gdb: cleanup of displaced_step_inferior_state::reset/displaced_step_clear
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdb_select.h"
68 #include <unordered_map>
69
70 /* Prototypes for local functions */
71
72 static void sig_print_info (enum gdb_signal);
73
74 static void sig_print_header (void);
75
76 static int follow_fork (void);
77
78 static int follow_fork_inferior (int follow_child, int detach_fork);
79
80 static void follow_inferior_reset_breakpoints (void);
81
82 static int currently_stepping (struct thread_info *tp);
83
84 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
85
86 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
88 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
90 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
92 static void resume (gdb_signal sig);
93
94 static void wait_for_inferior (inferior *inf);
95
96 /* Asynchronous signal handler registered as event loop source for
97 when we have pending events ready to be passed to the core. */
98 static struct async_event_handler *infrun_async_inferior_event_token;
99
100 /* Stores whether infrun_async was previously enabled or disabled.
101 Starts off as -1, indicating "never enabled/disabled". */
102 static int infrun_is_async = -1;
103
104 /* See infrun.h. */
105
106 void
107 infrun_async (int enable)
108 {
109 if (infrun_is_async != enable)
110 {
111 infrun_is_async = enable;
112
113 if (debug_infrun)
114 fprintf_unfiltered (gdb_stdlog,
115 "infrun: infrun_async(%d)\n",
116 enable);
117
118 if (enable)
119 mark_async_event_handler (infrun_async_inferior_event_token);
120 else
121 clear_async_event_handler (infrun_async_inferior_event_token);
122 }
123 }
124
125 /* See infrun.h. */
126
127 void
128 mark_infrun_async_event_handler (void)
129 {
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 }
132
133 /* When set, stop the 'step' command if we enter a function which has
134 no line number information. The normal behavior is that we step
135 over such function. */
136 bool step_stop_if_no_debug = false;
137 static void
138 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140 {
141 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
142 }
143
144 /* proceed and normal_stop use this to notify the user when the
145 inferior stopped in a different thread than it had been running
146 in. */
147
148 static ptid_t previous_inferior_ptid;
149
150 /* If set (default for legacy reasons), when following a fork, GDB
151 will detach from one of the fork branches, child or parent.
152 Exactly which branch is detached depends on 'set follow-fork-mode'
153 setting. */
154
155 static bool detach_fork = true;
156
157 bool debug_displaced = false;
158 static void
159 show_debug_displaced (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
163 }
164
165 unsigned int debug_infrun = 0;
166 static void
167 show_debug_infrun (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
171 }
172
173
174 /* Support for disabling address space randomization. */
175
176 bool disable_randomization = true;
177
178 static void
179 show_disable_randomization (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 if (target_supports_disable_randomization ())
183 fprintf_filtered (file,
184 _("Disabling randomization of debuggee's "
185 "virtual address space is %s.\n"),
186 value);
187 else
188 fputs_filtered (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform.\n"), file);
191 }
192
193 static void
194 set_disable_randomization (const char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (!target_supports_disable_randomization ())
198 error (_("Disabling randomization of debuggee's "
199 "virtual address space is unsupported on\n"
200 "this platform."));
201 }
202
203 /* User interface for non-stop mode. */
204
205 bool non_stop = false;
206 static bool non_stop_1 = false;
207
208 static void
209 set_non_stop (const char *args, int from_tty,
210 struct cmd_list_element *c)
211 {
212 if (target_has_execution)
213 {
214 non_stop_1 = non_stop;
215 error (_("Cannot change this setting while the inferior is running."));
216 }
217
218 non_stop = non_stop_1;
219 }
220
221 static void
222 show_non_stop (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file,
226 _("Controlling the inferior in non-stop mode is %s.\n"),
227 value);
228 }
229
230 /* "Observer mode" is somewhat like a more extreme version of
231 non-stop, in which all GDB operations that might affect the
232 target's execution have been disabled. */
233
234 bool observer_mode = false;
235 static bool observer_mode_1 = false;
236
237 static void
238 set_observer_mode (const char *args, int from_tty,
239 struct cmd_list_element *c)
240 {
241 if (target_has_execution)
242 {
243 observer_mode_1 = observer_mode;
244 error (_("Cannot change this setting while the inferior is running."));
245 }
246
247 observer_mode = observer_mode_1;
248
249 may_write_registers = !observer_mode;
250 may_write_memory = !observer_mode;
251 may_insert_breakpoints = !observer_mode;
252 may_insert_tracepoints = !observer_mode;
253 /* We can insert fast tracepoints in or out of observer mode,
254 but enable them if we're going into this mode. */
255 if (observer_mode)
256 may_insert_fast_tracepoints = true;
257 may_stop = !observer_mode;
258 update_target_permissions ();
259
260 /* Going *into* observer mode we must force non-stop, then
261 going out we leave it that way. */
262 if (observer_mode)
263 {
264 pagination_enabled = 0;
265 non_stop = non_stop_1 = true;
266 }
267
268 if (from_tty)
269 printf_filtered (_("Observer mode is now %s.\n"),
270 (observer_mode ? "on" : "off"));
271 }
272
273 static void
274 show_observer_mode (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276 {
277 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
278 }
279
280 /* This updates the value of observer mode based on changes in
281 permissions. Note that we are deliberately ignoring the values of
282 may-write-registers and may-write-memory, since the user may have
283 reason to enable these during a session, for instance to turn on a
284 debugging-related global. */
285
286 void
287 update_observer_mode (void)
288 {
289 bool newval = (!may_insert_breakpoints
290 && !may_insert_tracepoints
291 && may_insert_fast_tracepoints
292 && !may_stop
293 && non_stop);
294
295 /* Let the user know if things change. */
296 if (newval != observer_mode)
297 printf_filtered (_("Observer mode is now %s.\n"),
298 (newval ? "on" : "off"));
299
300 observer_mode = observer_mode_1 = newval;
301 }
302
303 /* Tables of how to react to signals; the user sets them. */
304
305 static unsigned char signal_stop[GDB_SIGNAL_LAST];
306 static unsigned char signal_print[GDB_SIGNAL_LAST];
307 static unsigned char signal_program[GDB_SIGNAL_LAST];
308
309 /* Table of signals that are registered with "catch signal". A
310 non-zero entry indicates that the signal is caught by some "catch
311 signal" command. */
312 static unsigned char signal_catch[GDB_SIGNAL_LAST];
313
314 /* Table of signals that the target may silently handle.
315 This is automatically determined from the flags above,
316 and simply cached here. */
317 static unsigned char signal_pass[GDB_SIGNAL_LAST];
318
319 #define SET_SIGS(nsigs,sigs,flags) \
320 do { \
321 int signum = (nsigs); \
322 while (signum-- > 0) \
323 if ((sigs)[signum]) \
324 (flags)[signum] = 1; \
325 } while (0)
326
327 #define UNSET_SIGS(nsigs,sigs,flags) \
328 do { \
329 int signum = (nsigs); \
330 while (signum-- > 0) \
331 if ((sigs)[signum]) \
332 (flags)[signum] = 0; \
333 } while (0)
334
335 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
336 this function is to avoid exporting `signal_program'. */
337
338 void
339 update_signals_program_target (void)
340 {
341 target_program_signals (signal_program);
342 }
343
344 /* Value to pass to target_resume() to cause all threads to resume. */
345
346 #define RESUME_ALL minus_one_ptid
347
348 /* Command list pointer for the "stop" placeholder. */
349
350 static struct cmd_list_element *stop_command;
351
352 /* Nonzero if we want to give control to the user when we're notified
353 of shared library events by the dynamic linker. */
354 int stop_on_solib_events;
355
356 /* Enable or disable optional shared library event breakpoints
357 as appropriate when the above flag is changed. */
358
359 static void
360 set_stop_on_solib_events (const char *args,
361 int from_tty, struct cmd_list_element *c)
362 {
363 update_solib_breakpoints ();
364 }
365
366 static void
367 show_stop_on_solib_events (struct ui_file *file, int from_tty,
368 struct cmd_list_element *c, const char *value)
369 {
370 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
371 value);
372 }
373
374 /* Nonzero after stop if current stack frame should be printed. */
375
376 static int stop_print_frame;
377
378 /* This is a cached copy of the target/ptid/waitstatus of the last
379 event returned by target_wait()/deprecated_target_wait_hook().
380 This information is returned by get_last_target_status(). */
381 static process_stratum_target *target_last_proc_target;
382 static ptid_t target_last_wait_ptid;
383 static struct target_waitstatus target_last_waitstatus;
384
385 void init_thread_stepping_state (struct thread_info *tss);
386
387 static const char follow_fork_mode_child[] = "child";
388 static const char follow_fork_mode_parent[] = "parent";
389
390 static const char *const follow_fork_mode_kind_names[] = {
391 follow_fork_mode_child,
392 follow_fork_mode_parent,
393 NULL
394 };
395
396 static const char *follow_fork_mode_string = follow_fork_mode_parent;
397 static void
398 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
399 struct cmd_list_element *c, const char *value)
400 {
401 fprintf_filtered (file,
402 _("Debugger response to a program "
403 "call of fork or vfork is \"%s\".\n"),
404 value);
405 }
406 \f
407
408 /* Handle changes to the inferior list based on the type of fork,
409 which process is being followed, and whether the other process
410 should be detached. On entry inferior_ptid must be the ptid of
411 the fork parent. At return inferior_ptid is the ptid of the
412 followed inferior. */
413
414 static int
415 follow_fork_inferior (int follow_child, int detach_fork)
416 {
417 int has_vforked;
418 ptid_t parent_ptid, child_ptid;
419
420 has_vforked = (inferior_thread ()->pending_follow.kind
421 == TARGET_WAITKIND_VFORKED);
422 parent_ptid = inferior_ptid;
423 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
424
425 if (has_vforked
426 && !non_stop /* Non-stop always resumes both branches. */
427 && current_ui->prompt_state == PROMPT_BLOCKED
428 && !(follow_child || detach_fork || sched_multi))
429 {
430 /* The parent stays blocked inside the vfork syscall until the
431 child execs or exits. If we don't let the child run, then
432 the parent stays blocked. If we're telling the parent to run
433 in the foreground, the user will not be able to ctrl-c to get
434 back the terminal, effectively hanging the debug session. */
435 fprintf_filtered (gdb_stderr, _("\
436 Can not resume the parent process over vfork in the foreground while\n\
437 holding the child stopped. Try \"set detach-on-fork\" or \
438 \"set schedule-multiple\".\n"));
439 return 1;
440 }
441
442 if (!follow_child)
443 {
444 /* Detach new forked process? */
445 if (detach_fork)
446 {
447 /* Before detaching from the child, remove all breakpoints
448 from it. If we forked, then this has already been taken
449 care of by infrun.c. If we vforked however, any
450 breakpoint inserted in the parent is visible in the
451 child, even those added while stopped in a vfork
452 catchpoint. This will remove the breakpoints from the
453 parent also, but they'll be reinserted below. */
454 if (has_vforked)
455 {
456 /* Keep breakpoints list in sync. */
457 remove_breakpoints_inf (current_inferior ());
458 }
459
460 if (print_inferior_events)
461 {
462 /* Ensure that we have a process ptid. */
463 ptid_t process_ptid = ptid_t (child_ptid.pid ());
464
465 target_terminal::ours_for_output ();
466 fprintf_filtered (gdb_stdlog,
467 _("[Detaching after %s from child %s]\n"),
468 has_vforked ? "vfork" : "fork",
469 target_pid_to_str (process_ptid).c_str ());
470 }
471 }
472 else
473 {
474 struct inferior *parent_inf, *child_inf;
475
476 /* Add process to GDB's tables. */
477 child_inf = add_inferior (child_ptid.pid ());
478
479 parent_inf = current_inferior ();
480 child_inf->attach_flag = parent_inf->attach_flag;
481 copy_terminal_info (child_inf, parent_inf);
482 child_inf->gdbarch = parent_inf->gdbarch;
483 copy_inferior_target_desc_info (child_inf, parent_inf);
484
485 scoped_restore_current_pspace_and_thread restore_pspace_thread;
486
487 set_current_inferior (child_inf);
488 switch_to_no_thread ();
489 child_inf->symfile_flags = SYMFILE_NO_READ;
490 push_target (parent_inf->process_target ());
491 add_thread_silent (child_inf->process_target (), child_ptid);
492 inferior_ptid = child_ptid;
493
494 /* If this is a vfork child, then the address-space is
495 shared with the parent. */
496 if (has_vforked)
497 {
498 child_inf->pspace = parent_inf->pspace;
499 child_inf->aspace = parent_inf->aspace;
500
501 exec_on_vfork ();
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = new program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (print_inferior_events)
553 {
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
557 target_terminal::ours_for_output ();
558 fprintf_filtered (gdb_stdlog,
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
561 has_vforked ? "vfork" : "fork",
562 child_pid.c_str ());
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
568 child_inf = add_inferior (child_ptid.pid ());
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 process_stratum_target *target = parent_inf->process_target ();
579
580 {
581 /* Hold a strong reference to the target while (maybe)
582 detaching the parent. Otherwise detaching could close the
583 target. */
584 auto target_ref = target_ops_ref::new_reference (target);
585
586 /* If we're vforking, we want to hold on to the parent until
587 the child exits or execs. At child exec or exit time we
588 can remove the old breakpoints from the parent and detach
589 or resume debugging it. Otherwise, detach the parent now;
590 we'll want to reuse it's program/address spaces, but we
591 can't set them to the child before removing breakpoints
592 from the parent, otherwise, the breakpoints module could
593 decide to remove breakpoints from the wrong process (since
594 they'd be assigned to the same address space). */
595
596 if (has_vforked)
597 {
598 gdb_assert (child_inf->vfork_parent == NULL);
599 gdb_assert (parent_inf->vfork_child == NULL);
600 child_inf->vfork_parent = parent_inf;
601 child_inf->pending_detach = 0;
602 parent_inf->vfork_child = child_inf;
603 parent_inf->pending_detach = detach_fork;
604 parent_inf->waiting_for_vfork_done = 0;
605 }
606 else if (detach_fork)
607 {
608 if (print_inferior_events)
609 {
610 /* Ensure that we have a process ptid. */
611 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
612
613 target_terminal::ours_for_output ();
614 fprintf_filtered (gdb_stdlog,
615 _("[Detaching after fork from "
616 "parent %s]\n"),
617 target_pid_to_str (process_ptid).c_str ());
618 }
619
620 target_detach (parent_inf, 0);
621 parent_inf = NULL;
622 }
623
624 /* Note that the detach above makes PARENT_INF dangling. */
625
626 /* Add the child thread to the appropriate lists, and switch
627 to this new thread, before cloning the program space, and
628 informing the solib layer about this new process. */
629
630 set_current_inferior (child_inf);
631 push_target (target);
632 }
633
634 add_thread_silent (target, child_ptid);
635 inferior_ptid = child_ptid;
636
637 /* If this is a vfork child, then the address-space is shared
638 with the parent. If we detached from the parent, then we can
639 reuse the parent's program/address spaces. */
640 if (has_vforked || detach_fork)
641 {
642 child_inf->pspace = parent_pspace;
643 child_inf->aspace = child_inf->pspace->aspace;
644
645 exec_on_vfork ();
646 }
647 else
648 {
649 child_inf->aspace = new_address_space ();
650 child_inf->pspace = new program_space (child_inf->aspace);
651 child_inf->removable = 1;
652 child_inf->symfile_flags = SYMFILE_NO_READ;
653 set_current_program_space (child_inf->pspace);
654 clone_program_space (child_inf->pspace, parent_pspace);
655
656 /* Let the shared library layer (e.g., solib-svr4) learn
657 about this new process, relocate the cloned exec, pull in
658 shared libraries, and install the solib event breakpoint.
659 If a "cloned-VM" event was propagated better throughout
660 the core, this wouldn't be required. */
661 solib_create_inferior_hook (0);
662 }
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666 }
667
668 /* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
672 static int
673 follow_fork (void)
674 {
675 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
676 int should_resume = 1;
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
684 struct breakpoint *exception_resume_breakpoint = NULL;
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
687 struct frame_id step_frame_id = { 0 };
688 struct thread_fsm *thread_fsm = NULL;
689
690 if (!non_stop)
691 {
692 process_stratum_target *wait_target;
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
697 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
707 if (wait_ptid != minus_one_ptid
708 && (current_inferior ()->process_target () != wait_target
709 || inferior_ptid != wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
716 switch_to_thread (wait_thread);
717 should_resume = 0;
718 }
719 }
720
721 tp = inferior_thread ();
722
723 /* If there were any forks/vforks that were caught and are now to be
724 followed, then do so now. */
725 switch (tp->pending_follow.kind)
726 {
727 case TARGET_WAITKIND_FORKED:
728 case TARGET_WAITKIND_VFORKED:
729 {
730 ptid_t parent, child;
731
732 /* If the user did a next/step, etc, over a fork call,
733 preserve the stepping state in the fork child. */
734 if (follow_child && should_resume)
735 {
736 step_resume_breakpoint = clone_momentary_breakpoint
737 (tp->control.step_resume_breakpoint);
738 step_range_start = tp->control.step_range_start;
739 step_range_end = tp->control.step_range_end;
740 step_frame_id = tp->control.step_frame_id;
741 exception_resume_breakpoint
742 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
743 thread_fsm = tp->thread_fsm;
744
745 /* For now, delete the parent's sr breakpoint, otherwise,
746 parent/child sr breakpoints are considered duplicates,
747 and the child version will not be installed. Remove
748 this when the breakpoints module becomes aware of
749 inferiors and address spaces. */
750 delete_step_resume_breakpoint (tp);
751 tp->control.step_range_start = 0;
752 tp->control.step_range_end = 0;
753 tp->control.step_frame_id = null_frame_id;
754 delete_exception_resume_breakpoint (tp);
755 tp->thread_fsm = NULL;
756 }
757
758 parent = inferior_ptid;
759 child = tp->pending_follow.value.related_pid;
760
761 process_stratum_target *parent_targ = tp->inf->process_target ();
762 /* Set up inferior(s) as specified by the caller, and tell the
763 target to do whatever is necessary to follow either parent
764 or child. */
765 if (follow_fork_inferior (follow_child, detach_fork))
766 {
767 /* Target refused to follow, or there's some other reason
768 we shouldn't resume. */
769 should_resume = 0;
770 }
771 else
772 {
773 /* This pending follow fork event is now handled, one way
774 or another. The previous selected thread may be gone
775 from the lists by now, but if it is still around, need
776 to clear the pending follow request. */
777 tp = find_thread_ptid (parent_targ, parent);
778 if (tp)
779 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
780
781 /* This makes sure we don't try to apply the "Switched
782 over from WAIT_PID" logic above. */
783 nullify_last_target_wait_ptid ();
784
785 /* If we followed the child, switch to it... */
786 if (follow_child)
787 {
788 thread_info *child_thr = find_thread_ptid (parent_targ, child);
789 switch_to_thread (child_thr);
790
791 /* ... and preserve the stepping state, in case the
792 user was stepping over the fork call. */
793 if (should_resume)
794 {
795 tp = inferior_thread ();
796 tp->control.step_resume_breakpoint
797 = step_resume_breakpoint;
798 tp->control.step_range_start = step_range_start;
799 tp->control.step_range_end = step_range_end;
800 tp->control.step_frame_id = step_frame_id;
801 tp->control.exception_resume_breakpoint
802 = exception_resume_breakpoint;
803 tp->thread_fsm = thread_fsm;
804 }
805 else
806 {
807 /* If we get here, it was because we're trying to
808 resume from a fork catchpoint, but, the user
809 has switched threads away from the thread that
810 forked. In that case, the resume command
811 issued is most likely not applicable to the
812 child, so just warn, and refuse to resume. */
813 warning (_("Not resuming: switched threads "
814 "before following fork child."));
815 }
816
817 /* Reset breakpoints in the child as appropriate. */
818 follow_inferior_reset_breakpoints ();
819 }
820 }
821 }
822 break;
823 case TARGET_WAITKIND_SPURIOUS:
824 /* Nothing to follow. */
825 break;
826 default:
827 internal_error (__FILE__, __LINE__,
828 "Unexpected pending_follow.kind %d\n",
829 tp->pending_follow.kind);
830 break;
831 }
832
833 return should_resume;
834 }
835
836 static void
837 follow_inferior_reset_breakpoints (void)
838 {
839 struct thread_info *tp = inferior_thread ();
840
841 /* Was there a step_resume breakpoint? (There was if the user
842 did a "next" at the fork() call.) If so, explicitly reset its
843 thread number. Cloned step_resume breakpoints are disabled on
844 creation, so enable it here now that it is associated with the
845 correct thread.
846
847 step_resumes are a form of bp that are made to be per-thread.
848 Since we created the step_resume bp when the parent process
849 was being debugged, and now are switching to the child process,
850 from the breakpoint package's viewpoint, that's a switch of
851 "threads". We must update the bp's notion of which thread
852 it is for, or it'll be ignored when it triggers. */
853
854 if (tp->control.step_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
857 tp->control.step_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Treat exception_resume breakpoints like step_resume breakpoints. */
861 if (tp->control.exception_resume_breakpoint)
862 {
863 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
864 tp->control.exception_resume_breakpoint->loc->enabled = 1;
865 }
866
867 /* Reinsert all breakpoints in the child. The user may have set
868 breakpoints after catching the fork, in which case those
869 were never set in the child, but only in the parent. This makes
870 sure the inserted breakpoints match the breakpoint list. */
871
872 breakpoint_re_set ();
873 insert_breakpoints ();
874 }
875
876 /* The child has exited or execed: resume threads of the parent the
877 user wanted to be executing. */
878
879 static int
880 proceed_after_vfork_done (struct thread_info *thread,
881 void *arg)
882 {
883 int pid = * (int *) arg;
884
885 if (thread->ptid.pid () == pid
886 && thread->state == THREAD_RUNNING
887 && !thread->executing
888 && !thread->stop_requested
889 && thread->suspend.stop_signal == GDB_SIGNAL_0)
890 {
891 if (debug_infrun)
892 fprintf_unfiltered (gdb_stdlog,
893 "infrun: resuming vfork parent thread %s\n",
894 target_pid_to_str (thread->ptid).c_str ());
895
896 switch_to_thread (thread);
897 clear_proceed_status (0);
898 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
899 }
900
901 return 0;
902 }
903
904 /* Save/restore inferior_ptid, current program space and current
905 inferior. Only use this if the current context points at an exited
906 inferior (and therefore there's no current thread to save). */
907 class scoped_restore_exited_inferior
908 {
909 public:
910 scoped_restore_exited_inferior ()
911 : m_saved_ptid (&inferior_ptid)
912 {}
913
914 private:
915 scoped_restore_tmpl<ptid_t> m_saved_ptid;
916 scoped_restore_current_program_space m_pspace;
917 scoped_restore_current_inferior m_inferior;
918 };
919
920 /* Called whenever we notice an exec or exit event, to handle
921 detaching or resuming a vfork parent. */
922
923 static void
924 handle_vfork_child_exec_or_exit (int exec)
925 {
926 struct inferior *inf = current_inferior ();
927
928 if (inf->vfork_parent)
929 {
930 int resume_parent = -1;
931
932 /* This exec or exit marks the end of the shared memory region
933 between the parent and the child. Break the bonds. */
934 inferior *vfork_parent = inf->vfork_parent;
935 inf->vfork_parent->vfork_child = NULL;
936 inf->vfork_parent = NULL;
937
938 /* If the user wanted to detach from the parent, now is the
939 time. */
940 if (vfork_parent->pending_detach)
941 {
942 struct thread_info *tp;
943 struct program_space *pspace;
944 struct address_space *aspace;
945
946 /* follow-fork child, detach-on-fork on. */
947
948 vfork_parent->pending_detach = 0;
949
950 gdb::optional<scoped_restore_exited_inferior>
951 maybe_restore_inferior;
952 gdb::optional<scoped_restore_current_pspace_and_thread>
953 maybe_restore_thread;
954
955 /* If we're handling a child exit, then inferior_ptid points
956 at the inferior's pid, not to a thread. */
957 if (!exec)
958 maybe_restore_inferior.emplace ();
959 else
960 maybe_restore_thread.emplace ();
961
962 /* We're letting loose of the parent. */
963 tp = any_live_thread_of_inferior (vfork_parent);
964 switch_to_thread (tp);
965
966 /* We're about to detach from the parent, which implicitly
967 removes breakpoints from its address space. There's a
968 catch here: we want to reuse the spaces for the child,
969 but, parent/child are still sharing the pspace at this
970 point, although the exec in reality makes the kernel give
971 the child a fresh set of new pages. The problem here is
972 that the breakpoints module being unaware of this, would
973 likely chose the child process to write to the parent
974 address space. Swapping the child temporarily away from
975 the spaces has the desired effect. Yes, this is "sort
976 of" a hack. */
977
978 pspace = inf->pspace;
979 aspace = inf->aspace;
980 inf->aspace = NULL;
981 inf->pspace = NULL;
982
983 if (print_inferior_events)
984 {
985 std::string pidstr
986 = target_pid_to_str (ptid_t (vfork_parent->pid));
987
988 target_terminal::ours_for_output ();
989
990 if (exec)
991 {
992 fprintf_filtered (gdb_stdlog,
993 _("[Detaching vfork parent %s "
994 "after child exec]\n"), pidstr.c_str ());
995 }
996 else
997 {
998 fprintf_filtered (gdb_stdlog,
999 _("[Detaching vfork parent %s "
1000 "after child exit]\n"), pidstr.c_str ());
1001 }
1002 }
1003
1004 target_detach (vfork_parent, 0);
1005
1006 /* Put it back. */
1007 inf->pspace = pspace;
1008 inf->aspace = aspace;
1009 }
1010 else if (exec)
1011 {
1012 /* We're staying attached to the parent, so, really give the
1013 child a new address space. */
1014 inf->pspace = new program_space (maybe_new_address_space ());
1015 inf->aspace = inf->pspace->aspace;
1016 inf->removable = 1;
1017 set_current_program_space (inf->pspace);
1018
1019 resume_parent = vfork_parent->pid;
1020 }
1021 else
1022 {
1023 /* If this is a vfork child exiting, then the pspace and
1024 aspaces were shared with the parent. Since we're
1025 reporting the process exit, we'll be mourning all that is
1026 found in the address space, and switching to null_ptid,
1027 preparing to start a new inferior. But, since we don't
1028 want to clobber the parent's address/program spaces, we
1029 go ahead and create a new one for this exiting
1030 inferior. */
1031
1032 /* Switch to null_ptid while running clone_program_space, so
1033 that clone_program_space doesn't want to read the
1034 selected frame of a dead process. */
1035 scoped_restore restore_ptid
1036 = make_scoped_restore (&inferior_ptid, null_ptid);
1037
1038 inf->pspace = new program_space (maybe_new_address_space ());
1039 inf->aspace = inf->pspace->aspace;
1040 set_current_program_space (inf->pspace);
1041 inf->removable = 1;
1042 inf->symfile_flags = SYMFILE_NO_READ;
1043 clone_program_space (inf->pspace, vfork_parent->pspace);
1044
1045 resume_parent = vfork_parent->pid;
1046 }
1047
1048 gdb_assert (current_program_space == inf->pspace);
1049
1050 if (non_stop && resume_parent != -1)
1051 {
1052 /* If the user wanted the parent to be running, let it go
1053 free now. */
1054 scoped_restore_current_thread restore_thread;
1055
1056 if (debug_infrun)
1057 fprintf_unfiltered (gdb_stdlog,
1058 "infrun: resuming vfork parent process %d\n",
1059 resume_parent);
1060
1061 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1062 }
1063 }
1064 }
1065
1066 /* Enum strings for "set|show follow-exec-mode". */
1067
1068 static const char follow_exec_mode_new[] = "new";
1069 static const char follow_exec_mode_same[] = "same";
1070 static const char *const follow_exec_mode_names[] =
1071 {
1072 follow_exec_mode_new,
1073 follow_exec_mode_same,
1074 NULL,
1075 };
1076
1077 static const char *follow_exec_mode_string = follow_exec_mode_same;
1078 static void
1079 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1080 struct cmd_list_element *c, const char *value)
1081 {
1082 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1083 }
1084
1085 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1086
1087 static void
1088 follow_exec (ptid_t ptid, const char *exec_file_target)
1089 {
1090 struct inferior *inf = current_inferior ();
1091 int pid = ptid.pid ();
1092 ptid_t process_ptid;
1093
1094 /* Switch terminal for any messages produced e.g. by
1095 breakpoint_re_set. */
1096 target_terminal::ours_for_output ();
1097
1098 /* This is an exec event that we actually wish to pay attention to.
1099 Refresh our symbol table to the newly exec'd program, remove any
1100 momentary bp's, etc.
1101
1102 If there are breakpoints, they aren't really inserted now,
1103 since the exec() transformed our inferior into a fresh set
1104 of instructions.
1105
1106 We want to preserve symbolic breakpoints on the list, since
1107 we have hopes that they can be reset after the new a.out's
1108 symbol table is read.
1109
1110 However, any "raw" breakpoints must be removed from the list
1111 (e.g., the solib bp's), since their address is probably invalid
1112 now.
1113
1114 And, we DON'T want to call delete_breakpoints() here, since
1115 that may write the bp's "shadow contents" (the instruction
1116 value that was overwritten with a TRAP instruction). Since
1117 we now have a new a.out, those shadow contents aren't valid. */
1118
1119 mark_breakpoints_out ();
1120
1121 /* The target reports the exec event to the main thread, even if
1122 some other thread does the exec, and even if the main thread was
1123 stopped or already gone. We may still have non-leader threads of
1124 the process on our list. E.g., on targets that don't have thread
1125 exit events (like remote); or on native Linux in non-stop mode if
1126 there were only two threads in the inferior and the non-leader
1127 one is the one that execs (and nothing forces an update of the
1128 thread list up to here). When debugging remotely, it's best to
1129 avoid extra traffic, when possible, so avoid syncing the thread
1130 list with the target, and instead go ahead and delete all threads
1131 of the process but one that reported the event. Note this must
1132 be done before calling update_breakpoints_after_exec, as
1133 otherwise clearing the threads' resources would reference stale
1134 thread breakpoints -- it may have been one of these threads that
1135 stepped across the exec. We could just clear their stepping
1136 states, but as long as we're iterating, might as well delete
1137 them. Deleting them now rather than at the next user-visible
1138 stop provides a nicer sequence of events for user and MI
1139 notifications. */
1140 for (thread_info *th : all_threads_safe ())
1141 if (th->ptid.pid () == pid && th->ptid != ptid)
1142 delete_thread (th);
1143
1144 /* We also need to clear any left over stale state for the
1145 leader/event thread. E.g., if there was any step-resume
1146 breakpoint or similar, it's gone now. We cannot truly
1147 step-to-next statement through an exec(). */
1148 thread_info *th = inferior_thread ();
1149 th->control.step_resume_breakpoint = NULL;
1150 th->control.exception_resume_breakpoint = NULL;
1151 th->control.single_step_breakpoints = NULL;
1152 th->control.step_range_start = 0;
1153 th->control.step_range_end = 0;
1154
1155 /* The user may have had the main thread held stopped in the
1156 previous image (e.g., schedlock on, or non-stop). Release
1157 it now. */
1158 th->stop_requested = 0;
1159
1160 update_breakpoints_after_exec ();
1161
1162 /* What is this a.out's name? */
1163 process_ptid = ptid_t (pid);
1164 printf_unfiltered (_("%s is executing new program: %s\n"),
1165 target_pid_to_str (process_ptid).c_str (),
1166 exec_file_target);
1167
1168 /* We've followed the inferior through an exec. Therefore, the
1169 inferior has essentially been killed & reborn. */
1170
1171 breakpoint_init_inferior (inf_execd);
1172
1173 gdb::unique_xmalloc_ptr<char> exec_file_host
1174 = exec_file_find (exec_file_target, NULL);
1175
1176 /* If we were unable to map the executable target pathname onto a host
1177 pathname, tell the user that. Otherwise GDB's subsequent behavior
1178 is confusing. Maybe it would even be better to stop at this point
1179 so that the user can specify a file manually before continuing. */
1180 if (exec_file_host == NULL)
1181 warning (_("Could not load symbols for executable %s.\n"
1182 "Do you need \"set sysroot\"?"),
1183 exec_file_target);
1184
1185 /* Reset the shared library package. This ensures that we get a
1186 shlib event when the child reaches "_start", at which point the
1187 dld will have had a chance to initialize the child. */
1188 /* Also, loading a symbol file below may trigger symbol lookups, and
1189 we don't want those to be satisfied by the libraries of the
1190 previous incarnation of this process. */
1191 no_shared_libraries (NULL, 0);
1192
1193 if (follow_exec_mode_string == follow_exec_mode_new)
1194 {
1195 /* The user wants to keep the old inferior and program spaces
1196 around. Create a new fresh one, and switch to it. */
1197
1198 /* Do exit processing for the original inferior before setting the new
1199 inferior's pid. Having two inferiors with the same pid would confuse
1200 find_inferior_p(t)id. Transfer the terminal state and info from the
1201 old to the new inferior. */
1202 inf = add_inferior_with_spaces ();
1203 swap_terminal_info (inf, current_inferior ());
1204 exit_inferior_silent (current_inferior ());
1205
1206 inf->pid = pid;
1207 target_follow_exec (inf, exec_file_target);
1208
1209 inferior *org_inferior = current_inferior ();
1210 switch_to_inferior_no_thread (inf);
1211 push_target (org_inferior->process_target ());
1212 thread_info *thr = add_thread (inf->process_target (), ptid);
1213 switch_to_thread (thr);
1214 }
1215 else
1216 {
1217 /* The old description may no longer be fit for the new image.
1218 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1219 old description; we'll read a new one below. No need to do
1220 this on "follow-exec-mode new", as the old inferior stays
1221 around (its description is later cleared/refetched on
1222 restart). */
1223 target_clear_description ();
1224 }
1225
1226 gdb_assert (current_program_space == inf->pspace);
1227
1228 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1229 because the proper displacement for a PIE (Position Independent
1230 Executable) main symbol file will only be computed by
1231 solib_create_inferior_hook below. breakpoint_re_set would fail
1232 to insert the breakpoints with the zero displacement. */
1233 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1234
1235 /* If the target can specify a description, read it. Must do this
1236 after flipping to the new executable (because the target supplied
1237 description must be compatible with the executable's
1238 architecture, and the old executable may e.g., be 32-bit, while
1239 the new one 64-bit), and before anything involving memory or
1240 registers. */
1241 target_find_description ();
1242
1243 solib_create_inferior_hook (0);
1244
1245 jit_inferior_created_hook ();
1246
1247 breakpoint_re_set ();
1248
1249 /* Reinsert all breakpoints. (Those which were symbolic have
1250 been reset to the proper address in the new a.out, thanks
1251 to symbol_file_command...). */
1252 insert_breakpoints ();
1253
1254 /* The next resume of this inferior should bring it to the shlib
1255 startup breakpoints. (If the user had also set bp's on
1256 "main" from the old (parent) process, then they'll auto-
1257 matically get reset there in the new process.). */
1258 }
1259
1260 /* The queue of threads that need to do a step-over operation to get
1261 past e.g., a breakpoint. What technique is used to step over the
1262 breakpoint/watchpoint does not matter -- all threads end up in the
1263 same queue, to maintain rough temporal order of execution, in order
1264 to avoid starvation, otherwise, we could e.g., find ourselves
1265 constantly stepping the same couple threads past their breakpoints
1266 over and over, if the single-step finish fast enough. */
1267 struct thread_info *step_over_queue_head;
1268
1269 /* Bit flags indicating what the thread needs to step over. */
1270
1271 enum step_over_what_flag
1272 {
1273 /* Step over a breakpoint. */
1274 STEP_OVER_BREAKPOINT = 1,
1275
1276 /* Step past a non-continuable watchpoint, in order to let the
1277 instruction execute so we can evaluate the watchpoint
1278 expression. */
1279 STEP_OVER_WATCHPOINT = 2
1280 };
1281 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1282
1283 /* Info about an instruction that is being stepped over. */
1284
1285 struct step_over_info
1286 {
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
1291 const address_space *aspace;
1292 CORE_ADDR address;
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
1297
1298 /* The thread's global number. */
1299 int thread;
1300 };
1301
1302 /* The step-over info of the location that is being stepped over.
1303
1304 Note that with async/breakpoint always-inserted mode, a user might
1305 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1306 being stepped over. As setting a new breakpoint inserts all
1307 breakpoints, we need to make sure the breakpoint being stepped over
1308 isn't inserted then. We do that by only clearing the step-over
1309 info when the step-over is actually finished (or aborted).
1310
1311 Presently GDB can only step over one breakpoint at any given time.
1312 Given threads that can't run code in the same address space as the
1313 breakpoint's can't really miss the breakpoint, GDB could be taught
1314 to step-over at most one breakpoint per address space (so this info
1315 could move to the address space object if/when GDB is extended).
1316 The set of breakpoints being stepped over will normally be much
1317 smaller than the set of all breakpoints, so a flag in the
1318 breakpoint location structure would be wasteful. A separate list
1319 also saves complexity and run-time, as otherwise we'd have to go
1320 through all breakpoint locations clearing their flag whenever we
1321 start a new sequence. Similar considerations weigh against storing
1322 this info in the thread object. Plus, not all step overs actually
1323 have breakpoint locations -- e.g., stepping past a single-step
1324 breakpoint, or stepping to complete a non-continuable
1325 watchpoint. */
1326 static struct step_over_info step_over_info;
1327
1328 /* Record the address of the breakpoint/instruction we're currently
1329 stepping over.
1330 N.B. We record the aspace and address now, instead of say just the thread,
1331 because when we need the info later the thread may be running. */
1332
1333 static void
1334 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1335 int nonsteppable_watchpoint_p,
1336 int thread)
1337 {
1338 step_over_info.aspace = aspace;
1339 step_over_info.address = address;
1340 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1341 step_over_info.thread = thread;
1342 }
1343
1344 /* Called when we're not longer stepping over a breakpoint / an
1345 instruction, so all breakpoints are free to be (re)inserted. */
1346
1347 static void
1348 clear_step_over_info (void)
1349 {
1350 if (debug_infrun)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "infrun: clear_step_over_info\n");
1353 step_over_info.aspace = NULL;
1354 step_over_info.address = 0;
1355 step_over_info.nonsteppable_watchpoint_p = 0;
1356 step_over_info.thread = -1;
1357 }
1358
1359 /* See infrun.h. */
1360
1361 int
1362 stepping_past_instruction_at (struct address_space *aspace,
1363 CORE_ADDR address)
1364 {
1365 return (step_over_info.aspace != NULL
1366 && breakpoint_address_match (aspace, address,
1367 step_over_info.aspace,
1368 step_over_info.address));
1369 }
1370
1371 /* See infrun.h. */
1372
1373 int
1374 thread_is_stepping_over_breakpoint (int thread)
1375 {
1376 return (step_over_info.thread != -1
1377 && thread == step_over_info.thread);
1378 }
1379
1380 /* See infrun.h. */
1381
1382 int
1383 stepping_past_nonsteppable_watchpoint (void)
1384 {
1385 return step_over_info.nonsteppable_watchpoint_p;
1386 }
1387
1388 /* Returns true if step-over info is valid. */
1389
1390 static int
1391 step_over_info_valid_p (void)
1392 {
1393 return (step_over_info.aspace != NULL
1394 || stepping_past_nonsteppable_watchpoint ());
1395 }
1396
1397 \f
1398 /* Displaced stepping. */
1399
1400 /* In non-stop debugging mode, we must take special care to manage
1401 breakpoints properly; in particular, the traditional strategy for
1402 stepping a thread past a breakpoint it has hit is unsuitable.
1403 'Displaced stepping' is a tactic for stepping one thread past a
1404 breakpoint it has hit while ensuring that other threads running
1405 concurrently will hit the breakpoint as they should.
1406
1407 The traditional way to step a thread T off a breakpoint in a
1408 multi-threaded program in all-stop mode is as follows:
1409
1410 a0) Initially, all threads are stopped, and breakpoints are not
1411 inserted.
1412 a1) We single-step T, leaving breakpoints uninserted.
1413 a2) We insert breakpoints, and resume all threads.
1414
1415 In non-stop debugging, however, this strategy is unsuitable: we
1416 don't want to have to stop all threads in the system in order to
1417 continue or step T past a breakpoint. Instead, we use displaced
1418 stepping:
1419
1420 n0) Initially, T is stopped, other threads are running, and
1421 breakpoints are inserted.
1422 n1) We copy the instruction "under" the breakpoint to a separate
1423 location, outside the main code stream, making any adjustments
1424 to the instruction, register, and memory state as directed by
1425 T's architecture.
1426 n2) We single-step T over the instruction at its new location.
1427 n3) We adjust the resulting register and memory state as directed
1428 by T's architecture. This includes resetting T's PC to point
1429 back into the main instruction stream.
1430 n4) We resume T.
1431
1432 This approach depends on the following gdbarch methods:
1433
1434 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1435 indicate where to copy the instruction, and how much space must
1436 be reserved there. We use these in step n1.
1437
1438 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1439 address, and makes any necessary adjustments to the instruction,
1440 register contents, and memory. We use this in step n1.
1441
1442 - gdbarch_displaced_step_fixup adjusts registers and memory after
1443 we have successfully single-stepped the instruction, to yield the
1444 same effect the instruction would have had if we had executed it
1445 at its original address. We use this in step n3.
1446
1447 The gdbarch_displaced_step_copy_insn and
1448 gdbarch_displaced_step_fixup functions must be written so that
1449 copying an instruction with gdbarch_displaced_step_copy_insn,
1450 single-stepping across the copied instruction, and then applying
1451 gdbarch_displaced_insn_fixup should have the same effects on the
1452 thread's memory and registers as stepping the instruction in place
1453 would have. Exactly which responsibilities fall to the copy and
1454 which fall to the fixup is up to the author of those functions.
1455
1456 See the comments in gdbarch.sh for details.
1457
1458 Note that displaced stepping and software single-step cannot
1459 currently be used in combination, although with some care I think
1460 they could be made to. Software single-step works by placing
1461 breakpoints on all possible subsequent instructions; if the
1462 displaced instruction is a PC-relative jump, those breakpoints
1463 could fall in very strange places --- on pages that aren't
1464 executable, or at addresses that are not proper instruction
1465 boundaries. (We do generally let other threads run while we wait
1466 to hit the software single-step breakpoint, and they might
1467 encounter such a corrupted instruction.) One way to work around
1468 this would be to have gdbarch_displaced_step_copy_insn fully
1469 simulate the effect of PC-relative instructions (and return NULL)
1470 on architectures that use software single-stepping.
1471
1472 In non-stop mode, we can have independent and simultaneous step
1473 requests, so more than one thread may need to simultaneously step
1474 over a breakpoint. The current implementation assumes there is
1475 only one scratch space per process. In this case, we have to
1476 serialize access to the scratch space. If thread A wants to step
1477 over a breakpoint, but we are currently waiting for some other
1478 thread to complete a displaced step, we leave thread A stopped and
1479 place it in the displaced_step_request_queue. Whenever a displaced
1480 step finishes, we pick the next thread in the queue and start a new
1481 displaced step operation on it. See displaced_step_prepare and
1482 displaced_step_fixup for details. */
1483
1484 /* Default destructor for displaced_step_closure. */
1485
1486 displaced_step_closure::~displaced_step_closure () = default;
1487
1488 /* Get the displaced stepping state of process PID. */
1489
1490 static displaced_step_inferior_state *
1491 get_displaced_stepping_state (inferior *inf)
1492 {
1493 return &inf->displaced_step_state;
1494 }
1495
1496 /* Returns true if any inferior has a thread doing a displaced
1497 step. */
1498
1499 static bool
1500 displaced_step_in_progress_any_inferior ()
1501 {
1502 for (inferior *i : all_inferiors ())
1503 {
1504 if (i->displaced_step_state.step_thread != nullptr)
1505 return true;
1506 }
1507
1508 return false;
1509 }
1510
1511 /* Return true if thread represented by PTID is doing a displaced
1512 step. */
1513
1514 static int
1515 displaced_step_in_progress_thread (thread_info *thread)
1516 {
1517 gdb_assert (thread != NULL);
1518
1519 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1520 }
1521
1522 /* Return true if process PID has a thread doing a displaced step. */
1523
1524 static int
1525 displaced_step_in_progress (inferior *inf)
1526 {
1527 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1528 }
1529
1530 /* If inferior is in displaced stepping, and ADDR equals to starting address
1531 of copy area, return corresponding displaced_step_closure. Otherwise,
1532 return NULL. */
1533
1534 struct displaced_step_closure*
1535 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1536 {
1537 displaced_step_inferior_state *displaced
1538 = get_displaced_stepping_state (current_inferior ());
1539
1540 /* If checking the mode of displaced instruction in copy area. */
1541 if (displaced->step_thread != nullptr
1542 && displaced->step_copy == addr)
1543 return displaced->step_closure.get ();
1544
1545 return NULL;
1546 }
1547
1548 static void
1549 infrun_inferior_exit (struct inferior *inf)
1550 {
1551 inf->displaced_step_state.reset ();
1552 }
1553
1554 /* If ON, and the architecture supports it, GDB will use displaced
1555 stepping to step over breakpoints. If OFF, or if the architecture
1556 doesn't support it, GDB will instead use the traditional
1557 hold-and-step approach. If AUTO (which is the default), GDB will
1558 decide which technique to use to step over breakpoints depending on
1559 which of all-stop or non-stop mode is active --- displaced stepping
1560 in non-stop mode; hold-and-step in all-stop mode. */
1561
1562 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1563
1564 static void
1565 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1566 struct cmd_list_element *c,
1567 const char *value)
1568 {
1569 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1570 fprintf_filtered (file,
1571 _("Debugger's willingness to use displaced stepping "
1572 "to step over breakpoints is %s (currently %s).\n"),
1573 value, target_is_non_stop_p () ? "on" : "off");
1574 else
1575 fprintf_filtered (file,
1576 _("Debugger's willingness to use displaced stepping "
1577 "to step over breakpoints is %s.\n"), value);
1578 }
1579
1580 /* Return non-zero if displaced stepping can/should be used to step
1581 over breakpoints of thread TP. */
1582
1583 static int
1584 use_displaced_stepping (struct thread_info *tp)
1585 {
1586 struct regcache *regcache = get_thread_regcache (tp);
1587 struct gdbarch *gdbarch = regcache->arch ();
1588 displaced_step_inferior_state *displaced_state
1589 = get_displaced_stepping_state (tp->inf);
1590
1591 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1592 && target_is_non_stop_p ())
1593 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1594 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1595 && find_record_target () == NULL
1596 && !displaced_state->failed_before);
1597 }
1598
1599 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1600
1601 static void
1602 displaced_step_reset (displaced_step_inferior_state *displaced)
1603 {
1604 displaced->reset ();
1605 }
1606
1607 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1608 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1609
1610 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1611
1612 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1613 void
1614 displaced_step_dump_bytes (struct ui_file *file,
1615 const gdb_byte *buf,
1616 size_t len)
1617 {
1618 int i;
1619
1620 for (i = 0; i < len; i++)
1621 fprintf_unfiltered (file, "%02x ", buf[i]);
1622 fputs_unfiltered ("\n", file);
1623 }
1624
1625 /* Prepare to single-step, using displaced stepping.
1626
1627 Note that we cannot use displaced stepping when we have a signal to
1628 deliver. If we have a signal to deliver and an instruction to step
1629 over, then after the step, there will be no indication from the
1630 target whether the thread entered a signal handler or ignored the
1631 signal and stepped over the instruction successfully --- both cases
1632 result in a simple SIGTRAP. In the first case we mustn't do a
1633 fixup, and in the second case we must --- but we can't tell which.
1634 Comments in the code for 'random signals' in handle_inferior_event
1635 explain how we handle this case instead.
1636
1637 Returns 1 if preparing was successful -- this thread is going to be
1638 stepped now; 0 if displaced stepping this thread got queued; or -1
1639 if this instruction can't be displaced stepped. */
1640
1641 static int
1642 displaced_step_prepare_throw (thread_info *tp)
1643 {
1644 regcache *regcache = get_thread_regcache (tp);
1645 struct gdbarch *gdbarch = regcache->arch ();
1646 const address_space *aspace = regcache->aspace ();
1647 CORE_ADDR original, copy;
1648 ULONGEST len;
1649 struct displaced_step_closure *closure;
1650 int status;
1651
1652 /* We should never reach this function if the architecture does not
1653 support displaced stepping. */
1654 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1655
1656 /* Nor if the thread isn't meant to step over a breakpoint. */
1657 gdb_assert (tp->control.trap_expected);
1658
1659 /* Disable range stepping while executing in the scratch pad. We
1660 want a single-step even if executing the displaced instruction in
1661 the scratch buffer lands within the stepping range (e.g., a
1662 jump/branch). */
1663 tp->control.may_range_step = 0;
1664
1665 /* We have to displaced step one thread at a time, as we only have
1666 access to a single scratch space per inferior. */
1667
1668 displaced_step_inferior_state *displaced
1669 = get_displaced_stepping_state (tp->inf);
1670
1671 if (displaced->step_thread != nullptr)
1672 {
1673 /* Already waiting for a displaced step to finish. Defer this
1674 request and place in queue. */
1675
1676 if (debug_displaced)
1677 fprintf_unfiltered (gdb_stdlog,
1678 "displaced: deferring step of %s\n",
1679 target_pid_to_str (tp->ptid).c_str ());
1680
1681 thread_step_over_chain_enqueue (tp);
1682 return 0;
1683 }
1684 else
1685 {
1686 if (debug_displaced)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "displaced: stepping %s now\n",
1689 target_pid_to_str (tp->ptid).c_str ());
1690 }
1691
1692 displaced_step_reset (displaced);
1693
1694 scoped_restore_current_thread restore_thread;
1695
1696 switch_to_thread (tp);
1697
1698 original = regcache_read_pc (regcache);
1699
1700 copy = gdbarch_displaced_step_location (gdbarch);
1701 len = gdbarch_max_insn_length (gdbarch);
1702
1703 if (breakpoint_in_range_p (aspace, copy, len))
1704 {
1705 /* There's a breakpoint set in the scratch pad location range
1706 (which is usually around the entry point). We'd either
1707 install it before resuming, which would overwrite/corrupt the
1708 scratch pad, or if it was already inserted, this displaced
1709 step would overwrite it. The latter is OK in the sense that
1710 we already assume that no thread is going to execute the code
1711 in the scratch pad range (after initial startup) anyway, but
1712 the former is unacceptable. Simply punt and fallback to
1713 stepping over this breakpoint in-line. */
1714 if (debug_displaced)
1715 {
1716 fprintf_unfiltered (gdb_stdlog,
1717 "displaced: breakpoint set in scratch pad. "
1718 "Stepping over breakpoint in-line instead.\n");
1719 }
1720
1721 return -1;
1722 }
1723
1724 /* Save the original contents of the copy area. */
1725 displaced->step_saved_copy.resize (len);
1726 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1727 if (status != 0)
1728 throw_error (MEMORY_ERROR,
1729 _("Error accessing memory address %s (%s) for "
1730 "displaced-stepping scratch space."),
1731 paddress (gdbarch, copy), safe_strerror (status));
1732 if (debug_displaced)
1733 {
1734 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1735 paddress (gdbarch, copy));
1736 displaced_step_dump_bytes (gdb_stdlog,
1737 displaced->step_saved_copy.data (),
1738 len);
1739 };
1740
1741 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1742 original, copy, regcache);
1743 if (closure == NULL)
1744 {
1745 /* The architecture doesn't know how or want to displaced step
1746 this instruction or instruction sequence. Fallback to
1747 stepping over the breakpoint in-line. */
1748 return -1;
1749 }
1750
1751 /* Save the information we need to fix things up if the step
1752 succeeds. */
1753 displaced->step_thread = tp;
1754 displaced->step_gdbarch = gdbarch;
1755 displaced->step_closure.reset (closure);
1756 displaced->step_original = original;
1757 displaced->step_copy = copy;
1758
1759 {
1760 displaced_step_reset_cleanup cleanup (displaced);
1761
1762 /* Resume execution at the copy. */
1763 regcache_write_pc (regcache, copy);
1764
1765 cleanup.release ();
1766 }
1767
1768 if (debug_displaced)
1769 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1770 paddress (gdbarch, copy));
1771
1772 return 1;
1773 }
1774
1775 /* Wrapper for displaced_step_prepare_throw that disabled further
1776 attempts at displaced stepping if we get a memory error. */
1777
1778 static int
1779 displaced_step_prepare (thread_info *thread)
1780 {
1781 int prepared = -1;
1782
1783 try
1784 {
1785 prepared = displaced_step_prepare_throw (thread);
1786 }
1787 catch (const gdb_exception_error &ex)
1788 {
1789 struct displaced_step_inferior_state *displaced_state;
1790
1791 if (ex.error != MEMORY_ERROR
1792 && ex.error != NOT_SUPPORTED_ERROR)
1793 throw;
1794
1795 if (debug_infrun)
1796 {
1797 fprintf_unfiltered (gdb_stdlog,
1798 "infrun: disabling displaced stepping: %s\n",
1799 ex.what ());
1800 }
1801
1802 /* Be verbose if "set displaced-stepping" is "on", silent if
1803 "auto". */
1804 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1805 {
1806 warning (_("disabling displaced stepping: %s"),
1807 ex.what ());
1808 }
1809
1810 /* Disable further displaced stepping attempts. */
1811 displaced_state
1812 = get_displaced_stepping_state (thread->inf);
1813 displaced_state->failed_before = 1;
1814 }
1815
1816 return prepared;
1817 }
1818
1819 static void
1820 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1821 const gdb_byte *myaddr, int len)
1822 {
1823 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1824
1825 inferior_ptid = ptid;
1826 write_memory (memaddr, myaddr, len);
1827 }
1828
1829 /* Restore the contents of the copy area for thread PTID. */
1830
1831 static void
1832 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1833 ptid_t ptid)
1834 {
1835 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1836
1837 write_memory_ptid (ptid, displaced->step_copy,
1838 displaced->step_saved_copy.data (), len);
1839 if (debug_displaced)
1840 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1841 target_pid_to_str (ptid).c_str (),
1842 paddress (displaced->step_gdbarch,
1843 displaced->step_copy));
1844 }
1845
1846 /* If we displaced stepped an instruction successfully, adjust
1847 registers and memory to yield the same effect the instruction would
1848 have had if we had executed it at its original address, and return
1849 1. If the instruction didn't complete, relocate the PC and return
1850 -1. If the thread wasn't displaced stepping, return 0. */
1851
1852 static int
1853 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1854 {
1855 struct displaced_step_inferior_state *displaced
1856 = get_displaced_stepping_state (event_thread->inf);
1857 int ret;
1858
1859 /* Was this event for the thread we displaced? */
1860 if (displaced->step_thread != event_thread)
1861 return 0;
1862
1863 displaced_step_reset_cleanup cleanup (displaced);
1864
1865 displaced_step_restore (displaced, displaced->step_thread->ptid);
1866
1867 /* Fixup may need to read memory/registers. Switch to the thread
1868 that we're fixing up. Also, target_stopped_by_watchpoint checks
1869 the current thread. */
1870 switch_to_thread (event_thread);
1871
1872 /* Did the instruction complete successfully? */
1873 if (signal == GDB_SIGNAL_TRAP
1874 && !(target_stopped_by_watchpoint ()
1875 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1876 || target_have_steppable_watchpoint)))
1877 {
1878 /* Fix up the resulting state. */
1879 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1880 displaced->step_closure.get (),
1881 displaced->step_original,
1882 displaced->step_copy,
1883 get_thread_regcache (displaced->step_thread));
1884 ret = 1;
1885 }
1886 else
1887 {
1888 /* Since the instruction didn't complete, all we can do is
1889 relocate the PC. */
1890 struct regcache *regcache = get_thread_regcache (event_thread);
1891 CORE_ADDR pc = regcache_read_pc (regcache);
1892
1893 pc = displaced->step_original + (pc - displaced->step_copy);
1894 regcache_write_pc (regcache, pc);
1895 ret = -1;
1896 }
1897
1898 return ret;
1899 }
1900
1901 /* Data to be passed around while handling an event. This data is
1902 discarded between events. */
1903 struct execution_control_state
1904 {
1905 process_stratum_target *target;
1906 ptid_t ptid;
1907 /* The thread that got the event, if this was a thread event; NULL
1908 otherwise. */
1909 struct thread_info *event_thread;
1910
1911 struct target_waitstatus ws;
1912 int stop_func_filled_in;
1913 CORE_ADDR stop_func_start;
1914 CORE_ADDR stop_func_end;
1915 const char *stop_func_name;
1916 int wait_some_more;
1917
1918 /* True if the event thread hit the single-step breakpoint of
1919 another thread. Thus the event doesn't cause a stop, the thread
1920 needs to be single-stepped past the single-step breakpoint before
1921 we can switch back to the original stepping thread. */
1922 int hit_singlestep_breakpoint;
1923 };
1924
1925 /* Clear ECS and set it to point at TP. */
1926
1927 static void
1928 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1929 {
1930 memset (ecs, 0, sizeof (*ecs));
1931 ecs->event_thread = tp;
1932 ecs->ptid = tp->ptid;
1933 }
1934
1935 static void keep_going_pass_signal (struct execution_control_state *ecs);
1936 static void prepare_to_wait (struct execution_control_state *ecs);
1937 static int keep_going_stepped_thread (struct thread_info *tp);
1938 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1939
1940 /* Are there any pending step-over requests? If so, run all we can
1941 now and return true. Otherwise, return false. */
1942
1943 static int
1944 start_step_over (void)
1945 {
1946 struct thread_info *tp, *next;
1947
1948 /* Don't start a new step-over if we already have an in-line
1949 step-over operation ongoing. */
1950 if (step_over_info_valid_p ())
1951 return 0;
1952
1953 for (tp = step_over_queue_head; tp != NULL; tp = next)
1954 {
1955 struct execution_control_state ecss;
1956 struct execution_control_state *ecs = &ecss;
1957 step_over_what step_what;
1958 int must_be_in_line;
1959
1960 gdb_assert (!tp->stop_requested);
1961
1962 next = thread_step_over_chain_next (tp);
1963
1964 /* If this inferior already has a displaced step in process,
1965 don't start a new one. */
1966 if (displaced_step_in_progress (tp->inf))
1967 continue;
1968
1969 step_what = thread_still_needs_step_over (tp);
1970 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1971 || ((step_what & STEP_OVER_BREAKPOINT)
1972 && !use_displaced_stepping (tp)));
1973
1974 /* We currently stop all threads of all processes to step-over
1975 in-line. If we need to start a new in-line step-over, let
1976 any pending displaced steps finish first. */
1977 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1978 return 0;
1979
1980 thread_step_over_chain_remove (tp);
1981
1982 if (step_over_queue_head == NULL)
1983 {
1984 if (debug_infrun)
1985 fprintf_unfiltered (gdb_stdlog,
1986 "infrun: step-over queue now empty\n");
1987 }
1988
1989 if (tp->control.trap_expected
1990 || tp->resumed
1991 || tp->executing)
1992 {
1993 internal_error (__FILE__, __LINE__,
1994 "[%s] has inconsistent state: "
1995 "trap_expected=%d, resumed=%d, executing=%d\n",
1996 target_pid_to_str (tp->ptid).c_str (),
1997 tp->control.trap_expected,
1998 tp->resumed,
1999 tp->executing);
2000 }
2001
2002 if (debug_infrun)
2003 fprintf_unfiltered (gdb_stdlog,
2004 "infrun: resuming [%s] for step-over\n",
2005 target_pid_to_str (tp->ptid).c_str ());
2006
2007 /* keep_going_pass_signal skips the step-over if the breakpoint
2008 is no longer inserted. In all-stop, we want to keep looking
2009 for a thread that needs a step-over instead of resuming TP,
2010 because we wouldn't be able to resume anything else until the
2011 target stops again. In non-stop, the resume always resumes
2012 only TP, so it's OK to let the thread resume freely. */
2013 if (!target_is_non_stop_p () && !step_what)
2014 continue;
2015
2016 switch_to_thread (tp);
2017 reset_ecs (ecs, tp);
2018 keep_going_pass_signal (ecs);
2019
2020 if (!ecs->wait_some_more)
2021 error (_("Command aborted."));
2022
2023 gdb_assert (tp->resumed);
2024
2025 /* If we started a new in-line step-over, we're done. */
2026 if (step_over_info_valid_p ())
2027 {
2028 gdb_assert (tp->control.trap_expected);
2029 return 1;
2030 }
2031
2032 if (!target_is_non_stop_p ())
2033 {
2034 /* On all-stop, shouldn't have resumed unless we needed a
2035 step over. */
2036 gdb_assert (tp->control.trap_expected
2037 || tp->step_after_step_resume_breakpoint);
2038
2039 /* With remote targets (at least), in all-stop, we can't
2040 issue any further remote commands until the program stops
2041 again. */
2042 return 1;
2043 }
2044
2045 /* Either the thread no longer needed a step-over, or a new
2046 displaced stepping sequence started. Even in the latter
2047 case, continue looking. Maybe we can also start another
2048 displaced step on a thread of other process. */
2049 }
2050
2051 return 0;
2052 }
2053
2054 /* Update global variables holding ptids to hold NEW_PTID if they were
2055 holding OLD_PTID. */
2056 static void
2057 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2058 {
2059 if (inferior_ptid == old_ptid)
2060 inferior_ptid = new_ptid;
2061 }
2062
2063 \f
2064
2065 static const char schedlock_off[] = "off";
2066 static const char schedlock_on[] = "on";
2067 static const char schedlock_step[] = "step";
2068 static const char schedlock_replay[] = "replay";
2069 static const char *const scheduler_enums[] = {
2070 schedlock_off,
2071 schedlock_on,
2072 schedlock_step,
2073 schedlock_replay,
2074 NULL
2075 };
2076 static const char *scheduler_mode = schedlock_replay;
2077 static void
2078 show_scheduler_mode (struct ui_file *file, int from_tty,
2079 struct cmd_list_element *c, const char *value)
2080 {
2081 fprintf_filtered (file,
2082 _("Mode for locking scheduler "
2083 "during execution is \"%s\".\n"),
2084 value);
2085 }
2086
2087 static void
2088 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2089 {
2090 if (!target_can_lock_scheduler)
2091 {
2092 scheduler_mode = schedlock_off;
2093 error (_("Target '%s' cannot support this command."), target_shortname);
2094 }
2095 }
2096
2097 /* True if execution commands resume all threads of all processes by
2098 default; otherwise, resume only threads of the current inferior
2099 process. */
2100 bool sched_multi = false;
2101
2102 /* Try to setup for software single stepping over the specified location.
2103 Return 1 if target_resume() should use hardware single step.
2104
2105 GDBARCH the current gdbarch.
2106 PC the location to step over. */
2107
2108 static int
2109 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2110 {
2111 int hw_step = 1;
2112
2113 if (execution_direction == EXEC_FORWARD
2114 && gdbarch_software_single_step_p (gdbarch))
2115 hw_step = !insert_single_step_breakpoints (gdbarch);
2116
2117 return hw_step;
2118 }
2119
2120 /* See infrun.h. */
2121
2122 ptid_t
2123 user_visible_resume_ptid (int step)
2124 {
2125 ptid_t resume_ptid;
2126
2127 if (non_stop)
2128 {
2129 /* With non-stop mode on, threads are always handled
2130 individually. */
2131 resume_ptid = inferior_ptid;
2132 }
2133 else if ((scheduler_mode == schedlock_on)
2134 || (scheduler_mode == schedlock_step && step))
2135 {
2136 /* User-settable 'scheduler' mode requires solo thread
2137 resume. */
2138 resume_ptid = inferior_ptid;
2139 }
2140 else if ((scheduler_mode == schedlock_replay)
2141 && target_record_will_replay (minus_one_ptid, execution_direction))
2142 {
2143 /* User-settable 'scheduler' mode requires solo thread resume in replay
2144 mode. */
2145 resume_ptid = inferior_ptid;
2146 }
2147 else if (!sched_multi && target_supports_multi_process ())
2148 {
2149 /* Resume all threads of the current process (and none of other
2150 processes). */
2151 resume_ptid = ptid_t (inferior_ptid.pid ());
2152 }
2153 else
2154 {
2155 /* Resume all threads of all processes. */
2156 resume_ptid = RESUME_ALL;
2157 }
2158
2159 return resume_ptid;
2160 }
2161
2162 /* See infrun.h. */
2163
2164 process_stratum_target *
2165 user_visible_resume_target (ptid_t resume_ptid)
2166 {
2167 return (resume_ptid == minus_one_ptid && sched_multi
2168 ? NULL
2169 : current_inferior ()->process_target ());
2170 }
2171
2172 /* Return a ptid representing the set of threads that we will resume,
2173 in the perspective of the target, assuming run control handling
2174 does not require leaving some threads stopped (e.g., stepping past
2175 breakpoint). USER_STEP indicates whether we're about to start the
2176 target for a stepping command. */
2177
2178 static ptid_t
2179 internal_resume_ptid (int user_step)
2180 {
2181 /* In non-stop, we always control threads individually. Note that
2182 the target may always work in non-stop mode even with "set
2183 non-stop off", in which case user_visible_resume_ptid could
2184 return a wildcard ptid. */
2185 if (target_is_non_stop_p ())
2186 return inferior_ptid;
2187 else
2188 return user_visible_resume_ptid (user_step);
2189 }
2190
2191 /* Wrapper for target_resume, that handles infrun-specific
2192 bookkeeping. */
2193
2194 static void
2195 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2196 {
2197 struct thread_info *tp = inferior_thread ();
2198
2199 gdb_assert (!tp->stop_requested);
2200
2201 /* Install inferior's terminal modes. */
2202 target_terminal::inferior ();
2203
2204 /* Avoid confusing the next resume, if the next stop/resume
2205 happens to apply to another thread. */
2206 tp->suspend.stop_signal = GDB_SIGNAL_0;
2207
2208 /* Advise target which signals may be handled silently.
2209
2210 If we have removed breakpoints because we are stepping over one
2211 in-line (in any thread), we need to receive all signals to avoid
2212 accidentally skipping a breakpoint during execution of a signal
2213 handler.
2214
2215 Likewise if we're displaced stepping, otherwise a trap for a
2216 breakpoint in a signal handler might be confused with the
2217 displaced step finishing. We don't make the displaced_step_fixup
2218 step distinguish the cases instead, because:
2219
2220 - a backtrace while stopped in the signal handler would show the
2221 scratch pad as frame older than the signal handler, instead of
2222 the real mainline code.
2223
2224 - when the thread is later resumed, the signal handler would
2225 return to the scratch pad area, which would no longer be
2226 valid. */
2227 if (step_over_info_valid_p ()
2228 || displaced_step_in_progress (tp->inf))
2229 target_pass_signals ({});
2230 else
2231 target_pass_signals (signal_pass);
2232
2233 target_resume (resume_ptid, step, sig);
2234
2235 target_commit_resume ();
2236
2237 if (target_can_async_p ())
2238 target_async (1);
2239 }
2240
2241 /* Resume the inferior. SIG is the signal to give the inferior
2242 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2243 call 'resume', which handles exceptions. */
2244
2245 static void
2246 resume_1 (enum gdb_signal sig)
2247 {
2248 struct regcache *regcache = get_current_regcache ();
2249 struct gdbarch *gdbarch = regcache->arch ();
2250 struct thread_info *tp = inferior_thread ();
2251 CORE_ADDR pc = regcache_read_pc (regcache);
2252 const address_space *aspace = regcache->aspace ();
2253 ptid_t resume_ptid;
2254 /* This represents the user's step vs continue request. When
2255 deciding whether "set scheduler-locking step" applies, it's the
2256 user's intention that counts. */
2257 const int user_step = tp->control.stepping_command;
2258 /* This represents what we'll actually request the target to do.
2259 This can decay from a step to a continue, if e.g., we need to
2260 implement single-stepping with breakpoints (software
2261 single-step). */
2262 int step;
2263
2264 gdb_assert (!tp->stop_requested);
2265 gdb_assert (!thread_is_in_step_over_chain (tp));
2266
2267 if (tp->suspend.waitstatus_pending_p)
2268 {
2269 if (debug_infrun)
2270 {
2271 std::string statstr
2272 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2273
2274 fprintf_unfiltered (gdb_stdlog,
2275 "infrun: resume: thread %s has pending wait "
2276 "status %s (currently_stepping=%d).\n",
2277 target_pid_to_str (tp->ptid).c_str (),
2278 statstr.c_str (),
2279 currently_stepping (tp));
2280 }
2281
2282 tp->inf->process_target ()->threads_executing = true;
2283 tp->resumed = true;
2284
2285 /* FIXME: What should we do if we are supposed to resume this
2286 thread with a signal? Maybe we should maintain a queue of
2287 pending signals to deliver. */
2288 if (sig != GDB_SIGNAL_0)
2289 {
2290 warning (_("Couldn't deliver signal %s to %s."),
2291 gdb_signal_to_name (sig),
2292 target_pid_to_str (tp->ptid).c_str ());
2293 }
2294
2295 tp->suspend.stop_signal = GDB_SIGNAL_0;
2296
2297 if (target_can_async_p ())
2298 {
2299 target_async (1);
2300 /* Tell the event loop we have an event to process. */
2301 mark_async_event_handler (infrun_async_inferior_event_token);
2302 }
2303 return;
2304 }
2305
2306 tp->stepped_breakpoint = 0;
2307
2308 /* Depends on stepped_breakpoint. */
2309 step = currently_stepping (tp);
2310
2311 if (current_inferior ()->waiting_for_vfork_done)
2312 {
2313 /* Don't try to single-step a vfork parent that is waiting for
2314 the child to get out of the shared memory region (by exec'ing
2315 or exiting). This is particularly important on software
2316 single-step archs, as the child process would trip on the
2317 software single step breakpoint inserted for the parent
2318 process. Since the parent will not actually execute any
2319 instruction until the child is out of the shared region (such
2320 are vfork's semantics), it is safe to simply continue it.
2321 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2322 the parent, and tell it to `keep_going', which automatically
2323 re-sets it stepping. */
2324 if (debug_infrun)
2325 fprintf_unfiltered (gdb_stdlog,
2326 "infrun: resume : clear step\n");
2327 step = 0;
2328 }
2329
2330 if (debug_infrun)
2331 fprintf_unfiltered (gdb_stdlog,
2332 "infrun: resume (step=%d, signal=%s), "
2333 "trap_expected=%d, current thread [%s] at %s\n",
2334 step, gdb_signal_to_symbol_string (sig),
2335 tp->control.trap_expected,
2336 target_pid_to_str (inferior_ptid).c_str (),
2337 paddress (gdbarch, pc));
2338
2339 /* Normally, by the time we reach `resume', the breakpoints are either
2340 removed or inserted, as appropriate. The exception is if we're sitting
2341 at a permanent breakpoint; we need to step over it, but permanent
2342 breakpoints can't be removed. So we have to test for it here. */
2343 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2344 {
2345 if (sig != GDB_SIGNAL_0)
2346 {
2347 /* We have a signal to pass to the inferior. The resume
2348 may, or may not take us to the signal handler. If this
2349 is a step, we'll need to stop in the signal handler, if
2350 there's one, (if the target supports stepping into
2351 handlers), or in the next mainline instruction, if
2352 there's no handler. If this is a continue, we need to be
2353 sure to run the handler with all breakpoints inserted.
2354 In all cases, set a breakpoint at the current address
2355 (where the handler returns to), and once that breakpoint
2356 is hit, resume skipping the permanent breakpoint. If
2357 that breakpoint isn't hit, then we've stepped into the
2358 signal handler (or hit some other event). We'll delete
2359 the step-resume breakpoint then. */
2360
2361 if (debug_infrun)
2362 fprintf_unfiltered (gdb_stdlog,
2363 "infrun: resume: skipping permanent breakpoint, "
2364 "deliver signal first\n");
2365
2366 clear_step_over_info ();
2367 tp->control.trap_expected = 0;
2368
2369 if (tp->control.step_resume_breakpoint == NULL)
2370 {
2371 /* Set a "high-priority" step-resume, as we don't want
2372 user breakpoints at PC to trigger (again) when this
2373 hits. */
2374 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2375 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2376
2377 tp->step_after_step_resume_breakpoint = step;
2378 }
2379
2380 insert_breakpoints ();
2381 }
2382 else
2383 {
2384 /* There's no signal to pass, we can go ahead and skip the
2385 permanent breakpoint manually. */
2386 if (debug_infrun)
2387 fprintf_unfiltered (gdb_stdlog,
2388 "infrun: resume: skipping permanent breakpoint\n");
2389 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2390 /* Update pc to reflect the new address from which we will
2391 execute instructions. */
2392 pc = regcache_read_pc (regcache);
2393
2394 if (step)
2395 {
2396 /* We've already advanced the PC, so the stepping part
2397 is done. Now we need to arrange for a trap to be
2398 reported to handle_inferior_event. Set a breakpoint
2399 at the current PC, and run to it. Don't update
2400 prev_pc, because if we end in
2401 switch_back_to_stepped_thread, we want the "expected
2402 thread advanced also" branch to be taken. IOW, we
2403 don't want this thread to step further from PC
2404 (overstep). */
2405 gdb_assert (!step_over_info_valid_p ());
2406 insert_single_step_breakpoint (gdbarch, aspace, pc);
2407 insert_breakpoints ();
2408
2409 resume_ptid = internal_resume_ptid (user_step);
2410 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2411 tp->resumed = true;
2412 return;
2413 }
2414 }
2415 }
2416
2417 /* If we have a breakpoint to step over, make sure to do a single
2418 step only. Same if we have software watchpoints. */
2419 if (tp->control.trap_expected || bpstat_should_step ())
2420 tp->control.may_range_step = 0;
2421
2422 /* If displaced stepping is enabled, step over breakpoints by executing a
2423 copy of the instruction at a different address.
2424
2425 We can't use displaced stepping when we have a signal to deliver;
2426 the comments for displaced_step_prepare explain why. The
2427 comments in the handle_inferior event for dealing with 'random
2428 signals' explain what we do instead.
2429
2430 We can't use displaced stepping when we are waiting for vfork_done
2431 event, displaced stepping breaks the vfork child similarly as single
2432 step software breakpoint. */
2433 if (tp->control.trap_expected
2434 && use_displaced_stepping (tp)
2435 && !step_over_info_valid_p ()
2436 && sig == GDB_SIGNAL_0
2437 && !current_inferior ()->waiting_for_vfork_done)
2438 {
2439 int prepared = displaced_step_prepare (tp);
2440
2441 if (prepared == 0)
2442 {
2443 if (debug_infrun)
2444 fprintf_unfiltered (gdb_stdlog,
2445 "Got placed in step-over queue\n");
2446
2447 tp->control.trap_expected = 0;
2448 return;
2449 }
2450 else if (prepared < 0)
2451 {
2452 /* Fallback to stepping over the breakpoint in-line. */
2453
2454 if (target_is_non_stop_p ())
2455 stop_all_threads ();
2456
2457 set_step_over_info (regcache->aspace (),
2458 regcache_read_pc (regcache), 0, tp->global_num);
2459
2460 step = maybe_software_singlestep (gdbarch, pc);
2461
2462 insert_breakpoints ();
2463 }
2464 else if (prepared > 0)
2465 {
2466 struct displaced_step_inferior_state *displaced;
2467
2468 /* Update pc to reflect the new address from which we will
2469 execute instructions due to displaced stepping. */
2470 pc = regcache_read_pc (get_thread_regcache (tp));
2471
2472 displaced = get_displaced_stepping_state (tp->inf);
2473 step = gdbarch_displaced_step_hw_singlestep
2474 (gdbarch, displaced->step_closure.get ());
2475 }
2476 }
2477
2478 /* Do we need to do it the hard way, w/temp breakpoints? */
2479 else if (step)
2480 step = maybe_software_singlestep (gdbarch, pc);
2481
2482 /* Currently, our software single-step implementation leads to different
2483 results than hardware single-stepping in one situation: when stepping
2484 into delivering a signal which has an associated signal handler,
2485 hardware single-step will stop at the first instruction of the handler,
2486 while software single-step will simply skip execution of the handler.
2487
2488 For now, this difference in behavior is accepted since there is no
2489 easy way to actually implement single-stepping into a signal handler
2490 without kernel support.
2491
2492 However, there is one scenario where this difference leads to follow-on
2493 problems: if we're stepping off a breakpoint by removing all breakpoints
2494 and then single-stepping. In this case, the software single-step
2495 behavior means that even if there is a *breakpoint* in the signal
2496 handler, GDB still would not stop.
2497
2498 Fortunately, we can at least fix this particular issue. We detect
2499 here the case where we are about to deliver a signal while software
2500 single-stepping with breakpoints removed. In this situation, we
2501 revert the decisions to remove all breakpoints and insert single-
2502 step breakpoints, and instead we install a step-resume breakpoint
2503 at the current address, deliver the signal without stepping, and
2504 once we arrive back at the step-resume breakpoint, actually step
2505 over the breakpoint we originally wanted to step over. */
2506 if (thread_has_single_step_breakpoints_set (tp)
2507 && sig != GDB_SIGNAL_0
2508 && step_over_info_valid_p ())
2509 {
2510 /* If we have nested signals or a pending signal is delivered
2511 immediately after a handler returns, might already have
2512 a step-resume breakpoint set on the earlier handler. We cannot
2513 set another step-resume breakpoint; just continue on until the
2514 original breakpoint is hit. */
2515 if (tp->control.step_resume_breakpoint == NULL)
2516 {
2517 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2518 tp->step_after_step_resume_breakpoint = 1;
2519 }
2520
2521 delete_single_step_breakpoints (tp);
2522
2523 clear_step_over_info ();
2524 tp->control.trap_expected = 0;
2525
2526 insert_breakpoints ();
2527 }
2528
2529 /* If STEP is set, it's a request to use hardware stepping
2530 facilities. But in that case, we should never
2531 use singlestep breakpoint. */
2532 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2533
2534 /* Decide the set of threads to ask the target to resume. */
2535 if (tp->control.trap_expected)
2536 {
2537 /* We're allowing a thread to run past a breakpoint it has
2538 hit, either by single-stepping the thread with the breakpoint
2539 removed, or by displaced stepping, with the breakpoint inserted.
2540 In the former case, we need to single-step only this thread,
2541 and keep others stopped, as they can miss this breakpoint if
2542 allowed to run. That's not really a problem for displaced
2543 stepping, but, we still keep other threads stopped, in case
2544 another thread is also stopped for a breakpoint waiting for
2545 its turn in the displaced stepping queue. */
2546 resume_ptid = inferior_ptid;
2547 }
2548 else
2549 resume_ptid = internal_resume_ptid (user_step);
2550
2551 if (execution_direction != EXEC_REVERSE
2552 && step && breakpoint_inserted_here_p (aspace, pc))
2553 {
2554 /* There are two cases where we currently need to step a
2555 breakpoint instruction when we have a signal to deliver:
2556
2557 - See handle_signal_stop where we handle random signals that
2558 could take out us out of the stepping range. Normally, in
2559 that case we end up continuing (instead of stepping) over the
2560 signal handler with a breakpoint at PC, but there are cases
2561 where we should _always_ single-step, even if we have a
2562 step-resume breakpoint, like when a software watchpoint is
2563 set. Assuming single-stepping and delivering a signal at the
2564 same time would takes us to the signal handler, then we could
2565 have removed the breakpoint at PC to step over it. However,
2566 some hardware step targets (like e.g., Mac OS) can't step
2567 into signal handlers, and for those, we need to leave the
2568 breakpoint at PC inserted, as otherwise if the handler
2569 recurses and executes PC again, it'll miss the breakpoint.
2570 So we leave the breakpoint inserted anyway, but we need to
2571 record that we tried to step a breakpoint instruction, so
2572 that adjust_pc_after_break doesn't end up confused.
2573
2574 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2575 in one thread after another thread that was stepping had been
2576 momentarily paused for a step-over. When we re-resume the
2577 stepping thread, it may be resumed from that address with a
2578 breakpoint that hasn't trapped yet. Seen with
2579 gdb.threads/non-stop-fair-events.exp, on targets that don't
2580 do displaced stepping. */
2581
2582 if (debug_infrun)
2583 fprintf_unfiltered (gdb_stdlog,
2584 "infrun: resume: [%s] stepped breakpoint\n",
2585 target_pid_to_str (tp->ptid).c_str ());
2586
2587 tp->stepped_breakpoint = 1;
2588
2589 /* Most targets can step a breakpoint instruction, thus
2590 executing it normally. But if this one cannot, just
2591 continue and we will hit it anyway. */
2592 if (gdbarch_cannot_step_breakpoint (gdbarch))
2593 step = 0;
2594 }
2595
2596 if (debug_displaced
2597 && tp->control.trap_expected
2598 && use_displaced_stepping (tp)
2599 && !step_over_info_valid_p ())
2600 {
2601 struct regcache *resume_regcache = get_thread_regcache (tp);
2602 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2603 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2604 gdb_byte buf[4];
2605
2606 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2607 paddress (resume_gdbarch, actual_pc));
2608 read_memory (actual_pc, buf, sizeof (buf));
2609 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2610 }
2611
2612 if (tp->control.may_range_step)
2613 {
2614 /* If we're resuming a thread with the PC out of the step
2615 range, then we're doing some nested/finer run control
2616 operation, like stepping the thread out of the dynamic
2617 linker or the displaced stepping scratch pad. We
2618 shouldn't have allowed a range step then. */
2619 gdb_assert (pc_in_thread_step_range (pc, tp));
2620 }
2621
2622 do_target_resume (resume_ptid, step, sig);
2623 tp->resumed = true;
2624 }
2625
2626 /* Resume the inferior. SIG is the signal to give the inferior
2627 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2628 rolls back state on error. */
2629
2630 static void
2631 resume (gdb_signal sig)
2632 {
2633 try
2634 {
2635 resume_1 (sig);
2636 }
2637 catch (const gdb_exception &ex)
2638 {
2639 /* If resuming is being aborted for any reason, delete any
2640 single-step breakpoint resume_1 may have created, to avoid
2641 confusing the following resumption, and to avoid leaving
2642 single-step breakpoints perturbing other threads, in case
2643 we're running in non-stop mode. */
2644 if (inferior_ptid != null_ptid)
2645 delete_single_step_breakpoints (inferior_thread ());
2646 throw;
2647 }
2648 }
2649
2650 \f
2651 /* Proceeding. */
2652
2653 /* See infrun.h. */
2654
2655 /* Counter that tracks number of user visible stops. This can be used
2656 to tell whether a command has proceeded the inferior past the
2657 current location. This allows e.g., inferior function calls in
2658 breakpoint commands to not interrupt the command list. When the
2659 call finishes successfully, the inferior is standing at the same
2660 breakpoint as if nothing happened (and so we don't call
2661 normal_stop). */
2662 static ULONGEST current_stop_id;
2663
2664 /* See infrun.h. */
2665
2666 ULONGEST
2667 get_stop_id (void)
2668 {
2669 return current_stop_id;
2670 }
2671
2672 /* Called when we report a user visible stop. */
2673
2674 static void
2675 new_stop_id (void)
2676 {
2677 current_stop_id++;
2678 }
2679
2680 /* Clear out all variables saying what to do when inferior is continued.
2681 First do this, then set the ones you want, then call `proceed'. */
2682
2683 static void
2684 clear_proceed_status_thread (struct thread_info *tp)
2685 {
2686 if (debug_infrun)
2687 fprintf_unfiltered (gdb_stdlog,
2688 "infrun: clear_proceed_status_thread (%s)\n",
2689 target_pid_to_str (tp->ptid).c_str ());
2690
2691 /* If we're starting a new sequence, then the previous finished
2692 single-step is no longer relevant. */
2693 if (tp->suspend.waitstatus_pending_p)
2694 {
2695 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2696 {
2697 if (debug_infrun)
2698 fprintf_unfiltered (gdb_stdlog,
2699 "infrun: clear_proceed_status: pending "
2700 "event of %s was a finished step. "
2701 "Discarding.\n",
2702 target_pid_to_str (tp->ptid).c_str ());
2703
2704 tp->suspend.waitstatus_pending_p = 0;
2705 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2706 }
2707 else if (debug_infrun)
2708 {
2709 std::string statstr
2710 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2711
2712 fprintf_unfiltered (gdb_stdlog,
2713 "infrun: clear_proceed_status_thread: thread %s "
2714 "has pending wait status %s "
2715 "(currently_stepping=%d).\n",
2716 target_pid_to_str (tp->ptid).c_str (),
2717 statstr.c_str (),
2718 currently_stepping (tp));
2719 }
2720 }
2721
2722 /* If this signal should not be seen by program, give it zero.
2723 Used for debugging signals. */
2724 if (!signal_pass_state (tp->suspend.stop_signal))
2725 tp->suspend.stop_signal = GDB_SIGNAL_0;
2726
2727 delete tp->thread_fsm;
2728 tp->thread_fsm = NULL;
2729
2730 tp->control.trap_expected = 0;
2731 tp->control.step_range_start = 0;
2732 tp->control.step_range_end = 0;
2733 tp->control.may_range_step = 0;
2734 tp->control.step_frame_id = null_frame_id;
2735 tp->control.step_stack_frame_id = null_frame_id;
2736 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2737 tp->control.step_start_function = NULL;
2738 tp->stop_requested = 0;
2739
2740 tp->control.stop_step = 0;
2741
2742 tp->control.proceed_to_finish = 0;
2743
2744 tp->control.stepping_command = 0;
2745
2746 /* Discard any remaining commands or status from previous stop. */
2747 bpstat_clear (&tp->control.stop_bpstat);
2748 }
2749
2750 void
2751 clear_proceed_status (int step)
2752 {
2753 /* With scheduler-locking replay, stop replaying other threads if we're
2754 not replaying the user-visible resume ptid.
2755
2756 This is a convenience feature to not require the user to explicitly
2757 stop replaying the other threads. We're assuming that the user's
2758 intent is to resume tracing the recorded process. */
2759 if (!non_stop && scheduler_mode == schedlock_replay
2760 && target_record_is_replaying (minus_one_ptid)
2761 && !target_record_will_replay (user_visible_resume_ptid (step),
2762 execution_direction))
2763 target_record_stop_replaying ();
2764
2765 if (!non_stop && inferior_ptid != null_ptid)
2766 {
2767 ptid_t resume_ptid = user_visible_resume_ptid (step);
2768 process_stratum_target *resume_target
2769 = user_visible_resume_target (resume_ptid);
2770
2771 /* In all-stop mode, delete the per-thread status of all threads
2772 we're about to resume, implicitly and explicitly. */
2773 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2774 clear_proceed_status_thread (tp);
2775 }
2776
2777 if (inferior_ptid != null_ptid)
2778 {
2779 struct inferior *inferior;
2780
2781 if (non_stop)
2782 {
2783 /* If in non-stop mode, only delete the per-thread status of
2784 the current thread. */
2785 clear_proceed_status_thread (inferior_thread ());
2786 }
2787
2788 inferior = current_inferior ();
2789 inferior->control.stop_soon = NO_STOP_QUIETLY;
2790 }
2791
2792 gdb::observers::about_to_proceed.notify ();
2793 }
2794
2795 /* Returns true if TP is still stopped at a breakpoint that needs
2796 stepping-over in order to make progress. If the breakpoint is gone
2797 meanwhile, we can skip the whole step-over dance. */
2798
2799 static int
2800 thread_still_needs_step_over_bp (struct thread_info *tp)
2801 {
2802 if (tp->stepping_over_breakpoint)
2803 {
2804 struct regcache *regcache = get_thread_regcache (tp);
2805
2806 if (breakpoint_here_p (regcache->aspace (),
2807 regcache_read_pc (regcache))
2808 == ordinary_breakpoint_here)
2809 return 1;
2810
2811 tp->stepping_over_breakpoint = 0;
2812 }
2813
2814 return 0;
2815 }
2816
2817 /* Check whether thread TP still needs to start a step-over in order
2818 to make progress when resumed. Returns an bitwise or of enum
2819 step_over_what bits, indicating what needs to be stepped over. */
2820
2821 static step_over_what
2822 thread_still_needs_step_over (struct thread_info *tp)
2823 {
2824 step_over_what what = 0;
2825
2826 if (thread_still_needs_step_over_bp (tp))
2827 what |= STEP_OVER_BREAKPOINT;
2828
2829 if (tp->stepping_over_watchpoint
2830 && !target_have_steppable_watchpoint)
2831 what |= STEP_OVER_WATCHPOINT;
2832
2833 return what;
2834 }
2835
2836 /* Returns true if scheduler locking applies. STEP indicates whether
2837 we're about to do a step/next-like command to a thread. */
2838
2839 static int
2840 schedlock_applies (struct thread_info *tp)
2841 {
2842 return (scheduler_mode == schedlock_on
2843 || (scheduler_mode == schedlock_step
2844 && tp->control.stepping_command)
2845 || (scheduler_mode == schedlock_replay
2846 && target_record_will_replay (minus_one_ptid,
2847 execution_direction)));
2848 }
2849
2850 /* Calls target_commit_resume on all targets. */
2851
2852 static void
2853 commit_resume_all_targets ()
2854 {
2855 scoped_restore_current_thread restore_thread;
2856
2857 /* Map between process_target and a representative inferior. This
2858 is to avoid committing a resume in the same target more than
2859 once. Resumptions must be idempotent, so this is an
2860 optimization. */
2861 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2862
2863 for (inferior *inf : all_non_exited_inferiors ())
2864 if (inf->has_execution ())
2865 conn_inf[inf->process_target ()] = inf;
2866
2867 for (const auto &ci : conn_inf)
2868 {
2869 inferior *inf = ci.second;
2870 switch_to_inferior_no_thread (inf);
2871 target_commit_resume ();
2872 }
2873 }
2874
2875 /* Check that all the targets we're about to resume are in non-stop
2876 mode. Ideally, we'd only care whether all targets support
2877 target-async, but we're not there yet. E.g., stop_all_threads
2878 doesn't know how to handle all-stop targets. Also, the remote
2879 protocol in all-stop mode is synchronous, irrespective of
2880 target-async, which means that things like a breakpoint re-set
2881 triggered by one target would try to read memory from all targets
2882 and fail. */
2883
2884 static void
2885 check_multi_target_resumption (process_stratum_target *resume_target)
2886 {
2887 if (!non_stop && resume_target == nullptr)
2888 {
2889 scoped_restore_current_thread restore_thread;
2890
2891 /* This is used to track whether we're resuming more than one
2892 target. */
2893 process_stratum_target *first_connection = nullptr;
2894
2895 /* The first inferior we see with a target that does not work in
2896 always-non-stop mode. */
2897 inferior *first_not_non_stop = nullptr;
2898
2899 for (inferior *inf : all_non_exited_inferiors (resume_target))
2900 {
2901 switch_to_inferior_no_thread (inf);
2902
2903 if (!target_has_execution)
2904 continue;
2905
2906 process_stratum_target *proc_target
2907 = current_inferior ()->process_target();
2908
2909 if (!target_is_non_stop_p ())
2910 first_not_non_stop = inf;
2911
2912 if (first_connection == nullptr)
2913 first_connection = proc_target;
2914 else if (first_connection != proc_target
2915 && first_not_non_stop != nullptr)
2916 {
2917 switch_to_inferior_no_thread (first_not_non_stop);
2918
2919 proc_target = current_inferior ()->process_target();
2920
2921 error (_("Connection %d (%s) does not support "
2922 "multi-target resumption."),
2923 proc_target->connection_number,
2924 make_target_connection_string (proc_target).c_str ());
2925 }
2926 }
2927 }
2928 }
2929
2930 /* Basic routine for continuing the program in various fashions.
2931
2932 ADDR is the address to resume at, or -1 for resume where stopped.
2933 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2934 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2935
2936 You should call clear_proceed_status before calling proceed. */
2937
2938 void
2939 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2940 {
2941 struct regcache *regcache;
2942 struct gdbarch *gdbarch;
2943 CORE_ADDR pc;
2944 struct execution_control_state ecss;
2945 struct execution_control_state *ecs = &ecss;
2946 int started;
2947
2948 /* If we're stopped at a fork/vfork, follow the branch set by the
2949 "set follow-fork-mode" command; otherwise, we'll just proceed
2950 resuming the current thread. */
2951 if (!follow_fork ())
2952 {
2953 /* The target for some reason decided not to resume. */
2954 normal_stop ();
2955 if (target_can_async_p ())
2956 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2957 return;
2958 }
2959
2960 /* We'll update this if & when we switch to a new thread. */
2961 previous_inferior_ptid = inferior_ptid;
2962
2963 regcache = get_current_regcache ();
2964 gdbarch = regcache->arch ();
2965 const address_space *aspace = regcache->aspace ();
2966
2967 pc = regcache_read_pc (regcache);
2968 thread_info *cur_thr = inferior_thread ();
2969
2970 /* Fill in with reasonable starting values. */
2971 init_thread_stepping_state (cur_thr);
2972
2973 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2974
2975 ptid_t resume_ptid
2976 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2977 process_stratum_target *resume_target
2978 = user_visible_resume_target (resume_ptid);
2979
2980 check_multi_target_resumption (resume_target);
2981
2982 if (addr == (CORE_ADDR) -1)
2983 {
2984 if (pc == cur_thr->suspend.stop_pc
2985 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2986 && execution_direction != EXEC_REVERSE)
2987 /* There is a breakpoint at the address we will resume at,
2988 step one instruction before inserting breakpoints so that
2989 we do not stop right away (and report a second hit at this
2990 breakpoint).
2991
2992 Note, we don't do this in reverse, because we won't
2993 actually be executing the breakpoint insn anyway.
2994 We'll be (un-)executing the previous instruction. */
2995 cur_thr->stepping_over_breakpoint = 1;
2996 else if (gdbarch_single_step_through_delay_p (gdbarch)
2997 && gdbarch_single_step_through_delay (gdbarch,
2998 get_current_frame ()))
2999 /* We stepped onto an instruction that needs to be stepped
3000 again before re-inserting the breakpoint, do so. */
3001 cur_thr->stepping_over_breakpoint = 1;
3002 }
3003 else
3004 {
3005 regcache_write_pc (regcache, addr);
3006 }
3007
3008 if (siggnal != GDB_SIGNAL_DEFAULT)
3009 cur_thr->suspend.stop_signal = siggnal;
3010
3011 /* If an exception is thrown from this point on, make sure to
3012 propagate GDB's knowledge of the executing state to the
3013 frontend/user running state. */
3014 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3015
3016 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3017 threads (e.g., we might need to set threads stepping over
3018 breakpoints first), from the user/frontend's point of view, all
3019 threads in RESUME_PTID are now running. Unless we're calling an
3020 inferior function, as in that case we pretend the inferior
3021 doesn't run at all. */
3022 if (!cur_thr->control.in_infcall)
3023 set_running (resume_target, resume_ptid, true);
3024
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "infrun: proceed (addr=%s, signal=%s)\n",
3028 paddress (gdbarch, addr),
3029 gdb_signal_to_symbol_string (siggnal));
3030
3031 annotate_starting ();
3032
3033 /* Make sure that output from GDB appears before output from the
3034 inferior. */
3035 gdb_flush (gdb_stdout);
3036
3037 /* Since we've marked the inferior running, give it the terminal. A
3038 QUIT/Ctrl-C from here on is forwarded to the target (which can
3039 still detect attempts to unblock a stuck connection with repeated
3040 Ctrl-C from within target_pass_ctrlc). */
3041 target_terminal::inferior ();
3042
3043 /* In a multi-threaded task we may select another thread and
3044 then continue or step.
3045
3046 But if a thread that we're resuming had stopped at a breakpoint,
3047 it will immediately cause another breakpoint stop without any
3048 execution (i.e. it will report a breakpoint hit incorrectly). So
3049 we must step over it first.
3050
3051 Look for threads other than the current (TP) that reported a
3052 breakpoint hit and haven't been resumed yet since. */
3053
3054 /* If scheduler locking applies, we can avoid iterating over all
3055 threads. */
3056 if (!non_stop && !schedlock_applies (cur_thr))
3057 {
3058 for (thread_info *tp : all_non_exited_threads (resume_target,
3059 resume_ptid))
3060 {
3061 switch_to_thread_no_regs (tp);
3062
3063 /* Ignore the current thread here. It's handled
3064 afterwards. */
3065 if (tp == cur_thr)
3066 continue;
3067
3068 if (!thread_still_needs_step_over (tp))
3069 continue;
3070
3071 gdb_assert (!thread_is_in_step_over_chain (tp));
3072
3073 if (debug_infrun)
3074 fprintf_unfiltered (gdb_stdlog,
3075 "infrun: need to step-over [%s] first\n",
3076 target_pid_to_str (tp->ptid).c_str ());
3077
3078 thread_step_over_chain_enqueue (tp);
3079 }
3080
3081 switch_to_thread (cur_thr);
3082 }
3083
3084 /* Enqueue the current thread last, so that we move all other
3085 threads over their breakpoints first. */
3086 if (cur_thr->stepping_over_breakpoint)
3087 thread_step_over_chain_enqueue (cur_thr);
3088
3089 /* If the thread isn't started, we'll still need to set its prev_pc,
3090 so that switch_back_to_stepped_thread knows the thread hasn't
3091 advanced. Must do this before resuming any thread, as in
3092 all-stop/remote, once we resume we can't send any other packet
3093 until the target stops again. */
3094 cur_thr->prev_pc = regcache_read_pc (regcache);
3095
3096 {
3097 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3098
3099 started = start_step_over ();
3100
3101 if (step_over_info_valid_p ())
3102 {
3103 /* Either this thread started a new in-line step over, or some
3104 other thread was already doing one. In either case, don't
3105 resume anything else until the step-over is finished. */
3106 }
3107 else if (started && !target_is_non_stop_p ())
3108 {
3109 /* A new displaced stepping sequence was started. In all-stop,
3110 we can't talk to the target anymore until it next stops. */
3111 }
3112 else if (!non_stop && target_is_non_stop_p ())
3113 {
3114 /* In all-stop, but the target is always in non-stop mode.
3115 Start all other threads that are implicitly resumed too. */
3116 for (thread_info *tp : all_non_exited_threads (resume_target,
3117 resume_ptid))
3118 {
3119 switch_to_thread_no_regs (tp);
3120
3121 if (!tp->inf->has_execution ())
3122 {
3123 if (debug_infrun)
3124 fprintf_unfiltered (gdb_stdlog,
3125 "infrun: proceed: [%s] target has "
3126 "no execution\n",
3127 target_pid_to_str (tp->ptid).c_str ());
3128 continue;
3129 }
3130
3131 if (tp->resumed)
3132 {
3133 if (debug_infrun)
3134 fprintf_unfiltered (gdb_stdlog,
3135 "infrun: proceed: [%s] resumed\n",
3136 target_pid_to_str (tp->ptid).c_str ());
3137 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3138 continue;
3139 }
3140
3141 if (thread_is_in_step_over_chain (tp))
3142 {
3143 if (debug_infrun)
3144 fprintf_unfiltered (gdb_stdlog,
3145 "infrun: proceed: [%s] needs step-over\n",
3146 target_pid_to_str (tp->ptid).c_str ());
3147 continue;
3148 }
3149
3150 if (debug_infrun)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "infrun: proceed: resuming %s\n",
3153 target_pid_to_str (tp->ptid).c_str ());
3154
3155 reset_ecs (ecs, tp);
3156 switch_to_thread (tp);
3157 keep_going_pass_signal (ecs);
3158 if (!ecs->wait_some_more)
3159 error (_("Command aborted."));
3160 }
3161 }
3162 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3163 {
3164 /* The thread wasn't started, and isn't queued, run it now. */
3165 reset_ecs (ecs, cur_thr);
3166 switch_to_thread (cur_thr);
3167 keep_going_pass_signal (ecs);
3168 if (!ecs->wait_some_more)
3169 error (_("Command aborted."));
3170 }
3171 }
3172
3173 commit_resume_all_targets ();
3174
3175 finish_state.release ();
3176
3177 /* If we've switched threads above, switch back to the previously
3178 current thread. We don't want the user to see a different
3179 selected thread. */
3180 switch_to_thread (cur_thr);
3181
3182 /* Tell the event loop to wait for it to stop. If the target
3183 supports asynchronous execution, it'll do this from within
3184 target_resume. */
3185 if (!target_can_async_p ())
3186 mark_async_event_handler (infrun_async_inferior_event_token);
3187 }
3188 \f
3189
3190 /* Start remote-debugging of a machine over a serial link. */
3191
3192 void
3193 start_remote (int from_tty)
3194 {
3195 inferior *inf = current_inferior ();
3196 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3197
3198 /* Always go on waiting for the target, regardless of the mode. */
3199 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3200 indicate to wait_for_inferior that a target should timeout if
3201 nothing is returned (instead of just blocking). Because of this,
3202 targets expecting an immediate response need to, internally, set
3203 things up so that the target_wait() is forced to eventually
3204 timeout. */
3205 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3206 differentiate to its caller what the state of the target is after
3207 the initial open has been performed. Here we're assuming that
3208 the target has stopped. It should be possible to eventually have
3209 target_open() return to the caller an indication that the target
3210 is currently running and GDB state should be set to the same as
3211 for an async run. */
3212 wait_for_inferior (inf);
3213
3214 /* Now that the inferior has stopped, do any bookkeeping like
3215 loading shared libraries. We want to do this before normal_stop,
3216 so that the displayed frame is up to date. */
3217 post_create_inferior (current_top_target (), from_tty);
3218
3219 normal_stop ();
3220 }
3221
3222 /* Initialize static vars when a new inferior begins. */
3223
3224 void
3225 init_wait_for_inferior (void)
3226 {
3227 /* These are meaningless until the first time through wait_for_inferior. */
3228
3229 breakpoint_init_inferior (inf_starting);
3230
3231 clear_proceed_status (0);
3232
3233 nullify_last_target_wait_ptid ();
3234
3235 previous_inferior_ptid = inferior_ptid;
3236 }
3237
3238 \f
3239
3240 static void handle_inferior_event (struct execution_control_state *ecs);
3241
3242 static void handle_step_into_function (struct gdbarch *gdbarch,
3243 struct execution_control_state *ecs);
3244 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3245 struct execution_control_state *ecs);
3246 static void handle_signal_stop (struct execution_control_state *ecs);
3247 static void check_exception_resume (struct execution_control_state *,
3248 struct frame_info *);
3249
3250 static void end_stepping_range (struct execution_control_state *ecs);
3251 static void stop_waiting (struct execution_control_state *ecs);
3252 static void keep_going (struct execution_control_state *ecs);
3253 static void process_event_stop_test (struct execution_control_state *ecs);
3254 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3255
3256 /* This function is attached as a "thread_stop_requested" observer.
3257 Cleanup local state that assumed the PTID was to be resumed, and
3258 report the stop to the frontend. */
3259
3260 static void
3261 infrun_thread_stop_requested (ptid_t ptid)
3262 {
3263 process_stratum_target *curr_target = current_inferior ()->process_target ();
3264
3265 /* PTID was requested to stop. If the thread was already stopped,
3266 but the user/frontend doesn't know about that yet (e.g., the
3267 thread had been temporarily paused for some step-over), set up
3268 for reporting the stop now. */
3269 for (thread_info *tp : all_threads (curr_target, ptid))
3270 {
3271 if (tp->state != THREAD_RUNNING)
3272 continue;
3273 if (tp->executing)
3274 continue;
3275
3276 /* Remove matching threads from the step-over queue, so
3277 start_step_over doesn't try to resume them
3278 automatically. */
3279 if (thread_is_in_step_over_chain (tp))
3280 thread_step_over_chain_remove (tp);
3281
3282 /* If the thread is stopped, but the user/frontend doesn't
3283 know about that yet, queue a pending event, as if the
3284 thread had just stopped now. Unless the thread already had
3285 a pending event. */
3286 if (!tp->suspend.waitstatus_pending_p)
3287 {
3288 tp->suspend.waitstatus_pending_p = 1;
3289 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3290 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3291 }
3292
3293 /* Clear the inline-frame state, since we're re-processing the
3294 stop. */
3295 clear_inline_frame_state (tp);
3296
3297 /* If this thread was paused because some other thread was
3298 doing an inline-step over, let that finish first. Once
3299 that happens, we'll restart all threads and consume pending
3300 stop events then. */
3301 if (step_over_info_valid_p ())
3302 continue;
3303
3304 /* Otherwise we can process the (new) pending event now. Set
3305 it so this pending event is considered by
3306 do_target_wait. */
3307 tp->resumed = true;
3308 }
3309 }
3310
3311 static void
3312 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3313 {
3314 if (target_last_proc_target == tp->inf->process_target ()
3315 && target_last_wait_ptid == tp->ptid)
3316 nullify_last_target_wait_ptid ();
3317 }
3318
3319 /* Delete the step resume, single-step and longjmp/exception resume
3320 breakpoints of TP. */
3321
3322 static void
3323 delete_thread_infrun_breakpoints (struct thread_info *tp)
3324 {
3325 delete_step_resume_breakpoint (tp);
3326 delete_exception_resume_breakpoint (tp);
3327 delete_single_step_breakpoints (tp);
3328 }
3329
3330 /* If the target still has execution, call FUNC for each thread that
3331 just stopped. In all-stop, that's all the non-exited threads; in
3332 non-stop, that's the current thread, only. */
3333
3334 typedef void (*for_each_just_stopped_thread_callback_func)
3335 (struct thread_info *tp);
3336
3337 static void
3338 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3339 {
3340 if (!target_has_execution || inferior_ptid == null_ptid)
3341 return;
3342
3343 if (target_is_non_stop_p ())
3344 {
3345 /* If in non-stop mode, only the current thread stopped. */
3346 func (inferior_thread ());
3347 }
3348 else
3349 {
3350 /* In all-stop mode, all threads have stopped. */
3351 for (thread_info *tp : all_non_exited_threads ())
3352 func (tp);
3353 }
3354 }
3355
3356 /* Delete the step resume and longjmp/exception resume breakpoints of
3357 the threads that just stopped. */
3358
3359 static void
3360 delete_just_stopped_threads_infrun_breakpoints (void)
3361 {
3362 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3363 }
3364
3365 /* Delete the single-step breakpoints of the threads that just
3366 stopped. */
3367
3368 static void
3369 delete_just_stopped_threads_single_step_breakpoints (void)
3370 {
3371 for_each_just_stopped_thread (delete_single_step_breakpoints);
3372 }
3373
3374 /* See infrun.h. */
3375
3376 void
3377 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3378 const struct target_waitstatus *ws)
3379 {
3380 std::string status_string = target_waitstatus_to_string (ws);
3381 string_file stb;
3382
3383 /* The text is split over several lines because it was getting too long.
3384 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3385 output as a unit; we want only one timestamp printed if debug_timestamp
3386 is set. */
3387
3388 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3389 waiton_ptid.pid (),
3390 waiton_ptid.lwp (),
3391 waiton_ptid.tid ());
3392 if (waiton_ptid.pid () != -1)
3393 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3394 stb.printf (", status) =\n");
3395 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3396 result_ptid.pid (),
3397 result_ptid.lwp (),
3398 result_ptid.tid (),
3399 target_pid_to_str (result_ptid).c_str ());
3400 stb.printf ("infrun: %s\n", status_string.c_str ());
3401
3402 /* This uses %s in part to handle %'s in the text, but also to avoid
3403 a gcc error: the format attribute requires a string literal. */
3404 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3405 }
3406
3407 /* Select a thread at random, out of those which are resumed and have
3408 had events. */
3409
3410 static struct thread_info *
3411 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3412 {
3413 int num_events = 0;
3414
3415 auto has_event = [&] (thread_info *tp)
3416 {
3417 return (tp->ptid.matches (waiton_ptid)
3418 && tp->resumed
3419 && tp->suspend.waitstatus_pending_p);
3420 };
3421
3422 /* First see how many events we have. Count only resumed threads
3423 that have an event pending. */
3424 for (thread_info *tp : inf->non_exited_threads ())
3425 if (has_event (tp))
3426 num_events++;
3427
3428 if (num_events == 0)
3429 return NULL;
3430
3431 /* Now randomly pick a thread out of those that have had events. */
3432 int random_selector = (int) ((num_events * (double) rand ())
3433 / (RAND_MAX + 1.0));
3434
3435 if (debug_infrun && num_events > 1)
3436 fprintf_unfiltered (gdb_stdlog,
3437 "infrun: Found %d events, selecting #%d\n",
3438 num_events, random_selector);
3439
3440 /* Select the Nth thread that has had an event. */
3441 for (thread_info *tp : inf->non_exited_threads ())
3442 if (has_event (tp))
3443 if (random_selector-- == 0)
3444 return tp;
3445
3446 gdb_assert_not_reached ("event thread not found");
3447 }
3448
3449 /* Wrapper for target_wait that first checks whether threads have
3450 pending statuses to report before actually asking the target for
3451 more events. INF is the inferior we're using to call target_wait
3452 on. */
3453
3454 static ptid_t
3455 do_target_wait_1 (inferior *inf, ptid_t ptid,
3456 target_waitstatus *status, int options)
3457 {
3458 ptid_t event_ptid;
3459 struct thread_info *tp;
3460
3461 /* First check if there is a resumed thread with a wait status
3462 pending. */
3463 if (ptid == minus_one_ptid || ptid.is_pid ())
3464 {
3465 tp = random_pending_event_thread (inf, ptid);
3466 }
3467 else
3468 {
3469 if (debug_infrun)
3470 fprintf_unfiltered (gdb_stdlog,
3471 "infrun: Waiting for specific thread %s.\n",
3472 target_pid_to_str (ptid).c_str ());
3473
3474 /* We have a specific thread to check. */
3475 tp = find_thread_ptid (inf, ptid);
3476 gdb_assert (tp != NULL);
3477 if (!tp->suspend.waitstatus_pending_p)
3478 tp = NULL;
3479 }
3480
3481 if (tp != NULL
3482 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3483 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3484 {
3485 struct regcache *regcache = get_thread_regcache (tp);
3486 struct gdbarch *gdbarch = regcache->arch ();
3487 CORE_ADDR pc;
3488 int discard = 0;
3489
3490 pc = regcache_read_pc (regcache);
3491
3492 if (pc != tp->suspend.stop_pc)
3493 {
3494 if (debug_infrun)
3495 fprintf_unfiltered (gdb_stdlog,
3496 "infrun: PC of %s changed. was=%s, now=%s\n",
3497 target_pid_to_str (tp->ptid).c_str (),
3498 paddress (gdbarch, tp->suspend.stop_pc),
3499 paddress (gdbarch, pc));
3500 discard = 1;
3501 }
3502 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3503 {
3504 if (debug_infrun)
3505 fprintf_unfiltered (gdb_stdlog,
3506 "infrun: previous breakpoint of %s, at %s gone\n",
3507 target_pid_to_str (tp->ptid).c_str (),
3508 paddress (gdbarch, pc));
3509
3510 discard = 1;
3511 }
3512
3513 if (discard)
3514 {
3515 if (debug_infrun)
3516 fprintf_unfiltered (gdb_stdlog,
3517 "infrun: pending event of %s cancelled.\n",
3518 target_pid_to_str (tp->ptid).c_str ());
3519
3520 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3521 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3522 }
3523 }
3524
3525 if (tp != NULL)
3526 {
3527 if (debug_infrun)
3528 {
3529 std::string statstr
3530 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3531
3532 fprintf_unfiltered (gdb_stdlog,
3533 "infrun: Using pending wait status %s for %s.\n",
3534 statstr.c_str (),
3535 target_pid_to_str (tp->ptid).c_str ());
3536 }
3537
3538 /* Now that we've selected our final event LWP, un-adjust its PC
3539 if it was a software breakpoint (and the target doesn't
3540 always adjust the PC itself). */
3541 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3542 && !target_supports_stopped_by_sw_breakpoint ())
3543 {
3544 struct regcache *regcache;
3545 struct gdbarch *gdbarch;
3546 int decr_pc;
3547
3548 regcache = get_thread_regcache (tp);
3549 gdbarch = regcache->arch ();
3550
3551 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3552 if (decr_pc != 0)
3553 {
3554 CORE_ADDR pc;
3555
3556 pc = regcache_read_pc (regcache);
3557 regcache_write_pc (regcache, pc + decr_pc);
3558 }
3559 }
3560
3561 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3562 *status = tp->suspend.waitstatus;
3563 tp->suspend.waitstatus_pending_p = 0;
3564
3565 /* Wake up the event loop again, until all pending events are
3566 processed. */
3567 if (target_is_async_p ())
3568 mark_async_event_handler (infrun_async_inferior_event_token);
3569 return tp->ptid;
3570 }
3571
3572 /* But if we don't find one, we'll have to wait. */
3573
3574 if (deprecated_target_wait_hook)
3575 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3576 else
3577 event_ptid = target_wait (ptid, status, options);
3578
3579 return event_ptid;
3580 }
3581
3582 /* Returns true if INF has any resumed thread with a status
3583 pending. */
3584
3585 static bool
3586 threads_are_resumed_pending_p (inferior *inf)
3587 {
3588 for (thread_info *tp : inf->non_exited_threads ())
3589 if (tp->resumed
3590 && tp->suspend.waitstatus_pending_p)
3591 return true;
3592
3593 return false;
3594 }
3595
3596 /* Wrapper for target_wait that first checks whether threads have
3597 pending statuses to report before actually asking the target for
3598 more events. Polls for events from all inferiors/targets. */
3599
3600 static bool
3601 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3602 {
3603 int num_inferiors = 0;
3604 int random_selector;
3605
3606 /* For fairness, we pick the first inferior/target to poll at
3607 random, and then continue polling the rest of the inferior list
3608 starting from that one in a circular fashion until the whole list
3609 is polled once. */
3610
3611 auto inferior_matches = [&wait_ptid] (inferior *inf)
3612 {
3613 return (inf->process_target () != NULL
3614 && (threads_are_executing (inf->process_target ())
3615 || threads_are_resumed_pending_p (inf))
3616 && ptid_t (inf->pid).matches (wait_ptid));
3617 };
3618
3619 /* First see how many resumed inferiors we have. */
3620 for (inferior *inf : all_inferiors ())
3621 if (inferior_matches (inf))
3622 num_inferiors++;
3623
3624 if (num_inferiors == 0)
3625 {
3626 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3627 return false;
3628 }
3629
3630 /* Now randomly pick an inferior out of those that were resumed. */
3631 random_selector = (int)
3632 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3633
3634 if (debug_infrun && num_inferiors > 1)
3635 fprintf_unfiltered (gdb_stdlog,
3636 "infrun: Found %d inferiors, starting at #%d\n",
3637 num_inferiors, random_selector);
3638
3639 /* Select the Nth inferior that was resumed. */
3640
3641 inferior *selected = nullptr;
3642
3643 for (inferior *inf : all_inferiors ())
3644 if (inferior_matches (inf))
3645 if (random_selector-- == 0)
3646 {
3647 selected = inf;
3648 break;
3649 }
3650
3651 /* Now poll for events out of each of the resumed inferior's
3652 targets, starting from the selected one. */
3653
3654 auto do_wait = [&] (inferior *inf)
3655 {
3656 switch_to_inferior_no_thread (inf);
3657
3658 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3659 ecs->target = inf->process_target ();
3660 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3661 };
3662
3663 /* Needed in all-stop+target-non-stop mode, because we end up here
3664 spuriously after the target is all stopped and we've already
3665 reported the stop to the user, polling for events. */
3666 scoped_restore_current_thread restore_thread;
3667
3668 int inf_num = selected->num;
3669 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3670 if (inferior_matches (inf))
3671 if (do_wait (inf))
3672 return true;
3673
3674 for (inferior *inf = inferior_list;
3675 inf != NULL && inf->num < inf_num;
3676 inf = inf->next)
3677 if (inferior_matches (inf))
3678 if (do_wait (inf))
3679 return true;
3680
3681 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3682 return false;
3683 }
3684
3685 /* Prepare and stabilize the inferior for detaching it. E.g.,
3686 detaching while a thread is displaced stepping is a recipe for
3687 crashing it, as nothing would readjust the PC out of the scratch
3688 pad. */
3689
3690 void
3691 prepare_for_detach (void)
3692 {
3693 struct inferior *inf = current_inferior ();
3694 ptid_t pid_ptid = ptid_t (inf->pid);
3695
3696 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3697
3698 /* Is any thread of this process displaced stepping? If not,
3699 there's nothing else to do. */
3700 if (displaced->step_thread == nullptr)
3701 return;
3702
3703 if (debug_infrun)
3704 fprintf_unfiltered (gdb_stdlog,
3705 "displaced-stepping in-process while detaching");
3706
3707 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3708
3709 while (displaced->step_thread != nullptr)
3710 {
3711 struct execution_control_state ecss;
3712 struct execution_control_state *ecs;
3713
3714 ecs = &ecss;
3715 memset (ecs, 0, sizeof (*ecs));
3716
3717 overlay_cache_invalid = 1;
3718 /* Flush target cache before starting to handle each event.
3719 Target was running and cache could be stale. This is just a
3720 heuristic. Running threads may modify target memory, but we
3721 don't get any event. */
3722 target_dcache_invalidate ();
3723
3724 do_target_wait (pid_ptid, ecs, 0);
3725
3726 if (debug_infrun)
3727 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3728
3729 /* If an error happens while handling the event, propagate GDB's
3730 knowledge of the executing state to the frontend/user running
3731 state. */
3732 scoped_finish_thread_state finish_state (inf->process_target (),
3733 minus_one_ptid);
3734
3735 /* Now figure out what to do with the result of the result. */
3736 handle_inferior_event (ecs);
3737
3738 /* No error, don't finish the state yet. */
3739 finish_state.release ();
3740
3741 /* Breakpoints and watchpoints are not installed on the target
3742 at this point, and signals are passed directly to the
3743 inferior, so this must mean the process is gone. */
3744 if (!ecs->wait_some_more)
3745 {
3746 restore_detaching.release ();
3747 error (_("Program exited while detaching"));
3748 }
3749 }
3750
3751 restore_detaching.release ();
3752 }
3753
3754 /* Wait for control to return from inferior to debugger.
3755
3756 If inferior gets a signal, we may decide to start it up again
3757 instead of returning. That is why there is a loop in this function.
3758 When this function actually returns it means the inferior
3759 should be left stopped and GDB should read more commands. */
3760
3761 static void
3762 wait_for_inferior (inferior *inf)
3763 {
3764 if (debug_infrun)
3765 fprintf_unfiltered
3766 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3767
3768 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3769
3770 /* If an error happens while handling the event, propagate GDB's
3771 knowledge of the executing state to the frontend/user running
3772 state. */
3773 scoped_finish_thread_state finish_state
3774 (inf->process_target (), minus_one_ptid);
3775
3776 while (1)
3777 {
3778 struct execution_control_state ecss;
3779 struct execution_control_state *ecs = &ecss;
3780
3781 memset (ecs, 0, sizeof (*ecs));
3782
3783 overlay_cache_invalid = 1;
3784
3785 /* Flush target cache before starting to handle each event.
3786 Target was running and cache could be stale. This is just a
3787 heuristic. Running threads may modify target memory, but we
3788 don't get any event. */
3789 target_dcache_invalidate ();
3790
3791 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3792 ecs->target = inf->process_target ();
3793
3794 if (debug_infrun)
3795 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3796
3797 /* Now figure out what to do with the result of the result. */
3798 handle_inferior_event (ecs);
3799
3800 if (!ecs->wait_some_more)
3801 break;
3802 }
3803
3804 /* No error, don't finish the state yet. */
3805 finish_state.release ();
3806 }
3807
3808 /* Cleanup that reinstalls the readline callback handler, if the
3809 target is running in the background. If while handling the target
3810 event something triggered a secondary prompt, like e.g., a
3811 pagination prompt, we'll have removed the callback handler (see
3812 gdb_readline_wrapper_line). Need to do this as we go back to the
3813 event loop, ready to process further input. Note this has no
3814 effect if the handler hasn't actually been removed, because calling
3815 rl_callback_handler_install resets the line buffer, thus losing
3816 input. */
3817
3818 static void
3819 reinstall_readline_callback_handler_cleanup ()
3820 {
3821 struct ui *ui = current_ui;
3822
3823 if (!ui->async)
3824 {
3825 /* We're not going back to the top level event loop yet. Don't
3826 install the readline callback, as it'd prep the terminal,
3827 readline-style (raw, noecho) (e.g., --batch). We'll install
3828 it the next time the prompt is displayed, when we're ready
3829 for input. */
3830 return;
3831 }
3832
3833 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3834 gdb_rl_callback_handler_reinstall ();
3835 }
3836
3837 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3838 that's just the event thread. In all-stop, that's all threads. */
3839
3840 static void
3841 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3842 {
3843 if (ecs->event_thread != NULL
3844 && ecs->event_thread->thread_fsm != NULL)
3845 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3846
3847 if (!non_stop)
3848 {
3849 for (thread_info *thr : all_non_exited_threads ())
3850 {
3851 if (thr->thread_fsm == NULL)
3852 continue;
3853 if (thr == ecs->event_thread)
3854 continue;
3855
3856 switch_to_thread (thr);
3857 thr->thread_fsm->clean_up (thr);
3858 }
3859
3860 if (ecs->event_thread != NULL)
3861 switch_to_thread (ecs->event_thread);
3862 }
3863 }
3864
3865 /* Helper for all_uis_check_sync_execution_done that works on the
3866 current UI. */
3867
3868 static void
3869 check_curr_ui_sync_execution_done (void)
3870 {
3871 struct ui *ui = current_ui;
3872
3873 if (ui->prompt_state == PROMPT_NEEDED
3874 && ui->async
3875 && !gdb_in_secondary_prompt_p (ui))
3876 {
3877 target_terminal::ours ();
3878 gdb::observers::sync_execution_done.notify ();
3879 ui_register_input_event_handler (ui);
3880 }
3881 }
3882
3883 /* See infrun.h. */
3884
3885 void
3886 all_uis_check_sync_execution_done (void)
3887 {
3888 SWITCH_THRU_ALL_UIS ()
3889 {
3890 check_curr_ui_sync_execution_done ();
3891 }
3892 }
3893
3894 /* See infrun.h. */
3895
3896 void
3897 all_uis_on_sync_execution_starting (void)
3898 {
3899 SWITCH_THRU_ALL_UIS ()
3900 {
3901 if (current_ui->prompt_state == PROMPT_NEEDED)
3902 async_disable_stdin ();
3903 }
3904 }
3905
3906 /* Asynchronous version of wait_for_inferior. It is called by the
3907 event loop whenever a change of state is detected on the file
3908 descriptor corresponding to the target. It can be called more than
3909 once to complete a single execution command. In such cases we need
3910 to keep the state in a global variable ECSS. If it is the last time
3911 that this function is called for a single execution command, then
3912 report to the user that the inferior has stopped, and do the
3913 necessary cleanups. */
3914
3915 void
3916 fetch_inferior_event (void *client_data)
3917 {
3918 struct execution_control_state ecss;
3919 struct execution_control_state *ecs = &ecss;
3920 int cmd_done = 0;
3921
3922 memset (ecs, 0, sizeof (*ecs));
3923
3924 /* Events are always processed with the main UI as current UI. This
3925 way, warnings, debug output, etc. are always consistently sent to
3926 the main console. */
3927 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3928
3929 /* End up with readline processing input, if necessary. */
3930 {
3931 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3932
3933 /* We're handling a live event, so make sure we're doing live
3934 debugging. If we're looking at traceframes while the target is
3935 running, we're going to need to get back to that mode after
3936 handling the event. */
3937 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3938 if (non_stop)
3939 {
3940 maybe_restore_traceframe.emplace ();
3941 set_current_traceframe (-1);
3942 }
3943
3944 /* The user/frontend should not notice a thread switch due to
3945 internal events. Make sure we revert to the user selected
3946 thread and frame after handling the event and running any
3947 breakpoint commands. */
3948 scoped_restore_current_thread restore_thread;
3949
3950 overlay_cache_invalid = 1;
3951 /* Flush target cache before starting to handle each event. Target
3952 was running and cache could be stale. This is just a heuristic.
3953 Running threads may modify target memory, but we don't get any
3954 event. */
3955 target_dcache_invalidate ();
3956
3957 scoped_restore save_exec_dir
3958 = make_scoped_restore (&execution_direction,
3959 target_execution_direction ());
3960
3961 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3962 return;
3963
3964 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3965
3966 /* Switch to the target that generated the event, so we can do
3967 target calls. Any inferior bound to the target will do, so we
3968 just switch to the first we find. */
3969 for (inferior *inf : all_inferiors (ecs->target))
3970 {
3971 switch_to_inferior_no_thread (inf);
3972 break;
3973 }
3974
3975 if (debug_infrun)
3976 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3977
3978 /* If an error happens while handling the event, propagate GDB's
3979 knowledge of the executing state to the frontend/user running
3980 state. */
3981 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3982 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3983
3984 /* Get executed before scoped_restore_current_thread above to apply
3985 still for the thread which has thrown the exception. */
3986 auto defer_bpstat_clear
3987 = make_scope_exit (bpstat_clear_actions);
3988 auto defer_delete_threads
3989 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3990
3991 /* Now figure out what to do with the result of the result. */
3992 handle_inferior_event (ecs);
3993
3994 if (!ecs->wait_some_more)
3995 {
3996 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3997 int should_stop = 1;
3998 struct thread_info *thr = ecs->event_thread;
3999
4000 delete_just_stopped_threads_infrun_breakpoints ();
4001
4002 if (thr != NULL)
4003 {
4004 struct thread_fsm *thread_fsm = thr->thread_fsm;
4005
4006 if (thread_fsm != NULL)
4007 should_stop = thread_fsm->should_stop (thr);
4008 }
4009
4010 if (!should_stop)
4011 {
4012 keep_going (ecs);
4013 }
4014 else
4015 {
4016 bool should_notify_stop = true;
4017 int proceeded = 0;
4018
4019 clean_up_just_stopped_threads_fsms (ecs);
4020
4021 if (thr != NULL && thr->thread_fsm != NULL)
4022 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4023
4024 if (should_notify_stop)
4025 {
4026 /* We may not find an inferior if this was a process exit. */
4027 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4028 proceeded = normal_stop ();
4029 }
4030
4031 if (!proceeded)
4032 {
4033 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4034 cmd_done = 1;
4035 }
4036
4037 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4038 previously selected thread is gone. We have two
4039 choices - switch to no thread selected, or restore the
4040 previously selected thread (now exited). We chose the
4041 later, just because that's what GDB used to do. After
4042 this, "info threads" says "The current thread <Thread
4043 ID 2> has terminated." instead of "No thread
4044 selected.". */
4045 if (!non_stop
4046 && cmd_done
4047 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4048 restore_thread.dont_restore ();
4049 }
4050 }
4051
4052 defer_delete_threads.release ();
4053 defer_bpstat_clear.release ();
4054
4055 /* No error, don't finish the thread states yet. */
4056 finish_state.release ();
4057
4058 /* This scope is used to ensure that readline callbacks are
4059 reinstalled here. */
4060 }
4061
4062 /* If a UI was in sync execution mode, and now isn't, restore its
4063 prompt (a synchronous execution command has finished, and we're
4064 ready for input). */
4065 all_uis_check_sync_execution_done ();
4066
4067 if (cmd_done
4068 && exec_done_display_p
4069 && (inferior_ptid == null_ptid
4070 || inferior_thread ()->state != THREAD_RUNNING))
4071 printf_unfiltered (_("completed.\n"));
4072 }
4073
4074 /* Record the frame and location we're currently stepping through. */
4075 void
4076 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4077 {
4078 struct thread_info *tp = inferior_thread ();
4079
4080 tp->control.step_frame_id = get_frame_id (frame);
4081 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4082
4083 tp->current_symtab = sal.symtab;
4084 tp->current_line = sal.line;
4085 }
4086
4087 /* Clear context switchable stepping state. */
4088
4089 void
4090 init_thread_stepping_state (struct thread_info *tss)
4091 {
4092 tss->stepped_breakpoint = 0;
4093 tss->stepping_over_breakpoint = 0;
4094 tss->stepping_over_watchpoint = 0;
4095 tss->step_after_step_resume_breakpoint = 0;
4096 }
4097
4098 /* See infrun.h. */
4099
4100 void
4101 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4102 target_waitstatus status)
4103 {
4104 target_last_proc_target = target;
4105 target_last_wait_ptid = ptid;
4106 target_last_waitstatus = status;
4107 }
4108
4109 /* See infrun.h. */
4110
4111 void
4112 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4113 target_waitstatus *status)
4114 {
4115 if (target != nullptr)
4116 *target = target_last_proc_target;
4117 if (ptid != nullptr)
4118 *ptid = target_last_wait_ptid;
4119 if (status != nullptr)
4120 *status = target_last_waitstatus;
4121 }
4122
4123 /* See infrun.h. */
4124
4125 void
4126 nullify_last_target_wait_ptid (void)
4127 {
4128 target_last_proc_target = nullptr;
4129 target_last_wait_ptid = minus_one_ptid;
4130 target_last_waitstatus = {};
4131 }
4132
4133 /* Switch thread contexts. */
4134
4135 static void
4136 context_switch (execution_control_state *ecs)
4137 {
4138 if (debug_infrun
4139 && ecs->ptid != inferior_ptid
4140 && (inferior_ptid == null_ptid
4141 || ecs->event_thread != inferior_thread ()))
4142 {
4143 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4144 target_pid_to_str (inferior_ptid).c_str ());
4145 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4146 target_pid_to_str (ecs->ptid).c_str ());
4147 }
4148
4149 switch_to_thread (ecs->event_thread);
4150 }
4151
4152 /* If the target can't tell whether we've hit breakpoints
4153 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4154 check whether that could have been caused by a breakpoint. If so,
4155 adjust the PC, per gdbarch_decr_pc_after_break. */
4156
4157 static void
4158 adjust_pc_after_break (struct thread_info *thread,
4159 struct target_waitstatus *ws)
4160 {
4161 struct regcache *regcache;
4162 struct gdbarch *gdbarch;
4163 CORE_ADDR breakpoint_pc, decr_pc;
4164
4165 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4166 we aren't, just return.
4167
4168 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4169 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4170 implemented by software breakpoints should be handled through the normal
4171 breakpoint layer.
4172
4173 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4174 different signals (SIGILL or SIGEMT for instance), but it is less
4175 clear where the PC is pointing afterwards. It may not match
4176 gdbarch_decr_pc_after_break. I don't know any specific target that
4177 generates these signals at breakpoints (the code has been in GDB since at
4178 least 1992) so I can not guess how to handle them here.
4179
4180 In earlier versions of GDB, a target with
4181 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4182 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4183 target with both of these set in GDB history, and it seems unlikely to be
4184 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4185
4186 if (ws->kind != TARGET_WAITKIND_STOPPED)
4187 return;
4188
4189 if (ws->value.sig != GDB_SIGNAL_TRAP)
4190 return;
4191
4192 /* In reverse execution, when a breakpoint is hit, the instruction
4193 under it has already been de-executed. The reported PC always
4194 points at the breakpoint address, so adjusting it further would
4195 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4196 architecture:
4197
4198 B1 0x08000000 : INSN1
4199 B2 0x08000001 : INSN2
4200 0x08000002 : INSN3
4201 PC -> 0x08000003 : INSN4
4202
4203 Say you're stopped at 0x08000003 as above. Reverse continuing
4204 from that point should hit B2 as below. Reading the PC when the
4205 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4206 been de-executed already.
4207
4208 B1 0x08000000 : INSN1
4209 B2 PC -> 0x08000001 : INSN2
4210 0x08000002 : INSN3
4211 0x08000003 : INSN4
4212
4213 We can't apply the same logic as for forward execution, because
4214 we would wrongly adjust the PC to 0x08000000, since there's a
4215 breakpoint at PC - 1. We'd then report a hit on B1, although
4216 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4217 behaviour. */
4218 if (execution_direction == EXEC_REVERSE)
4219 return;
4220
4221 /* If the target can tell whether the thread hit a SW breakpoint,
4222 trust it. Targets that can tell also adjust the PC
4223 themselves. */
4224 if (target_supports_stopped_by_sw_breakpoint ())
4225 return;
4226
4227 /* Note that relying on whether a breakpoint is planted in memory to
4228 determine this can fail. E.g,. the breakpoint could have been
4229 removed since. Or the thread could have been told to step an
4230 instruction the size of a breakpoint instruction, and only
4231 _after_ was a breakpoint inserted at its address. */
4232
4233 /* If this target does not decrement the PC after breakpoints, then
4234 we have nothing to do. */
4235 regcache = get_thread_regcache (thread);
4236 gdbarch = regcache->arch ();
4237
4238 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4239 if (decr_pc == 0)
4240 return;
4241
4242 const address_space *aspace = regcache->aspace ();
4243
4244 /* Find the location where (if we've hit a breakpoint) the
4245 breakpoint would be. */
4246 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4247
4248 /* If the target can't tell whether a software breakpoint triggered,
4249 fallback to figuring it out based on breakpoints we think were
4250 inserted in the target, and on whether the thread was stepped or
4251 continued. */
4252
4253 /* Check whether there actually is a software breakpoint inserted at
4254 that location.
4255
4256 If in non-stop mode, a race condition is possible where we've
4257 removed a breakpoint, but stop events for that breakpoint were
4258 already queued and arrive later. To suppress those spurious
4259 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4260 and retire them after a number of stop events are reported. Note
4261 this is an heuristic and can thus get confused. The real fix is
4262 to get the "stopped by SW BP and needs adjustment" info out of
4263 the target/kernel (and thus never reach here; see above). */
4264 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4265 || (target_is_non_stop_p ()
4266 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4267 {
4268 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4269
4270 if (record_full_is_used ())
4271 restore_operation_disable.emplace
4272 (record_full_gdb_operation_disable_set ());
4273
4274 /* When using hardware single-step, a SIGTRAP is reported for both
4275 a completed single-step and a software breakpoint. Need to
4276 differentiate between the two, as the latter needs adjusting
4277 but the former does not.
4278
4279 The SIGTRAP can be due to a completed hardware single-step only if
4280 - we didn't insert software single-step breakpoints
4281 - this thread is currently being stepped
4282
4283 If any of these events did not occur, we must have stopped due
4284 to hitting a software breakpoint, and have to back up to the
4285 breakpoint address.
4286
4287 As a special case, we could have hardware single-stepped a
4288 software breakpoint. In this case (prev_pc == breakpoint_pc),
4289 we also need to back up to the breakpoint address. */
4290
4291 if (thread_has_single_step_breakpoints_set (thread)
4292 || !currently_stepping (thread)
4293 || (thread->stepped_breakpoint
4294 && thread->prev_pc == breakpoint_pc))
4295 regcache_write_pc (regcache, breakpoint_pc);
4296 }
4297 }
4298
4299 static int
4300 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4301 {
4302 for (frame = get_prev_frame (frame);
4303 frame != NULL;
4304 frame = get_prev_frame (frame))
4305 {
4306 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4307 return 1;
4308 if (get_frame_type (frame) != INLINE_FRAME)
4309 break;
4310 }
4311
4312 return 0;
4313 }
4314
4315 /* Look for an inline frame that is marked for skip.
4316 If PREV_FRAME is TRUE start at the previous frame,
4317 otherwise start at the current frame. Stop at the
4318 first non-inline frame, or at the frame where the
4319 step started. */
4320
4321 static bool
4322 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4323 {
4324 struct frame_info *frame = get_current_frame ();
4325
4326 if (prev_frame)
4327 frame = get_prev_frame (frame);
4328
4329 for (; frame != NULL; frame = get_prev_frame (frame))
4330 {
4331 const char *fn = NULL;
4332 symtab_and_line sal;
4333 struct symbol *sym;
4334
4335 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4336 break;
4337 if (get_frame_type (frame) != INLINE_FRAME)
4338 break;
4339
4340 sal = find_frame_sal (frame);
4341 sym = get_frame_function (frame);
4342
4343 if (sym != NULL)
4344 fn = sym->print_name ();
4345
4346 if (sal.line != 0
4347 && function_name_is_marked_for_skip (fn, sal))
4348 return true;
4349 }
4350
4351 return false;
4352 }
4353
4354 /* If the event thread has the stop requested flag set, pretend it
4355 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4356 target_stop). */
4357
4358 static bool
4359 handle_stop_requested (struct execution_control_state *ecs)
4360 {
4361 if (ecs->event_thread->stop_requested)
4362 {
4363 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4364 ecs->ws.value.sig = GDB_SIGNAL_0;
4365 handle_signal_stop (ecs);
4366 return true;
4367 }
4368 return false;
4369 }
4370
4371 /* Auxiliary function that handles syscall entry/return events.
4372 It returns 1 if the inferior should keep going (and GDB
4373 should ignore the event), or 0 if the event deserves to be
4374 processed. */
4375
4376 static int
4377 handle_syscall_event (struct execution_control_state *ecs)
4378 {
4379 struct regcache *regcache;
4380 int syscall_number;
4381
4382 context_switch (ecs);
4383
4384 regcache = get_thread_regcache (ecs->event_thread);
4385 syscall_number = ecs->ws.value.syscall_number;
4386 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4387
4388 if (catch_syscall_enabled () > 0
4389 && catching_syscall_number (syscall_number) > 0)
4390 {
4391 if (debug_infrun)
4392 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4393 syscall_number);
4394
4395 ecs->event_thread->control.stop_bpstat
4396 = bpstat_stop_status (regcache->aspace (),
4397 ecs->event_thread->suspend.stop_pc,
4398 ecs->event_thread, &ecs->ws);
4399
4400 if (handle_stop_requested (ecs))
4401 return 0;
4402
4403 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4404 {
4405 /* Catchpoint hit. */
4406 return 0;
4407 }
4408 }
4409
4410 if (handle_stop_requested (ecs))
4411 return 0;
4412
4413 /* If no catchpoint triggered for this, then keep going. */
4414 keep_going (ecs);
4415 return 1;
4416 }
4417
4418 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4419
4420 static void
4421 fill_in_stop_func (struct gdbarch *gdbarch,
4422 struct execution_control_state *ecs)
4423 {
4424 if (!ecs->stop_func_filled_in)
4425 {
4426 const block *block;
4427
4428 /* Don't care about return value; stop_func_start and stop_func_name
4429 will both be 0 if it doesn't work. */
4430 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4431 &ecs->stop_func_name,
4432 &ecs->stop_func_start,
4433 &ecs->stop_func_end,
4434 &block);
4435
4436 /* The call to find_pc_partial_function, above, will set
4437 stop_func_start and stop_func_end to the start and end
4438 of the range containing the stop pc. If this range
4439 contains the entry pc for the block (which is always the
4440 case for contiguous blocks), advance stop_func_start past
4441 the function's start offset and entrypoint. Note that
4442 stop_func_start is NOT advanced when in a range of a
4443 non-contiguous block that does not contain the entry pc. */
4444 if (block != nullptr
4445 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4446 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4447 {
4448 ecs->stop_func_start
4449 += gdbarch_deprecated_function_start_offset (gdbarch);
4450
4451 if (gdbarch_skip_entrypoint_p (gdbarch))
4452 ecs->stop_func_start
4453 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4454 }
4455
4456 ecs->stop_func_filled_in = 1;
4457 }
4458 }
4459
4460
4461 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4462
4463 static enum stop_kind
4464 get_inferior_stop_soon (execution_control_state *ecs)
4465 {
4466 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4467
4468 gdb_assert (inf != NULL);
4469 return inf->control.stop_soon;
4470 }
4471
4472 /* Poll for one event out of the current target. Store the resulting
4473 waitstatus in WS, and return the event ptid. Does not block. */
4474
4475 static ptid_t
4476 poll_one_curr_target (struct target_waitstatus *ws)
4477 {
4478 ptid_t event_ptid;
4479
4480 overlay_cache_invalid = 1;
4481
4482 /* Flush target cache before starting to handle each event.
4483 Target was running and cache could be stale. This is just a
4484 heuristic. Running threads may modify target memory, but we
4485 don't get any event. */
4486 target_dcache_invalidate ();
4487
4488 if (deprecated_target_wait_hook)
4489 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4490 else
4491 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4492
4493 if (debug_infrun)
4494 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4495
4496 return event_ptid;
4497 }
4498
4499 /* An event reported by wait_one. */
4500
4501 struct wait_one_event
4502 {
4503 /* The target the event came out of. */
4504 process_stratum_target *target;
4505
4506 /* The PTID the event was for. */
4507 ptid_t ptid;
4508
4509 /* The waitstatus. */
4510 target_waitstatus ws;
4511 };
4512
4513 /* Wait for one event out of any target. */
4514
4515 static wait_one_event
4516 wait_one ()
4517 {
4518 while (1)
4519 {
4520 for (inferior *inf : all_inferiors ())
4521 {
4522 process_stratum_target *target = inf->process_target ();
4523 if (target == NULL
4524 || !target->is_async_p ()
4525 || !target->threads_executing)
4526 continue;
4527
4528 switch_to_inferior_no_thread (inf);
4529
4530 wait_one_event event;
4531 event.target = target;
4532 event.ptid = poll_one_curr_target (&event.ws);
4533
4534 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4535 {
4536 /* If nothing is resumed, remove the target from the
4537 event loop. */
4538 target_async (0);
4539 }
4540 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4541 return event;
4542 }
4543
4544 /* Block waiting for some event. */
4545
4546 fd_set readfds;
4547 int nfds = 0;
4548
4549 FD_ZERO (&readfds);
4550
4551 for (inferior *inf : all_inferiors ())
4552 {
4553 process_stratum_target *target = inf->process_target ();
4554 if (target == NULL
4555 || !target->is_async_p ()
4556 || !target->threads_executing)
4557 continue;
4558
4559 int fd = target->async_wait_fd ();
4560 FD_SET (fd, &readfds);
4561 if (nfds <= fd)
4562 nfds = fd + 1;
4563 }
4564
4565 if (nfds == 0)
4566 {
4567 /* No waitable targets left. All must be stopped. */
4568 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4569 }
4570
4571 QUIT;
4572
4573 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4574 if (numfds < 0)
4575 {
4576 if (errno == EINTR)
4577 continue;
4578 else
4579 perror_with_name ("interruptible_select");
4580 }
4581 }
4582 }
4583
4584 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4585 instead of the current thread. */
4586 #define THREAD_STOPPED_BY(REASON) \
4587 static int \
4588 thread_stopped_by_ ## REASON (ptid_t ptid) \
4589 { \
4590 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4591 inferior_ptid = ptid; \
4592 \
4593 return target_stopped_by_ ## REASON (); \
4594 }
4595
4596 /* Generate thread_stopped_by_watchpoint. */
4597 THREAD_STOPPED_BY (watchpoint)
4598 /* Generate thread_stopped_by_sw_breakpoint. */
4599 THREAD_STOPPED_BY (sw_breakpoint)
4600 /* Generate thread_stopped_by_hw_breakpoint. */
4601 THREAD_STOPPED_BY (hw_breakpoint)
4602
4603 /* Save the thread's event and stop reason to process it later. */
4604
4605 static void
4606 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4607 {
4608 if (debug_infrun)
4609 {
4610 std::string statstr = target_waitstatus_to_string (ws);
4611
4612 fprintf_unfiltered (gdb_stdlog,
4613 "infrun: saving status %s for %d.%ld.%ld\n",
4614 statstr.c_str (),
4615 tp->ptid.pid (),
4616 tp->ptid.lwp (),
4617 tp->ptid.tid ());
4618 }
4619
4620 /* Record for later. */
4621 tp->suspend.waitstatus = *ws;
4622 tp->suspend.waitstatus_pending_p = 1;
4623
4624 struct regcache *regcache = get_thread_regcache (tp);
4625 const address_space *aspace = regcache->aspace ();
4626
4627 if (ws->kind == TARGET_WAITKIND_STOPPED
4628 && ws->value.sig == GDB_SIGNAL_TRAP)
4629 {
4630 CORE_ADDR pc = regcache_read_pc (regcache);
4631
4632 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4633
4634 if (thread_stopped_by_watchpoint (tp->ptid))
4635 {
4636 tp->suspend.stop_reason
4637 = TARGET_STOPPED_BY_WATCHPOINT;
4638 }
4639 else if (target_supports_stopped_by_sw_breakpoint ()
4640 && thread_stopped_by_sw_breakpoint (tp->ptid))
4641 {
4642 tp->suspend.stop_reason
4643 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4644 }
4645 else if (target_supports_stopped_by_hw_breakpoint ()
4646 && thread_stopped_by_hw_breakpoint (tp->ptid))
4647 {
4648 tp->suspend.stop_reason
4649 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4650 }
4651 else if (!target_supports_stopped_by_hw_breakpoint ()
4652 && hardware_breakpoint_inserted_here_p (aspace,
4653 pc))
4654 {
4655 tp->suspend.stop_reason
4656 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4657 }
4658 else if (!target_supports_stopped_by_sw_breakpoint ()
4659 && software_breakpoint_inserted_here_p (aspace,
4660 pc))
4661 {
4662 tp->suspend.stop_reason
4663 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4664 }
4665 else if (!thread_has_single_step_breakpoints_set (tp)
4666 && currently_stepping (tp))
4667 {
4668 tp->suspend.stop_reason
4669 = TARGET_STOPPED_BY_SINGLE_STEP;
4670 }
4671 }
4672 }
4673
4674 /* See infrun.h. */
4675
4676 void
4677 stop_all_threads (void)
4678 {
4679 /* We may need multiple passes to discover all threads. */
4680 int pass;
4681 int iterations = 0;
4682
4683 gdb_assert (target_is_non_stop_p ());
4684
4685 if (debug_infrun)
4686 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4687
4688 scoped_restore_current_thread restore_thread;
4689
4690 target_thread_events (1);
4691 SCOPE_EXIT { target_thread_events (0); };
4692
4693 /* Request threads to stop, and then wait for the stops. Because
4694 threads we already know about can spawn more threads while we're
4695 trying to stop them, and we only learn about new threads when we
4696 update the thread list, do this in a loop, and keep iterating
4697 until two passes find no threads that need to be stopped. */
4698 for (pass = 0; pass < 2; pass++, iterations++)
4699 {
4700 if (debug_infrun)
4701 fprintf_unfiltered (gdb_stdlog,
4702 "infrun: stop_all_threads, pass=%d, "
4703 "iterations=%d\n", pass, iterations);
4704 while (1)
4705 {
4706 int need_wait = 0;
4707
4708 update_thread_list ();
4709
4710 /* Go through all threads looking for threads that we need
4711 to tell the target to stop. */
4712 for (thread_info *t : all_non_exited_threads ())
4713 {
4714 if (t->executing)
4715 {
4716 /* If already stopping, don't request a stop again.
4717 We just haven't seen the notification yet. */
4718 if (!t->stop_requested)
4719 {
4720 if (debug_infrun)
4721 fprintf_unfiltered (gdb_stdlog,
4722 "infrun: %s executing, "
4723 "need stop\n",
4724 target_pid_to_str (t->ptid).c_str ());
4725 switch_to_thread_no_regs (t);
4726 target_stop (t->ptid);
4727 t->stop_requested = 1;
4728 }
4729 else
4730 {
4731 if (debug_infrun)
4732 fprintf_unfiltered (gdb_stdlog,
4733 "infrun: %s executing, "
4734 "already stopping\n",
4735 target_pid_to_str (t->ptid).c_str ());
4736 }
4737
4738 if (t->stop_requested)
4739 need_wait = 1;
4740 }
4741 else
4742 {
4743 if (debug_infrun)
4744 fprintf_unfiltered (gdb_stdlog,
4745 "infrun: %s not executing\n",
4746 target_pid_to_str (t->ptid).c_str ());
4747
4748 /* The thread may be not executing, but still be
4749 resumed with a pending status to process. */
4750 t->resumed = false;
4751 }
4752 }
4753
4754 if (!need_wait)
4755 break;
4756
4757 /* If we find new threads on the second iteration, restart
4758 over. We want to see two iterations in a row with all
4759 threads stopped. */
4760 if (pass > 0)
4761 pass = -1;
4762
4763 wait_one_event event = wait_one ();
4764
4765 if (debug_infrun)
4766 {
4767 fprintf_unfiltered (gdb_stdlog,
4768 "infrun: stop_all_threads %s %s\n",
4769 target_waitstatus_to_string (&event.ws).c_str (),
4770 target_pid_to_str (event.ptid).c_str ());
4771 }
4772
4773 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4774 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4775 || event.ws.kind == TARGET_WAITKIND_EXITED
4776 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4777 {
4778 /* All resumed threads exited
4779 or one thread/process exited/signalled. */
4780 }
4781 else
4782 {
4783 thread_info *t = find_thread_ptid (event.target, event.ptid);
4784 if (t == NULL)
4785 t = add_thread (event.target, event.ptid);
4786
4787 t->stop_requested = 0;
4788 t->executing = 0;
4789 t->resumed = false;
4790 t->control.may_range_step = 0;
4791
4792 /* This may be the first time we see the inferior report
4793 a stop. */
4794 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4795 if (inf->needs_setup)
4796 {
4797 switch_to_thread_no_regs (t);
4798 setup_inferior (0);
4799 }
4800
4801 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4802 && event.ws.value.sig == GDB_SIGNAL_0)
4803 {
4804 /* We caught the event that we intended to catch, so
4805 there's no event pending. */
4806 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4807 t->suspend.waitstatus_pending_p = 0;
4808
4809 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4810 {
4811 /* Add it back to the step-over queue. */
4812 if (debug_infrun)
4813 {
4814 fprintf_unfiltered (gdb_stdlog,
4815 "infrun: displaced-step of %s "
4816 "canceled: adding back to the "
4817 "step-over queue\n",
4818 target_pid_to_str (t->ptid).c_str ());
4819 }
4820 t->control.trap_expected = 0;
4821 thread_step_over_chain_enqueue (t);
4822 }
4823 }
4824 else
4825 {
4826 enum gdb_signal sig;
4827 struct regcache *regcache;
4828
4829 if (debug_infrun)
4830 {
4831 std::string statstr = target_waitstatus_to_string (&event.ws);
4832
4833 fprintf_unfiltered (gdb_stdlog,
4834 "infrun: target_wait %s, saving "
4835 "status for %d.%ld.%ld\n",
4836 statstr.c_str (),
4837 t->ptid.pid (),
4838 t->ptid.lwp (),
4839 t->ptid.tid ());
4840 }
4841
4842 /* Record for later. */
4843 save_waitstatus (t, &event.ws);
4844
4845 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4846 ? event.ws.value.sig : GDB_SIGNAL_0);
4847
4848 if (displaced_step_fixup (t, sig) < 0)
4849 {
4850 /* Add it back to the step-over queue. */
4851 t->control.trap_expected = 0;
4852 thread_step_over_chain_enqueue (t);
4853 }
4854
4855 regcache = get_thread_regcache (t);
4856 t->suspend.stop_pc = regcache_read_pc (regcache);
4857
4858 if (debug_infrun)
4859 {
4860 fprintf_unfiltered (gdb_stdlog,
4861 "infrun: saved stop_pc=%s for %s "
4862 "(currently_stepping=%d)\n",
4863 paddress (target_gdbarch (),
4864 t->suspend.stop_pc),
4865 target_pid_to_str (t->ptid).c_str (),
4866 currently_stepping (t));
4867 }
4868 }
4869 }
4870 }
4871 }
4872
4873 if (debug_infrun)
4874 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4875 }
4876
4877 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4878
4879 static int
4880 handle_no_resumed (struct execution_control_state *ecs)
4881 {
4882 if (target_can_async_p ())
4883 {
4884 struct ui *ui;
4885 int any_sync = 0;
4886
4887 ALL_UIS (ui)
4888 {
4889 if (ui->prompt_state == PROMPT_BLOCKED)
4890 {
4891 any_sync = 1;
4892 break;
4893 }
4894 }
4895 if (!any_sync)
4896 {
4897 /* There were no unwaited-for children left in the target, but,
4898 we're not synchronously waiting for events either. Just
4899 ignore. */
4900
4901 if (debug_infrun)
4902 fprintf_unfiltered (gdb_stdlog,
4903 "infrun: TARGET_WAITKIND_NO_RESUMED "
4904 "(ignoring: bg)\n");
4905 prepare_to_wait (ecs);
4906 return 1;
4907 }
4908 }
4909
4910 /* Otherwise, if we were running a synchronous execution command, we
4911 may need to cancel it and give the user back the terminal.
4912
4913 In non-stop mode, the target can't tell whether we've already
4914 consumed previous stop events, so it can end up sending us a
4915 no-resumed event like so:
4916
4917 #0 - thread 1 is left stopped
4918
4919 #1 - thread 2 is resumed and hits breakpoint
4920 -> TARGET_WAITKIND_STOPPED
4921
4922 #2 - thread 3 is resumed and exits
4923 this is the last resumed thread, so
4924 -> TARGET_WAITKIND_NO_RESUMED
4925
4926 #3 - gdb processes stop for thread 2 and decides to re-resume
4927 it.
4928
4929 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4930 thread 2 is now resumed, so the event should be ignored.
4931
4932 IOW, if the stop for thread 2 doesn't end a foreground command,
4933 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4934 event. But it could be that the event meant that thread 2 itself
4935 (or whatever other thread was the last resumed thread) exited.
4936
4937 To address this we refresh the thread list and check whether we
4938 have resumed threads _now_. In the example above, this removes
4939 thread 3 from the thread list. If thread 2 was re-resumed, we
4940 ignore this event. If we find no thread resumed, then we cancel
4941 the synchronous command show "no unwaited-for " to the user. */
4942 update_thread_list ();
4943
4944 for (thread_info *thread : all_non_exited_threads (ecs->target))
4945 {
4946 if (thread->executing
4947 || thread->suspend.waitstatus_pending_p)
4948 {
4949 /* There were no unwaited-for children left in the target at
4950 some point, but there are now. Just ignore. */
4951 if (debug_infrun)
4952 fprintf_unfiltered (gdb_stdlog,
4953 "infrun: TARGET_WAITKIND_NO_RESUMED "
4954 "(ignoring: found resumed)\n");
4955 prepare_to_wait (ecs);
4956 return 1;
4957 }
4958 }
4959
4960 /* Note however that we may find no resumed thread because the whole
4961 process exited meanwhile (thus updating the thread list results
4962 in an empty thread list). In this case we know we'll be getting
4963 a process exit event shortly. */
4964 for (inferior *inf : all_non_exited_inferiors (ecs->target))
4965 {
4966 thread_info *thread = any_live_thread_of_inferior (inf);
4967 if (thread == NULL)
4968 {
4969 if (debug_infrun)
4970 fprintf_unfiltered (gdb_stdlog,
4971 "infrun: TARGET_WAITKIND_NO_RESUMED "
4972 "(expect process exit)\n");
4973 prepare_to_wait (ecs);
4974 return 1;
4975 }
4976 }
4977
4978 /* Go ahead and report the event. */
4979 return 0;
4980 }
4981
4982 /* Given an execution control state that has been freshly filled in by
4983 an event from the inferior, figure out what it means and take
4984 appropriate action.
4985
4986 The alternatives are:
4987
4988 1) stop_waiting and return; to really stop and return to the
4989 debugger.
4990
4991 2) keep_going and return; to wait for the next event (set
4992 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4993 once). */
4994
4995 static void
4996 handle_inferior_event (struct execution_control_state *ecs)
4997 {
4998 /* Make sure that all temporary struct value objects that were
4999 created during the handling of the event get deleted at the
5000 end. */
5001 scoped_value_mark free_values;
5002
5003 enum stop_kind stop_soon;
5004
5005 if (debug_infrun)
5006 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5007 target_waitstatus_to_string (&ecs->ws).c_str ());
5008
5009 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5010 {
5011 /* We had an event in the inferior, but we are not interested in
5012 handling it at this level. The lower layers have already
5013 done what needs to be done, if anything.
5014
5015 One of the possible circumstances for this is when the
5016 inferior produces output for the console. The inferior has
5017 not stopped, and we are ignoring the event. Another possible
5018 circumstance is any event which the lower level knows will be
5019 reported multiple times without an intervening resume. */
5020 prepare_to_wait (ecs);
5021 return;
5022 }
5023
5024 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5025 {
5026 prepare_to_wait (ecs);
5027 return;
5028 }
5029
5030 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5031 && handle_no_resumed (ecs))
5032 return;
5033
5034 /* Cache the last target/ptid/waitstatus. */
5035 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5036
5037 /* Always clear state belonging to the previous time we stopped. */
5038 stop_stack_dummy = STOP_NONE;
5039
5040 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5041 {
5042 /* No unwaited-for children left. IOW, all resumed children
5043 have exited. */
5044 stop_print_frame = 0;
5045 stop_waiting (ecs);
5046 return;
5047 }
5048
5049 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5050 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5051 {
5052 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5053 /* If it's a new thread, add it to the thread database. */
5054 if (ecs->event_thread == NULL)
5055 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5056
5057 /* Disable range stepping. If the next step request could use a
5058 range, this will be end up re-enabled then. */
5059 ecs->event_thread->control.may_range_step = 0;
5060 }
5061
5062 /* Dependent on valid ECS->EVENT_THREAD. */
5063 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5064
5065 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5066 reinit_frame_cache ();
5067
5068 breakpoint_retire_moribund ();
5069
5070 /* First, distinguish signals caused by the debugger from signals
5071 that have to do with the program's own actions. Note that
5072 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5073 on the operating system version. Here we detect when a SIGILL or
5074 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5075 something similar for SIGSEGV, since a SIGSEGV will be generated
5076 when we're trying to execute a breakpoint instruction on a
5077 non-executable stack. This happens for call dummy breakpoints
5078 for architectures like SPARC that place call dummies on the
5079 stack. */
5080 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5081 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5082 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5083 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5084 {
5085 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5086
5087 if (breakpoint_inserted_here_p (regcache->aspace (),
5088 regcache_read_pc (regcache)))
5089 {
5090 if (debug_infrun)
5091 fprintf_unfiltered (gdb_stdlog,
5092 "infrun: Treating signal as SIGTRAP\n");
5093 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5094 }
5095 }
5096
5097 /* Mark the non-executing threads accordingly. In all-stop, all
5098 threads of all processes are stopped when we get any event
5099 reported. In non-stop mode, only the event thread stops. */
5100 {
5101 ptid_t mark_ptid;
5102
5103 if (!target_is_non_stop_p ())
5104 mark_ptid = minus_one_ptid;
5105 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5106 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5107 {
5108 /* If we're handling a process exit in non-stop mode, even
5109 though threads haven't been deleted yet, one would think
5110 that there is nothing to do, as threads of the dead process
5111 will be soon deleted, and threads of any other process were
5112 left running. However, on some targets, threads survive a
5113 process exit event. E.g., for the "checkpoint" command,
5114 when the current checkpoint/fork exits, linux-fork.c
5115 automatically switches to another fork from within
5116 target_mourn_inferior, by associating the same
5117 inferior/thread to another fork. We haven't mourned yet at
5118 this point, but we must mark any threads left in the
5119 process as not-executing so that finish_thread_state marks
5120 them stopped (in the user's perspective) if/when we present
5121 the stop to the user. */
5122 mark_ptid = ptid_t (ecs->ptid.pid ());
5123 }
5124 else
5125 mark_ptid = ecs->ptid;
5126
5127 set_executing (ecs->target, mark_ptid, false);
5128
5129 /* Likewise the resumed flag. */
5130 set_resumed (ecs->target, mark_ptid, false);
5131 }
5132
5133 switch (ecs->ws.kind)
5134 {
5135 case TARGET_WAITKIND_LOADED:
5136 context_switch (ecs);
5137 /* Ignore gracefully during startup of the inferior, as it might
5138 be the shell which has just loaded some objects, otherwise
5139 add the symbols for the newly loaded objects. Also ignore at
5140 the beginning of an attach or remote session; we will query
5141 the full list of libraries once the connection is
5142 established. */
5143
5144 stop_soon = get_inferior_stop_soon (ecs);
5145 if (stop_soon == NO_STOP_QUIETLY)
5146 {
5147 struct regcache *regcache;
5148
5149 regcache = get_thread_regcache (ecs->event_thread);
5150
5151 handle_solib_event ();
5152
5153 ecs->event_thread->control.stop_bpstat
5154 = bpstat_stop_status (regcache->aspace (),
5155 ecs->event_thread->suspend.stop_pc,
5156 ecs->event_thread, &ecs->ws);
5157
5158 if (handle_stop_requested (ecs))
5159 return;
5160
5161 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5162 {
5163 /* A catchpoint triggered. */
5164 process_event_stop_test (ecs);
5165 return;
5166 }
5167
5168 /* If requested, stop when the dynamic linker notifies
5169 gdb of events. This allows the user to get control
5170 and place breakpoints in initializer routines for
5171 dynamically loaded objects (among other things). */
5172 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5173 if (stop_on_solib_events)
5174 {
5175 /* Make sure we print "Stopped due to solib-event" in
5176 normal_stop. */
5177 stop_print_frame = 1;
5178
5179 stop_waiting (ecs);
5180 return;
5181 }
5182 }
5183
5184 /* If we are skipping through a shell, or through shared library
5185 loading that we aren't interested in, resume the program. If
5186 we're running the program normally, also resume. */
5187 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5188 {
5189 /* Loading of shared libraries might have changed breakpoint
5190 addresses. Make sure new breakpoints are inserted. */
5191 if (stop_soon == NO_STOP_QUIETLY)
5192 insert_breakpoints ();
5193 resume (GDB_SIGNAL_0);
5194 prepare_to_wait (ecs);
5195 return;
5196 }
5197
5198 /* But stop if we're attaching or setting up a remote
5199 connection. */
5200 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5201 || stop_soon == STOP_QUIETLY_REMOTE)
5202 {
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5205 stop_waiting (ecs);
5206 return;
5207 }
5208
5209 internal_error (__FILE__, __LINE__,
5210 _("unhandled stop_soon: %d"), (int) stop_soon);
5211
5212 case TARGET_WAITKIND_SPURIOUS:
5213 if (handle_stop_requested (ecs))
5214 return;
5215 context_switch (ecs);
5216 resume (GDB_SIGNAL_0);
5217 prepare_to_wait (ecs);
5218 return;
5219
5220 case TARGET_WAITKIND_THREAD_CREATED:
5221 if (handle_stop_requested (ecs))
5222 return;
5223 context_switch (ecs);
5224 if (!switch_back_to_stepped_thread (ecs))
5225 keep_going (ecs);
5226 return;
5227
5228 case TARGET_WAITKIND_EXITED:
5229 case TARGET_WAITKIND_SIGNALLED:
5230 inferior_ptid = ecs->ptid;
5231 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
5232 set_current_program_space (current_inferior ()->pspace);
5233 handle_vfork_child_exec_or_exit (0);
5234 target_terminal::ours (); /* Must do this before mourn anyway. */
5235
5236 /* Clearing any previous state of convenience variables. */
5237 clear_exit_convenience_vars ();
5238
5239 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5240 {
5241 /* Record the exit code in the convenience variable $_exitcode, so
5242 that the user can inspect this again later. */
5243 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5244 (LONGEST) ecs->ws.value.integer);
5245
5246 /* Also record this in the inferior itself. */
5247 current_inferior ()->has_exit_code = 1;
5248 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5249
5250 /* Support the --return-child-result option. */
5251 return_child_result_value = ecs->ws.value.integer;
5252
5253 gdb::observers::exited.notify (ecs->ws.value.integer);
5254 }
5255 else
5256 {
5257 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5258
5259 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5260 {
5261 /* Set the value of the internal variable $_exitsignal,
5262 which holds the signal uncaught by the inferior. */
5263 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5264 gdbarch_gdb_signal_to_target (gdbarch,
5265 ecs->ws.value.sig));
5266 }
5267 else
5268 {
5269 /* We don't have access to the target's method used for
5270 converting between signal numbers (GDB's internal
5271 representation <-> target's representation).
5272 Therefore, we cannot do a good job at displaying this
5273 information to the user. It's better to just warn
5274 her about it (if infrun debugging is enabled), and
5275 give up. */
5276 if (debug_infrun)
5277 fprintf_filtered (gdb_stdlog, _("\
5278 Cannot fill $_exitsignal with the correct signal number.\n"));
5279 }
5280
5281 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5282 }
5283
5284 gdb_flush (gdb_stdout);
5285 target_mourn_inferior (inferior_ptid);
5286 stop_print_frame = 0;
5287 stop_waiting (ecs);
5288 return;
5289
5290 case TARGET_WAITKIND_FORKED:
5291 case TARGET_WAITKIND_VFORKED:
5292 /* Check whether the inferior is displaced stepping. */
5293 {
5294 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5295 struct gdbarch *gdbarch = regcache->arch ();
5296
5297 /* If checking displaced stepping is supported, and thread
5298 ecs->ptid is displaced stepping. */
5299 if (displaced_step_in_progress_thread (ecs->event_thread))
5300 {
5301 struct inferior *parent_inf
5302 = find_inferior_ptid (ecs->target, ecs->ptid);
5303 struct regcache *child_regcache;
5304 CORE_ADDR parent_pc;
5305
5306 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5307 {
5308 struct displaced_step_inferior_state *displaced
5309 = get_displaced_stepping_state (parent_inf);
5310
5311 /* Restore scratch pad for child process. */
5312 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5313 }
5314
5315 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5316 indicating that the displaced stepping of syscall instruction
5317 has been done. Perform cleanup for parent process here. Note
5318 that this operation also cleans up the child process for vfork,
5319 because their pages are shared. */
5320 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5321 /* Start a new step-over in another thread if there's one
5322 that needs it. */
5323 start_step_over ();
5324
5325 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5326 the child's PC is also within the scratchpad. Set the child's PC
5327 to the parent's PC value, which has already been fixed up.
5328 FIXME: we use the parent's aspace here, although we're touching
5329 the child, because the child hasn't been added to the inferior
5330 list yet at this point. */
5331
5332 child_regcache
5333 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5334 ecs->ws.value.related_pid,
5335 gdbarch,
5336 parent_inf->aspace);
5337 /* Read PC value of parent process. */
5338 parent_pc = regcache_read_pc (regcache);
5339
5340 if (debug_displaced)
5341 fprintf_unfiltered (gdb_stdlog,
5342 "displaced: write child pc from %s to %s\n",
5343 paddress (gdbarch,
5344 regcache_read_pc (child_regcache)),
5345 paddress (gdbarch, parent_pc));
5346
5347 regcache_write_pc (child_regcache, parent_pc);
5348 }
5349 }
5350
5351 context_switch (ecs);
5352
5353 /* Immediately detach breakpoints from the child before there's
5354 any chance of letting the user delete breakpoints from the
5355 breakpoint lists. If we don't do this early, it's easy to
5356 leave left over traps in the child, vis: "break foo; catch
5357 fork; c; <fork>; del; c; <child calls foo>". We only follow
5358 the fork on the last `continue', and by that time the
5359 breakpoint at "foo" is long gone from the breakpoint table.
5360 If we vforked, then we don't need to unpatch here, since both
5361 parent and child are sharing the same memory pages; we'll
5362 need to unpatch at follow/detach time instead to be certain
5363 that new breakpoints added between catchpoint hit time and
5364 vfork follow are detached. */
5365 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5366 {
5367 /* This won't actually modify the breakpoint list, but will
5368 physically remove the breakpoints from the child. */
5369 detach_breakpoints (ecs->ws.value.related_pid);
5370 }
5371
5372 delete_just_stopped_threads_single_step_breakpoints ();
5373
5374 /* In case the event is caught by a catchpoint, remember that
5375 the event is to be followed at the next resume of the thread,
5376 and not immediately. */
5377 ecs->event_thread->pending_follow = ecs->ws;
5378
5379 ecs->event_thread->suspend.stop_pc
5380 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5381
5382 ecs->event_thread->control.stop_bpstat
5383 = bpstat_stop_status (get_current_regcache ()->aspace (),
5384 ecs->event_thread->suspend.stop_pc,
5385 ecs->event_thread, &ecs->ws);
5386
5387 if (handle_stop_requested (ecs))
5388 return;
5389
5390 /* If no catchpoint triggered for this, then keep going. Note
5391 that we're interested in knowing the bpstat actually causes a
5392 stop, not just if it may explain the signal. Software
5393 watchpoints, for example, always appear in the bpstat. */
5394 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5395 {
5396 int should_resume;
5397 int follow_child
5398 = (follow_fork_mode_string == follow_fork_mode_child);
5399
5400 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5401
5402 process_stratum_target *targ
5403 = ecs->event_thread->inf->process_target ();
5404
5405 should_resume = follow_fork ();
5406
5407 /* Note that one of these may be an invalid pointer,
5408 depending on detach_fork. */
5409 thread_info *parent = ecs->event_thread;
5410 thread_info *child
5411 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5412
5413 /* At this point, the parent is marked running, and the
5414 child is marked stopped. */
5415
5416 /* If not resuming the parent, mark it stopped. */
5417 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5418 parent->set_running (false);
5419
5420 /* If resuming the child, mark it running. */
5421 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5422 child->set_running (true);
5423
5424 /* In non-stop mode, also resume the other branch. */
5425 if (!detach_fork && (non_stop
5426 || (sched_multi && target_is_non_stop_p ())))
5427 {
5428 if (follow_child)
5429 switch_to_thread (parent);
5430 else
5431 switch_to_thread (child);
5432
5433 ecs->event_thread = inferior_thread ();
5434 ecs->ptid = inferior_ptid;
5435 keep_going (ecs);
5436 }
5437
5438 if (follow_child)
5439 switch_to_thread (child);
5440 else
5441 switch_to_thread (parent);
5442
5443 ecs->event_thread = inferior_thread ();
5444 ecs->ptid = inferior_ptid;
5445
5446 if (should_resume)
5447 keep_going (ecs);
5448 else
5449 stop_waiting (ecs);
5450 return;
5451 }
5452 process_event_stop_test (ecs);
5453 return;
5454
5455 case TARGET_WAITKIND_VFORK_DONE:
5456 /* Done with the shared memory region. Re-insert breakpoints in
5457 the parent, and keep going. */
5458
5459 context_switch (ecs);
5460
5461 current_inferior ()->waiting_for_vfork_done = 0;
5462 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5463
5464 if (handle_stop_requested (ecs))
5465 return;
5466
5467 /* This also takes care of reinserting breakpoints in the
5468 previously locked inferior. */
5469 keep_going (ecs);
5470 return;
5471
5472 case TARGET_WAITKIND_EXECD:
5473
5474 /* Note we can't read registers yet (the stop_pc), because we
5475 don't yet know the inferior's post-exec architecture.
5476 'stop_pc' is explicitly read below instead. */
5477 switch_to_thread_no_regs (ecs->event_thread);
5478
5479 /* Do whatever is necessary to the parent branch of the vfork. */
5480 handle_vfork_child_exec_or_exit (1);
5481
5482 /* This causes the eventpoints and symbol table to be reset.
5483 Must do this now, before trying to determine whether to
5484 stop. */
5485 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5486
5487 /* In follow_exec we may have deleted the original thread and
5488 created a new one. Make sure that the event thread is the
5489 execd thread for that case (this is a nop otherwise). */
5490 ecs->event_thread = inferior_thread ();
5491
5492 ecs->event_thread->suspend.stop_pc
5493 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5494
5495 ecs->event_thread->control.stop_bpstat
5496 = bpstat_stop_status (get_current_regcache ()->aspace (),
5497 ecs->event_thread->suspend.stop_pc,
5498 ecs->event_thread, &ecs->ws);
5499
5500 /* Note that this may be referenced from inside
5501 bpstat_stop_status above, through inferior_has_execd. */
5502 xfree (ecs->ws.value.execd_pathname);
5503 ecs->ws.value.execd_pathname = NULL;
5504
5505 if (handle_stop_requested (ecs))
5506 return;
5507
5508 /* If no catchpoint triggered for this, then keep going. */
5509 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5510 {
5511 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5512 keep_going (ecs);
5513 return;
5514 }
5515 process_event_stop_test (ecs);
5516 return;
5517
5518 /* Be careful not to try to gather much state about a thread
5519 that's in a syscall. It's frequently a losing proposition. */
5520 case TARGET_WAITKIND_SYSCALL_ENTRY:
5521 /* Getting the current syscall number. */
5522 if (handle_syscall_event (ecs) == 0)
5523 process_event_stop_test (ecs);
5524 return;
5525
5526 /* Before examining the threads further, step this thread to
5527 get it entirely out of the syscall. (We get notice of the
5528 event when the thread is just on the verge of exiting a
5529 syscall. Stepping one instruction seems to get it back
5530 into user code.) */
5531 case TARGET_WAITKIND_SYSCALL_RETURN:
5532 if (handle_syscall_event (ecs) == 0)
5533 process_event_stop_test (ecs);
5534 return;
5535
5536 case TARGET_WAITKIND_STOPPED:
5537 handle_signal_stop (ecs);
5538 return;
5539
5540 case TARGET_WAITKIND_NO_HISTORY:
5541 /* Reverse execution: target ran out of history info. */
5542
5543 /* Switch to the stopped thread. */
5544 context_switch (ecs);
5545 if (debug_infrun)
5546 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5547
5548 delete_just_stopped_threads_single_step_breakpoints ();
5549 ecs->event_thread->suspend.stop_pc
5550 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5551
5552 if (handle_stop_requested (ecs))
5553 return;
5554
5555 gdb::observers::no_history.notify ();
5556 stop_waiting (ecs);
5557 return;
5558 }
5559 }
5560
5561 /* Restart threads back to what they were trying to do back when we
5562 paused them for an in-line step-over. The EVENT_THREAD thread is
5563 ignored. */
5564
5565 static void
5566 restart_threads (struct thread_info *event_thread)
5567 {
5568 /* In case the instruction just stepped spawned a new thread. */
5569 update_thread_list ();
5570
5571 for (thread_info *tp : all_non_exited_threads ())
5572 {
5573 switch_to_thread_no_regs (tp);
5574
5575 if (tp == event_thread)
5576 {
5577 if (debug_infrun)
5578 fprintf_unfiltered (gdb_stdlog,
5579 "infrun: restart threads: "
5580 "[%s] is event thread\n",
5581 target_pid_to_str (tp->ptid).c_str ());
5582 continue;
5583 }
5584
5585 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5586 {
5587 if (debug_infrun)
5588 fprintf_unfiltered (gdb_stdlog,
5589 "infrun: restart threads: "
5590 "[%s] not meant to be running\n",
5591 target_pid_to_str (tp->ptid).c_str ());
5592 continue;
5593 }
5594
5595 if (tp->resumed)
5596 {
5597 if (debug_infrun)
5598 fprintf_unfiltered (gdb_stdlog,
5599 "infrun: restart threads: [%s] resumed\n",
5600 target_pid_to_str (tp->ptid).c_str ());
5601 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5602 continue;
5603 }
5604
5605 if (thread_is_in_step_over_chain (tp))
5606 {
5607 if (debug_infrun)
5608 fprintf_unfiltered (gdb_stdlog,
5609 "infrun: restart threads: "
5610 "[%s] needs step-over\n",
5611 target_pid_to_str (tp->ptid).c_str ());
5612 gdb_assert (!tp->resumed);
5613 continue;
5614 }
5615
5616
5617 if (tp->suspend.waitstatus_pending_p)
5618 {
5619 if (debug_infrun)
5620 fprintf_unfiltered (gdb_stdlog,
5621 "infrun: restart threads: "
5622 "[%s] has pending status\n",
5623 target_pid_to_str (tp->ptid).c_str ());
5624 tp->resumed = true;
5625 continue;
5626 }
5627
5628 gdb_assert (!tp->stop_requested);
5629
5630 /* If some thread needs to start a step-over at this point, it
5631 should still be in the step-over queue, and thus skipped
5632 above. */
5633 if (thread_still_needs_step_over (tp))
5634 {
5635 internal_error (__FILE__, __LINE__,
5636 "thread [%s] needs a step-over, but not in "
5637 "step-over queue\n",
5638 target_pid_to_str (tp->ptid).c_str ());
5639 }
5640
5641 if (currently_stepping (tp))
5642 {
5643 if (debug_infrun)
5644 fprintf_unfiltered (gdb_stdlog,
5645 "infrun: restart threads: [%s] was stepping\n",
5646 target_pid_to_str (tp->ptid).c_str ());
5647 keep_going_stepped_thread (tp);
5648 }
5649 else
5650 {
5651 struct execution_control_state ecss;
5652 struct execution_control_state *ecs = &ecss;
5653
5654 if (debug_infrun)
5655 fprintf_unfiltered (gdb_stdlog,
5656 "infrun: restart threads: [%s] continuing\n",
5657 target_pid_to_str (tp->ptid).c_str ());
5658 reset_ecs (ecs, tp);
5659 switch_to_thread (tp);
5660 keep_going_pass_signal (ecs);
5661 }
5662 }
5663 }
5664
5665 /* Callback for iterate_over_threads. Find a resumed thread that has
5666 a pending waitstatus. */
5667
5668 static int
5669 resumed_thread_with_pending_status (struct thread_info *tp,
5670 void *arg)
5671 {
5672 return (tp->resumed
5673 && tp->suspend.waitstatus_pending_p);
5674 }
5675
5676 /* Called when we get an event that may finish an in-line or
5677 out-of-line (displaced stepping) step-over started previously.
5678 Return true if the event is processed and we should go back to the
5679 event loop; false if the caller should continue processing the
5680 event. */
5681
5682 static int
5683 finish_step_over (struct execution_control_state *ecs)
5684 {
5685 int had_step_over_info;
5686
5687 displaced_step_fixup (ecs->event_thread,
5688 ecs->event_thread->suspend.stop_signal);
5689
5690 had_step_over_info = step_over_info_valid_p ();
5691
5692 if (had_step_over_info)
5693 {
5694 /* If we're stepping over a breakpoint with all threads locked,
5695 then only the thread that was stepped should be reporting
5696 back an event. */
5697 gdb_assert (ecs->event_thread->control.trap_expected);
5698
5699 clear_step_over_info ();
5700 }
5701
5702 if (!target_is_non_stop_p ())
5703 return 0;
5704
5705 /* Start a new step-over in another thread if there's one that
5706 needs it. */
5707 start_step_over ();
5708
5709 /* If we were stepping over a breakpoint before, and haven't started
5710 a new in-line step-over sequence, then restart all other threads
5711 (except the event thread). We can't do this in all-stop, as then
5712 e.g., we wouldn't be able to issue any other remote packet until
5713 these other threads stop. */
5714 if (had_step_over_info && !step_over_info_valid_p ())
5715 {
5716 struct thread_info *pending;
5717
5718 /* If we only have threads with pending statuses, the restart
5719 below won't restart any thread and so nothing re-inserts the
5720 breakpoint we just stepped over. But we need it inserted
5721 when we later process the pending events, otherwise if
5722 another thread has a pending event for this breakpoint too,
5723 we'd discard its event (because the breakpoint that
5724 originally caused the event was no longer inserted). */
5725 context_switch (ecs);
5726 insert_breakpoints ();
5727
5728 restart_threads (ecs->event_thread);
5729
5730 /* If we have events pending, go through handle_inferior_event
5731 again, picking up a pending event at random. This avoids
5732 thread starvation. */
5733
5734 /* But not if we just stepped over a watchpoint in order to let
5735 the instruction execute so we can evaluate its expression.
5736 The set of watchpoints that triggered is recorded in the
5737 breakpoint objects themselves (see bp->watchpoint_triggered).
5738 If we processed another event first, that other event could
5739 clobber this info. */
5740 if (ecs->event_thread->stepping_over_watchpoint)
5741 return 0;
5742
5743 pending = iterate_over_threads (resumed_thread_with_pending_status,
5744 NULL);
5745 if (pending != NULL)
5746 {
5747 struct thread_info *tp = ecs->event_thread;
5748 struct regcache *regcache;
5749
5750 if (debug_infrun)
5751 {
5752 fprintf_unfiltered (gdb_stdlog,
5753 "infrun: found resumed threads with "
5754 "pending events, saving status\n");
5755 }
5756
5757 gdb_assert (pending != tp);
5758
5759 /* Record the event thread's event for later. */
5760 save_waitstatus (tp, &ecs->ws);
5761 /* This was cleared early, by handle_inferior_event. Set it
5762 so this pending event is considered by
5763 do_target_wait. */
5764 tp->resumed = true;
5765
5766 gdb_assert (!tp->executing);
5767
5768 regcache = get_thread_regcache (tp);
5769 tp->suspend.stop_pc = regcache_read_pc (regcache);
5770
5771 if (debug_infrun)
5772 {
5773 fprintf_unfiltered (gdb_stdlog,
5774 "infrun: saved stop_pc=%s for %s "
5775 "(currently_stepping=%d)\n",
5776 paddress (target_gdbarch (),
5777 tp->suspend.stop_pc),
5778 target_pid_to_str (tp->ptid).c_str (),
5779 currently_stepping (tp));
5780 }
5781
5782 /* This in-line step-over finished; clear this so we won't
5783 start a new one. This is what handle_signal_stop would
5784 do, if we returned false. */
5785 tp->stepping_over_breakpoint = 0;
5786
5787 /* Wake up the event loop again. */
5788 mark_async_event_handler (infrun_async_inferior_event_token);
5789
5790 prepare_to_wait (ecs);
5791 return 1;
5792 }
5793 }
5794
5795 return 0;
5796 }
5797
5798 /* Come here when the program has stopped with a signal. */
5799
5800 static void
5801 handle_signal_stop (struct execution_control_state *ecs)
5802 {
5803 struct frame_info *frame;
5804 struct gdbarch *gdbarch;
5805 int stopped_by_watchpoint;
5806 enum stop_kind stop_soon;
5807 int random_signal;
5808
5809 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5810
5811 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5812
5813 /* Do we need to clean up the state of a thread that has
5814 completed a displaced single-step? (Doing so usually affects
5815 the PC, so do it here, before we set stop_pc.) */
5816 if (finish_step_over (ecs))
5817 return;
5818
5819 /* If we either finished a single-step or hit a breakpoint, but
5820 the user wanted this thread to be stopped, pretend we got a
5821 SIG0 (generic unsignaled stop). */
5822 if (ecs->event_thread->stop_requested
5823 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5824 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5825
5826 ecs->event_thread->suspend.stop_pc
5827 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5828
5829 if (debug_infrun)
5830 {
5831 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5832 struct gdbarch *reg_gdbarch = regcache->arch ();
5833
5834 switch_to_thread (ecs->event_thread);
5835
5836 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5837 paddress (reg_gdbarch,
5838 ecs->event_thread->suspend.stop_pc));
5839 if (target_stopped_by_watchpoint ())
5840 {
5841 CORE_ADDR addr;
5842
5843 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5844
5845 if (target_stopped_data_address (current_top_target (), &addr))
5846 fprintf_unfiltered (gdb_stdlog,
5847 "infrun: stopped data address = %s\n",
5848 paddress (reg_gdbarch, addr));
5849 else
5850 fprintf_unfiltered (gdb_stdlog,
5851 "infrun: (no data address available)\n");
5852 }
5853 }
5854
5855 /* This is originated from start_remote(), start_inferior() and
5856 shared libraries hook functions. */
5857 stop_soon = get_inferior_stop_soon (ecs);
5858 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5859 {
5860 context_switch (ecs);
5861 if (debug_infrun)
5862 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5863 stop_print_frame = 1;
5864 stop_waiting (ecs);
5865 return;
5866 }
5867
5868 /* This originates from attach_command(). We need to overwrite
5869 the stop_signal here, because some kernels don't ignore a
5870 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5871 See more comments in inferior.h. On the other hand, if we
5872 get a non-SIGSTOP, report it to the user - assume the backend
5873 will handle the SIGSTOP if it should show up later.
5874
5875 Also consider that the attach is complete when we see a
5876 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5877 target extended-remote report it instead of a SIGSTOP
5878 (e.g. gdbserver). We already rely on SIGTRAP being our
5879 signal, so this is no exception.
5880
5881 Also consider that the attach is complete when we see a
5882 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5883 the target to stop all threads of the inferior, in case the
5884 low level attach operation doesn't stop them implicitly. If
5885 they weren't stopped implicitly, then the stub will report a
5886 GDB_SIGNAL_0, meaning: stopped for no particular reason
5887 other than GDB's request. */
5888 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5889 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5890 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5891 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5892 {
5893 stop_print_frame = 1;
5894 stop_waiting (ecs);
5895 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5896 return;
5897 }
5898
5899 /* See if something interesting happened to the non-current thread. If
5900 so, then switch to that thread. */
5901 if (ecs->ptid != inferior_ptid)
5902 {
5903 if (debug_infrun)
5904 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5905
5906 context_switch (ecs);
5907
5908 if (deprecated_context_hook)
5909 deprecated_context_hook (ecs->event_thread->global_num);
5910 }
5911
5912 /* At this point, get hold of the now-current thread's frame. */
5913 frame = get_current_frame ();
5914 gdbarch = get_frame_arch (frame);
5915
5916 /* Pull the single step breakpoints out of the target. */
5917 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5918 {
5919 struct regcache *regcache;
5920 CORE_ADDR pc;
5921
5922 regcache = get_thread_regcache (ecs->event_thread);
5923 const address_space *aspace = regcache->aspace ();
5924
5925 pc = regcache_read_pc (regcache);
5926
5927 /* However, before doing so, if this single-step breakpoint was
5928 actually for another thread, set this thread up for moving
5929 past it. */
5930 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5931 aspace, pc))
5932 {
5933 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5934 {
5935 if (debug_infrun)
5936 {
5937 fprintf_unfiltered (gdb_stdlog,
5938 "infrun: [%s] hit another thread's "
5939 "single-step breakpoint\n",
5940 target_pid_to_str (ecs->ptid).c_str ());
5941 }
5942 ecs->hit_singlestep_breakpoint = 1;
5943 }
5944 }
5945 else
5946 {
5947 if (debug_infrun)
5948 {
5949 fprintf_unfiltered (gdb_stdlog,
5950 "infrun: [%s] hit its "
5951 "single-step breakpoint\n",
5952 target_pid_to_str (ecs->ptid).c_str ());
5953 }
5954 }
5955 }
5956 delete_just_stopped_threads_single_step_breakpoints ();
5957
5958 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5959 && ecs->event_thread->control.trap_expected
5960 && ecs->event_thread->stepping_over_watchpoint)
5961 stopped_by_watchpoint = 0;
5962 else
5963 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5964
5965 /* If necessary, step over this watchpoint. We'll be back to display
5966 it in a moment. */
5967 if (stopped_by_watchpoint
5968 && (target_have_steppable_watchpoint
5969 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5970 {
5971 /* At this point, we are stopped at an instruction which has
5972 attempted to write to a piece of memory under control of
5973 a watchpoint. The instruction hasn't actually executed
5974 yet. If we were to evaluate the watchpoint expression
5975 now, we would get the old value, and therefore no change
5976 would seem to have occurred.
5977
5978 In order to make watchpoints work `right', we really need
5979 to complete the memory write, and then evaluate the
5980 watchpoint expression. We do this by single-stepping the
5981 target.
5982
5983 It may not be necessary to disable the watchpoint to step over
5984 it. For example, the PA can (with some kernel cooperation)
5985 single step over a watchpoint without disabling the watchpoint.
5986
5987 It is far more common to need to disable a watchpoint to step
5988 the inferior over it. If we have non-steppable watchpoints,
5989 we must disable the current watchpoint; it's simplest to
5990 disable all watchpoints.
5991
5992 Any breakpoint at PC must also be stepped over -- if there's
5993 one, it will have already triggered before the watchpoint
5994 triggered, and we either already reported it to the user, or
5995 it didn't cause a stop and we called keep_going. In either
5996 case, if there was a breakpoint at PC, we must be trying to
5997 step past it. */
5998 ecs->event_thread->stepping_over_watchpoint = 1;
5999 keep_going (ecs);
6000 return;
6001 }
6002
6003 ecs->event_thread->stepping_over_breakpoint = 0;
6004 ecs->event_thread->stepping_over_watchpoint = 0;
6005 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6006 ecs->event_thread->control.stop_step = 0;
6007 stop_print_frame = 1;
6008 stopped_by_random_signal = 0;
6009 bpstat stop_chain = NULL;
6010
6011 /* Hide inlined functions starting here, unless we just performed stepi or
6012 nexti. After stepi and nexti, always show the innermost frame (not any
6013 inline function call sites). */
6014 if (ecs->event_thread->control.step_range_end != 1)
6015 {
6016 const address_space *aspace
6017 = get_thread_regcache (ecs->event_thread)->aspace ();
6018
6019 /* skip_inline_frames is expensive, so we avoid it if we can
6020 determine that the address is one where functions cannot have
6021 been inlined. This improves performance with inferiors that
6022 load a lot of shared libraries, because the solib event
6023 breakpoint is defined as the address of a function (i.e. not
6024 inline). Note that we have to check the previous PC as well
6025 as the current one to catch cases when we have just
6026 single-stepped off a breakpoint prior to reinstating it.
6027 Note that we're assuming that the code we single-step to is
6028 not inline, but that's not definitive: there's nothing
6029 preventing the event breakpoint function from containing
6030 inlined code, and the single-step ending up there. If the
6031 user had set a breakpoint on that inlined code, the missing
6032 skip_inline_frames call would break things. Fortunately
6033 that's an extremely unlikely scenario. */
6034 if (!pc_at_non_inline_function (aspace,
6035 ecs->event_thread->suspend.stop_pc,
6036 &ecs->ws)
6037 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6038 && ecs->event_thread->control.trap_expected
6039 && pc_at_non_inline_function (aspace,
6040 ecs->event_thread->prev_pc,
6041 &ecs->ws)))
6042 {
6043 stop_chain = build_bpstat_chain (aspace,
6044 ecs->event_thread->suspend.stop_pc,
6045 &ecs->ws);
6046 skip_inline_frames (ecs->event_thread, stop_chain);
6047
6048 /* Re-fetch current thread's frame in case that invalidated
6049 the frame cache. */
6050 frame = get_current_frame ();
6051 gdbarch = get_frame_arch (frame);
6052 }
6053 }
6054
6055 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6056 && ecs->event_thread->control.trap_expected
6057 && gdbarch_single_step_through_delay_p (gdbarch)
6058 && currently_stepping (ecs->event_thread))
6059 {
6060 /* We're trying to step off a breakpoint. Turns out that we're
6061 also on an instruction that needs to be stepped multiple
6062 times before it's been fully executing. E.g., architectures
6063 with a delay slot. It needs to be stepped twice, once for
6064 the instruction and once for the delay slot. */
6065 int step_through_delay
6066 = gdbarch_single_step_through_delay (gdbarch, frame);
6067
6068 if (debug_infrun && step_through_delay)
6069 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
6070 if (ecs->event_thread->control.step_range_end == 0
6071 && step_through_delay)
6072 {
6073 /* The user issued a continue when stopped at a breakpoint.
6074 Set up for another trap and get out of here. */
6075 ecs->event_thread->stepping_over_breakpoint = 1;
6076 keep_going (ecs);
6077 return;
6078 }
6079 else if (step_through_delay)
6080 {
6081 /* The user issued a step when stopped at a breakpoint.
6082 Maybe we should stop, maybe we should not - the delay
6083 slot *might* correspond to a line of source. In any
6084 case, don't decide that here, just set
6085 ecs->stepping_over_breakpoint, making sure we
6086 single-step again before breakpoints are re-inserted. */
6087 ecs->event_thread->stepping_over_breakpoint = 1;
6088 }
6089 }
6090
6091 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6092 handles this event. */
6093 ecs->event_thread->control.stop_bpstat
6094 = bpstat_stop_status (get_current_regcache ()->aspace (),
6095 ecs->event_thread->suspend.stop_pc,
6096 ecs->event_thread, &ecs->ws, stop_chain);
6097
6098 /* Following in case break condition called a
6099 function. */
6100 stop_print_frame = 1;
6101
6102 /* This is where we handle "moribund" watchpoints. Unlike
6103 software breakpoints traps, hardware watchpoint traps are
6104 always distinguishable from random traps. If no high-level
6105 watchpoint is associated with the reported stop data address
6106 anymore, then the bpstat does not explain the signal ---
6107 simply make sure to ignore it if `stopped_by_watchpoint' is
6108 set. */
6109
6110 if (debug_infrun
6111 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6112 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6113 GDB_SIGNAL_TRAP)
6114 && stopped_by_watchpoint)
6115 fprintf_unfiltered (gdb_stdlog,
6116 "infrun: no user watchpoint explains "
6117 "watchpoint SIGTRAP, ignoring\n");
6118
6119 /* NOTE: cagney/2003-03-29: These checks for a random signal
6120 at one stage in the past included checks for an inferior
6121 function call's call dummy's return breakpoint. The original
6122 comment, that went with the test, read:
6123
6124 ``End of a stack dummy. Some systems (e.g. Sony news) give
6125 another signal besides SIGTRAP, so check here as well as
6126 above.''
6127
6128 If someone ever tries to get call dummys on a
6129 non-executable stack to work (where the target would stop
6130 with something like a SIGSEGV), then those tests might need
6131 to be re-instated. Given, however, that the tests were only
6132 enabled when momentary breakpoints were not being used, I
6133 suspect that it won't be the case.
6134
6135 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6136 be necessary for call dummies on a non-executable stack on
6137 SPARC. */
6138
6139 /* See if the breakpoints module can explain the signal. */
6140 random_signal
6141 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6142 ecs->event_thread->suspend.stop_signal);
6143
6144 /* Maybe this was a trap for a software breakpoint that has since
6145 been removed. */
6146 if (random_signal && target_stopped_by_sw_breakpoint ())
6147 {
6148 if (gdbarch_program_breakpoint_here_p (gdbarch,
6149 ecs->event_thread->suspend.stop_pc))
6150 {
6151 struct regcache *regcache;
6152 int decr_pc;
6153
6154 /* Re-adjust PC to what the program would see if GDB was not
6155 debugging it. */
6156 regcache = get_thread_regcache (ecs->event_thread);
6157 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6158 if (decr_pc != 0)
6159 {
6160 gdb::optional<scoped_restore_tmpl<int>>
6161 restore_operation_disable;
6162
6163 if (record_full_is_used ())
6164 restore_operation_disable.emplace
6165 (record_full_gdb_operation_disable_set ());
6166
6167 regcache_write_pc (regcache,
6168 ecs->event_thread->suspend.stop_pc + decr_pc);
6169 }
6170 }
6171 else
6172 {
6173 /* A delayed software breakpoint event. Ignore the trap. */
6174 if (debug_infrun)
6175 fprintf_unfiltered (gdb_stdlog,
6176 "infrun: delayed software breakpoint "
6177 "trap, ignoring\n");
6178 random_signal = 0;
6179 }
6180 }
6181
6182 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6183 has since been removed. */
6184 if (random_signal && target_stopped_by_hw_breakpoint ())
6185 {
6186 /* A delayed hardware breakpoint event. Ignore the trap. */
6187 if (debug_infrun)
6188 fprintf_unfiltered (gdb_stdlog,
6189 "infrun: delayed hardware breakpoint/watchpoint "
6190 "trap, ignoring\n");
6191 random_signal = 0;
6192 }
6193
6194 /* If not, perhaps stepping/nexting can. */
6195 if (random_signal)
6196 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6197 && currently_stepping (ecs->event_thread));
6198
6199 /* Perhaps the thread hit a single-step breakpoint of _another_
6200 thread. Single-step breakpoints are transparent to the
6201 breakpoints module. */
6202 if (random_signal)
6203 random_signal = !ecs->hit_singlestep_breakpoint;
6204
6205 /* No? Perhaps we got a moribund watchpoint. */
6206 if (random_signal)
6207 random_signal = !stopped_by_watchpoint;
6208
6209 /* Always stop if the user explicitly requested this thread to
6210 remain stopped. */
6211 if (ecs->event_thread->stop_requested)
6212 {
6213 random_signal = 1;
6214 if (debug_infrun)
6215 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6216 }
6217
6218 /* For the program's own signals, act according to
6219 the signal handling tables. */
6220
6221 if (random_signal)
6222 {
6223 /* Signal not for debugging purposes. */
6224 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6225 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6226
6227 if (debug_infrun)
6228 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6229 gdb_signal_to_symbol_string (stop_signal));
6230
6231 stopped_by_random_signal = 1;
6232
6233 /* Always stop on signals if we're either just gaining control
6234 of the program, or the user explicitly requested this thread
6235 to remain stopped. */
6236 if (stop_soon != NO_STOP_QUIETLY
6237 || ecs->event_thread->stop_requested
6238 || (!inf->detaching
6239 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6240 {
6241 stop_waiting (ecs);
6242 return;
6243 }
6244
6245 /* Notify observers the signal has "handle print" set. Note we
6246 returned early above if stopping; normal_stop handles the
6247 printing in that case. */
6248 if (signal_print[ecs->event_thread->suspend.stop_signal])
6249 {
6250 /* The signal table tells us to print about this signal. */
6251 target_terminal::ours_for_output ();
6252 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6253 target_terminal::inferior ();
6254 }
6255
6256 /* Clear the signal if it should not be passed. */
6257 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6258 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6259
6260 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6261 && ecs->event_thread->control.trap_expected
6262 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6263 {
6264 /* We were just starting a new sequence, attempting to
6265 single-step off of a breakpoint and expecting a SIGTRAP.
6266 Instead this signal arrives. This signal will take us out
6267 of the stepping range so GDB needs to remember to, when
6268 the signal handler returns, resume stepping off that
6269 breakpoint. */
6270 /* To simplify things, "continue" is forced to use the same
6271 code paths as single-step - set a breakpoint at the
6272 signal return address and then, once hit, step off that
6273 breakpoint. */
6274 if (debug_infrun)
6275 fprintf_unfiltered (gdb_stdlog,
6276 "infrun: signal arrived while stepping over "
6277 "breakpoint\n");
6278
6279 insert_hp_step_resume_breakpoint_at_frame (frame);
6280 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6281 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6282 ecs->event_thread->control.trap_expected = 0;
6283
6284 /* If we were nexting/stepping some other thread, switch to
6285 it, so that we don't continue it, losing control. */
6286 if (!switch_back_to_stepped_thread (ecs))
6287 keep_going (ecs);
6288 return;
6289 }
6290
6291 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6292 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6293 ecs->event_thread)
6294 || ecs->event_thread->control.step_range_end == 1)
6295 && frame_id_eq (get_stack_frame_id (frame),
6296 ecs->event_thread->control.step_stack_frame_id)
6297 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6298 {
6299 /* The inferior is about to take a signal that will take it
6300 out of the single step range. Set a breakpoint at the
6301 current PC (which is presumably where the signal handler
6302 will eventually return) and then allow the inferior to
6303 run free.
6304
6305 Note that this is only needed for a signal delivered
6306 while in the single-step range. Nested signals aren't a
6307 problem as they eventually all return. */
6308 if (debug_infrun)
6309 fprintf_unfiltered (gdb_stdlog,
6310 "infrun: signal may take us out of "
6311 "single-step range\n");
6312
6313 clear_step_over_info ();
6314 insert_hp_step_resume_breakpoint_at_frame (frame);
6315 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6316 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6317 ecs->event_thread->control.trap_expected = 0;
6318 keep_going (ecs);
6319 return;
6320 }
6321
6322 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6323 when either there's a nested signal, or when there's a
6324 pending signal enabled just as the signal handler returns
6325 (leaving the inferior at the step-resume-breakpoint without
6326 actually executing it). Either way continue until the
6327 breakpoint is really hit. */
6328
6329 if (!switch_back_to_stepped_thread (ecs))
6330 {
6331 if (debug_infrun)
6332 fprintf_unfiltered (gdb_stdlog,
6333 "infrun: random signal, keep going\n");
6334
6335 keep_going (ecs);
6336 }
6337 return;
6338 }
6339
6340 process_event_stop_test (ecs);
6341 }
6342
6343 /* Come here when we've got some debug event / signal we can explain
6344 (IOW, not a random signal), and test whether it should cause a
6345 stop, or whether we should resume the inferior (transparently).
6346 E.g., could be a breakpoint whose condition evaluates false; we
6347 could be still stepping within the line; etc. */
6348
6349 static void
6350 process_event_stop_test (struct execution_control_state *ecs)
6351 {
6352 struct symtab_and_line stop_pc_sal;
6353 struct frame_info *frame;
6354 struct gdbarch *gdbarch;
6355 CORE_ADDR jmp_buf_pc;
6356 struct bpstat_what what;
6357
6358 /* Handle cases caused by hitting a breakpoint. */
6359
6360 frame = get_current_frame ();
6361 gdbarch = get_frame_arch (frame);
6362
6363 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6364
6365 if (what.call_dummy)
6366 {
6367 stop_stack_dummy = what.call_dummy;
6368 }
6369
6370 /* A few breakpoint types have callbacks associated (e.g.,
6371 bp_jit_event). Run them now. */
6372 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6373
6374 /* If we hit an internal event that triggers symbol changes, the
6375 current frame will be invalidated within bpstat_what (e.g., if we
6376 hit an internal solib event). Re-fetch it. */
6377 frame = get_current_frame ();
6378 gdbarch = get_frame_arch (frame);
6379
6380 switch (what.main_action)
6381 {
6382 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6383 /* If we hit the breakpoint at longjmp while stepping, we
6384 install a momentary breakpoint at the target of the
6385 jmp_buf. */
6386
6387 if (debug_infrun)
6388 fprintf_unfiltered (gdb_stdlog,
6389 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6390
6391 ecs->event_thread->stepping_over_breakpoint = 1;
6392
6393 if (what.is_longjmp)
6394 {
6395 struct value *arg_value;
6396
6397 /* If we set the longjmp breakpoint via a SystemTap probe,
6398 then use it to extract the arguments. The destination PC
6399 is the third argument to the probe. */
6400 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6401 if (arg_value)
6402 {
6403 jmp_buf_pc = value_as_address (arg_value);
6404 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6405 }
6406 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6407 || !gdbarch_get_longjmp_target (gdbarch,
6408 frame, &jmp_buf_pc))
6409 {
6410 if (debug_infrun)
6411 fprintf_unfiltered (gdb_stdlog,
6412 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6413 "(!gdbarch_get_longjmp_target)\n");
6414 keep_going (ecs);
6415 return;
6416 }
6417
6418 /* Insert a breakpoint at resume address. */
6419 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6420 }
6421 else
6422 check_exception_resume (ecs, frame);
6423 keep_going (ecs);
6424 return;
6425
6426 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6427 {
6428 struct frame_info *init_frame;
6429
6430 /* There are several cases to consider.
6431
6432 1. The initiating frame no longer exists. In this case we
6433 must stop, because the exception or longjmp has gone too
6434 far.
6435
6436 2. The initiating frame exists, and is the same as the
6437 current frame. We stop, because the exception or longjmp
6438 has been caught.
6439
6440 3. The initiating frame exists and is different from the
6441 current frame. This means the exception or longjmp has
6442 been caught beneath the initiating frame, so keep going.
6443
6444 4. longjmp breakpoint has been placed just to protect
6445 against stale dummy frames and user is not interested in
6446 stopping around longjmps. */
6447
6448 if (debug_infrun)
6449 fprintf_unfiltered (gdb_stdlog,
6450 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6451
6452 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6453 != NULL);
6454 delete_exception_resume_breakpoint (ecs->event_thread);
6455
6456 if (what.is_longjmp)
6457 {
6458 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6459
6460 if (!frame_id_p (ecs->event_thread->initiating_frame))
6461 {
6462 /* Case 4. */
6463 keep_going (ecs);
6464 return;
6465 }
6466 }
6467
6468 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6469
6470 if (init_frame)
6471 {
6472 struct frame_id current_id
6473 = get_frame_id (get_current_frame ());
6474 if (frame_id_eq (current_id,
6475 ecs->event_thread->initiating_frame))
6476 {
6477 /* Case 2. Fall through. */
6478 }
6479 else
6480 {
6481 /* Case 3. */
6482 keep_going (ecs);
6483 return;
6484 }
6485 }
6486
6487 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6488 exists. */
6489 delete_step_resume_breakpoint (ecs->event_thread);
6490
6491 end_stepping_range (ecs);
6492 }
6493 return;
6494
6495 case BPSTAT_WHAT_SINGLE:
6496 if (debug_infrun)
6497 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6498 ecs->event_thread->stepping_over_breakpoint = 1;
6499 /* Still need to check other stuff, at least the case where we
6500 are stepping and step out of the right range. */
6501 break;
6502
6503 case BPSTAT_WHAT_STEP_RESUME:
6504 if (debug_infrun)
6505 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6506
6507 delete_step_resume_breakpoint (ecs->event_thread);
6508 if (ecs->event_thread->control.proceed_to_finish
6509 && execution_direction == EXEC_REVERSE)
6510 {
6511 struct thread_info *tp = ecs->event_thread;
6512
6513 /* We are finishing a function in reverse, and just hit the
6514 step-resume breakpoint at the start address of the
6515 function, and we're almost there -- just need to back up
6516 by one more single-step, which should take us back to the
6517 function call. */
6518 tp->control.step_range_start = tp->control.step_range_end = 1;
6519 keep_going (ecs);
6520 return;
6521 }
6522 fill_in_stop_func (gdbarch, ecs);
6523 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6524 && execution_direction == EXEC_REVERSE)
6525 {
6526 /* We are stepping over a function call in reverse, and just
6527 hit the step-resume breakpoint at the start address of
6528 the function. Go back to single-stepping, which should
6529 take us back to the function call. */
6530 ecs->event_thread->stepping_over_breakpoint = 1;
6531 keep_going (ecs);
6532 return;
6533 }
6534 break;
6535
6536 case BPSTAT_WHAT_STOP_NOISY:
6537 if (debug_infrun)
6538 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6539 stop_print_frame = 1;
6540
6541 /* Assume the thread stopped for a breapoint. We'll still check
6542 whether a/the breakpoint is there when the thread is next
6543 resumed. */
6544 ecs->event_thread->stepping_over_breakpoint = 1;
6545
6546 stop_waiting (ecs);
6547 return;
6548
6549 case BPSTAT_WHAT_STOP_SILENT:
6550 if (debug_infrun)
6551 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6552 stop_print_frame = 0;
6553
6554 /* Assume the thread stopped for a breapoint. We'll still check
6555 whether a/the breakpoint is there when the thread is next
6556 resumed. */
6557 ecs->event_thread->stepping_over_breakpoint = 1;
6558 stop_waiting (ecs);
6559 return;
6560
6561 case BPSTAT_WHAT_HP_STEP_RESUME:
6562 if (debug_infrun)
6563 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6564
6565 delete_step_resume_breakpoint (ecs->event_thread);
6566 if (ecs->event_thread->step_after_step_resume_breakpoint)
6567 {
6568 /* Back when the step-resume breakpoint was inserted, we
6569 were trying to single-step off a breakpoint. Go back to
6570 doing that. */
6571 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6572 ecs->event_thread->stepping_over_breakpoint = 1;
6573 keep_going (ecs);
6574 return;
6575 }
6576 break;
6577
6578 case BPSTAT_WHAT_KEEP_CHECKING:
6579 break;
6580 }
6581
6582 /* If we stepped a permanent breakpoint and we had a high priority
6583 step-resume breakpoint for the address we stepped, but we didn't
6584 hit it, then we must have stepped into the signal handler. The
6585 step-resume was only necessary to catch the case of _not_
6586 stepping into the handler, so delete it, and fall through to
6587 checking whether the step finished. */
6588 if (ecs->event_thread->stepped_breakpoint)
6589 {
6590 struct breakpoint *sr_bp
6591 = ecs->event_thread->control.step_resume_breakpoint;
6592
6593 if (sr_bp != NULL
6594 && sr_bp->loc->permanent
6595 && sr_bp->type == bp_hp_step_resume
6596 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6597 {
6598 if (debug_infrun)
6599 fprintf_unfiltered (gdb_stdlog,
6600 "infrun: stepped permanent breakpoint, stopped in "
6601 "handler\n");
6602 delete_step_resume_breakpoint (ecs->event_thread);
6603 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6604 }
6605 }
6606
6607 /* We come here if we hit a breakpoint but should not stop for it.
6608 Possibly we also were stepping and should stop for that. So fall
6609 through and test for stepping. But, if not stepping, do not
6610 stop. */
6611
6612 /* In all-stop mode, if we're currently stepping but have stopped in
6613 some other thread, we need to switch back to the stepped thread. */
6614 if (switch_back_to_stepped_thread (ecs))
6615 return;
6616
6617 if (ecs->event_thread->control.step_resume_breakpoint)
6618 {
6619 if (debug_infrun)
6620 fprintf_unfiltered (gdb_stdlog,
6621 "infrun: step-resume breakpoint is inserted\n");
6622
6623 /* Having a step-resume breakpoint overrides anything
6624 else having to do with stepping commands until
6625 that breakpoint is reached. */
6626 keep_going (ecs);
6627 return;
6628 }
6629
6630 if (ecs->event_thread->control.step_range_end == 0)
6631 {
6632 if (debug_infrun)
6633 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6634 /* Likewise if we aren't even stepping. */
6635 keep_going (ecs);
6636 return;
6637 }
6638
6639 /* Re-fetch current thread's frame in case the code above caused
6640 the frame cache to be re-initialized, making our FRAME variable
6641 a dangling pointer. */
6642 frame = get_current_frame ();
6643 gdbarch = get_frame_arch (frame);
6644 fill_in_stop_func (gdbarch, ecs);
6645
6646 /* If stepping through a line, keep going if still within it.
6647
6648 Note that step_range_end is the address of the first instruction
6649 beyond the step range, and NOT the address of the last instruction
6650 within it!
6651
6652 Note also that during reverse execution, we may be stepping
6653 through a function epilogue and therefore must detect when
6654 the current-frame changes in the middle of a line. */
6655
6656 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6657 ecs->event_thread)
6658 && (execution_direction != EXEC_REVERSE
6659 || frame_id_eq (get_frame_id (frame),
6660 ecs->event_thread->control.step_frame_id)))
6661 {
6662 if (debug_infrun)
6663 fprintf_unfiltered
6664 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6665 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6666 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6667
6668 /* Tentatively re-enable range stepping; `resume' disables it if
6669 necessary (e.g., if we're stepping over a breakpoint or we
6670 have software watchpoints). */
6671 ecs->event_thread->control.may_range_step = 1;
6672
6673 /* When stepping backward, stop at beginning of line range
6674 (unless it's the function entry point, in which case
6675 keep going back to the call point). */
6676 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6677 if (stop_pc == ecs->event_thread->control.step_range_start
6678 && stop_pc != ecs->stop_func_start
6679 && execution_direction == EXEC_REVERSE)
6680 end_stepping_range (ecs);
6681 else
6682 keep_going (ecs);
6683
6684 return;
6685 }
6686
6687 /* We stepped out of the stepping range. */
6688
6689 /* If we are stepping at the source level and entered the runtime
6690 loader dynamic symbol resolution code...
6691
6692 EXEC_FORWARD: we keep on single stepping until we exit the run
6693 time loader code and reach the callee's address.
6694
6695 EXEC_REVERSE: we've already executed the callee (backward), and
6696 the runtime loader code is handled just like any other
6697 undebuggable function call. Now we need only keep stepping
6698 backward through the trampoline code, and that's handled further
6699 down, so there is nothing for us to do here. */
6700
6701 if (execution_direction != EXEC_REVERSE
6702 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6703 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6704 {
6705 CORE_ADDR pc_after_resolver =
6706 gdbarch_skip_solib_resolver (gdbarch,
6707 ecs->event_thread->suspend.stop_pc);
6708
6709 if (debug_infrun)
6710 fprintf_unfiltered (gdb_stdlog,
6711 "infrun: stepped into dynsym resolve code\n");
6712
6713 if (pc_after_resolver)
6714 {
6715 /* Set up a step-resume breakpoint at the address
6716 indicated by SKIP_SOLIB_RESOLVER. */
6717 symtab_and_line sr_sal;
6718 sr_sal.pc = pc_after_resolver;
6719 sr_sal.pspace = get_frame_program_space (frame);
6720
6721 insert_step_resume_breakpoint_at_sal (gdbarch,
6722 sr_sal, null_frame_id);
6723 }
6724
6725 keep_going (ecs);
6726 return;
6727 }
6728
6729 /* Step through an indirect branch thunk. */
6730 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6731 && gdbarch_in_indirect_branch_thunk (gdbarch,
6732 ecs->event_thread->suspend.stop_pc))
6733 {
6734 if (debug_infrun)
6735 fprintf_unfiltered (gdb_stdlog,
6736 "infrun: stepped into indirect branch thunk\n");
6737 keep_going (ecs);
6738 return;
6739 }
6740
6741 if (ecs->event_thread->control.step_range_end != 1
6742 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6743 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6744 && get_frame_type (frame) == SIGTRAMP_FRAME)
6745 {
6746 if (debug_infrun)
6747 fprintf_unfiltered (gdb_stdlog,
6748 "infrun: stepped into signal trampoline\n");
6749 /* The inferior, while doing a "step" or "next", has ended up in
6750 a signal trampoline (either by a signal being delivered or by
6751 the signal handler returning). Just single-step until the
6752 inferior leaves the trampoline (either by calling the handler
6753 or returning). */
6754 keep_going (ecs);
6755 return;
6756 }
6757
6758 /* If we're in the return path from a shared library trampoline,
6759 we want to proceed through the trampoline when stepping. */
6760 /* macro/2012-04-25: This needs to come before the subroutine
6761 call check below as on some targets return trampolines look
6762 like subroutine calls (MIPS16 return thunks). */
6763 if (gdbarch_in_solib_return_trampoline (gdbarch,
6764 ecs->event_thread->suspend.stop_pc,
6765 ecs->stop_func_name)
6766 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6767 {
6768 /* Determine where this trampoline returns. */
6769 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6770 CORE_ADDR real_stop_pc
6771 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6772
6773 if (debug_infrun)
6774 fprintf_unfiltered (gdb_stdlog,
6775 "infrun: stepped into solib return tramp\n");
6776
6777 /* Only proceed through if we know where it's going. */
6778 if (real_stop_pc)
6779 {
6780 /* And put the step-breakpoint there and go until there. */
6781 symtab_and_line sr_sal;
6782 sr_sal.pc = real_stop_pc;
6783 sr_sal.section = find_pc_overlay (sr_sal.pc);
6784 sr_sal.pspace = get_frame_program_space (frame);
6785
6786 /* Do not specify what the fp should be when we stop since
6787 on some machines the prologue is where the new fp value
6788 is established. */
6789 insert_step_resume_breakpoint_at_sal (gdbarch,
6790 sr_sal, null_frame_id);
6791
6792 /* Restart without fiddling with the step ranges or
6793 other state. */
6794 keep_going (ecs);
6795 return;
6796 }
6797 }
6798
6799 /* Check for subroutine calls. The check for the current frame
6800 equalling the step ID is not necessary - the check of the
6801 previous frame's ID is sufficient - but it is a common case and
6802 cheaper than checking the previous frame's ID.
6803
6804 NOTE: frame_id_eq will never report two invalid frame IDs as
6805 being equal, so to get into this block, both the current and
6806 previous frame must have valid frame IDs. */
6807 /* The outer_frame_id check is a heuristic to detect stepping
6808 through startup code. If we step over an instruction which
6809 sets the stack pointer from an invalid value to a valid value,
6810 we may detect that as a subroutine call from the mythical
6811 "outermost" function. This could be fixed by marking
6812 outermost frames as !stack_p,code_p,special_p. Then the
6813 initial outermost frame, before sp was valid, would
6814 have code_addr == &_start. See the comment in frame_id_eq
6815 for more. */
6816 if (!frame_id_eq (get_stack_frame_id (frame),
6817 ecs->event_thread->control.step_stack_frame_id)
6818 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6819 ecs->event_thread->control.step_stack_frame_id)
6820 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6821 outer_frame_id)
6822 || (ecs->event_thread->control.step_start_function
6823 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6824 {
6825 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6826 CORE_ADDR real_stop_pc;
6827
6828 if (debug_infrun)
6829 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6830
6831 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6832 {
6833 /* I presume that step_over_calls is only 0 when we're
6834 supposed to be stepping at the assembly language level
6835 ("stepi"). Just stop. */
6836 /* And this works the same backward as frontward. MVS */
6837 end_stepping_range (ecs);
6838 return;
6839 }
6840
6841 /* Reverse stepping through solib trampolines. */
6842
6843 if (execution_direction == EXEC_REVERSE
6844 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6845 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6846 || (ecs->stop_func_start == 0
6847 && in_solib_dynsym_resolve_code (stop_pc))))
6848 {
6849 /* Any solib trampoline code can be handled in reverse
6850 by simply continuing to single-step. We have already
6851 executed the solib function (backwards), and a few
6852 steps will take us back through the trampoline to the
6853 caller. */
6854 keep_going (ecs);
6855 return;
6856 }
6857
6858 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6859 {
6860 /* We're doing a "next".
6861
6862 Normal (forward) execution: set a breakpoint at the
6863 callee's return address (the address at which the caller
6864 will resume).
6865
6866 Reverse (backward) execution. set the step-resume
6867 breakpoint at the start of the function that we just
6868 stepped into (backwards), and continue to there. When we
6869 get there, we'll need to single-step back to the caller. */
6870
6871 if (execution_direction == EXEC_REVERSE)
6872 {
6873 /* If we're already at the start of the function, we've either
6874 just stepped backward into a single instruction function,
6875 or stepped back out of a signal handler to the first instruction
6876 of the function. Just keep going, which will single-step back
6877 to the caller. */
6878 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6879 {
6880 /* Normal function call return (static or dynamic). */
6881 symtab_and_line sr_sal;
6882 sr_sal.pc = ecs->stop_func_start;
6883 sr_sal.pspace = get_frame_program_space (frame);
6884 insert_step_resume_breakpoint_at_sal (gdbarch,
6885 sr_sal, null_frame_id);
6886 }
6887 }
6888 else
6889 insert_step_resume_breakpoint_at_caller (frame);
6890
6891 keep_going (ecs);
6892 return;
6893 }
6894
6895 /* If we are in a function call trampoline (a stub between the
6896 calling routine and the real function), locate the real
6897 function. That's what tells us (a) whether we want to step
6898 into it at all, and (b) what prologue we want to run to the
6899 end of, if we do step into it. */
6900 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6901 if (real_stop_pc == 0)
6902 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6903 if (real_stop_pc != 0)
6904 ecs->stop_func_start = real_stop_pc;
6905
6906 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6907 {
6908 symtab_and_line sr_sal;
6909 sr_sal.pc = ecs->stop_func_start;
6910 sr_sal.pspace = get_frame_program_space (frame);
6911
6912 insert_step_resume_breakpoint_at_sal (gdbarch,
6913 sr_sal, null_frame_id);
6914 keep_going (ecs);
6915 return;
6916 }
6917
6918 /* If we have line number information for the function we are
6919 thinking of stepping into and the function isn't on the skip
6920 list, step into it.
6921
6922 If there are several symtabs at that PC (e.g. with include
6923 files), just want to know whether *any* of them have line
6924 numbers. find_pc_line handles this. */
6925 {
6926 struct symtab_and_line tmp_sal;
6927
6928 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6929 if (tmp_sal.line != 0
6930 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6931 tmp_sal)
6932 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6933 {
6934 if (execution_direction == EXEC_REVERSE)
6935 handle_step_into_function_backward (gdbarch, ecs);
6936 else
6937 handle_step_into_function (gdbarch, ecs);
6938 return;
6939 }
6940 }
6941
6942 /* If we have no line number and the step-stop-if-no-debug is
6943 set, we stop the step so that the user has a chance to switch
6944 in assembly mode. */
6945 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6946 && step_stop_if_no_debug)
6947 {
6948 end_stepping_range (ecs);
6949 return;
6950 }
6951
6952 if (execution_direction == EXEC_REVERSE)
6953 {
6954 /* If we're already at the start of the function, we've either just
6955 stepped backward into a single instruction function without line
6956 number info, or stepped back out of a signal handler to the first
6957 instruction of the function without line number info. Just keep
6958 going, which will single-step back to the caller. */
6959 if (ecs->stop_func_start != stop_pc)
6960 {
6961 /* Set a breakpoint at callee's start address.
6962 From there we can step once and be back in the caller. */
6963 symtab_and_line sr_sal;
6964 sr_sal.pc = ecs->stop_func_start;
6965 sr_sal.pspace = get_frame_program_space (frame);
6966 insert_step_resume_breakpoint_at_sal (gdbarch,
6967 sr_sal, null_frame_id);
6968 }
6969 }
6970 else
6971 /* Set a breakpoint at callee's return address (the address
6972 at which the caller will resume). */
6973 insert_step_resume_breakpoint_at_caller (frame);
6974
6975 keep_going (ecs);
6976 return;
6977 }
6978
6979 /* Reverse stepping through solib trampolines. */
6980
6981 if (execution_direction == EXEC_REVERSE
6982 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6983 {
6984 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6985
6986 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6987 || (ecs->stop_func_start == 0
6988 && in_solib_dynsym_resolve_code (stop_pc)))
6989 {
6990 /* Any solib trampoline code can be handled in reverse
6991 by simply continuing to single-step. We have already
6992 executed the solib function (backwards), and a few
6993 steps will take us back through the trampoline to the
6994 caller. */
6995 keep_going (ecs);
6996 return;
6997 }
6998 else if (in_solib_dynsym_resolve_code (stop_pc))
6999 {
7000 /* Stepped backward into the solib dynsym resolver.
7001 Set a breakpoint at its start and continue, then
7002 one more step will take us out. */
7003 symtab_and_line sr_sal;
7004 sr_sal.pc = ecs->stop_func_start;
7005 sr_sal.pspace = get_frame_program_space (frame);
7006 insert_step_resume_breakpoint_at_sal (gdbarch,
7007 sr_sal, null_frame_id);
7008 keep_going (ecs);
7009 return;
7010 }
7011 }
7012
7013 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7014
7015 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7016 the trampoline processing logic, however, there are some trampolines
7017 that have no names, so we should do trampoline handling first. */
7018 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7019 && ecs->stop_func_name == NULL
7020 && stop_pc_sal.line == 0)
7021 {
7022 if (debug_infrun)
7023 fprintf_unfiltered (gdb_stdlog,
7024 "infrun: stepped into undebuggable function\n");
7025
7026 /* The inferior just stepped into, or returned to, an
7027 undebuggable function (where there is no debugging information
7028 and no line number corresponding to the address where the
7029 inferior stopped). Since we want to skip this kind of code,
7030 we keep going until the inferior returns from this
7031 function - unless the user has asked us not to (via
7032 set step-mode) or we no longer know how to get back
7033 to the call site. */
7034 if (step_stop_if_no_debug
7035 || !frame_id_p (frame_unwind_caller_id (frame)))
7036 {
7037 /* If we have no line number and the step-stop-if-no-debug
7038 is set, we stop the step so that the user has a chance to
7039 switch in assembly mode. */
7040 end_stepping_range (ecs);
7041 return;
7042 }
7043 else
7044 {
7045 /* Set a breakpoint at callee's return address (the address
7046 at which the caller will resume). */
7047 insert_step_resume_breakpoint_at_caller (frame);
7048 keep_going (ecs);
7049 return;
7050 }
7051 }
7052
7053 if (ecs->event_thread->control.step_range_end == 1)
7054 {
7055 /* It is stepi or nexti. We always want to stop stepping after
7056 one instruction. */
7057 if (debug_infrun)
7058 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
7059 end_stepping_range (ecs);
7060 return;
7061 }
7062
7063 if (stop_pc_sal.line == 0)
7064 {
7065 /* We have no line number information. That means to stop
7066 stepping (does this always happen right after one instruction,
7067 when we do "s" in a function with no line numbers,
7068 or can this happen as a result of a return or longjmp?). */
7069 if (debug_infrun)
7070 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
7071 end_stepping_range (ecs);
7072 return;
7073 }
7074
7075 /* Look for "calls" to inlined functions, part one. If the inline
7076 frame machinery detected some skipped call sites, we have entered
7077 a new inline function. */
7078
7079 if (frame_id_eq (get_frame_id (get_current_frame ()),
7080 ecs->event_thread->control.step_frame_id)
7081 && inline_skipped_frames (ecs->event_thread))
7082 {
7083 if (debug_infrun)
7084 fprintf_unfiltered (gdb_stdlog,
7085 "infrun: stepped into inlined function\n");
7086
7087 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7088
7089 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7090 {
7091 /* For "step", we're going to stop. But if the call site
7092 for this inlined function is on the same source line as
7093 we were previously stepping, go down into the function
7094 first. Otherwise stop at the call site. */
7095
7096 if (call_sal.line == ecs->event_thread->current_line
7097 && call_sal.symtab == ecs->event_thread->current_symtab)
7098 {
7099 step_into_inline_frame (ecs->event_thread);
7100 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7101 {
7102 keep_going (ecs);
7103 return;
7104 }
7105 }
7106
7107 end_stepping_range (ecs);
7108 return;
7109 }
7110 else
7111 {
7112 /* For "next", we should stop at the call site if it is on a
7113 different source line. Otherwise continue through the
7114 inlined function. */
7115 if (call_sal.line == ecs->event_thread->current_line
7116 && call_sal.symtab == ecs->event_thread->current_symtab)
7117 keep_going (ecs);
7118 else
7119 end_stepping_range (ecs);
7120 return;
7121 }
7122 }
7123
7124 /* Look for "calls" to inlined functions, part two. If we are still
7125 in the same real function we were stepping through, but we have
7126 to go further up to find the exact frame ID, we are stepping
7127 through a more inlined call beyond its call site. */
7128
7129 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7130 && !frame_id_eq (get_frame_id (get_current_frame ()),
7131 ecs->event_thread->control.step_frame_id)
7132 && stepped_in_from (get_current_frame (),
7133 ecs->event_thread->control.step_frame_id))
7134 {
7135 if (debug_infrun)
7136 fprintf_unfiltered (gdb_stdlog,
7137 "infrun: stepping through inlined function\n");
7138
7139 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7140 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7141 keep_going (ecs);
7142 else
7143 end_stepping_range (ecs);
7144 return;
7145 }
7146
7147 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7148 && (ecs->event_thread->current_line != stop_pc_sal.line
7149 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7150 {
7151 /* We are at the start of a different line. So stop. Note that
7152 we don't stop if we step into the middle of a different line.
7153 That is said to make things like for (;;) statements work
7154 better. */
7155 if (debug_infrun)
7156 fprintf_unfiltered (gdb_stdlog,
7157 "infrun: stepped to a different line\n");
7158 end_stepping_range (ecs);
7159 return;
7160 }
7161
7162 /* We aren't done stepping.
7163
7164 Optimize by setting the stepping range to the line.
7165 (We might not be in the original line, but if we entered a
7166 new line in mid-statement, we continue stepping. This makes
7167 things like for(;;) statements work better.) */
7168
7169 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7170 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7171 ecs->event_thread->control.may_range_step = 1;
7172 set_step_info (frame, stop_pc_sal);
7173
7174 if (debug_infrun)
7175 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7176 keep_going (ecs);
7177 }
7178
7179 /* In all-stop mode, if we're currently stepping but have stopped in
7180 some other thread, we may need to switch back to the stepped
7181 thread. Returns true we set the inferior running, false if we left
7182 it stopped (and the event needs further processing). */
7183
7184 static int
7185 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7186 {
7187 if (!target_is_non_stop_p ())
7188 {
7189 struct thread_info *stepping_thread;
7190
7191 /* If any thread is blocked on some internal breakpoint, and we
7192 simply need to step over that breakpoint to get it going
7193 again, do that first. */
7194
7195 /* However, if we see an event for the stepping thread, then we
7196 know all other threads have been moved past their breakpoints
7197 already. Let the caller check whether the step is finished,
7198 etc., before deciding to move it past a breakpoint. */
7199 if (ecs->event_thread->control.step_range_end != 0)
7200 return 0;
7201
7202 /* Check if the current thread is blocked on an incomplete
7203 step-over, interrupted by a random signal. */
7204 if (ecs->event_thread->control.trap_expected
7205 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7206 {
7207 if (debug_infrun)
7208 {
7209 fprintf_unfiltered (gdb_stdlog,
7210 "infrun: need to finish step-over of [%s]\n",
7211 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7212 }
7213 keep_going (ecs);
7214 return 1;
7215 }
7216
7217 /* Check if the current thread is blocked by a single-step
7218 breakpoint of another thread. */
7219 if (ecs->hit_singlestep_breakpoint)
7220 {
7221 if (debug_infrun)
7222 {
7223 fprintf_unfiltered (gdb_stdlog,
7224 "infrun: need to step [%s] over single-step "
7225 "breakpoint\n",
7226 target_pid_to_str (ecs->ptid).c_str ());
7227 }
7228 keep_going (ecs);
7229 return 1;
7230 }
7231
7232 /* If this thread needs yet another step-over (e.g., stepping
7233 through a delay slot), do it first before moving on to
7234 another thread. */
7235 if (thread_still_needs_step_over (ecs->event_thread))
7236 {
7237 if (debug_infrun)
7238 {
7239 fprintf_unfiltered (gdb_stdlog,
7240 "infrun: thread [%s] still needs step-over\n",
7241 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7242 }
7243 keep_going (ecs);
7244 return 1;
7245 }
7246
7247 /* If scheduler locking applies even if not stepping, there's no
7248 need to walk over threads. Above we've checked whether the
7249 current thread is stepping. If some other thread not the
7250 event thread is stepping, then it must be that scheduler
7251 locking is not in effect. */
7252 if (schedlock_applies (ecs->event_thread))
7253 return 0;
7254
7255 /* Otherwise, we no longer expect a trap in the current thread.
7256 Clear the trap_expected flag before switching back -- this is
7257 what keep_going does as well, if we call it. */
7258 ecs->event_thread->control.trap_expected = 0;
7259
7260 /* Likewise, clear the signal if it should not be passed. */
7261 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7262 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7263
7264 /* Do all pending step-overs before actually proceeding with
7265 step/next/etc. */
7266 if (start_step_over ())
7267 {
7268 prepare_to_wait (ecs);
7269 return 1;
7270 }
7271
7272 /* Look for the stepping/nexting thread. */
7273 stepping_thread = NULL;
7274
7275 for (thread_info *tp : all_non_exited_threads ())
7276 {
7277 switch_to_thread_no_regs (tp);
7278
7279 /* Ignore threads of processes the caller is not
7280 resuming. */
7281 if (!sched_multi
7282 && (tp->inf->process_target () != ecs->target
7283 || tp->inf->pid != ecs->ptid.pid ()))
7284 continue;
7285
7286 /* When stepping over a breakpoint, we lock all threads
7287 except the one that needs to move past the breakpoint.
7288 If a non-event thread has this set, the "incomplete
7289 step-over" check above should have caught it earlier. */
7290 if (tp->control.trap_expected)
7291 {
7292 internal_error (__FILE__, __LINE__,
7293 "[%s] has inconsistent state: "
7294 "trap_expected=%d\n",
7295 target_pid_to_str (tp->ptid).c_str (),
7296 tp->control.trap_expected);
7297 }
7298
7299 /* Did we find the stepping thread? */
7300 if (tp->control.step_range_end)
7301 {
7302 /* Yep. There should only one though. */
7303 gdb_assert (stepping_thread == NULL);
7304
7305 /* The event thread is handled at the top, before we
7306 enter this loop. */
7307 gdb_assert (tp != ecs->event_thread);
7308
7309 /* If some thread other than the event thread is
7310 stepping, then scheduler locking can't be in effect,
7311 otherwise we wouldn't have resumed the current event
7312 thread in the first place. */
7313 gdb_assert (!schedlock_applies (tp));
7314
7315 stepping_thread = tp;
7316 }
7317 }
7318
7319 if (stepping_thread != NULL)
7320 {
7321 if (debug_infrun)
7322 fprintf_unfiltered (gdb_stdlog,
7323 "infrun: switching back to stepped thread\n");
7324
7325 if (keep_going_stepped_thread (stepping_thread))
7326 {
7327 prepare_to_wait (ecs);
7328 return 1;
7329 }
7330 }
7331
7332 switch_to_thread (ecs->event_thread);
7333 }
7334
7335 return 0;
7336 }
7337
7338 /* Set a previously stepped thread back to stepping. Returns true on
7339 success, false if the resume is not possible (e.g., the thread
7340 vanished). */
7341
7342 static int
7343 keep_going_stepped_thread (struct thread_info *tp)
7344 {
7345 struct frame_info *frame;
7346 struct execution_control_state ecss;
7347 struct execution_control_state *ecs = &ecss;
7348
7349 /* If the stepping thread exited, then don't try to switch back and
7350 resume it, which could fail in several different ways depending
7351 on the target. Instead, just keep going.
7352
7353 We can find a stepping dead thread in the thread list in two
7354 cases:
7355
7356 - The target supports thread exit events, and when the target
7357 tries to delete the thread from the thread list, inferior_ptid
7358 pointed at the exiting thread. In such case, calling
7359 delete_thread does not really remove the thread from the list;
7360 instead, the thread is left listed, with 'exited' state.
7361
7362 - The target's debug interface does not support thread exit
7363 events, and so we have no idea whatsoever if the previously
7364 stepping thread is still alive. For that reason, we need to
7365 synchronously query the target now. */
7366
7367 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7368 {
7369 if (debug_infrun)
7370 fprintf_unfiltered (gdb_stdlog,
7371 "infrun: not resuming previously "
7372 "stepped thread, it has vanished\n");
7373
7374 delete_thread (tp);
7375 return 0;
7376 }
7377
7378 if (debug_infrun)
7379 fprintf_unfiltered (gdb_stdlog,
7380 "infrun: resuming previously stepped thread\n");
7381
7382 reset_ecs (ecs, tp);
7383 switch_to_thread (tp);
7384
7385 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7386 frame = get_current_frame ();
7387
7388 /* If the PC of the thread we were trying to single-step has
7389 changed, then that thread has trapped or been signaled, but the
7390 event has not been reported to GDB yet. Re-poll the target
7391 looking for this particular thread's event (i.e. temporarily
7392 enable schedlock) by:
7393
7394 - setting a break at the current PC
7395 - resuming that particular thread, only (by setting trap
7396 expected)
7397
7398 This prevents us continuously moving the single-step breakpoint
7399 forward, one instruction at a time, overstepping. */
7400
7401 if (tp->suspend.stop_pc != tp->prev_pc)
7402 {
7403 ptid_t resume_ptid;
7404
7405 if (debug_infrun)
7406 fprintf_unfiltered (gdb_stdlog,
7407 "infrun: expected thread advanced also (%s -> %s)\n",
7408 paddress (target_gdbarch (), tp->prev_pc),
7409 paddress (target_gdbarch (), tp->suspend.stop_pc));
7410
7411 /* Clear the info of the previous step-over, as it's no longer
7412 valid (if the thread was trying to step over a breakpoint, it
7413 has already succeeded). It's what keep_going would do too,
7414 if we called it. Do this before trying to insert the sss
7415 breakpoint, otherwise if we were previously trying to step
7416 over this exact address in another thread, the breakpoint is
7417 skipped. */
7418 clear_step_over_info ();
7419 tp->control.trap_expected = 0;
7420
7421 insert_single_step_breakpoint (get_frame_arch (frame),
7422 get_frame_address_space (frame),
7423 tp->suspend.stop_pc);
7424
7425 tp->resumed = true;
7426 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7427 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7428 }
7429 else
7430 {
7431 if (debug_infrun)
7432 fprintf_unfiltered (gdb_stdlog,
7433 "infrun: expected thread still hasn't advanced\n");
7434
7435 keep_going_pass_signal (ecs);
7436 }
7437 return 1;
7438 }
7439
7440 /* Is thread TP in the middle of (software or hardware)
7441 single-stepping? (Note the result of this function must never be
7442 passed directly as target_resume's STEP parameter.) */
7443
7444 static int
7445 currently_stepping (struct thread_info *tp)
7446 {
7447 return ((tp->control.step_range_end
7448 && tp->control.step_resume_breakpoint == NULL)
7449 || tp->control.trap_expected
7450 || tp->stepped_breakpoint
7451 || bpstat_should_step ());
7452 }
7453
7454 /* Inferior has stepped into a subroutine call with source code that
7455 we should not step over. Do step to the first line of code in
7456 it. */
7457
7458 static void
7459 handle_step_into_function (struct gdbarch *gdbarch,
7460 struct execution_control_state *ecs)
7461 {
7462 fill_in_stop_func (gdbarch, ecs);
7463
7464 compunit_symtab *cust
7465 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7466 if (cust != NULL && compunit_language (cust) != language_asm)
7467 ecs->stop_func_start
7468 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7469
7470 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7471 /* Use the step_resume_break to step until the end of the prologue,
7472 even if that involves jumps (as it seems to on the vax under
7473 4.2). */
7474 /* If the prologue ends in the middle of a source line, continue to
7475 the end of that source line (if it is still within the function).
7476 Otherwise, just go to end of prologue. */
7477 if (stop_func_sal.end
7478 && stop_func_sal.pc != ecs->stop_func_start
7479 && stop_func_sal.end < ecs->stop_func_end)
7480 ecs->stop_func_start = stop_func_sal.end;
7481
7482 /* Architectures which require breakpoint adjustment might not be able
7483 to place a breakpoint at the computed address. If so, the test
7484 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7485 ecs->stop_func_start to an address at which a breakpoint may be
7486 legitimately placed.
7487
7488 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7489 made, GDB will enter an infinite loop when stepping through
7490 optimized code consisting of VLIW instructions which contain
7491 subinstructions corresponding to different source lines. On
7492 FR-V, it's not permitted to place a breakpoint on any but the
7493 first subinstruction of a VLIW instruction. When a breakpoint is
7494 set, GDB will adjust the breakpoint address to the beginning of
7495 the VLIW instruction. Thus, we need to make the corresponding
7496 adjustment here when computing the stop address. */
7497
7498 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7499 {
7500 ecs->stop_func_start
7501 = gdbarch_adjust_breakpoint_address (gdbarch,
7502 ecs->stop_func_start);
7503 }
7504
7505 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7506 {
7507 /* We are already there: stop now. */
7508 end_stepping_range (ecs);
7509 return;
7510 }
7511 else
7512 {
7513 /* Put the step-breakpoint there and go until there. */
7514 symtab_and_line sr_sal;
7515 sr_sal.pc = ecs->stop_func_start;
7516 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7517 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7518
7519 /* Do not specify what the fp should be when we stop since on
7520 some machines the prologue is where the new fp value is
7521 established. */
7522 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7523
7524 /* And make sure stepping stops right away then. */
7525 ecs->event_thread->control.step_range_end
7526 = ecs->event_thread->control.step_range_start;
7527 }
7528 keep_going (ecs);
7529 }
7530
7531 /* Inferior has stepped backward into a subroutine call with source
7532 code that we should not step over. Do step to the beginning of the
7533 last line of code in it. */
7534
7535 static void
7536 handle_step_into_function_backward (struct gdbarch *gdbarch,
7537 struct execution_control_state *ecs)
7538 {
7539 struct compunit_symtab *cust;
7540 struct symtab_and_line stop_func_sal;
7541
7542 fill_in_stop_func (gdbarch, ecs);
7543
7544 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7545 if (cust != NULL && compunit_language (cust) != language_asm)
7546 ecs->stop_func_start
7547 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7548
7549 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7550
7551 /* OK, we're just going to keep stepping here. */
7552 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7553 {
7554 /* We're there already. Just stop stepping now. */
7555 end_stepping_range (ecs);
7556 }
7557 else
7558 {
7559 /* Else just reset the step range and keep going.
7560 No step-resume breakpoint, they don't work for
7561 epilogues, which can have multiple entry paths. */
7562 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7563 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7564 keep_going (ecs);
7565 }
7566 return;
7567 }
7568
7569 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7570 This is used to both functions and to skip over code. */
7571
7572 static void
7573 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7574 struct symtab_and_line sr_sal,
7575 struct frame_id sr_id,
7576 enum bptype sr_type)
7577 {
7578 /* There should never be more than one step-resume or longjmp-resume
7579 breakpoint per thread, so we should never be setting a new
7580 step_resume_breakpoint when one is already active. */
7581 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7582 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7583
7584 if (debug_infrun)
7585 fprintf_unfiltered (gdb_stdlog,
7586 "infrun: inserting step-resume breakpoint at %s\n",
7587 paddress (gdbarch, sr_sal.pc));
7588
7589 inferior_thread ()->control.step_resume_breakpoint
7590 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7591 }
7592
7593 void
7594 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7595 struct symtab_and_line sr_sal,
7596 struct frame_id sr_id)
7597 {
7598 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7599 sr_sal, sr_id,
7600 bp_step_resume);
7601 }
7602
7603 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7604 This is used to skip a potential signal handler.
7605
7606 This is called with the interrupted function's frame. The signal
7607 handler, when it returns, will resume the interrupted function at
7608 RETURN_FRAME.pc. */
7609
7610 static void
7611 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7612 {
7613 gdb_assert (return_frame != NULL);
7614
7615 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7616
7617 symtab_and_line sr_sal;
7618 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7619 sr_sal.section = find_pc_overlay (sr_sal.pc);
7620 sr_sal.pspace = get_frame_program_space (return_frame);
7621
7622 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7623 get_stack_frame_id (return_frame),
7624 bp_hp_step_resume);
7625 }
7626
7627 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7628 is used to skip a function after stepping into it (for "next" or if
7629 the called function has no debugging information).
7630
7631 The current function has almost always been reached by single
7632 stepping a call or return instruction. NEXT_FRAME belongs to the
7633 current function, and the breakpoint will be set at the caller's
7634 resume address.
7635
7636 This is a separate function rather than reusing
7637 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7638 get_prev_frame, which may stop prematurely (see the implementation
7639 of frame_unwind_caller_id for an example). */
7640
7641 static void
7642 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7643 {
7644 /* We shouldn't have gotten here if we don't know where the call site
7645 is. */
7646 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7647
7648 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7649
7650 symtab_and_line sr_sal;
7651 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7652 frame_unwind_caller_pc (next_frame));
7653 sr_sal.section = find_pc_overlay (sr_sal.pc);
7654 sr_sal.pspace = frame_unwind_program_space (next_frame);
7655
7656 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7657 frame_unwind_caller_id (next_frame));
7658 }
7659
7660 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7661 new breakpoint at the target of a jmp_buf. The handling of
7662 longjmp-resume uses the same mechanisms used for handling
7663 "step-resume" breakpoints. */
7664
7665 static void
7666 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7667 {
7668 /* There should never be more than one longjmp-resume breakpoint per
7669 thread, so we should never be setting a new
7670 longjmp_resume_breakpoint when one is already active. */
7671 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7672
7673 if (debug_infrun)
7674 fprintf_unfiltered (gdb_stdlog,
7675 "infrun: inserting longjmp-resume breakpoint at %s\n",
7676 paddress (gdbarch, pc));
7677
7678 inferior_thread ()->control.exception_resume_breakpoint =
7679 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7680 }
7681
7682 /* Insert an exception resume breakpoint. TP is the thread throwing
7683 the exception. The block B is the block of the unwinder debug hook
7684 function. FRAME is the frame corresponding to the call to this
7685 function. SYM is the symbol of the function argument holding the
7686 target PC of the exception. */
7687
7688 static void
7689 insert_exception_resume_breakpoint (struct thread_info *tp,
7690 const struct block *b,
7691 struct frame_info *frame,
7692 struct symbol *sym)
7693 {
7694 try
7695 {
7696 struct block_symbol vsym;
7697 struct value *value;
7698 CORE_ADDR handler;
7699 struct breakpoint *bp;
7700
7701 vsym = lookup_symbol_search_name (sym->search_name (),
7702 b, VAR_DOMAIN);
7703 value = read_var_value (vsym.symbol, vsym.block, frame);
7704 /* If the value was optimized out, revert to the old behavior. */
7705 if (! value_optimized_out (value))
7706 {
7707 handler = value_as_address (value);
7708
7709 if (debug_infrun)
7710 fprintf_unfiltered (gdb_stdlog,
7711 "infrun: exception resume at %lx\n",
7712 (unsigned long) handler);
7713
7714 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7715 handler,
7716 bp_exception_resume).release ();
7717
7718 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7719 frame = NULL;
7720
7721 bp->thread = tp->global_num;
7722 inferior_thread ()->control.exception_resume_breakpoint = bp;
7723 }
7724 }
7725 catch (const gdb_exception_error &e)
7726 {
7727 /* We want to ignore errors here. */
7728 }
7729 }
7730
7731 /* A helper for check_exception_resume that sets an
7732 exception-breakpoint based on a SystemTap probe. */
7733
7734 static void
7735 insert_exception_resume_from_probe (struct thread_info *tp,
7736 const struct bound_probe *probe,
7737 struct frame_info *frame)
7738 {
7739 struct value *arg_value;
7740 CORE_ADDR handler;
7741 struct breakpoint *bp;
7742
7743 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7744 if (!arg_value)
7745 return;
7746
7747 handler = value_as_address (arg_value);
7748
7749 if (debug_infrun)
7750 fprintf_unfiltered (gdb_stdlog,
7751 "infrun: exception resume at %s\n",
7752 paddress (get_objfile_arch (probe->objfile),
7753 handler));
7754
7755 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7756 handler, bp_exception_resume).release ();
7757 bp->thread = tp->global_num;
7758 inferior_thread ()->control.exception_resume_breakpoint = bp;
7759 }
7760
7761 /* This is called when an exception has been intercepted. Check to
7762 see whether the exception's destination is of interest, and if so,
7763 set an exception resume breakpoint there. */
7764
7765 static void
7766 check_exception_resume (struct execution_control_state *ecs,
7767 struct frame_info *frame)
7768 {
7769 struct bound_probe probe;
7770 struct symbol *func;
7771
7772 /* First see if this exception unwinding breakpoint was set via a
7773 SystemTap probe point. If so, the probe has two arguments: the
7774 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7775 set a breakpoint there. */
7776 probe = find_probe_by_pc (get_frame_pc (frame));
7777 if (probe.prob)
7778 {
7779 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7780 return;
7781 }
7782
7783 func = get_frame_function (frame);
7784 if (!func)
7785 return;
7786
7787 try
7788 {
7789 const struct block *b;
7790 struct block_iterator iter;
7791 struct symbol *sym;
7792 int argno = 0;
7793
7794 /* The exception breakpoint is a thread-specific breakpoint on
7795 the unwinder's debug hook, declared as:
7796
7797 void _Unwind_DebugHook (void *cfa, void *handler);
7798
7799 The CFA argument indicates the frame to which control is
7800 about to be transferred. HANDLER is the destination PC.
7801
7802 We ignore the CFA and set a temporary breakpoint at HANDLER.
7803 This is not extremely efficient but it avoids issues in gdb
7804 with computing the DWARF CFA, and it also works even in weird
7805 cases such as throwing an exception from inside a signal
7806 handler. */
7807
7808 b = SYMBOL_BLOCK_VALUE (func);
7809 ALL_BLOCK_SYMBOLS (b, iter, sym)
7810 {
7811 if (!SYMBOL_IS_ARGUMENT (sym))
7812 continue;
7813
7814 if (argno == 0)
7815 ++argno;
7816 else
7817 {
7818 insert_exception_resume_breakpoint (ecs->event_thread,
7819 b, frame, sym);
7820 break;
7821 }
7822 }
7823 }
7824 catch (const gdb_exception_error &e)
7825 {
7826 }
7827 }
7828
7829 static void
7830 stop_waiting (struct execution_control_state *ecs)
7831 {
7832 if (debug_infrun)
7833 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7834
7835 /* Let callers know we don't want to wait for the inferior anymore. */
7836 ecs->wait_some_more = 0;
7837
7838 /* If all-stop, but the target is always in non-stop mode, stop all
7839 threads now that we're presenting the stop to the user. */
7840 if (!non_stop && target_is_non_stop_p ())
7841 stop_all_threads ();
7842 }
7843
7844 /* Like keep_going, but passes the signal to the inferior, even if the
7845 signal is set to nopass. */
7846
7847 static void
7848 keep_going_pass_signal (struct execution_control_state *ecs)
7849 {
7850 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7851 gdb_assert (!ecs->event_thread->resumed);
7852
7853 /* Save the pc before execution, to compare with pc after stop. */
7854 ecs->event_thread->prev_pc
7855 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7856
7857 if (ecs->event_thread->control.trap_expected)
7858 {
7859 struct thread_info *tp = ecs->event_thread;
7860
7861 if (debug_infrun)
7862 fprintf_unfiltered (gdb_stdlog,
7863 "infrun: %s has trap_expected set, "
7864 "resuming to collect trap\n",
7865 target_pid_to_str (tp->ptid).c_str ());
7866
7867 /* We haven't yet gotten our trap, and either: intercepted a
7868 non-signal event (e.g., a fork); or took a signal which we
7869 are supposed to pass through to the inferior. Simply
7870 continue. */
7871 resume (ecs->event_thread->suspend.stop_signal);
7872 }
7873 else if (step_over_info_valid_p ())
7874 {
7875 /* Another thread is stepping over a breakpoint in-line. If
7876 this thread needs a step-over too, queue the request. In
7877 either case, this resume must be deferred for later. */
7878 struct thread_info *tp = ecs->event_thread;
7879
7880 if (ecs->hit_singlestep_breakpoint
7881 || thread_still_needs_step_over (tp))
7882 {
7883 if (debug_infrun)
7884 fprintf_unfiltered (gdb_stdlog,
7885 "infrun: step-over already in progress: "
7886 "step-over for %s deferred\n",
7887 target_pid_to_str (tp->ptid).c_str ());
7888 thread_step_over_chain_enqueue (tp);
7889 }
7890 else
7891 {
7892 if (debug_infrun)
7893 fprintf_unfiltered (gdb_stdlog,
7894 "infrun: step-over in progress: "
7895 "resume of %s deferred\n",
7896 target_pid_to_str (tp->ptid).c_str ());
7897 }
7898 }
7899 else
7900 {
7901 struct regcache *regcache = get_current_regcache ();
7902 int remove_bp;
7903 int remove_wps;
7904 step_over_what step_what;
7905
7906 /* Either the trap was not expected, but we are continuing
7907 anyway (if we got a signal, the user asked it be passed to
7908 the child)
7909 -- or --
7910 We got our expected trap, but decided we should resume from
7911 it.
7912
7913 We're going to run this baby now!
7914
7915 Note that insert_breakpoints won't try to re-insert
7916 already inserted breakpoints. Therefore, we don't
7917 care if breakpoints were already inserted, or not. */
7918
7919 /* If we need to step over a breakpoint, and we're not using
7920 displaced stepping to do so, insert all breakpoints
7921 (watchpoints, etc.) but the one we're stepping over, step one
7922 instruction, and then re-insert the breakpoint when that step
7923 is finished. */
7924
7925 step_what = thread_still_needs_step_over (ecs->event_thread);
7926
7927 remove_bp = (ecs->hit_singlestep_breakpoint
7928 || (step_what & STEP_OVER_BREAKPOINT));
7929 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7930
7931 /* We can't use displaced stepping if we need to step past a
7932 watchpoint. The instruction copied to the scratch pad would
7933 still trigger the watchpoint. */
7934 if (remove_bp
7935 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7936 {
7937 set_step_over_info (regcache->aspace (),
7938 regcache_read_pc (regcache), remove_wps,
7939 ecs->event_thread->global_num);
7940 }
7941 else if (remove_wps)
7942 set_step_over_info (NULL, 0, remove_wps, -1);
7943
7944 /* If we now need to do an in-line step-over, we need to stop
7945 all other threads. Note this must be done before
7946 insert_breakpoints below, because that removes the breakpoint
7947 we're about to step over, otherwise other threads could miss
7948 it. */
7949 if (step_over_info_valid_p () && target_is_non_stop_p ())
7950 stop_all_threads ();
7951
7952 /* Stop stepping if inserting breakpoints fails. */
7953 try
7954 {
7955 insert_breakpoints ();
7956 }
7957 catch (const gdb_exception_error &e)
7958 {
7959 exception_print (gdb_stderr, e);
7960 stop_waiting (ecs);
7961 clear_step_over_info ();
7962 return;
7963 }
7964
7965 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7966
7967 resume (ecs->event_thread->suspend.stop_signal);
7968 }
7969
7970 prepare_to_wait (ecs);
7971 }
7972
7973 /* Called when we should continue running the inferior, because the
7974 current event doesn't cause a user visible stop. This does the
7975 resuming part; waiting for the next event is done elsewhere. */
7976
7977 static void
7978 keep_going (struct execution_control_state *ecs)
7979 {
7980 if (ecs->event_thread->control.trap_expected
7981 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7982 ecs->event_thread->control.trap_expected = 0;
7983
7984 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7985 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7986 keep_going_pass_signal (ecs);
7987 }
7988
7989 /* This function normally comes after a resume, before
7990 handle_inferior_event exits. It takes care of any last bits of
7991 housekeeping, and sets the all-important wait_some_more flag. */
7992
7993 static void
7994 prepare_to_wait (struct execution_control_state *ecs)
7995 {
7996 if (debug_infrun)
7997 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7998
7999 ecs->wait_some_more = 1;
8000
8001 if (!target_is_async_p ())
8002 mark_infrun_async_event_handler ();
8003 }
8004
8005 /* We are done with the step range of a step/next/si/ni command.
8006 Called once for each n of a "step n" operation. */
8007
8008 static void
8009 end_stepping_range (struct execution_control_state *ecs)
8010 {
8011 ecs->event_thread->control.stop_step = 1;
8012 stop_waiting (ecs);
8013 }
8014
8015 /* Several print_*_reason functions to print why the inferior has stopped.
8016 We always print something when the inferior exits, or receives a signal.
8017 The rest of the cases are dealt with later on in normal_stop and
8018 print_it_typical. Ideally there should be a call to one of these
8019 print_*_reason functions functions from handle_inferior_event each time
8020 stop_waiting is called.
8021
8022 Note that we don't call these directly, instead we delegate that to
8023 the interpreters, through observers. Interpreters then call these
8024 with whatever uiout is right. */
8025
8026 void
8027 print_end_stepping_range_reason (struct ui_out *uiout)
8028 {
8029 /* For CLI-like interpreters, print nothing. */
8030
8031 if (uiout->is_mi_like_p ())
8032 {
8033 uiout->field_string ("reason",
8034 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8035 }
8036 }
8037
8038 void
8039 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8040 {
8041 annotate_signalled ();
8042 if (uiout->is_mi_like_p ())
8043 uiout->field_string
8044 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8045 uiout->text ("\nProgram terminated with signal ");
8046 annotate_signal_name ();
8047 uiout->field_string ("signal-name",
8048 gdb_signal_to_name (siggnal));
8049 annotate_signal_name_end ();
8050 uiout->text (", ");
8051 annotate_signal_string ();
8052 uiout->field_string ("signal-meaning",
8053 gdb_signal_to_string (siggnal));
8054 annotate_signal_string_end ();
8055 uiout->text (".\n");
8056 uiout->text ("The program no longer exists.\n");
8057 }
8058
8059 void
8060 print_exited_reason (struct ui_out *uiout, int exitstatus)
8061 {
8062 struct inferior *inf = current_inferior ();
8063 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8064
8065 annotate_exited (exitstatus);
8066 if (exitstatus)
8067 {
8068 if (uiout->is_mi_like_p ())
8069 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8070 std::string exit_code_str
8071 = string_printf ("0%o", (unsigned int) exitstatus);
8072 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8073 plongest (inf->num), pidstr.c_str (),
8074 string_field ("exit-code", exit_code_str.c_str ()));
8075 }
8076 else
8077 {
8078 if (uiout->is_mi_like_p ())
8079 uiout->field_string
8080 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8081 uiout->message ("[Inferior %s (%s) exited normally]\n",
8082 plongest (inf->num), pidstr.c_str ());
8083 }
8084 }
8085
8086 /* Some targets/architectures can do extra processing/display of
8087 segmentation faults. E.g., Intel MPX boundary faults.
8088 Call the architecture dependent function to handle the fault. */
8089
8090 static void
8091 handle_segmentation_fault (struct ui_out *uiout)
8092 {
8093 struct regcache *regcache = get_current_regcache ();
8094 struct gdbarch *gdbarch = regcache->arch ();
8095
8096 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8097 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8098 }
8099
8100 void
8101 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8102 {
8103 struct thread_info *thr = inferior_thread ();
8104
8105 annotate_signal ();
8106
8107 if (uiout->is_mi_like_p ())
8108 ;
8109 else if (show_thread_that_caused_stop ())
8110 {
8111 const char *name;
8112
8113 uiout->text ("\nThread ");
8114 uiout->field_string ("thread-id", print_thread_id (thr));
8115
8116 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8117 if (name != NULL)
8118 {
8119 uiout->text (" \"");
8120 uiout->field_string ("name", name);
8121 uiout->text ("\"");
8122 }
8123 }
8124 else
8125 uiout->text ("\nProgram");
8126
8127 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8128 uiout->text (" stopped");
8129 else
8130 {
8131 uiout->text (" received signal ");
8132 annotate_signal_name ();
8133 if (uiout->is_mi_like_p ())
8134 uiout->field_string
8135 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8136 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8137 annotate_signal_name_end ();
8138 uiout->text (", ");
8139 annotate_signal_string ();
8140 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8141
8142 if (siggnal == GDB_SIGNAL_SEGV)
8143 handle_segmentation_fault (uiout);
8144
8145 annotate_signal_string_end ();
8146 }
8147 uiout->text (".\n");
8148 }
8149
8150 void
8151 print_no_history_reason (struct ui_out *uiout)
8152 {
8153 uiout->text ("\nNo more reverse-execution history.\n");
8154 }
8155
8156 /* Print current location without a level number, if we have changed
8157 functions or hit a breakpoint. Print source line if we have one.
8158 bpstat_print contains the logic deciding in detail what to print,
8159 based on the event(s) that just occurred. */
8160
8161 static void
8162 print_stop_location (struct target_waitstatus *ws)
8163 {
8164 int bpstat_ret;
8165 enum print_what source_flag;
8166 int do_frame_printing = 1;
8167 struct thread_info *tp = inferior_thread ();
8168
8169 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8170 switch (bpstat_ret)
8171 {
8172 case PRINT_UNKNOWN:
8173 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8174 should) carry around the function and does (or should) use
8175 that when doing a frame comparison. */
8176 if (tp->control.stop_step
8177 && frame_id_eq (tp->control.step_frame_id,
8178 get_frame_id (get_current_frame ()))
8179 && (tp->control.step_start_function
8180 == find_pc_function (tp->suspend.stop_pc)))
8181 {
8182 /* Finished step, just print source line. */
8183 source_flag = SRC_LINE;
8184 }
8185 else
8186 {
8187 /* Print location and source line. */
8188 source_flag = SRC_AND_LOC;
8189 }
8190 break;
8191 case PRINT_SRC_AND_LOC:
8192 /* Print location and source line. */
8193 source_flag = SRC_AND_LOC;
8194 break;
8195 case PRINT_SRC_ONLY:
8196 source_flag = SRC_LINE;
8197 break;
8198 case PRINT_NOTHING:
8199 /* Something bogus. */
8200 source_flag = SRC_LINE;
8201 do_frame_printing = 0;
8202 break;
8203 default:
8204 internal_error (__FILE__, __LINE__, _("Unknown value."));
8205 }
8206
8207 /* The behavior of this routine with respect to the source
8208 flag is:
8209 SRC_LINE: Print only source line
8210 LOCATION: Print only location
8211 SRC_AND_LOC: Print location and source line. */
8212 if (do_frame_printing)
8213 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8214 }
8215
8216 /* See infrun.h. */
8217
8218 void
8219 print_stop_event (struct ui_out *uiout, bool displays)
8220 {
8221 struct target_waitstatus last;
8222 struct thread_info *tp;
8223
8224 get_last_target_status (nullptr, nullptr, &last);
8225
8226 {
8227 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8228
8229 print_stop_location (&last);
8230
8231 /* Display the auto-display expressions. */
8232 if (displays)
8233 do_displays ();
8234 }
8235
8236 tp = inferior_thread ();
8237 if (tp->thread_fsm != NULL
8238 && tp->thread_fsm->finished_p ())
8239 {
8240 struct return_value_info *rv;
8241
8242 rv = tp->thread_fsm->return_value ();
8243 if (rv != NULL)
8244 print_return_value (uiout, rv);
8245 }
8246 }
8247
8248 /* See infrun.h. */
8249
8250 void
8251 maybe_remove_breakpoints (void)
8252 {
8253 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8254 {
8255 if (remove_breakpoints ())
8256 {
8257 target_terminal::ours_for_output ();
8258 printf_filtered (_("Cannot remove breakpoints because "
8259 "program is no longer writable.\nFurther "
8260 "execution is probably impossible.\n"));
8261 }
8262 }
8263 }
8264
8265 /* The execution context that just caused a normal stop. */
8266
8267 struct stop_context
8268 {
8269 stop_context ();
8270 ~stop_context ();
8271
8272 DISABLE_COPY_AND_ASSIGN (stop_context);
8273
8274 bool changed () const;
8275
8276 /* The stop ID. */
8277 ULONGEST stop_id;
8278
8279 /* The event PTID. */
8280
8281 ptid_t ptid;
8282
8283 /* If stopp for a thread event, this is the thread that caused the
8284 stop. */
8285 struct thread_info *thread;
8286
8287 /* The inferior that caused the stop. */
8288 int inf_num;
8289 };
8290
8291 /* Initializes a new stop context. If stopped for a thread event, this
8292 takes a strong reference to the thread. */
8293
8294 stop_context::stop_context ()
8295 {
8296 stop_id = get_stop_id ();
8297 ptid = inferior_ptid;
8298 inf_num = current_inferior ()->num;
8299
8300 if (inferior_ptid != null_ptid)
8301 {
8302 /* Take a strong reference so that the thread can't be deleted
8303 yet. */
8304 thread = inferior_thread ();
8305 thread->incref ();
8306 }
8307 else
8308 thread = NULL;
8309 }
8310
8311 /* Release a stop context previously created with save_stop_context.
8312 Releases the strong reference to the thread as well. */
8313
8314 stop_context::~stop_context ()
8315 {
8316 if (thread != NULL)
8317 thread->decref ();
8318 }
8319
8320 /* Return true if the current context no longer matches the saved stop
8321 context. */
8322
8323 bool
8324 stop_context::changed () const
8325 {
8326 if (ptid != inferior_ptid)
8327 return true;
8328 if (inf_num != current_inferior ()->num)
8329 return true;
8330 if (thread != NULL && thread->state != THREAD_STOPPED)
8331 return true;
8332 if (get_stop_id () != stop_id)
8333 return true;
8334 return false;
8335 }
8336
8337 /* See infrun.h. */
8338
8339 int
8340 normal_stop (void)
8341 {
8342 struct target_waitstatus last;
8343
8344 get_last_target_status (nullptr, nullptr, &last);
8345
8346 new_stop_id ();
8347
8348 /* If an exception is thrown from this point on, make sure to
8349 propagate GDB's knowledge of the executing state to the
8350 frontend/user running state. A QUIT is an easy exception to see
8351 here, so do this before any filtered output. */
8352
8353 ptid_t finish_ptid = null_ptid;
8354
8355 if (!non_stop)
8356 finish_ptid = minus_one_ptid;
8357 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8358 || last.kind == TARGET_WAITKIND_EXITED)
8359 {
8360 /* On some targets, we may still have live threads in the
8361 inferior when we get a process exit event. E.g., for
8362 "checkpoint", when the current checkpoint/fork exits,
8363 linux-fork.c automatically switches to another fork from
8364 within target_mourn_inferior. */
8365 if (inferior_ptid != null_ptid)
8366 finish_ptid = ptid_t (inferior_ptid.pid ());
8367 }
8368 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8369 finish_ptid = inferior_ptid;
8370
8371 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8372 if (finish_ptid != null_ptid)
8373 {
8374 maybe_finish_thread_state.emplace
8375 (user_visible_resume_target (finish_ptid), finish_ptid);
8376 }
8377
8378 /* As we're presenting a stop, and potentially removing breakpoints,
8379 update the thread list so we can tell whether there are threads
8380 running on the target. With target remote, for example, we can
8381 only learn about new threads when we explicitly update the thread
8382 list. Do this before notifying the interpreters about signal
8383 stops, end of stepping ranges, etc., so that the "new thread"
8384 output is emitted before e.g., "Program received signal FOO",
8385 instead of after. */
8386 update_thread_list ();
8387
8388 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8389 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8390
8391 /* As with the notification of thread events, we want to delay
8392 notifying the user that we've switched thread context until
8393 the inferior actually stops.
8394
8395 There's no point in saying anything if the inferior has exited.
8396 Note that SIGNALLED here means "exited with a signal", not
8397 "received a signal".
8398
8399 Also skip saying anything in non-stop mode. In that mode, as we
8400 don't want GDB to switch threads behind the user's back, to avoid
8401 races where the user is typing a command to apply to thread x,
8402 but GDB switches to thread y before the user finishes entering
8403 the command, fetch_inferior_event installs a cleanup to restore
8404 the current thread back to the thread the user had selected right
8405 after this event is handled, so we're not really switching, only
8406 informing of a stop. */
8407 if (!non_stop
8408 && previous_inferior_ptid != inferior_ptid
8409 && target_has_execution
8410 && last.kind != TARGET_WAITKIND_SIGNALLED
8411 && last.kind != TARGET_WAITKIND_EXITED
8412 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8413 {
8414 SWITCH_THRU_ALL_UIS ()
8415 {
8416 target_terminal::ours_for_output ();
8417 printf_filtered (_("[Switching to %s]\n"),
8418 target_pid_to_str (inferior_ptid).c_str ());
8419 annotate_thread_changed ();
8420 }
8421 previous_inferior_ptid = inferior_ptid;
8422 }
8423
8424 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8425 {
8426 SWITCH_THRU_ALL_UIS ()
8427 if (current_ui->prompt_state == PROMPT_BLOCKED)
8428 {
8429 target_terminal::ours_for_output ();
8430 printf_filtered (_("No unwaited-for children left.\n"));
8431 }
8432 }
8433
8434 /* Note: this depends on the update_thread_list call above. */
8435 maybe_remove_breakpoints ();
8436
8437 /* If an auto-display called a function and that got a signal,
8438 delete that auto-display to avoid an infinite recursion. */
8439
8440 if (stopped_by_random_signal)
8441 disable_current_display ();
8442
8443 SWITCH_THRU_ALL_UIS ()
8444 {
8445 async_enable_stdin ();
8446 }
8447
8448 /* Let the user/frontend see the threads as stopped. */
8449 maybe_finish_thread_state.reset ();
8450
8451 /* Select innermost stack frame - i.e., current frame is frame 0,
8452 and current location is based on that. Handle the case where the
8453 dummy call is returning after being stopped. E.g. the dummy call
8454 previously hit a breakpoint. (If the dummy call returns
8455 normally, we won't reach here.) Do this before the stop hook is
8456 run, so that it doesn't get to see the temporary dummy frame,
8457 which is not where we'll present the stop. */
8458 if (has_stack_frames ())
8459 {
8460 if (stop_stack_dummy == STOP_STACK_DUMMY)
8461 {
8462 /* Pop the empty frame that contains the stack dummy. This
8463 also restores inferior state prior to the call (struct
8464 infcall_suspend_state). */
8465 struct frame_info *frame = get_current_frame ();
8466
8467 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8468 frame_pop (frame);
8469 /* frame_pop calls reinit_frame_cache as the last thing it
8470 does which means there's now no selected frame. */
8471 }
8472
8473 select_frame (get_current_frame ());
8474
8475 /* Set the current source location. */
8476 set_current_sal_from_frame (get_current_frame ());
8477 }
8478
8479 /* Look up the hook_stop and run it (CLI internally handles problem
8480 of stop_command's pre-hook not existing). */
8481 if (stop_command != NULL)
8482 {
8483 stop_context saved_context;
8484
8485 try
8486 {
8487 execute_cmd_pre_hook (stop_command);
8488 }
8489 catch (const gdb_exception &ex)
8490 {
8491 exception_fprintf (gdb_stderr, ex,
8492 "Error while running hook_stop:\n");
8493 }
8494
8495 /* If the stop hook resumes the target, then there's no point in
8496 trying to notify about the previous stop; its context is
8497 gone. Likewise if the command switches thread or inferior --
8498 the observers would print a stop for the wrong
8499 thread/inferior. */
8500 if (saved_context.changed ())
8501 return 1;
8502 }
8503
8504 /* Notify observers about the stop. This is where the interpreters
8505 print the stop event. */
8506 if (inferior_ptid != null_ptid)
8507 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8508 stop_print_frame);
8509 else
8510 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8511
8512 annotate_stopped ();
8513
8514 if (target_has_execution)
8515 {
8516 if (last.kind != TARGET_WAITKIND_SIGNALLED
8517 && last.kind != TARGET_WAITKIND_EXITED
8518 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8519 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8520 Delete any breakpoint that is to be deleted at the next stop. */
8521 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8522 }
8523
8524 /* Try to get rid of automatically added inferiors that are no
8525 longer needed. Keeping those around slows down things linearly.
8526 Note that this never removes the current inferior. */
8527 prune_inferiors ();
8528
8529 return 0;
8530 }
8531 \f
8532 int
8533 signal_stop_state (int signo)
8534 {
8535 return signal_stop[signo];
8536 }
8537
8538 int
8539 signal_print_state (int signo)
8540 {
8541 return signal_print[signo];
8542 }
8543
8544 int
8545 signal_pass_state (int signo)
8546 {
8547 return signal_program[signo];
8548 }
8549
8550 static void
8551 signal_cache_update (int signo)
8552 {
8553 if (signo == -1)
8554 {
8555 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8556 signal_cache_update (signo);
8557
8558 return;
8559 }
8560
8561 signal_pass[signo] = (signal_stop[signo] == 0
8562 && signal_print[signo] == 0
8563 && signal_program[signo] == 1
8564 && signal_catch[signo] == 0);
8565 }
8566
8567 int
8568 signal_stop_update (int signo, int state)
8569 {
8570 int ret = signal_stop[signo];
8571
8572 signal_stop[signo] = state;
8573 signal_cache_update (signo);
8574 return ret;
8575 }
8576
8577 int
8578 signal_print_update (int signo, int state)
8579 {
8580 int ret = signal_print[signo];
8581
8582 signal_print[signo] = state;
8583 signal_cache_update (signo);
8584 return ret;
8585 }
8586
8587 int
8588 signal_pass_update (int signo, int state)
8589 {
8590 int ret = signal_program[signo];
8591
8592 signal_program[signo] = state;
8593 signal_cache_update (signo);
8594 return ret;
8595 }
8596
8597 /* Update the global 'signal_catch' from INFO and notify the
8598 target. */
8599
8600 void
8601 signal_catch_update (const unsigned int *info)
8602 {
8603 int i;
8604
8605 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8606 signal_catch[i] = info[i] > 0;
8607 signal_cache_update (-1);
8608 target_pass_signals (signal_pass);
8609 }
8610
8611 static void
8612 sig_print_header (void)
8613 {
8614 printf_filtered (_("Signal Stop\tPrint\tPass "
8615 "to program\tDescription\n"));
8616 }
8617
8618 static void
8619 sig_print_info (enum gdb_signal oursig)
8620 {
8621 const char *name = gdb_signal_to_name (oursig);
8622 int name_padding = 13 - strlen (name);
8623
8624 if (name_padding <= 0)
8625 name_padding = 0;
8626
8627 printf_filtered ("%s", name);
8628 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8629 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8630 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8631 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8632 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8633 }
8634
8635 /* Specify how various signals in the inferior should be handled. */
8636
8637 static void
8638 handle_command (const char *args, int from_tty)
8639 {
8640 int digits, wordlen;
8641 int sigfirst, siglast;
8642 enum gdb_signal oursig;
8643 int allsigs;
8644
8645 if (args == NULL)
8646 {
8647 error_no_arg (_("signal to handle"));
8648 }
8649
8650 /* Allocate and zero an array of flags for which signals to handle. */
8651
8652 const size_t nsigs = GDB_SIGNAL_LAST;
8653 unsigned char sigs[nsigs] {};
8654
8655 /* Break the command line up into args. */
8656
8657 gdb_argv built_argv (args);
8658
8659 /* Walk through the args, looking for signal oursigs, signal names, and
8660 actions. Signal numbers and signal names may be interspersed with
8661 actions, with the actions being performed for all signals cumulatively
8662 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8663
8664 for (char *arg : built_argv)
8665 {
8666 wordlen = strlen (arg);
8667 for (digits = 0; isdigit (arg[digits]); digits++)
8668 {;
8669 }
8670 allsigs = 0;
8671 sigfirst = siglast = -1;
8672
8673 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8674 {
8675 /* Apply action to all signals except those used by the
8676 debugger. Silently skip those. */
8677 allsigs = 1;
8678 sigfirst = 0;
8679 siglast = nsigs - 1;
8680 }
8681 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8682 {
8683 SET_SIGS (nsigs, sigs, signal_stop);
8684 SET_SIGS (nsigs, sigs, signal_print);
8685 }
8686 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8687 {
8688 UNSET_SIGS (nsigs, sigs, signal_program);
8689 }
8690 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8691 {
8692 SET_SIGS (nsigs, sigs, signal_print);
8693 }
8694 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8695 {
8696 SET_SIGS (nsigs, sigs, signal_program);
8697 }
8698 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8699 {
8700 UNSET_SIGS (nsigs, sigs, signal_stop);
8701 }
8702 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8703 {
8704 SET_SIGS (nsigs, sigs, signal_program);
8705 }
8706 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8707 {
8708 UNSET_SIGS (nsigs, sigs, signal_print);
8709 UNSET_SIGS (nsigs, sigs, signal_stop);
8710 }
8711 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8712 {
8713 UNSET_SIGS (nsigs, sigs, signal_program);
8714 }
8715 else if (digits > 0)
8716 {
8717 /* It is numeric. The numeric signal refers to our own
8718 internal signal numbering from target.h, not to host/target
8719 signal number. This is a feature; users really should be
8720 using symbolic names anyway, and the common ones like
8721 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8722
8723 sigfirst = siglast = (int)
8724 gdb_signal_from_command (atoi (arg));
8725 if (arg[digits] == '-')
8726 {
8727 siglast = (int)
8728 gdb_signal_from_command (atoi (arg + digits + 1));
8729 }
8730 if (sigfirst > siglast)
8731 {
8732 /* Bet he didn't figure we'd think of this case... */
8733 std::swap (sigfirst, siglast);
8734 }
8735 }
8736 else
8737 {
8738 oursig = gdb_signal_from_name (arg);
8739 if (oursig != GDB_SIGNAL_UNKNOWN)
8740 {
8741 sigfirst = siglast = (int) oursig;
8742 }
8743 else
8744 {
8745 /* Not a number and not a recognized flag word => complain. */
8746 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8747 }
8748 }
8749
8750 /* If any signal numbers or symbol names were found, set flags for
8751 which signals to apply actions to. */
8752
8753 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8754 {
8755 switch ((enum gdb_signal) signum)
8756 {
8757 case GDB_SIGNAL_TRAP:
8758 case GDB_SIGNAL_INT:
8759 if (!allsigs && !sigs[signum])
8760 {
8761 if (query (_("%s is used by the debugger.\n\
8762 Are you sure you want to change it? "),
8763 gdb_signal_to_name ((enum gdb_signal) signum)))
8764 {
8765 sigs[signum] = 1;
8766 }
8767 else
8768 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8769 }
8770 break;
8771 case GDB_SIGNAL_0:
8772 case GDB_SIGNAL_DEFAULT:
8773 case GDB_SIGNAL_UNKNOWN:
8774 /* Make sure that "all" doesn't print these. */
8775 break;
8776 default:
8777 sigs[signum] = 1;
8778 break;
8779 }
8780 }
8781 }
8782
8783 for (int signum = 0; signum < nsigs; signum++)
8784 if (sigs[signum])
8785 {
8786 signal_cache_update (-1);
8787 target_pass_signals (signal_pass);
8788 target_program_signals (signal_program);
8789
8790 if (from_tty)
8791 {
8792 /* Show the results. */
8793 sig_print_header ();
8794 for (; signum < nsigs; signum++)
8795 if (sigs[signum])
8796 sig_print_info ((enum gdb_signal) signum);
8797 }
8798
8799 break;
8800 }
8801 }
8802
8803 /* Complete the "handle" command. */
8804
8805 static void
8806 handle_completer (struct cmd_list_element *ignore,
8807 completion_tracker &tracker,
8808 const char *text, const char *word)
8809 {
8810 static const char * const keywords[] =
8811 {
8812 "all",
8813 "stop",
8814 "ignore",
8815 "print",
8816 "pass",
8817 "nostop",
8818 "noignore",
8819 "noprint",
8820 "nopass",
8821 NULL,
8822 };
8823
8824 signal_completer (ignore, tracker, text, word);
8825 complete_on_enum (tracker, keywords, word, word);
8826 }
8827
8828 enum gdb_signal
8829 gdb_signal_from_command (int num)
8830 {
8831 if (num >= 1 && num <= 15)
8832 return (enum gdb_signal) num;
8833 error (_("Only signals 1-15 are valid as numeric signals.\n\
8834 Use \"info signals\" for a list of symbolic signals."));
8835 }
8836
8837 /* Print current contents of the tables set by the handle command.
8838 It is possible we should just be printing signals actually used
8839 by the current target (but for things to work right when switching
8840 targets, all signals should be in the signal tables). */
8841
8842 static void
8843 info_signals_command (const char *signum_exp, int from_tty)
8844 {
8845 enum gdb_signal oursig;
8846
8847 sig_print_header ();
8848
8849 if (signum_exp)
8850 {
8851 /* First see if this is a symbol name. */
8852 oursig = gdb_signal_from_name (signum_exp);
8853 if (oursig == GDB_SIGNAL_UNKNOWN)
8854 {
8855 /* No, try numeric. */
8856 oursig =
8857 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8858 }
8859 sig_print_info (oursig);
8860 return;
8861 }
8862
8863 printf_filtered ("\n");
8864 /* These ugly casts brought to you by the native VAX compiler. */
8865 for (oursig = GDB_SIGNAL_FIRST;
8866 (int) oursig < (int) GDB_SIGNAL_LAST;
8867 oursig = (enum gdb_signal) ((int) oursig + 1))
8868 {
8869 QUIT;
8870
8871 if (oursig != GDB_SIGNAL_UNKNOWN
8872 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8873 sig_print_info (oursig);
8874 }
8875
8876 printf_filtered (_("\nUse the \"handle\" command "
8877 "to change these tables.\n"));
8878 }
8879
8880 /* The $_siginfo convenience variable is a bit special. We don't know
8881 for sure the type of the value until we actually have a chance to
8882 fetch the data. The type can change depending on gdbarch, so it is
8883 also dependent on which thread you have selected.
8884
8885 1. making $_siginfo be an internalvar that creates a new value on
8886 access.
8887
8888 2. making the value of $_siginfo be an lval_computed value. */
8889
8890 /* This function implements the lval_computed support for reading a
8891 $_siginfo value. */
8892
8893 static void
8894 siginfo_value_read (struct value *v)
8895 {
8896 LONGEST transferred;
8897
8898 /* If we can access registers, so can we access $_siginfo. Likewise
8899 vice versa. */
8900 validate_registers_access ();
8901
8902 transferred =
8903 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8904 NULL,
8905 value_contents_all_raw (v),
8906 value_offset (v),
8907 TYPE_LENGTH (value_type (v)));
8908
8909 if (transferred != TYPE_LENGTH (value_type (v)))
8910 error (_("Unable to read siginfo"));
8911 }
8912
8913 /* This function implements the lval_computed support for writing a
8914 $_siginfo value. */
8915
8916 static void
8917 siginfo_value_write (struct value *v, struct value *fromval)
8918 {
8919 LONGEST transferred;
8920
8921 /* If we can access registers, so can we access $_siginfo. Likewise
8922 vice versa. */
8923 validate_registers_access ();
8924
8925 transferred = target_write (current_top_target (),
8926 TARGET_OBJECT_SIGNAL_INFO,
8927 NULL,
8928 value_contents_all_raw (fromval),
8929 value_offset (v),
8930 TYPE_LENGTH (value_type (fromval)));
8931
8932 if (transferred != TYPE_LENGTH (value_type (fromval)))
8933 error (_("Unable to write siginfo"));
8934 }
8935
8936 static const struct lval_funcs siginfo_value_funcs =
8937 {
8938 siginfo_value_read,
8939 siginfo_value_write
8940 };
8941
8942 /* Return a new value with the correct type for the siginfo object of
8943 the current thread using architecture GDBARCH. Return a void value
8944 if there's no object available. */
8945
8946 static struct value *
8947 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8948 void *ignore)
8949 {
8950 if (target_has_stack
8951 && inferior_ptid != null_ptid
8952 && gdbarch_get_siginfo_type_p (gdbarch))
8953 {
8954 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8955
8956 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8957 }
8958
8959 return allocate_value (builtin_type (gdbarch)->builtin_void);
8960 }
8961
8962 \f
8963 /* infcall_suspend_state contains state about the program itself like its
8964 registers and any signal it received when it last stopped.
8965 This state must be restored regardless of how the inferior function call
8966 ends (either successfully, or after it hits a breakpoint or signal)
8967 if the program is to properly continue where it left off. */
8968
8969 class infcall_suspend_state
8970 {
8971 public:
8972 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8973 once the inferior function call has finished. */
8974 infcall_suspend_state (struct gdbarch *gdbarch,
8975 const struct thread_info *tp,
8976 struct regcache *regcache)
8977 : m_thread_suspend (tp->suspend),
8978 m_registers (new readonly_detached_regcache (*regcache))
8979 {
8980 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8981
8982 if (gdbarch_get_siginfo_type_p (gdbarch))
8983 {
8984 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8985 size_t len = TYPE_LENGTH (type);
8986
8987 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8988
8989 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8990 siginfo_data.get (), 0, len) != len)
8991 {
8992 /* Errors ignored. */
8993 siginfo_data.reset (nullptr);
8994 }
8995 }
8996
8997 if (siginfo_data)
8998 {
8999 m_siginfo_gdbarch = gdbarch;
9000 m_siginfo_data = std::move (siginfo_data);
9001 }
9002 }
9003
9004 /* Return a pointer to the stored register state. */
9005
9006 readonly_detached_regcache *registers () const
9007 {
9008 return m_registers.get ();
9009 }
9010
9011 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9012
9013 void restore (struct gdbarch *gdbarch,
9014 struct thread_info *tp,
9015 struct regcache *regcache) const
9016 {
9017 tp->suspend = m_thread_suspend;
9018
9019 if (m_siginfo_gdbarch == gdbarch)
9020 {
9021 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9022
9023 /* Errors ignored. */
9024 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9025 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9026 }
9027
9028 /* The inferior can be gone if the user types "print exit(0)"
9029 (and perhaps other times). */
9030 if (target_has_execution)
9031 /* NB: The register write goes through to the target. */
9032 regcache->restore (registers ());
9033 }
9034
9035 private:
9036 /* How the current thread stopped before the inferior function call was
9037 executed. */
9038 struct thread_suspend_state m_thread_suspend;
9039
9040 /* The registers before the inferior function call was executed. */
9041 std::unique_ptr<readonly_detached_regcache> m_registers;
9042
9043 /* Format of SIGINFO_DATA or NULL if it is not present. */
9044 struct gdbarch *m_siginfo_gdbarch = nullptr;
9045
9046 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9047 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9048 content would be invalid. */
9049 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9050 };
9051
9052 infcall_suspend_state_up
9053 save_infcall_suspend_state ()
9054 {
9055 struct thread_info *tp = inferior_thread ();
9056 struct regcache *regcache = get_current_regcache ();
9057 struct gdbarch *gdbarch = regcache->arch ();
9058
9059 infcall_suspend_state_up inf_state
9060 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9061
9062 /* Having saved the current state, adjust the thread state, discarding
9063 any stop signal information. The stop signal is not useful when
9064 starting an inferior function call, and run_inferior_call will not use
9065 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9066 tp->suspend.stop_signal = GDB_SIGNAL_0;
9067
9068 return inf_state;
9069 }
9070
9071 /* Restore inferior session state to INF_STATE. */
9072
9073 void
9074 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9075 {
9076 struct thread_info *tp = inferior_thread ();
9077 struct regcache *regcache = get_current_regcache ();
9078 struct gdbarch *gdbarch = regcache->arch ();
9079
9080 inf_state->restore (gdbarch, tp, regcache);
9081 discard_infcall_suspend_state (inf_state);
9082 }
9083
9084 void
9085 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9086 {
9087 delete inf_state;
9088 }
9089
9090 readonly_detached_regcache *
9091 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9092 {
9093 return inf_state->registers ();
9094 }
9095
9096 /* infcall_control_state contains state regarding gdb's control of the
9097 inferior itself like stepping control. It also contains session state like
9098 the user's currently selected frame. */
9099
9100 struct infcall_control_state
9101 {
9102 struct thread_control_state thread_control;
9103 struct inferior_control_state inferior_control;
9104
9105 /* Other fields: */
9106 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9107 int stopped_by_random_signal = 0;
9108
9109 /* ID if the selected frame when the inferior function call was made. */
9110 struct frame_id selected_frame_id {};
9111 };
9112
9113 /* Save all of the information associated with the inferior<==>gdb
9114 connection. */
9115
9116 infcall_control_state_up
9117 save_infcall_control_state ()
9118 {
9119 infcall_control_state_up inf_status (new struct infcall_control_state);
9120 struct thread_info *tp = inferior_thread ();
9121 struct inferior *inf = current_inferior ();
9122
9123 inf_status->thread_control = tp->control;
9124 inf_status->inferior_control = inf->control;
9125
9126 tp->control.step_resume_breakpoint = NULL;
9127 tp->control.exception_resume_breakpoint = NULL;
9128
9129 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9130 chain. If caller's caller is walking the chain, they'll be happier if we
9131 hand them back the original chain when restore_infcall_control_state is
9132 called. */
9133 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9134
9135 /* Other fields: */
9136 inf_status->stop_stack_dummy = stop_stack_dummy;
9137 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9138
9139 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9140
9141 return inf_status;
9142 }
9143
9144 static void
9145 restore_selected_frame (const frame_id &fid)
9146 {
9147 frame_info *frame = frame_find_by_id (fid);
9148
9149 /* If inf_status->selected_frame_id is NULL, there was no previously
9150 selected frame. */
9151 if (frame == NULL)
9152 {
9153 warning (_("Unable to restore previously selected frame."));
9154 return;
9155 }
9156
9157 select_frame (frame);
9158 }
9159
9160 /* Restore inferior session state to INF_STATUS. */
9161
9162 void
9163 restore_infcall_control_state (struct infcall_control_state *inf_status)
9164 {
9165 struct thread_info *tp = inferior_thread ();
9166 struct inferior *inf = current_inferior ();
9167
9168 if (tp->control.step_resume_breakpoint)
9169 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9170
9171 if (tp->control.exception_resume_breakpoint)
9172 tp->control.exception_resume_breakpoint->disposition
9173 = disp_del_at_next_stop;
9174
9175 /* Handle the bpstat_copy of the chain. */
9176 bpstat_clear (&tp->control.stop_bpstat);
9177
9178 tp->control = inf_status->thread_control;
9179 inf->control = inf_status->inferior_control;
9180
9181 /* Other fields: */
9182 stop_stack_dummy = inf_status->stop_stack_dummy;
9183 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9184
9185 if (target_has_stack)
9186 {
9187 /* The point of the try/catch is that if the stack is clobbered,
9188 walking the stack might encounter a garbage pointer and
9189 error() trying to dereference it. */
9190 try
9191 {
9192 restore_selected_frame (inf_status->selected_frame_id);
9193 }
9194 catch (const gdb_exception_error &ex)
9195 {
9196 exception_fprintf (gdb_stderr, ex,
9197 "Unable to restore previously selected frame:\n");
9198 /* Error in restoring the selected frame. Select the
9199 innermost frame. */
9200 select_frame (get_current_frame ());
9201 }
9202 }
9203
9204 delete inf_status;
9205 }
9206
9207 void
9208 discard_infcall_control_state (struct infcall_control_state *inf_status)
9209 {
9210 if (inf_status->thread_control.step_resume_breakpoint)
9211 inf_status->thread_control.step_resume_breakpoint->disposition
9212 = disp_del_at_next_stop;
9213
9214 if (inf_status->thread_control.exception_resume_breakpoint)
9215 inf_status->thread_control.exception_resume_breakpoint->disposition
9216 = disp_del_at_next_stop;
9217
9218 /* See save_infcall_control_state for info on stop_bpstat. */
9219 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9220
9221 delete inf_status;
9222 }
9223 \f
9224 /* See infrun.h. */
9225
9226 void
9227 clear_exit_convenience_vars (void)
9228 {
9229 clear_internalvar (lookup_internalvar ("_exitsignal"));
9230 clear_internalvar (lookup_internalvar ("_exitcode"));
9231 }
9232 \f
9233
9234 /* User interface for reverse debugging:
9235 Set exec-direction / show exec-direction commands
9236 (returns error unless target implements to_set_exec_direction method). */
9237
9238 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9239 static const char exec_forward[] = "forward";
9240 static const char exec_reverse[] = "reverse";
9241 static const char *exec_direction = exec_forward;
9242 static const char *const exec_direction_names[] = {
9243 exec_forward,
9244 exec_reverse,
9245 NULL
9246 };
9247
9248 static void
9249 set_exec_direction_func (const char *args, int from_tty,
9250 struct cmd_list_element *cmd)
9251 {
9252 if (target_can_execute_reverse)
9253 {
9254 if (!strcmp (exec_direction, exec_forward))
9255 execution_direction = EXEC_FORWARD;
9256 else if (!strcmp (exec_direction, exec_reverse))
9257 execution_direction = EXEC_REVERSE;
9258 }
9259 else
9260 {
9261 exec_direction = exec_forward;
9262 error (_("Target does not support this operation."));
9263 }
9264 }
9265
9266 static void
9267 show_exec_direction_func (struct ui_file *out, int from_tty,
9268 struct cmd_list_element *cmd, const char *value)
9269 {
9270 switch (execution_direction) {
9271 case EXEC_FORWARD:
9272 fprintf_filtered (out, _("Forward.\n"));
9273 break;
9274 case EXEC_REVERSE:
9275 fprintf_filtered (out, _("Reverse.\n"));
9276 break;
9277 default:
9278 internal_error (__FILE__, __LINE__,
9279 _("bogus execution_direction value: %d"),
9280 (int) execution_direction);
9281 }
9282 }
9283
9284 static void
9285 show_schedule_multiple (struct ui_file *file, int from_tty,
9286 struct cmd_list_element *c, const char *value)
9287 {
9288 fprintf_filtered (file, _("Resuming the execution of threads "
9289 "of all processes is %s.\n"), value);
9290 }
9291
9292 /* Implementation of `siginfo' variable. */
9293
9294 static const struct internalvar_funcs siginfo_funcs =
9295 {
9296 siginfo_make_value,
9297 NULL,
9298 NULL
9299 };
9300
9301 /* Callback for infrun's target events source. This is marked when a
9302 thread has a pending status to process. */
9303
9304 static void
9305 infrun_async_inferior_event_handler (gdb_client_data data)
9306 {
9307 inferior_event_handler (INF_REG_EVENT, NULL);
9308 }
9309
9310 void _initialize_infrun ();
9311 void
9312 _initialize_infrun ()
9313 {
9314 struct cmd_list_element *c;
9315
9316 /* Register extra event sources in the event loop. */
9317 infrun_async_inferior_event_token
9318 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9319
9320 add_info ("signals", info_signals_command, _("\
9321 What debugger does when program gets various signals.\n\
9322 Specify a signal as argument to print info on that signal only."));
9323 add_info_alias ("handle", "signals", 0);
9324
9325 c = add_com ("handle", class_run, handle_command, _("\
9326 Specify how to handle signals.\n\
9327 Usage: handle SIGNAL [ACTIONS]\n\
9328 Args are signals and actions to apply to those signals.\n\
9329 If no actions are specified, the current settings for the specified signals\n\
9330 will be displayed instead.\n\
9331 \n\
9332 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9333 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9334 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9335 The special arg \"all\" is recognized to mean all signals except those\n\
9336 used by the debugger, typically SIGTRAP and SIGINT.\n\
9337 \n\
9338 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9339 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9340 Stop means reenter debugger if this signal happens (implies print).\n\
9341 Print means print a message if this signal happens.\n\
9342 Pass means let program see this signal; otherwise program doesn't know.\n\
9343 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9344 Pass and Stop may be combined.\n\
9345 \n\
9346 Multiple signals may be specified. Signal numbers and signal names\n\
9347 may be interspersed with actions, with the actions being performed for\n\
9348 all signals cumulatively specified."));
9349 set_cmd_completer (c, handle_completer);
9350
9351 if (!dbx_commands)
9352 stop_command = add_cmd ("stop", class_obscure,
9353 not_just_help_class_command, _("\
9354 There is no `stop' command, but you can set a hook on `stop'.\n\
9355 This allows you to set a list of commands to be run each time execution\n\
9356 of the program stops."), &cmdlist);
9357
9358 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9359 Set inferior debugging."), _("\
9360 Show inferior debugging."), _("\
9361 When non-zero, inferior specific debugging is enabled."),
9362 NULL,
9363 show_debug_infrun,
9364 &setdebuglist, &showdebuglist);
9365
9366 add_setshow_boolean_cmd ("displaced", class_maintenance,
9367 &debug_displaced, _("\
9368 Set displaced stepping debugging."), _("\
9369 Show displaced stepping debugging."), _("\
9370 When non-zero, displaced stepping specific debugging is enabled."),
9371 NULL,
9372 show_debug_displaced,
9373 &setdebuglist, &showdebuglist);
9374
9375 add_setshow_boolean_cmd ("non-stop", no_class,
9376 &non_stop_1, _("\
9377 Set whether gdb controls the inferior in non-stop mode."), _("\
9378 Show whether gdb controls the inferior in non-stop mode."), _("\
9379 When debugging a multi-threaded program and this setting is\n\
9380 off (the default, also called all-stop mode), when one thread stops\n\
9381 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9382 all other threads in the program while you interact with the thread of\n\
9383 interest. When you continue or step a thread, you can allow the other\n\
9384 threads to run, or have them remain stopped, but while you inspect any\n\
9385 thread's state, all threads stop.\n\
9386 \n\
9387 In non-stop mode, when one thread stops, other threads can continue\n\
9388 to run freely. You'll be able to step each thread independently,\n\
9389 leave it stopped or free to run as needed."),
9390 set_non_stop,
9391 show_non_stop,
9392 &setlist,
9393 &showlist);
9394
9395 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9396 {
9397 signal_stop[i] = 1;
9398 signal_print[i] = 1;
9399 signal_program[i] = 1;
9400 signal_catch[i] = 0;
9401 }
9402
9403 /* Signals caused by debugger's own actions should not be given to
9404 the program afterwards.
9405
9406 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9407 explicitly specifies that it should be delivered to the target
9408 program. Typically, that would occur when a user is debugging a
9409 target monitor on a simulator: the target monitor sets a
9410 breakpoint; the simulator encounters this breakpoint and halts
9411 the simulation handing control to GDB; GDB, noting that the stop
9412 address doesn't map to any known breakpoint, returns control back
9413 to the simulator; the simulator then delivers the hardware
9414 equivalent of a GDB_SIGNAL_TRAP to the program being
9415 debugged. */
9416 signal_program[GDB_SIGNAL_TRAP] = 0;
9417 signal_program[GDB_SIGNAL_INT] = 0;
9418
9419 /* Signals that are not errors should not normally enter the debugger. */
9420 signal_stop[GDB_SIGNAL_ALRM] = 0;
9421 signal_print[GDB_SIGNAL_ALRM] = 0;
9422 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9423 signal_print[GDB_SIGNAL_VTALRM] = 0;
9424 signal_stop[GDB_SIGNAL_PROF] = 0;
9425 signal_print[GDB_SIGNAL_PROF] = 0;
9426 signal_stop[GDB_SIGNAL_CHLD] = 0;
9427 signal_print[GDB_SIGNAL_CHLD] = 0;
9428 signal_stop[GDB_SIGNAL_IO] = 0;
9429 signal_print[GDB_SIGNAL_IO] = 0;
9430 signal_stop[GDB_SIGNAL_POLL] = 0;
9431 signal_print[GDB_SIGNAL_POLL] = 0;
9432 signal_stop[GDB_SIGNAL_URG] = 0;
9433 signal_print[GDB_SIGNAL_URG] = 0;
9434 signal_stop[GDB_SIGNAL_WINCH] = 0;
9435 signal_print[GDB_SIGNAL_WINCH] = 0;
9436 signal_stop[GDB_SIGNAL_PRIO] = 0;
9437 signal_print[GDB_SIGNAL_PRIO] = 0;
9438
9439 /* These signals are used internally by user-level thread
9440 implementations. (See signal(5) on Solaris.) Like the above
9441 signals, a healthy program receives and handles them as part of
9442 its normal operation. */
9443 signal_stop[GDB_SIGNAL_LWP] = 0;
9444 signal_print[GDB_SIGNAL_LWP] = 0;
9445 signal_stop[GDB_SIGNAL_WAITING] = 0;
9446 signal_print[GDB_SIGNAL_WAITING] = 0;
9447 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9448 signal_print[GDB_SIGNAL_CANCEL] = 0;
9449 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9450 signal_print[GDB_SIGNAL_LIBRT] = 0;
9451
9452 /* Update cached state. */
9453 signal_cache_update (-1);
9454
9455 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9456 &stop_on_solib_events, _("\
9457 Set stopping for shared library events."), _("\
9458 Show stopping for shared library events."), _("\
9459 If nonzero, gdb will give control to the user when the dynamic linker\n\
9460 notifies gdb of shared library events. The most common event of interest\n\
9461 to the user would be loading/unloading of a new library."),
9462 set_stop_on_solib_events,
9463 show_stop_on_solib_events,
9464 &setlist, &showlist);
9465
9466 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9467 follow_fork_mode_kind_names,
9468 &follow_fork_mode_string, _("\
9469 Set debugger response to a program call of fork or vfork."), _("\
9470 Show debugger response to a program call of fork or vfork."), _("\
9471 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9472 parent - the original process is debugged after a fork\n\
9473 child - the new process is debugged after a fork\n\
9474 The unfollowed process will continue to run.\n\
9475 By default, the debugger will follow the parent process."),
9476 NULL,
9477 show_follow_fork_mode_string,
9478 &setlist, &showlist);
9479
9480 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9481 follow_exec_mode_names,
9482 &follow_exec_mode_string, _("\
9483 Set debugger response to a program call of exec."), _("\
9484 Show debugger response to a program call of exec."), _("\
9485 An exec call replaces the program image of a process.\n\
9486 \n\
9487 follow-exec-mode can be:\n\
9488 \n\
9489 new - the debugger creates a new inferior and rebinds the process\n\
9490 to this new inferior. The program the process was running before\n\
9491 the exec call can be restarted afterwards by restarting the original\n\
9492 inferior.\n\
9493 \n\
9494 same - the debugger keeps the process bound to the same inferior.\n\
9495 The new executable image replaces the previous executable loaded in\n\
9496 the inferior. Restarting the inferior after the exec call restarts\n\
9497 the executable the process was running after the exec call.\n\
9498 \n\
9499 By default, the debugger will use the same inferior."),
9500 NULL,
9501 show_follow_exec_mode_string,
9502 &setlist, &showlist);
9503
9504 add_setshow_enum_cmd ("scheduler-locking", class_run,
9505 scheduler_enums, &scheduler_mode, _("\
9506 Set mode for locking scheduler during execution."), _("\
9507 Show mode for locking scheduler during execution."), _("\
9508 off == no locking (threads may preempt at any time)\n\
9509 on == full locking (no thread except the current thread may run)\n\
9510 This applies to both normal execution and replay mode.\n\
9511 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9512 In this mode, other threads may run during other commands.\n\
9513 This applies to both normal execution and replay mode.\n\
9514 replay == scheduler locked in replay mode and unlocked during normal execution."),
9515 set_schedlock_func, /* traps on target vector */
9516 show_scheduler_mode,
9517 &setlist, &showlist);
9518
9519 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9520 Set mode for resuming threads of all processes."), _("\
9521 Show mode for resuming threads of all processes."), _("\
9522 When on, execution commands (such as 'continue' or 'next') resume all\n\
9523 threads of all processes. When off (which is the default), execution\n\
9524 commands only resume the threads of the current process. The set of\n\
9525 threads that are resumed is further refined by the scheduler-locking\n\
9526 mode (see help set scheduler-locking)."),
9527 NULL,
9528 show_schedule_multiple,
9529 &setlist, &showlist);
9530
9531 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9532 Set mode of the step operation."), _("\
9533 Show mode of the step operation."), _("\
9534 When set, doing a step over a function without debug line information\n\
9535 will stop at the first instruction of that function. Otherwise, the\n\
9536 function is skipped and the step command stops at a different source line."),
9537 NULL,
9538 show_step_stop_if_no_debug,
9539 &setlist, &showlist);
9540
9541 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9542 &can_use_displaced_stepping, _("\
9543 Set debugger's willingness to use displaced stepping."), _("\
9544 Show debugger's willingness to use displaced stepping."), _("\
9545 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9546 supported by the target architecture. If off, gdb will not use displaced\n\
9547 stepping to step over breakpoints, even if such is supported by the target\n\
9548 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9549 if the target architecture supports it and non-stop mode is active, but will not\n\
9550 use it in all-stop mode (see help set non-stop)."),
9551 NULL,
9552 show_can_use_displaced_stepping,
9553 &setlist, &showlist);
9554
9555 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9556 &exec_direction, _("Set direction of execution.\n\
9557 Options are 'forward' or 'reverse'."),
9558 _("Show direction of execution (forward/reverse)."),
9559 _("Tells gdb whether to execute forward or backward."),
9560 set_exec_direction_func, show_exec_direction_func,
9561 &setlist, &showlist);
9562
9563 /* Set/show detach-on-fork: user-settable mode. */
9564
9565 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9566 Set whether gdb will detach the child of a fork."), _("\
9567 Show whether gdb will detach the child of a fork."), _("\
9568 Tells gdb whether to detach the child of a fork."),
9569 NULL, NULL, &setlist, &showlist);
9570
9571 /* Set/show disable address space randomization mode. */
9572
9573 add_setshow_boolean_cmd ("disable-randomization", class_support,
9574 &disable_randomization, _("\
9575 Set disabling of debuggee's virtual address space randomization."), _("\
9576 Show disabling of debuggee's virtual address space randomization."), _("\
9577 When this mode is on (which is the default), randomization of the virtual\n\
9578 address space is disabled. Standalone programs run with the randomization\n\
9579 enabled by default on some platforms."),
9580 &set_disable_randomization,
9581 &show_disable_randomization,
9582 &setlist, &showlist);
9583
9584 /* ptid initializations */
9585 inferior_ptid = null_ptid;
9586 target_last_wait_ptid = minus_one_ptid;
9587
9588 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9589 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9590 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9591 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9592
9593 /* Explicitly create without lookup, since that tries to create a
9594 value with a void typed value, and when we get here, gdbarch
9595 isn't initialized yet. At this point, we're quite sure there
9596 isn't another convenience variable of the same name. */
9597 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9598
9599 add_setshow_boolean_cmd ("observer", no_class,
9600 &observer_mode_1, _("\
9601 Set whether gdb controls the inferior in observer mode."), _("\
9602 Show whether gdb controls the inferior in observer mode."), _("\
9603 In observer mode, GDB can get data from the inferior, but not\n\
9604 affect its execution. Registers and memory may not be changed,\n\
9605 breakpoints may not be set, and the program cannot be interrupted\n\
9606 or signalled."),
9607 set_observer_mode,
9608 show_observer_mode,
9609 &setlist,
9610 &showlist);
9611 }
This page took 0.22763 seconds and 4 git commands to generate.