();
901 save_current_inferior ();
902 }
903 else
904 old_chain = save_current_space_and_thread ();
905
906 /* We're letting loose of the parent. */
907 tp = any_live_thread_of_process (inf->vfork_parent->pid);
908 switch_to_thread (tp->ptid);
909
910 /* We're about to detach from the parent, which implicitly
911 removes breakpoints from its address space. There's a
912 catch here: we want to reuse the spaces for the child,
913 but, parent/child are still sharing the pspace at this
914 point, although the exec in reality makes the kernel give
915 the child a fresh set of new pages. The problem here is
916 that the breakpoints module being unaware of this, would
917 likely chose the child process to write to the parent
918 address space. Swapping the child temporarily away from
919 the spaces has the desired effect. Yes, this is "sort
920 of" a hack. */
921
922 pspace = inf->pspace;
923 aspace = inf->aspace;
924 inf->aspace = NULL;
925 inf->pspace = NULL;
926
927 if (debug_infrun || info_verbose)
928 {
929 target_terminal_ours_for_output ();
930
931 if (exec)
932 {
933 fprintf_filtered (gdb_stdlog,
934 _("Detaching vfork parent process "
935 "%d after child exec.\n"),
936 inf->vfork_parent->pid);
937 }
938 else
939 {
940 fprintf_filtered (gdb_stdlog,
941 _("Detaching vfork parent process "
942 "%d after child exit.\n"),
943 inf->vfork_parent->pid);
944 }
945 }
946
947 target_detach (NULL, 0);
948
949 /* Put it back. */
950 inf->pspace = pspace;
951 inf->aspace = aspace;
952
953 do_cleanups (old_chain);
954 }
955 else if (exec)
956 {
957 /* We're staying attached to the parent, so, really give the
958 child a new address space. */
959 inf->pspace = add_program_space (maybe_new_address_space ());
960 inf->aspace = inf->pspace->aspace;
961 inf->removable = 1;
962 set_current_program_space (inf->pspace);
963
964 resume_parent = inf->vfork_parent->pid;
965
966 /* Break the bonds. */
967 inf->vfork_parent->vfork_child = NULL;
968 }
969 else
970 {
971 struct cleanup *old_chain;
972 struct program_space *pspace;
973
974 /* If this is a vfork child exiting, then the pspace and
975 aspaces were shared with the parent. Since we're
976 reporting the process exit, we'll be mourning all that is
977 found in the address space, and switching to null_ptid,
978 preparing to start a new inferior. But, since we don't
979 want to clobber the parent's address/program spaces, we
980 go ahead and create a new one for this exiting
981 inferior. */
982
983 /* Switch to null_ptid, so that clone_program_space doesn't want
984 to read the selected frame of a dead process. */
985 old_chain = save_inferior_ptid ();
986 inferior_ptid = null_ptid;
987
988 /* This inferior is dead, so avoid giving the breakpoints
989 module the option to write through to it (cloning a
990 program space resets breakpoints). */
991 inf->aspace = NULL;
992 inf->pspace = NULL;
993 pspace = add_program_space (maybe_new_address_space ());
994 set_current_program_space (pspace);
995 inf->removable = 1;
996 inf->symfile_flags = SYMFILE_NO_READ;
997 clone_program_space (pspace, inf->vfork_parent->pspace);
998 inf->pspace = pspace;
999 inf->aspace = pspace->aspace;
1000
1001 /* Put back inferior_ptid. We'll continue mourning this
1002 inferior. */
1003 do_cleanups (old_chain);
1004
1005 resume_parent = inf->vfork_parent->pid;
1006 /* Break the bonds. */
1007 inf->vfork_parent->vfork_child = NULL;
1008 }
1009
1010 inf->vfork_parent = NULL;
1011
1012 gdb_assert (current_program_space == inf->pspace);
1013
1014 if (non_stop && resume_parent != -1)
1015 {
1016 /* If the user wanted the parent to be running, let it go
1017 free now. */
1018 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1019
1020 if (debug_infrun)
1021 fprintf_unfiltered (gdb_stdlog,
1022 "infrun: resuming vfork parent process %d\n",
1023 resume_parent);
1024
1025 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1026
1027 do_cleanups (old_chain);
1028 }
1029 }
1030 }
1031
1032 /* Enum strings for "set|show follow-exec-mode". */
1033
1034 static const char follow_exec_mode_new[] = "new";
1035 static const char follow_exec_mode_same[] = "same";
1036 static const char *const follow_exec_mode_names[] =
1037 {
1038 follow_exec_mode_new,
1039 follow_exec_mode_same,
1040 NULL,
1041 };
1042
1043 static const char *follow_exec_mode_string = follow_exec_mode_same;
1044 static void
1045 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1046 struct cmd_list_element *c, const char *value)
1047 {
1048 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1049 }
1050
1051 /* EXECD_PATHNAME is assumed to be non-NULL. */
1052
1053 static void
1054 follow_exec (ptid_t ptid, char *execd_pathname)
1055 {
1056 struct thread_info *th, *tmp;
1057 struct inferior *inf = current_inferior ();
1058 int pid = ptid_get_pid (ptid);
1059
1060 /* This is an exec event that we actually wish to pay attention to.
1061 Refresh our symbol table to the newly exec'd program, remove any
1062 momentary bp's, etc.
1063
1064 If there are breakpoints, they aren't really inserted now,
1065 since the exec() transformed our inferior into a fresh set
1066 of instructions.
1067
1068 We want to preserve symbolic breakpoints on the list, since
1069 we have hopes that they can be reset after the new a.out's
1070 symbol table is read.
1071
1072 However, any "raw" breakpoints must be removed from the list
1073 (e.g., the solib bp's), since their address is probably invalid
1074 now.
1075
1076 And, we DON'T want to call delete_breakpoints() here, since
1077 that may write the bp's "shadow contents" (the instruction
1078 value that was overwritten witha TRAP instruction). Since
1079 we now have a new a.out, those shadow contents aren't valid. */
1080
1081 mark_breakpoints_out ();
1082
1083 /* The target reports the exec event to the main thread, even if
1084 some other thread does the exec, and even if the main thread was
1085 stopped or already gone. We may still have non-leader threads of
1086 the process on our list. E.g., on targets that don't have thread
1087 exit events (like remote); or on native Linux in non-stop mode if
1088 there were only two threads in the inferior and the non-leader
1089 one is the one that execs (and nothing forces an update of the
1090 thread list up to here). When debugging remotely, it's best to
1091 avoid extra traffic, when possible, so avoid syncing the thread
1092 list with the target, and instead go ahead and delete all threads
1093 of the process but one that reported the event. Note this must
1094 be done before calling update_breakpoints_after_exec, as
1095 otherwise clearing the threads' resources would reference stale
1096 thread breakpoints -- it may have been one of these threads that
1097 stepped across the exec. We could just clear their stepping
1098 states, but as long as we're iterating, might as well delete
1099 them. Deleting them now rather than at the next user-visible
1100 stop provides a nicer sequence of events for user and MI
1101 notifications. */
1102 ALL_THREADS_SAFE (th, tmp)
1103 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1104 delete_thread (th->ptid);
1105
1106 /* We also need to clear any left over stale state for the
1107 leader/event thread. E.g., if there was any step-resume
1108 breakpoint or similar, it's gone now. We cannot truly
1109 step-to-next statement through an exec(). */
1110 th = inferior_thread ();
1111 th->control.step_resume_breakpoint = NULL;
1112 th->control.exception_resume_breakpoint = NULL;
1113 th->control.single_step_breakpoints = NULL;
1114 th->control.step_range_start = 0;
1115 th->control.step_range_end = 0;
1116
1117 /* The user may have had the main thread held stopped in the
1118 previous image (e.g., schedlock on, or non-stop). Release
1119 it now. */
1120 th->stop_requested = 0;
1121
1122 update_breakpoints_after_exec ();
1123
1124 /* What is this a.out's name? */
1125 printf_unfiltered (_("%s is executing new program: %s\n"),
1126 target_pid_to_str (inferior_ptid),
1127 execd_pathname);
1128
1129 /* We've followed the inferior through an exec. Therefore, the
1130 inferior has essentially been killed & reborn. */
1131
1132 gdb_flush (gdb_stdout);
1133
1134 breakpoint_init_inferior (inf_execd);
1135
1136 if (gdb_sysroot != NULL && *gdb_sysroot != '\0')
1137 {
1138 char *name = exec_file_find (execd_pathname, NULL);
1139
1140 execd_pathname = alloca (strlen (name) + 1);
1141 strcpy (execd_pathname, name);
1142 xfree (name);
1143 }
1144
1145 /* Reset the shared library package. This ensures that we get a
1146 shlib event when the child reaches "_start", at which point the
1147 dld will have had a chance to initialize the child. */
1148 /* Also, loading a symbol file below may trigger symbol lookups, and
1149 we don't want those to be satisfied by the libraries of the
1150 previous incarnation of this process. */
1151 no_shared_libraries (NULL, 0);
1152
1153 if (follow_exec_mode_string == follow_exec_mode_new)
1154 {
1155 struct program_space *pspace;
1156
1157 /* The user wants to keep the old inferior and program spaces
1158 around. Create a new fresh one, and switch to it. */
1159
1160 inf = add_inferior (current_inferior ()->pid);
1161 pspace = add_program_space (maybe_new_address_space ());
1162 inf->pspace = pspace;
1163 inf->aspace = pspace->aspace;
1164
1165 exit_inferior_num_silent (current_inferior ()->num);
1166
1167 set_current_inferior (inf);
1168 set_current_program_space (pspace);
1169 }
1170 else
1171 {
1172 /* The old description may no longer be fit for the new image.
1173 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1174 old description; we'll read a new one below. No need to do
1175 this on "follow-exec-mode new", as the old inferior stays
1176 around (its description is later cleared/refetched on
1177 restart). */
1178 target_clear_description ();
1179 }
1180
1181 gdb_assert (current_program_space == inf->pspace);
1182
1183 /* That a.out is now the one to use. */
1184 exec_file_attach (execd_pathname, 0);
1185
1186 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1187 (Position Independent Executable) main symbol file will get applied by
1188 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1189 the breakpoints with the zero displacement. */
1190
1191 symbol_file_add (execd_pathname,
1192 (inf->symfile_flags
1193 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1194 NULL, 0);
1195
1196 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1197 set_initial_language ();
1198
1199 /* If the target can specify a description, read it. Must do this
1200 after flipping to the new executable (because the target supplied
1201 description must be compatible with the executable's
1202 architecture, and the old executable may e.g., be 32-bit, while
1203 the new one 64-bit), and before anything involving memory or
1204 registers. */
1205 target_find_description ();
1206
1207 solib_create_inferior_hook (0);
1208
1209 jit_inferior_created_hook ();
1210
1211 breakpoint_re_set ();
1212
1213 /* Reinsert all breakpoints. (Those which were symbolic have
1214 been reset to the proper address in the new a.out, thanks
1215 to symbol_file_command...). */
1216 insert_breakpoints ();
1217
1218 /* The next resume of this inferior should bring it to the shlib
1219 startup breakpoints. (If the user had also set bp's on
1220 "main" from the old (parent) process, then they'll auto-
1221 matically get reset there in the new process.). */
1222 }
1223
1224 /* Info about an instruction that is being stepped over. */
1225
1226 struct step_over_info
1227 {
1228 /* If we're stepping past a breakpoint, this is the address space
1229 and address of the instruction the breakpoint is set at. We'll
1230 skip inserting all breakpoints here. Valid iff ASPACE is
1231 non-NULL. */
1232 struct address_space *aspace;
1233 CORE_ADDR address;
1234
1235 /* The instruction being stepped over triggers a nonsteppable
1236 watchpoint. If true, we'll skip inserting watchpoints. */
1237 int nonsteppable_watchpoint_p;
1238 };
1239
1240 /* The step-over info of the location that is being stepped over.
1241
1242 Note that with async/breakpoint always-inserted mode, a user might
1243 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1244 being stepped over. As setting a new breakpoint inserts all
1245 breakpoints, we need to make sure the breakpoint being stepped over
1246 isn't inserted then. We do that by only clearing the step-over
1247 info when the step-over is actually finished (or aborted).
1248
1249 Presently GDB can only step over one breakpoint at any given time.
1250 Given threads that can't run code in the same address space as the
1251 breakpoint's can't really miss the breakpoint, GDB could be taught
1252 to step-over at most one breakpoint per address space (so this info
1253 could move to the address space object if/when GDB is extended).
1254 The set of breakpoints being stepped over will normally be much
1255 smaller than the set of all breakpoints, so a flag in the
1256 breakpoint location structure would be wasteful. A separate list
1257 also saves complexity and run-time, as otherwise we'd have to go
1258 through all breakpoint locations clearing their flag whenever we
1259 start a new sequence. Similar considerations weigh against storing
1260 this info in the thread object. Plus, not all step overs actually
1261 have breakpoint locations -- e.g., stepping past a single-step
1262 breakpoint, or stepping to complete a non-continuable
1263 watchpoint. */
1264 static struct step_over_info step_over_info;
1265
1266 /* Record the address of the breakpoint/instruction we're currently
1267 stepping over. */
1268
1269 static void
1270 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1271 int nonsteppable_watchpoint_p)
1272 {
1273 step_over_info.aspace = aspace;
1274 step_over_info.address = address;
1275 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1276 }
1277
1278 /* Called when we're not longer stepping over a breakpoint / an
1279 instruction, so all breakpoints are free to be (re)inserted. */
1280
1281 static void
1282 clear_step_over_info (void)
1283 {
1284 step_over_info.aspace = NULL;
1285 step_over_info.address = 0;
1286 step_over_info.nonsteppable_watchpoint_p = 0;
1287 }
1288
1289 /* See infrun.h. */
1290
1291 int
1292 stepping_past_instruction_at (struct address_space *aspace,
1293 CORE_ADDR address)
1294 {
1295 return (step_over_info.aspace != NULL
1296 && breakpoint_address_match (aspace, address,
1297 step_over_info.aspace,
1298 step_over_info.address));
1299 }
1300
1301 /* See infrun.h. */
1302
1303 int
1304 stepping_past_nonsteppable_watchpoint (void)
1305 {
1306 return step_over_info.nonsteppable_watchpoint_p;
1307 }
1308
1309 /* Returns true if step-over info is valid. */
1310
1311 static int
1312 step_over_info_valid_p (void)
1313 {
1314 return (step_over_info.aspace != NULL
1315 || stepping_past_nonsteppable_watchpoint ());
1316 }
1317
1318 \f
1319 /* Displaced stepping. */
1320
1321 /* In non-stop debugging mode, we must take special care to manage
1322 breakpoints properly; in particular, the traditional strategy for
1323 stepping a thread past a breakpoint it has hit is unsuitable.
1324 'Displaced stepping' is a tactic for stepping one thread past a
1325 breakpoint it has hit while ensuring that other threads running
1326 concurrently will hit the breakpoint as they should.
1327
1328 The traditional way to step a thread T off a breakpoint in a
1329 multi-threaded program in all-stop mode is as follows:
1330
1331 a0) Initially, all threads are stopped, and breakpoints are not
1332 inserted.
1333 a1) We single-step T, leaving breakpoints uninserted.
1334 a2) We insert breakpoints, and resume all threads.
1335
1336 In non-stop debugging, however, this strategy is unsuitable: we
1337 don't want to have to stop all threads in the system in order to
1338 continue or step T past a breakpoint. Instead, we use displaced
1339 stepping:
1340
1341 n0) Initially, T is stopped, other threads are running, and
1342 breakpoints are inserted.
1343 n1) We copy the instruction "under" the breakpoint to a separate
1344 location, outside the main code stream, making any adjustments
1345 to the instruction, register, and memory state as directed by
1346 T's architecture.
1347 n2) We single-step T over the instruction at its new location.
1348 n3) We adjust the resulting register and memory state as directed
1349 by T's architecture. This includes resetting T's PC to point
1350 back into the main instruction stream.
1351 n4) We resume T.
1352
1353 This approach depends on the following gdbarch methods:
1354
1355 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1356 indicate where to copy the instruction, and how much space must
1357 be reserved there. We use these in step n1.
1358
1359 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1360 address, and makes any necessary adjustments to the instruction,
1361 register contents, and memory. We use this in step n1.
1362
1363 - gdbarch_displaced_step_fixup adjusts registers and memory after
1364 we have successfuly single-stepped the instruction, to yield the
1365 same effect the instruction would have had if we had executed it
1366 at its original address. We use this in step n3.
1367
1368 - gdbarch_displaced_step_free_closure provides cleanup.
1369
1370 The gdbarch_displaced_step_copy_insn and
1371 gdbarch_displaced_step_fixup functions must be written so that
1372 copying an instruction with gdbarch_displaced_step_copy_insn,
1373 single-stepping across the copied instruction, and then applying
1374 gdbarch_displaced_insn_fixup should have the same effects on the
1375 thread's memory and registers as stepping the instruction in place
1376 would have. Exactly which responsibilities fall to the copy and
1377 which fall to the fixup is up to the author of those functions.
1378
1379 See the comments in gdbarch.sh for details.
1380
1381 Note that displaced stepping and software single-step cannot
1382 currently be used in combination, although with some care I think
1383 they could be made to. Software single-step works by placing
1384 breakpoints on all possible subsequent instructions; if the
1385 displaced instruction is a PC-relative jump, those breakpoints
1386 could fall in very strange places --- on pages that aren't
1387 executable, or at addresses that are not proper instruction
1388 boundaries. (We do generally let other threads run while we wait
1389 to hit the software single-step breakpoint, and they might
1390 encounter such a corrupted instruction.) One way to work around
1391 this would be to have gdbarch_displaced_step_copy_insn fully
1392 simulate the effect of PC-relative instructions (and return NULL)
1393 on architectures that use software single-stepping.
1394
1395 In non-stop mode, we can have independent and simultaneous step
1396 requests, so more than one thread may need to simultaneously step
1397 over a breakpoint. The current implementation assumes there is
1398 only one scratch space per process. In this case, we have to
1399 serialize access to the scratch space. If thread A wants to step
1400 over a breakpoint, but we are currently waiting for some other
1401 thread to complete a displaced step, we leave thread A stopped and
1402 place it in the displaced_step_request_queue. Whenever a displaced
1403 step finishes, we pick the next thread in the queue and start a new
1404 displaced step operation on it. See displaced_step_prepare and
1405 displaced_step_fixup for details. */
1406
1407 struct displaced_step_request
1408 {
1409 ptid_t ptid;
1410 struct displaced_step_request *next;
1411 };
1412
1413 /* Per-inferior displaced stepping state. */
1414 struct displaced_step_inferior_state
1415 {
1416 /* Pointer to next in linked list. */
1417 struct displaced_step_inferior_state *next;
1418
1419 /* The process this displaced step state refers to. */
1420 int pid;
1421
1422 /* A queue of pending displaced stepping requests. One entry per
1423 thread that needs to do a displaced step. */
1424 struct displaced_step_request *step_request_queue;
1425
1426 /* If this is not null_ptid, this is the thread carrying out a
1427 displaced single-step in process PID. This thread's state will
1428 require fixing up once it has completed its step. */
1429 ptid_t step_ptid;
1430
1431 /* The architecture the thread had when we stepped it. */
1432 struct gdbarch *step_gdbarch;
1433
1434 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1435 for post-step cleanup. */
1436 struct displaced_step_closure *step_closure;
1437
1438 /* The address of the original instruction, and the copy we
1439 made. */
1440 CORE_ADDR step_original, step_copy;
1441
1442 /* Saved contents of copy area. */
1443 gdb_byte *step_saved_copy;
1444 };
1445
1446 /* The list of states of processes involved in displaced stepping
1447 presently. */
1448 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1449
1450 /* Get the displaced stepping state of process PID. */
1451
1452 static struct displaced_step_inferior_state *
1453 get_displaced_stepping_state (int pid)
1454 {
1455 struct displaced_step_inferior_state *state;
1456
1457 for (state = displaced_step_inferior_states;
1458 state != NULL;
1459 state = state->next)
1460 if (state->pid == pid)
1461 return state;
1462
1463 return NULL;
1464 }
1465
1466 /* Return true if process PID has a thread doing a displaced step. */
1467
1468 static int
1469 displaced_step_in_progress (int pid)
1470 {
1471 struct displaced_step_inferior_state *displaced;
1472
1473 displaced = get_displaced_stepping_state (pid);
1474 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1475 return 1;
1476
1477 return 0;
1478 }
1479
1480 /* Add a new displaced stepping state for process PID to the displaced
1481 stepping state list, or return a pointer to an already existing
1482 entry, if it already exists. Never returns NULL. */
1483
1484 static struct displaced_step_inferior_state *
1485 add_displaced_stepping_state (int pid)
1486 {
1487 struct displaced_step_inferior_state *state;
1488
1489 for (state = displaced_step_inferior_states;
1490 state != NULL;
1491 state = state->next)
1492 if (state->pid == pid)
1493 return state;
1494
1495 state = xcalloc (1, sizeof (*state));
1496 state->pid = pid;
1497 state->next = displaced_step_inferior_states;
1498 displaced_step_inferior_states = state;
1499
1500 return state;
1501 }
1502
1503 /* If inferior is in displaced stepping, and ADDR equals to starting address
1504 of copy area, return corresponding displaced_step_closure. Otherwise,
1505 return NULL. */
1506
1507 struct displaced_step_closure*
1508 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1509 {
1510 struct displaced_step_inferior_state *displaced
1511 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1512
1513 /* If checking the mode of displaced instruction in copy area. */
1514 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1515 && (displaced->step_copy == addr))
1516 return displaced->step_closure;
1517
1518 return NULL;
1519 }
1520
1521 /* Remove the displaced stepping state of process PID. */
1522
1523 static void
1524 remove_displaced_stepping_state (int pid)
1525 {
1526 struct displaced_step_inferior_state *it, **prev_next_p;
1527
1528 gdb_assert (pid != 0);
1529
1530 it = displaced_step_inferior_states;
1531 prev_next_p = &displaced_step_inferior_states;
1532 while (it)
1533 {
1534 if (it->pid == pid)
1535 {
1536 *prev_next_p = it->next;
1537 xfree (it);
1538 return;
1539 }
1540
1541 prev_next_p = &it->next;
1542 it = *prev_next_p;
1543 }
1544 }
1545
1546 static void
1547 infrun_inferior_exit (struct inferior *inf)
1548 {
1549 remove_displaced_stepping_state (inf->pid);
1550 }
1551
1552 /* If ON, and the architecture supports it, GDB will use displaced
1553 stepping to step over breakpoints. If OFF, or if the architecture
1554 doesn't support it, GDB will instead use the traditional
1555 hold-and-step approach. If AUTO (which is the default), GDB will
1556 decide which technique to use to step over breakpoints depending on
1557 which of all-stop or non-stop mode is active --- displaced stepping
1558 in non-stop mode; hold-and-step in all-stop mode. */
1559
1560 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1561
1562 static void
1563 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1564 struct cmd_list_element *c,
1565 const char *value)
1566 {
1567 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1568 fprintf_filtered (file,
1569 _("Debugger's willingness to use displaced stepping "
1570 "to step over breakpoints is %s (currently %s).\n"),
1571 value, non_stop ? "on" : "off");
1572 else
1573 fprintf_filtered (file,
1574 _("Debugger's willingness to use displaced stepping "
1575 "to step over breakpoints is %s.\n"), value);
1576 }
1577
1578 /* Return non-zero if displaced stepping can/should be used to step
1579 over breakpoints. */
1580
1581 static int
1582 use_displaced_stepping (struct gdbarch *gdbarch)
1583 {
1584 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1585 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1586 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1587 && find_record_target () == NULL);
1588 }
1589
1590 /* Clean out any stray displaced stepping state. */
1591 static void
1592 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1593 {
1594 /* Indicate that there is no cleanup pending. */
1595 displaced->step_ptid = null_ptid;
1596
1597 if (displaced->step_closure)
1598 {
1599 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1600 displaced->step_closure);
1601 displaced->step_closure = NULL;
1602 }
1603 }
1604
1605 static void
1606 displaced_step_clear_cleanup (void *arg)
1607 {
1608 struct displaced_step_inferior_state *state = arg;
1609
1610 displaced_step_clear (state);
1611 }
1612
1613 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1614 void
1615 displaced_step_dump_bytes (struct ui_file *file,
1616 const gdb_byte *buf,
1617 size_t len)
1618 {
1619 int i;
1620
1621 for (i = 0; i < len; i++)
1622 fprintf_unfiltered (file, "%02x ", buf[i]);
1623 fputs_unfiltered ("\n", file);
1624 }
1625
1626 /* Prepare to single-step, using displaced stepping.
1627
1628 Note that we cannot use displaced stepping when we have a signal to
1629 deliver. If we have a signal to deliver and an instruction to step
1630 over, then after the step, there will be no indication from the
1631 target whether the thread entered a signal handler or ignored the
1632 signal and stepped over the instruction successfully --- both cases
1633 result in a simple SIGTRAP. In the first case we mustn't do a
1634 fixup, and in the second case we must --- but we can't tell which.
1635 Comments in the code for 'random signals' in handle_inferior_event
1636 explain how we handle this case instead.
1637
1638 Returns 1 if preparing was successful -- this thread is going to be
1639 stepped now; or 0 if displaced stepping this thread got queued. */
1640 static int
1641 displaced_step_prepare (ptid_t ptid)
1642 {
1643 struct cleanup *old_cleanups, *ignore_cleanups;
1644 struct thread_info *tp = find_thread_ptid (ptid);
1645 struct regcache *regcache = get_thread_regcache (ptid);
1646 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1647 CORE_ADDR original, copy;
1648 ULONGEST len;
1649 struct displaced_step_closure *closure;
1650 struct displaced_step_inferior_state *displaced;
1651 int status;
1652
1653 /* We should never reach this function if the architecture does not
1654 support displaced stepping. */
1655 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1656
1657 /* Disable range stepping while executing in the scratch pad. We
1658 want a single-step even if executing the displaced instruction in
1659 the scratch buffer lands within the stepping range (e.g., a
1660 jump/branch). */
1661 tp->control.may_range_step = 0;
1662
1663 /* We have to displaced step one thread at a time, as we only have
1664 access to a single scratch space per inferior. */
1665
1666 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1667
1668 if (!ptid_equal (displaced->step_ptid, null_ptid))
1669 {
1670 /* Already waiting for a displaced step to finish. Defer this
1671 request and place in queue. */
1672 struct displaced_step_request *req, *new_req;
1673
1674 if (debug_displaced)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "displaced: defering step of %s\n",
1677 target_pid_to_str (ptid));
1678
1679 new_req = xmalloc (sizeof (*new_req));
1680 new_req->ptid = ptid;
1681 new_req->next = NULL;
1682
1683 if (displaced->step_request_queue)
1684 {
1685 for (req = displaced->step_request_queue;
1686 req && req->next;
1687 req = req->next)
1688 ;
1689 req->next = new_req;
1690 }
1691 else
1692 displaced->step_request_queue = new_req;
1693
1694 return 0;
1695 }
1696 else
1697 {
1698 if (debug_displaced)
1699 fprintf_unfiltered (gdb_stdlog,
1700 "displaced: stepping %s now\n",
1701 target_pid_to_str (ptid));
1702 }
1703
1704 displaced_step_clear (displaced);
1705
1706 old_cleanups = save_inferior_ptid ();
1707 inferior_ptid = ptid;
1708
1709 original = regcache_read_pc (regcache);
1710
1711 copy = gdbarch_displaced_step_location (gdbarch);
1712 len = gdbarch_max_insn_length (gdbarch);
1713
1714 /* Save the original contents of the copy area. */
1715 displaced->step_saved_copy = xmalloc (len);
1716 ignore_cleanups = make_cleanup (free_current_contents,
1717 &displaced->step_saved_copy);
1718 status = target_read_memory (copy, displaced->step_saved_copy, len);
1719 if (status != 0)
1720 throw_error (MEMORY_ERROR,
1721 _("Error accessing memory address %s (%s) for "
1722 "displaced-stepping scratch space."),
1723 paddress (gdbarch, copy), safe_strerror (status));
1724 if (debug_displaced)
1725 {
1726 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1727 paddress (gdbarch, copy));
1728 displaced_step_dump_bytes (gdb_stdlog,
1729 displaced->step_saved_copy,
1730 len);
1731 };
1732
1733 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1734 original, copy, regcache);
1735
1736 /* We don't support the fully-simulated case at present. */
1737 gdb_assert (closure);
1738
1739 /* Save the information we need to fix things up if the step
1740 succeeds. */
1741 displaced->step_ptid = ptid;
1742 displaced->step_gdbarch = gdbarch;
1743 displaced->step_closure = closure;
1744 displaced->step_original = original;
1745 displaced->step_copy = copy;
1746
1747 make_cleanup (displaced_step_clear_cleanup, displaced);
1748
1749 /* Resume execution at the copy. */
1750 regcache_write_pc (regcache, copy);
1751
1752 discard_cleanups (ignore_cleanups);
1753
1754 do_cleanups (old_cleanups);
1755
1756 if (debug_displaced)
1757 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1758 paddress (gdbarch, copy));
1759
1760 return 1;
1761 }
1762
1763 static void
1764 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1765 const gdb_byte *myaddr, int len)
1766 {
1767 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1768
1769 inferior_ptid = ptid;
1770 write_memory (memaddr, myaddr, len);
1771 do_cleanups (ptid_cleanup);
1772 }
1773
1774 /* Restore the contents of the copy area for thread PTID. */
1775
1776 static void
1777 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1778 ptid_t ptid)
1779 {
1780 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1781
1782 write_memory_ptid (ptid, displaced->step_copy,
1783 displaced->step_saved_copy, len);
1784 if (debug_displaced)
1785 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1786 target_pid_to_str (ptid),
1787 paddress (displaced->step_gdbarch,
1788 displaced->step_copy));
1789 }
1790
1791 static void
1792 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1793 {
1794 struct cleanup *old_cleanups;
1795 struct displaced_step_inferior_state *displaced
1796 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1797
1798 /* Was any thread of this process doing a displaced step? */
1799 if (displaced == NULL)
1800 return;
1801
1802 /* Was this event for the pid we displaced? */
1803 if (ptid_equal (displaced->step_ptid, null_ptid)
1804 || ! ptid_equal (displaced->step_ptid, event_ptid))
1805 return;
1806
1807 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1808
1809 displaced_step_restore (displaced, displaced->step_ptid);
1810
1811 /* Fixup may need to read memory/registers. Switch to the thread
1812 that we're fixing up. Also, target_stopped_by_watchpoint checks
1813 the current thread. */
1814 switch_to_thread (event_ptid);
1815
1816 /* Did the instruction complete successfully? */
1817 if (signal == GDB_SIGNAL_TRAP
1818 && !(target_stopped_by_watchpoint ()
1819 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1820 || target_have_steppable_watchpoint)))
1821 {
1822 /* Fix up the resulting state. */
1823 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1824 displaced->step_closure,
1825 displaced->step_original,
1826 displaced->step_copy,
1827 get_thread_regcache (displaced->step_ptid));
1828 }
1829 else
1830 {
1831 /* Since the instruction didn't complete, all we can do is
1832 relocate the PC. */
1833 struct regcache *regcache = get_thread_regcache (event_ptid);
1834 CORE_ADDR pc = regcache_read_pc (regcache);
1835
1836 pc = displaced->step_original + (pc - displaced->step_copy);
1837 regcache_write_pc (regcache, pc);
1838 }
1839
1840 do_cleanups (old_cleanups);
1841
1842 displaced->step_ptid = null_ptid;
1843
1844 /* Are there any pending displaced stepping requests? If so, run
1845 one now. Leave the state object around, since we're likely to
1846 need it again soon. */
1847 while (displaced->step_request_queue)
1848 {
1849 struct displaced_step_request *head;
1850 ptid_t ptid;
1851 struct regcache *regcache;
1852 struct gdbarch *gdbarch;
1853 CORE_ADDR actual_pc;
1854 struct address_space *aspace;
1855
1856 head = displaced->step_request_queue;
1857 ptid = head->ptid;
1858 displaced->step_request_queue = head->next;
1859 xfree (head);
1860
1861 context_switch (ptid);
1862
1863 regcache = get_thread_regcache (ptid);
1864 actual_pc = regcache_read_pc (regcache);
1865 aspace = get_regcache_aspace (regcache);
1866 gdbarch = get_regcache_arch (regcache);
1867
1868 if (breakpoint_here_p (aspace, actual_pc))
1869 {
1870 if (debug_displaced)
1871 fprintf_unfiltered (gdb_stdlog,
1872 "displaced: stepping queued %s now\n",
1873 target_pid_to_str (ptid));
1874
1875 displaced_step_prepare (ptid);
1876
1877 if (debug_displaced)
1878 {
1879 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1880 gdb_byte buf[4];
1881
1882 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1883 paddress (gdbarch, actual_pc));
1884 read_memory (actual_pc, buf, sizeof (buf));
1885 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1886 }
1887
1888 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1889 displaced->step_closure))
1890 target_resume (ptid, 1, GDB_SIGNAL_0);
1891 else
1892 target_resume (ptid, 0, GDB_SIGNAL_0);
1893
1894 /* Done, we're stepping a thread. */
1895 break;
1896 }
1897 else
1898 {
1899 int step;
1900 struct thread_info *tp = inferior_thread ();
1901
1902 /* The breakpoint we were sitting under has since been
1903 removed. */
1904 tp->control.trap_expected = 0;
1905
1906 /* Go back to what we were trying to do. */
1907 step = currently_stepping (tp);
1908
1909 if (step)
1910 step = maybe_software_singlestep (gdbarch, actual_pc);
1911
1912 if (debug_displaced)
1913 fprintf_unfiltered (gdb_stdlog,
1914 "displaced: breakpoint is gone: %s, step(%d)\n",
1915 target_pid_to_str (tp->ptid), step);
1916
1917 target_resume (ptid, step, GDB_SIGNAL_0);
1918 tp->suspend.stop_signal = GDB_SIGNAL_0;
1919
1920 /* This request was discarded. See if there's any other
1921 thread waiting for its turn. */
1922 }
1923 }
1924 }
1925
1926 /* Update global variables holding ptids to hold NEW_PTID if they were
1927 holding OLD_PTID. */
1928 static void
1929 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1930 {
1931 struct displaced_step_request *it;
1932 struct displaced_step_inferior_state *displaced;
1933
1934 if (ptid_equal (inferior_ptid, old_ptid))
1935 inferior_ptid = new_ptid;
1936
1937 for (displaced = displaced_step_inferior_states;
1938 displaced;
1939 displaced = displaced->next)
1940 {
1941 if (ptid_equal (displaced->step_ptid, old_ptid))
1942 displaced->step_ptid = new_ptid;
1943
1944 for (it = displaced->step_request_queue; it; it = it->next)
1945 if (ptid_equal (it->ptid, old_ptid))
1946 it->ptid = new_ptid;
1947 }
1948 }
1949
1950 \f
1951 /* Resuming. */
1952
1953 /* Things to clean up if we QUIT out of resume (). */
1954 static void
1955 resume_cleanups (void *ignore)
1956 {
1957 if (!ptid_equal (inferior_ptid, null_ptid))
1958 delete_single_step_breakpoints (inferior_thread ());
1959
1960 normal_stop ();
1961 }
1962
1963 static const char schedlock_off[] = "off";
1964 static const char schedlock_on[] = "on";
1965 static const char schedlock_step[] = "step";
1966 static const char *const scheduler_enums[] = {
1967 schedlock_off,
1968 schedlock_on,
1969 schedlock_step,
1970 NULL
1971 };
1972 static const char *scheduler_mode = schedlock_off;
1973 static void
1974 show_scheduler_mode (struct ui_file *file, int from_tty,
1975 struct cmd_list_element *c, const char *value)
1976 {
1977 fprintf_filtered (file,
1978 _("Mode for locking scheduler "
1979 "during execution is \"%s\".\n"),
1980 value);
1981 }
1982
1983 static void
1984 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1985 {
1986 if (!target_can_lock_scheduler)
1987 {
1988 scheduler_mode = schedlock_off;
1989 error (_("Target '%s' cannot support this command."), target_shortname);
1990 }
1991 }
1992
1993 /* True if execution commands resume all threads of all processes by
1994 default; otherwise, resume only threads of the current inferior
1995 process. */
1996 int sched_multi = 0;
1997
1998 /* Try to setup for software single stepping over the specified location.
1999 Return 1 if target_resume() should use hardware single step.
2000
2001 GDBARCH the current gdbarch.
2002 PC the location to step over. */
2003
2004 static int
2005 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2006 {
2007 int hw_step = 1;
2008
2009 if (execution_direction == EXEC_FORWARD
2010 && gdbarch_software_single_step_p (gdbarch)
2011 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2012 {
2013 hw_step = 0;
2014 }
2015 return hw_step;
2016 }
2017
2018 /* See infrun.h. */
2019
2020 ptid_t
2021 user_visible_resume_ptid (int step)
2022 {
2023 ptid_t resume_ptid;
2024
2025 if (non_stop)
2026 {
2027 /* With non-stop mode on, threads are always handled
2028 individually. */
2029 resume_ptid = inferior_ptid;
2030 }
2031 else if ((scheduler_mode == schedlock_on)
2032 || (scheduler_mode == schedlock_step && step))
2033 {
2034 /* User-settable 'scheduler' mode requires solo thread
2035 resume. */
2036 resume_ptid = inferior_ptid;
2037 }
2038 else if (!sched_multi && target_supports_multi_process ())
2039 {
2040 /* Resume all threads of the current process (and none of other
2041 processes). */
2042 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2043 }
2044 else
2045 {
2046 /* Resume all threads of all processes. */
2047 resume_ptid = RESUME_ALL;
2048 }
2049
2050 return resume_ptid;
2051 }
2052
2053 /* Wrapper for target_resume, that handles infrun-specific
2054 bookkeeping. */
2055
2056 static void
2057 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2058 {
2059 struct thread_info *tp = inferior_thread ();
2060
2061 /* Install inferior's terminal modes. */
2062 target_terminal_inferior ();
2063
2064 /* Avoid confusing the next resume, if the next stop/resume
2065 happens to apply to another thread. */
2066 tp->suspend.stop_signal = GDB_SIGNAL_0;
2067
2068 /* Advise target which signals may be handled silently.
2069
2070 If we have removed breakpoints because we are stepping over one
2071 in-line (in any thread), we need to receive all signals to avoid
2072 accidentally skipping a breakpoint during execution of a signal
2073 handler.
2074
2075 Likewise if we're displaced stepping, otherwise a trap for a
2076 breakpoint in a signal handler might be confused with the
2077 displaced step finishing. We don't make the displaced_step_fixup
2078 step distinguish the cases instead, because:
2079
2080 - a backtrace while stopped in the signal handler would show the
2081 scratch pad as frame older than the signal handler, instead of
2082 the real mainline code.
2083
2084 - when the thread is later resumed, the signal handler would
2085 return to the scratch pad area, which would no longer be
2086 valid. */
2087 if (step_over_info_valid_p ()
2088 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2089 target_pass_signals (0, NULL);
2090 else
2091 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2092
2093 target_resume (resume_ptid, step, sig);
2094 }
2095
2096 /* Resume the inferior, but allow a QUIT. This is useful if the user
2097 wants to interrupt some lengthy single-stepping operation
2098 (for child processes, the SIGINT goes to the inferior, and so
2099 we get a SIGINT random_signal, but for remote debugging and perhaps
2100 other targets, that's not true).
2101
2102 SIG is the signal to give the inferior (zero for none). */
2103 void
2104 resume (enum gdb_signal sig)
2105 {
2106 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2107 struct regcache *regcache = get_current_regcache ();
2108 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2109 struct thread_info *tp = inferior_thread ();
2110 CORE_ADDR pc = regcache_read_pc (regcache);
2111 struct address_space *aspace = get_regcache_aspace (regcache);
2112 ptid_t resume_ptid;
2113 /* This represents the user's step vs continue request. When
2114 deciding whether "set scheduler-locking step" applies, it's the
2115 user's intention that counts. */
2116 const int user_step = tp->control.stepping_command;
2117 /* This represents what we'll actually request the target to do.
2118 This can decay from a step to a continue, if e.g., we need to
2119 implement single-stepping with breakpoints (software
2120 single-step). */
2121 int step;
2122
2123 tp->stepped_breakpoint = 0;
2124
2125 QUIT;
2126
2127 /* Depends on stepped_breakpoint. */
2128 step = currently_stepping (tp);
2129
2130 if (current_inferior ()->waiting_for_vfork_done)
2131 {
2132 /* Don't try to single-step a vfork parent that is waiting for
2133 the child to get out of the shared memory region (by exec'ing
2134 or exiting). This is particularly important on software
2135 single-step archs, as the child process would trip on the
2136 software single step breakpoint inserted for the parent
2137 process. Since the parent will not actually execute any
2138 instruction until the child is out of the shared region (such
2139 are vfork's semantics), it is safe to simply continue it.
2140 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2141 the parent, and tell it to `keep_going', which automatically
2142 re-sets it stepping. */
2143 if (debug_infrun)
2144 fprintf_unfiltered (gdb_stdlog,
2145 "infrun: resume : clear step\n");
2146 step = 0;
2147 }
2148
2149 if (debug_infrun)
2150 fprintf_unfiltered (gdb_stdlog,
2151 "infrun: resume (step=%d, signal=%s), "
2152 "trap_expected=%d, current thread [%s] at %s\n",
2153 step, gdb_signal_to_symbol_string (sig),
2154 tp->control.trap_expected,
2155 target_pid_to_str (inferior_ptid),
2156 paddress (gdbarch, pc));
2157
2158 /* Normally, by the time we reach `resume', the breakpoints are either
2159 removed or inserted, as appropriate. The exception is if we're sitting
2160 at a permanent breakpoint; we need to step over it, but permanent
2161 breakpoints can't be removed. So we have to test for it here. */
2162 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2163 {
2164 if (sig != GDB_SIGNAL_0)
2165 {
2166 /* We have a signal to pass to the inferior. The resume
2167 may, or may not take us to the signal handler. If this
2168 is a step, we'll need to stop in the signal handler, if
2169 there's one, (if the target supports stepping into
2170 handlers), or in the next mainline instruction, if
2171 there's no handler. If this is a continue, we need to be
2172 sure to run the handler with all breakpoints inserted.
2173 In all cases, set a breakpoint at the current address
2174 (where the handler returns to), and once that breakpoint
2175 is hit, resume skipping the permanent breakpoint. If
2176 that breakpoint isn't hit, then we've stepped into the
2177 signal handler (or hit some other event). We'll delete
2178 the step-resume breakpoint then. */
2179
2180 if (debug_infrun)
2181 fprintf_unfiltered (gdb_stdlog,
2182 "infrun: resume: skipping permanent breakpoint, "
2183 "deliver signal first\n");
2184
2185 clear_step_over_info ();
2186 tp->control.trap_expected = 0;
2187
2188 if (tp->control.step_resume_breakpoint == NULL)
2189 {
2190 /* Set a "high-priority" step-resume, as we don't want
2191 user breakpoints at PC to trigger (again) when this
2192 hits. */
2193 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2194 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2195
2196 tp->step_after_step_resume_breakpoint = step;
2197 }
2198
2199 insert_breakpoints ();
2200 }
2201 else
2202 {
2203 /* There's no signal to pass, we can go ahead and skip the
2204 permanent breakpoint manually. */
2205 if (debug_infrun)
2206 fprintf_unfiltered (gdb_stdlog,
2207 "infrun: resume: skipping permanent breakpoint\n");
2208 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2209 /* Update pc to reflect the new address from which we will
2210 execute instructions. */
2211 pc = regcache_read_pc (regcache);
2212
2213 if (step)
2214 {
2215 /* We've already advanced the PC, so the stepping part
2216 is done. Now we need to arrange for a trap to be
2217 reported to handle_inferior_event. Set a breakpoint
2218 at the current PC, and run to it. Don't update
2219 prev_pc, because if we end in
2220 switch_back_to_stepped_thread, we want the "expected
2221 thread advanced also" branch to be taken. IOW, we
2222 don't want this thread to step further from PC
2223 (overstep). */
2224 gdb_assert (!step_over_info_valid_p ());
2225 insert_single_step_breakpoint (gdbarch, aspace, pc);
2226 insert_breakpoints ();
2227
2228 resume_ptid = user_visible_resume_ptid (user_step);
2229 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2230 discard_cleanups (old_cleanups);
2231 return;
2232 }
2233 }
2234 }
2235
2236 /* If we have a breakpoint to step over, make sure to do a single
2237 step only. Same if we have software watchpoints. */
2238 if (tp->control.trap_expected || bpstat_should_step ())
2239 tp->control.may_range_step = 0;
2240
2241 /* If enabled, step over breakpoints by executing a copy of the
2242 instruction at a different address.
2243
2244 We can't use displaced stepping when we have a signal to deliver;
2245 the comments for displaced_step_prepare explain why. The
2246 comments in the handle_inferior event for dealing with 'random
2247 signals' explain what we do instead.
2248
2249 We can't use displaced stepping when we are waiting for vfork_done
2250 event, displaced stepping breaks the vfork child similarly as single
2251 step software breakpoint. */
2252 if (use_displaced_stepping (gdbarch)
2253 && tp->control.trap_expected
2254 && !step_over_info_valid_p ()
2255 && sig == GDB_SIGNAL_0
2256 && !current_inferior ()->waiting_for_vfork_done)
2257 {
2258 struct displaced_step_inferior_state *displaced;
2259
2260 if (!displaced_step_prepare (inferior_ptid))
2261 {
2262 /* Got placed in displaced stepping queue. Will be resumed
2263 later when all the currently queued displaced stepping
2264 requests finish. The thread is not executing at this
2265 point, and the call to set_executing will be made later.
2266 But we need to call set_running here, since from the
2267 user/frontend's point of view, threads were set running.
2268 Unless we're calling an inferior function, as in that
2269 case we pretend the inferior doesn't run at all. */
2270 if (!tp->control.in_infcall)
2271 set_running (user_visible_resume_ptid (user_step), 1);
2272 discard_cleanups (old_cleanups);
2273 return;
2274 }
2275
2276 /* Update pc to reflect the new address from which we will execute
2277 instructions due to displaced stepping. */
2278 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2279
2280 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2281 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2282 displaced->step_closure);
2283 }
2284
2285 /* Do we need to do it the hard way, w/temp breakpoints? */
2286 else if (step)
2287 step = maybe_software_singlestep (gdbarch, pc);
2288
2289 /* Currently, our software single-step implementation leads to different
2290 results than hardware single-stepping in one situation: when stepping
2291 into delivering a signal which has an associated signal handler,
2292 hardware single-step will stop at the first instruction of the handler,
2293 while software single-step will simply skip execution of the handler.
2294
2295 For now, this difference in behavior is accepted since there is no
2296 easy way to actually implement single-stepping into a signal handler
2297 without kernel support.
2298
2299 However, there is one scenario where this difference leads to follow-on
2300 problems: if we're stepping off a breakpoint by removing all breakpoints
2301 and then single-stepping. In this case, the software single-step
2302 behavior means that even if there is a *breakpoint* in the signal
2303 handler, GDB still would not stop.
2304
2305 Fortunately, we can at least fix this particular issue. We detect
2306 here the case where we are about to deliver a signal while software
2307 single-stepping with breakpoints removed. In this situation, we
2308 revert the decisions to remove all breakpoints and insert single-
2309 step breakpoints, and instead we install a step-resume breakpoint
2310 at the current address, deliver the signal without stepping, and
2311 once we arrive back at the step-resume breakpoint, actually step
2312 over the breakpoint we originally wanted to step over. */
2313 if (thread_has_single_step_breakpoints_set (tp)
2314 && sig != GDB_SIGNAL_0
2315 && step_over_info_valid_p ())
2316 {
2317 /* If we have nested signals or a pending signal is delivered
2318 immediately after a handler returns, might might already have
2319 a step-resume breakpoint set on the earlier handler. We cannot
2320 set another step-resume breakpoint; just continue on until the
2321 original breakpoint is hit. */
2322 if (tp->control.step_resume_breakpoint == NULL)
2323 {
2324 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2325 tp->step_after_step_resume_breakpoint = 1;
2326 }
2327
2328 delete_single_step_breakpoints (tp);
2329
2330 clear_step_over_info ();
2331 tp->control.trap_expected = 0;
2332
2333 insert_breakpoints ();
2334 }
2335
2336 /* If STEP is set, it's a request to use hardware stepping
2337 facilities. But in that case, we should never
2338 use singlestep breakpoint. */
2339 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2340
2341 /* Decide the set of threads to ask the target to resume. Start
2342 by assuming everything will be resumed, than narrow the set
2343 by applying increasingly restricting conditions. */
2344 resume_ptid = user_visible_resume_ptid (user_step);
2345
2346 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2347 (e.g., we might need to step over a breakpoint), from the
2348 user/frontend's point of view, all threads in RESUME_PTID are now
2349 running. Unless we're calling an inferior function, as in that
2350 case pretend we inferior doesn't run at all. */
2351 if (!tp->control.in_infcall)
2352 set_running (resume_ptid, 1);
2353
2354 /* Maybe resume a single thread after all. */
2355 if ((step || thread_has_single_step_breakpoints_set (tp))
2356 && tp->control.trap_expected)
2357 {
2358 /* We're allowing a thread to run past a breakpoint it has
2359 hit, by single-stepping the thread with the breakpoint
2360 removed. In which case, we need to single-step only this
2361 thread, and keep others stopped, as they can miss this
2362 breakpoint if allowed to run. */
2363 resume_ptid = inferior_ptid;
2364 }
2365
2366 if (execution_direction != EXEC_REVERSE
2367 && step && breakpoint_inserted_here_p (aspace, pc))
2368 {
2369 /* The only case we currently need to step a breakpoint
2370 instruction is when we have a signal to deliver. See
2371 handle_signal_stop where we handle random signals that could
2372 take out us out of the stepping range. Normally, in that
2373 case we end up continuing (instead of stepping) over the
2374 signal handler with a breakpoint at PC, but there are cases
2375 where we should _always_ single-step, even if we have a
2376 step-resume breakpoint, like when a software watchpoint is
2377 set. Assuming single-stepping and delivering a signal at the
2378 same time would takes us to the signal handler, then we could
2379 have removed the breakpoint at PC to step over it. However,
2380 some hardware step targets (like e.g., Mac OS) can't step
2381 into signal handlers, and for those, we need to leave the
2382 breakpoint at PC inserted, as otherwise if the handler
2383 recurses and executes PC again, it'll miss the breakpoint.
2384 So we leave the breakpoint inserted anyway, but we need to
2385 record that we tried to step a breakpoint instruction, so
2386 that adjust_pc_after_break doesn't end up confused. */
2387 gdb_assert (sig != GDB_SIGNAL_0);
2388
2389 tp->stepped_breakpoint = 1;
2390
2391 /* Most targets can step a breakpoint instruction, thus
2392 executing it normally. But if this one cannot, just
2393 continue and we will hit it anyway. */
2394 if (gdbarch_cannot_step_breakpoint (gdbarch))
2395 step = 0;
2396 }
2397
2398 if (debug_displaced
2399 && use_displaced_stepping (gdbarch)
2400 && tp->control.trap_expected
2401 && !step_over_info_valid_p ())
2402 {
2403 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2404 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2405 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2406 gdb_byte buf[4];
2407
2408 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2409 paddress (resume_gdbarch, actual_pc));
2410 read_memory (actual_pc, buf, sizeof (buf));
2411 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2412 }
2413
2414 if (tp->control.may_range_step)
2415 {
2416 /* If we're resuming a thread with the PC out of the step
2417 range, then we're doing some nested/finer run control
2418 operation, like stepping the thread out of the dynamic
2419 linker or the displaced stepping scratch pad. We
2420 shouldn't have allowed a range step then. */
2421 gdb_assert (pc_in_thread_step_range (pc, tp));
2422 }
2423
2424 do_target_resume (resume_ptid, step, sig);
2425 discard_cleanups (old_cleanups);
2426 }
2427 \f
2428 /* Proceeding. */
2429
2430 /* Clear out all variables saying what to do when inferior is continued.
2431 First do this, then set the ones you want, then call `proceed'. */
2432
2433 static void
2434 clear_proceed_status_thread (struct thread_info *tp)
2435 {
2436 if (debug_infrun)
2437 fprintf_unfiltered (gdb_stdlog,
2438 "infrun: clear_proceed_status_thread (%s)\n",
2439 target_pid_to_str (tp->ptid));
2440
2441 /* If this signal should not be seen by program, give it zero.
2442 Used for debugging signals. */
2443 if (!signal_pass_state (tp->suspend.stop_signal))
2444 tp->suspend.stop_signal = GDB_SIGNAL_0;
2445
2446 tp->control.trap_expected = 0;
2447 tp->control.step_range_start = 0;
2448 tp->control.step_range_end = 0;
2449 tp->control.may_range_step = 0;
2450 tp->control.step_frame_id = null_frame_id;
2451 tp->control.step_stack_frame_id = null_frame_id;
2452 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2453 tp->control.step_start_function = NULL;
2454 tp->stop_requested = 0;
2455
2456 tp->control.stop_step = 0;
2457
2458 tp->control.proceed_to_finish = 0;
2459
2460 tp->control.command_interp = NULL;
2461 tp->control.stepping_command = 0;
2462
2463 /* Discard any remaining commands or status from previous stop. */
2464 bpstat_clear (&tp->control.stop_bpstat);
2465 }
2466
2467 void
2468 clear_proceed_status (int step)
2469 {
2470 if (!non_stop)
2471 {
2472 struct thread_info *tp;
2473 ptid_t resume_ptid;
2474
2475 resume_ptid = user_visible_resume_ptid (step);
2476
2477 /* In all-stop mode, delete the per-thread status of all threads
2478 we're about to resume, implicitly and explicitly. */
2479 ALL_NON_EXITED_THREADS (tp)
2480 {
2481 if (!ptid_match (tp->ptid, resume_ptid))
2482 continue;
2483 clear_proceed_status_thread (tp);
2484 }
2485 }
2486
2487 if (!ptid_equal (inferior_ptid, null_ptid))
2488 {
2489 struct inferior *inferior;
2490
2491 if (non_stop)
2492 {
2493 /* If in non-stop mode, only delete the per-thread status of
2494 the current thread. */
2495 clear_proceed_status_thread (inferior_thread ());
2496 }
2497
2498 inferior = current_inferior ();
2499 inferior->control.stop_soon = NO_STOP_QUIETLY;
2500 }
2501
2502 stop_after_trap = 0;
2503
2504 clear_step_over_info ();
2505
2506 observer_notify_about_to_proceed ();
2507 }
2508
2509 /* Returns true if TP is still stopped at a breakpoint that needs
2510 stepping-over in order to make progress. If the breakpoint is gone
2511 meanwhile, we can skip the whole step-over dance. */
2512
2513 static int
2514 thread_still_needs_step_over (struct thread_info *tp)
2515 {
2516 if (tp->stepping_over_breakpoint)
2517 {
2518 struct regcache *regcache = get_thread_regcache (tp->ptid);
2519
2520 if (breakpoint_here_p (get_regcache_aspace (regcache),
2521 regcache_read_pc (regcache))
2522 == ordinary_breakpoint_here)
2523 return 1;
2524
2525 tp->stepping_over_breakpoint = 0;
2526 }
2527
2528 return 0;
2529 }
2530
2531 /* Returns true if scheduler locking applies. STEP indicates whether
2532 we're about to do a step/next-like command to a thread. */
2533
2534 static int
2535 schedlock_applies (struct thread_info *tp)
2536 {
2537 return (scheduler_mode == schedlock_on
2538 || (scheduler_mode == schedlock_step
2539 && tp->control.stepping_command));
2540 }
2541
2542 /* Look a thread other than EXCEPT that has previously reported a
2543 breakpoint event, and thus needs a step-over in order to make
2544 progress. Returns NULL is none is found. */
2545
2546 static struct thread_info *
2547 find_thread_needs_step_over (struct thread_info *except)
2548 {
2549 struct thread_info *tp, *current;
2550
2551 /* With non-stop mode on, threads are always handled individually. */
2552 gdb_assert (! non_stop);
2553
2554 current = inferior_thread ();
2555
2556 /* If scheduler locking applies, we can avoid iterating over all
2557 threads. */
2558 if (schedlock_applies (except))
2559 {
2560 if (except != current
2561 && thread_still_needs_step_over (current))
2562 return current;
2563
2564 return NULL;
2565 }
2566
2567 ALL_NON_EXITED_THREADS (tp)
2568 {
2569 /* Ignore the EXCEPT thread. */
2570 if (tp == except)
2571 continue;
2572 /* Ignore threads of processes we're not resuming. */
2573 if (!sched_multi
2574 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2575 continue;
2576
2577 if (thread_still_needs_step_over (tp))
2578 return tp;
2579 }
2580
2581 return NULL;
2582 }
2583
2584 /* Basic routine for continuing the program in various fashions.
2585
2586 ADDR is the address to resume at, or -1 for resume where stopped.
2587 SIGGNAL is the signal to give it, or 0 for none,
2588 or -1 for act according to how it stopped.
2589 STEP is nonzero if should trap after one instruction.
2590 -1 means return after that and print nothing.
2591 You should probably set various step_... variables
2592 before calling here, if you are stepping.
2593
2594 You should call clear_proceed_status before calling proceed. */
2595
2596 void
2597 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2598 {
2599 struct regcache *regcache;
2600 struct gdbarch *gdbarch;
2601 struct thread_info *tp;
2602 CORE_ADDR pc;
2603 struct address_space *aspace;
2604
2605 /* If we're stopped at a fork/vfork, follow the branch set by the
2606 "set follow-fork-mode" command; otherwise, we'll just proceed
2607 resuming the current thread. */
2608 if (!follow_fork ())
2609 {
2610 /* The target for some reason decided not to resume. */
2611 normal_stop ();
2612 if (target_can_async_p ())
2613 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2614 return;
2615 }
2616
2617 /* We'll update this if & when we switch to a new thread. */
2618 previous_inferior_ptid = inferior_ptid;
2619
2620 regcache = get_current_regcache ();
2621 gdbarch = get_regcache_arch (regcache);
2622 aspace = get_regcache_aspace (regcache);
2623 pc = regcache_read_pc (regcache);
2624 tp = inferior_thread ();
2625
2626 /* Fill in with reasonable starting values. */
2627 init_thread_stepping_state (tp);
2628
2629 if (addr == (CORE_ADDR) -1)
2630 {
2631 if (pc == stop_pc
2632 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2633 && execution_direction != EXEC_REVERSE)
2634 /* There is a breakpoint at the address we will resume at,
2635 step one instruction before inserting breakpoints so that
2636 we do not stop right away (and report a second hit at this
2637 breakpoint).
2638
2639 Note, we don't do this in reverse, because we won't
2640 actually be executing the breakpoint insn anyway.
2641 We'll be (un-)executing the previous instruction. */
2642 tp->stepping_over_breakpoint = 1;
2643 else if (gdbarch_single_step_through_delay_p (gdbarch)
2644 && gdbarch_single_step_through_delay (gdbarch,
2645 get_current_frame ()))
2646 /* We stepped onto an instruction that needs to be stepped
2647 again before re-inserting the breakpoint, do so. */
2648 tp->stepping_over_breakpoint = 1;
2649 }
2650 else
2651 {
2652 regcache_write_pc (regcache, addr);
2653 }
2654
2655 if (siggnal != GDB_SIGNAL_DEFAULT)
2656 tp->suspend.stop_signal = siggnal;
2657
2658 /* Record the interpreter that issued the execution command that
2659 caused this thread to resume. If the top level interpreter is
2660 MI/async, and the execution command was a CLI command
2661 (next/step/etc.), we'll want to print stop event output to the MI
2662 console channel (the stepped-to line, etc.), as if the user
2663 entered the execution command on a real GDB console. */
2664 inferior_thread ()->control.command_interp = command_interp ();
2665
2666 if (debug_infrun)
2667 fprintf_unfiltered (gdb_stdlog,
2668 "infrun: proceed (addr=%s, signal=%s)\n",
2669 paddress (gdbarch, addr),
2670 gdb_signal_to_symbol_string (siggnal));
2671
2672 if (non_stop)
2673 /* In non-stop, each thread is handled individually. The context
2674 must already be set to the right thread here. */
2675 ;
2676 else
2677 {
2678 struct thread_info *step_over;
2679
2680 /* In a multi-threaded task we may select another thread and
2681 then continue or step.
2682
2683 But if the old thread was stopped at a breakpoint, it will
2684 immediately cause another breakpoint stop without any
2685 execution (i.e. it will report a breakpoint hit incorrectly).
2686 So we must step over it first.
2687
2688 Look for a thread other than the current (TP) that reported a
2689 breakpoint hit and hasn't been resumed yet since. */
2690 step_over = find_thread_needs_step_over (tp);
2691 if (step_over != NULL)
2692 {
2693 if (debug_infrun)
2694 fprintf_unfiltered (gdb_stdlog,
2695 "infrun: need to step-over [%s] first\n",
2696 target_pid_to_str (step_over->ptid));
2697
2698 /* Store the prev_pc for the stepping thread too, needed by
2699 switch_back_to_stepped_thread. */
2700 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2701 switch_to_thread (step_over->ptid);
2702 tp = step_over;
2703 }
2704 }
2705
2706 /* If we need to step over a breakpoint, and we're not using
2707 displaced stepping to do so, insert all breakpoints (watchpoints,
2708 etc.) but the one we're stepping over, step one instruction, and
2709 then re-insert the breakpoint when that step is finished. */
2710 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
2711 {
2712 struct regcache *regcache = get_current_regcache ();
2713
2714 set_step_over_info (get_regcache_aspace (regcache),
2715 regcache_read_pc (regcache), 0);
2716 }
2717 else
2718 clear_step_over_info ();
2719
2720 insert_breakpoints ();
2721
2722 tp->control.trap_expected = tp->stepping_over_breakpoint;
2723
2724 annotate_starting ();
2725
2726 /* Make sure that output from GDB appears before output from the
2727 inferior. */
2728 gdb_flush (gdb_stdout);
2729
2730 /* Refresh prev_pc value just prior to resuming. This used to be
2731 done in stop_waiting, however, setting prev_pc there did not handle
2732 scenarios such as inferior function calls or returning from
2733 a function via the return command. In those cases, the prev_pc
2734 value was not set properly for subsequent commands. The prev_pc value
2735 is used to initialize the starting line number in the ecs. With an
2736 invalid value, the gdb next command ends up stopping at the position
2737 represented by the next line table entry past our start position.
2738 On platforms that generate one line table entry per line, this
2739 is not a problem. However, on the ia64, the compiler generates
2740 extraneous line table entries that do not increase the line number.
2741 When we issue the gdb next command on the ia64 after an inferior call
2742 or a return command, we often end up a few instructions forward, still
2743 within the original line we started.
2744
2745 An attempt was made to refresh the prev_pc at the same time the
2746 execution_control_state is initialized (for instance, just before
2747 waiting for an inferior event). But this approach did not work
2748 because of platforms that use ptrace, where the pc register cannot
2749 be read unless the inferior is stopped. At that point, we are not
2750 guaranteed the inferior is stopped and so the regcache_read_pc() call
2751 can fail. Setting the prev_pc value here ensures the value is updated
2752 correctly when the inferior is stopped. */
2753 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2754
2755 /* Resume inferior. */
2756 resume (tp->suspend.stop_signal);
2757
2758 /* Wait for it to stop (if not standalone)
2759 and in any case decode why it stopped, and act accordingly. */
2760 /* Do this only if we are not using the event loop, or if the target
2761 does not support asynchronous execution. */
2762 if (!target_can_async_p ())
2763 {
2764 wait_for_inferior ();
2765 normal_stop ();
2766 }
2767 }
2768 \f
2769
2770 /* Start remote-debugging of a machine over a serial link. */
2771
2772 void
2773 start_remote (int from_tty)
2774 {
2775 struct inferior *inferior;
2776
2777 inferior = current_inferior ();
2778 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2779
2780 /* Always go on waiting for the target, regardless of the mode. */
2781 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2782 indicate to wait_for_inferior that a target should timeout if
2783 nothing is returned (instead of just blocking). Because of this,
2784 targets expecting an immediate response need to, internally, set
2785 things up so that the target_wait() is forced to eventually
2786 timeout. */
2787 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2788 differentiate to its caller what the state of the target is after
2789 the initial open has been performed. Here we're assuming that
2790 the target has stopped. It should be possible to eventually have
2791 target_open() return to the caller an indication that the target
2792 is currently running and GDB state should be set to the same as
2793 for an async run. */
2794 wait_for_inferior ();
2795
2796 /* Now that the inferior has stopped, do any bookkeeping like
2797 loading shared libraries. We want to do this before normal_stop,
2798 so that the displayed frame is up to date. */
2799 post_create_inferior (&current_target, from_tty);
2800
2801 normal_stop ();
2802 }
2803
2804 /* Initialize static vars when a new inferior begins. */
2805
2806 void
2807 init_wait_for_inferior (void)
2808 {
2809 /* These are meaningless until the first time through wait_for_inferior. */
2810
2811 breakpoint_init_inferior (inf_starting);
2812
2813 clear_proceed_status (0);
2814
2815 target_last_wait_ptid = minus_one_ptid;
2816
2817 previous_inferior_ptid = inferior_ptid;
2818
2819 /* Discard any skipped inlined frames. */
2820 clear_inline_frame_state (minus_one_ptid);
2821 }
2822
2823 \f
2824 /* Data to be passed around while handling an event. This data is
2825 discarded between events. */
2826 struct execution_control_state
2827 {
2828 ptid_t ptid;
2829 /* The thread that got the event, if this was a thread event; NULL
2830 otherwise. */
2831 struct thread_info *event_thread;
2832
2833 struct target_waitstatus ws;
2834 int stop_func_filled_in;
2835 CORE_ADDR stop_func_start;
2836 CORE_ADDR stop_func_end;
2837 const char *stop_func_name;
2838 int wait_some_more;
2839
2840 /* True if the event thread hit the single-step breakpoint of
2841 another thread. Thus the event doesn't cause a stop, the thread
2842 needs to be single-stepped past the single-step breakpoint before
2843 we can switch back to the original stepping thread. */
2844 int hit_singlestep_breakpoint;
2845 };
2846
2847 static void handle_inferior_event (struct execution_control_state *ecs);
2848
2849 static void handle_step_into_function (struct gdbarch *gdbarch,
2850 struct execution_control_state *ecs);
2851 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2852 struct execution_control_state *ecs);
2853 static void handle_signal_stop (struct execution_control_state *ecs);
2854 static void check_exception_resume (struct execution_control_state *,
2855 struct frame_info *);
2856
2857 static void end_stepping_range (struct execution_control_state *ecs);
2858 static void stop_waiting (struct execution_control_state *ecs);
2859 static void prepare_to_wait (struct execution_control_state *ecs);
2860 static void keep_going (struct execution_control_state *ecs);
2861 static void process_event_stop_test (struct execution_control_state *ecs);
2862 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2863
2864 /* Callback for iterate over threads. If the thread is stopped, but
2865 the user/frontend doesn't know about that yet, go through
2866 normal_stop, as if the thread had just stopped now. ARG points at
2867 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2868 ptid_is_pid(PTID) is true, applies to all threads of the process
2869 pointed at by PTID. Otherwise, apply only to the thread pointed by
2870 PTID. */
2871
2872 static int
2873 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2874 {
2875 ptid_t ptid = * (ptid_t *) arg;
2876
2877 if ((ptid_equal (info->ptid, ptid)
2878 || ptid_equal (minus_one_ptid, ptid)
2879 || (ptid_is_pid (ptid)
2880 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2881 && is_running (info->ptid)
2882 && !is_executing (info->ptid))
2883 {
2884 struct cleanup *old_chain;
2885 struct execution_control_state ecss;
2886 struct execution_control_state *ecs = &ecss;
2887
2888 memset (ecs, 0, sizeof (*ecs));
2889
2890 old_chain = make_cleanup_restore_current_thread ();
2891
2892 overlay_cache_invalid = 1;
2893 /* Flush target cache before starting to handle each event.
2894 Target was running and cache could be stale. This is just a
2895 heuristic. Running threads may modify target memory, but we
2896 don't get any event. */
2897 target_dcache_invalidate ();
2898
2899 /* Go through handle_inferior_event/normal_stop, so we always
2900 have consistent output as if the stop event had been
2901 reported. */
2902 ecs->ptid = info->ptid;
2903 ecs->event_thread = find_thread_ptid (info->ptid);
2904 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2905 ecs->ws.value.sig = GDB_SIGNAL_0;
2906
2907 handle_inferior_event (ecs);
2908
2909 if (!ecs->wait_some_more)
2910 {
2911 struct thread_info *tp;
2912
2913 normal_stop ();
2914
2915 /* Finish off the continuations. */
2916 tp = inferior_thread ();
2917 do_all_intermediate_continuations_thread (tp, 1);
2918 do_all_continuations_thread (tp, 1);
2919 }
2920
2921 do_cleanups (old_chain);
2922 }
2923
2924 return 0;
2925 }
2926
2927 /* This function is attached as a "thread_stop_requested" observer.
2928 Cleanup local state that assumed the PTID was to be resumed, and
2929 report the stop to the frontend. */
2930
2931 static void
2932 infrun_thread_stop_requested (ptid_t ptid)
2933 {
2934 struct displaced_step_inferior_state *displaced;
2935
2936 /* PTID was requested to stop. Remove it from the displaced
2937 stepping queue, so we don't try to resume it automatically. */
2938
2939 for (displaced = displaced_step_inferior_states;
2940 displaced;
2941 displaced = displaced->next)
2942 {
2943 struct displaced_step_request *it, **prev_next_p;
2944
2945 it = displaced->step_request_queue;
2946 prev_next_p = &displaced->step_request_queue;
2947 while (it)
2948 {
2949 if (ptid_match (it->ptid, ptid))
2950 {
2951 *prev_next_p = it->next;
2952 it->next = NULL;
2953 xfree (it);
2954 }
2955 else
2956 {
2957 prev_next_p = &it->next;
2958 }
2959
2960 it = *prev_next_p;
2961 }
2962 }
2963
2964 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2965 }
2966
2967 static void
2968 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2969 {
2970 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2971 nullify_last_target_wait_ptid ();
2972 }
2973
2974 /* Delete the step resume, single-step and longjmp/exception resume
2975 breakpoints of TP. */
2976
2977 static void
2978 delete_thread_infrun_breakpoints (struct thread_info *tp)
2979 {
2980 delete_step_resume_breakpoint (tp);
2981 delete_exception_resume_breakpoint (tp);
2982 delete_single_step_breakpoints (tp);
2983 }
2984
2985 /* If the target still has execution, call FUNC for each thread that
2986 just stopped. In all-stop, that's all the non-exited threads; in
2987 non-stop, that's the current thread, only. */
2988
2989 typedef void (*for_each_just_stopped_thread_callback_func)
2990 (struct thread_info *tp);
2991
2992 static void
2993 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
2994 {
2995 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
2996 return;
2997
2998 if (non_stop)
2999 {
3000 /* If in non-stop mode, only the current thread stopped. */
3001 func (inferior_thread ());
3002 }
3003 else
3004 {
3005 struct thread_info *tp;
3006
3007 /* In all-stop mode, all threads have stopped. */
3008 ALL_NON_EXITED_THREADS (tp)
3009 {
3010 func (tp);
3011 }
3012 }
3013 }
3014
3015 /* Delete the step resume and longjmp/exception resume breakpoints of
3016 the threads that just stopped. */
3017
3018 static void
3019 delete_just_stopped_threads_infrun_breakpoints (void)
3020 {
3021 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3022 }
3023
3024 /* Delete the single-step breakpoints of the threads that just
3025 stopped. */
3026
3027 static void
3028 delete_just_stopped_threads_single_step_breakpoints (void)
3029 {
3030 for_each_just_stopped_thread (delete_single_step_breakpoints);
3031 }
3032
3033 /* A cleanup wrapper. */
3034
3035 static void
3036 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3037 {
3038 delete_just_stopped_threads_infrun_breakpoints ();
3039 }
3040
3041 /* Pretty print the results of target_wait, for debugging purposes. */
3042
3043 static void
3044 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3045 const struct target_waitstatus *ws)
3046 {
3047 char *status_string = target_waitstatus_to_string (ws);
3048 struct ui_file *tmp_stream = mem_fileopen ();
3049 char *text;
3050
3051 /* The text is split over several lines because it was getting too long.
3052 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3053 output as a unit; we want only one timestamp printed if debug_timestamp
3054 is set. */
3055
3056 fprintf_unfiltered (tmp_stream,
3057 "infrun: target_wait (%d.%ld.%ld",
3058 ptid_get_pid (waiton_ptid),
3059 ptid_get_lwp (waiton_ptid),
3060 ptid_get_tid (waiton_ptid));
3061 if (ptid_get_pid (waiton_ptid) != -1)
3062 fprintf_unfiltered (tmp_stream,
3063 " [%s]", target_pid_to_str (waiton_ptid));
3064 fprintf_unfiltered (tmp_stream, ", status) =\n");
3065 fprintf_unfiltered (tmp_stream,
3066 "infrun: %d.%ld.%ld [%s],\n",
3067 ptid_get_pid (result_ptid),
3068 ptid_get_lwp (result_ptid),
3069 ptid_get_tid (result_ptid),
3070 target_pid_to_str (result_ptid));
3071 fprintf_unfiltered (tmp_stream,
3072 "infrun: %s\n",
3073 status_string);
3074
3075 text = ui_file_xstrdup (tmp_stream, NULL);
3076
3077 /* This uses %s in part to handle %'s in the text, but also to avoid
3078 a gcc error: the format attribute requires a string literal. */
3079 fprintf_unfiltered (gdb_stdlog, "%s", text);
3080
3081 xfree (status_string);
3082 xfree (text);
3083 ui_file_delete (tmp_stream);
3084 }
3085
3086 /* Prepare and stabilize the inferior for detaching it. E.g.,
3087 detaching while a thread is displaced stepping is a recipe for
3088 crashing it, as nothing would readjust the PC out of the scratch
3089 pad. */
3090
3091 void
3092 prepare_for_detach (void)
3093 {
3094 struct inferior *inf = current_inferior ();
3095 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3096 struct cleanup *old_chain_1;
3097 struct displaced_step_inferior_state *displaced;
3098
3099 displaced = get_displaced_stepping_state (inf->pid);
3100
3101 /* Is any thread of this process displaced stepping? If not,
3102 there's nothing else to do. */
3103 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3104 return;
3105
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "displaced-stepping in-process while detaching");
3109
3110 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3111 inf->detaching = 1;
3112
3113 while (!ptid_equal (displaced->step_ptid, null_ptid))
3114 {
3115 struct cleanup *old_chain_2;
3116 struct execution_control_state ecss;
3117 struct execution_control_state *ecs;
3118
3119 ecs = &ecss;
3120 memset (ecs, 0, sizeof (*ecs));
3121
3122 overlay_cache_invalid = 1;
3123 /* Flush target cache before starting to handle each event.
3124 Target was running and cache could be stale. This is just a
3125 heuristic. Running threads may modify target memory, but we
3126 don't get any event. */
3127 target_dcache_invalidate ();
3128
3129 if (deprecated_target_wait_hook)
3130 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3131 else
3132 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3133
3134 if (debug_infrun)
3135 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3136
3137 /* If an error happens while handling the event, propagate GDB's
3138 knowledge of the executing state to the frontend/user running
3139 state. */
3140 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3141 &minus_one_ptid);
3142
3143 /* Now figure out what to do with the result of the result. */
3144 handle_inferior_event (ecs);
3145
3146 /* No error, don't finish the state yet. */
3147 discard_cleanups (old_chain_2);
3148
3149 /* Breakpoints and watchpoints are not installed on the target
3150 at this point, and signals are passed directly to the
3151 inferior, so this must mean the process is gone. */
3152 if (!ecs->wait_some_more)
3153 {
3154 discard_cleanups (old_chain_1);
3155 error (_("Program exited while detaching"));
3156 }
3157 }
3158
3159 discard_cleanups (old_chain_1);
3160 }
3161
3162 /* Wait for control to return from inferior to debugger.
3163
3164 If inferior gets a signal, we may decide to start it up again
3165 instead of returning. That is why there is a loop in this function.
3166 When this function actually returns it means the inferior
3167 should be left stopped and GDB should read more commands. */
3168
3169 void
3170 wait_for_inferior (void)
3171 {
3172 struct cleanup *old_cleanups;
3173 struct cleanup *thread_state_chain;
3174
3175 if (debug_infrun)
3176 fprintf_unfiltered
3177 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3178
3179 old_cleanups
3180 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3181 NULL);
3182
3183 /* If an error happens while handling the event, propagate GDB's
3184 knowledge of the executing state to the frontend/user running
3185 state. */
3186 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3187
3188 while (1)
3189 {
3190 struct execution_control_state ecss;
3191 struct execution_control_state *ecs = &ecss;
3192 ptid_t waiton_ptid = minus_one_ptid;
3193
3194 memset (ecs, 0, sizeof (*ecs));
3195
3196 overlay_cache_invalid = 1;
3197
3198 /* Flush target cache before starting to handle each event.
3199 Target was running and cache could be stale. This is just a
3200 heuristic. Running threads may modify target memory, but we
3201 don't get any event. */
3202 target_dcache_invalidate ();
3203
3204 if (deprecated_target_wait_hook)
3205 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
3206 else
3207 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
3208
3209 if (debug_infrun)
3210 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3211
3212 /* Now figure out what to do with the result of the result. */
3213 handle_inferior_event (ecs);
3214
3215 if (!ecs->wait_some_more)
3216 break;
3217 }
3218
3219 /* No error, don't finish the state yet. */
3220 discard_cleanups (thread_state_chain);
3221
3222 do_cleanups (old_cleanups);
3223 }
3224
3225 /* Cleanup that reinstalls the readline callback handler, if the
3226 target is running in the background. If while handling the target
3227 event something triggered a secondary prompt, like e.g., a
3228 pagination prompt, we'll have removed the callback handler (see
3229 gdb_readline_wrapper_line). Need to do this as we go back to the
3230 event loop, ready to process further input. Note this has no
3231 effect if the handler hasn't actually been removed, because calling
3232 rl_callback_handler_install resets the line buffer, thus losing
3233 input. */
3234
3235 static void
3236 reinstall_readline_callback_handler_cleanup (void *arg)
3237 {
3238 if (!interpreter_async)
3239 {
3240 /* We're not going back to the top level event loop yet. Don't
3241 install the readline callback, as it'd prep the terminal,
3242 readline-style (raw, noecho) (e.g., --batch). We'll install
3243 it the next time the prompt is displayed, when we're ready
3244 for input. */
3245 return;
3246 }
3247
3248 if (async_command_editing_p && !sync_execution)
3249 gdb_rl_callback_handler_reinstall ();
3250 }
3251
3252 /* Asynchronous version of wait_for_inferior. It is called by the
3253 event loop whenever a change of state is detected on the file
3254 descriptor corresponding to the target. It can be called more than
3255 once to complete a single execution command. In such cases we need
3256 to keep the state in a global variable ECSS. If it is the last time
3257 that this function is called for a single execution command, then
3258 report to the user that the inferior has stopped, and do the
3259 necessary cleanups. */
3260
3261 void
3262 fetch_inferior_event (void *client_data)
3263 {
3264 struct execution_control_state ecss;
3265 struct execution_control_state *ecs = &ecss;
3266 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3267 struct cleanup *ts_old_chain;
3268 int was_sync = sync_execution;
3269 int cmd_done = 0;
3270 ptid_t waiton_ptid = minus_one_ptid;
3271
3272 memset (ecs, 0, sizeof (*ecs));
3273
3274 /* End up with readline processing input, if necessary. */
3275 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3276
3277 /* We're handling a live event, so make sure we're doing live
3278 debugging. If we're looking at traceframes while the target is
3279 running, we're going to need to get back to that mode after
3280 handling the event. */
3281 if (non_stop)
3282 {
3283 make_cleanup_restore_current_traceframe ();
3284 set_current_traceframe (-1);
3285 }
3286
3287 if (non_stop)
3288 /* In non-stop mode, the user/frontend should not notice a thread
3289 switch due to internal events. Make sure we reverse to the
3290 user selected thread and frame after handling the event and
3291 running any breakpoint commands. */
3292 make_cleanup_restore_current_thread ();
3293
3294 overlay_cache_invalid = 1;
3295 /* Flush target cache before starting to handle each event. Target
3296 was running and cache could be stale. This is just a heuristic.
3297 Running threads may modify target memory, but we don't get any
3298 event. */
3299 target_dcache_invalidate ();
3300
3301 make_cleanup_restore_integer (&execution_direction);
3302 execution_direction = target_execution_direction ();
3303
3304 if (deprecated_target_wait_hook)
3305 ecs->ptid =
3306 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3307 else
3308 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3309
3310 if (debug_infrun)
3311 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3312
3313 /* If an error happens while handling the event, propagate GDB's
3314 knowledge of the executing state to the frontend/user running
3315 state. */
3316 if (!non_stop)
3317 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3318 else
3319 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3320
3321 /* Get executed before make_cleanup_restore_current_thread above to apply
3322 still for the thread which has thrown the exception. */
3323 make_bpstat_clear_actions_cleanup ();
3324
3325 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3326
3327 /* Now figure out what to do with the result of the result. */
3328 handle_inferior_event (ecs);
3329
3330 if (!ecs->wait_some_more)
3331 {
3332 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3333
3334 delete_just_stopped_threads_infrun_breakpoints ();
3335
3336 /* We may not find an inferior if this was a process exit. */
3337 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3338 normal_stop ();
3339
3340 if (target_has_execution
3341 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3342 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3343 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3344 && ecs->event_thread->step_multi
3345 && ecs->event_thread->control.stop_step)
3346 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3347 else
3348 {
3349 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3350 cmd_done = 1;
3351 }
3352 }
3353
3354 /* No error, don't finish the thread states yet. */
3355 discard_cleanups (ts_old_chain);
3356
3357 /* Revert thread and frame. */
3358 do_cleanups (old_chain);
3359
3360 /* If the inferior was in sync execution mode, and now isn't,
3361 restore the prompt (a synchronous execution command has finished,
3362 and we're ready for input). */
3363 if (interpreter_async && was_sync && !sync_execution)
3364 observer_notify_sync_execution_done ();
3365
3366 if (cmd_done
3367 && !was_sync
3368 && exec_done_display_p
3369 && (ptid_equal (inferior_ptid, null_ptid)
3370 || !is_running (inferior_ptid)))
3371 printf_unfiltered (_("completed.\n"));
3372 }
3373
3374 /* Record the frame and location we're currently stepping through. */
3375 void
3376 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3377 {
3378 struct thread_info *tp = inferior_thread ();
3379
3380 tp->control.step_frame_id = get_frame_id (frame);
3381 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3382
3383 tp->current_symtab = sal.symtab;
3384 tp->current_line = sal.line;
3385 }
3386
3387 /* Clear context switchable stepping state. */
3388
3389 void
3390 init_thread_stepping_state (struct thread_info *tss)
3391 {
3392 tss->stepped_breakpoint = 0;
3393 tss->stepping_over_breakpoint = 0;
3394 tss->stepping_over_watchpoint = 0;
3395 tss->step_after_step_resume_breakpoint = 0;
3396 }
3397
3398 /* Set the cached copy of the last ptid/waitstatus. */
3399
3400 static void
3401 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3402 {
3403 target_last_wait_ptid = ptid;
3404 target_last_waitstatus = status;
3405 }
3406
3407 /* Return the cached copy of the last pid/waitstatus returned by
3408 target_wait()/deprecated_target_wait_hook(). The data is actually
3409 cached by handle_inferior_event(), which gets called immediately
3410 after target_wait()/deprecated_target_wait_hook(). */
3411
3412 void
3413 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3414 {
3415 *ptidp = target_last_wait_ptid;
3416 *status = target_last_waitstatus;
3417 }
3418
3419 void
3420 nullify_last_target_wait_ptid (void)
3421 {
3422 target_last_wait_ptid = minus_one_ptid;
3423 }
3424
3425 /* Switch thread contexts. */
3426
3427 static void
3428 context_switch (ptid_t ptid)
3429 {
3430 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3431 {
3432 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3433 target_pid_to_str (inferior_ptid));
3434 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3435 target_pid_to_str (ptid));
3436 }
3437
3438 switch_to_thread (ptid);
3439 }
3440
3441 static void
3442 adjust_pc_after_break (struct execution_control_state *ecs)
3443 {
3444 struct regcache *regcache;
3445 struct gdbarch *gdbarch;
3446 struct address_space *aspace;
3447 CORE_ADDR breakpoint_pc, decr_pc;
3448
3449 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3450 we aren't, just return.
3451
3452 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3453 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3454 implemented by software breakpoints should be handled through the normal
3455 breakpoint layer.
3456
3457 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3458 different signals (SIGILL or SIGEMT for instance), but it is less
3459 clear where the PC is pointing afterwards. It may not match
3460 gdbarch_decr_pc_after_break. I don't know any specific target that
3461 generates these signals at breakpoints (the code has been in GDB since at
3462 least 1992) so I can not guess how to handle them here.
3463
3464 In earlier versions of GDB, a target with
3465 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3466 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3467 target with both of these set in GDB history, and it seems unlikely to be
3468 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3469
3470 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3471 return;
3472
3473 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
3474 return;
3475
3476 /* In reverse execution, when a breakpoint is hit, the instruction
3477 under it has already been de-executed. The reported PC always
3478 points at the breakpoint address, so adjusting it further would
3479 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3480 architecture:
3481
3482 B1 0x08000000 : INSN1
3483 B2 0x08000001 : INSN2
3484 0x08000002 : INSN3
3485 PC -> 0x08000003 : INSN4
3486
3487 Say you're stopped at 0x08000003 as above. Reverse continuing
3488 from that point should hit B2 as below. Reading the PC when the
3489 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3490 been de-executed already.
3491
3492 B1 0x08000000 : INSN1
3493 B2 PC -> 0x08000001 : INSN2
3494 0x08000002 : INSN3
3495 0x08000003 : INSN4
3496
3497 We can't apply the same logic as for forward execution, because
3498 we would wrongly adjust the PC to 0x08000000, since there's a
3499 breakpoint at PC - 1. We'd then report a hit on B1, although
3500 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3501 behaviour. */
3502 if (execution_direction == EXEC_REVERSE)
3503 return;
3504
3505 /* If the target can tell whether the thread hit a SW breakpoint,
3506 trust it. Targets that can tell also adjust the PC
3507 themselves. */
3508 if (target_supports_stopped_by_sw_breakpoint ())
3509 return;
3510
3511 /* Note that relying on whether a breakpoint is planted in memory to
3512 determine this can fail. E.g,. the breakpoint could have been
3513 removed since. Or the thread could have been told to step an
3514 instruction the size of a breakpoint instruction, and only
3515 _after_ was a breakpoint inserted at its address. */
3516
3517 /* If this target does not decrement the PC after breakpoints, then
3518 we have nothing to do. */
3519 regcache = get_thread_regcache (ecs->ptid);
3520 gdbarch = get_regcache_arch (regcache);
3521
3522 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3523 if (decr_pc == 0)
3524 return;
3525
3526 aspace = get_regcache_aspace (regcache);
3527
3528 /* Find the location where (if we've hit a breakpoint) the
3529 breakpoint would be. */
3530 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3531
3532 /* If the target can't tell whether a software breakpoint triggered,
3533 fallback to figuring it out based on breakpoints we think were
3534 inserted in the target, and on whether the thread was stepped or
3535 continued. */
3536
3537 /* Check whether there actually is a software breakpoint inserted at
3538 that location.
3539
3540 If in non-stop mode, a race condition is possible where we've
3541 removed a breakpoint, but stop events for that breakpoint were
3542 already queued and arrive later. To suppress those spurious
3543 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3544 and retire them after a number of stop events are reported. Note
3545 this is an heuristic and can thus get confused. The real fix is
3546 to get the "stopped by SW BP and needs adjustment" info out of
3547 the target/kernel (and thus never reach here; see above). */
3548 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3549 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3550 {
3551 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3552
3553 if (record_full_is_used ())
3554 record_full_gdb_operation_disable_set ();
3555
3556 /* When using hardware single-step, a SIGTRAP is reported for both
3557 a completed single-step and a software breakpoint. Need to
3558 differentiate between the two, as the latter needs adjusting
3559 but the former does not.
3560
3561 The SIGTRAP can be due to a completed hardware single-step only if
3562 - we didn't insert software single-step breakpoints
3563 - this thread is currently being stepped
3564
3565 If any of these events did not occur, we must have stopped due
3566 to hitting a software breakpoint, and have to back up to the
3567 breakpoint address.
3568
3569 As a special case, we could have hardware single-stepped a
3570 software breakpoint. In this case (prev_pc == breakpoint_pc),
3571 we also need to back up to the breakpoint address. */
3572
3573 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
3574 || !currently_stepping (ecs->event_thread)
3575 || (ecs->event_thread->stepped_breakpoint
3576 && ecs->event_thread->prev_pc == breakpoint_pc))
3577 regcache_write_pc (regcache, breakpoint_pc);
3578
3579 do_cleanups (old_cleanups);
3580 }
3581 }
3582
3583 static int
3584 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3585 {
3586 for (frame = get_prev_frame (frame);
3587 frame != NULL;
3588 frame = get_prev_frame (frame))
3589 {
3590 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3591 return 1;
3592 if (get_frame_type (frame) != INLINE_FRAME)
3593 break;
3594 }
3595
3596 return 0;
3597 }
3598
3599 /* Auxiliary function that handles syscall entry/return events.
3600 It returns 1 if the inferior should keep going (and GDB
3601 should ignore the event), or 0 if the event deserves to be
3602 processed. */
3603
3604 static int
3605 handle_syscall_event (struct execution_control_state *ecs)
3606 {
3607 struct regcache *regcache;
3608 int syscall_number;
3609
3610 if (!ptid_equal (ecs->ptid, inferior_ptid))
3611 context_switch (ecs->ptid);
3612
3613 regcache = get_thread_regcache (ecs->ptid);
3614 syscall_number = ecs->ws.value.syscall_number;
3615 stop_pc = regcache_read_pc (regcache);
3616
3617 if (catch_syscall_enabled () > 0
3618 && catching_syscall_number (syscall_number) > 0)
3619 {
3620 if (debug_infrun)
3621 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3622 syscall_number);
3623
3624 ecs->event_thread->control.stop_bpstat
3625 = bpstat_stop_status (get_regcache_aspace (regcache),
3626 stop_pc, ecs->ptid, &ecs->ws);
3627
3628 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3629 {
3630 /* Catchpoint hit. */
3631 return 0;
3632 }
3633 }
3634
3635 /* If no catchpoint triggered for this, then keep going. */
3636 keep_going (ecs);
3637 return 1;
3638 }
3639
3640 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3641
3642 static void
3643 fill_in_stop_func (struct gdbarch *gdbarch,
3644 struct execution_control_state *ecs)
3645 {
3646 if (!ecs->stop_func_filled_in)
3647 {
3648 /* Don't care about return value; stop_func_start and stop_func_name
3649 will both be 0 if it doesn't work. */
3650 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3651 &ecs->stop_func_start, &ecs->stop_func_end);
3652 ecs->stop_func_start
3653 += gdbarch_deprecated_function_start_offset (gdbarch);
3654
3655 if (gdbarch_skip_entrypoint_p (gdbarch))
3656 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3657 ecs->stop_func_start);
3658
3659 ecs->stop_func_filled_in = 1;
3660 }
3661 }
3662
3663
3664 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3665
3666 static enum stop_kind
3667 get_inferior_stop_soon (ptid_t ptid)
3668 {
3669 struct inferior *inf = find_inferior_ptid (ptid);
3670
3671 gdb_assert (inf != NULL);
3672 return inf->control.stop_soon;
3673 }
3674
3675 /* Given an execution control state that has been freshly filled in by
3676 an event from the inferior, figure out what it means and take
3677 appropriate action.
3678
3679 The alternatives are:
3680
3681 1) stop_waiting and return; to really stop and return to the
3682 debugger.
3683
3684 2) keep_going and return; to wait for the next event (set
3685 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3686 once). */
3687
3688 static void
3689 handle_inferior_event_1 (struct execution_control_state *ecs)
3690 {
3691 enum stop_kind stop_soon;
3692
3693 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3694 {
3695 /* We had an event in the inferior, but we are not interested in
3696 handling it at this level. The lower layers have already
3697 done what needs to be done, if anything.
3698
3699 One of the possible circumstances for this is when the
3700 inferior produces output for the console. The inferior has
3701 not stopped, and we are ignoring the event. Another possible
3702 circumstance is any event which the lower level knows will be
3703 reported multiple times without an intervening resume. */
3704 if (debug_infrun)
3705 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3706 prepare_to_wait (ecs);
3707 return;
3708 }
3709
3710 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3711 && target_can_async_p () && !sync_execution)
3712 {
3713 /* There were no unwaited-for children left in the target, but,
3714 we're not synchronously waiting for events either. Just
3715 ignore. Otherwise, if we were running a synchronous
3716 execution command, we need to cancel it and give the user
3717 back the terminal. */
3718 if (debug_infrun)
3719 fprintf_unfiltered (gdb_stdlog,
3720 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3721 prepare_to_wait (ecs);
3722 return;
3723 }
3724
3725 /* Cache the last pid/waitstatus. */
3726 set_last_target_status (ecs->ptid, ecs->ws);
3727
3728 /* Always clear state belonging to the previous time we stopped. */
3729 stop_stack_dummy = STOP_NONE;
3730
3731 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3732 {
3733 /* No unwaited-for children left. IOW, all resumed children
3734 have exited. */
3735 if (debug_infrun)
3736 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3737
3738 stop_print_frame = 0;
3739 stop_waiting (ecs);
3740 return;
3741 }
3742
3743 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3744 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3745 {
3746 ecs->event_thread = find_thread_ptid (ecs->ptid);
3747 /* If it's a new thread, add it to the thread database. */
3748 if (ecs->event_thread == NULL)
3749 ecs->event_thread = add_thread (ecs->ptid);
3750
3751 /* Disable range stepping. If the next step request could use a
3752 range, this will be end up re-enabled then. */
3753 ecs->event_thread->control.may_range_step = 0;
3754 }
3755
3756 /* Dependent on valid ECS->EVENT_THREAD. */
3757 adjust_pc_after_break (ecs);
3758
3759 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3760 reinit_frame_cache ();
3761
3762 breakpoint_retire_moribund ();
3763
3764 /* First, distinguish signals caused by the debugger from signals
3765 that have to do with the program's own actions. Note that
3766 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3767 on the operating system version. Here we detect when a SIGILL or
3768 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3769 something similar for SIGSEGV, since a SIGSEGV will be generated
3770 when we're trying to execute a breakpoint instruction on a
3771 non-executable stack. This happens for call dummy breakpoints
3772 for architectures like SPARC that place call dummies on the
3773 stack. */
3774 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3775 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3776 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3777 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3778 {
3779 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3780
3781 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3782 regcache_read_pc (regcache)))
3783 {
3784 if (debug_infrun)
3785 fprintf_unfiltered (gdb_stdlog,
3786 "infrun: Treating signal as SIGTRAP\n");
3787 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3788 }
3789 }
3790
3791 /* Mark the non-executing threads accordingly. In all-stop, all
3792 threads of all processes are stopped when we get any event
3793 reported. In non-stop mode, only the event thread stops. If
3794 we're handling a process exit in non-stop mode, there's nothing
3795 to do, as threads of the dead process are gone, and threads of
3796 any other process were left running. */
3797 if (!non_stop)
3798 set_executing (minus_one_ptid, 0);
3799 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3800 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3801 set_executing (ecs->ptid, 0);
3802
3803 switch (ecs->ws.kind)
3804 {
3805 case TARGET_WAITKIND_LOADED:
3806 if (debug_infrun)
3807 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3808 if (!ptid_equal (ecs->ptid, inferior_ptid))
3809 context_switch (ecs->ptid);
3810 /* Ignore gracefully during startup of the inferior, as it might
3811 be the shell which has just loaded some objects, otherwise
3812 add the symbols for the newly loaded objects. Also ignore at
3813 the beginning of an attach or remote session; we will query
3814 the full list of libraries once the connection is
3815 established. */
3816
3817 stop_soon = get_inferior_stop_soon (ecs->ptid);
3818 if (stop_soon == NO_STOP_QUIETLY)
3819 {
3820 struct regcache *regcache;
3821
3822 regcache = get_thread_regcache (ecs->ptid);
3823
3824 handle_solib_event ();
3825
3826 ecs->event_thread->control.stop_bpstat
3827 = bpstat_stop_status (get_regcache_aspace (regcache),
3828 stop_pc, ecs->ptid, &ecs->ws);
3829
3830 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3831 {
3832 /* A catchpoint triggered. */
3833 process_event_stop_test (ecs);
3834 return;
3835 }
3836
3837 /* If requested, stop when the dynamic linker notifies
3838 gdb of events. This allows the user to get control
3839 and place breakpoints in initializer routines for
3840 dynamically loaded objects (among other things). */
3841 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3842 if (stop_on_solib_events)
3843 {
3844 /* Make sure we print "Stopped due to solib-event" in
3845 normal_stop. */
3846 stop_print_frame = 1;
3847
3848 stop_waiting (ecs);
3849 return;
3850 }
3851 }
3852
3853 /* If we are skipping through a shell, or through shared library
3854 loading that we aren't interested in, resume the program. If
3855 we're running the program normally, also resume. */
3856 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3857 {
3858 /* Loading of shared libraries might have changed breakpoint
3859 addresses. Make sure new breakpoints are inserted. */
3860 if (stop_soon == NO_STOP_QUIETLY)
3861 insert_breakpoints ();
3862 resume (GDB_SIGNAL_0);
3863 prepare_to_wait (ecs);
3864 return;
3865 }
3866
3867 /* But stop if we're attaching or setting up a remote
3868 connection. */
3869 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3870 || stop_soon == STOP_QUIETLY_REMOTE)
3871 {
3872 if (debug_infrun)
3873 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3874 stop_waiting (ecs);
3875 return;
3876 }
3877
3878 internal_error (__FILE__, __LINE__,
3879 _("unhandled stop_soon: %d"), (int) stop_soon);
3880
3881 case TARGET_WAITKIND_SPURIOUS:
3882 if (debug_infrun)
3883 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3884 if (!ptid_equal (ecs->ptid, inferior_ptid))
3885 context_switch (ecs->ptid);
3886 resume (GDB_SIGNAL_0);
3887 prepare_to_wait (ecs);
3888 return;
3889
3890 case TARGET_WAITKIND_EXITED:
3891 case TARGET_WAITKIND_SIGNALLED:
3892 if (debug_infrun)
3893 {
3894 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3895 fprintf_unfiltered (gdb_stdlog,
3896 "infrun: TARGET_WAITKIND_EXITED\n");
3897 else
3898 fprintf_unfiltered (gdb_stdlog,
3899 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3900 }
3901
3902 inferior_ptid = ecs->ptid;
3903 set_current_inferior (find_inferior_ptid (ecs->ptid));
3904 set_current_program_space (current_inferior ()->pspace);
3905 handle_vfork_child_exec_or_exit (0);
3906 target_terminal_ours (); /* Must do this before mourn anyway. */
3907
3908 /* Clearing any previous state of convenience variables. */
3909 clear_exit_convenience_vars ();
3910
3911 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3912 {
3913 /* Record the exit code in the convenience variable $_exitcode, so
3914 that the user can inspect this again later. */
3915 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3916 (LONGEST) ecs->ws.value.integer);
3917
3918 /* Also record this in the inferior itself. */
3919 current_inferior ()->has_exit_code = 1;
3920 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3921
3922 /* Support the --return-child-result option. */
3923 return_child_result_value = ecs->ws.value.integer;
3924
3925 observer_notify_exited (ecs->ws.value.integer);
3926 }
3927 else
3928 {
3929 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3930 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3931
3932 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3933 {
3934 /* Set the value of the internal variable $_exitsignal,
3935 which holds the signal uncaught by the inferior. */
3936 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3937 gdbarch_gdb_signal_to_target (gdbarch,
3938 ecs->ws.value.sig));
3939 }
3940 else
3941 {
3942 /* We don't have access to the target's method used for
3943 converting between signal numbers (GDB's internal
3944 representation <-> target's representation).
3945 Therefore, we cannot do a good job at displaying this
3946 information to the user. It's better to just warn
3947 her about it (if infrun debugging is enabled), and
3948 give up. */
3949 if (debug_infrun)
3950 fprintf_filtered (gdb_stdlog, _("\
3951 Cannot fill $_exitsignal with the correct signal number.\n"));
3952 }
3953
3954 observer_notify_signal_exited (ecs->ws.value.sig);
3955 }
3956
3957 gdb_flush (gdb_stdout);
3958 target_mourn_inferior ();
3959 stop_print_frame = 0;
3960 stop_waiting (ecs);
3961 return;
3962
3963 /* The following are the only cases in which we keep going;
3964 the above cases end in a continue or goto. */
3965 case TARGET_WAITKIND_FORKED:
3966 case TARGET_WAITKIND_VFORKED:
3967 if (debug_infrun)
3968 {
3969 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3970 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3971 else
3972 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3973 }
3974
3975 /* Check whether the inferior is displaced stepping. */
3976 {
3977 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3978 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3979 struct displaced_step_inferior_state *displaced
3980 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3981
3982 /* If checking displaced stepping is supported, and thread
3983 ecs->ptid is displaced stepping. */
3984 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3985 {
3986 struct inferior *parent_inf
3987 = find_inferior_ptid (ecs->ptid);
3988 struct regcache *child_regcache;
3989 CORE_ADDR parent_pc;
3990
3991 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3992 indicating that the displaced stepping of syscall instruction
3993 has been done. Perform cleanup for parent process here. Note
3994 that this operation also cleans up the child process for vfork,
3995 because their pages are shared. */
3996 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3997
3998 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3999 {
4000 /* Restore scratch pad for child process. */
4001 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4002 }
4003
4004 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4005 the child's PC is also within the scratchpad. Set the child's PC
4006 to the parent's PC value, which has already been fixed up.
4007 FIXME: we use the parent's aspace here, although we're touching
4008 the child, because the child hasn't been added to the inferior
4009 list yet at this point. */
4010
4011 child_regcache
4012 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4013 gdbarch,
4014 parent_inf->aspace);
4015 /* Read PC value of parent process. */
4016 parent_pc = regcache_read_pc (regcache);
4017
4018 if (debug_displaced)
4019 fprintf_unfiltered (gdb_stdlog,
4020 "displaced: write child pc from %s to %s\n",
4021 paddress (gdbarch,
4022 regcache_read_pc (child_regcache)),
4023 paddress (gdbarch, parent_pc));
4024
4025 regcache_write_pc (child_regcache, parent_pc);
4026 }
4027 }
4028
4029 if (!ptid_equal (ecs->ptid, inferior_ptid))
4030 context_switch (ecs->ptid);
4031
4032 /* Immediately detach breakpoints from the child before there's
4033 any chance of letting the user delete breakpoints from the
4034 breakpoint lists. If we don't do this early, it's easy to
4035 leave left over traps in the child, vis: "break foo; catch
4036 fork; c; <fork>; del; c; <child calls foo>". We only follow
4037 the fork on the last `continue', and by that time the
4038 breakpoint at "foo" is long gone from the breakpoint table.
4039 If we vforked, then we don't need to unpatch here, since both
4040 parent and child are sharing the same memory pages; we'll
4041 need to unpatch at follow/detach time instead to be certain
4042 that new breakpoints added between catchpoint hit time and
4043 vfork follow are detached. */
4044 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4045 {
4046 /* This won't actually modify the breakpoint list, but will
4047 physically remove the breakpoints from the child. */
4048 detach_breakpoints (ecs->ws.value.related_pid);
4049 }
4050
4051 delete_just_stopped_threads_single_step_breakpoints ();
4052
4053 /* In case the event is caught by a catchpoint, remember that
4054 the event is to be followed at the next resume of the thread,
4055 and not immediately. */
4056 ecs->event_thread->pending_follow = ecs->ws;
4057
4058 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4059
4060 ecs->event_thread->control.stop_bpstat
4061 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4062 stop_pc, ecs->ptid, &ecs->ws);
4063
4064 /* If no catchpoint triggered for this, then keep going. Note
4065 that we're interested in knowing the bpstat actually causes a
4066 stop, not just if it may explain the signal. Software
4067 watchpoints, for example, always appear in the bpstat. */
4068 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4069 {
4070 ptid_t parent;
4071 ptid_t child;
4072 int should_resume;
4073 int follow_child
4074 = (follow_fork_mode_string == follow_fork_mode_child);
4075
4076 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4077
4078 should_resume = follow_fork ();
4079
4080 parent = ecs->ptid;
4081 child = ecs->ws.value.related_pid;
4082
4083 /* In non-stop mode, also resume the other branch. */
4084 if (non_stop && !detach_fork)
4085 {
4086 if (follow_child)
4087 switch_to_thread (parent);
4088 else
4089 switch_to_thread (child);
4090
4091 ecs->event_thread = inferior_thread ();
4092 ecs->ptid = inferior_ptid;
4093 keep_going (ecs);
4094 }
4095
4096 if (follow_child)
4097 switch_to_thread (child);
4098 else
4099 switch_to_thread (parent);
4100
4101 ecs->event_thread = inferior_thread ();
4102 ecs->ptid = inferior_ptid;
4103
4104 if (should_resume)
4105 keep_going (ecs);
4106 else
4107 stop_waiting (ecs);
4108 return;
4109 }
4110 process_event_stop_test (ecs);
4111 return;
4112
4113 case TARGET_WAITKIND_VFORK_DONE:
4114 /* Done with the shared memory region. Re-insert breakpoints in
4115 the parent, and keep going. */
4116
4117 if (debug_infrun)
4118 fprintf_unfiltered (gdb_stdlog,
4119 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
4120
4121 if (!ptid_equal (ecs->ptid, inferior_ptid))
4122 context_switch (ecs->ptid);
4123
4124 current_inferior ()->waiting_for_vfork_done = 0;
4125 current_inferior ()->pspace->breakpoints_not_allowed = 0;
4126 /* This also takes care of reinserting breakpoints in the
4127 previously locked inferior. */
4128 keep_going (ecs);
4129 return;
4130
4131 case TARGET_WAITKIND_EXECD:
4132 if (debug_infrun)
4133 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
4134
4135 if (!ptid_equal (ecs->ptid, inferior_ptid))
4136 context_switch (ecs->ptid);
4137
4138 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4139
4140 /* Do whatever is necessary to the parent branch of the vfork. */
4141 handle_vfork_child_exec_or_exit (1);
4142
4143 /* This causes the eventpoints and symbol table to be reset.
4144 Must do this now, before trying to determine whether to
4145 stop. */
4146 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
4147
4148 ecs->event_thread->control.stop_bpstat
4149 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4150 stop_pc, ecs->ptid, &ecs->ws);
4151
4152 /* Note that this may be referenced from inside
4153 bpstat_stop_status above, through inferior_has_execd. */
4154 xfree (ecs->ws.value.execd_pathname);
4155 ecs->ws.value.execd_pathname = NULL;
4156
4157 /* If no catchpoint triggered for this, then keep going. */
4158 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4159 {
4160 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4161 keep_going (ecs);
4162 return;
4163 }
4164 process_event_stop_test (ecs);
4165 return;
4166
4167 /* Be careful not to try to gather much state about a thread
4168 that's in a syscall. It's frequently a losing proposition. */
4169 case TARGET_WAITKIND_SYSCALL_ENTRY:
4170 if (debug_infrun)
4171 fprintf_unfiltered (gdb_stdlog,
4172 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
4173 /* Getting the current syscall number. */
4174 if (handle_syscall_event (ecs) == 0)
4175 process_event_stop_test (ecs);
4176 return;
4177
4178 /* Before examining the threads further, step this thread to
4179 get it entirely out of the syscall. (We get notice of the
4180 event when the thread is just on the verge of exiting a
4181 syscall. Stepping one instruction seems to get it back
4182 into user code.) */
4183 case TARGET_WAITKIND_SYSCALL_RETURN:
4184 if (debug_infrun)
4185 fprintf_unfiltered (gdb_stdlog,
4186 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
4187 if (handle_syscall_event (ecs) == 0)
4188 process_event_stop_test (ecs);
4189 return;
4190
4191 case TARGET_WAITKIND_STOPPED:
4192 if (debug_infrun)
4193 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4194 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4195 handle_signal_stop (ecs);
4196 return;
4197
4198 case TARGET_WAITKIND_NO_HISTORY:
4199 if (debug_infrun)
4200 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
4201 /* Reverse execution: target ran out of history info. */
4202
4203 delete_just_stopped_threads_single_step_breakpoints ();
4204 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4205 observer_notify_no_history ();
4206 stop_waiting (ecs);
4207 return;
4208 }
4209 }
4210
4211 /* A wrapper around handle_inferior_event_1, which also makes sure
4212 that all temporary struct value objects that were created during
4213 the handling of the event get deleted at the end. */
4214
4215 static void
4216 handle_inferior_event (struct execution_control_state *ecs)
4217 {
4218 struct value *mark = value_mark ();
4219
4220 handle_inferior_event_1 (ecs);
4221 /* Purge all temporary values created during the event handling,
4222 as it could be a long time before we return to the command level
4223 where such values would otherwise be purged. */
4224 value_free_to_mark (mark);
4225 }
4226
4227 /* Come here when the program has stopped with a signal. */
4228
4229 static void
4230 handle_signal_stop (struct execution_control_state *ecs)
4231 {
4232 struct frame_info *frame;
4233 struct gdbarch *gdbarch;
4234 int stopped_by_watchpoint;
4235 enum stop_kind stop_soon;
4236 int random_signal;
4237
4238 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4239
4240 /* Do we need to clean up the state of a thread that has
4241 completed a displaced single-step? (Doing so usually affects
4242 the PC, so do it here, before we set stop_pc.) */
4243 displaced_step_fixup (ecs->ptid,
4244 ecs->event_thread->suspend.stop_signal);
4245
4246 /* If we either finished a single-step or hit a breakpoint, but
4247 the user wanted this thread to be stopped, pretend we got a
4248 SIG0 (generic unsignaled stop). */
4249 if (ecs->event_thread->stop_requested
4250 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4251 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4252
4253 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4254
4255 if (debug_infrun)
4256 {
4257 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4258 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4259 struct cleanup *old_chain = save_inferior_ptid ();
4260
4261 inferior_ptid = ecs->ptid;
4262
4263 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4264 paddress (gdbarch, stop_pc));
4265 if (target_stopped_by_watchpoint ())
4266 {
4267 CORE_ADDR addr;
4268
4269 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4270
4271 if (target_stopped_data_address (&current_target, &addr))
4272 fprintf_unfiltered (gdb_stdlog,
4273 "infrun: stopped data address = %s\n",
4274 paddress (gdbarch, addr));
4275 else
4276 fprintf_unfiltered (gdb_stdlog,
4277 "infrun: (no data address available)\n");
4278 }
4279
4280 do_cleanups (old_chain);
4281 }
4282
4283 /* This is originated from start_remote(), start_inferior() and
4284 shared libraries hook functions. */
4285 stop_soon = get_inferior_stop_soon (ecs->ptid);
4286 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4287 {
4288 if (!ptid_equal (ecs->ptid, inferior_ptid))
4289 context_switch (ecs->ptid);
4290 if (debug_infrun)
4291 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4292 stop_print_frame = 1;
4293 stop_waiting (ecs);
4294 return;
4295 }
4296
4297 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4298 && stop_after_trap)
4299 {
4300 if (!ptid_equal (ecs->ptid, inferior_ptid))
4301 context_switch (ecs->ptid);
4302 if (debug_infrun)
4303 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4304 stop_print_frame = 0;
4305 stop_waiting (ecs);
4306 return;
4307 }
4308
4309 /* This originates from attach_command(). We need to overwrite
4310 the stop_signal here, because some kernels don't ignore a
4311 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4312 See more comments in inferior.h. On the other hand, if we
4313 get a non-SIGSTOP, report it to the user - assume the backend
4314 will handle the SIGSTOP if it should show up later.
4315
4316 Also consider that the attach is complete when we see a
4317 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4318 target extended-remote report it instead of a SIGSTOP
4319 (e.g. gdbserver). We already rely on SIGTRAP being our
4320 signal, so this is no exception.
4321
4322 Also consider that the attach is complete when we see a
4323 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4324 the target to stop all threads of the inferior, in case the
4325 low level attach operation doesn't stop them implicitly. If
4326 they weren't stopped implicitly, then the stub will report a
4327 GDB_SIGNAL_0, meaning: stopped for no particular reason
4328 other than GDB's request. */
4329 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4330 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4331 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4332 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4333 {
4334 stop_print_frame = 1;
4335 stop_waiting (ecs);
4336 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4337 return;
4338 }
4339
4340 /* See if something interesting happened to the non-current thread. If
4341 so, then switch to that thread. */
4342 if (!ptid_equal (ecs->ptid, inferior_ptid))
4343 {
4344 if (debug_infrun)
4345 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4346
4347 context_switch (ecs->ptid);
4348
4349 if (deprecated_context_hook)
4350 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4351 }
4352
4353 /* At this point, get hold of the now-current thread's frame. */
4354 frame = get_current_frame ();
4355 gdbarch = get_frame_arch (frame);
4356
4357 /* Pull the single step breakpoints out of the target. */
4358 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4359 {
4360 struct regcache *regcache;
4361 struct address_space *aspace;
4362 CORE_ADDR pc;
4363
4364 regcache = get_thread_regcache (ecs->ptid);
4365 aspace = get_regcache_aspace (regcache);
4366 pc = regcache_read_pc (regcache);
4367
4368 /* However, before doing so, if this single-step breakpoint was
4369 actually for another thread, set this thread up for moving
4370 past it. */
4371 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4372 aspace, pc))
4373 {
4374 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4375 {
4376 if (debug_infrun)
4377 {
4378 fprintf_unfiltered (gdb_stdlog,
4379 "infrun: [%s] hit another thread's "
4380 "single-step breakpoint\n",
4381 target_pid_to_str (ecs->ptid));
4382 }
4383 ecs->hit_singlestep_breakpoint = 1;
4384 }
4385 }
4386 else
4387 {
4388 if (debug_infrun)
4389 {
4390 fprintf_unfiltered (gdb_stdlog,
4391 "infrun: [%s] hit its "
4392 "single-step breakpoint\n",
4393 target_pid_to_str (ecs->ptid));
4394 }
4395 }
4396 }
4397 delete_just_stopped_threads_single_step_breakpoints ();
4398
4399 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4400 && ecs->event_thread->control.trap_expected
4401 && ecs->event_thread->stepping_over_watchpoint)
4402 stopped_by_watchpoint = 0;
4403 else
4404 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4405
4406 /* If necessary, step over this watchpoint. We'll be back to display
4407 it in a moment. */
4408 if (stopped_by_watchpoint
4409 && (target_have_steppable_watchpoint
4410 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4411 {
4412 /* At this point, we are stopped at an instruction which has
4413 attempted to write to a piece of memory under control of
4414 a watchpoint. The instruction hasn't actually executed
4415 yet. If we were to evaluate the watchpoint expression
4416 now, we would get the old value, and therefore no change
4417 would seem to have occurred.
4418
4419 In order to make watchpoints work `right', we really need
4420 to complete the memory write, and then evaluate the
4421 watchpoint expression. We do this by single-stepping the
4422 target.
4423
4424 It may not be necessary to disable the watchpoint to step over
4425 it. For example, the PA can (with some kernel cooperation)
4426 single step over a watchpoint without disabling the watchpoint.
4427
4428 It is far more common to need to disable a watchpoint to step
4429 the inferior over it. If we have non-steppable watchpoints,
4430 we must disable the current watchpoint; it's simplest to
4431 disable all watchpoints.
4432
4433 Any breakpoint at PC must also be stepped over -- if there's
4434 one, it will have already triggered before the watchpoint
4435 triggered, and we either already reported it to the user, or
4436 it didn't cause a stop and we called keep_going. In either
4437 case, if there was a breakpoint at PC, we must be trying to
4438 step past it. */
4439 ecs->event_thread->stepping_over_watchpoint = 1;
4440 keep_going (ecs);
4441 return;
4442 }
4443
4444 ecs->event_thread->stepping_over_breakpoint = 0;
4445 ecs->event_thread->stepping_over_watchpoint = 0;
4446 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4447 ecs->event_thread->control.stop_step = 0;
4448 stop_print_frame = 1;
4449 stopped_by_random_signal = 0;
4450
4451 /* Hide inlined functions starting here, unless we just performed stepi or
4452 nexti. After stepi and nexti, always show the innermost frame (not any
4453 inline function call sites). */
4454 if (ecs->event_thread->control.step_range_end != 1)
4455 {
4456 struct address_space *aspace =
4457 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4458
4459 /* skip_inline_frames is expensive, so we avoid it if we can
4460 determine that the address is one where functions cannot have
4461 been inlined. This improves performance with inferiors that
4462 load a lot of shared libraries, because the solib event
4463 breakpoint is defined as the address of a function (i.e. not
4464 inline). Note that we have to check the previous PC as well
4465 as the current one to catch cases when we have just
4466 single-stepped off a breakpoint prior to reinstating it.
4467 Note that we're assuming that the code we single-step to is
4468 not inline, but that's not definitive: there's nothing
4469 preventing the event breakpoint function from containing
4470 inlined code, and the single-step ending up there. If the
4471 user had set a breakpoint on that inlined code, the missing
4472 skip_inline_frames call would break things. Fortunately
4473 that's an extremely unlikely scenario. */
4474 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4475 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4476 && ecs->event_thread->control.trap_expected
4477 && pc_at_non_inline_function (aspace,
4478 ecs->event_thread->prev_pc,
4479 &ecs->ws)))
4480 {
4481 skip_inline_frames (ecs->ptid);
4482
4483 /* Re-fetch current thread's frame in case that invalidated
4484 the frame cache. */
4485 frame = get_current_frame ();
4486 gdbarch = get_frame_arch (frame);
4487 }
4488 }
4489
4490 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4491 && ecs->event_thread->control.trap_expected
4492 && gdbarch_single_step_through_delay_p (gdbarch)
4493 && currently_stepping (ecs->event_thread))
4494 {
4495 /* We're trying to step off a breakpoint. Turns out that we're
4496 also on an instruction that needs to be stepped multiple
4497 times before it's been fully executing. E.g., architectures
4498 with a delay slot. It needs to be stepped twice, once for
4499 the instruction and once for the delay slot. */
4500 int step_through_delay
4501 = gdbarch_single_step_through_delay (gdbarch, frame);
4502
4503 if (debug_infrun && step_through_delay)
4504 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4505 if (ecs->event_thread->control.step_range_end == 0
4506 && step_through_delay)
4507 {
4508 /* The user issued a continue when stopped at a breakpoint.
4509 Set up for another trap and get out of here. */
4510 ecs->event_thread->stepping_over_breakpoint = 1;
4511 keep_going (ecs);
4512 return;
4513 }
4514 else if (step_through_delay)
4515 {
4516 /* The user issued a step when stopped at a breakpoint.
4517 Maybe we should stop, maybe we should not - the delay
4518 slot *might* correspond to a line of source. In any
4519 case, don't decide that here, just set
4520 ecs->stepping_over_breakpoint, making sure we
4521 single-step again before breakpoints are re-inserted. */
4522 ecs->event_thread->stepping_over_breakpoint = 1;
4523 }
4524 }
4525
4526 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4527 handles this event. */
4528 ecs->event_thread->control.stop_bpstat
4529 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4530 stop_pc, ecs->ptid, &ecs->ws);
4531
4532 /* Following in case break condition called a
4533 function. */
4534 stop_print_frame = 1;
4535
4536 /* This is where we handle "moribund" watchpoints. Unlike
4537 software breakpoints traps, hardware watchpoint traps are
4538 always distinguishable from random traps. If no high-level
4539 watchpoint is associated with the reported stop data address
4540 anymore, then the bpstat does not explain the signal ---
4541 simply make sure to ignore it if `stopped_by_watchpoint' is
4542 set. */
4543
4544 if (debug_infrun
4545 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4546 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4547 GDB_SIGNAL_TRAP)
4548 && stopped_by_watchpoint)
4549 fprintf_unfiltered (gdb_stdlog,
4550 "infrun: no user watchpoint explains "
4551 "watchpoint SIGTRAP, ignoring\n");
4552
4553 /* NOTE: cagney/2003-03-29: These checks for a random signal
4554 at one stage in the past included checks for an inferior
4555 function call's call dummy's return breakpoint. The original
4556 comment, that went with the test, read:
4557
4558 ``End of a stack dummy. Some systems (e.g. Sony news) give
4559 another signal besides SIGTRAP, so check here as well as
4560 above.''
4561
4562 If someone ever tries to get call dummys on a
4563 non-executable stack to work (where the target would stop
4564 with something like a SIGSEGV), then those tests might need
4565 to be re-instated. Given, however, that the tests were only
4566 enabled when momentary breakpoints were not being used, I
4567 suspect that it won't be the case.
4568
4569 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4570 be necessary for call dummies on a non-executable stack on
4571 SPARC. */
4572
4573 /* See if the breakpoints module can explain the signal. */
4574 random_signal
4575 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4576 ecs->event_thread->suspend.stop_signal);
4577
4578 /* Maybe this was a trap for a software breakpoint that has since
4579 been removed. */
4580 if (random_signal && target_stopped_by_sw_breakpoint ())
4581 {
4582 if (program_breakpoint_here_p (gdbarch, stop_pc))
4583 {
4584 struct regcache *regcache;
4585 int decr_pc;
4586
4587 /* Re-adjust PC to what the program would see if GDB was not
4588 debugging it. */
4589 regcache = get_thread_regcache (ecs->event_thread->ptid);
4590 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4591 if (decr_pc != 0)
4592 {
4593 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4594
4595 if (record_full_is_used ())
4596 record_full_gdb_operation_disable_set ();
4597
4598 regcache_write_pc (regcache, stop_pc + decr_pc);
4599
4600 do_cleanups (old_cleanups);
4601 }
4602 }
4603 else
4604 {
4605 /* A delayed software breakpoint event. Ignore the trap. */
4606 if (debug_infrun)
4607 fprintf_unfiltered (gdb_stdlog,
4608 "infrun: delayed software breakpoint "
4609 "trap, ignoring\n");
4610 random_signal = 0;
4611 }
4612 }
4613
4614 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
4615 has since been removed. */
4616 if (random_signal && target_stopped_by_hw_breakpoint ())
4617 {
4618 /* A delayed hardware breakpoint event. Ignore the trap. */
4619 if (debug_infrun)
4620 fprintf_unfiltered (gdb_stdlog,
4621 "infrun: delayed hardware breakpoint/watchpoint "
4622 "trap, ignoring\n");
4623 random_signal = 0;
4624 }
4625
4626 /* If not, perhaps stepping/nexting can. */
4627 if (random_signal)
4628 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4629 && currently_stepping (ecs->event_thread));
4630
4631 /* Perhaps the thread hit a single-step breakpoint of _another_
4632 thread. Single-step breakpoints are transparent to the
4633 breakpoints module. */
4634 if (random_signal)
4635 random_signal = !ecs->hit_singlestep_breakpoint;
4636
4637 /* No? Perhaps we got a moribund watchpoint. */
4638 if (random_signal)
4639 random_signal = !stopped_by_watchpoint;
4640
4641 /* For the program's own signals, act according to
4642 the signal handling tables. */
4643
4644 if (random_signal)
4645 {
4646 /* Signal not for debugging purposes. */
4647 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4648 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4649
4650 if (debug_infrun)
4651 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4652 gdb_signal_to_symbol_string (stop_signal));
4653
4654 stopped_by_random_signal = 1;
4655
4656 /* Always stop on signals if we're either just gaining control
4657 of the program, or the user explicitly requested this thread
4658 to remain stopped. */
4659 if (stop_soon != NO_STOP_QUIETLY
4660 || ecs->event_thread->stop_requested
4661 || (!inf->detaching
4662 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4663 {
4664 stop_waiting (ecs);
4665 return;
4666 }
4667
4668 /* Notify observers the signal has "handle print" set. Note we
4669 returned early above if stopping; normal_stop handles the
4670 printing in that case. */
4671 if (signal_print[ecs->event_thread->suspend.stop_signal])
4672 {
4673 /* The signal table tells us to print about this signal. */
4674 target_terminal_ours_for_output ();
4675 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4676 target_terminal_inferior ();
4677 }
4678
4679 /* Clear the signal if it should not be passed. */
4680 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4681 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4682
4683 if (ecs->event_thread->prev_pc == stop_pc
4684 && ecs->event_thread->control.trap_expected
4685 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4686 {
4687 /* We were just starting a new sequence, attempting to
4688 single-step off of a breakpoint and expecting a SIGTRAP.
4689 Instead this signal arrives. This signal will take us out
4690 of the stepping range so GDB needs to remember to, when
4691 the signal handler returns, resume stepping off that
4692 breakpoint. */
4693 /* To simplify things, "continue" is forced to use the same
4694 code paths as single-step - set a breakpoint at the
4695 signal return address and then, once hit, step off that
4696 breakpoint. */
4697 if (debug_infrun)
4698 fprintf_unfiltered (gdb_stdlog,
4699 "infrun: signal arrived while stepping over "
4700 "breakpoint\n");
4701
4702 insert_hp_step_resume_breakpoint_at_frame (frame);
4703 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4704 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4705 ecs->event_thread->control.trap_expected = 0;
4706
4707 /* If we were nexting/stepping some other thread, switch to
4708 it, so that we don't continue it, losing control. */
4709 if (!switch_back_to_stepped_thread (ecs))
4710 keep_going (ecs);
4711 return;
4712 }
4713
4714 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4715 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4716 || ecs->event_thread->control.step_range_end == 1)
4717 && frame_id_eq (get_stack_frame_id (frame),
4718 ecs->event_thread->control.step_stack_frame_id)
4719 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4720 {
4721 /* The inferior is about to take a signal that will take it
4722 out of the single step range. Set a breakpoint at the
4723 current PC (which is presumably where the signal handler
4724 will eventually return) and then allow the inferior to
4725 run free.
4726
4727 Note that this is only needed for a signal delivered
4728 while in the single-step range. Nested signals aren't a
4729 problem as they eventually all return. */
4730 if (debug_infrun)
4731 fprintf_unfiltered (gdb_stdlog,
4732 "infrun: signal may take us out of "
4733 "single-step range\n");
4734
4735 insert_hp_step_resume_breakpoint_at_frame (frame);
4736 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4737 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4738 ecs->event_thread->control.trap_expected = 0;
4739 keep_going (ecs);
4740 return;
4741 }
4742
4743 /* Note: step_resume_breakpoint may be non-NULL. This occures
4744 when either there's a nested signal, or when there's a
4745 pending signal enabled just as the signal handler returns
4746 (leaving the inferior at the step-resume-breakpoint without
4747 actually executing it). Either way continue until the
4748 breakpoint is really hit. */
4749
4750 if (!switch_back_to_stepped_thread (ecs))
4751 {
4752 if (debug_infrun)
4753 fprintf_unfiltered (gdb_stdlog,
4754 "infrun: random signal, keep going\n");
4755
4756 keep_going (ecs);
4757 }
4758 return;
4759 }
4760
4761 process_event_stop_test (ecs);
4762 }
4763
4764 /* Come here when we've got some debug event / signal we can explain
4765 (IOW, not a random signal), and test whether it should cause a
4766 stop, or whether we should resume the inferior (transparently).
4767 E.g., could be a breakpoint whose condition evaluates false; we
4768 could be still stepping within the line; etc. */
4769
4770 static void
4771 process_event_stop_test (struct execution_control_state *ecs)
4772 {
4773 struct symtab_and_line stop_pc_sal;
4774 struct frame_info *frame;
4775 struct gdbarch *gdbarch;
4776 CORE_ADDR jmp_buf_pc;
4777 struct bpstat_what what;
4778
4779 /* Handle cases caused by hitting a breakpoint. */
4780
4781 frame = get_current_frame ();
4782 gdbarch = get_frame_arch (frame);
4783
4784 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4785
4786 if (what.call_dummy)
4787 {
4788 stop_stack_dummy = what.call_dummy;
4789 }
4790
4791 /* If we hit an internal event that triggers symbol changes, the
4792 current frame will be invalidated within bpstat_what (e.g., if we
4793 hit an internal solib event). Re-fetch it. */
4794 frame = get_current_frame ();
4795 gdbarch = get_frame_arch (frame);
4796
4797 switch (what.main_action)
4798 {
4799 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4800 /* If we hit the breakpoint at longjmp while stepping, we
4801 install a momentary breakpoint at the target of the
4802 jmp_buf. */
4803
4804 if (debug_infrun)
4805 fprintf_unfiltered (gdb_stdlog,
4806 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4807
4808 ecs->event_thread->stepping_over_breakpoint = 1;
4809
4810 if (what.is_longjmp)
4811 {
4812 struct value *arg_value;
4813
4814 /* If we set the longjmp breakpoint via a SystemTap probe,
4815 then use it to extract the arguments. The destination PC
4816 is the third argument to the probe. */
4817 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4818 if (arg_value)
4819 {
4820 jmp_buf_pc = value_as_address (arg_value);
4821 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4822 }
4823 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4824 || !gdbarch_get_longjmp_target (gdbarch,
4825 frame, &jmp_buf_pc))
4826 {
4827 if (debug_infrun)
4828 fprintf_unfiltered (gdb_stdlog,
4829 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4830 "(!gdbarch_get_longjmp_target)\n");
4831 keep_going (ecs);
4832 return;
4833 }
4834
4835 /* Insert a breakpoint at resume address. */
4836 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4837 }
4838 else
4839 check_exception_resume (ecs, frame);
4840 keep_going (ecs);
4841 return;
4842
4843 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4844 {
4845 struct frame_info *init_frame;
4846
4847 /* There are several cases to consider.
4848
4849 1. The initiating frame no longer exists. In this case we
4850 must stop, because the exception or longjmp has gone too
4851 far.
4852
4853 2. The initiating frame exists, and is the same as the
4854 current frame. We stop, because the exception or longjmp
4855 has been caught.
4856
4857 3. The initiating frame exists and is different from the
4858 current frame. This means the exception or longjmp has
4859 been caught beneath the initiating frame, so keep going.
4860
4861 4. longjmp breakpoint has been placed just to protect
4862 against stale dummy frames and user is not interested in
4863 stopping around longjmps. */
4864
4865 if (debug_infrun)
4866 fprintf_unfiltered (gdb_stdlog,
4867 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4868
4869 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4870 != NULL);
4871 delete_exception_resume_breakpoint (ecs->event_thread);
4872
4873 if (what.is_longjmp)
4874 {
4875 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
4876
4877 if (!frame_id_p (ecs->event_thread->initiating_frame))
4878 {
4879 /* Case 4. */
4880 keep_going (ecs);
4881 return;
4882 }
4883 }
4884
4885 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4886
4887 if (init_frame)
4888 {
4889 struct frame_id current_id
4890 = get_frame_id (get_current_frame ());
4891 if (frame_id_eq (current_id,
4892 ecs->event_thread->initiating_frame))
4893 {
4894 /* Case 2. Fall through. */
4895 }
4896 else
4897 {
4898 /* Case 3. */
4899 keep_going (ecs);
4900 return;
4901 }
4902 }
4903
4904 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4905 exists. */
4906 delete_step_resume_breakpoint (ecs->event_thread);
4907
4908 end_stepping_range (ecs);
4909 }
4910 return;
4911
4912 case BPSTAT_WHAT_SINGLE:
4913 if (debug_infrun)
4914 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4915 ecs->event_thread->stepping_over_breakpoint = 1;
4916 /* Still need to check other stuff, at least the case where we
4917 are stepping and step out of the right range. */
4918 break;
4919
4920 case BPSTAT_WHAT_STEP_RESUME:
4921 if (debug_infrun)
4922 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4923
4924 delete_step_resume_breakpoint (ecs->event_thread);
4925 if (ecs->event_thread->control.proceed_to_finish
4926 && execution_direction == EXEC_REVERSE)
4927 {
4928 struct thread_info *tp = ecs->event_thread;
4929
4930 /* We are finishing a function in reverse, and just hit the
4931 step-resume breakpoint at the start address of the
4932 function, and we're almost there -- just need to back up
4933 by one more single-step, which should take us back to the
4934 function call. */
4935 tp->control.step_range_start = tp->control.step_range_end = 1;
4936 keep_going (ecs);
4937 return;
4938 }
4939 fill_in_stop_func (gdbarch, ecs);
4940 if (stop_pc == ecs->stop_func_start
4941 && execution_direction == EXEC_REVERSE)
4942 {
4943 /* We are stepping over a function call in reverse, and just
4944 hit the step-resume breakpoint at the start address of
4945 the function. Go back to single-stepping, which should
4946 take us back to the function call. */
4947 ecs->event_thread->stepping_over_breakpoint = 1;
4948 keep_going (ecs);
4949 return;
4950 }
4951 break;
4952
4953 case BPSTAT_WHAT_STOP_NOISY:
4954 if (debug_infrun)
4955 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4956 stop_print_frame = 1;
4957
4958 /* Assume the thread stopped for a breapoint. We'll still check
4959 whether a/the breakpoint is there when the thread is next
4960 resumed. */
4961 ecs->event_thread->stepping_over_breakpoint = 1;
4962
4963 stop_waiting (ecs);
4964 return;
4965
4966 case BPSTAT_WHAT_STOP_SILENT:
4967 if (debug_infrun)
4968 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4969 stop_print_frame = 0;
4970
4971 /* Assume the thread stopped for a breapoint. We'll still check
4972 whether a/the breakpoint is there when the thread is next
4973 resumed. */
4974 ecs->event_thread->stepping_over_breakpoint = 1;
4975 stop_waiting (ecs);
4976 return;
4977
4978 case BPSTAT_WHAT_HP_STEP_RESUME:
4979 if (debug_infrun)
4980 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4981
4982 delete_step_resume_breakpoint (ecs->event_thread);
4983 if (ecs->event_thread->step_after_step_resume_breakpoint)
4984 {
4985 /* Back when the step-resume breakpoint was inserted, we
4986 were trying to single-step off a breakpoint. Go back to
4987 doing that. */
4988 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4989 ecs->event_thread->stepping_over_breakpoint = 1;
4990 keep_going (ecs);
4991 return;
4992 }
4993 break;
4994
4995 case BPSTAT_WHAT_KEEP_CHECKING:
4996 break;
4997 }
4998
4999 /* If we stepped a permanent breakpoint and we had a high priority
5000 step-resume breakpoint for the address we stepped, but we didn't
5001 hit it, then we must have stepped into the signal handler. The
5002 step-resume was only necessary to catch the case of _not_
5003 stepping into the handler, so delete it, and fall through to
5004 checking whether the step finished. */
5005 if (ecs->event_thread->stepped_breakpoint)
5006 {
5007 struct breakpoint *sr_bp
5008 = ecs->event_thread->control.step_resume_breakpoint;
5009
5010 if (sr_bp != NULL
5011 && sr_bp->loc->permanent
5012 && sr_bp->type == bp_hp_step_resume
5013 && sr_bp->loc->address == ecs->event_thread->prev_pc)
5014 {
5015 if (debug_infrun)
5016 fprintf_unfiltered (gdb_stdlog,
5017 "infrun: stepped permanent breakpoint, stopped in "
5018 "handler\n");
5019 delete_step_resume_breakpoint (ecs->event_thread);
5020 ecs->event_thread->step_after_step_resume_breakpoint = 0;
5021 }
5022 }
5023
5024 /* We come here if we hit a breakpoint but should not stop for it.
5025 Possibly we also were stepping and should stop for that. So fall
5026 through and test for stepping. But, if not stepping, do not
5027 stop. */
5028
5029 /* In all-stop mode, if we're currently stepping but have stopped in
5030 some other thread, we need to switch back to the stepped thread. */
5031 if (switch_back_to_stepped_thread (ecs))
5032 return;
5033
5034 if (ecs->event_thread->control.step_resume_breakpoint)
5035 {
5036 if (debug_infrun)
5037 fprintf_unfiltered (gdb_stdlog,
5038 "infrun: step-resume breakpoint is inserted\n");
5039
5040 /* Having a step-resume breakpoint overrides anything
5041 else having to do with stepping commands until
5042 that breakpoint is reached. */
5043 keep_going (ecs);
5044 return;
5045 }
5046
5047 if (ecs->event_thread->control.step_range_end == 0)
5048 {
5049 if (debug_infrun)
5050 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
5051 /* Likewise if we aren't even stepping. */
5052 keep_going (ecs);
5053 return;
5054 }
5055
5056 /* Re-fetch current thread's frame in case the code above caused
5057 the frame cache to be re-initialized, making our FRAME variable
5058 a dangling pointer. */
5059 frame = get_current_frame ();
5060 gdbarch = get_frame_arch (frame);
5061 fill_in_stop_func (gdbarch, ecs);
5062
5063 /* If stepping through a line, keep going if still within it.
5064
5065 Note that step_range_end is the address of the first instruction
5066 beyond the step range, and NOT the address of the last instruction
5067 within it!
5068
5069 Note also that during reverse execution, we may be stepping
5070 through a function epilogue and therefore must detect when
5071 the current-frame changes in the middle of a line. */
5072
5073 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5074 && (execution_direction != EXEC_REVERSE
5075 || frame_id_eq (get_frame_id (frame),
5076 ecs->event_thread->control.step_frame_id)))
5077 {
5078 if (debug_infrun)
5079 fprintf_unfiltered
5080 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
5081 paddress (gdbarch, ecs->event_thread->control.step_range_start),
5082 paddress (gdbarch, ecs->event_thread->control.step_range_end));
5083
5084 /* Tentatively re-enable range stepping; `resume' disables it if
5085 necessary (e.g., if we're stepping over a breakpoint or we
5086 have software watchpoints). */
5087 ecs->event_thread->control.may_range_step = 1;
5088
5089 /* When stepping backward, stop at beginning of line range
5090 (unless it's the function entry point, in which case
5091 keep going back to the call point). */
5092 if (stop_pc == ecs->event_thread->control.step_range_start
5093 && stop_pc != ecs->stop_func_start
5094 && execution_direction == EXEC_REVERSE)
5095 end_stepping_range (ecs);
5096 else
5097 keep_going (ecs);
5098
5099 return;
5100 }
5101
5102 /* We stepped out of the stepping range. */
5103
5104 /* If we are stepping at the source level and entered the runtime
5105 loader dynamic symbol resolution code...
5106
5107 EXEC_FORWARD: we keep on single stepping until we exit the run
5108 time loader code and reach the callee's address.
5109
5110 EXEC_REVERSE: we've already executed the callee (backward), and
5111 the runtime loader code is handled just like any other
5112 undebuggable function call. Now we need only keep stepping
5113 backward through the trampoline code, and that's handled further
5114 down, so there is nothing for us to do here. */
5115
5116 if (execution_direction != EXEC_REVERSE
5117 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5118 && in_solib_dynsym_resolve_code (stop_pc))
5119 {
5120 CORE_ADDR pc_after_resolver =
5121 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
5122
5123 if (debug_infrun)
5124 fprintf_unfiltered (gdb_stdlog,
5125 "infrun: stepped into dynsym resolve code\n");
5126
5127 if (pc_after_resolver)
5128 {
5129 /* Set up a step-resume breakpoint at the address
5130 indicated by SKIP_SOLIB_RESOLVER. */
5131 struct symtab_and_line sr_sal;
5132
5133 init_sal (&sr_sal);
5134 sr_sal.pc = pc_after_resolver;
5135 sr_sal.pspace = get_frame_program_space (frame);
5136
5137 insert_step_resume_breakpoint_at_sal (gdbarch,
5138 sr_sal, null_frame_id);
5139 }
5140
5141 keep_going (ecs);
5142 return;
5143 }
5144
5145 if (ecs->event_thread->control.step_range_end != 1
5146 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5147 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5148 && get_frame_type (frame) == SIGTRAMP_FRAME)
5149 {
5150 if (debug_infrun)
5151 fprintf_unfiltered (gdb_stdlog,
5152 "infrun: stepped into signal trampoline\n");
5153 /* The inferior, while doing a "step" or "next", has ended up in
5154 a signal trampoline (either by a signal being delivered or by
5155 the signal handler returning). Just single-step until the
5156 inferior leaves the trampoline (either by calling the handler
5157 or returning). */
5158 keep_going (ecs);
5159 return;
5160 }
5161
5162 /* If we're in the return path from a shared library trampoline,
5163 we want to proceed through the trampoline when stepping. */
5164 /* macro/2012-04-25: This needs to come before the subroutine
5165 call check below as on some targets return trampolines look
5166 like subroutine calls (MIPS16 return thunks). */
5167 if (gdbarch_in_solib_return_trampoline (gdbarch,
5168 stop_pc, ecs->stop_func_name)
5169 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5170 {
5171 /* Determine where this trampoline returns. */
5172 CORE_ADDR real_stop_pc;
5173
5174 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5175
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog,
5178 "infrun: stepped into solib return tramp\n");
5179
5180 /* Only proceed through if we know where it's going. */
5181 if (real_stop_pc)
5182 {
5183 /* And put the step-breakpoint there and go until there. */
5184 struct symtab_and_line sr_sal;
5185
5186 init_sal (&sr_sal); /* initialize to zeroes */
5187 sr_sal.pc = real_stop_pc;
5188 sr_sal.section = find_pc_overlay (sr_sal.pc);
5189 sr_sal.pspace = get_frame_program_space (frame);
5190
5191 /* Do not specify what the fp should be when we stop since
5192 on some machines the prologue is where the new fp value
5193 is established. */
5194 insert_step_resume_breakpoint_at_sal (gdbarch,
5195 sr_sal, null_frame_id);
5196
5197 /* Restart without fiddling with the step ranges or
5198 other state. */
5199 keep_going (ecs);
5200 return;
5201 }
5202 }
5203
5204 /* Check for subroutine calls. The check for the current frame
5205 equalling the step ID is not necessary - the check of the
5206 previous frame's ID is sufficient - but it is a common case and
5207 cheaper than checking the previous frame's ID.
5208
5209 NOTE: frame_id_eq will never report two invalid frame IDs as
5210 being equal, so to get into this block, both the current and
5211 previous frame must have valid frame IDs. */
5212 /* The outer_frame_id check is a heuristic to detect stepping
5213 through startup code. If we step over an instruction which
5214 sets the stack pointer from an invalid value to a valid value,
5215 we may detect that as a subroutine call from the mythical
5216 "outermost" function. This could be fixed by marking
5217 outermost frames as !stack_p,code_p,special_p. Then the
5218 initial outermost frame, before sp was valid, would
5219 have code_addr == &_start. See the comment in frame_id_eq
5220 for more. */
5221 if (!frame_id_eq (get_stack_frame_id (frame),
5222 ecs->event_thread->control.step_stack_frame_id)
5223 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
5224 ecs->event_thread->control.step_stack_frame_id)
5225 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
5226 outer_frame_id)
5227 || (ecs->event_thread->control.step_start_function
5228 != find_pc_function (stop_pc)))))
5229 {
5230 CORE_ADDR real_stop_pc;
5231
5232 if (debug_infrun)
5233 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
5234
5235 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
5236 {
5237 /* I presume that step_over_calls is only 0 when we're
5238 supposed to be stepping at the assembly language level
5239 ("stepi"). Just stop. */
5240 /* And this works the same backward as frontward. MVS */
5241 end_stepping_range (ecs);
5242 return;
5243 }
5244
5245 /* Reverse stepping through solib trampolines. */
5246
5247 if (execution_direction == EXEC_REVERSE
5248 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
5249 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5250 || (ecs->stop_func_start == 0
5251 && in_solib_dynsym_resolve_code (stop_pc))))
5252 {
5253 /* Any solib trampoline code can be handled in reverse
5254 by simply continuing to single-step. We have already
5255 executed the solib function (backwards), and a few
5256 steps will take us back through the trampoline to the
5257 caller. */
5258 keep_going (ecs);
5259 return;
5260 }
5261
5262 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5263 {
5264 /* We're doing a "next".
5265
5266 Normal (forward) execution: set a breakpoint at the
5267 callee's return address (the address at which the caller
5268 will resume).
5269
5270 Reverse (backward) execution. set the step-resume
5271 breakpoint at the start of the function that we just
5272 stepped into (backwards), and continue to there. When we
5273 get there, we'll need to single-step back to the caller. */
5274
5275 if (execution_direction == EXEC_REVERSE)
5276 {
5277 /* If we're already at the start of the function, we've either
5278 just stepped backward into a single instruction function,
5279 or stepped back out of a signal handler to the first instruction
5280 of the function. Just keep going, which will single-step back
5281 to the caller. */
5282 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
5283 {
5284 struct symtab_and_line sr_sal;
5285
5286 /* Normal function call return (static or dynamic). */
5287 init_sal (&sr_sal);
5288 sr_sal.pc = ecs->stop_func_start;
5289 sr_sal.pspace = get_frame_program_space (frame);
5290 insert_step_resume_breakpoint_at_sal (gdbarch,
5291 sr_sal, null_frame_id);
5292 }
5293 }
5294 else
5295 insert_step_resume_breakpoint_at_caller (frame);
5296
5297 keep_going (ecs);
5298 return;
5299 }
5300
5301 /* If we are in a function call trampoline (a stub between the
5302 calling routine and the real function), locate the real
5303 function. That's what tells us (a) whether we want to step
5304 into it at all, and (b) what prologue we want to run to the
5305 end of, if we do step into it. */
5306 real_stop_pc = skip_language_trampoline (frame, stop_pc);
5307 if (real_stop_pc == 0)
5308 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5309 if (real_stop_pc != 0)
5310 ecs->stop_func_start = real_stop_pc;
5311
5312 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
5313 {
5314 struct symtab_and_line sr_sal;
5315
5316 init_sal (&sr_sal);
5317 sr_sal.pc = ecs->stop_func_start;
5318 sr_sal.pspace = get_frame_program_space (frame);
5319
5320 insert_step_resume_breakpoint_at_sal (gdbarch,
5321 sr_sal, null_frame_id);
5322 keep_going (ecs);
5323 return;
5324 }
5325
5326 /* If we have line number information for the function we are
5327 thinking of stepping into and the function isn't on the skip
5328 list, step into it.
5329
5330 If there are several symtabs at that PC (e.g. with include
5331 files), just want to know whether *any* of them have line
5332 numbers. find_pc_line handles this. */
5333 {
5334 struct symtab_and_line tmp_sal;
5335
5336 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5337 if (tmp_sal.line != 0
5338 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5339 &tmp_sal))
5340 {
5341 if (execution_direction == EXEC_REVERSE)
5342 handle_step_into_function_backward (gdbarch, ecs);
5343 else
5344 handle_step_into_function (gdbarch, ecs);
5345 return;
5346 }
5347 }
5348
5349 /* If we have no line number and the step-stop-if-no-debug is
5350 set, we stop the step so that the user has a chance to switch
5351 in assembly mode. */
5352 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5353 && step_stop_if_no_debug)
5354 {
5355 end_stepping_range (ecs);
5356 return;
5357 }
5358
5359 if (execution_direction == EXEC_REVERSE)
5360 {
5361 /* If we're already at the start of the function, we've either just
5362 stepped backward into a single instruction function without line
5363 number info, or stepped back out of a signal handler to the first
5364 instruction of the function without line number info. Just keep
5365 going, which will single-step back to the caller. */
5366 if (ecs->stop_func_start != stop_pc)
5367 {
5368 /* Set a breakpoint at callee's start address.
5369 From there we can step once and be back in the caller. */
5370 struct symtab_and_line sr_sal;
5371
5372 init_sal (&sr_sal);
5373 sr_sal.pc = ecs->stop_func_start;
5374 sr_sal.pspace = get_frame_program_space (frame);
5375 insert_step_resume_breakpoint_at_sal (gdbarch,
5376 sr_sal, null_frame_id);
5377 }
5378 }
5379 else
5380 /* Set a breakpoint at callee's return address (the address
5381 at which the caller will resume). */
5382 insert_step_resume_breakpoint_at_caller (frame);
5383
5384 keep_going (ecs);
5385 return;
5386 }
5387
5388 /* Reverse stepping through solib trampolines. */
5389
5390 if (execution_direction == EXEC_REVERSE
5391 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5392 {
5393 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5394 || (ecs->stop_func_start == 0
5395 && in_solib_dynsym_resolve_code (stop_pc)))
5396 {
5397 /* Any solib trampoline code can be handled in reverse
5398 by simply continuing to single-step. We have already
5399 executed the solib function (backwards), and a few
5400 steps will take us back through the trampoline to the
5401 caller. */
5402 keep_going (ecs);
5403 return;
5404 }
5405 else if (in_solib_dynsym_resolve_code (stop_pc))
5406 {
5407 /* Stepped backward into the solib dynsym resolver.
5408 Set a breakpoint at its start and continue, then
5409 one more step will take us out. */
5410 struct symtab_and_line sr_sal;
5411
5412 init_sal (&sr_sal);
5413 sr_sal.pc = ecs->stop_func_start;
5414 sr_sal.pspace = get_frame_program_space (frame);
5415 insert_step_resume_breakpoint_at_sal (gdbarch,
5416 sr_sal, null_frame_id);
5417 keep_going (ecs);
5418 return;
5419 }
5420 }
5421
5422 stop_pc_sal = find_pc_line (stop_pc, 0);
5423
5424 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5425 the trampoline processing logic, however, there are some trampolines
5426 that have no names, so we should do trampoline handling first. */
5427 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5428 && ecs->stop_func_name == NULL
5429 && stop_pc_sal.line == 0)
5430 {
5431 if (debug_infrun)
5432 fprintf_unfiltered (gdb_stdlog,
5433 "infrun: stepped into undebuggable function\n");
5434
5435 /* The inferior just stepped into, or returned to, an
5436 undebuggable function (where there is no debugging information
5437 and no line number corresponding to the address where the
5438 inferior stopped). Since we want to skip this kind of code,
5439 we keep going until the inferior returns from this
5440 function - unless the user has asked us not to (via
5441 set step-mode) or we no longer know how to get back
5442 to the call site. */
5443 if (step_stop_if_no_debug
5444 || !frame_id_p (frame_unwind_caller_id (frame)))
5445 {
5446 /* If we have no line number and the step-stop-if-no-debug
5447 is set, we stop the step so that the user has a chance to
5448 switch in assembly mode. */
5449 end_stepping_range (ecs);
5450 return;
5451 }
5452 else
5453 {
5454 /* Set a breakpoint at callee's return address (the address
5455 at which the caller will resume). */
5456 insert_step_resume_breakpoint_at_caller (frame);
5457 keep_going (ecs);
5458 return;
5459 }
5460 }
5461
5462 if (ecs->event_thread->control.step_range_end == 1)
5463 {
5464 /* It is stepi or nexti. We always want to stop stepping after
5465 one instruction. */
5466 if (debug_infrun)
5467 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5468 end_stepping_range (ecs);
5469 return;
5470 }
5471
5472 if (stop_pc_sal.line == 0)
5473 {
5474 /* We have no line number information. That means to stop
5475 stepping (does this always happen right after one instruction,
5476 when we do "s" in a function with no line numbers,
5477 or can this happen as a result of a return or longjmp?). */
5478 if (debug_infrun)
5479 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5480 end_stepping_range (ecs);
5481 return;
5482 }
5483
5484 /* Look for "calls" to inlined functions, part one. If the inline
5485 frame machinery detected some skipped call sites, we have entered
5486 a new inline function. */
5487
5488 if (frame_id_eq (get_frame_id (get_current_frame ()),
5489 ecs->event_thread->control.step_frame_id)
5490 && inline_skipped_frames (ecs->ptid))
5491 {
5492 struct symtab_and_line call_sal;
5493
5494 if (debug_infrun)
5495 fprintf_unfiltered (gdb_stdlog,
5496 "infrun: stepped into inlined function\n");
5497
5498 find_frame_sal (get_current_frame (), &call_sal);
5499
5500 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5501 {
5502 /* For "step", we're going to stop. But if the call site
5503 for this inlined function is on the same source line as
5504 we were previously stepping, go down into the function
5505 first. Otherwise stop at the call site. */
5506
5507 if (call_sal.line == ecs->event_thread->current_line
5508 && call_sal.symtab == ecs->event_thread->current_symtab)
5509 step_into_inline_frame (ecs->ptid);
5510
5511 end_stepping_range (ecs);
5512 return;
5513 }
5514 else
5515 {
5516 /* For "next", we should stop at the call site if it is on a
5517 different source line. Otherwise continue through the
5518 inlined function. */
5519 if (call_sal.line == ecs->event_thread->current_line
5520 && call_sal.symtab == ecs->event_thread->current_symtab)
5521 keep_going (ecs);
5522 else
5523 end_stepping_range (ecs);
5524 return;
5525 }
5526 }
5527
5528 /* Look for "calls" to inlined functions, part two. If we are still
5529 in the same real function we were stepping through, but we have
5530 to go further up to find the exact frame ID, we are stepping
5531 through a more inlined call beyond its call site. */
5532
5533 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5534 && !frame_id_eq (get_frame_id (get_current_frame ()),
5535 ecs->event_thread->control.step_frame_id)
5536 && stepped_in_from (get_current_frame (),
5537 ecs->event_thread->control.step_frame_id))
5538 {
5539 if (debug_infrun)
5540 fprintf_unfiltered (gdb_stdlog,
5541 "infrun: stepping through inlined function\n");
5542
5543 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5544 keep_going (ecs);
5545 else
5546 end_stepping_range (ecs);
5547 return;
5548 }
5549
5550 if ((stop_pc == stop_pc_sal.pc)
5551 && (ecs->event_thread->current_line != stop_pc_sal.line
5552 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5553 {
5554 /* We are at the start of a different line. So stop. Note that
5555 we don't stop if we step into the middle of a different line.
5556 That is said to make things like for (;;) statements work
5557 better. */
5558 if (debug_infrun)
5559 fprintf_unfiltered (gdb_stdlog,
5560 "infrun: stepped to a different line\n");
5561 end_stepping_range (ecs);
5562 return;
5563 }
5564
5565 /* We aren't done stepping.
5566
5567 Optimize by setting the stepping range to the line.
5568 (We might not be in the original line, but if we entered a
5569 new line in mid-statement, we continue stepping. This makes
5570 things like for(;;) statements work better.) */
5571
5572 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5573 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5574 ecs->event_thread->control.may_range_step = 1;
5575 set_step_info (frame, stop_pc_sal);
5576
5577 if (debug_infrun)
5578 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5579 keep_going (ecs);
5580 }
5581
5582 /* In all-stop mode, if we're currently stepping but have stopped in
5583 some other thread, we may need to switch back to the stepped
5584 thread. Returns true we set the inferior running, false if we left
5585 it stopped (and the event needs further processing). */
5586
5587 static int
5588 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5589 {
5590 if (!non_stop)
5591 {
5592 struct thread_info *tp;
5593 struct thread_info *stepping_thread;
5594 struct thread_info *step_over;
5595
5596 /* If any thread is blocked on some internal breakpoint, and we
5597 simply need to step over that breakpoint to get it going
5598 again, do that first. */
5599
5600 /* However, if we see an event for the stepping thread, then we
5601 know all other threads have been moved past their breakpoints
5602 already. Let the caller check whether the step is finished,
5603 etc., before deciding to move it past a breakpoint. */
5604 if (ecs->event_thread->control.step_range_end != 0)
5605 return 0;
5606
5607 /* Check if the current thread is blocked on an incomplete
5608 step-over, interrupted by a random signal. */
5609 if (ecs->event_thread->control.trap_expected
5610 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5611 {
5612 if (debug_infrun)
5613 {
5614 fprintf_unfiltered (gdb_stdlog,
5615 "infrun: need to finish step-over of [%s]\n",
5616 target_pid_to_str (ecs->event_thread->ptid));
5617 }
5618 keep_going (ecs);
5619 return 1;
5620 }
5621
5622 /* Check if the current thread is blocked by a single-step
5623 breakpoint of another thread. */
5624 if (ecs->hit_singlestep_breakpoint)
5625 {
5626 if (debug_infrun)
5627 {
5628 fprintf_unfiltered (gdb_stdlog,
5629 "infrun: need to step [%s] over single-step "
5630 "breakpoint\n",
5631 target_pid_to_str (ecs->ptid));
5632 }
5633 keep_going (ecs);
5634 return 1;
5635 }
5636
5637 /* Otherwise, we no longer expect a trap in the current thread.
5638 Clear the trap_expected flag before switching back -- this is
5639 what keep_going does as well, if we call it. */
5640 ecs->event_thread->control.trap_expected = 0;
5641
5642 /* Likewise, clear the signal if it should not be passed. */
5643 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5644 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5645
5646 /* If scheduler locking applies even if not stepping, there's no
5647 need to walk over threads. Above we've checked whether the
5648 current thread is stepping. If some other thread not the
5649 event thread is stepping, then it must be that scheduler
5650 locking is not in effect. */
5651 if (schedlock_applies (ecs->event_thread))
5652 return 0;
5653
5654 /* Look for the stepping/nexting thread, and check if any other
5655 thread other than the stepping thread needs to start a
5656 step-over. Do all step-overs before actually proceeding with
5657 step/next/etc. */
5658 stepping_thread = NULL;
5659 step_over = NULL;
5660 ALL_NON_EXITED_THREADS (tp)
5661 {
5662 /* Ignore threads of processes we're not resuming. */
5663 if (!sched_multi
5664 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5665 continue;
5666
5667 /* When stepping over a breakpoint, we lock all threads
5668 except the one that needs to move past the breakpoint.
5669 If a non-event thread has this set, the "incomplete
5670 step-over" check above should have caught it earlier. */
5671 gdb_assert (!tp->control.trap_expected);
5672
5673 /* Did we find the stepping thread? */
5674 if (tp->control.step_range_end)
5675 {
5676 /* Yep. There should only one though. */
5677 gdb_assert (stepping_thread == NULL);
5678
5679 /* The event thread is handled at the top, before we
5680 enter this loop. */
5681 gdb_assert (tp != ecs->event_thread);
5682
5683 /* If some thread other than the event thread is
5684 stepping, then scheduler locking can't be in effect,
5685 otherwise we wouldn't have resumed the current event
5686 thread in the first place. */
5687 gdb_assert (!schedlock_applies (tp));
5688
5689 stepping_thread = tp;
5690 }
5691 else if (thread_still_needs_step_over (tp))
5692 {
5693 step_over = tp;
5694
5695 /* At the top we've returned early if the event thread
5696 is stepping. If some other thread not the event
5697 thread is stepping, then scheduler locking can't be
5698 in effect, and we can resume this thread. No need to
5699 keep looking for the stepping thread then. */
5700 break;
5701 }
5702 }
5703
5704 if (step_over != NULL)
5705 {
5706 tp = step_over;
5707 if (debug_infrun)
5708 {
5709 fprintf_unfiltered (gdb_stdlog,
5710 "infrun: need to step-over [%s]\n",
5711 target_pid_to_str (tp->ptid));
5712 }
5713
5714 /* Only the stepping thread should have this set. */
5715 gdb_assert (tp->control.step_range_end == 0);
5716
5717 ecs->ptid = tp->ptid;
5718 ecs->event_thread = tp;
5719 switch_to_thread (ecs->ptid);
5720 keep_going (ecs);
5721 return 1;
5722 }
5723
5724 if (stepping_thread != NULL)
5725 {
5726 struct frame_info *frame;
5727 struct gdbarch *gdbarch;
5728
5729 tp = stepping_thread;
5730
5731 /* If the stepping thread exited, then don't try to switch
5732 back and resume it, which could fail in several different
5733 ways depending on the target. Instead, just keep going.
5734
5735 We can find a stepping dead thread in the thread list in
5736 two cases:
5737
5738 - The target supports thread exit events, and when the
5739 target tries to delete the thread from the thread list,
5740 inferior_ptid pointed at the exiting thread. In such
5741 case, calling delete_thread does not really remove the
5742 thread from the list; instead, the thread is left listed,
5743 with 'exited' state.
5744
5745 - The target's debug interface does not support thread
5746 exit events, and so we have no idea whatsoever if the
5747 previously stepping thread is still alive. For that
5748 reason, we need to synchronously query the target
5749 now. */
5750 if (is_exited (tp->ptid)
5751 || !target_thread_alive (tp->ptid))
5752 {
5753 if (debug_infrun)
5754 fprintf_unfiltered (gdb_stdlog,
5755 "infrun: not switching back to "
5756 "stepped thread, it has vanished\n");
5757
5758 delete_thread (tp->ptid);
5759 keep_going (ecs);
5760 return 1;
5761 }
5762
5763 if (debug_infrun)
5764 fprintf_unfiltered (gdb_stdlog,
5765 "infrun: switching back to stepped thread\n");
5766
5767 ecs->event_thread = tp;
5768 ecs->ptid = tp->ptid;
5769 context_switch (ecs->ptid);
5770
5771 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5772 frame = get_current_frame ();
5773 gdbarch = get_frame_arch (frame);
5774
5775 /* If the PC of the thread we were trying to single-step has
5776 changed, then that thread has trapped or been signaled,
5777 but the event has not been reported to GDB yet. Re-poll
5778 the target looking for this particular thread's event
5779 (i.e. temporarily enable schedlock) by:
5780
5781 - setting a break at the current PC
5782 - resuming that particular thread, only (by setting
5783 trap expected)
5784
5785 This prevents us continuously moving the single-step
5786 breakpoint forward, one instruction at a time,
5787 overstepping. */
5788
5789 if (stop_pc != tp->prev_pc)
5790 {
5791 ptid_t resume_ptid;
5792
5793 if (debug_infrun)
5794 fprintf_unfiltered (gdb_stdlog,
5795 "infrun: expected thread advanced also\n");
5796
5797 /* Clear the info of the previous step-over, as it's no
5798 longer valid. It's what keep_going would do too, if
5799 we called it. Must do this before trying to insert
5800 the sss breakpoint, otherwise if we were previously
5801 trying to step over this exact address in another
5802 thread, the breakpoint ends up not installed. */
5803 clear_step_over_info ();
5804
5805 insert_single_step_breakpoint (get_frame_arch (frame),
5806 get_frame_address_space (frame),
5807 stop_pc);
5808
5809 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
5810 do_target_resume (resume_ptid,
5811 currently_stepping (tp), GDB_SIGNAL_0);
5812 prepare_to_wait (ecs);
5813 }
5814 else
5815 {
5816 if (debug_infrun)
5817 fprintf_unfiltered (gdb_stdlog,
5818 "infrun: expected thread still "
5819 "hasn't advanced\n");
5820 keep_going (ecs);
5821 }
5822
5823 return 1;
5824 }
5825 }
5826 return 0;
5827 }
5828
5829 /* Is thread TP in the middle of single-stepping? */
5830
5831 static int
5832 currently_stepping (struct thread_info *tp)
5833 {
5834 return ((tp->control.step_range_end
5835 && tp->control.step_resume_breakpoint == NULL)
5836 || tp->control.trap_expected
5837 || tp->stepped_breakpoint
5838 || bpstat_should_step ());
5839 }
5840
5841 /* Inferior has stepped into a subroutine call with source code that
5842 we should not step over. Do step to the first line of code in
5843 it. */
5844
5845 static void
5846 handle_step_into_function (struct gdbarch *gdbarch,
5847 struct execution_control_state *ecs)
5848 {
5849 struct compunit_symtab *cust;
5850 struct symtab_and_line stop_func_sal, sr_sal;
5851
5852 fill_in_stop_func (gdbarch, ecs);
5853
5854 cust = find_pc_compunit_symtab (stop_pc);
5855 if (cust != NULL && compunit_language (cust) != language_asm)
5856 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5857 ecs->stop_func_start);
5858
5859 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5860 /* Use the step_resume_break to step until the end of the prologue,
5861 even if that involves jumps (as it seems to on the vax under
5862 4.2). */
5863 /* If the prologue ends in the middle of a source line, continue to
5864 the end of that source line (if it is still within the function).
5865 Otherwise, just go to end of prologue. */
5866 if (stop_func_sal.end
5867 && stop_func_sal.pc != ecs->stop_func_start
5868 && stop_func_sal.end < ecs->stop_func_end)
5869 ecs->stop_func_start = stop_func_sal.end;
5870
5871 /* Architectures which require breakpoint adjustment might not be able
5872 to place a breakpoint at the computed address. If so, the test
5873 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5874 ecs->stop_func_start to an address at which a breakpoint may be
5875 legitimately placed.
5876
5877 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5878 made, GDB will enter an infinite loop when stepping through
5879 optimized code consisting of VLIW instructions which contain
5880 subinstructions corresponding to different source lines. On
5881 FR-V, it's not permitted to place a breakpoint on any but the
5882 first subinstruction of a VLIW instruction. When a breakpoint is
5883 set, GDB will adjust the breakpoint address to the beginning of
5884 the VLIW instruction. Thus, we need to make the corresponding
5885 adjustment here when computing the stop address. */
5886
5887 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5888 {
5889 ecs->stop_func_start
5890 = gdbarch_adjust_breakpoint_address (gdbarch,
5891 ecs->stop_func_start);
5892 }
5893
5894 if (ecs->stop_func_start == stop_pc)
5895 {
5896 /* We are already there: stop now. */
5897 end_stepping_range (ecs);
5898 return;
5899 }
5900 else
5901 {
5902 /* Put the step-breakpoint there and go until there. */
5903 init_sal (&sr_sal); /* initialize to zeroes */
5904 sr_sal.pc = ecs->stop_func_start;
5905 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5906 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5907
5908 /* Do not specify what the fp should be when we stop since on
5909 some machines the prologue is where the new fp value is
5910 established. */
5911 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5912
5913 /* And make sure stepping stops right away then. */
5914 ecs->event_thread->control.step_range_end
5915 = ecs->event_thread->control.step_range_start;
5916 }
5917 keep_going (ecs);
5918 }
5919
5920 /* Inferior has stepped backward into a subroutine call with source
5921 code that we should not step over. Do step to the beginning of the
5922 last line of code in it. */
5923
5924 static void
5925 handle_step_into_function_backward (struct gdbarch *gdbarch,
5926 struct execution_control_state *ecs)
5927 {
5928 struct compunit_symtab *cust;
5929 struct symtab_and_line stop_func_sal;
5930
5931 fill_in_stop_func (gdbarch, ecs);
5932
5933 cust = find_pc_compunit_symtab (stop_pc);
5934 if (cust != NULL && compunit_language (cust) != language_asm)
5935 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5936 ecs->stop_func_start);
5937
5938 stop_func_sal = find_pc_line (stop_pc, 0);
5939
5940 /* OK, we're just going to keep stepping here. */
5941 if (stop_func_sal.pc == stop_pc)
5942 {
5943 /* We're there already. Just stop stepping now. */
5944 end_stepping_range (ecs);
5945 }
5946 else
5947 {
5948 /* Else just reset the step range and keep going.
5949 No step-resume breakpoint, they don't work for
5950 epilogues, which can have multiple entry paths. */
5951 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5952 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5953 keep_going (ecs);
5954 }
5955 return;
5956 }
5957
5958 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5959 This is used to both functions and to skip over code. */
5960
5961 static void
5962 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5963 struct symtab_and_line sr_sal,
5964 struct frame_id sr_id,
5965 enum bptype sr_type)
5966 {
5967 /* There should never be more than one step-resume or longjmp-resume
5968 breakpoint per thread, so we should never be setting a new
5969 step_resume_breakpoint when one is already active. */
5970 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5971 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5972
5973 if (debug_infrun)
5974 fprintf_unfiltered (gdb_stdlog,
5975 "infrun: inserting step-resume breakpoint at %s\n",
5976 paddress (gdbarch, sr_sal.pc));
5977
5978 inferior_thread ()->control.step_resume_breakpoint
5979 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5980 }
5981
5982 void
5983 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5984 struct symtab_and_line sr_sal,
5985 struct frame_id sr_id)
5986 {
5987 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5988 sr_sal, sr_id,
5989 bp_step_resume);
5990 }
5991
5992 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5993 This is used to skip a potential signal handler.
5994
5995 This is called with the interrupted function's frame. The signal
5996 handler, when it returns, will resume the interrupted function at
5997 RETURN_FRAME.pc. */
5998
5999 static void
6000 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
6001 {
6002 struct symtab_and_line sr_sal;
6003 struct gdbarch *gdbarch;
6004
6005 gdb_assert (return_frame != NULL);
6006 init_sal (&sr_sal); /* initialize to zeros */
6007
6008 gdbarch = get_frame_arch (return_frame);
6009 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
6010 sr_sal.section = find_pc_overlay (sr_sal.pc);
6011 sr_sal.pspace = get_frame_program_space (return_frame);
6012
6013 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
6014 get_stack_frame_id (return_frame),
6015 bp_hp_step_resume);
6016 }
6017
6018 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
6019 is used to skip a function after stepping into it (for "next" or if
6020 the called function has no debugging information).
6021
6022 The current function has almost always been reached by single
6023 stepping a call or return instruction. NEXT_FRAME belongs to the
6024 current function, and the breakpoint will be set at the caller's
6025 resume address.
6026
6027 This is a separate function rather than reusing
6028 insert_hp_step_resume_breakpoint_at_frame in order to avoid
6029 get_prev_frame, which may stop prematurely (see the implementation
6030 of frame_unwind_caller_id for an example). */
6031
6032 static void
6033 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
6034 {
6035 struct symtab_and_line sr_sal;
6036 struct gdbarch *gdbarch;
6037
6038 /* We shouldn't have gotten here if we don't know where the call site
6039 is. */
6040 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
6041
6042 init_sal (&sr_sal); /* initialize to zeros */
6043
6044 gdbarch = frame_unwind_caller_arch (next_frame);
6045 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
6046 frame_unwind_caller_pc (next_frame));
6047 sr_sal.section = find_pc_overlay (sr_sal.pc);
6048 sr_sal.pspace = frame_unwind_program_space (next_frame);
6049
6050 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
6051 frame_unwind_caller_id (next_frame));
6052 }
6053
6054 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
6055 new breakpoint at the target of a jmp_buf. The handling of
6056 longjmp-resume uses the same mechanisms used for handling
6057 "step-resume" breakpoints. */
6058
6059 static void
6060 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
6061 {
6062 /* There should never be more than one longjmp-resume breakpoint per
6063 thread, so we should never be setting a new
6064 longjmp_resume_breakpoint when one is already active. */
6065 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
6066
6067 if (debug_infrun)
6068 fprintf_unfiltered (gdb_stdlog,
6069 "infrun: inserting longjmp-resume breakpoint at %s\n",
6070 paddress (gdbarch, pc));
6071
6072 inferior_thread ()->control.exception_resume_breakpoint =
6073 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
6074 }
6075
6076 /* Insert an exception resume breakpoint. TP is the thread throwing
6077 the exception. The block B is the block of the unwinder debug hook
6078 function. FRAME is the frame corresponding to the call to this
6079 function. SYM is the symbol of the function argument holding the
6080 target PC of the exception. */
6081
6082 static void
6083 insert_exception_resume_breakpoint (struct thread_info *tp,
6084 const struct block *b,
6085 struct frame_info *frame,
6086 struct symbol *sym)
6087 {
6088 TRY
6089 {
6090 struct symbol *vsym;
6091 struct value *value;
6092 CORE_ADDR handler;
6093 struct breakpoint *bp;
6094
6095 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
6096 value = read_var_value (vsym, frame);
6097 /* If the value was optimized out, revert to the old behavior. */
6098 if (! value_optimized_out (value))
6099 {
6100 handler = value_as_address (value);
6101
6102 if (debug_infrun)
6103 fprintf_unfiltered (gdb_stdlog,
6104 "infrun: exception resume at %lx\n",
6105 (unsigned long) handler);
6106
6107 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6108 handler, bp_exception_resume);
6109
6110 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
6111 frame = NULL;
6112
6113 bp->thread = tp->num;
6114 inferior_thread ()->control.exception_resume_breakpoint = bp;
6115 }
6116 }
6117 CATCH (e, RETURN_MASK_ERROR)
6118 {
6119 /* We want to ignore errors here. */
6120 }
6121 END_CATCH
6122 }
6123
6124 /* A helper for check_exception_resume that sets an
6125 exception-breakpoint based on a SystemTap probe. */
6126
6127 static void
6128 insert_exception_resume_from_probe (struct thread_info *tp,
6129 const struct bound_probe *probe,
6130 struct frame_info *frame)
6131 {
6132 struct value *arg_value;
6133 CORE_ADDR handler;
6134 struct breakpoint *bp;
6135
6136 arg_value = probe_safe_evaluate_at_pc (frame, 1);
6137 if (!arg_value)
6138 return;
6139
6140 handler = value_as_address (arg_value);
6141
6142 if (debug_infrun)
6143 fprintf_unfiltered (gdb_stdlog,
6144 "infrun: exception resume at %s\n",
6145 paddress (get_objfile_arch (probe->objfile),
6146 handler));
6147
6148 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6149 handler, bp_exception_resume);
6150 bp->thread = tp->num;
6151 inferior_thread ()->control.exception_resume_breakpoint = bp;
6152 }
6153
6154 /* This is called when an exception has been intercepted. Check to
6155 see whether the exception's destination is of interest, and if so,
6156 set an exception resume breakpoint there. */
6157
6158 static void
6159 check_exception_resume (struct execution_control_state *ecs,
6160 struct frame_info *frame)
6161 {
6162 struct bound_probe probe;
6163 struct symbol *func;
6164
6165 /* First see if this exception unwinding breakpoint was set via a
6166 SystemTap probe point. If so, the probe has two arguments: the
6167 CFA and the HANDLER. We ignore the CFA, extract the handler, and
6168 set a breakpoint there. */
6169 probe = find_probe_by_pc (get_frame_pc (frame));
6170 if (probe.probe)
6171 {
6172 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
6173 return;
6174 }
6175
6176 func = get_frame_function (frame);
6177 if (!func)
6178 return;
6179
6180 TRY
6181 {
6182 const struct block *b;
6183 struct block_iterator iter;
6184 struct symbol *sym;
6185 int argno = 0;
6186
6187 /* The exception breakpoint is a thread-specific breakpoint on
6188 the unwinder's debug hook, declared as:
6189
6190 void _Unwind_DebugHook (void *cfa, void *handler);
6191
6192 The CFA argument indicates the frame to which control is
6193 about to be transferred. HANDLER is the destination PC.
6194
6195 We ignore the CFA and set a temporary breakpoint at HANDLER.
6196 This is not extremely efficient but it avoids issues in gdb
6197 with computing the DWARF CFA, and it also works even in weird
6198 cases such as throwing an exception from inside a signal
6199 handler. */
6200
6201 b = SYMBOL_BLOCK_VALUE (func);
6202 ALL_BLOCK_SYMBOLS (b, iter, sym)
6203 {
6204 if (!SYMBOL_IS_ARGUMENT (sym))
6205 continue;
6206
6207 if (argno == 0)
6208 ++argno;
6209 else
6210 {
6211 insert_exception_resume_breakpoint (ecs->event_thread,
6212 b, frame, sym);
6213 break;
6214 }
6215 }
6216 }
6217 CATCH (e, RETURN_MASK_ERROR)
6218 {
6219 }
6220 END_CATCH
6221 }
6222
6223 static void
6224 stop_waiting (struct execution_control_state *ecs)
6225 {
6226 if (debug_infrun)
6227 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
6228
6229 clear_step_over_info ();
6230
6231 /* Let callers know we don't want to wait for the inferior anymore. */
6232 ecs->wait_some_more = 0;
6233 }
6234
6235 /* Called when we should continue running the inferior, because the
6236 current event doesn't cause a user visible stop. This does the
6237 resuming part; waiting for the next event is done elsewhere. */
6238
6239 static void
6240 keep_going (struct execution_control_state *ecs)
6241 {
6242 /* Make sure normal_stop is called if we get a QUIT handled before
6243 reaching resume. */
6244 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6245
6246 /* Save the pc before execution, to compare with pc after stop. */
6247 ecs->event_thread->prev_pc
6248 = regcache_read_pc (get_thread_regcache (ecs->ptid));
6249
6250 if (ecs->event_thread->control.trap_expected
6251 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6252 {
6253 /* We haven't yet gotten our trap, and either: intercepted a
6254 non-signal event (e.g., a fork); or took a signal which we
6255 are supposed to pass through to the inferior. Simply
6256 continue. */
6257 discard_cleanups (old_cleanups);
6258 resume (ecs->event_thread->suspend.stop_signal);
6259 }
6260 else
6261 {
6262 struct regcache *regcache = get_current_regcache ();
6263 int remove_bp;
6264 int remove_wps;
6265
6266 /* Either the trap was not expected, but we are continuing
6267 anyway (if we got a signal, the user asked it be passed to
6268 the child)
6269 -- or --
6270 We got our expected trap, but decided we should resume from
6271 it.
6272
6273 We're going to run this baby now!
6274
6275 Note that insert_breakpoints won't try to re-insert
6276 already inserted breakpoints. Therefore, we don't
6277 care if breakpoints were already inserted, or not. */
6278
6279 /* If we need to step over a breakpoint, and we're not using
6280 displaced stepping to do so, insert all breakpoints
6281 (watchpoints, etc.) but the one we're stepping over, step one
6282 instruction, and then re-insert the breakpoint when that step
6283 is finished. */
6284
6285 remove_bp = (ecs->hit_singlestep_breakpoint
6286 || thread_still_needs_step_over (ecs->event_thread));
6287 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6288 && !target_have_steppable_watchpoint);
6289
6290 /* We can't use displaced stepping if we need to step past a
6291 watchpoint. The instruction copied to the scratch pad would
6292 still trigger the watchpoint. */
6293 if (remove_bp
6294 && (remove_wps
6295 || !use_displaced_stepping (get_regcache_arch (regcache))))
6296 {
6297 set_step_over_info (get_regcache_aspace (regcache),
6298 regcache_read_pc (regcache), remove_wps);
6299 }
6300 else if (remove_wps)
6301 set_step_over_info (NULL, 0, remove_wps);
6302 else
6303 clear_step_over_info ();
6304
6305 /* Stop stepping if inserting breakpoints fails. */
6306 TRY
6307 {
6308 insert_breakpoints ();
6309 }
6310 CATCH (e, RETURN_MASK_ERROR)
6311 {
6312 exception_print (gdb_stderr, e);
6313 stop_waiting (ecs);
6314 discard_cleanups (old_cleanups);
6315 return;
6316 }
6317 END_CATCH
6318
6319 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
6320
6321 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6322 explicitly specifies that such a signal should be delivered
6323 to the target program). Typically, that would occur when a
6324 user is debugging a target monitor on a simulator: the target
6325 monitor sets a breakpoint; the simulator encounters this
6326 breakpoint and halts the simulation handing control to GDB;
6327 GDB, noting that the stop address doesn't map to any known
6328 breakpoint, returns control back to the simulator; the
6329 simulator then delivers the hardware equivalent of a
6330 GDB_SIGNAL_TRAP to the program being debugged. */
6331 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6332 && !signal_program[ecs->event_thread->suspend.stop_signal])
6333 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6334
6335 discard_cleanups (old_cleanups);
6336 resume (ecs->event_thread->suspend.stop_signal);
6337 }
6338
6339 prepare_to_wait (ecs);
6340 }
6341
6342 /* This function normally comes after a resume, before
6343 handle_inferior_event exits. It takes care of any last bits of
6344 housekeeping, and sets the all-important wait_some_more flag. */
6345
6346 static void
6347 prepare_to_wait (struct execution_control_state *ecs)
6348 {
6349 if (debug_infrun)
6350 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
6351
6352 /* This is the old end of the while loop. Let everybody know we
6353 want to wait for the inferior some more and get called again
6354 soon. */
6355 ecs->wait_some_more = 1;
6356 }
6357
6358 /* We are done with the step range of a step/next/si/ni command.
6359 Called once for each n of a "step n" operation. */
6360
6361 static void
6362 end_stepping_range (struct execution_control_state *ecs)
6363 {
6364 ecs->event_thread->control.stop_step = 1;
6365 stop_waiting (ecs);
6366 }
6367
6368 /* Several print_*_reason functions to print why the inferior has stopped.
6369 We always print something when the inferior exits, or receives a signal.
6370 The rest of the cases are dealt with later on in normal_stop and
6371 print_it_typical. Ideally there should be a call to one of these
6372 print_*_reason functions functions from handle_inferior_event each time
6373 stop_waiting is called.
6374
6375 Note that we don't call these directly, instead we delegate that to
6376 the interpreters, through observers. Interpreters then call these
6377 with whatever uiout is right. */
6378
6379 void
6380 print_end_stepping_range_reason (struct ui_out *uiout)
6381 {
6382 /* For CLI-like interpreters, print nothing. */
6383
6384 if (ui_out_is_mi_like_p (uiout))
6385 {
6386 ui_out_field_string (uiout, "reason",
6387 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6388 }
6389 }
6390
6391 void
6392 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6393 {
6394 annotate_signalled ();
6395 if (ui_out_is_mi_like_p (uiout))
6396 ui_out_field_string
6397 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6398 ui_out_text (uiout, "\nProgram terminated with signal ");
6399 annotate_signal_name ();
6400 ui_out_field_string (uiout, "signal-name",
6401 gdb_signal_to_name (siggnal));
6402 annotate_signal_name_end ();
6403 ui_out_text (uiout, ", ");
6404 annotate_signal_string ();
6405 ui_out_field_string (uiout, "signal-meaning",
6406 gdb_signal_to_string (siggnal));
6407 annotate_signal_string_end ();
6408 ui_out_text (uiout, ".\n");
6409 ui_out_text (uiout, "The program no longer exists.\n");
6410 }
6411
6412 void
6413 print_exited_reason (struct ui_out *uiout, int exitstatus)
6414 {
6415 struct inferior *inf = current_inferior ();
6416 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6417
6418 annotate_exited (exitstatus);
6419 if (exitstatus)
6420 {
6421 if (ui_out_is_mi_like_p (uiout))
6422 ui_out_field_string (uiout, "reason",
6423 async_reason_lookup (EXEC_ASYNC_EXITED));
6424 ui_out_text (uiout, "[Inferior ");
6425 ui_out_text (uiout, plongest (inf->num));
6426 ui_out_text (uiout, " (");
6427 ui_out_text (uiout, pidstr);
6428 ui_out_text (uiout, ") exited with code ");
6429 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
6430 ui_out_text (uiout, "]\n");
6431 }
6432 else
6433 {
6434 if (ui_out_is_mi_like_p (uiout))
6435 ui_out_field_string
6436 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6437 ui_out_text (uiout, "[Inferior ");
6438 ui_out_text (uiout, plongest (inf->num));
6439 ui_out_text (uiout, " (");
6440 ui_out_text (uiout, pidstr);
6441 ui_out_text (uiout, ") exited normally]\n");
6442 }
6443 }
6444
6445 void
6446 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6447 {
6448 annotate_signal ();
6449
6450 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
6451 {
6452 struct thread_info *t = inferior_thread ();
6453
6454 ui_out_text (uiout, "\n[");
6455 ui_out_field_string (uiout, "thread-name",
6456 target_pid_to_str (t->ptid));
6457 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6458 ui_out_text (uiout, " stopped");
6459 }
6460 else
6461 {
6462 ui_out_text (uiout, "\nProgram received signal ");
6463 annotate_signal_name ();
6464 if (ui_out_is_mi_like_p (uiout))
6465 ui_out_field_string
6466 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
6467 ui_out_field_string (uiout, "signal-name",
6468 gdb_signal_to_name (siggnal));
6469 annotate_signal_name_end ();
6470 ui_out_text (uiout, ", ");
6471 annotate_signal_string ();
6472 ui_out_field_string (uiout, "signal-meaning",
6473 gdb_signal_to_string (siggnal));
6474 annotate_signal_string_end ();
6475 }
6476 ui_out_text (uiout, ".\n");
6477 }
6478
6479 void
6480 print_no_history_reason (struct ui_out *uiout)
6481 {
6482 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
6483 }
6484
6485 /* Print current location without a level number, if we have changed
6486 functions or hit a breakpoint. Print source line if we have one.
6487 bpstat_print contains the logic deciding in detail what to print,
6488 based on the event(s) that just occurred. */
6489
6490 void
6491 print_stop_event (struct target_waitstatus *ws)
6492 {
6493 int bpstat_ret;
6494 int source_flag;
6495 int do_frame_printing = 1;
6496 struct thread_info *tp = inferior_thread ();
6497
6498 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6499 switch (bpstat_ret)
6500 {
6501 case PRINT_UNKNOWN:
6502 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6503 should) carry around the function and does (or should) use
6504 that when doing a frame comparison. */
6505 if (tp->control.stop_step
6506 && frame_id_eq (tp->control.step_frame_id,
6507 get_frame_id (get_current_frame ()))
6508 && tp->control.step_start_function == find_pc_function (stop_pc))
6509 {
6510 /* Finished step, just print source line. */
6511 source_flag = SRC_LINE;
6512 }
6513 else
6514 {
6515 /* Print location and source line. */
6516 source_flag = SRC_AND_LOC;
6517 }
6518 break;
6519 case PRINT_SRC_AND_LOC:
6520 /* Print location and source line. */
6521 source_flag = SRC_AND_LOC;
6522 break;
6523 case PRINT_SRC_ONLY:
6524 source_flag = SRC_LINE;
6525 break;
6526 case PRINT_NOTHING:
6527 /* Something bogus. */
6528 source_flag = SRC_LINE;
6529 do_frame_printing = 0;
6530 break;
6531 default:
6532 internal_error (__FILE__, __LINE__, _("Unknown value."));
6533 }
6534
6535 /* The behavior of this routine with respect to the source
6536 flag is:
6537 SRC_LINE: Print only source line
6538 LOCATION: Print only location
6539 SRC_AND_LOC: Print location and source line. */
6540 if (do_frame_printing)
6541 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6542
6543 /* Display the auto-display expressions. */
6544 do_displays ();
6545 }
6546
6547 /* Here to return control to GDB when the inferior stops for real.
6548 Print appropriate messages, remove breakpoints, give terminal our modes.
6549
6550 STOP_PRINT_FRAME nonzero means print the executing frame
6551 (pc, function, args, file, line number and line text).
6552 BREAKPOINTS_FAILED nonzero means stop was due to error
6553 attempting to insert breakpoints. */
6554
6555 void
6556 normal_stop (void)
6557 {
6558 struct target_waitstatus last;
6559 ptid_t last_ptid;
6560 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6561
6562 get_last_target_status (&last_ptid, &last);
6563
6564 /* If an exception is thrown from this point on, make sure to
6565 propagate GDB's knowledge of the executing state to the
6566 frontend/user running state. A QUIT is an easy exception to see
6567 here, so do this before any filtered output. */
6568 if (!non_stop)
6569 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6570 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6571 && last.kind != TARGET_WAITKIND_EXITED
6572 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6573 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6574
6575 /* As we're presenting a stop, and potentially removing breakpoints,
6576 update the thread list so we can tell whether there are threads
6577 running on the target. With target remote, for example, we can
6578 only learn about new threads when we explicitly update the thread
6579 list. Do this before notifying the interpreters about signal
6580 stops, end of stepping ranges, etc., so that the "new thread"
6581 output is emitted before e.g., "Program received signal FOO",
6582 instead of after. */
6583 update_thread_list ();
6584
6585 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6586 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6587
6588 /* As with the notification of thread events, we want to delay
6589 notifying the user that we've switched thread context until
6590 the inferior actually stops.
6591
6592 There's no point in saying anything if the inferior has exited.
6593 Note that SIGNALLED here means "exited with a signal", not
6594 "received a signal".
6595
6596 Also skip saying anything in non-stop mode. In that mode, as we
6597 don't want GDB to switch threads behind the user's back, to avoid
6598 races where the user is typing a command to apply to thread x,
6599 but GDB switches to thread y before the user finishes entering
6600 the command, fetch_inferior_event installs a cleanup to restore
6601 the current thread back to the thread the user had selected right
6602 after this event is handled, so we're not really switching, only
6603 informing of a stop. */
6604 if (!non_stop
6605 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6606 && target_has_execution
6607 && last.kind != TARGET_WAITKIND_SIGNALLED
6608 && last.kind != TARGET_WAITKIND_EXITED
6609 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6610 {
6611 target_terminal_ours_for_output ();
6612 printf_filtered (_("[Switching to %s]\n"),
6613 target_pid_to_str (inferior_ptid));
6614 annotate_thread_changed ();
6615 previous_inferior_ptid = inferior_ptid;
6616 }
6617
6618 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6619 {
6620 gdb_assert (sync_execution || !target_can_async_p ());
6621
6622 target_terminal_ours_for_output ();
6623 printf_filtered (_("No unwaited-for children left.\n"));
6624 }
6625
6626 /* Note: this depends on the update_thread_list call above. */
6627 if (!breakpoints_should_be_inserted_now () && target_has_execution)
6628 {
6629 if (remove_breakpoints ())
6630 {
6631 target_terminal_ours_for_output ();
6632 printf_filtered (_("Cannot remove breakpoints because "
6633 "program is no longer writable.\nFurther "
6634 "execution is probably impossible.\n"));
6635 }
6636 }
6637
6638 /* If an auto-display called a function and that got a signal,
6639 delete that auto-display to avoid an infinite recursion. */
6640
6641 if (stopped_by_random_signal)
6642 disable_current_display ();
6643
6644 /* Notify observers if we finished a "step"-like command, etc. */
6645 if (target_has_execution
6646 && last.kind != TARGET_WAITKIND_SIGNALLED
6647 && last.kind != TARGET_WAITKIND_EXITED
6648 && inferior_thread ()->control.stop_step)
6649 {
6650 /* But not if in the middle of doing a "step n" operation for
6651 n > 1 */
6652 if (inferior_thread ()->step_multi)
6653 goto done;
6654
6655 observer_notify_end_stepping_range ();
6656 }
6657
6658 target_terminal_ours ();
6659 async_enable_stdin ();
6660
6661 /* Set the current source location. This will also happen if we
6662 display the frame below, but the current SAL will be incorrect
6663 during a user hook-stop function. */
6664 if (has_stack_frames () && !stop_stack_dummy)
6665 set_current_sal_from_frame (get_current_frame ());
6666
6667 /* Let the user/frontend see the threads as stopped, but do nothing
6668 if the thread was running an infcall. We may be e.g., evaluating
6669 a breakpoint condition. In that case, the thread had state
6670 THREAD_RUNNING before the infcall, and shall remain set to
6671 running, all without informing the user/frontend about state
6672 transition changes. If this is actually a call command, then the
6673 thread was originally already stopped, so there's no state to
6674 finish either. */
6675 if (target_has_execution && inferior_thread ()->control.in_infcall)
6676 discard_cleanups (old_chain);
6677 else
6678 do_cleanups (old_chain);
6679
6680 /* Look up the hook_stop and run it (CLI internally handles problem
6681 of stop_command's pre-hook not existing). */
6682 if (stop_command)
6683 catch_errors (hook_stop_stub, stop_command,
6684 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6685
6686 if (!has_stack_frames ())
6687 goto done;
6688
6689 if (last.kind == TARGET_WAITKIND_SIGNALLED
6690 || last.kind == TARGET_WAITKIND_EXITED)
6691 goto done;
6692
6693 /* Select innermost stack frame - i.e., current frame is frame 0,
6694 and current location is based on that.
6695 Don't do this on return from a stack dummy routine,
6696 or if the program has exited. */
6697
6698 if (!stop_stack_dummy)
6699 {
6700 select_frame (get_current_frame ());
6701
6702 /* If --batch-silent is enabled then there's no need to print the current
6703 source location, and to try risks causing an error message about
6704 missing source files. */
6705 if (stop_print_frame && !batch_silent)
6706 print_stop_event (&last);
6707 }
6708
6709 if (stop_stack_dummy == STOP_STACK_DUMMY)
6710 {
6711 /* Pop the empty frame that contains the stack dummy.
6712 This also restores inferior state prior to the call
6713 (struct infcall_suspend_state). */
6714 struct frame_info *frame = get_current_frame ();
6715
6716 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6717 frame_pop (frame);
6718 /* frame_pop() calls reinit_frame_cache as the last thing it
6719 does which means there's currently no selected frame. We
6720 don't need to re-establish a selected frame if the dummy call
6721 returns normally, that will be done by
6722 restore_infcall_control_state. However, we do have to handle
6723 the case where the dummy call is returning after being
6724 stopped (e.g. the dummy call previously hit a breakpoint).
6725 We can't know which case we have so just always re-establish
6726 a selected frame here. */
6727 select_frame (get_current_frame ());
6728 }
6729
6730 done:
6731 annotate_stopped ();
6732
6733 /* Suppress the stop observer if we're in the middle of:
6734
6735 - a step n (n > 1), as there still more steps to be done.
6736
6737 - a "finish" command, as the observer will be called in
6738 finish_command_continuation, so it can include the inferior
6739 function's return value.
6740
6741 - calling an inferior function, as we pretend we inferior didn't
6742 run at all. The return value of the call is handled by the
6743 expression evaluator, through call_function_by_hand. */
6744
6745 if (!target_has_execution
6746 || last.kind == TARGET_WAITKIND_SIGNALLED
6747 || last.kind == TARGET_WAITKIND_EXITED
6748 || last.kind == TARGET_WAITKIND_NO_RESUMED
6749 || (!(inferior_thread ()->step_multi
6750 && inferior_thread ()->control.stop_step)
6751 && !(inferior_thread ()->control.stop_bpstat
6752 && inferior_thread ()->control.proceed_to_finish)
6753 && !inferior_thread ()->control.in_infcall))
6754 {
6755 if (!ptid_equal (inferior_ptid, null_ptid))
6756 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6757 stop_print_frame);
6758 else
6759 observer_notify_normal_stop (NULL, stop_print_frame);
6760 }
6761
6762 if (target_has_execution)
6763 {
6764 if (last.kind != TARGET_WAITKIND_SIGNALLED
6765 && last.kind != TARGET_WAITKIND_EXITED)
6766 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6767 Delete any breakpoint that is to be deleted at the next stop. */
6768 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6769 }
6770
6771 /* Try to get rid of automatically added inferiors that are no
6772 longer needed. Keeping those around slows down things linearly.
6773 Note that this never removes the current inferior. */
6774 prune_inferiors ();
6775 }
6776
6777 static int
6778 hook_stop_stub (void *cmd)
6779 {
6780 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6781 return (0);
6782 }
6783 \f
6784 int
6785 signal_stop_state (int signo)
6786 {
6787 return signal_stop[signo];
6788 }
6789
6790 int
6791 signal_print_state (int signo)
6792 {
6793 return signal_print[signo];
6794 }
6795
6796 int
6797 signal_pass_state (int signo)
6798 {
6799 return signal_program[signo];
6800 }
6801
6802 static void
6803 signal_cache_update (int signo)
6804 {
6805 if (signo == -1)
6806 {
6807 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6808 signal_cache_update (signo);
6809
6810 return;
6811 }
6812
6813 signal_pass[signo] = (signal_stop[signo] == 0
6814 && signal_print[signo] == 0
6815 && signal_program[signo] == 1
6816 && signal_catch[signo] == 0);
6817 }
6818
6819 int
6820 signal_stop_update (int signo, int state)
6821 {
6822 int ret = signal_stop[signo];
6823
6824 signal_stop[signo] = state;
6825 signal_cache_update (signo);
6826 return ret;
6827 }
6828
6829 int
6830 signal_print_update (int signo, int state)
6831 {
6832 int ret = signal_print[signo];
6833
6834 signal_print[signo] = state;
6835 signal_cache_update (signo);
6836 return ret;
6837 }
6838
6839 int
6840 signal_pass_update (int signo, int state)
6841 {
6842 int ret = signal_program[signo];
6843
6844 signal_program[signo] = state;
6845 signal_cache_update (signo);
6846 return ret;
6847 }
6848
6849 /* Update the global 'signal_catch' from INFO and notify the
6850 target. */
6851
6852 void
6853 signal_catch_update (const unsigned int *info)
6854 {
6855 int i;
6856
6857 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6858 signal_catch[i] = info[i] > 0;
6859 signal_cache_update (-1);
6860 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6861 }
6862
6863 static void
6864 sig_print_header (void)
6865 {
6866 printf_filtered (_("Signal Stop\tPrint\tPass "
6867 "to program\tDescription\n"));
6868 }
6869
6870 static void
6871 sig_print_info (enum gdb_signal oursig)
6872 {
6873 const char *name = gdb_signal_to_name (oursig);
6874 int name_padding = 13 - strlen (name);
6875
6876 if (name_padding <= 0)
6877 name_padding = 0;
6878
6879 printf_filtered ("%s", name);
6880 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6881 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6882 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6883 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6884 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6885 }
6886
6887 /* Specify how various signals in the inferior should be handled. */
6888
6889 static void
6890 handle_command (char *args, int from_tty)
6891 {
6892 char **argv;
6893 int digits, wordlen;
6894 int sigfirst, signum, siglast;
6895 enum gdb_signal oursig;
6896 int allsigs;
6897 int nsigs;
6898 unsigned char *sigs;
6899 struct cleanup *old_chain;
6900
6901 if (args == NULL)
6902 {
6903 error_no_arg (_("signal to handle"));
6904 }
6905
6906 /* Allocate and zero an array of flags for which signals to handle. */
6907
6908 nsigs = (int) GDB_SIGNAL_LAST;
6909 sigs = (unsigned char *) alloca (nsigs);
6910 memset (sigs, 0, nsigs);
6911
6912 /* Break the command line up into args. */
6913
6914 argv = gdb_buildargv (args);
6915 old_chain = make_cleanup_freeargv (argv);
6916
6917 /* Walk through the args, looking for signal oursigs, signal names, and
6918 actions. Signal numbers and signal names may be interspersed with
6919 actions, with the actions being performed for all signals cumulatively
6920 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6921
6922 while (*argv != NULL)
6923 {
6924 wordlen = strlen (*argv);
6925 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6926 {;
6927 }
6928 allsigs = 0;
6929 sigfirst = siglast = -1;
6930
6931 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6932 {
6933 /* Apply action to all signals except those used by the
6934 debugger. Silently skip those. */
6935 allsigs = 1;
6936 sigfirst = 0;
6937 siglast = nsigs - 1;
6938 }
6939 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6940 {
6941 SET_SIGS (nsigs, sigs, signal_stop);
6942 SET_SIGS (nsigs, sigs, signal_print);
6943 }
6944 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6945 {
6946 UNSET_SIGS (nsigs, sigs, signal_program);
6947 }
6948 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6949 {
6950 SET_SIGS (nsigs, sigs, signal_print);
6951 }
6952 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6953 {
6954 SET_SIGS (nsigs, sigs, signal_program);
6955 }
6956 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6957 {
6958 UNSET_SIGS (nsigs, sigs, signal_stop);
6959 }
6960 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6961 {
6962 SET_SIGS (nsigs, sigs, signal_program);
6963 }
6964 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6965 {
6966 UNSET_SIGS (nsigs, sigs, signal_print);
6967 UNSET_SIGS (nsigs, sigs, signal_stop);
6968 }
6969 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6970 {
6971 UNSET_SIGS (nsigs, sigs, signal_program);
6972 }
6973 else if (digits > 0)
6974 {
6975 /* It is numeric. The numeric signal refers to our own
6976 internal signal numbering from target.h, not to host/target
6977 signal number. This is a feature; users really should be
6978 using symbolic names anyway, and the common ones like
6979 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6980
6981 sigfirst = siglast = (int)
6982 gdb_signal_from_command (atoi (*argv));
6983 if ((*argv)[digits] == '-')
6984 {
6985 siglast = (int)
6986 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6987 }
6988 if (sigfirst > siglast)
6989 {
6990 /* Bet he didn't figure we'd think of this case... */
6991 signum = sigfirst;
6992 sigfirst = siglast;
6993 siglast = signum;
6994 }
6995 }
6996 else
6997 {
6998 oursig = gdb_signal_from_name (*argv);
6999 if (oursig != GDB_SIGNAL_UNKNOWN)
7000 {
7001 sigfirst = siglast = (int) oursig;
7002 }
7003 else
7004 {
7005 /* Not a number and not a recognized flag word => complain. */
7006 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
7007 }
7008 }
7009
7010 /* If any signal numbers or symbol names were found, set flags for
7011 which signals to apply actions to. */
7012
7013 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
7014 {
7015 switch ((enum gdb_signal) signum)
7016 {
7017 case GDB_SIGNAL_TRAP:
7018 case GDB_SIGNAL_INT:
7019 if (!allsigs && !sigs[signum])
7020 {
7021 if (query (_("%s is used by the debugger.\n\
7022 Are you sure you want to change it? "),
7023 gdb_signal_to_name ((enum gdb_signal) signum)))
7024 {
7025 sigs[signum] = 1;
7026 }
7027 else
7028 {
7029 printf_unfiltered (_("Not confirmed, unchanged.\n"));
7030 gdb_flush (gdb_stdout);
7031 }
7032 }
7033 break;
7034 case GDB_SIGNAL_0:
7035 case GDB_SIGNAL_DEFAULT:
7036 case GDB_SIGNAL_UNKNOWN:
7037 /* Make sure that "all" doesn't print these. */
7038 break;
7039 default:
7040 sigs[signum] = 1;
7041 break;
7042 }
7043 }
7044
7045 argv++;
7046 }
7047
7048 for (signum = 0; signum < nsigs; signum++)
7049 if (sigs[signum])
7050 {
7051 signal_cache_update (-1);
7052 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
7053 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
7054
7055 if (from_tty)
7056 {
7057 /* Show the results. */
7058 sig_print_header ();
7059 for (; signum < nsigs; signum++)
7060 if (sigs[signum])
7061 sig_print_info (signum);
7062 }
7063
7064 break;
7065 }
7066
7067 do_cleanups (old_chain);
7068 }
7069
7070 /* Complete the "handle" command. */
7071
7072 static VEC (char_ptr) *
7073 handle_completer (struct cmd_list_element *ignore,
7074 const char *text, const char *word)
7075 {
7076 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
7077 static const char * const keywords[] =
7078 {
7079 "all",
7080 "stop",
7081 "ignore",
7082 "print",
7083 "pass",
7084 "nostop",
7085 "noignore",
7086 "noprint",
7087 "nopass",
7088 NULL,
7089 };
7090
7091 vec_signals = signal_completer (ignore, text, word);
7092 vec_keywords = complete_on_enum (keywords, word, word);
7093
7094 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
7095 VEC_free (char_ptr, vec_signals);
7096 VEC_free (char_ptr, vec_keywords);
7097 return return_val;
7098 }
7099
7100 enum gdb_signal
7101 gdb_signal_from_command (int num)
7102 {
7103 if (num >= 1 && num <= 15)
7104 return (enum gdb_signal) num;
7105 error (_("Only signals 1-15 are valid as numeric signals.\n\
7106 Use \"info signals\" for a list of symbolic signals."));
7107 }
7108
7109 /* Print current contents of the tables set by the handle command.
7110 It is possible we should just be printing signals actually used
7111 by the current target (but for things to work right when switching
7112 targets, all signals should be in the signal tables). */
7113
7114 static void
7115 signals_info (char *signum_exp, int from_tty)
7116 {
7117 enum gdb_signal oursig;
7118
7119 sig_print_header ();
7120
7121 if (signum_exp)
7122 {
7123 /* First see if this is a symbol name. */
7124 oursig = gdb_signal_from_name (signum_exp);
7125 if (oursig == GDB_SIGNAL_UNKNOWN)
7126 {
7127 /* No, try numeric. */
7128 oursig =
7129 gdb_signal_from_command (parse_and_eval_long (signum_exp));
7130 }
7131 sig_print_info (oursig);
7132 return;
7133 }
7134
7135 printf_filtered ("\n");
7136 /* These ugly casts brought to you by the native VAX compiler. */
7137 for (oursig = GDB_SIGNAL_FIRST;
7138 (int) oursig < (int) GDB_SIGNAL_LAST;
7139 oursig = (enum gdb_signal) ((int) oursig + 1))
7140 {
7141 QUIT;
7142
7143 if (oursig != GDB_SIGNAL_UNKNOWN
7144 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
7145 sig_print_info (oursig);
7146 }
7147
7148 printf_filtered (_("\nUse the \"handle\" command "
7149 "to change these tables.\n"));
7150 }
7151
7152 /* Check if it makes sense to read $_siginfo from the current thread
7153 at this point. If not, throw an error. */
7154
7155 static void
7156 validate_siginfo_access (void)
7157 {
7158 /* No current inferior, no siginfo. */
7159 if (ptid_equal (inferior_ptid, null_ptid))
7160 error (_("No thread selected."));
7161
7162 /* Don't try to read from a dead thread. */
7163 if (is_exited (inferior_ptid))
7164 error (_("The current thread has terminated"));
7165
7166 /* ... or from a spinning thread. */
7167 if (is_running (inferior_ptid))
7168 error (_("Selected thread is running."));
7169 }
7170
7171 /* The $_siginfo convenience variable is a bit special. We don't know
7172 for sure the type of the value until we actually have a chance to
7173 fetch the data. The type can change depending on gdbarch, so it is
7174 also dependent on which thread you have selected.
7175
7176 1. making $_siginfo be an internalvar that creates a new value on
7177 access.
7178
7179 2. making the value of $_siginfo be an lval_computed value. */
7180
7181 /* This function implements the lval_computed support for reading a
7182 $_siginfo value. */
7183
7184 static void
7185 siginfo_value_read (struct value *v)
7186 {
7187 LONGEST transferred;
7188
7189 validate_siginfo_access ();
7190
7191 transferred =
7192 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7193 NULL,
7194 value_contents_all_raw (v),
7195 value_offset (v),
7196 TYPE_LENGTH (value_type (v)));
7197
7198 if (transferred != TYPE_LENGTH (value_type (v)))
7199 error (_("Unable to read siginfo"));
7200 }
7201
7202 /* This function implements the lval_computed support for writing a
7203 $_siginfo value. */
7204
7205 static void
7206 siginfo_value_write (struct value *v, struct value *fromval)
7207 {
7208 LONGEST transferred;
7209
7210 validate_siginfo_access ();
7211
7212 transferred = target_write (&current_target,
7213 TARGET_OBJECT_SIGNAL_INFO,
7214 NULL,
7215 value_contents_all_raw (fromval),
7216 value_offset (v),
7217 TYPE_LENGTH (value_type (fromval)));
7218
7219 if (transferred != TYPE_LENGTH (value_type (fromval)))
7220 error (_("Unable to write siginfo"));
7221 }
7222
7223 static const struct lval_funcs siginfo_value_funcs =
7224 {
7225 siginfo_value_read,
7226 siginfo_value_write
7227 };
7228
7229 /* Return a new value with the correct type for the siginfo object of
7230 the current thread using architecture GDBARCH. Return a void value
7231 if there's no object available. */
7232
7233 static struct value *
7234 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7235 void *ignore)
7236 {
7237 if (target_has_stack
7238 && !ptid_equal (inferior_ptid, null_ptid)
7239 && gdbarch_get_siginfo_type_p (gdbarch))
7240 {
7241 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7242
7243 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
7244 }
7245
7246 return allocate_value (builtin_type (gdbarch)->builtin_void);
7247 }
7248
7249 \f
7250 /* infcall_suspend_state contains state about the program itself like its
7251 registers and any signal it received when it last stopped.
7252 This state must be restored regardless of how the inferior function call
7253 ends (either successfully, or after it hits a breakpoint or signal)
7254 if the program is to properly continue where it left off. */
7255
7256 struct infcall_suspend_state
7257 {
7258 struct thread_suspend_state thread_suspend;
7259 #if 0 /* Currently unused and empty structures are not valid C. */
7260 struct inferior_suspend_state inferior_suspend;
7261 #endif
7262
7263 /* Other fields: */
7264 CORE_ADDR stop_pc;
7265 struct regcache *registers;
7266
7267 /* Format of SIGINFO_DATA or NULL if it is not present. */
7268 struct gdbarch *siginfo_gdbarch;
7269
7270 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7271 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7272 content would be invalid. */
7273 gdb_byte *siginfo_data;
7274 };
7275
7276 struct infcall_suspend_state *
7277 save_infcall_suspend_state (void)
7278 {
7279 struct infcall_suspend_state *inf_state;
7280 struct thread_info *tp = inferior_thread ();
7281 #if 0
7282 struct inferior *inf = current_inferior ();
7283 #endif
7284 struct regcache *regcache = get_current_regcache ();
7285 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7286 gdb_byte *siginfo_data = NULL;
7287
7288 if (gdbarch_get_siginfo_type_p (gdbarch))
7289 {
7290 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7291 size_t len = TYPE_LENGTH (type);
7292 struct cleanup *back_to;
7293
7294 siginfo_data = xmalloc (len);
7295 back_to = make_cleanup (xfree, siginfo_data);
7296
7297 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7298 siginfo_data, 0, len) == len)
7299 discard_cleanups (back_to);
7300 else
7301 {
7302 /* Errors ignored. */
7303 do_cleanups (back_to);
7304 siginfo_data = NULL;
7305 }
7306 }
7307
7308 inf_state = XCNEW (struct infcall_suspend_state);
7309
7310 if (siginfo_data)
7311 {
7312 inf_state->siginfo_gdbarch = gdbarch;
7313 inf_state->siginfo_data = siginfo_data;
7314 }
7315
7316 inf_state->thread_suspend = tp->suspend;
7317 #if 0 /* Currently unused and empty structures are not valid C. */
7318 inf_state->inferior_suspend = inf->suspend;
7319 #endif
7320
7321 /* run_inferior_call will not use the signal due to its `proceed' call with
7322 GDB_SIGNAL_0 anyway. */
7323 tp->suspend.stop_signal = GDB_SIGNAL_0;
7324
7325 inf_state->stop_pc = stop_pc;
7326
7327 inf_state->registers = regcache_dup (regcache);
7328
7329 return inf_state;
7330 }
7331
7332 /* Restore inferior session state to INF_STATE. */
7333
7334 void
7335 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7336 {
7337 struct thread_info *tp = inferior_thread ();
7338 #if 0
7339 struct inferior *inf = current_inferior ();
7340 #endif
7341 struct regcache *regcache = get_current_regcache ();
7342 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7343
7344 tp->suspend = inf_state->thread_suspend;
7345 #if 0 /* Currently unused and empty structures are not valid C. */
7346 inf->suspend = inf_state->inferior_suspend;
7347 #endif
7348
7349 stop_pc = inf_state->stop_pc;
7350
7351 if (inf_state->siginfo_gdbarch == gdbarch)
7352 {
7353 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7354
7355 /* Errors ignored. */
7356 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7357 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
7358 }
7359
7360 /* The inferior can be gone if the user types "print exit(0)"
7361 (and perhaps other times). */
7362 if (target_has_execution)
7363 /* NB: The register write goes through to the target. */
7364 regcache_cpy (regcache, inf_state->registers);
7365
7366 discard_infcall_suspend_state (inf_state);
7367 }
7368
7369 static void
7370 do_restore_infcall_suspend_state_cleanup (void *state)
7371 {
7372 restore_infcall_suspend_state (state);
7373 }
7374
7375 struct cleanup *
7376 make_cleanup_restore_infcall_suspend_state
7377 (struct infcall_suspend_state *inf_state)
7378 {
7379 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
7380 }
7381
7382 void
7383 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7384 {
7385 regcache_xfree (inf_state->registers);
7386 xfree (inf_state->siginfo_data);
7387 xfree (inf_state);
7388 }
7389
7390 struct regcache *
7391 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
7392 {
7393 return inf_state->registers;
7394 }
7395
7396 /* infcall_control_state contains state regarding gdb's control of the
7397 inferior itself like stepping control. It also contains session state like
7398 the user's currently selected frame. */
7399
7400 struct infcall_control_state
7401 {
7402 struct thread_control_state thread_control;
7403 struct inferior_control_state inferior_control;
7404
7405 /* Other fields: */
7406 enum stop_stack_kind stop_stack_dummy;
7407 int stopped_by_random_signal;
7408 int stop_after_trap;
7409
7410 /* ID if the selected frame when the inferior function call was made. */
7411 struct frame_id selected_frame_id;
7412 };
7413
7414 /* Save all of the information associated with the inferior<==>gdb
7415 connection. */
7416
7417 struct infcall_control_state *
7418 save_infcall_control_state (void)
7419 {
7420 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
7421 struct thread_info *tp = inferior_thread ();
7422 struct inferior *inf = current_inferior ();
7423
7424 inf_status->thread_control = tp->control;
7425 inf_status->inferior_control = inf->control;
7426
7427 tp->control.step_resume_breakpoint = NULL;
7428 tp->control.exception_resume_breakpoint = NULL;
7429
7430 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7431 chain. If caller's caller is walking the chain, they'll be happier if we
7432 hand them back the original chain when restore_infcall_control_state is
7433 called. */
7434 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
7435
7436 /* Other fields: */
7437 inf_status->stop_stack_dummy = stop_stack_dummy;
7438 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7439 inf_status->stop_after_trap = stop_after_trap;
7440
7441 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7442
7443 return inf_status;
7444 }
7445
7446 static int
7447 restore_selected_frame (void *args)
7448 {
7449 struct frame_id *fid = (struct frame_id *) args;
7450 struct frame_info *frame;
7451
7452 frame = frame_find_by_id (*fid);
7453
7454 /* If inf_status->selected_frame_id is NULL, there was no previously
7455 selected frame. */
7456 if (frame == NULL)
7457 {
7458 warning (_("Unable to restore previously selected frame."));
7459 return 0;
7460 }
7461
7462 select_frame (frame);
7463
7464 return (1);
7465 }
7466
7467 /* Restore inferior session state to INF_STATUS. */
7468
7469 void
7470 restore_infcall_control_state (struct infcall_control_state *inf_status)
7471 {
7472 struct thread_info *tp = inferior_thread ();
7473 struct inferior *inf = current_inferior ();
7474
7475 if (tp->control.step_resume_breakpoint)
7476 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7477
7478 if (tp->control.exception_resume_breakpoint)
7479 tp->control.exception_resume_breakpoint->disposition
7480 = disp_del_at_next_stop;
7481
7482 /* Handle the bpstat_copy of the chain. */
7483 bpstat_clear (&tp->control.stop_bpstat);
7484
7485 tp->control = inf_status->thread_control;
7486 inf->control = inf_status->inferior_control;
7487
7488 /* Other fields: */
7489 stop_stack_dummy = inf_status->stop_stack_dummy;
7490 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7491 stop_after_trap = inf_status->stop_after_trap;
7492
7493 if (target_has_stack)
7494 {
7495 /* The point of catch_errors is that if the stack is clobbered,
7496 walking the stack might encounter a garbage pointer and
7497 error() trying to dereference it. */
7498 if (catch_errors
7499 (restore_selected_frame, &inf_status->selected_frame_id,
7500 "Unable to restore previously selected frame:\n",
7501 RETURN_MASK_ERROR) == 0)
7502 /* Error in restoring the selected frame. Select the innermost
7503 frame. */
7504 select_frame (get_current_frame ());
7505 }
7506
7507 xfree (inf_status);
7508 }
7509
7510 static void
7511 do_restore_infcall_control_state_cleanup (void *sts)
7512 {
7513 restore_infcall_control_state (sts);
7514 }
7515
7516 struct cleanup *
7517 make_cleanup_restore_infcall_control_state
7518 (struct infcall_control_state *inf_status)
7519 {
7520 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7521 }
7522
7523 void
7524 discard_infcall_control_state (struct infcall_control_state *inf_status)
7525 {
7526 if (inf_status->thread_control.step_resume_breakpoint)
7527 inf_status->thread_control.step_resume_breakpoint->disposition
7528 = disp_del_at_next_stop;
7529
7530 if (inf_status->thread_control.exception_resume_breakpoint)
7531 inf_status->thread_control.exception_resume_breakpoint->disposition
7532 = disp_del_at_next_stop;
7533
7534 /* See save_infcall_control_state for info on stop_bpstat. */
7535 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7536
7537 xfree (inf_status);
7538 }
7539 \f
7540 /* restore_inferior_ptid() will be used by the cleanup machinery
7541 to restore the inferior_ptid value saved in a call to
7542 save_inferior_ptid(). */
7543
7544 static void
7545 restore_inferior_ptid (void *arg)
7546 {
7547 ptid_t *saved_ptid_ptr = arg;
7548
7549 inferior_ptid = *saved_ptid_ptr;
7550 xfree (arg);
7551 }
7552
7553 /* Save the value of inferior_ptid so that it may be restored by a
7554 later call to do_cleanups(). Returns the struct cleanup pointer
7555 needed for later doing the cleanup. */
7556
7557 struct cleanup *
7558 save_inferior_ptid (void)
7559 {
7560 ptid_t *saved_ptid_ptr;
7561
7562 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7563 *saved_ptid_ptr = inferior_ptid;
7564 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7565 }
7566
7567 /* See infrun.h. */
7568
7569 void
7570 clear_exit_convenience_vars (void)
7571 {
7572 clear_internalvar (lookup_internalvar ("_exitsignal"));
7573 clear_internalvar (lookup_internalvar ("_exitcode"));
7574 }
7575 \f
7576
7577 /* User interface for reverse debugging:
7578 Set exec-direction / show exec-direction commands
7579 (returns error unless target implements to_set_exec_direction method). */
7580
7581 int execution_direction = EXEC_FORWARD;
7582 static const char exec_forward[] = "forward";
7583 static const char exec_reverse[] = "reverse";
7584 static const char *exec_direction = exec_forward;
7585 static const char *const exec_direction_names[] = {
7586 exec_forward,
7587 exec_reverse,
7588 NULL
7589 };
7590
7591 static void
7592 set_exec_direction_func (char *args, int from_tty,
7593 struct cmd_list_element *cmd)
7594 {
7595 if (target_can_execute_reverse)
7596 {
7597 if (!strcmp (exec_direction, exec_forward))
7598 execution_direction = EXEC_FORWARD;
7599 else if (!strcmp (exec_direction, exec_reverse))
7600 execution_direction = EXEC_REVERSE;
7601 }
7602 else
7603 {
7604 exec_direction = exec_forward;
7605 error (_("Target does not support this operation."));
7606 }
7607 }
7608
7609 static void
7610 show_exec_direction_func (struct ui_file *out, int from_tty,
7611 struct cmd_list_element *cmd, const char *value)
7612 {
7613 switch (execution_direction) {
7614 case EXEC_FORWARD:
7615 fprintf_filtered (out, _("Forward.\n"));
7616 break;
7617 case EXEC_REVERSE:
7618 fprintf_filtered (out, _("Reverse.\n"));
7619 break;
7620 default:
7621 internal_error (__FILE__, __LINE__,
7622 _("bogus execution_direction value: %d"),
7623 (int) execution_direction);
7624 }
7625 }
7626
7627 static void
7628 show_schedule_multiple (struct ui_file *file, int from_tty,
7629 struct cmd_list_element *c, const char *value)
7630 {
7631 fprintf_filtered (file, _("Resuming the execution of threads "
7632 "of all processes is %s.\n"), value);
7633 }
7634
7635 /* Implementation of `siginfo' variable. */
7636
7637 static const struct internalvar_funcs siginfo_funcs =
7638 {
7639 siginfo_make_value,
7640 NULL,
7641 NULL
7642 };
7643
7644 void
7645 _initialize_infrun (void)
7646 {
7647 int i;
7648 int numsigs;
7649 struct cmd_list_element *c;
7650
7651 add_info ("signals", signals_info, _("\
7652 What debugger does when program gets various signals.\n\
7653 Specify a signal as argument to print info on that signal only."));
7654 add_info_alias ("handle", "signals", 0);
7655
7656 c = add_com ("handle", class_run, handle_command, _("\
7657 Specify how to handle signals.\n\
7658 Usage: handle SIGNAL [ACTIONS]\n\
7659 Args are signals and actions to apply to those signals.\n\
7660 If no actions are specified, the current settings for the specified signals\n\
7661 will be displayed instead.\n\
7662 \n\
7663 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7664 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7665 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7666 The special arg \"all\" is recognized to mean all signals except those\n\
7667 used by the debugger, typically SIGTRAP and SIGINT.\n\
7668 \n\
7669 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7670 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7671 Stop means reenter debugger if this signal happens (implies print).\n\
7672 Print means print a message if this signal happens.\n\
7673 Pass means let program see this signal; otherwise program doesn't know.\n\
7674 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7675 Pass and Stop may be combined.\n\
7676 \n\
7677 Multiple signals may be specified. Signal numbers and signal names\n\
7678 may be interspersed with actions, with the actions being performed for\n\
7679 all signals cumulatively specified."));
7680 set_cmd_completer (c, handle_completer);
7681
7682 if (!dbx_commands)
7683 stop_command = add_cmd ("stop", class_obscure,
7684 not_just_help_class_command, _("\
7685 There is no `stop' command, but you can set a hook on `stop'.\n\
7686 This allows you to set a list of commands to be run each time execution\n\
7687 of the program stops."), &cmdlist);
7688
7689 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7690 Set inferior debugging."), _("\
7691 Show inferior debugging."), _("\
7692 When non-zero, inferior specific debugging is enabled."),
7693 NULL,
7694 show_debug_infrun,
7695 &setdebuglist, &showdebuglist);
7696
7697 add_setshow_boolean_cmd ("displaced", class_maintenance,
7698 &debug_displaced, _("\
7699 Set displaced stepping debugging."), _("\
7700 Show displaced stepping debugging."), _("\
7701 When non-zero, displaced stepping specific debugging is enabled."),
7702 NULL,
7703 show_debug_displaced,
7704 &setdebuglist, &showdebuglist);
7705
7706 add_setshow_boolean_cmd ("non-stop", no_class,
7707 &non_stop_1, _("\
7708 Set whether gdb controls the inferior in non-stop mode."), _("\
7709 Show whether gdb controls the inferior in non-stop mode."), _("\
7710 When debugging a multi-threaded program and this setting is\n\
7711 off (the default, also called all-stop mode), when one thread stops\n\
7712 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7713 all other threads in the program while you interact with the thread of\n\
7714 interest. When you continue or step a thread, you can allow the other\n\
7715 threads to run, or have them remain stopped, but while you inspect any\n\
7716 thread's state, all threads stop.\n\
7717 \n\
7718 In non-stop mode, when one thread stops, other threads can continue\n\
7719 to run freely. You'll be able to step each thread independently,\n\
7720 leave it stopped or free to run as needed."),
7721 set_non_stop,
7722 show_non_stop,
7723 &setlist,
7724 &showlist);
7725
7726 numsigs = (int) GDB_SIGNAL_LAST;
7727 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7728 signal_print = (unsigned char *)
7729 xmalloc (sizeof (signal_print[0]) * numsigs);
7730 signal_program = (unsigned char *)
7731 xmalloc (sizeof (signal_program[0]) * numsigs);
7732 signal_catch = (unsigned char *)
7733 xmalloc (sizeof (signal_catch[0]) * numsigs);
7734 signal_pass = (unsigned char *)
7735 xmalloc (sizeof (signal_pass[0]) * numsigs);
7736 for (i = 0; i < numsigs; i++)
7737 {
7738 signal_stop[i] = 1;
7739 signal_print[i] = 1;
7740 signal_program[i] = 1;
7741 signal_catch[i] = 0;
7742 }
7743
7744 /* Signals caused by debugger's own actions
7745 should not be given to the program afterwards. */
7746 signal_program[GDB_SIGNAL_TRAP] = 0;
7747 signal_program[GDB_SIGNAL_INT] = 0;
7748
7749 /* Signals that are not errors should not normally enter the debugger. */
7750 signal_stop[GDB_SIGNAL_ALRM] = 0;
7751 signal_print[GDB_SIGNAL_ALRM] = 0;
7752 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7753 signal_print[GDB_SIGNAL_VTALRM] = 0;
7754 signal_stop[GDB_SIGNAL_PROF] = 0;
7755 signal_print[GDB_SIGNAL_PROF] = 0;
7756 signal_stop[GDB_SIGNAL_CHLD] = 0;
7757 signal_print[GDB_SIGNAL_CHLD] = 0;
7758 signal_stop[GDB_SIGNAL_IO] = 0;
7759 signal_print[GDB_SIGNAL_IO] = 0;
7760 signal_stop[GDB_SIGNAL_POLL] = 0;
7761 signal_print[GDB_SIGNAL_POLL] = 0;
7762 signal_stop[GDB_SIGNAL_URG] = 0;
7763 signal_print[GDB_SIGNAL_URG] = 0;
7764 signal_stop[GDB_SIGNAL_WINCH] = 0;
7765 signal_print[GDB_SIGNAL_WINCH] = 0;
7766 signal_stop[GDB_SIGNAL_PRIO] = 0;
7767 signal_print[GDB_SIGNAL_PRIO] = 0;
7768
7769 /* These signals are used internally by user-level thread
7770 implementations. (See signal(5) on Solaris.) Like the above
7771 signals, a healthy program receives and handles them as part of
7772 its normal operation. */
7773 signal_stop[GDB_SIGNAL_LWP] = 0;
7774 signal_print[GDB_SIGNAL_LWP] = 0;
7775 signal_stop[GDB_SIGNAL_WAITING] = 0;
7776 signal_print[GDB_SIGNAL_WAITING] = 0;
7777 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7778 signal_print[GDB_SIGNAL_CANCEL] = 0;
7779
7780 /* Update cached state. */
7781 signal_cache_update (-1);
7782
7783 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7784 &stop_on_solib_events, _("\
7785 Set stopping for shared library events."), _("\
7786 Show stopping for shared library events."), _("\
7787 If nonzero, gdb will give control to the user when the dynamic linker\n\
7788 notifies gdb of shared library events. The most common event of interest\n\
7789 to the user would be loading/unloading of a new library."),
7790 set_stop_on_solib_events,
7791 show_stop_on_solib_events,
7792 &setlist, &showlist);
7793
7794 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7795 follow_fork_mode_kind_names,
7796 &follow_fork_mode_string, _("\
7797 Set debugger response to a program call of fork or vfork."), _("\
7798 Show debugger response to a program call of fork or vfork."), _("\
7799 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7800 parent - the original process is debugged after a fork\n\
7801 child - the new process is debugged after a fork\n\
7802 The unfollowed process will continue to run.\n\
7803 By default, the debugger will follow the parent process."),
7804 NULL,
7805 show_follow_fork_mode_string,
7806 &setlist, &showlist);
7807
7808 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7809 follow_exec_mode_names,
7810 &follow_exec_mode_string, _("\
7811 Set debugger response to a program call of exec."), _("\
7812 Show debugger response to a program call of exec."), _("\
7813 An exec call replaces the program image of a process.\n\
7814 \n\
7815 follow-exec-mode can be:\n\
7816 \n\
7817 new - the debugger creates a new inferior and rebinds the process\n\
7818 to this new inferior. The program the process was running before\n\
7819 the exec call can be restarted afterwards by restarting the original\n\
7820 inferior.\n\
7821 \n\
7822 same - the debugger keeps the process bound to the same inferior.\n\
7823 The new executable image replaces the previous executable loaded in\n\
7824 the inferior. Restarting the inferior after the exec call restarts\n\
7825 the executable the process was running after the exec call.\n\
7826 \n\
7827 By default, the debugger will use the same inferior."),
7828 NULL,
7829 show_follow_exec_mode_string,
7830 &setlist, &showlist);
7831
7832 add_setshow_enum_cmd ("scheduler-locking", class_run,
7833 scheduler_enums, &scheduler_mode, _("\
7834 Set mode for locking scheduler during execution."), _("\
7835 Show mode for locking scheduler during execution."), _("\
7836 off == no locking (threads may preempt at any time)\n\
7837 on == full locking (no thread except the current thread may run)\n\
7838 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
7839 In this mode, other threads may run during other commands."),
7840 set_schedlock_func, /* traps on target vector */
7841 show_scheduler_mode,
7842 &setlist, &showlist);
7843
7844 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7845 Set mode for resuming threads of all processes."), _("\
7846 Show mode for resuming threads of all processes."), _("\
7847 When on, execution commands (such as 'continue' or 'next') resume all\n\
7848 threads of all processes. When off (which is the default), execution\n\
7849 commands only resume the threads of the current process. The set of\n\
7850 threads that are resumed is further refined by the scheduler-locking\n\
7851 mode (see help set scheduler-locking)."),
7852 NULL,
7853 show_schedule_multiple,
7854 &setlist, &showlist);
7855
7856 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7857 Set mode of the step operation."), _("\
7858 Show mode of the step operation."), _("\
7859 When set, doing a step over a function without debug line information\n\
7860 will stop at the first instruction of that function. Otherwise, the\n\
7861 function is skipped and the step command stops at a different source line."),
7862 NULL,
7863 show_step_stop_if_no_debug,
7864 &setlist, &showlist);
7865
7866 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7867 &can_use_displaced_stepping, _("\
7868 Set debugger's willingness to use displaced stepping."), _("\
7869 Show debugger's willingness to use displaced stepping."), _("\
7870 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7871 supported by the target architecture. If off, gdb will not use displaced\n\
7872 stepping to step over breakpoints, even if such is supported by the target\n\
7873 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7874 if the target architecture supports it and non-stop mode is active, but will not\n\
7875 use it in all-stop mode (see help set non-stop)."),
7876 NULL,
7877 show_can_use_displaced_stepping,
7878 &setlist, &showlist);
7879
7880 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7881 &exec_direction, _("Set direction of execution.\n\
7882 Options are 'forward' or 'reverse'."),
7883 _("Show direction of execution (forward/reverse)."),
7884 _("Tells gdb whether to execute forward or backward."),
7885 set_exec_direction_func, show_exec_direction_func,
7886 &setlist, &showlist);
7887
7888 /* Set/show detach-on-fork: user-settable mode. */
7889
7890 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7891 Set whether gdb will detach the child of a fork."), _("\
7892 Show whether gdb will detach the child of a fork."), _("\
7893 Tells gdb whether to detach the child of a fork."),
7894 NULL, NULL, &setlist, &showlist);
7895
7896 /* Set/show disable address space randomization mode. */
7897
7898 add_setshow_boolean_cmd ("disable-randomization", class_support,
7899 &disable_randomization, _("\
7900 Set disabling of debuggee's virtual address space randomization."), _("\
7901 Show disabling of debuggee's virtual address space randomization."), _("\
7902 When this mode is on (which is the default), randomization of the virtual\n\
7903 address space is disabled. Standalone programs run with the randomization\n\
7904 enabled by default on some platforms."),
7905 &set_disable_randomization,
7906 &show_disable_randomization,
7907 &setlist, &showlist);
7908
7909 /* ptid initializations */
7910 inferior_ptid = null_ptid;
7911 target_last_wait_ptid = minus_one_ptid;
7912
7913 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7914 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7915 observer_attach_thread_exit (infrun_thread_thread_exit);
7916 observer_attach_inferior_exit (infrun_inferior_exit);
7917
7918 /* Explicitly create without lookup, since that tries to create a
7919 value with a void typed value, and when we get here, gdbarch
7920 isn't initialized yet. At this point, we're quite sure there
7921 isn't another convenience variable of the same name. */
7922 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7923
7924 add_setshow_boolean_cmd ("observer", no_class,
7925 &observer_mode_1, _("\
7926 Set whether gdb controls the inferior in observer mode."), _("\
7927 Show whether gdb controls the inferior in observer mode."), _("\
7928 In observer mode, GDB can get data from the inferior, but not\n\
7929 affect its execution. Registers and memory may not be changed,\n\
7930 breakpoints may not be set, and the program cannot be interrupted\n\
7931 or signalled."),
7932 set_observer_mode,
7933 show_observer_mode,
7934 &setlist,
7935 &showlist);
7936 }
This page took 0.230149 seconds and 4 git commands to generate.