* infrun.c (fetch_inferior_event): Only call normal_stop if not
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 struct thread_stepping_state;
77
78 static int currently_stepping (struct thread_stepping_state *tss);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (int);
83
84 void _initialize_infrun (void);
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95 }
96
97 /* In asynchronous mode, but simulating synchronous execution. */
98
99 int sync_execution = 0;
100
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
104
105 static ptid_t previous_inferior_ptid;
106
107 int debug_displaced = 0;
108 static void
109 show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113 }
114
115 static int debug_infrun = 0;
116 static void
117 show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121 }
122
123 /* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
142
143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
149 in_solib_dynsym_resolve_code() can generally be implemented in a
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
161
162 /* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170 #ifndef SOLIB_IN_DYNAMIC_LINKER
171 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172 #endif
173
174
175 /* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
178 #ifndef CANNOT_STEP_HW_WATCHPOINTS
179 #define CANNOT_STEP_HW_WATCHPOINTS 0
180 #else
181 #undef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 1
183 #endif
184
185 /* Tables of how to react to signals; the user sets them. */
186
187 static unsigned char *signal_stop;
188 static unsigned char *signal_print;
189 static unsigned char *signal_program;
190
191 #define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199 #define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
207 /* Value to pass to target_resume() to cause all threads to resume */
208
209 #define RESUME_ALL (pid_to_ptid (-1))
210
211 /* Command list pointer for the "stop" placeholder. */
212
213 static struct cmd_list_element *stop_command;
214
215 /* Function inferior was in as of last step command. */
216
217 static struct symbol *step_start_function;
218
219 /* Nonzero if we are presently stepping over a breakpoint.
220
221 If we hit a breakpoint or watchpoint, and then continue,
222 we need to single step the current thread with breakpoints
223 disabled, to avoid hitting the same breakpoint or
224 watchpoint again. And we should step just a single
225 thread and keep other threads stopped, so that
226 other threads don't miss breakpoints while they are removed.
227
228 So, this variable simultaneously means that we need to single
229 step the current thread, keep other threads stopped, and that
230 breakpoints should be removed while we step.
231
232 This variable is set either:
233 - in proceed, when we resume inferior on user's explicit request
234 - in keep_going, if handle_inferior_event decides we need to
235 step over breakpoint.
236
237 The variable is cleared in clear_proceed_status, called every
238 time before we call proceed. The proceed calls wait_for_inferior,
239 which calls handle_inferior_event in a loop, and until
240 wait_for_inferior exits, this variable is changed only by keep_going. */
241
242 static int stepping_over_breakpoint;
243
244 /* Nonzero if we want to give control to the user when we're notified
245 of shared library events by the dynamic linker. */
246 static int stop_on_solib_events;
247 static void
248 show_stop_on_solib_events (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
252 value);
253 }
254
255 /* Nonzero means expecting a trace trap
256 and should stop the inferior and return silently when it happens. */
257
258 int stop_after_trap;
259
260 /* Nonzero means expecting a trap and caller will handle it themselves.
261 It is used after attach, due to attaching to a process;
262 when running in the shell before the child program has been exec'd;
263 and when running some kinds of remote stuff (FIXME?). */
264
265 enum stop_kind stop_soon;
266
267 /* Nonzero if proceed is being used for a "finish" command or a similar
268 situation when stop_registers should be saved. */
269
270 int proceed_to_finish;
271
272 /* Save register contents here when about to pop a stack dummy frame,
273 if-and-only-if proceed_to_finish is set.
274 Thus this contains the return value from the called function (assuming
275 values are returned in a register). */
276
277 struct regcache *stop_registers;
278
279 /* Nonzero after stop if current stack frame should be printed. */
280
281 static int stop_print_frame;
282
283 /* Step-resume or longjmp-resume breakpoint. */
284 static struct breakpoint *step_resume_breakpoint = NULL;
285
286 /* This is a cached copy of the pid/waitstatus of the last event
287 returned by target_wait()/deprecated_target_wait_hook(). This
288 information is returned by get_last_target_status(). */
289 static ptid_t target_last_wait_ptid;
290 static struct target_waitstatus target_last_waitstatus;
291
292 /* Context-switchable data. */
293 struct thread_stepping_state
294 {
295 /* Should we step over breakpoint next time keep_going
296 is called? */
297 int stepping_over_breakpoint;
298 int current_line;
299 struct symtab *current_symtab;
300 int step_after_step_resume_breakpoint;
301 int stepping_through_solib_after_catch;
302 bpstat stepping_through_solib_catchpoints;
303 };
304
305 struct thread_stepping_state gtss;
306 struct thread_stepping_state *tss = &gtss;
307
308 static void context_switch (ptid_t ptid);
309
310 void init_thread_stepping_state (struct thread_stepping_state *tss);
311
312 void init_infwait_state (void);
313
314 /* This is used to remember when a fork, vfork or exec event
315 was caught by a catchpoint, and thus the event is to be
316 followed at the next resume of the inferior, and not
317 immediately. */
318 static struct
319 {
320 enum target_waitkind kind;
321 struct
322 {
323 ptid_t parent_pid;
324 ptid_t child_pid;
325 }
326 fork_event;
327 char *execd_pathname;
328 }
329 pending_follow;
330
331 static const char follow_fork_mode_child[] = "child";
332 static const char follow_fork_mode_parent[] = "parent";
333
334 static const char *follow_fork_mode_kind_names[] = {
335 follow_fork_mode_child,
336 follow_fork_mode_parent,
337 NULL
338 };
339
340 static const char *follow_fork_mode_string = follow_fork_mode_parent;
341 static void
342 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c, const char *value)
344 {
345 fprintf_filtered (file, _("\
346 Debugger response to a program call of fork or vfork is \"%s\".\n"),
347 value);
348 }
349 \f
350
351 static int
352 follow_fork (void)
353 {
354 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
355
356 return target_follow_fork (follow_child);
357 }
358
359 void
360 follow_inferior_reset_breakpoints (void)
361 {
362 /* Was there a step_resume breakpoint? (There was if the user
363 did a "next" at the fork() call.) If so, explicitly reset its
364 thread number.
365
366 step_resumes are a form of bp that are made to be per-thread.
367 Since we created the step_resume bp when the parent process
368 was being debugged, and now are switching to the child process,
369 from the breakpoint package's viewpoint, that's a switch of
370 "threads". We must update the bp's notion of which thread
371 it is for, or it'll be ignored when it triggers. */
372
373 if (step_resume_breakpoint)
374 breakpoint_re_set_thread (step_resume_breakpoint);
375
376 /* Reinsert all breakpoints in the child. The user may have set
377 breakpoints after catching the fork, in which case those
378 were never set in the child, but only in the parent. This makes
379 sure the inserted breakpoints match the breakpoint list. */
380
381 breakpoint_re_set ();
382 insert_breakpoints ();
383 }
384
385 /* EXECD_PATHNAME is assumed to be non-NULL. */
386
387 static void
388 follow_exec (ptid_t pid, char *execd_pathname)
389 {
390 ptid_t saved_pid = pid;
391 struct target_ops *tgt;
392
393 /* This is an exec event that we actually wish to pay attention to.
394 Refresh our symbol table to the newly exec'd program, remove any
395 momentary bp's, etc.
396
397 If there are breakpoints, they aren't really inserted now,
398 since the exec() transformed our inferior into a fresh set
399 of instructions.
400
401 We want to preserve symbolic breakpoints on the list, since
402 we have hopes that they can be reset after the new a.out's
403 symbol table is read.
404
405 However, any "raw" breakpoints must be removed from the list
406 (e.g., the solib bp's), since their address is probably invalid
407 now.
408
409 And, we DON'T want to call delete_breakpoints() here, since
410 that may write the bp's "shadow contents" (the instruction
411 value that was overwritten witha TRAP instruction). Since
412 we now have a new a.out, those shadow contents aren't valid. */
413 update_breakpoints_after_exec ();
414
415 /* If there was one, it's gone now. We cannot truly step-to-next
416 statement through an exec(). */
417 step_resume_breakpoint = NULL;
418 step_range_start = 0;
419 step_range_end = 0;
420
421 /* What is this a.out's name? */
422 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
423
424 /* We've followed the inferior through an exec. Therefore, the
425 inferior has essentially been killed & reborn. */
426
427 gdb_flush (gdb_stdout);
428 generic_mourn_inferior ();
429 /* Because mourn_inferior resets inferior_ptid. */
430 inferior_ptid = saved_pid;
431
432 if (gdb_sysroot && *gdb_sysroot)
433 {
434 char *name = alloca (strlen (gdb_sysroot)
435 + strlen (execd_pathname)
436 + 1);
437 strcpy (name, gdb_sysroot);
438 strcat (name, execd_pathname);
439 execd_pathname = name;
440 }
441
442 /* That a.out is now the one to use. */
443 exec_file_attach (execd_pathname, 0);
444
445 /* Reset the shared library package. This ensures that we get a
446 shlib event when the child reaches "_start", at which point the
447 dld will have had a chance to initialize the child. */
448 /* Also, loading a symbol file below may trigger symbol lookups, and
449 we don't want those to be satisfied by the libraries of the
450 previous incarnation of this process. */
451 no_shared_libraries (NULL, 0);
452
453 /* Load the main file's symbols. */
454 symbol_file_add_main (execd_pathname, 0);
455
456 #ifdef SOLIB_CREATE_INFERIOR_HOOK
457 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
458 #else
459 solib_create_inferior_hook ();
460 #endif
461
462 /* Reinsert all breakpoints. (Those which were symbolic have
463 been reset to the proper address in the new a.out, thanks
464 to symbol_file_command...) */
465 insert_breakpoints ();
466
467 /* The next resume of this inferior should bring it to the shlib
468 startup breakpoints. (If the user had also set bp's on
469 "main" from the old (parent) process, then they'll auto-
470 matically get reset there in the new process.) */
471 }
472
473 /* Non-zero if we just simulating a single-step. This is needed
474 because we cannot remove the breakpoints in the inferior process
475 until after the `wait' in `wait_for_inferior'. */
476 static int singlestep_breakpoints_inserted_p = 0;
477
478 /* The thread we inserted single-step breakpoints for. */
479 static ptid_t singlestep_ptid;
480
481 /* PC when we started this single-step. */
482 static CORE_ADDR singlestep_pc;
483
484 /* If another thread hit the singlestep breakpoint, we save the original
485 thread here so that we can resume single-stepping it later. */
486 static ptid_t saved_singlestep_ptid;
487 static int stepping_past_singlestep_breakpoint;
488
489 /* If not equal to null_ptid, this means that after stepping over breakpoint
490 is finished, we need to switch to deferred_step_ptid, and step it.
491
492 The use case is when one thread has hit a breakpoint, and then the user
493 has switched to another thread and issued 'step'. We need to step over
494 breakpoint in the thread which hit the breakpoint, but then continue
495 stepping the thread user has selected. */
496 static ptid_t deferred_step_ptid;
497 \f
498 /* Displaced stepping. */
499
500 /* In non-stop debugging mode, we must take special care to manage
501 breakpoints properly; in particular, the traditional strategy for
502 stepping a thread past a breakpoint it has hit is unsuitable.
503 'Displaced stepping' is a tactic for stepping one thread past a
504 breakpoint it has hit while ensuring that other threads running
505 concurrently will hit the breakpoint as they should.
506
507 The traditional way to step a thread T off a breakpoint in a
508 multi-threaded program in all-stop mode is as follows:
509
510 a0) Initially, all threads are stopped, and breakpoints are not
511 inserted.
512 a1) We single-step T, leaving breakpoints uninserted.
513 a2) We insert breakpoints, and resume all threads.
514
515 In non-stop debugging, however, this strategy is unsuitable: we
516 don't want to have to stop all threads in the system in order to
517 continue or step T past a breakpoint. Instead, we use displaced
518 stepping:
519
520 n0) Initially, T is stopped, other threads are running, and
521 breakpoints are inserted.
522 n1) We copy the instruction "under" the breakpoint to a separate
523 location, outside the main code stream, making any adjustments
524 to the instruction, register, and memory state as directed by
525 T's architecture.
526 n2) We single-step T over the instruction at its new location.
527 n3) We adjust the resulting register and memory state as directed
528 by T's architecture. This includes resetting T's PC to point
529 back into the main instruction stream.
530 n4) We resume T.
531
532 This approach depends on the following gdbarch methods:
533
534 - gdbarch_max_insn_length and gdbarch_displaced_step_location
535 indicate where to copy the instruction, and how much space must
536 be reserved there. We use these in step n1.
537
538 - gdbarch_displaced_step_copy_insn copies a instruction to a new
539 address, and makes any necessary adjustments to the instruction,
540 register contents, and memory. We use this in step n1.
541
542 - gdbarch_displaced_step_fixup adjusts registers and memory after
543 we have successfuly single-stepped the instruction, to yield the
544 same effect the instruction would have had if we had executed it
545 at its original address. We use this in step n3.
546
547 - gdbarch_displaced_step_free_closure provides cleanup.
548
549 The gdbarch_displaced_step_copy_insn and
550 gdbarch_displaced_step_fixup functions must be written so that
551 copying an instruction with gdbarch_displaced_step_copy_insn,
552 single-stepping across the copied instruction, and then applying
553 gdbarch_displaced_insn_fixup should have the same effects on the
554 thread's memory and registers as stepping the instruction in place
555 would have. Exactly which responsibilities fall to the copy and
556 which fall to the fixup is up to the author of those functions.
557
558 See the comments in gdbarch.sh for details.
559
560 Note that displaced stepping and software single-step cannot
561 currently be used in combination, although with some care I think
562 they could be made to. Software single-step works by placing
563 breakpoints on all possible subsequent instructions; if the
564 displaced instruction is a PC-relative jump, those breakpoints
565 could fall in very strange places --- on pages that aren't
566 executable, or at addresses that are not proper instruction
567 boundaries. (We do generally let other threads run while we wait
568 to hit the software single-step breakpoint, and they might
569 encounter such a corrupted instruction.) One way to work around
570 this would be to have gdbarch_displaced_step_copy_insn fully
571 simulate the effect of PC-relative instructions (and return NULL)
572 on architectures that use software single-stepping.
573
574 In non-stop mode, we can have independent and simultaneous step
575 requests, so more than one thread may need to simultaneously step
576 over a breakpoint. The current implementation assumes there is
577 only one scratch space per process. In this case, we have to
578 serialize access to the scratch space. If thread A wants to step
579 over a breakpoint, but we are currently waiting for some other
580 thread to complete a displaced step, we leave thread A stopped and
581 place it in the displaced_step_request_queue. Whenever a displaced
582 step finishes, we pick the next thread in the queue and start a new
583 displaced step operation on it. See displaced_step_prepare and
584 displaced_step_fixup for details. */
585
586 /* If this is not null_ptid, this is the thread carrying out a
587 displaced single-step. This thread's state will require fixing up
588 once it has completed its step. */
589 static ptid_t displaced_step_ptid;
590
591 struct displaced_step_request
592 {
593 ptid_t ptid;
594 struct displaced_step_request *next;
595 };
596
597 /* A queue of pending displaced stepping requests. */
598 struct displaced_step_request *displaced_step_request_queue;
599
600 /* The architecture the thread had when we stepped it. */
601 static struct gdbarch *displaced_step_gdbarch;
602
603 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
604 for post-step cleanup. */
605 static struct displaced_step_closure *displaced_step_closure;
606
607 /* The address of the original instruction, and the copy we made. */
608 static CORE_ADDR displaced_step_original, displaced_step_copy;
609
610 /* Saved contents of copy area. */
611 static gdb_byte *displaced_step_saved_copy;
612
613 /* When this is non-zero, we are allowed to use displaced stepping, if
614 the architecture supports it. When this is zero, we use
615 traditional the hold-and-step approach. */
616 int can_use_displaced_stepping = 1;
617 static void
618 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
619 struct cmd_list_element *c,
620 const char *value)
621 {
622 fprintf_filtered (file, _("\
623 Debugger's willingness to use displaced stepping to step over "
624 "breakpoints is %s.\n"), value);
625 }
626
627 /* Return non-zero if displaced stepping is enabled, and can be used
628 with GDBARCH. */
629 static int
630 use_displaced_stepping (struct gdbarch *gdbarch)
631 {
632 return (can_use_displaced_stepping
633 && gdbarch_displaced_step_copy_insn_p (gdbarch));
634 }
635
636 /* Clean out any stray displaced stepping state. */
637 static void
638 displaced_step_clear (void)
639 {
640 /* Indicate that there is no cleanup pending. */
641 displaced_step_ptid = null_ptid;
642
643 if (displaced_step_closure)
644 {
645 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
646 displaced_step_closure);
647 displaced_step_closure = NULL;
648 }
649 }
650
651 static void
652 cleanup_displaced_step_closure (void *ptr)
653 {
654 struct displaced_step_closure *closure = ptr;
655
656 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
657 }
658
659 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
660 void
661 displaced_step_dump_bytes (struct ui_file *file,
662 const gdb_byte *buf,
663 size_t len)
664 {
665 int i;
666
667 for (i = 0; i < len; i++)
668 fprintf_unfiltered (file, "%02x ", buf[i]);
669 fputs_unfiltered ("\n", file);
670 }
671
672 /* Prepare to single-step, using displaced stepping.
673
674 Note that we cannot use displaced stepping when we have a signal to
675 deliver. If we have a signal to deliver and an instruction to step
676 over, then after the step, there will be no indication from the
677 target whether the thread entered a signal handler or ignored the
678 signal and stepped over the instruction successfully --- both cases
679 result in a simple SIGTRAP. In the first case we mustn't do a
680 fixup, and in the second case we must --- but we can't tell which.
681 Comments in the code for 'random signals' in handle_inferior_event
682 explain how we handle this case instead.
683
684 Returns 1 if preparing was successful -- this thread is going to be
685 stepped now; or 0 if displaced stepping this thread got queued. */
686 static int
687 displaced_step_prepare (ptid_t ptid)
688 {
689 struct cleanup *old_cleanups;
690 struct regcache *regcache = get_thread_regcache (ptid);
691 struct gdbarch *gdbarch = get_regcache_arch (regcache);
692 CORE_ADDR original, copy;
693 ULONGEST len;
694 struct displaced_step_closure *closure;
695
696 /* We should never reach this function if the architecture does not
697 support displaced stepping. */
698 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
699
700 /* For the first cut, we're displaced stepping one thread at a
701 time. */
702
703 if (!ptid_equal (displaced_step_ptid, null_ptid))
704 {
705 /* Already waiting for a displaced step to finish. Defer this
706 request and place in queue. */
707 struct displaced_step_request *req, *new_req;
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: defering step of %s\n",
712 target_pid_to_str (ptid));
713
714 new_req = xmalloc (sizeof (*new_req));
715 new_req->ptid = ptid;
716 new_req->next = NULL;
717
718 if (displaced_step_request_queue)
719 {
720 for (req = displaced_step_request_queue;
721 req && req->next;
722 req = req->next)
723 ;
724 req->next = new_req;
725 }
726 else
727 displaced_step_request_queue = new_req;
728
729 return 0;
730 }
731 else
732 {
733 if (debug_displaced)
734 fprintf_unfiltered (gdb_stdlog,
735 "displaced: stepping %s now\n",
736 target_pid_to_str (ptid));
737 }
738
739 displaced_step_clear ();
740
741 original = regcache_read_pc (regcache);
742
743 copy = gdbarch_displaced_step_location (gdbarch);
744 len = gdbarch_max_insn_length (gdbarch);
745
746 /* Save the original contents of the copy area. */
747 displaced_step_saved_copy = xmalloc (len);
748 old_cleanups = make_cleanup (free_current_contents,
749 &displaced_step_saved_copy);
750 read_memory (copy, displaced_step_saved_copy, len);
751 if (debug_displaced)
752 {
753 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
754 paddr_nz (copy));
755 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
756 };
757
758 closure = gdbarch_displaced_step_copy_insn (gdbarch,
759 original, copy, regcache);
760
761 /* We don't support the fully-simulated case at present. */
762 gdb_assert (closure);
763
764 make_cleanup (cleanup_displaced_step_closure, closure);
765
766 /* Resume execution at the copy. */
767 regcache_write_pc (regcache, copy);
768
769 discard_cleanups (old_cleanups);
770
771 if (debug_displaced)
772 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
773 paddr_nz (copy));
774
775 /* Save the information we need to fix things up if the step
776 succeeds. */
777 displaced_step_ptid = ptid;
778 displaced_step_gdbarch = gdbarch;
779 displaced_step_closure = closure;
780 displaced_step_original = original;
781 displaced_step_copy = copy;
782 return 1;
783 }
784
785 static void
786 displaced_step_clear_cleanup (void *ignore)
787 {
788 displaced_step_clear ();
789 }
790
791 static void
792 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
793 {
794 struct cleanup *ptid_cleanup = save_inferior_ptid ();
795 inferior_ptid = ptid;
796 write_memory (memaddr, myaddr, len);
797 do_cleanups (ptid_cleanup);
798 }
799
800 static void
801 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
802 {
803 struct cleanup *old_cleanups;
804
805 /* Was this event for the pid we displaced? */
806 if (ptid_equal (displaced_step_ptid, null_ptid)
807 || ! ptid_equal (displaced_step_ptid, event_ptid))
808 return;
809
810 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
811
812 /* Restore the contents of the copy area. */
813 {
814 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
815 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
816 displaced_step_saved_copy, len);
817 if (debug_displaced)
818 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
819 paddr_nz (displaced_step_copy));
820 }
821
822 /* Did the instruction complete successfully? */
823 if (signal == TARGET_SIGNAL_TRAP)
824 {
825 /* Fix up the resulting state. */
826 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
827 displaced_step_closure,
828 displaced_step_original,
829 displaced_step_copy,
830 get_thread_regcache (displaced_step_ptid));
831 }
832 else
833 {
834 /* Since the instruction didn't complete, all we can do is
835 relocate the PC. */
836 struct regcache *regcache = get_thread_regcache (event_ptid);
837 CORE_ADDR pc = regcache_read_pc (regcache);
838 pc = displaced_step_original + (pc - displaced_step_copy);
839 regcache_write_pc (regcache, pc);
840 }
841
842 do_cleanups (old_cleanups);
843
844 /* Are there any pending displaced stepping requests? If so, run
845 one now. */
846 if (displaced_step_request_queue)
847 {
848 struct displaced_step_request *head;
849 ptid_t ptid;
850
851 head = displaced_step_request_queue;
852 ptid = head->ptid;
853 displaced_step_request_queue = head->next;
854 xfree (head);
855
856 if (debug_displaced)
857 fprintf_unfiltered (gdb_stdlog,
858 "displaced: stepping queued %s now\n",
859 target_pid_to_str (ptid));
860
861
862 displaced_step_ptid = null_ptid;
863 displaced_step_prepare (ptid);
864 target_resume (ptid, 1, TARGET_SIGNAL_0);
865 }
866 }
867
868 \f
869 /* Resuming. */
870
871 /* Things to clean up if we QUIT out of resume (). */
872 static void
873 resume_cleanups (void *ignore)
874 {
875 normal_stop ();
876 }
877
878 static const char schedlock_off[] = "off";
879 static const char schedlock_on[] = "on";
880 static const char schedlock_step[] = "step";
881 static const char *scheduler_enums[] = {
882 schedlock_off,
883 schedlock_on,
884 schedlock_step,
885 NULL
886 };
887 static const char *scheduler_mode = schedlock_off;
888 static void
889 show_scheduler_mode (struct ui_file *file, int from_tty,
890 struct cmd_list_element *c, const char *value)
891 {
892 fprintf_filtered (file, _("\
893 Mode for locking scheduler during execution is \"%s\".\n"),
894 value);
895 }
896
897 static void
898 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
899 {
900 if (!target_can_lock_scheduler)
901 {
902 scheduler_mode = schedlock_off;
903 error (_("Target '%s' cannot support this command."), target_shortname);
904 }
905 }
906
907
908 /* Resume the inferior, but allow a QUIT. This is useful if the user
909 wants to interrupt some lengthy single-stepping operation
910 (for child processes, the SIGINT goes to the inferior, and so
911 we get a SIGINT random_signal, but for remote debugging and perhaps
912 other targets, that's not true).
913
914 STEP nonzero if we should step (zero to continue instead).
915 SIG is the signal to give the inferior (zero for none). */
916 void
917 resume (int step, enum target_signal sig)
918 {
919 int should_resume = 1;
920 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
921 struct regcache *regcache = get_current_regcache ();
922 struct gdbarch *gdbarch = get_regcache_arch (regcache);
923 CORE_ADDR pc = regcache_read_pc (regcache);
924 QUIT;
925
926 if (debug_infrun)
927 fprintf_unfiltered (gdb_stdlog,
928 "infrun: resume (step=%d, signal=%d), "
929 "stepping_over_breakpoint=%d\n",
930 step, sig, stepping_over_breakpoint);
931
932 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
933 over an instruction that causes a page fault without triggering
934 a hardware watchpoint. The kernel properly notices that it shouldn't
935 stop, because the hardware watchpoint is not triggered, but it forgets
936 the step request and continues the program normally.
937 Work around the problem by removing hardware watchpoints if a step is
938 requested, GDB will check for a hardware watchpoint trigger after the
939 step anyway. */
940 if (CANNOT_STEP_HW_WATCHPOINTS && step)
941 remove_hw_watchpoints ();
942
943
944 /* Normally, by the time we reach `resume', the breakpoints are either
945 removed or inserted, as appropriate. The exception is if we're sitting
946 at a permanent breakpoint; we need to step over it, but permanent
947 breakpoints can't be removed. So we have to test for it here. */
948 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
949 {
950 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
951 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
952 else
953 error (_("\
954 The program is stopped at a permanent breakpoint, but GDB does not know\n\
955 how to step past a permanent breakpoint on this architecture. Try using\n\
956 a command like `return' or `jump' to continue execution."));
957 }
958
959 /* If enabled, step over breakpoints by executing a copy of the
960 instruction at a different address.
961
962 We can't use displaced stepping when we have a signal to deliver;
963 the comments for displaced_step_prepare explain why. The
964 comments in the handle_inferior event for dealing with 'random
965 signals' explain what we do instead. */
966 if (use_displaced_stepping (gdbarch)
967 && stepping_over_breakpoint
968 && sig == TARGET_SIGNAL_0)
969 {
970 if (!displaced_step_prepare (inferior_ptid))
971 {
972 /* Got placed in displaced stepping queue. Will be resumed
973 later when all the currently queued displaced stepping
974 requests finish. */
975 discard_cleanups (old_cleanups);
976 return;
977 }
978 }
979
980 if (step && gdbarch_software_single_step_p (gdbarch))
981 {
982 /* Do it the hard way, w/temp breakpoints */
983 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
984 {
985 /* ...and don't ask hardware to do it. */
986 step = 0;
987 /* and do not pull these breakpoints until after a `wait' in
988 `wait_for_inferior' */
989 singlestep_breakpoints_inserted_p = 1;
990 singlestep_ptid = inferior_ptid;
991 singlestep_pc = pc;
992 }
993 }
994
995 /* If there were any forks/vforks/execs that were caught and are
996 now to be followed, then do so. */
997 switch (pending_follow.kind)
998 {
999 case TARGET_WAITKIND_FORKED:
1000 case TARGET_WAITKIND_VFORKED:
1001 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1002 if (follow_fork ())
1003 should_resume = 0;
1004 break;
1005
1006 case TARGET_WAITKIND_EXECD:
1007 /* follow_exec is called as soon as the exec event is seen. */
1008 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1009 break;
1010
1011 default:
1012 break;
1013 }
1014
1015 /* Install inferior's terminal modes. */
1016 target_terminal_inferior ();
1017
1018 if (should_resume)
1019 {
1020 ptid_t resume_ptid;
1021
1022 resume_ptid = RESUME_ALL; /* Default */
1023
1024 /* If STEP is set, it's a request to use hardware stepping
1025 facilities. But in that case, we should never
1026 use singlestep breakpoint. */
1027 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1028
1029 if (singlestep_breakpoints_inserted_p
1030 && stepping_past_singlestep_breakpoint)
1031 {
1032 /* The situation here is as follows. In thread T1 we wanted to
1033 single-step. Lacking hardware single-stepping we've
1034 set breakpoint at the PC of the next instruction -- call it
1035 P. After resuming, we've hit that breakpoint in thread T2.
1036 Now we've removed original breakpoint, inserted breakpoint
1037 at P+1, and try to step to advance T2 past breakpoint.
1038 We need to step only T2, as if T1 is allowed to freely run,
1039 it can run past P, and if other threads are allowed to run,
1040 they can hit breakpoint at P+1, and nested hits of single-step
1041 breakpoints is not something we'd want -- that's complicated
1042 to support, and has no value. */
1043 resume_ptid = inferior_ptid;
1044 }
1045
1046 if ((step || singlestep_breakpoints_inserted_p)
1047 && stepping_over_breakpoint)
1048 {
1049 /* We're allowing a thread to run past a breakpoint it has
1050 hit, by single-stepping the thread with the breakpoint
1051 removed. In which case, we need to single-step only this
1052 thread, and keep others stopped, as they can miss this
1053 breakpoint if allowed to run.
1054
1055 The current code actually removes all breakpoints when
1056 doing this, not just the one being stepped over, so if we
1057 let other threads run, we can actually miss any
1058 breakpoint, not just the one at PC. */
1059 resume_ptid = inferior_ptid;
1060 }
1061
1062 if (non_stop)
1063 {
1064 /* With non-stop mode on, threads are always handled
1065 individually. */
1066 resume_ptid = inferior_ptid;
1067 }
1068 else if ((scheduler_mode == schedlock_on)
1069 || (scheduler_mode == schedlock_step
1070 && (step || singlestep_breakpoints_inserted_p)))
1071 {
1072 /* User-settable 'scheduler' mode requires solo thread resume. */
1073 resume_ptid = inferior_ptid;
1074 }
1075
1076 if (gdbarch_cannot_step_breakpoint (gdbarch))
1077 {
1078 /* Most targets can step a breakpoint instruction, thus
1079 executing it normally. But if this one cannot, just
1080 continue and we will hit it anyway. */
1081 if (step && breakpoint_inserted_here_p (pc))
1082 step = 0;
1083 }
1084
1085 if (debug_displaced
1086 && use_displaced_stepping (gdbarch)
1087 && stepping_over_breakpoint)
1088 {
1089 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1090 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1091 gdb_byte buf[4];
1092
1093 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1094 paddr_nz (actual_pc));
1095 read_memory (actual_pc, buf, sizeof (buf));
1096 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1097 }
1098
1099 target_resume (resume_ptid, step, sig);
1100 }
1101
1102 discard_cleanups (old_cleanups);
1103 }
1104 \f
1105 /* Proceeding. */
1106
1107 /* Clear out all variables saying what to do when inferior is continued.
1108 First do this, then set the ones you want, then call `proceed'. */
1109
1110 void
1111 clear_proceed_status (void)
1112 {
1113 stepping_over_breakpoint = 0;
1114 step_range_start = 0;
1115 step_range_end = 0;
1116 step_frame_id = null_frame_id;
1117 step_over_calls = STEP_OVER_UNDEBUGGABLE;
1118 stop_after_trap = 0;
1119 stop_soon = NO_STOP_QUIETLY;
1120 proceed_to_finish = 0;
1121 breakpoint_proceeded = 1; /* We're about to proceed... */
1122
1123 if (stop_registers)
1124 {
1125 regcache_xfree (stop_registers);
1126 stop_registers = NULL;
1127 }
1128
1129 /* Discard any remaining commands or status from previous stop. */
1130 bpstat_clear (&stop_bpstat);
1131 }
1132
1133 /* This should be suitable for any targets that support threads. */
1134
1135 static int
1136 prepare_to_proceed (int step)
1137 {
1138 ptid_t wait_ptid;
1139 struct target_waitstatus wait_status;
1140
1141 /* Get the last target status returned by target_wait(). */
1142 get_last_target_status (&wait_ptid, &wait_status);
1143
1144 /* Make sure we were stopped at a breakpoint. */
1145 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1146 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1147 {
1148 return 0;
1149 }
1150
1151 /* Switched over from WAIT_PID. */
1152 if (!ptid_equal (wait_ptid, minus_one_ptid)
1153 && !ptid_equal (inferior_ptid, wait_ptid))
1154 {
1155 struct regcache *regcache = get_thread_regcache (wait_ptid);
1156
1157 if (breakpoint_here_p (regcache_read_pc (regcache)))
1158 {
1159 /* If stepping, remember current thread to switch back to. */
1160 if (step)
1161 deferred_step_ptid = inferior_ptid;
1162
1163 /* Switch back to WAIT_PID thread. */
1164 switch_to_thread (wait_ptid);
1165
1166 /* We return 1 to indicate that there is a breakpoint here,
1167 so we need to step over it before continuing to avoid
1168 hitting it straight away. */
1169 return 1;
1170 }
1171 }
1172
1173 return 0;
1174 }
1175
1176 /* Record the pc of the program the last time it stopped. This is
1177 just used internally by wait_for_inferior, but need to be preserved
1178 over calls to it and cleared when the inferior is started. */
1179 static CORE_ADDR prev_pc;
1180
1181 /* Basic routine for continuing the program in various fashions.
1182
1183 ADDR is the address to resume at, or -1 for resume where stopped.
1184 SIGGNAL is the signal to give it, or 0 for none,
1185 or -1 for act according to how it stopped.
1186 STEP is nonzero if should trap after one instruction.
1187 -1 means return after that and print nothing.
1188 You should probably set various step_... variables
1189 before calling here, if you are stepping.
1190
1191 You should call clear_proceed_status before calling proceed. */
1192
1193 void
1194 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1195 {
1196 struct regcache *regcache = get_current_regcache ();
1197 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1198 CORE_ADDR pc = regcache_read_pc (regcache);
1199 int oneproc = 0;
1200
1201 if (step > 0)
1202 step_start_function = find_pc_function (pc);
1203 if (step < 0)
1204 stop_after_trap = 1;
1205
1206 if (addr == (CORE_ADDR) -1)
1207 {
1208 if (pc == stop_pc && breakpoint_here_p (pc))
1209 /* There is a breakpoint at the address we will resume at,
1210 step one instruction before inserting breakpoints so that
1211 we do not stop right away (and report a second hit at this
1212 breakpoint). */
1213 oneproc = 1;
1214 else if (gdbarch_single_step_through_delay_p (gdbarch)
1215 && gdbarch_single_step_through_delay (gdbarch,
1216 get_current_frame ()))
1217 /* We stepped onto an instruction that needs to be stepped
1218 again before re-inserting the breakpoint, do so. */
1219 oneproc = 1;
1220 }
1221 else
1222 {
1223 regcache_write_pc (regcache, addr);
1224 }
1225
1226 if (debug_infrun)
1227 fprintf_unfiltered (gdb_stdlog,
1228 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1229 paddr_nz (addr), siggnal, step);
1230
1231 if (non_stop)
1232 /* In non-stop, each thread is handled individually. The context
1233 must already be set to the right thread here. */
1234 ;
1235 else
1236 {
1237 /* In a multi-threaded task we may select another thread and
1238 then continue or step.
1239
1240 But if the old thread was stopped at a breakpoint, it will
1241 immediately cause another breakpoint stop without any
1242 execution (i.e. it will report a breakpoint hit incorrectly).
1243 So we must step over it first.
1244
1245 prepare_to_proceed checks the current thread against the
1246 thread that reported the most recent event. If a step-over
1247 is required it returns TRUE and sets the current thread to
1248 the old thread. */
1249 if (prepare_to_proceed (step))
1250 oneproc = 1;
1251 }
1252
1253 if (oneproc)
1254 {
1255 stepping_over_breakpoint = 1;
1256 /* If displaced stepping is enabled, we can step over the
1257 breakpoint without hitting it, so leave all breakpoints
1258 inserted. Otherwise we need to disable all breakpoints, step
1259 one instruction, and then re-add them when that step is
1260 finished. */
1261 if (!use_displaced_stepping (gdbarch))
1262 remove_breakpoints ();
1263 }
1264
1265 /* We can insert breakpoints if we're not trying to step over one,
1266 or if we are stepping over one but we're using displaced stepping
1267 to do so. */
1268 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
1269 insert_breakpoints ();
1270
1271 if (siggnal != TARGET_SIGNAL_DEFAULT)
1272 stop_signal = siggnal;
1273 /* If this signal should not be seen by program,
1274 give it zero. Used for debugging signals. */
1275 else if (!signal_program[stop_signal])
1276 stop_signal = TARGET_SIGNAL_0;
1277
1278 annotate_starting ();
1279
1280 /* Make sure that output from GDB appears before output from the
1281 inferior. */
1282 gdb_flush (gdb_stdout);
1283
1284 /* Refresh prev_pc value just prior to resuming. This used to be
1285 done in stop_stepping, however, setting prev_pc there did not handle
1286 scenarios such as inferior function calls or returning from
1287 a function via the return command. In those cases, the prev_pc
1288 value was not set properly for subsequent commands. The prev_pc value
1289 is used to initialize the starting line number in the ecs. With an
1290 invalid value, the gdb next command ends up stopping at the position
1291 represented by the next line table entry past our start position.
1292 On platforms that generate one line table entry per line, this
1293 is not a problem. However, on the ia64, the compiler generates
1294 extraneous line table entries that do not increase the line number.
1295 When we issue the gdb next command on the ia64 after an inferior call
1296 or a return command, we often end up a few instructions forward, still
1297 within the original line we started.
1298
1299 An attempt was made to have init_execution_control_state () refresh
1300 the prev_pc value before calculating the line number. This approach
1301 did not work because on platforms that use ptrace, the pc register
1302 cannot be read unless the inferior is stopped. At that point, we
1303 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1304 call can fail. Setting the prev_pc value here ensures the value is
1305 updated correctly when the inferior is stopped. */
1306 prev_pc = regcache_read_pc (get_current_regcache ());
1307
1308 /* Fill in with reasonable starting values. */
1309 init_thread_stepping_state (tss);
1310
1311 /* We'll update this if & when we switch to a new thread. */
1312 previous_inferior_ptid = inferior_ptid;
1313
1314 /* Reset to normal state. */
1315 init_infwait_state ();
1316
1317 /* Resume inferior. */
1318 resume (oneproc || step || bpstat_should_step (), stop_signal);
1319
1320 /* Wait for it to stop (if not standalone)
1321 and in any case decode why it stopped, and act accordingly. */
1322 /* Do this only if we are not using the event loop, or if the target
1323 does not support asynchronous execution. */
1324 if (!target_can_async_p ())
1325 {
1326 wait_for_inferior (0);
1327 normal_stop ();
1328 }
1329 }
1330 \f
1331
1332 /* Start remote-debugging of a machine over a serial link. */
1333
1334 void
1335 start_remote (int from_tty)
1336 {
1337 init_wait_for_inferior ();
1338 stop_soon = STOP_QUIETLY_REMOTE;
1339 stepping_over_breakpoint = 0;
1340
1341 /* Always go on waiting for the target, regardless of the mode. */
1342 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1343 indicate to wait_for_inferior that a target should timeout if
1344 nothing is returned (instead of just blocking). Because of this,
1345 targets expecting an immediate response need to, internally, set
1346 things up so that the target_wait() is forced to eventually
1347 timeout. */
1348 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1349 differentiate to its caller what the state of the target is after
1350 the initial open has been performed. Here we're assuming that
1351 the target has stopped. It should be possible to eventually have
1352 target_open() return to the caller an indication that the target
1353 is currently running and GDB state should be set to the same as
1354 for an async run. */
1355 wait_for_inferior (0);
1356
1357 /* Now that the inferior has stopped, do any bookkeeping like
1358 loading shared libraries. We want to do this before normal_stop,
1359 so that the displayed frame is up to date. */
1360 post_create_inferior (&current_target, from_tty);
1361
1362 normal_stop ();
1363 }
1364
1365 /* Initialize static vars when a new inferior begins. */
1366
1367 void
1368 init_wait_for_inferior (void)
1369 {
1370 /* These are meaningless until the first time through wait_for_inferior. */
1371 prev_pc = 0;
1372
1373 breakpoint_init_inferior (inf_starting);
1374
1375 /* Don't confuse first call to proceed(). */
1376 stop_signal = TARGET_SIGNAL_0;
1377
1378 /* The first resume is not following a fork/vfork/exec. */
1379 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1380
1381 clear_proceed_status ();
1382
1383 stepping_past_singlestep_breakpoint = 0;
1384 deferred_step_ptid = null_ptid;
1385
1386 target_last_wait_ptid = minus_one_ptid;
1387
1388 init_thread_stepping_state (tss);
1389 previous_inferior_ptid = null_ptid;
1390 init_infwait_state ();
1391
1392 displaced_step_clear ();
1393 }
1394
1395 \f
1396 /* This enum encodes possible reasons for doing a target_wait, so that
1397 wfi can call target_wait in one place. (Ultimately the call will be
1398 moved out of the infinite loop entirely.) */
1399
1400 enum infwait_states
1401 {
1402 infwait_normal_state,
1403 infwait_thread_hop_state,
1404 infwait_step_watch_state,
1405 infwait_nonstep_watch_state
1406 };
1407
1408 /* Why did the inferior stop? Used to print the appropriate messages
1409 to the interface from within handle_inferior_event(). */
1410 enum inferior_stop_reason
1411 {
1412 /* Step, next, nexti, stepi finished. */
1413 END_STEPPING_RANGE,
1414 /* Inferior terminated by signal. */
1415 SIGNAL_EXITED,
1416 /* Inferior exited. */
1417 EXITED,
1418 /* Inferior received signal, and user asked to be notified. */
1419 SIGNAL_RECEIVED
1420 };
1421
1422 /* The PTID we'll do a target_wait on.*/
1423 ptid_t waiton_ptid;
1424
1425 /* Current inferior wait state. */
1426 enum infwait_states infwait_state;
1427
1428 /* Data to be passed around while handling an event. This data is
1429 discarded between events. */
1430 struct execution_control_state
1431 {
1432 ptid_t ptid;
1433 struct target_waitstatus ws;
1434 int random_signal;
1435 CORE_ADDR stop_func_start;
1436 CORE_ADDR stop_func_end;
1437 char *stop_func_name;
1438 int new_thread_event;
1439 int wait_some_more;
1440 };
1441
1442 void init_execution_control_state (struct execution_control_state *ecs);
1443
1444 void handle_inferior_event (struct execution_control_state *ecs);
1445
1446 static void step_into_function (struct execution_control_state *ecs);
1447 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1448 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1449 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1450 struct frame_id sr_id);
1451 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1452
1453 static void stop_stepping (struct execution_control_state *ecs);
1454 static void prepare_to_wait (struct execution_control_state *ecs);
1455 static void keep_going (struct execution_control_state *ecs);
1456 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1457 int stop_info);
1458
1459 /* Wait for control to return from inferior to debugger.
1460
1461 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1462 as if they were SIGTRAP signals. This can be useful during
1463 the startup sequence on some targets such as HP/UX, where
1464 we receive an EXEC event instead of the expected SIGTRAP.
1465
1466 If inferior gets a signal, we may decide to start it up again
1467 instead of returning. That is why there is a loop in this function.
1468 When this function actually returns it means the inferior
1469 should be left stopped and GDB should read more commands. */
1470
1471 void
1472 wait_for_inferior (int treat_exec_as_sigtrap)
1473 {
1474 struct cleanup *old_cleanups;
1475 struct execution_control_state ecss;
1476 struct execution_control_state *ecs;
1477
1478 if (debug_infrun)
1479 fprintf_unfiltered
1480 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1481 treat_exec_as_sigtrap);
1482
1483 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1484 &step_resume_breakpoint);
1485
1486 ecs = &ecss;
1487 memset (ecs, 0, sizeof (*ecs));
1488
1489 overlay_cache_invalid = 1;
1490
1491 /* We have to invalidate the registers BEFORE calling target_wait
1492 because they can be loaded from the target while in target_wait.
1493 This makes remote debugging a bit more efficient for those
1494 targets that provide critical registers as part of their normal
1495 status mechanism. */
1496
1497 registers_changed ();
1498
1499 while (1)
1500 {
1501 if (deprecated_target_wait_hook)
1502 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1503 else
1504 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1505
1506 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1507 {
1508 xfree (ecs->ws.value.execd_pathname);
1509 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1510 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1511 }
1512
1513 /* Now figure out what to do with the result of the result. */
1514 handle_inferior_event (ecs);
1515
1516 if (!ecs->wait_some_more)
1517 break;
1518 }
1519 do_cleanups (old_cleanups);
1520 }
1521
1522 /* Asynchronous version of wait_for_inferior. It is called by the
1523 event loop whenever a change of state is detected on the file
1524 descriptor corresponding to the target. It can be called more than
1525 once to complete a single execution command. In such cases we need
1526 to keep the state in a global variable ECSS. If it is the last time
1527 that this function is called for a single execution command, then
1528 report to the user that the inferior has stopped, and do the
1529 necessary cleanups. */
1530
1531 void
1532 fetch_inferior_event (void *client_data)
1533 {
1534 struct execution_control_state ecss;
1535 struct execution_control_state *ecs = &ecss;
1536 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1537 int was_sync = sync_execution;
1538
1539 memset (ecs, 0, sizeof (*ecs));
1540
1541 overlay_cache_invalid = 1;
1542
1543 if (non_stop)
1544 /* In non-stop mode, the user/frontend should not notice a thread
1545 switch due to internal events. Make sure we reverse to the
1546 user selected thread and frame after handling the event and
1547 running any breakpoint commands. */
1548 make_cleanup_restore_current_thread ();
1549
1550 /* We have to invalidate the registers BEFORE calling target_wait
1551 because they can be loaded from the target while in target_wait.
1552 This makes remote debugging a bit more efficient for those
1553 targets that provide critical registers as part of their normal
1554 status mechanism. */
1555
1556 registers_changed ();
1557
1558 if (deprecated_target_wait_hook)
1559 ecs->ptid =
1560 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1561 else
1562 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1563
1564 if (non_stop
1565 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1566 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1567 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1568 /* In non-stop mode, each thread is handled individually. Switch
1569 early, so the global state is set correctly for this
1570 thread. */
1571 context_switch (ecs->ptid);
1572
1573 /* Now figure out what to do with the result of the result. */
1574 handle_inferior_event (ecs);
1575
1576 if (!ecs->wait_some_more)
1577 {
1578 delete_step_resume_breakpoint (&step_resume_breakpoint);
1579
1580 if (stop_soon == NO_STOP_QUIETLY)
1581 normal_stop ();
1582
1583 if (step_multi && stop_step)
1584 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1585 else
1586 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1587 }
1588
1589 /* Revert thread and frame. */
1590 do_cleanups (old_chain);
1591
1592 /* If the inferior was in sync execution mode, and now isn't,
1593 restore the prompt. */
1594 if (was_sync && !sync_execution)
1595 display_gdb_prompt (0);
1596 }
1597
1598 /* Prepare an execution control state for looping through a
1599 wait_for_inferior-type loop. */
1600
1601 void
1602 init_execution_control_state (struct execution_control_state *ecs)
1603 {
1604 ecs->random_signal = 0;
1605 }
1606
1607 /* Clear context switchable stepping state. */
1608
1609 void
1610 init_thread_stepping_state (struct thread_stepping_state *tss)
1611 {
1612 struct symtab_and_line sal;
1613
1614 tss->stepping_over_breakpoint = 0;
1615 tss->step_after_step_resume_breakpoint = 0;
1616 tss->stepping_through_solib_after_catch = 0;
1617 tss->stepping_through_solib_catchpoints = NULL;
1618
1619 sal = find_pc_line (prev_pc, 0);
1620 tss->current_line = sal.line;
1621 tss->current_symtab = sal.symtab;
1622 }
1623
1624 /* Return the cached copy of the last pid/waitstatus returned by
1625 target_wait()/deprecated_target_wait_hook(). The data is actually
1626 cached by handle_inferior_event(), which gets called immediately
1627 after target_wait()/deprecated_target_wait_hook(). */
1628
1629 void
1630 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1631 {
1632 *ptidp = target_last_wait_ptid;
1633 *status = target_last_waitstatus;
1634 }
1635
1636 void
1637 nullify_last_target_wait_ptid (void)
1638 {
1639 target_last_wait_ptid = minus_one_ptid;
1640 }
1641
1642 /* Switch thread contexts, maintaining "infrun state". */
1643
1644 static void
1645 context_switch (ptid_t ptid)
1646 {
1647 /* Caution: it may happen that the new thread (or the old one!)
1648 is not in the thread list. In this case we must not attempt
1649 to "switch context", or we run the risk that our context may
1650 be lost. This may happen as a result of the target module
1651 mishandling thread creation. */
1652
1653 if (debug_infrun)
1654 {
1655 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1656 target_pid_to_str (inferior_ptid));
1657 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1658 target_pid_to_str (ptid));
1659 }
1660
1661 if (in_thread_list (inferior_ptid) && in_thread_list (ptid))
1662 { /* Perform infrun state context switch: */
1663 /* Save infrun state for the old thread. */
1664 save_infrun_state (inferior_ptid, prev_pc,
1665 stepping_over_breakpoint, step_resume_breakpoint,
1666 step_range_start,
1667 step_range_end, &step_frame_id,
1668 tss->stepping_over_breakpoint,
1669 tss->stepping_through_solib_after_catch,
1670 tss->stepping_through_solib_catchpoints,
1671 tss->current_line, tss->current_symtab,
1672 cmd_continuation, intermediate_continuation,
1673 proceed_to_finish,
1674 step_over_calls,
1675 stop_step,
1676 step_multi,
1677 stop_signal,
1678 stop_bpstat);
1679
1680 /* Load infrun state for the new thread. */
1681 load_infrun_state (ptid, &prev_pc,
1682 &stepping_over_breakpoint, &step_resume_breakpoint,
1683 &step_range_start,
1684 &step_range_end, &step_frame_id,
1685 &tss->stepping_over_breakpoint,
1686 &tss->stepping_through_solib_after_catch,
1687 &tss->stepping_through_solib_catchpoints,
1688 &tss->current_line, &tss->current_symtab,
1689 &cmd_continuation, &intermediate_continuation,
1690 &proceed_to_finish,
1691 &step_over_calls,
1692 &stop_step,
1693 &step_multi,
1694 &stop_signal,
1695 &stop_bpstat);
1696 }
1697
1698 switch_to_thread (ptid);
1699 }
1700
1701 /* Context switch to thread PTID. */
1702 ptid_t
1703 context_switch_to (ptid_t ptid)
1704 {
1705 ptid_t current_ptid = inferior_ptid;
1706
1707 /* Context switch to the new thread. */
1708 if (!ptid_equal (ptid, inferior_ptid))
1709 {
1710 context_switch (ptid);
1711 }
1712 return current_ptid;
1713 }
1714
1715 static void
1716 adjust_pc_after_break (struct execution_control_state *ecs)
1717 {
1718 struct regcache *regcache = get_thread_regcache (ecs->ptid);
1719 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1720 CORE_ADDR breakpoint_pc;
1721
1722 /* If this target does not decrement the PC after breakpoints, then
1723 we have nothing to do. */
1724 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1725 return;
1726
1727 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1728 we aren't, just return.
1729
1730 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1731 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1732 implemented by software breakpoints should be handled through the normal
1733 breakpoint layer.
1734
1735 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1736 different signals (SIGILL or SIGEMT for instance), but it is less
1737 clear where the PC is pointing afterwards. It may not match
1738 gdbarch_decr_pc_after_break. I don't know any specific target that
1739 generates these signals at breakpoints (the code has been in GDB since at
1740 least 1992) so I can not guess how to handle them here.
1741
1742 In earlier versions of GDB, a target with
1743 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1744 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1745 target with both of these set in GDB history, and it seems unlikely to be
1746 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1747
1748 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1749 return;
1750
1751 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1752 return;
1753
1754 /* Find the location where (if we've hit a breakpoint) the
1755 breakpoint would be. */
1756 breakpoint_pc = regcache_read_pc (regcache)
1757 - gdbarch_decr_pc_after_break (gdbarch);
1758
1759 /* Check whether there actually is a software breakpoint inserted
1760 at that location. */
1761 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1762 {
1763 /* When using hardware single-step, a SIGTRAP is reported for both
1764 a completed single-step and a software breakpoint. Need to
1765 differentiate between the two, as the latter needs adjusting
1766 but the former does not.
1767
1768 The SIGTRAP can be due to a completed hardware single-step only if
1769 - we didn't insert software single-step breakpoints
1770 - the thread to be examined is still the current thread
1771 - this thread is currently being stepped
1772
1773 If any of these events did not occur, we must have stopped due
1774 to hitting a software breakpoint, and have to back up to the
1775 breakpoint address.
1776
1777 As a special case, we could have hardware single-stepped a
1778 software breakpoint. In this case (prev_pc == breakpoint_pc),
1779 we also need to back up to the breakpoint address. */
1780
1781 if (singlestep_breakpoints_inserted_p
1782 || !ptid_equal (ecs->ptid, inferior_ptid)
1783 || !currently_stepping (tss)
1784 || prev_pc == breakpoint_pc)
1785 regcache_write_pc (regcache, breakpoint_pc);
1786 }
1787 }
1788
1789 void
1790 init_infwait_state (void)
1791 {
1792 waiton_ptid = pid_to_ptid (-1);
1793 infwait_state = infwait_normal_state;
1794 }
1795
1796 void
1797 error_is_running (void)
1798 {
1799 error (_("\
1800 Cannot execute this command while the selected thread is running."));
1801 }
1802
1803 void
1804 ensure_not_running (void)
1805 {
1806 if (is_running (inferior_ptid))
1807 error_is_running ();
1808 }
1809
1810 /* Given an execution control state that has been freshly filled in
1811 by an event from the inferior, figure out what it means and take
1812 appropriate action. */
1813
1814 void
1815 handle_inferior_event (struct execution_control_state *ecs)
1816 {
1817 int sw_single_step_trap_p = 0;
1818 int stopped_by_watchpoint;
1819 int stepped_after_stopped_by_watchpoint = 0;
1820 struct symtab_and_line stop_pc_sal;
1821
1822 breakpoint_retire_moribund ();
1823
1824 /* Cache the last pid/waitstatus. */
1825 target_last_wait_ptid = ecs->ptid;
1826 target_last_waitstatus = ecs->ws;
1827
1828 /* Always clear state belonging to the previous time we stopped. */
1829 stop_stack_dummy = 0;
1830
1831 adjust_pc_after_break (ecs);
1832
1833 reinit_frame_cache ();
1834
1835 /* If it's a new process, add it to the thread database */
1836
1837 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1838 && !ptid_equal (ecs->ptid, minus_one_ptid)
1839 && !in_thread_list (ecs->ptid));
1840
1841 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1842 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1843 add_thread (ecs->ptid);
1844
1845 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1846 {
1847 /* Mark the non-executing threads accordingly. */
1848 if (!non_stop
1849 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1850 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1851 set_executing (pid_to_ptid (-1), 0);
1852 else
1853 set_executing (ecs->ptid, 0);
1854 }
1855
1856 switch (infwait_state)
1857 {
1858 case infwait_thread_hop_state:
1859 if (debug_infrun)
1860 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1861 /* Cancel the waiton_ptid. */
1862 waiton_ptid = pid_to_ptid (-1);
1863 break;
1864
1865 case infwait_normal_state:
1866 if (debug_infrun)
1867 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1868 break;
1869
1870 case infwait_step_watch_state:
1871 if (debug_infrun)
1872 fprintf_unfiltered (gdb_stdlog,
1873 "infrun: infwait_step_watch_state\n");
1874
1875 stepped_after_stopped_by_watchpoint = 1;
1876 break;
1877
1878 case infwait_nonstep_watch_state:
1879 if (debug_infrun)
1880 fprintf_unfiltered (gdb_stdlog,
1881 "infrun: infwait_nonstep_watch_state\n");
1882 insert_breakpoints ();
1883
1884 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1885 handle things like signals arriving and other things happening
1886 in combination correctly? */
1887 stepped_after_stopped_by_watchpoint = 1;
1888 break;
1889
1890 default:
1891 internal_error (__FILE__, __LINE__, _("bad switch"));
1892 }
1893 infwait_state = infwait_normal_state;
1894
1895 switch (ecs->ws.kind)
1896 {
1897 case TARGET_WAITKIND_LOADED:
1898 if (debug_infrun)
1899 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1900 /* Ignore gracefully during startup of the inferior, as it might
1901 be the shell which has just loaded some objects, otherwise
1902 add the symbols for the newly loaded objects. Also ignore at
1903 the beginning of an attach or remote session; we will query
1904 the full list of libraries once the connection is
1905 established. */
1906 if (stop_soon == NO_STOP_QUIETLY)
1907 {
1908 /* Check for any newly added shared libraries if we're
1909 supposed to be adding them automatically. Switch
1910 terminal for any messages produced by
1911 breakpoint_re_set. */
1912 target_terminal_ours_for_output ();
1913 /* NOTE: cagney/2003-11-25: Make certain that the target
1914 stack's section table is kept up-to-date. Architectures,
1915 (e.g., PPC64), use the section table to perform
1916 operations such as address => section name and hence
1917 require the table to contain all sections (including
1918 those found in shared libraries). */
1919 /* NOTE: cagney/2003-11-25: Pass current_target and not
1920 exec_ops to SOLIB_ADD. This is because current GDB is
1921 only tooled to propagate section_table changes out from
1922 the "current_target" (see target_resize_to_sections), and
1923 not up from the exec stratum. This, of course, isn't
1924 right. "infrun.c" should only interact with the
1925 exec/process stratum, instead relying on the target stack
1926 to propagate relevant changes (stop, section table
1927 changed, ...) up to other layers. */
1928 #ifdef SOLIB_ADD
1929 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1930 #else
1931 solib_add (NULL, 0, &current_target, auto_solib_add);
1932 #endif
1933 target_terminal_inferior ();
1934
1935 /* If requested, stop when the dynamic linker notifies
1936 gdb of events. This allows the user to get control
1937 and place breakpoints in initializer routines for
1938 dynamically loaded objects (among other things). */
1939 if (stop_on_solib_events)
1940 {
1941 stop_stepping (ecs);
1942 return;
1943 }
1944
1945 /* NOTE drow/2007-05-11: This might be a good place to check
1946 for "catch load". */
1947 }
1948
1949 /* If we are skipping through a shell, or through shared library
1950 loading that we aren't interested in, resume the program. If
1951 we're running the program normally, also resume. But stop if
1952 we're attaching or setting up a remote connection. */
1953 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1954 {
1955 /* Loading of shared libraries might have changed breakpoint
1956 addresses. Make sure new breakpoints are inserted. */
1957 if (stop_soon == NO_STOP_QUIETLY
1958 && !breakpoints_always_inserted_mode ())
1959 insert_breakpoints ();
1960 resume (0, TARGET_SIGNAL_0);
1961 prepare_to_wait (ecs);
1962 return;
1963 }
1964
1965 break;
1966
1967 case TARGET_WAITKIND_SPURIOUS:
1968 if (debug_infrun)
1969 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1970 resume (0, TARGET_SIGNAL_0);
1971 prepare_to_wait (ecs);
1972 return;
1973
1974 case TARGET_WAITKIND_EXITED:
1975 if (debug_infrun)
1976 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1977 target_terminal_ours (); /* Must do this before mourn anyway */
1978 print_stop_reason (EXITED, ecs->ws.value.integer);
1979
1980 /* Record the exit code in the convenience variable $_exitcode, so
1981 that the user can inspect this again later. */
1982 set_internalvar (lookup_internalvar ("_exitcode"),
1983 value_from_longest (builtin_type_int,
1984 (LONGEST) ecs->ws.value.integer));
1985 gdb_flush (gdb_stdout);
1986 target_mourn_inferior ();
1987 singlestep_breakpoints_inserted_p = 0;
1988 stop_print_frame = 0;
1989 stop_stepping (ecs);
1990 return;
1991
1992 case TARGET_WAITKIND_SIGNALLED:
1993 if (debug_infrun)
1994 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1995 stop_print_frame = 0;
1996 stop_signal = ecs->ws.value.sig;
1997 target_terminal_ours (); /* Must do this before mourn anyway */
1998
1999 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2000 reach here unless the inferior is dead. However, for years
2001 target_kill() was called here, which hints that fatal signals aren't
2002 really fatal on some systems. If that's true, then some changes
2003 may be needed. */
2004 target_mourn_inferior ();
2005
2006 print_stop_reason (SIGNAL_EXITED, stop_signal);
2007 singlestep_breakpoints_inserted_p = 0;
2008 stop_stepping (ecs);
2009 return;
2010
2011 /* The following are the only cases in which we keep going;
2012 the above cases end in a continue or goto. */
2013 case TARGET_WAITKIND_FORKED:
2014 case TARGET_WAITKIND_VFORKED:
2015 if (debug_infrun)
2016 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2017 stop_signal = TARGET_SIGNAL_TRAP;
2018 pending_follow.kind = ecs->ws.kind;
2019
2020 pending_follow.fork_event.parent_pid = ecs->ptid;
2021 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2022
2023 if (!ptid_equal (ecs->ptid, inferior_ptid))
2024 {
2025 context_switch (ecs->ptid);
2026 reinit_frame_cache ();
2027 }
2028
2029 stop_pc = read_pc ();
2030
2031 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2032
2033 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2034
2035 /* If no catchpoint triggered for this, then keep going. */
2036 if (ecs->random_signal)
2037 {
2038 stop_signal = TARGET_SIGNAL_0;
2039 keep_going (ecs);
2040 return;
2041 }
2042 goto process_event_stop_test;
2043
2044 case TARGET_WAITKIND_EXECD:
2045 if (debug_infrun)
2046 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2047 stop_signal = TARGET_SIGNAL_TRAP;
2048
2049 pending_follow.execd_pathname =
2050 savestring (ecs->ws.value.execd_pathname,
2051 strlen (ecs->ws.value.execd_pathname));
2052
2053 /* This causes the eventpoints and symbol table to be reset. Must
2054 do this now, before trying to determine whether to stop. */
2055 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2056 xfree (pending_follow.execd_pathname);
2057
2058 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2059
2060 {
2061 /* The breakpoints module may need to touch the inferior's
2062 memory. Switch to the (stopped) event ptid
2063 momentarily. */
2064 ptid_t saved_inferior_ptid = inferior_ptid;
2065 inferior_ptid = ecs->ptid;
2066
2067 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2068
2069 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2070 inferior_ptid = saved_inferior_ptid;
2071 }
2072
2073 if (!ptid_equal (ecs->ptid, inferior_ptid))
2074 {
2075 context_switch (ecs->ptid);
2076 reinit_frame_cache ();
2077 }
2078
2079 /* If no catchpoint triggered for this, then keep going. */
2080 if (ecs->random_signal)
2081 {
2082 stop_signal = TARGET_SIGNAL_0;
2083 keep_going (ecs);
2084 return;
2085 }
2086 goto process_event_stop_test;
2087
2088 /* Be careful not to try to gather much state about a thread
2089 that's in a syscall. It's frequently a losing proposition. */
2090 case TARGET_WAITKIND_SYSCALL_ENTRY:
2091 if (debug_infrun)
2092 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2093 resume (0, TARGET_SIGNAL_0);
2094 prepare_to_wait (ecs);
2095 return;
2096
2097 /* Before examining the threads further, step this thread to
2098 get it entirely out of the syscall. (We get notice of the
2099 event when the thread is just on the verge of exiting a
2100 syscall. Stepping one instruction seems to get it back
2101 into user code.) */
2102 case TARGET_WAITKIND_SYSCALL_RETURN:
2103 if (debug_infrun)
2104 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2105 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2106 prepare_to_wait (ecs);
2107 return;
2108
2109 case TARGET_WAITKIND_STOPPED:
2110 if (debug_infrun)
2111 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2112 stop_signal = ecs->ws.value.sig;
2113 break;
2114
2115 /* We had an event in the inferior, but we are not interested
2116 in handling it at this level. The lower layers have already
2117 done what needs to be done, if anything.
2118
2119 One of the possible circumstances for this is when the
2120 inferior produces output for the console. The inferior has
2121 not stopped, and we are ignoring the event. Another possible
2122 circumstance is any event which the lower level knows will be
2123 reported multiple times without an intervening resume. */
2124 case TARGET_WAITKIND_IGNORE:
2125 if (debug_infrun)
2126 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2127 prepare_to_wait (ecs);
2128 return;
2129 }
2130
2131 if (ecs->new_thread_event)
2132 {
2133 if (non_stop)
2134 /* Non-stop assumes that the target handles adding new threads
2135 to the thread list. */
2136 internal_error (__FILE__, __LINE__, "\
2137 targets should add new threads to the thread list themselves in non-stop mode.");
2138
2139 /* We may want to consider not doing a resume here in order to
2140 give the user a chance to play with the new thread. It might
2141 be good to make that a user-settable option. */
2142
2143 /* At this point, all threads are stopped (happens automatically
2144 in either the OS or the native code). Therefore we need to
2145 continue all threads in order to make progress. */
2146
2147 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2148 prepare_to_wait (ecs);
2149 return;
2150 }
2151
2152 /* Do we need to clean up the state of a thread that has completed a
2153 displaced single-step? (Doing so usually affects the PC, so do
2154 it here, before we set stop_pc.) */
2155 displaced_step_fixup (ecs->ptid, stop_signal);
2156
2157 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2158
2159 if (debug_infrun)
2160 {
2161 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2162 paddr_nz (stop_pc));
2163 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2164 {
2165 CORE_ADDR addr;
2166 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2167
2168 if (target_stopped_data_address (&current_target, &addr))
2169 fprintf_unfiltered (gdb_stdlog,
2170 "infrun: stopped data address = 0x%s\n",
2171 paddr_nz (addr));
2172 else
2173 fprintf_unfiltered (gdb_stdlog,
2174 "infrun: (no data address available)\n");
2175 }
2176 }
2177
2178 if (stepping_past_singlestep_breakpoint)
2179 {
2180 gdb_assert (singlestep_breakpoints_inserted_p);
2181 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2182 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2183
2184 stepping_past_singlestep_breakpoint = 0;
2185
2186 /* We've either finished single-stepping past the single-step
2187 breakpoint, or stopped for some other reason. It would be nice if
2188 we could tell, but we can't reliably. */
2189 if (stop_signal == TARGET_SIGNAL_TRAP)
2190 {
2191 if (debug_infrun)
2192 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2193 /* Pull the single step breakpoints out of the target. */
2194 remove_single_step_breakpoints ();
2195 singlestep_breakpoints_inserted_p = 0;
2196
2197 ecs->random_signal = 0;
2198
2199 context_switch (saved_singlestep_ptid);
2200 if (deprecated_context_hook)
2201 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2202
2203 resume (1, TARGET_SIGNAL_0);
2204 prepare_to_wait (ecs);
2205 return;
2206 }
2207 }
2208
2209 stepping_past_singlestep_breakpoint = 0;
2210
2211 if (!ptid_equal (deferred_step_ptid, null_ptid))
2212 {
2213 /* In non-stop mode, there's never a deferred_step_ptid set. */
2214 gdb_assert (!non_stop);
2215
2216 /* If we stopped for some other reason than single-stepping, ignore
2217 the fact that we were supposed to switch back. */
2218 if (stop_signal == TARGET_SIGNAL_TRAP)
2219 {
2220 if (debug_infrun)
2221 fprintf_unfiltered (gdb_stdlog,
2222 "infrun: handling deferred step\n");
2223
2224 /* Pull the single step breakpoints out of the target. */
2225 if (singlestep_breakpoints_inserted_p)
2226 {
2227 remove_single_step_breakpoints ();
2228 singlestep_breakpoints_inserted_p = 0;
2229 }
2230
2231 /* Note: We do not call context_switch at this point, as the
2232 context is already set up for stepping the original thread. */
2233 switch_to_thread (deferred_step_ptid);
2234 deferred_step_ptid = null_ptid;
2235 /* Suppress spurious "Switching to ..." message. */
2236 previous_inferior_ptid = inferior_ptid;
2237
2238 resume (1, TARGET_SIGNAL_0);
2239 prepare_to_wait (ecs);
2240 return;
2241 }
2242
2243 deferred_step_ptid = null_ptid;
2244 }
2245
2246 /* See if a thread hit a thread-specific breakpoint that was meant for
2247 another thread. If so, then step that thread past the breakpoint,
2248 and continue it. */
2249
2250 if (stop_signal == TARGET_SIGNAL_TRAP)
2251 {
2252 int thread_hop_needed = 0;
2253
2254 /* Check if a regular breakpoint has been hit before checking
2255 for a potential single step breakpoint. Otherwise, GDB will
2256 not see this breakpoint hit when stepping onto breakpoints. */
2257 if (regular_breakpoint_inserted_here_p (stop_pc))
2258 {
2259 ecs->random_signal = 0;
2260 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2261 thread_hop_needed = 1;
2262 }
2263 else if (singlestep_breakpoints_inserted_p)
2264 {
2265 /* We have not context switched yet, so this should be true
2266 no matter which thread hit the singlestep breakpoint. */
2267 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2268 if (debug_infrun)
2269 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2270 "trap for %s\n",
2271 target_pid_to_str (ecs->ptid));
2272
2273 ecs->random_signal = 0;
2274 /* The call to in_thread_list is necessary because PTIDs sometimes
2275 change when we go from single-threaded to multi-threaded. If
2276 the singlestep_ptid is still in the list, assume that it is
2277 really different from ecs->ptid. */
2278 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2279 && in_thread_list (singlestep_ptid))
2280 {
2281 /* If the PC of the thread we were trying to single-step
2282 has changed, discard this event (which we were going
2283 to ignore anyway), and pretend we saw that thread
2284 trap. This prevents us continuously moving the
2285 single-step breakpoint forward, one instruction at a
2286 time. If the PC has changed, then the thread we were
2287 trying to single-step has trapped or been signalled,
2288 but the event has not been reported to GDB yet.
2289
2290 There might be some cases where this loses signal
2291 information, if a signal has arrived at exactly the
2292 same time that the PC changed, but this is the best
2293 we can do with the information available. Perhaps we
2294 should arrange to report all events for all threads
2295 when they stop, or to re-poll the remote looking for
2296 this particular thread (i.e. temporarily enable
2297 schedlock). */
2298
2299 CORE_ADDR new_singlestep_pc
2300 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2301
2302 if (new_singlestep_pc != singlestep_pc)
2303 {
2304 if (debug_infrun)
2305 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2306 " but expected thread advanced also\n");
2307
2308 /* The current context still belongs to
2309 singlestep_ptid. Don't swap here, since that's
2310 the context we want to use. Just fudge our
2311 state and continue. */
2312 ecs->ptid = singlestep_ptid;
2313 stop_pc = new_singlestep_pc;
2314 }
2315 else
2316 {
2317 if (debug_infrun)
2318 fprintf_unfiltered (gdb_stdlog,
2319 "infrun: unexpected thread\n");
2320
2321 thread_hop_needed = 1;
2322 stepping_past_singlestep_breakpoint = 1;
2323 saved_singlestep_ptid = singlestep_ptid;
2324 }
2325 }
2326 }
2327
2328 if (thread_hop_needed)
2329 {
2330 int remove_status = 0;
2331
2332 if (debug_infrun)
2333 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2334
2335 /* Saw a breakpoint, but it was hit by the wrong thread.
2336 Just continue. */
2337
2338 if (singlestep_breakpoints_inserted_p)
2339 {
2340 /* Pull the single step breakpoints out of the target. */
2341 remove_single_step_breakpoints ();
2342 singlestep_breakpoints_inserted_p = 0;
2343 }
2344
2345 /* If the arch can displace step, don't remove the
2346 breakpoints. */
2347 if (!use_displaced_stepping (current_gdbarch))
2348 remove_status = remove_breakpoints ();
2349
2350 /* Did we fail to remove breakpoints? If so, try
2351 to set the PC past the bp. (There's at least
2352 one situation in which we can fail to remove
2353 the bp's: On HP-UX's that use ttrace, we can't
2354 change the address space of a vforking child
2355 process until the child exits (well, okay, not
2356 then either :-) or execs. */
2357 if (remove_status != 0)
2358 error (_("Cannot step over breakpoint hit in wrong thread"));
2359 else
2360 { /* Single step */
2361 if (!ptid_equal (inferior_ptid, ecs->ptid))
2362 context_switch (ecs->ptid);
2363
2364 if (!non_stop)
2365 {
2366 /* Only need to require the next event from this
2367 thread in all-stop mode. */
2368 waiton_ptid = ecs->ptid;
2369 infwait_state = infwait_thread_hop_state;
2370 }
2371
2372 tss->stepping_over_breakpoint = 1;
2373 keep_going (ecs);
2374 registers_changed ();
2375 return;
2376 }
2377 }
2378 else if (singlestep_breakpoints_inserted_p)
2379 {
2380 sw_single_step_trap_p = 1;
2381 ecs->random_signal = 0;
2382 }
2383 }
2384 else
2385 ecs->random_signal = 1;
2386
2387 /* See if something interesting happened to the non-current thread. If
2388 so, then switch to that thread. */
2389 if (!ptid_equal (ecs->ptid, inferior_ptid))
2390 {
2391 if (debug_infrun)
2392 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2393
2394 context_switch (ecs->ptid);
2395
2396 if (deprecated_context_hook)
2397 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2398 }
2399
2400 if (singlestep_breakpoints_inserted_p)
2401 {
2402 /* Pull the single step breakpoints out of the target. */
2403 remove_single_step_breakpoints ();
2404 singlestep_breakpoints_inserted_p = 0;
2405 }
2406
2407 if (stepped_after_stopped_by_watchpoint)
2408 stopped_by_watchpoint = 0;
2409 else
2410 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2411
2412 /* If necessary, step over this watchpoint. We'll be back to display
2413 it in a moment. */
2414 if (stopped_by_watchpoint
2415 && (HAVE_STEPPABLE_WATCHPOINT
2416 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2417 {
2418 /* At this point, we are stopped at an instruction which has
2419 attempted to write to a piece of memory under control of
2420 a watchpoint. The instruction hasn't actually executed
2421 yet. If we were to evaluate the watchpoint expression
2422 now, we would get the old value, and therefore no change
2423 would seem to have occurred.
2424
2425 In order to make watchpoints work `right', we really need
2426 to complete the memory write, and then evaluate the
2427 watchpoint expression. We do this by single-stepping the
2428 target.
2429
2430 It may not be necessary to disable the watchpoint to stop over
2431 it. For example, the PA can (with some kernel cooperation)
2432 single step over a watchpoint without disabling the watchpoint.
2433
2434 It is far more common to need to disable a watchpoint to step
2435 the inferior over it. If we have non-steppable watchpoints,
2436 we must disable the current watchpoint; it's simplest to
2437 disable all watchpoints and breakpoints. */
2438
2439 if (!HAVE_STEPPABLE_WATCHPOINT)
2440 remove_breakpoints ();
2441 registers_changed ();
2442 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2443 waiton_ptid = ecs->ptid;
2444 if (HAVE_STEPPABLE_WATCHPOINT)
2445 infwait_state = infwait_step_watch_state;
2446 else
2447 infwait_state = infwait_nonstep_watch_state;
2448 prepare_to_wait (ecs);
2449 return;
2450 }
2451
2452 ecs->stop_func_start = 0;
2453 ecs->stop_func_end = 0;
2454 ecs->stop_func_name = 0;
2455 /* Don't care about return value; stop_func_start and stop_func_name
2456 will both be 0 if it doesn't work. */
2457 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2458 &ecs->stop_func_start, &ecs->stop_func_end);
2459 ecs->stop_func_start
2460 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2461 tss->stepping_over_breakpoint = 0;
2462 bpstat_clear (&stop_bpstat);
2463 stop_step = 0;
2464 stop_print_frame = 1;
2465 ecs->random_signal = 0;
2466 stopped_by_random_signal = 0;
2467
2468 if (stop_signal == TARGET_SIGNAL_TRAP
2469 && stepping_over_breakpoint
2470 && gdbarch_single_step_through_delay_p (current_gdbarch)
2471 && currently_stepping (tss))
2472 {
2473 /* We're trying to step off a breakpoint. Turns out that we're
2474 also on an instruction that needs to be stepped multiple
2475 times before it's been fully executing. E.g., architectures
2476 with a delay slot. It needs to be stepped twice, once for
2477 the instruction and once for the delay slot. */
2478 int step_through_delay
2479 = gdbarch_single_step_through_delay (current_gdbarch,
2480 get_current_frame ());
2481 if (debug_infrun && step_through_delay)
2482 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2483 if (step_range_end == 0 && step_through_delay)
2484 {
2485 /* The user issued a continue when stopped at a breakpoint.
2486 Set up for another trap and get out of here. */
2487 tss->stepping_over_breakpoint = 1;
2488 keep_going (ecs);
2489 return;
2490 }
2491 else if (step_through_delay)
2492 {
2493 /* The user issued a step when stopped at a breakpoint.
2494 Maybe we should stop, maybe we should not - the delay
2495 slot *might* correspond to a line of source. In any
2496 case, don't decide that here, just set
2497 ecs->stepping_over_breakpoint, making sure we
2498 single-step again before breakpoints are re-inserted. */
2499 tss->stepping_over_breakpoint = 1;
2500 }
2501 }
2502
2503 /* Look at the cause of the stop, and decide what to do.
2504 The alternatives are:
2505 1) stop_stepping and return; to really stop and return to the debugger,
2506 2) keep_going and return to start up again
2507 (set tss->stepping_over_breakpoint to 1 to single step once)
2508 3) set ecs->random_signal to 1, and the decision between 1 and 2
2509 will be made according to the signal handling tables. */
2510
2511 /* First, distinguish signals caused by the debugger from signals
2512 that have to do with the program's own actions. Note that
2513 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2514 on the operating system version. Here we detect when a SIGILL or
2515 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2516 something similar for SIGSEGV, since a SIGSEGV will be generated
2517 when we're trying to execute a breakpoint instruction on a
2518 non-executable stack. This happens for call dummy breakpoints
2519 for architectures like SPARC that place call dummies on the
2520 stack.
2521
2522 If we're doing a displaced step past a breakpoint, then the
2523 breakpoint is always inserted at the original instruction;
2524 non-standard signals can't be explained by the breakpoint. */
2525 if (stop_signal == TARGET_SIGNAL_TRAP
2526 || (! stepping_over_breakpoint
2527 && breakpoint_inserted_here_p (stop_pc)
2528 && (stop_signal == TARGET_SIGNAL_ILL
2529 || stop_signal == TARGET_SIGNAL_SEGV
2530 || stop_signal == TARGET_SIGNAL_EMT))
2531 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2532 || stop_soon == STOP_QUIETLY_REMOTE)
2533 {
2534 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2535 {
2536 if (debug_infrun)
2537 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2538 stop_print_frame = 0;
2539 stop_stepping (ecs);
2540 return;
2541 }
2542
2543 /* This is originated from start_remote(), start_inferior() and
2544 shared libraries hook functions. */
2545 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2546 {
2547 if (debug_infrun)
2548 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2549 stop_stepping (ecs);
2550 return;
2551 }
2552
2553 /* This originates from attach_command(). We need to overwrite
2554 the stop_signal here, because some kernels don't ignore a
2555 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2556 See more comments in inferior.h. On the other hand, if we
2557 get a non-SIGSTOP, report it to the user - assume the backend
2558 will handle the SIGSTOP if it should show up later.
2559
2560 Also consider that the attach is complete when we see a
2561 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2562 target extended-remote report it instead of a SIGSTOP
2563 (e.g. gdbserver). We already rely on SIGTRAP being our
2564 signal, so this is no exception. */
2565 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2566 && (stop_signal == TARGET_SIGNAL_STOP
2567 || stop_signal == TARGET_SIGNAL_TRAP))
2568 {
2569 stop_stepping (ecs);
2570 stop_signal = TARGET_SIGNAL_0;
2571 return;
2572 }
2573
2574 /* See if there is a breakpoint at the current PC. */
2575 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2576
2577 /* Following in case break condition called a
2578 function. */
2579 stop_print_frame = 1;
2580
2581 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2582 at one stage in the past included checks for an inferior
2583 function call's call dummy's return breakpoint. The original
2584 comment, that went with the test, read:
2585
2586 ``End of a stack dummy. Some systems (e.g. Sony news) give
2587 another signal besides SIGTRAP, so check here as well as
2588 above.''
2589
2590 If someone ever tries to get get call dummys on a
2591 non-executable stack to work (where the target would stop
2592 with something like a SIGSEGV), then those tests might need
2593 to be re-instated. Given, however, that the tests were only
2594 enabled when momentary breakpoints were not being used, I
2595 suspect that it won't be the case.
2596
2597 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2598 be necessary for call dummies on a non-executable stack on
2599 SPARC. */
2600
2601 if (stop_signal == TARGET_SIGNAL_TRAP)
2602 ecs->random_signal
2603 = !(bpstat_explains_signal (stop_bpstat)
2604 || stepping_over_breakpoint
2605 || (step_range_end && step_resume_breakpoint == NULL));
2606 else
2607 {
2608 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2609 if (!ecs->random_signal)
2610 stop_signal = TARGET_SIGNAL_TRAP;
2611 }
2612 }
2613
2614 /* When we reach this point, we've pretty much decided
2615 that the reason for stopping must've been a random
2616 (unexpected) signal. */
2617
2618 else
2619 ecs->random_signal = 1;
2620
2621 process_event_stop_test:
2622 /* For the program's own signals, act according to
2623 the signal handling tables. */
2624
2625 if (ecs->random_signal)
2626 {
2627 /* Signal not for debugging purposes. */
2628 int printed = 0;
2629
2630 if (debug_infrun)
2631 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2632
2633 stopped_by_random_signal = 1;
2634
2635 if (signal_print[stop_signal])
2636 {
2637 printed = 1;
2638 target_terminal_ours_for_output ();
2639 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2640 }
2641 if (signal_stop_state (stop_signal))
2642 {
2643 stop_stepping (ecs);
2644 return;
2645 }
2646 /* If not going to stop, give terminal back
2647 if we took it away. */
2648 else if (printed)
2649 target_terminal_inferior ();
2650
2651 /* Clear the signal if it should not be passed. */
2652 if (signal_program[stop_signal] == 0)
2653 stop_signal = TARGET_SIGNAL_0;
2654
2655 if (prev_pc == read_pc ()
2656 && stepping_over_breakpoint
2657 && step_resume_breakpoint == NULL)
2658 {
2659 /* We were just starting a new sequence, attempting to
2660 single-step off of a breakpoint and expecting a SIGTRAP.
2661 Instead this signal arrives. This signal will take us out
2662 of the stepping range so GDB needs to remember to, when
2663 the signal handler returns, resume stepping off that
2664 breakpoint. */
2665 /* To simplify things, "continue" is forced to use the same
2666 code paths as single-step - set a breakpoint at the
2667 signal return address and then, once hit, step off that
2668 breakpoint. */
2669 if (debug_infrun)
2670 fprintf_unfiltered (gdb_stdlog,
2671 "infrun: signal arrived while stepping over "
2672 "breakpoint\n");
2673
2674 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2675 tss->step_after_step_resume_breakpoint = 1;
2676 keep_going (ecs);
2677 return;
2678 }
2679
2680 if (step_range_end != 0
2681 && stop_signal != TARGET_SIGNAL_0
2682 && stop_pc >= step_range_start && stop_pc < step_range_end
2683 && frame_id_eq (get_frame_id (get_current_frame ()),
2684 step_frame_id)
2685 && step_resume_breakpoint == NULL)
2686 {
2687 /* The inferior is about to take a signal that will take it
2688 out of the single step range. Set a breakpoint at the
2689 current PC (which is presumably where the signal handler
2690 will eventually return) and then allow the inferior to
2691 run free.
2692
2693 Note that this is only needed for a signal delivered
2694 while in the single-step range. Nested signals aren't a
2695 problem as they eventually all return. */
2696 if (debug_infrun)
2697 fprintf_unfiltered (gdb_stdlog,
2698 "infrun: signal may take us out of "
2699 "single-step range\n");
2700
2701 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2702 keep_going (ecs);
2703 return;
2704 }
2705
2706 /* Note: step_resume_breakpoint may be non-NULL. This occures
2707 when either there's a nested signal, or when there's a
2708 pending signal enabled just as the signal handler returns
2709 (leaving the inferior at the step-resume-breakpoint without
2710 actually executing it). Either way continue until the
2711 breakpoint is really hit. */
2712 keep_going (ecs);
2713 return;
2714 }
2715
2716 /* Handle cases caused by hitting a breakpoint. */
2717 {
2718 CORE_ADDR jmp_buf_pc;
2719 struct bpstat_what what;
2720
2721 what = bpstat_what (stop_bpstat);
2722
2723 if (what.call_dummy)
2724 {
2725 stop_stack_dummy = 1;
2726 }
2727
2728 switch (what.main_action)
2729 {
2730 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2731 /* If we hit the breakpoint at longjmp while stepping, we
2732 install a momentary breakpoint at the target of the
2733 jmp_buf. */
2734
2735 if (debug_infrun)
2736 fprintf_unfiltered (gdb_stdlog,
2737 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2738
2739 tss->stepping_over_breakpoint = 1;
2740
2741 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2742 || !gdbarch_get_longjmp_target (current_gdbarch,
2743 get_current_frame (), &jmp_buf_pc))
2744 {
2745 if (debug_infrun)
2746 fprintf_unfiltered (gdb_stdlog, "\
2747 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2748 keep_going (ecs);
2749 return;
2750 }
2751
2752 /* We're going to replace the current step-resume breakpoint
2753 with a longjmp-resume breakpoint. */
2754 if (step_resume_breakpoint != NULL)
2755 delete_step_resume_breakpoint (&step_resume_breakpoint);
2756
2757 /* Insert a breakpoint at resume address. */
2758 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2759
2760 keep_going (ecs);
2761 return;
2762
2763 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2764 if (debug_infrun)
2765 fprintf_unfiltered (gdb_stdlog,
2766 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2767
2768 gdb_assert (step_resume_breakpoint != NULL);
2769 delete_step_resume_breakpoint (&step_resume_breakpoint);
2770
2771 stop_step = 1;
2772 print_stop_reason (END_STEPPING_RANGE, 0);
2773 stop_stepping (ecs);
2774 return;
2775
2776 case BPSTAT_WHAT_SINGLE:
2777 if (debug_infrun)
2778 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2779 tss->stepping_over_breakpoint = 1;
2780 /* Still need to check other stuff, at least the case
2781 where we are stepping and step out of the right range. */
2782 break;
2783
2784 case BPSTAT_WHAT_STOP_NOISY:
2785 if (debug_infrun)
2786 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2787 stop_print_frame = 1;
2788
2789 /* We are about to nuke the step_resume_breakpointt via the
2790 cleanup chain, so no need to worry about it here. */
2791
2792 stop_stepping (ecs);
2793 return;
2794
2795 case BPSTAT_WHAT_STOP_SILENT:
2796 if (debug_infrun)
2797 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2798 stop_print_frame = 0;
2799
2800 /* We are about to nuke the step_resume_breakpoin via the
2801 cleanup chain, so no need to worry about it here. */
2802
2803 stop_stepping (ecs);
2804 return;
2805
2806 case BPSTAT_WHAT_STEP_RESUME:
2807 /* This proably demands a more elegant solution, but, yeah
2808 right...
2809
2810 This function's use of the simple variable
2811 step_resume_breakpoint doesn't seem to accomodate
2812 simultaneously active step-resume bp's, although the
2813 breakpoint list certainly can.
2814
2815 If we reach here and step_resume_breakpoint is already
2816 NULL, then apparently we have multiple active
2817 step-resume bp's. We'll just delete the breakpoint we
2818 stopped at, and carry on.
2819
2820 Correction: what the code currently does is delete a
2821 step-resume bp, but it makes no effort to ensure that
2822 the one deleted is the one currently stopped at. MVS */
2823
2824 if (debug_infrun)
2825 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2826
2827 if (step_resume_breakpoint == NULL)
2828 {
2829 step_resume_breakpoint =
2830 bpstat_find_step_resume_breakpoint (stop_bpstat);
2831 }
2832 delete_step_resume_breakpoint (&step_resume_breakpoint);
2833 if (tss->step_after_step_resume_breakpoint)
2834 {
2835 /* Back when the step-resume breakpoint was inserted, we
2836 were trying to single-step off a breakpoint. Go back
2837 to doing that. */
2838 tss->step_after_step_resume_breakpoint = 0;
2839 tss->stepping_over_breakpoint = 1;
2840 keep_going (ecs);
2841 return;
2842 }
2843 break;
2844
2845 case BPSTAT_WHAT_CHECK_SHLIBS:
2846 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2847 {
2848 if (debug_infrun)
2849 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2850
2851 /* Check for any newly added shared libraries if we're
2852 supposed to be adding them automatically. Switch
2853 terminal for any messages produced by
2854 breakpoint_re_set. */
2855 target_terminal_ours_for_output ();
2856 /* NOTE: cagney/2003-11-25: Make certain that the target
2857 stack's section table is kept up-to-date. Architectures,
2858 (e.g., PPC64), use the section table to perform
2859 operations such as address => section name and hence
2860 require the table to contain all sections (including
2861 those found in shared libraries). */
2862 /* NOTE: cagney/2003-11-25: Pass current_target and not
2863 exec_ops to SOLIB_ADD. This is because current GDB is
2864 only tooled to propagate section_table changes out from
2865 the "current_target" (see target_resize_to_sections), and
2866 not up from the exec stratum. This, of course, isn't
2867 right. "infrun.c" should only interact with the
2868 exec/process stratum, instead relying on the target stack
2869 to propagate relevant changes (stop, section table
2870 changed, ...) up to other layers. */
2871 #ifdef SOLIB_ADD
2872 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2873 #else
2874 solib_add (NULL, 0, &current_target, auto_solib_add);
2875 #endif
2876 target_terminal_inferior ();
2877
2878 /* If requested, stop when the dynamic linker notifies
2879 gdb of events. This allows the user to get control
2880 and place breakpoints in initializer routines for
2881 dynamically loaded objects (among other things). */
2882 if (stop_on_solib_events || stop_stack_dummy)
2883 {
2884 stop_stepping (ecs);
2885 return;
2886 }
2887
2888 /* If we stopped due to an explicit catchpoint, then the
2889 (see above) call to SOLIB_ADD pulled in any symbols
2890 from a newly-loaded library, if appropriate.
2891
2892 We do want the inferior to stop, but not where it is
2893 now, which is in the dynamic linker callback. Rather,
2894 we would like it stop in the user's program, just after
2895 the call that caused this catchpoint to trigger. That
2896 gives the user a more useful vantage from which to
2897 examine their program's state. */
2898 else if (what.main_action
2899 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2900 {
2901 /* ??rehrauer: If I could figure out how to get the
2902 right return PC from here, we could just set a temp
2903 breakpoint and resume. I'm not sure we can without
2904 cracking open the dld's shared libraries and sniffing
2905 their unwind tables and text/data ranges, and that's
2906 not a terribly portable notion.
2907
2908 Until that time, we must step the inferior out of the
2909 dld callback, and also out of the dld itself (and any
2910 code or stubs in libdld.sl, such as "shl_load" and
2911 friends) until we reach non-dld code. At that point,
2912 we can stop stepping. */
2913 bpstat_get_triggered_catchpoints (stop_bpstat,
2914 &tss->
2915 stepping_through_solib_catchpoints);
2916 tss->stepping_through_solib_after_catch = 1;
2917
2918 /* Be sure to lift all breakpoints, so the inferior does
2919 actually step past this point... */
2920 tss->stepping_over_breakpoint = 1;
2921 break;
2922 }
2923 else
2924 {
2925 /* We want to step over this breakpoint, then keep going. */
2926 tss->stepping_over_breakpoint = 1;
2927 break;
2928 }
2929 }
2930 break;
2931
2932 case BPSTAT_WHAT_LAST:
2933 /* Not a real code, but listed here to shut up gcc -Wall. */
2934
2935 case BPSTAT_WHAT_KEEP_CHECKING:
2936 break;
2937 }
2938 }
2939
2940 /* We come here if we hit a breakpoint but should not
2941 stop for it. Possibly we also were stepping
2942 and should stop for that. So fall through and
2943 test for stepping. But, if not stepping,
2944 do not stop. */
2945
2946 /* Are we stepping to get the inferior out of the dynamic linker's
2947 hook (and possibly the dld itself) after catching a shlib
2948 event? */
2949 if (tss->stepping_through_solib_after_catch)
2950 {
2951 #if defined(SOLIB_ADD)
2952 /* Have we reached our destination? If not, keep going. */
2953 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2954 {
2955 if (debug_infrun)
2956 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2957 tss->stepping_over_breakpoint = 1;
2958 keep_going (ecs);
2959 return;
2960 }
2961 #endif
2962 if (debug_infrun)
2963 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2964 /* Else, stop and report the catchpoint(s) whose triggering
2965 caused us to begin stepping. */
2966 tss->stepping_through_solib_after_catch = 0;
2967 bpstat_clear (&stop_bpstat);
2968 stop_bpstat = bpstat_copy (tss->stepping_through_solib_catchpoints);
2969 bpstat_clear (&tss->stepping_through_solib_catchpoints);
2970 stop_print_frame = 1;
2971 stop_stepping (ecs);
2972 return;
2973 }
2974
2975 if (step_resume_breakpoint)
2976 {
2977 if (debug_infrun)
2978 fprintf_unfiltered (gdb_stdlog,
2979 "infrun: step-resume breakpoint is inserted\n");
2980
2981 /* Having a step-resume breakpoint overrides anything
2982 else having to do with stepping commands until
2983 that breakpoint is reached. */
2984 keep_going (ecs);
2985 return;
2986 }
2987
2988 if (step_range_end == 0)
2989 {
2990 if (debug_infrun)
2991 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2992 /* Likewise if we aren't even stepping. */
2993 keep_going (ecs);
2994 return;
2995 }
2996
2997 /* If stepping through a line, keep going if still within it.
2998
2999 Note that step_range_end is the address of the first instruction
3000 beyond the step range, and NOT the address of the last instruction
3001 within it! */
3002 if (stop_pc >= step_range_start && stop_pc < step_range_end)
3003 {
3004 if (debug_infrun)
3005 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3006 paddr_nz (step_range_start),
3007 paddr_nz (step_range_end));
3008 keep_going (ecs);
3009 return;
3010 }
3011
3012 /* We stepped out of the stepping range. */
3013
3014 /* If we are stepping at the source level and entered the runtime
3015 loader dynamic symbol resolution code, we keep on single stepping
3016 until we exit the run time loader code and reach the callee's
3017 address. */
3018 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3019 && in_solib_dynsym_resolve_code (stop_pc))
3020 {
3021 CORE_ADDR pc_after_resolver =
3022 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3023
3024 if (debug_infrun)
3025 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3026
3027 if (pc_after_resolver)
3028 {
3029 /* Set up a step-resume breakpoint at the address
3030 indicated by SKIP_SOLIB_RESOLVER. */
3031 struct symtab_and_line sr_sal;
3032 init_sal (&sr_sal);
3033 sr_sal.pc = pc_after_resolver;
3034
3035 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3036 }
3037
3038 keep_going (ecs);
3039 return;
3040 }
3041
3042 if (step_range_end != 1
3043 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
3044 || step_over_calls == STEP_OVER_ALL)
3045 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3046 {
3047 if (debug_infrun)
3048 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3049 /* The inferior, while doing a "step" or "next", has ended up in
3050 a signal trampoline (either by a signal being delivered or by
3051 the signal handler returning). Just single-step until the
3052 inferior leaves the trampoline (either by calling the handler
3053 or returning). */
3054 keep_going (ecs);
3055 return;
3056 }
3057
3058 /* Check for subroutine calls. The check for the current frame
3059 equalling the step ID is not necessary - the check of the
3060 previous frame's ID is sufficient - but it is a common case and
3061 cheaper than checking the previous frame's ID.
3062
3063 NOTE: frame_id_eq will never report two invalid frame IDs as
3064 being equal, so to get into this block, both the current and
3065 previous frame must have valid frame IDs. */
3066 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
3067 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
3068 {
3069 CORE_ADDR real_stop_pc;
3070
3071 if (debug_infrun)
3072 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3073
3074 if ((step_over_calls == STEP_OVER_NONE)
3075 || ((step_range_end == 1)
3076 && in_prologue (prev_pc, ecs->stop_func_start)))
3077 {
3078 /* I presume that step_over_calls is only 0 when we're
3079 supposed to be stepping at the assembly language level
3080 ("stepi"). Just stop. */
3081 /* Also, maybe we just did a "nexti" inside a prolog, so we
3082 thought it was a subroutine call but it was not. Stop as
3083 well. FENN */
3084 stop_step = 1;
3085 print_stop_reason (END_STEPPING_RANGE, 0);
3086 stop_stepping (ecs);
3087 return;
3088 }
3089
3090 if (step_over_calls == STEP_OVER_ALL)
3091 {
3092 /* We're doing a "next", set a breakpoint at callee's return
3093 address (the address at which the caller will
3094 resume). */
3095 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3096 keep_going (ecs);
3097 return;
3098 }
3099
3100 /* If we are in a function call trampoline (a stub between the
3101 calling routine and the real function), locate the real
3102 function. That's what tells us (a) whether we want to step
3103 into it at all, and (b) what prologue we want to run to the
3104 end of, if we do step into it. */
3105 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3106 if (real_stop_pc == 0)
3107 real_stop_pc = gdbarch_skip_trampoline_code
3108 (current_gdbarch, get_current_frame (), stop_pc);
3109 if (real_stop_pc != 0)
3110 ecs->stop_func_start = real_stop_pc;
3111
3112 if (in_solib_dynsym_resolve_code (ecs->stop_func_start))
3113 {
3114 struct symtab_and_line sr_sal;
3115 init_sal (&sr_sal);
3116 sr_sal.pc = ecs->stop_func_start;
3117
3118 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3119 keep_going (ecs);
3120 return;
3121 }
3122
3123 /* If we have line number information for the function we are
3124 thinking of stepping into, step into it.
3125
3126 If there are several symtabs at that PC (e.g. with include
3127 files), just want to know whether *any* of them have line
3128 numbers. find_pc_line handles this. */
3129 {
3130 struct symtab_and_line tmp_sal;
3131
3132 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3133 if (tmp_sal.line != 0)
3134 {
3135 step_into_function (ecs);
3136 return;
3137 }
3138 }
3139
3140 /* If we have no line number and the step-stop-if-no-debug is
3141 set, we stop the step so that the user has a chance to switch
3142 in assembly mode. */
3143 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3144 {
3145 stop_step = 1;
3146 print_stop_reason (END_STEPPING_RANGE, 0);
3147 stop_stepping (ecs);
3148 return;
3149 }
3150
3151 /* Set a breakpoint at callee's return address (the address at
3152 which the caller will resume). */
3153 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3154 keep_going (ecs);
3155 return;
3156 }
3157
3158 /* If we're in the return path from a shared library trampoline,
3159 we want to proceed through the trampoline when stepping. */
3160 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3161 stop_pc, ecs->stop_func_name))
3162 {
3163 /* Determine where this trampoline returns. */
3164 CORE_ADDR real_stop_pc;
3165 real_stop_pc = gdbarch_skip_trampoline_code
3166 (current_gdbarch, get_current_frame (), stop_pc);
3167
3168 if (debug_infrun)
3169 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3170
3171 /* Only proceed through if we know where it's going. */
3172 if (real_stop_pc)
3173 {
3174 /* And put the step-breakpoint there and go until there. */
3175 struct symtab_and_line sr_sal;
3176
3177 init_sal (&sr_sal); /* initialize to zeroes */
3178 sr_sal.pc = real_stop_pc;
3179 sr_sal.section = find_pc_overlay (sr_sal.pc);
3180
3181 /* Do not specify what the fp should be when we stop since
3182 on some machines the prologue is where the new fp value
3183 is established. */
3184 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3185
3186 /* Restart without fiddling with the step ranges or
3187 other state. */
3188 keep_going (ecs);
3189 return;
3190 }
3191 }
3192
3193 stop_pc_sal = find_pc_line (stop_pc, 0);
3194
3195 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3196 the trampoline processing logic, however, there are some trampolines
3197 that have no names, so we should do trampoline handling first. */
3198 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3199 && ecs->stop_func_name == NULL
3200 && stop_pc_sal.line == 0)
3201 {
3202 if (debug_infrun)
3203 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3204
3205 /* The inferior just stepped into, or returned to, an
3206 undebuggable function (where there is no debugging information
3207 and no line number corresponding to the address where the
3208 inferior stopped). Since we want to skip this kind of code,
3209 we keep going until the inferior returns from this
3210 function - unless the user has asked us not to (via
3211 set step-mode) or we no longer know how to get back
3212 to the call site. */
3213 if (step_stop_if_no_debug
3214 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3215 {
3216 /* If we have no line number and the step-stop-if-no-debug
3217 is set, we stop the step so that the user has a chance to
3218 switch in assembly mode. */
3219 stop_step = 1;
3220 print_stop_reason (END_STEPPING_RANGE, 0);
3221 stop_stepping (ecs);
3222 return;
3223 }
3224 else
3225 {
3226 /* Set a breakpoint at callee's return address (the address
3227 at which the caller will resume). */
3228 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3229 keep_going (ecs);
3230 return;
3231 }
3232 }
3233
3234 if (step_range_end == 1)
3235 {
3236 /* It is stepi or nexti. We always want to stop stepping after
3237 one instruction. */
3238 if (debug_infrun)
3239 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3240 stop_step = 1;
3241 print_stop_reason (END_STEPPING_RANGE, 0);
3242 stop_stepping (ecs);
3243 return;
3244 }
3245
3246 if (stop_pc_sal.line == 0)
3247 {
3248 /* We have no line number information. That means to stop
3249 stepping (does this always happen right after one instruction,
3250 when we do "s" in a function with no line numbers,
3251 or can this happen as a result of a return or longjmp?). */
3252 if (debug_infrun)
3253 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3254 stop_step = 1;
3255 print_stop_reason (END_STEPPING_RANGE, 0);
3256 stop_stepping (ecs);
3257 return;
3258 }
3259
3260 if ((stop_pc == stop_pc_sal.pc)
3261 && (tss->current_line != stop_pc_sal.line
3262 || tss->current_symtab != stop_pc_sal.symtab))
3263 {
3264 /* We are at the start of a different line. So stop. Note that
3265 we don't stop if we step into the middle of a different line.
3266 That is said to make things like for (;;) statements work
3267 better. */
3268 if (debug_infrun)
3269 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3270 stop_step = 1;
3271 print_stop_reason (END_STEPPING_RANGE, 0);
3272 stop_stepping (ecs);
3273 return;
3274 }
3275
3276 /* We aren't done stepping.
3277
3278 Optimize by setting the stepping range to the line.
3279 (We might not be in the original line, but if we entered a
3280 new line in mid-statement, we continue stepping. This makes
3281 things like for(;;) statements work better.) */
3282
3283 step_range_start = stop_pc_sal.pc;
3284 step_range_end = stop_pc_sal.end;
3285 step_frame_id = get_frame_id (get_current_frame ());
3286 tss->current_line = stop_pc_sal.line;
3287 tss->current_symtab = stop_pc_sal.symtab;
3288
3289 /* In the case where we just stepped out of a function into the
3290 middle of a line of the caller, continue stepping, but
3291 step_frame_id must be modified to current frame */
3292 #if 0
3293 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3294 generous. It will trigger on things like a step into a frameless
3295 stackless leaf function. I think the logic should instead look
3296 at the unwound frame ID has that should give a more robust
3297 indication of what happened. */
3298 if (step - ID == current - ID)
3299 still stepping in same function;
3300 else if (step - ID == unwind (current - ID))
3301 stepped into a function;
3302 else
3303 stepped out of a function;
3304 /* Of course this assumes that the frame ID unwind code is robust
3305 and we're willing to introduce frame unwind logic into this
3306 function. Fortunately, those days are nearly upon us. */
3307 #endif
3308 {
3309 struct frame_info *frame = get_current_frame ();
3310 struct frame_id current_frame = get_frame_id (frame);
3311 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3312 step_frame_id)))
3313 step_frame_id = current_frame;
3314 }
3315
3316 if (debug_infrun)
3317 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3318 keep_going (ecs);
3319 }
3320
3321 /* Are we in the middle of stepping? */
3322
3323 static int
3324 currently_stepping (struct thread_stepping_state *tss)
3325 {
3326 return (((step_range_end && step_resume_breakpoint == NULL)
3327 || stepping_over_breakpoint)
3328 || tss->stepping_through_solib_after_catch
3329 || bpstat_should_step ());
3330 }
3331
3332 /* Subroutine call with source code we should not step over. Do step
3333 to the first line of code in it. */
3334
3335 static void
3336 step_into_function (struct execution_control_state *ecs)
3337 {
3338 struct symtab *s;
3339 struct symtab_and_line stop_func_sal, sr_sal;
3340
3341 s = find_pc_symtab (stop_pc);
3342 if (s && s->language != language_asm)
3343 ecs->stop_func_start = gdbarch_skip_prologue
3344 (current_gdbarch, ecs->stop_func_start);
3345
3346 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3347 /* Use the step_resume_break to step until the end of the prologue,
3348 even if that involves jumps (as it seems to on the vax under
3349 4.2). */
3350 /* If the prologue ends in the middle of a source line, continue to
3351 the end of that source line (if it is still within the function).
3352 Otherwise, just go to end of prologue. */
3353 if (stop_func_sal.end
3354 && stop_func_sal.pc != ecs->stop_func_start
3355 && stop_func_sal.end < ecs->stop_func_end)
3356 ecs->stop_func_start = stop_func_sal.end;
3357
3358 /* Architectures which require breakpoint adjustment might not be able
3359 to place a breakpoint at the computed address. If so, the test
3360 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3361 ecs->stop_func_start to an address at which a breakpoint may be
3362 legitimately placed.
3363
3364 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3365 made, GDB will enter an infinite loop when stepping through
3366 optimized code consisting of VLIW instructions which contain
3367 subinstructions corresponding to different source lines. On
3368 FR-V, it's not permitted to place a breakpoint on any but the
3369 first subinstruction of a VLIW instruction. When a breakpoint is
3370 set, GDB will adjust the breakpoint address to the beginning of
3371 the VLIW instruction. Thus, we need to make the corresponding
3372 adjustment here when computing the stop address. */
3373
3374 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3375 {
3376 ecs->stop_func_start
3377 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3378 ecs->stop_func_start);
3379 }
3380
3381 if (ecs->stop_func_start == stop_pc)
3382 {
3383 /* We are already there: stop now. */
3384 stop_step = 1;
3385 print_stop_reason (END_STEPPING_RANGE, 0);
3386 stop_stepping (ecs);
3387 return;
3388 }
3389 else
3390 {
3391 /* Put the step-breakpoint there and go until there. */
3392 init_sal (&sr_sal); /* initialize to zeroes */
3393 sr_sal.pc = ecs->stop_func_start;
3394 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3395
3396 /* Do not specify what the fp should be when we stop since on
3397 some machines the prologue is where the new fp value is
3398 established. */
3399 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3400
3401 /* And make sure stepping stops right away then. */
3402 step_range_end = step_range_start;
3403 }
3404 keep_going (ecs);
3405 }
3406
3407 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3408 This is used to both functions and to skip over code. */
3409
3410 static void
3411 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3412 struct frame_id sr_id)
3413 {
3414 /* There should never be more than one step-resume or longjmp-resume
3415 breakpoint per thread, so we should never be setting a new
3416 step_resume_breakpoint when one is already active. */
3417 gdb_assert (step_resume_breakpoint == NULL);
3418
3419 if (debug_infrun)
3420 fprintf_unfiltered (gdb_stdlog,
3421 "infrun: inserting step-resume breakpoint at 0x%s\n",
3422 paddr_nz (sr_sal.pc));
3423
3424 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3425 bp_step_resume);
3426 }
3427
3428 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3429 to skip a potential signal handler.
3430
3431 This is called with the interrupted function's frame. The signal
3432 handler, when it returns, will resume the interrupted function at
3433 RETURN_FRAME.pc. */
3434
3435 static void
3436 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3437 {
3438 struct symtab_and_line sr_sal;
3439
3440 gdb_assert (return_frame != NULL);
3441 init_sal (&sr_sal); /* initialize to zeros */
3442
3443 sr_sal.pc = gdbarch_addr_bits_remove
3444 (current_gdbarch, get_frame_pc (return_frame));
3445 sr_sal.section = find_pc_overlay (sr_sal.pc);
3446
3447 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3448 }
3449
3450 /* Similar to insert_step_resume_breakpoint_at_frame, except
3451 but a breakpoint at the previous frame's PC. This is used to
3452 skip a function after stepping into it (for "next" or if the called
3453 function has no debugging information).
3454
3455 The current function has almost always been reached by single
3456 stepping a call or return instruction. NEXT_FRAME belongs to the
3457 current function, and the breakpoint will be set at the caller's
3458 resume address.
3459
3460 This is a separate function rather than reusing
3461 insert_step_resume_breakpoint_at_frame in order to avoid
3462 get_prev_frame, which may stop prematurely (see the implementation
3463 of frame_unwind_id for an example). */
3464
3465 static void
3466 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3467 {
3468 struct symtab_and_line sr_sal;
3469
3470 /* We shouldn't have gotten here if we don't know where the call site
3471 is. */
3472 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3473
3474 init_sal (&sr_sal); /* initialize to zeros */
3475
3476 sr_sal.pc = gdbarch_addr_bits_remove
3477 (current_gdbarch, frame_pc_unwind (next_frame));
3478 sr_sal.section = find_pc_overlay (sr_sal.pc);
3479
3480 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3481 }
3482
3483 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3484 new breakpoint at the target of a jmp_buf. The handling of
3485 longjmp-resume uses the same mechanisms used for handling
3486 "step-resume" breakpoints. */
3487
3488 static void
3489 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3490 {
3491 /* There should never be more than one step-resume or longjmp-resume
3492 breakpoint per thread, so we should never be setting a new
3493 longjmp_resume_breakpoint when one is already active. */
3494 gdb_assert (step_resume_breakpoint == NULL);
3495
3496 if (debug_infrun)
3497 fprintf_unfiltered (gdb_stdlog,
3498 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3499 paddr_nz (pc));
3500
3501 step_resume_breakpoint =
3502 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3503 }
3504
3505 static void
3506 stop_stepping (struct execution_control_state *ecs)
3507 {
3508 if (debug_infrun)
3509 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3510
3511 /* Let callers know we don't want to wait for the inferior anymore. */
3512 ecs->wait_some_more = 0;
3513 }
3514
3515 /* This function handles various cases where we need to continue
3516 waiting for the inferior. */
3517 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3518
3519 static void
3520 keep_going (struct execution_control_state *ecs)
3521 {
3522 /* Save the pc before execution, to compare with pc after stop. */
3523 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3524
3525 /* If we did not do break;, it means we should keep running the
3526 inferior and not return to debugger. */
3527
3528 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
3529 {
3530 /* We took a signal (which we are supposed to pass through to
3531 the inferior, else we'd have done a break above) and we
3532 haven't yet gotten our trap. Simply continue. */
3533 resume (currently_stepping (tss), stop_signal);
3534 }
3535 else
3536 {
3537 /* Either the trap was not expected, but we are continuing
3538 anyway (the user asked that this signal be passed to the
3539 child)
3540 -- or --
3541 The signal was SIGTRAP, e.g. it was our signal, but we
3542 decided we should resume from it.
3543
3544 We're going to run this baby now!
3545
3546 Note that insert_breakpoints won't try to re-insert
3547 already inserted breakpoints. Therefore, we don't
3548 care if breakpoints were already inserted, or not. */
3549
3550 if (tss->stepping_over_breakpoint)
3551 {
3552 if (! use_displaced_stepping (current_gdbarch))
3553 /* Since we can't do a displaced step, we have to remove
3554 the breakpoint while we step it. To keep things
3555 simple, we remove them all. */
3556 remove_breakpoints ();
3557 }
3558 else
3559 {
3560 struct gdb_exception e;
3561 /* Stop stepping when inserting breakpoints
3562 has failed. */
3563 TRY_CATCH (e, RETURN_MASK_ERROR)
3564 {
3565 insert_breakpoints ();
3566 }
3567 if (e.reason < 0)
3568 {
3569 stop_stepping (ecs);
3570 return;
3571 }
3572 }
3573
3574 stepping_over_breakpoint = tss->stepping_over_breakpoint;
3575
3576 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3577 specifies that such a signal should be delivered to the
3578 target program).
3579
3580 Typically, this would occure when a user is debugging a
3581 target monitor on a simulator: the target monitor sets a
3582 breakpoint; the simulator encounters this break-point and
3583 halts the simulation handing control to GDB; GDB, noteing
3584 that the break-point isn't valid, returns control back to the
3585 simulator; the simulator then delivers the hardware
3586 equivalent of a SIGNAL_TRAP to the program being debugged. */
3587
3588 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3589 stop_signal = TARGET_SIGNAL_0;
3590
3591
3592 resume (currently_stepping (tss), stop_signal);
3593 }
3594
3595 prepare_to_wait (ecs);
3596 }
3597
3598 /* This function normally comes after a resume, before
3599 handle_inferior_event exits. It takes care of any last bits of
3600 housekeeping, and sets the all-important wait_some_more flag. */
3601
3602 static void
3603 prepare_to_wait (struct execution_control_state *ecs)
3604 {
3605 if (debug_infrun)
3606 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3607 if (infwait_state == infwait_normal_state)
3608 {
3609 overlay_cache_invalid = 1;
3610
3611 /* We have to invalidate the registers BEFORE calling
3612 target_wait because they can be loaded from the target while
3613 in target_wait. This makes remote debugging a bit more
3614 efficient for those targets that provide critical registers
3615 as part of their normal status mechanism. */
3616
3617 registers_changed ();
3618 waiton_ptid = pid_to_ptid (-1);
3619 }
3620 /* This is the old end of the while loop. Let everybody know we
3621 want to wait for the inferior some more and get called again
3622 soon. */
3623 ecs->wait_some_more = 1;
3624 }
3625
3626 /* Print why the inferior has stopped. We always print something when
3627 the inferior exits, or receives a signal. The rest of the cases are
3628 dealt with later on in normal_stop() and print_it_typical(). Ideally
3629 there should be a call to this function from handle_inferior_event()
3630 each time stop_stepping() is called.*/
3631 static void
3632 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3633 {
3634 switch (stop_reason)
3635 {
3636 case END_STEPPING_RANGE:
3637 /* We are done with a step/next/si/ni command. */
3638 /* For now print nothing. */
3639 /* Print a message only if not in the middle of doing a "step n"
3640 operation for n > 1 */
3641 if (!step_multi || !stop_step)
3642 if (ui_out_is_mi_like_p (uiout))
3643 ui_out_field_string
3644 (uiout, "reason",
3645 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3646 break;
3647 case SIGNAL_EXITED:
3648 /* The inferior was terminated by a signal. */
3649 annotate_signalled ();
3650 if (ui_out_is_mi_like_p (uiout))
3651 ui_out_field_string
3652 (uiout, "reason",
3653 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3654 ui_out_text (uiout, "\nProgram terminated with signal ");
3655 annotate_signal_name ();
3656 ui_out_field_string (uiout, "signal-name",
3657 target_signal_to_name (stop_info));
3658 annotate_signal_name_end ();
3659 ui_out_text (uiout, ", ");
3660 annotate_signal_string ();
3661 ui_out_field_string (uiout, "signal-meaning",
3662 target_signal_to_string (stop_info));
3663 annotate_signal_string_end ();
3664 ui_out_text (uiout, ".\n");
3665 ui_out_text (uiout, "The program no longer exists.\n");
3666 break;
3667 case EXITED:
3668 /* The inferior program is finished. */
3669 annotate_exited (stop_info);
3670 if (stop_info)
3671 {
3672 if (ui_out_is_mi_like_p (uiout))
3673 ui_out_field_string (uiout, "reason",
3674 async_reason_lookup (EXEC_ASYNC_EXITED));
3675 ui_out_text (uiout, "\nProgram exited with code ");
3676 ui_out_field_fmt (uiout, "exit-code", "0%o",
3677 (unsigned int) stop_info);
3678 ui_out_text (uiout, ".\n");
3679 }
3680 else
3681 {
3682 if (ui_out_is_mi_like_p (uiout))
3683 ui_out_field_string
3684 (uiout, "reason",
3685 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3686 ui_out_text (uiout, "\nProgram exited normally.\n");
3687 }
3688 /* Support the --return-child-result option. */
3689 return_child_result_value = stop_info;
3690 break;
3691 case SIGNAL_RECEIVED:
3692 /* Signal received. The signal table tells us to print about
3693 it. */
3694 annotate_signal ();
3695 ui_out_text (uiout, "\nProgram received signal ");
3696 annotate_signal_name ();
3697 if (ui_out_is_mi_like_p (uiout))
3698 ui_out_field_string
3699 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3700 ui_out_field_string (uiout, "signal-name",
3701 target_signal_to_name (stop_info));
3702 annotate_signal_name_end ();
3703 ui_out_text (uiout, ", ");
3704 annotate_signal_string ();
3705 ui_out_field_string (uiout, "signal-meaning",
3706 target_signal_to_string (stop_info));
3707 annotate_signal_string_end ();
3708 ui_out_text (uiout, ".\n");
3709 break;
3710 default:
3711 internal_error (__FILE__, __LINE__,
3712 _("print_stop_reason: unrecognized enum value"));
3713 break;
3714 }
3715 }
3716 \f
3717
3718 /* Here to return control to GDB when the inferior stops for real.
3719 Print appropriate messages, remove breakpoints, give terminal our modes.
3720
3721 STOP_PRINT_FRAME nonzero means print the executing frame
3722 (pc, function, args, file, line number and line text).
3723 BREAKPOINTS_FAILED nonzero means stop was due to error
3724 attempting to insert breakpoints. */
3725
3726 void
3727 normal_stop (void)
3728 {
3729 struct target_waitstatus last;
3730 ptid_t last_ptid;
3731
3732 get_last_target_status (&last_ptid, &last);
3733
3734 /* In non-stop mode, we don't want GDB to switch threads behind the
3735 user's back, to avoid races where the user is typing a command to
3736 apply to thread x, but GDB switches to thread y before the user
3737 finishes entering the command. */
3738
3739 /* As with the notification of thread events, we want to delay
3740 notifying the user that we've switched thread context until
3741 the inferior actually stops.
3742
3743 There's no point in saying anything if the inferior has exited.
3744 Note that SIGNALLED here means "exited with a signal", not
3745 "received a signal". */
3746 if (!non_stop
3747 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
3748 && target_has_execution
3749 && last.kind != TARGET_WAITKIND_SIGNALLED
3750 && last.kind != TARGET_WAITKIND_EXITED)
3751 {
3752 target_terminal_ours_for_output ();
3753 printf_filtered (_("[Switching to %s]\n"),
3754 target_pid_to_str (inferior_ptid));
3755 annotate_thread_changed ();
3756 previous_inferior_ptid = inferior_ptid;
3757 }
3758
3759 /* NOTE drow/2004-01-17: Is this still necessary? */
3760 /* Make sure that the current_frame's pc is correct. This
3761 is a correction for setting up the frame info before doing
3762 gdbarch_decr_pc_after_break */
3763 if (target_has_execution)
3764 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3765 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3766 frame code to check for this and sort out any resultant mess.
3767 gdbarch_decr_pc_after_break needs to just go away. */
3768 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3769
3770 if (!breakpoints_always_inserted_mode () && target_has_execution)
3771 {
3772 if (remove_breakpoints ())
3773 {
3774 target_terminal_ours_for_output ();
3775 printf_filtered (_("\
3776 Cannot remove breakpoints because program is no longer writable.\n\
3777 It might be running in another process.\n\
3778 Further execution is probably impossible.\n"));
3779 }
3780 }
3781
3782 /* If an auto-display called a function and that got a signal,
3783 delete that auto-display to avoid an infinite recursion. */
3784
3785 if (stopped_by_random_signal)
3786 disable_current_display ();
3787
3788 /* Don't print a message if in the middle of doing a "step n"
3789 operation for n > 1 */
3790 if (step_multi && stop_step)
3791 goto done;
3792
3793 target_terminal_ours ();
3794
3795 /* Set the current source location. This will also happen if we
3796 display the frame below, but the current SAL will be incorrect
3797 during a user hook-stop function. */
3798 if (target_has_stack && !stop_stack_dummy)
3799 set_current_sal_from_frame (get_current_frame (), 1);
3800
3801 /* Look up the hook_stop and run it (CLI internally handles problem
3802 of stop_command's pre-hook not existing). */
3803 if (stop_command)
3804 catch_errors (hook_stop_stub, stop_command,
3805 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3806
3807 if (!target_has_stack)
3808 {
3809
3810 goto done;
3811 }
3812
3813 /* Select innermost stack frame - i.e., current frame is frame 0,
3814 and current location is based on that.
3815 Don't do this on return from a stack dummy routine,
3816 or if the program has exited. */
3817
3818 if (!stop_stack_dummy)
3819 {
3820 select_frame (get_current_frame ());
3821
3822 /* Print current location without a level number, if
3823 we have changed functions or hit a breakpoint.
3824 Print source line if we have one.
3825 bpstat_print() contains the logic deciding in detail
3826 what to print, based on the event(s) that just occurred. */
3827
3828 /* If --batch-silent is enabled then there's no need to print the current
3829 source location, and to try risks causing an error message about
3830 missing source files. */
3831 if (stop_print_frame && !batch_silent)
3832 {
3833 int bpstat_ret;
3834 int source_flag;
3835 int do_frame_printing = 1;
3836
3837 bpstat_ret = bpstat_print (stop_bpstat);
3838 switch (bpstat_ret)
3839 {
3840 case PRINT_UNKNOWN:
3841 /* If we had hit a shared library event breakpoint,
3842 bpstat_print would print out this message. If we hit
3843 an OS-level shared library event, do the same
3844 thing. */
3845 if (last.kind == TARGET_WAITKIND_LOADED)
3846 {
3847 printf_filtered (_("Stopped due to shared library event\n"));
3848 source_flag = SRC_LINE; /* something bogus */
3849 do_frame_printing = 0;
3850 break;
3851 }
3852
3853 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3854 (or should) carry around the function and does (or
3855 should) use that when doing a frame comparison. */
3856 if (stop_step
3857 && frame_id_eq (step_frame_id,
3858 get_frame_id (get_current_frame ()))
3859 && step_start_function == find_pc_function (stop_pc))
3860 source_flag = SRC_LINE; /* finished step, just print source line */
3861 else
3862 source_flag = SRC_AND_LOC; /* print location and source line */
3863 break;
3864 case PRINT_SRC_AND_LOC:
3865 source_flag = SRC_AND_LOC; /* print location and source line */
3866 break;
3867 case PRINT_SRC_ONLY:
3868 source_flag = SRC_LINE;
3869 break;
3870 case PRINT_NOTHING:
3871 source_flag = SRC_LINE; /* something bogus */
3872 do_frame_printing = 0;
3873 break;
3874 default:
3875 internal_error (__FILE__, __LINE__, _("Unknown value."));
3876 }
3877
3878 if (ui_out_is_mi_like_p (uiout))
3879 {
3880
3881 ui_out_field_int (uiout, "thread-id",
3882 pid_to_thread_id (inferior_ptid));
3883 if (non_stop)
3884 {
3885 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
3886 (uiout, "stopped-threads");
3887 ui_out_field_int (uiout, NULL,
3888 pid_to_thread_id (inferior_ptid));
3889 do_cleanups (back_to);
3890 }
3891 else
3892 ui_out_field_string (uiout, "stopped-threads", "all");
3893 }
3894 /* The behavior of this routine with respect to the source
3895 flag is:
3896 SRC_LINE: Print only source line
3897 LOCATION: Print only location
3898 SRC_AND_LOC: Print location and source line */
3899 if (do_frame_printing)
3900 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3901
3902 /* Display the auto-display expressions. */
3903 do_displays ();
3904 }
3905 }
3906
3907 /* Save the function value return registers, if we care.
3908 We might be about to restore their previous contents. */
3909 if (proceed_to_finish)
3910 {
3911 /* This should not be necessary. */
3912 if (stop_registers)
3913 regcache_xfree (stop_registers);
3914
3915 /* NB: The copy goes through to the target picking up the value of
3916 all the registers. */
3917 stop_registers = regcache_dup (get_current_regcache ());
3918 }
3919
3920 if (stop_stack_dummy)
3921 {
3922 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3923 ends with a setting of the current frame, so we can use that
3924 next. */
3925 frame_pop (get_current_frame ());
3926 /* Set stop_pc to what it was before we called the function.
3927 Can't rely on restore_inferior_status because that only gets
3928 called if we don't stop in the called function. */
3929 stop_pc = read_pc ();
3930 select_frame (get_current_frame ());
3931 }
3932
3933 done:
3934 annotate_stopped ();
3935 if (!suppress_stop_observer && !step_multi)
3936 observer_notify_normal_stop (stop_bpstat);
3937 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3938 Delete any breakpoint that is to be deleted at the next stop. */
3939 breakpoint_auto_delete (stop_bpstat);
3940
3941 if (target_has_execution
3942 && last.kind != TARGET_WAITKIND_SIGNALLED
3943 && last.kind != TARGET_WAITKIND_EXITED)
3944 {
3945 if (!non_stop)
3946 set_running (pid_to_ptid (-1), 0);
3947 else
3948 set_running (inferior_ptid, 0);
3949 }
3950 }
3951
3952 static int
3953 hook_stop_stub (void *cmd)
3954 {
3955 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3956 return (0);
3957 }
3958 \f
3959 int
3960 signal_stop_state (int signo)
3961 {
3962 /* Always stop on signals if we're just gaining control of the
3963 program. */
3964 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3965 }
3966
3967 int
3968 signal_print_state (int signo)
3969 {
3970 return signal_print[signo];
3971 }
3972
3973 int
3974 signal_pass_state (int signo)
3975 {
3976 return signal_program[signo];
3977 }
3978
3979 int
3980 signal_stop_update (int signo, int state)
3981 {
3982 int ret = signal_stop[signo];
3983 signal_stop[signo] = state;
3984 return ret;
3985 }
3986
3987 int
3988 signal_print_update (int signo, int state)
3989 {
3990 int ret = signal_print[signo];
3991 signal_print[signo] = state;
3992 return ret;
3993 }
3994
3995 int
3996 signal_pass_update (int signo, int state)
3997 {
3998 int ret = signal_program[signo];
3999 signal_program[signo] = state;
4000 return ret;
4001 }
4002
4003 static void
4004 sig_print_header (void)
4005 {
4006 printf_filtered (_("\
4007 Signal Stop\tPrint\tPass to program\tDescription\n"));
4008 }
4009
4010 static void
4011 sig_print_info (enum target_signal oursig)
4012 {
4013 char *name = target_signal_to_name (oursig);
4014 int name_padding = 13 - strlen (name);
4015
4016 if (name_padding <= 0)
4017 name_padding = 0;
4018
4019 printf_filtered ("%s", name);
4020 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4021 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4022 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4023 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4024 printf_filtered ("%s\n", target_signal_to_string (oursig));
4025 }
4026
4027 /* Specify how various signals in the inferior should be handled. */
4028
4029 static void
4030 handle_command (char *args, int from_tty)
4031 {
4032 char **argv;
4033 int digits, wordlen;
4034 int sigfirst, signum, siglast;
4035 enum target_signal oursig;
4036 int allsigs;
4037 int nsigs;
4038 unsigned char *sigs;
4039 struct cleanup *old_chain;
4040
4041 if (args == NULL)
4042 {
4043 error_no_arg (_("signal to handle"));
4044 }
4045
4046 /* Allocate and zero an array of flags for which signals to handle. */
4047
4048 nsigs = (int) TARGET_SIGNAL_LAST;
4049 sigs = (unsigned char *) alloca (nsigs);
4050 memset (sigs, 0, nsigs);
4051
4052 /* Break the command line up into args. */
4053
4054 argv = buildargv (args);
4055 if (argv == NULL)
4056 {
4057 nomem (0);
4058 }
4059 old_chain = make_cleanup_freeargv (argv);
4060
4061 /* Walk through the args, looking for signal oursigs, signal names, and
4062 actions. Signal numbers and signal names may be interspersed with
4063 actions, with the actions being performed for all signals cumulatively
4064 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4065
4066 while (*argv != NULL)
4067 {
4068 wordlen = strlen (*argv);
4069 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4070 {;
4071 }
4072 allsigs = 0;
4073 sigfirst = siglast = -1;
4074
4075 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4076 {
4077 /* Apply action to all signals except those used by the
4078 debugger. Silently skip those. */
4079 allsigs = 1;
4080 sigfirst = 0;
4081 siglast = nsigs - 1;
4082 }
4083 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4084 {
4085 SET_SIGS (nsigs, sigs, signal_stop);
4086 SET_SIGS (nsigs, sigs, signal_print);
4087 }
4088 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4089 {
4090 UNSET_SIGS (nsigs, sigs, signal_program);
4091 }
4092 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4093 {
4094 SET_SIGS (nsigs, sigs, signal_print);
4095 }
4096 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4097 {
4098 SET_SIGS (nsigs, sigs, signal_program);
4099 }
4100 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4101 {
4102 UNSET_SIGS (nsigs, sigs, signal_stop);
4103 }
4104 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4105 {
4106 SET_SIGS (nsigs, sigs, signal_program);
4107 }
4108 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4109 {
4110 UNSET_SIGS (nsigs, sigs, signal_print);
4111 UNSET_SIGS (nsigs, sigs, signal_stop);
4112 }
4113 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4114 {
4115 UNSET_SIGS (nsigs, sigs, signal_program);
4116 }
4117 else if (digits > 0)
4118 {
4119 /* It is numeric. The numeric signal refers to our own
4120 internal signal numbering from target.h, not to host/target
4121 signal number. This is a feature; users really should be
4122 using symbolic names anyway, and the common ones like
4123 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4124
4125 sigfirst = siglast = (int)
4126 target_signal_from_command (atoi (*argv));
4127 if ((*argv)[digits] == '-')
4128 {
4129 siglast = (int)
4130 target_signal_from_command (atoi ((*argv) + digits + 1));
4131 }
4132 if (sigfirst > siglast)
4133 {
4134 /* Bet he didn't figure we'd think of this case... */
4135 signum = sigfirst;
4136 sigfirst = siglast;
4137 siglast = signum;
4138 }
4139 }
4140 else
4141 {
4142 oursig = target_signal_from_name (*argv);
4143 if (oursig != TARGET_SIGNAL_UNKNOWN)
4144 {
4145 sigfirst = siglast = (int) oursig;
4146 }
4147 else
4148 {
4149 /* Not a number and not a recognized flag word => complain. */
4150 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4151 }
4152 }
4153
4154 /* If any signal numbers or symbol names were found, set flags for
4155 which signals to apply actions to. */
4156
4157 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4158 {
4159 switch ((enum target_signal) signum)
4160 {
4161 case TARGET_SIGNAL_TRAP:
4162 case TARGET_SIGNAL_INT:
4163 if (!allsigs && !sigs[signum])
4164 {
4165 if (query ("%s is used by the debugger.\n\
4166 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4167 {
4168 sigs[signum] = 1;
4169 }
4170 else
4171 {
4172 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4173 gdb_flush (gdb_stdout);
4174 }
4175 }
4176 break;
4177 case TARGET_SIGNAL_0:
4178 case TARGET_SIGNAL_DEFAULT:
4179 case TARGET_SIGNAL_UNKNOWN:
4180 /* Make sure that "all" doesn't print these. */
4181 break;
4182 default:
4183 sigs[signum] = 1;
4184 break;
4185 }
4186 }
4187
4188 argv++;
4189 }
4190
4191 target_notice_signals (inferior_ptid);
4192
4193 if (from_tty)
4194 {
4195 /* Show the results. */
4196 sig_print_header ();
4197 for (signum = 0; signum < nsigs; signum++)
4198 {
4199 if (sigs[signum])
4200 {
4201 sig_print_info (signum);
4202 }
4203 }
4204 }
4205
4206 do_cleanups (old_chain);
4207 }
4208
4209 static void
4210 xdb_handle_command (char *args, int from_tty)
4211 {
4212 char **argv;
4213 struct cleanup *old_chain;
4214
4215 /* Break the command line up into args. */
4216
4217 argv = buildargv (args);
4218 if (argv == NULL)
4219 {
4220 nomem (0);
4221 }
4222 old_chain = make_cleanup_freeargv (argv);
4223 if (argv[1] != (char *) NULL)
4224 {
4225 char *argBuf;
4226 int bufLen;
4227
4228 bufLen = strlen (argv[0]) + 20;
4229 argBuf = (char *) xmalloc (bufLen);
4230 if (argBuf)
4231 {
4232 int validFlag = 1;
4233 enum target_signal oursig;
4234
4235 oursig = target_signal_from_name (argv[0]);
4236 memset (argBuf, 0, bufLen);
4237 if (strcmp (argv[1], "Q") == 0)
4238 sprintf (argBuf, "%s %s", argv[0], "noprint");
4239 else
4240 {
4241 if (strcmp (argv[1], "s") == 0)
4242 {
4243 if (!signal_stop[oursig])
4244 sprintf (argBuf, "%s %s", argv[0], "stop");
4245 else
4246 sprintf (argBuf, "%s %s", argv[0], "nostop");
4247 }
4248 else if (strcmp (argv[1], "i") == 0)
4249 {
4250 if (!signal_program[oursig])
4251 sprintf (argBuf, "%s %s", argv[0], "pass");
4252 else
4253 sprintf (argBuf, "%s %s", argv[0], "nopass");
4254 }
4255 else if (strcmp (argv[1], "r") == 0)
4256 {
4257 if (!signal_print[oursig])
4258 sprintf (argBuf, "%s %s", argv[0], "print");
4259 else
4260 sprintf (argBuf, "%s %s", argv[0], "noprint");
4261 }
4262 else
4263 validFlag = 0;
4264 }
4265 if (validFlag)
4266 handle_command (argBuf, from_tty);
4267 else
4268 printf_filtered (_("Invalid signal handling flag.\n"));
4269 if (argBuf)
4270 xfree (argBuf);
4271 }
4272 }
4273 do_cleanups (old_chain);
4274 }
4275
4276 /* Print current contents of the tables set by the handle command.
4277 It is possible we should just be printing signals actually used
4278 by the current target (but for things to work right when switching
4279 targets, all signals should be in the signal tables). */
4280
4281 static void
4282 signals_info (char *signum_exp, int from_tty)
4283 {
4284 enum target_signal oursig;
4285 sig_print_header ();
4286
4287 if (signum_exp)
4288 {
4289 /* First see if this is a symbol name. */
4290 oursig = target_signal_from_name (signum_exp);
4291 if (oursig == TARGET_SIGNAL_UNKNOWN)
4292 {
4293 /* No, try numeric. */
4294 oursig =
4295 target_signal_from_command (parse_and_eval_long (signum_exp));
4296 }
4297 sig_print_info (oursig);
4298 return;
4299 }
4300
4301 printf_filtered ("\n");
4302 /* These ugly casts brought to you by the native VAX compiler. */
4303 for (oursig = TARGET_SIGNAL_FIRST;
4304 (int) oursig < (int) TARGET_SIGNAL_LAST;
4305 oursig = (enum target_signal) ((int) oursig + 1))
4306 {
4307 QUIT;
4308
4309 if (oursig != TARGET_SIGNAL_UNKNOWN
4310 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4311 sig_print_info (oursig);
4312 }
4313
4314 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4315 }
4316 \f
4317 struct inferior_status
4318 {
4319 enum target_signal stop_signal;
4320 CORE_ADDR stop_pc;
4321 bpstat stop_bpstat;
4322 int stop_step;
4323 int stop_stack_dummy;
4324 int stopped_by_random_signal;
4325 int stepping_over_breakpoint;
4326 CORE_ADDR step_range_start;
4327 CORE_ADDR step_range_end;
4328 struct frame_id step_frame_id;
4329 enum step_over_calls_kind step_over_calls;
4330 CORE_ADDR step_resume_break_address;
4331 int stop_after_trap;
4332 int stop_soon;
4333
4334 /* These are here because if call_function_by_hand has written some
4335 registers and then decides to call error(), we better not have changed
4336 any registers. */
4337 struct regcache *registers;
4338
4339 /* A frame unique identifier. */
4340 struct frame_id selected_frame_id;
4341
4342 int breakpoint_proceeded;
4343 int restore_stack_info;
4344 int proceed_to_finish;
4345 };
4346
4347 void
4348 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4349 LONGEST val)
4350 {
4351 int size = register_size (current_gdbarch, regno);
4352 void *buf = alloca (size);
4353 store_signed_integer (buf, size, val);
4354 regcache_raw_write (inf_status->registers, regno, buf);
4355 }
4356
4357 /* Save all of the information associated with the inferior<==>gdb
4358 connection. INF_STATUS is a pointer to a "struct inferior_status"
4359 (defined in inferior.h). */
4360
4361 struct inferior_status *
4362 save_inferior_status (int restore_stack_info)
4363 {
4364 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4365
4366 inf_status->stop_signal = stop_signal;
4367 inf_status->stop_pc = stop_pc;
4368 inf_status->stop_step = stop_step;
4369 inf_status->stop_stack_dummy = stop_stack_dummy;
4370 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4371 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
4372 inf_status->step_range_start = step_range_start;
4373 inf_status->step_range_end = step_range_end;
4374 inf_status->step_frame_id = step_frame_id;
4375 inf_status->step_over_calls = step_over_calls;
4376 inf_status->stop_after_trap = stop_after_trap;
4377 inf_status->stop_soon = stop_soon;
4378 /* Save original bpstat chain here; replace it with copy of chain.
4379 If caller's caller is walking the chain, they'll be happier if we
4380 hand them back the original chain when restore_inferior_status is
4381 called. */
4382 inf_status->stop_bpstat = stop_bpstat;
4383 stop_bpstat = bpstat_copy (stop_bpstat);
4384 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4385 inf_status->restore_stack_info = restore_stack_info;
4386 inf_status->proceed_to_finish = proceed_to_finish;
4387
4388 inf_status->registers = regcache_dup (get_current_regcache ());
4389
4390 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4391 return inf_status;
4392 }
4393
4394 static int
4395 restore_selected_frame (void *args)
4396 {
4397 struct frame_id *fid = (struct frame_id *) args;
4398 struct frame_info *frame;
4399
4400 frame = frame_find_by_id (*fid);
4401
4402 /* If inf_status->selected_frame_id is NULL, there was no previously
4403 selected frame. */
4404 if (frame == NULL)
4405 {
4406 warning (_("Unable to restore previously selected frame."));
4407 return 0;
4408 }
4409
4410 select_frame (frame);
4411
4412 return (1);
4413 }
4414
4415 void
4416 restore_inferior_status (struct inferior_status *inf_status)
4417 {
4418 stop_signal = inf_status->stop_signal;
4419 stop_pc = inf_status->stop_pc;
4420 stop_step = inf_status->stop_step;
4421 stop_stack_dummy = inf_status->stop_stack_dummy;
4422 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4423 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
4424 step_range_start = inf_status->step_range_start;
4425 step_range_end = inf_status->step_range_end;
4426 step_frame_id = inf_status->step_frame_id;
4427 step_over_calls = inf_status->step_over_calls;
4428 stop_after_trap = inf_status->stop_after_trap;
4429 stop_soon = inf_status->stop_soon;
4430 bpstat_clear (&stop_bpstat);
4431 stop_bpstat = inf_status->stop_bpstat;
4432 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4433 proceed_to_finish = inf_status->proceed_to_finish;
4434
4435 /* The inferior can be gone if the user types "print exit(0)"
4436 (and perhaps other times). */
4437 if (target_has_execution)
4438 /* NB: The register write goes through to the target. */
4439 regcache_cpy (get_current_regcache (), inf_status->registers);
4440 regcache_xfree (inf_status->registers);
4441
4442 /* FIXME: If we are being called after stopping in a function which
4443 is called from gdb, we should not be trying to restore the
4444 selected frame; it just prints a spurious error message (The
4445 message is useful, however, in detecting bugs in gdb (like if gdb
4446 clobbers the stack)). In fact, should we be restoring the
4447 inferior status at all in that case? . */
4448
4449 if (target_has_stack && inf_status->restore_stack_info)
4450 {
4451 /* The point of catch_errors is that if the stack is clobbered,
4452 walking the stack might encounter a garbage pointer and
4453 error() trying to dereference it. */
4454 if (catch_errors
4455 (restore_selected_frame, &inf_status->selected_frame_id,
4456 "Unable to restore previously selected frame:\n",
4457 RETURN_MASK_ERROR) == 0)
4458 /* Error in restoring the selected frame. Select the innermost
4459 frame. */
4460 select_frame (get_current_frame ());
4461
4462 }
4463
4464 xfree (inf_status);
4465 }
4466
4467 static void
4468 do_restore_inferior_status_cleanup (void *sts)
4469 {
4470 restore_inferior_status (sts);
4471 }
4472
4473 struct cleanup *
4474 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4475 {
4476 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4477 }
4478
4479 void
4480 discard_inferior_status (struct inferior_status *inf_status)
4481 {
4482 /* See save_inferior_status for info on stop_bpstat. */
4483 bpstat_clear (&inf_status->stop_bpstat);
4484 regcache_xfree (inf_status->registers);
4485 xfree (inf_status);
4486 }
4487
4488 int
4489 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4490 {
4491 struct target_waitstatus last;
4492 ptid_t last_ptid;
4493
4494 get_last_target_status (&last_ptid, &last);
4495
4496 if (last.kind != TARGET_WAITKIND_FORKED)
4497 return 0;
4498
4499 if (!ptid_equal (last_ptid, pid))
4500 return 0;
4501
4502 *child_pid = last.value.related_pid;
4503 return 1;
4504 }
4505
4506 int
4507 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4508 {
4509 struct target_waitstatus last;
4510 ptid_t last_ptid;
4511
4512 get_last_target_status (&last_ptid, &last);
4513
4514 if (last.kind != TARGET_WAITKIND_VFORKED)
4515 return 0;
4516
4517 if (!ptid_equal (last_ptid, pid))
4518 return 0;
4519
4520 *child_pid = last.value.related_pid;
4521 return 1;
4522 }
4523
4524 int
4525 inferior_has_execd (ptid_t pid, char **execd_pathname)
4526 {
4527 struct target_waitstatus last;
4528 ptid_t last_ptid;
4529
4530 get_last_target_status (&last_ptid, &last);
4531
4532 if (last.kind != TARGET_WAITKIND_EXECD)
4533 return 0;
4534
4535 if (!ptid_equal (last_ptid, pid))
4536 return 0;
4537
4538 *execd_pathname = xstrdup (last.value.execd_pathname);
4539 return 1;
4540 }
4541
4542 /* Oft used ptids */
4543 ptid_t null_ptid;
4544 ptid_t minus_one_ptid;
4545
4546 /* Create a ptid given the necessary PID, LWP, and TID components. */
4547
4548 ptid_t
4549 ptid_build (int pid, long lwp, long tid)
4550 {
4551 ptid_t ptid;
4552
4553 ptid.pid = pid;
4554 ptid.lwp = lwp;
4555 ptid.tid = tid;
4556 return ptid;
4557 }
4558
4559 /* Create a ptid from just a pid. */
4560
4561 ptid_t
4562 pid_to_ptid (int pid)
4563 {
4564 return ptid_build (pid, 0, 0);
4565 }
4566
4567 /* Fetch the pid (process id) component from a ptid. */
4568
4569 int
4570 ptid_get_pid (ptid_t ptid)
4571 {
4572 return ptid.pid;
4573 }
4574
4575 /* Fetch the lwp (lightweight process) component from a ptid. */
4576
4577 long
4578 ptid_get_lwp (ptid_t ptid)
4579 {
4580 return ptid.lwp;
4581 }
4582
4583 /* Fetch the tid (thread id) component from a ptid. */
4584
4585 long
4586 ptid_get_tid (ptid_t ptid)
4587 {
4588 return ptid.tid;
4589 }
4590
4591 /* ptid_equal() is used to test equality of two ptids. */
4592
4593 int
4594 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4595 {
4596 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4597 && ptid1.tid == ptid2.tid);
4598 }
4599
4600 /* restore_inferior_ptid() will be used by the cleanup machinery
4601 to restore the inferior_ptid value saved in a call to
4602 save_inferior_ptid(). */
4603
4604 static void
4605 restore_inferior_ptid (void *arg)
4606 {
4607 ptid_t *saved_ptid_ptr = arg;
4608 inferior_ptid = *saved_ptid_ptr;
4609 xfree (arg);
4610 }
4611
4612 /* Save the value of inferior_ptid so that it may be restored by a
4613 later call to do_cleanups(). Returns the struct cleanup pointer
4614 needed for later doing the cleanup. */
4615
4616 struct cleanup *
4617 save_inferior_ptid (void)
4618 {
4619 ptid_t *saved_ptid_ptr;
4620
4621 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4622 *saved_ptid_ptr = inferior_ptid;
4623 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4624 }
4625 \f
4626
4627 int non_stop = 0;
4628 static int non_stop_1 = 0;
4629
4630 static void
4631 set_non_stop (char *args, int from_tty,
4632 struct cmd_list_element *c)
4633 {
4634 if (target_has_execution)
4635 {
4636 non_stop_1 = non_stop;
4637 error (_("Cannot change this setting while the inferior is running."));
4638 }
4639
4640 non_stop = non_stop_1;
4641 }
4642
4643 static void
4644 show_non_stop (struct ui_file *file, int from_tty,
4645 struct cmd_list_element *c, const char *value)
4646 {
4647 fprintf_filtered (file,
4648 _("Controlling the inferior in non-stop mode is %s.\n"),
4649 value);
4650 }
4651
4652
4653 void
4654 _initialize_infrun (void)
4655 {
4656 int i;
4657 int numsigs;
4658 struct cmd_list_element *c;
4659
4660 add_info ("signals", signals_info, _("\
4661 What debugger does when program gets various signals.\n\
4662 Specify a signal as argument to print info on that signal only."));
4663 add_info_alias ("handle", "signals", 0);
4664
4665 add_com ("handle", class_run, handle_command, _("\
4666 Specify how to handle a signal.\n\
4667 Args are signals and actions to apply to those signals.\n\
4668 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4669 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4670 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4671 The special arg \"all\" is recognized to mean all signals except those\n\
4672 used by the debugger, typically SIGTRAP and SIGINT.\n\
4673 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4674 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4675 Stop means reenter debugger if this signal happens (implies print).\n\
4676 Print means print a message if this signal happens.\n\
4677 Pass means let program see this signal; otherwise program doesn't know.\n\
4678 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4679 Pass and Stop may be combined."));
4680 if (xdb_commands)
4681 {
4682 add_com ("lz", class_info, signals_info, _("\
4683 What debugger does when program gets various signals.\n\
4684 Specify a signal as argument to print info on that signal only."));
4685 add_com ("z", class_run, xdb_handle_command, _("\
4686 Specify how to handle a signal.\n\
4687 Args are signals and actions to apply to those signals.\n\
4688 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4689 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4690 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4691 The special arg \"all\" is recognized to mean all signals except those\n\
4692 used by the debugger, typically SIGTRAP and SIGINT.\n\
4693 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4694 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4695 nopass), \"Q\" (noprint)\n\
4696 Stop means reenter debugger if this signal happens (implies print).\n\
4697 Print means print a message if this signal happens.\n\
4698 Pass means let program see this signal; otherwise program doesn't know.\n\
4699 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4700 Pass and Stop may be combined."));
4701 }
4702
4703 if (!dbx_commands)
4704 stop_command = add_cmd ("stop", class_obscure,
4705 not_just_help_class_command, _("\
4706 There is no `stop' command, but you can set a hook on `stop'.\n\
4707 This allows you to set a list of commands to be run each time execution\n\
4708 of the program stops."), &cmdlist);
4709
4710 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4711 Set inferior debugging."), _("\
4712 Show inferior debugging."), _("\
4713 When non-zero, inferior specific debugging is enabled."),
4714 NULL,
4715 show_debug_infrun,
4716 &setdebuglist, &showdebuglist);
4717
4718 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4719 Set displaced stepping debugging."), _("\
4720 Show displaced stepping debugging."), _("\
4721 When non-zero, displaced stepping specific debugging is enabled."),
4722 NULL,
4723 show_debug_displaced,
4724 &setdebuglist, &showdebuglist);
4725
4726 add_setshow_boolean_cmd ("non-stop", no_class,
4727 &non_stop_1, _("\
4728 Set whether gdb controls the inferior in non-stop mode."), _("\
4729 Show whether gdb controls the inferior in non-stop mode."), _("\
4730 When debugging a multi-threaded program and this setting is\n\
4731 off (the default, also called all-stop mode), when one thread stops\n\
4732 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4733 all other threads in the program while you interact with the thread of\n\
4734 interest. When you continue or step a thread, you can allow the other\n\
4735 threads to run, or have them remain stopped, but while you inspect any\n\
4736 thread's state, all threads stop.\n\
4737 \n\
4738 In non-stop mode, when one thread stops, other threads can continue\n\
4739 to run freely. You'll be able to step each thread independently,\n\
4740 leave it stopped or free to run as needed."),
4741 set_non_stop,
4742 show_non_stop,
4743 &setlist,
4744 &showlist);
4745
4746 numsigs = (int) TARGET_SIGNAL_LAST;
4747 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4748 signal_print = (unsigned char *)
4749 xmalloc (sizeof (signal_print[0]) * numsigs);
4750 signal_program = (unsigned char *)
4751 xmalloc (sizeof (signal_program[0]) * numsigs);
4752 for (i = 0; i < numsigs; i++)
4753 {
4754 signal_stop[i] = 1;
4755 signal_print[i] = 1;
4756 signal_program[i] = 1;
4757 }
4758
4759 /* Signals caused by debugger's own actions
4760 should not be given to the program afterwards. */
4761 signal_program[TARGET_SIGNAL_TRAP] = 0;
4762 signal_program[TARGET_SIGNAL_INT] = 0;
4763
4764 /* Signals that are not errors should not normally enter the debugger. */
4765 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4766 signal_print[TARGET_SIGNAL_ALRM] = 0;
4767 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4768 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4769 signal_stop[TARGET_SIGNAL_PROF] = 0;
4770 signal_print[TARGET_SIGNAL_PROF] = 0;
4771 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4772 signal_print[TARGET_SIGNAL_CHLD] = 0;
4773 signal_stop[TARGET_SIGNAL_IO] = 0;
4774 signal_print[TARGET_SIGNAL_IO] = 0;
4775 signal_stop[TARGET_SIGNAL_POLL] = 0;
4776 signal_print[TARGET_SIGNAL_POLL] = 0;
4777 signal_stop[TARGET_SIGNAL_URG] = 0;
4778 signal_print[TARGET_SIGNAL_URG] = 0;
4779 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4780 signal_print[TARGET_SIGNAL_WINCH] = 0;
4781
4782 /* These signals are used internally by user-level thread
4783 implementations. (See signal(5) on Solaris.) Like the above
4784 signals, a healthy program receives and handles them as part of
4785 its normal operation. */
4786 signal_stop[TARGET_SIGNAL_LWP] = 0;
4787 signal_print[TARGET_SIGNAL_LWP] = 0;
4788 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4789 signal_print[TARGET_SIGNAL_WAITING] = 0;
4790 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4791 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4792
4793 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4794 &stop_on_solib_events, _("\
4795 Set stopping for shared library events."), _("\
4796 Show stopping for shared library events."), _("\
4797 If nonzero, gdb will give control to the user when the dynamic linker\n\
4798 notifies gdb of shared library events. The most common event of interest\n\
4799 to the user would be loading/unloading of a new library."),
4800 NULL,
4801 show_stop_on_solib_events,
4802 &setlist, &showlist);
4803
4804 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4805 follow_fork_mode_kind_names,
4806 &follow_fork_mode_string, _("\
4807 Set debugger response to a program call of fork or vfork."), _("\
4808 Show debugger response to a program call of fork or vfork."), _("\
4809 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4810 parent - the original process is debugged after a fork\n\
4811 child - the new process is debugged after a fork\n\
4812 The unfollowed process will continue to run.\n\
4813 By default, the debugger will follow the parent process."),
4814 NULL,
4815 show_follow_fork_mode_string,
4816 &setlist, &showlist);
4817
4818 add_setshow_enum_cmd ("scheduler-locking", class_run,
4819 scheduler_enums, &scheduler_mode, _("\
4820 Set mode for locking scheduler during execution."), _("\
4821 Show mode for locking scheduler during execution."), _("\
4822 off == no locking (threads may preempt at any time)\n\
4823 on == full locking (no thread except the current thread may run)\n\
4824 step == scheduler locked during every single-step operation.\n\
4825 In this mode, no other thread may run during a step command.\n\
4826 Other threads may run while stepping over a function call ('next')."),
4827 set_schedlock_func, /* traps on target vector */
4828 show_scheduler_mode,
4829 &setlist, &showlist);
4830
4831 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4832 Set mode of the step operation."), _("\
4833 Show mode of the step operation."), _("\
4834 When set, doing a step over a function without debug line information\n\
4835 will stop at the first instruction of that function. Otherwise, the\n\
4836 function is skipped and the step command stops at a different source line."),
4837 NULL,
4838 show_step_stop_if_no_debug,
4839 &setlist, &showlist);
4840
4841 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4842 &can_use_displaced_stepping, _("\
4843 Set debugger's willingness to use displaced stepping."), _("\
4844 Show debugger's willingness to use displaced stepping."), _("\
4845 If zero, gdb will not use displaced stepping to step over\n\
4846 breakpoints, even if such is supported by the target."),
4847 NULL,
4848 show_can_use_displaced_stepping,
4849 &maintenance_set_cmdlist,
4850 &maintenance_show_cmdlist);
4851
4852 /* ptid initializations */
4853 null_ptid = ptid_build (0, 0, 0);
4854 minus_one_ptid = ptid_build (-1, 0, 0);
4855 inferior_ptid = null_ptid;
4856 target_last_wait_ptid = minus_one_ptid;
4857 displaced_step_ptid = null_ptid;
4858 }
This page took 0.160853 seconds and 4 git commands to generate.