* infrun.c (handle_inferior_event): On a TARGET_WAITKIND_EXITED or
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 static int currently_stepping (struct thread_info *tp);
77
78 static int currently_stepping_callback (struct thread_info *tp, void *data);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (int);
83
84 void _initialize_infrun (void);
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95 }
96
97 /* In asynchronous mode, but simulating synchronous execution. */
98
99 int sync_execution = 0;
100
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
104
105 static ptid_t previous_inferior_ptid;
106
107 int debug_displaced = 0;
108 static void
109 show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113 }
114
115 static int debug_infrun = 0;
116 static void
117 show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121 }
122
123 /* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
142
143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
149 in_solib_dynsym_resolve_code() can generally be implemented in a
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
161
162 /* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170 #ifndef SOLIB_IN_DYNAMIC_LINKER
171 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172 #endif
173
174
175 /* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
178 #ifndef CANNOT_STEP_HW_WATCHPOINTS
179 #define CANNOT_STEP_HW_WATCHPOINTS 0
180 #else
181 #undef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 1
183 #endif
184
185 /* Tables of how to react to signals; the user sets them. */
186
187 static unsigned char *signal_stop;
188 static unsigned char *signal_print;
189 static unsigned char *signal_program;
190
191 #define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199 #define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
207 /* Value to pass to target_resume() to cause all threads to resume */
208
209 #define RESUME_ALL (pid_to_ptid (-1))
210
211 /* Command list pointer for the "stop" placeholder. */
212
213 static struct cmd_list_element *stop_command;
214
215 /* Function inferior was in as of last step command. */
216
217 static struct symbol *step_start_function;
218
219 /* Nonzero if we want to give control to the user when we're notified
220 of shared library events by the dynamic linker. */
221 static int stop_on_solib_events;
222 static void
223 show_stop_on_solib_events (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
227 value);
228 }
229
230 /* Nonzero means expecting a trace trap
231 and should stop the inferior and return silently when it happens. */
232
233 int stop_after_trap;
234
235 /* Save register contents here when executing a "finish" command or are
236 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
237 Thus this contains the return value from the called function (assuming
238 values are returned in a register). */
239
240 struct regcache *stop_registers;
241
242 /* Nonzero after stop if current stack frame should be printed. */
243
244 static int stop_print_frame;
245
246 /* This is a cached copy of the pid/waitstatus of the last event
247 returned by target_wait()/deprecated_target_wait_hook(). This
248 information is returned by get_last_target_status(). */
249 static ptid_t target_last_wait_ptid;
250 static struct target_waitstatus target_last_waitstatus;
251
252 static void context_switch (ptid_t ptid);
253
254 void init_thread_stepping_state (struct thread_info *tss);
255
256 void init_infwait_state (void);
257
258 /* This is used to remember when a fork, vfork or exec event
259 was caught by a catchpoint, and thus the event is to be
260 followed at the next resume of the inferior, and not
261 immediately. */
262 static struct
263 {
264 enum target_waitkind kind;
265 struct
266 {
267 ptid_t parent_pid;
268 ptid_t child_pid;
269 }
270 fork_event;
271 char *execd_pathname;
272 }
273 pending_follow;
274
275 static const char follow_fork_mode_child[] = "child";
276 static const char follow_fork_mode_parent[] = "parent";
277
278 static const char *follow_fork_mode_kind_names[] = {
279 follow_fork_mode_child,
280 follow_fork_mode_parent,
281 NULL
282 };
283
284 static const char *follow_fork_mode_string = follow_fork_mode_parent;
285 static void
286 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file, _("\
290 Debugger response to a program call of fork or vfork is \"%s\".\n"),
291 value);
292 }
293 \f
294
295 static int
296 follow_fork (void)
297 {
298 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
299
300 return target_follow_fork (follow_child);
301 }
302
303 void
304 follow_inferior_reset_breakpoints (void)
305 {
306 struct thread_info *tp = inferior_thread ();
307
308 /* Was there a step_resume breakpoint? (There was if the user
309 did a "next" at the fork() call.) If so, explicitly reset its
310 thread number.
311
312 step_resumes are a form of bp that are made to be per-thread.
313 Since we created the step_resume bp when the parent process
314 was being debugged, and now are switching to the child process,
315 from the breakpoint package's viewpoint, that's a switch of
316 "threads". We must update the bp's notion of which thread
317 it is for, or it'll be ignored when it triggers. */
318
319 if (tp->step_resume_breakpoint)
320 breakpoint_re_set_thread (tp->step_resume_breakpoint);
321
322 /* Reinsert all breakpoints in the child. The user may have set
323 breakpoints after catching the fork, in which case those
324 were never set in the child, but only in the parent. This makes
325 sure the inserted breakpoints match the breakpoint list. */
326
327 breakpoint_re_set ();
328 insert_breakpoints ();
329 }
330
331 /* EXECD_PATHNAME is assumed to be non-NULL. */
332
333 static void
334 follow_exec (ptid_t pid, char *execd_pathname)
335 {
336 struct target_ops *tgt;
337 struct thread_info *th = inferior_thread ();
338
339 /* This is an exec event that we actually wish to pay attention to.
340 Refresh our symbol table to the newly exec'd program, remove any
341 momentary bp's, etc.
342
343 If there are breakpoints, they aren't really inserted now,
344 since the exec() transformed our inferior into a fresh set
345 of instructions.
346
347 We want to preserve symbolic breakpoints on the list, since
348 we have hopes that they can be reset after the new a.out's
349 symbol table is read.
350
351 However, any "raw" breakpoints must be removed from the list
352 (e.g., the solib bp's), since their address is probably invalid
353 now.
354
355 And, we DON'T want to call delete_breakpoints() here, since
356 that may write the bp's "shadow contents" (the instruction
357 value that was overwritten witha TRAP instruction). Since
358 we now have a new a.out, those shadow contents aren't valid. */
359 update_breakpoints_after_exec ();
360
361 /* If there was one, it's gone now. We cannot truly step-to-next
362 statement through an exec(). */
363 th->step_resume_breakpoint = NULL;
364 th->step_range_start = 0;
365 th->step_range_end = 0;
366
367 /* What is this a.out's name? */
368 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
369
370 /* We've followed the inferior through an exec. Therefore, the
371 inferior has essentially been killed & reborn. */
372
373 gdb_flush (gdb_stdout);
374
375 breakpoint_init_inferior (inf_execd);
376
377 if (gdb_sysroot && *gdb_sysroot)
378 {
379 char *name = alloca (strlen (gdb_sysroot)
380 + strlen (execd_pathname)
381 + 1);
382 strcpy (name, gdb_sysroot);
383 strcat (name, execd_pathname);
384 execd_pathname = name;
385 }
386
387 /* That a.out is now the one to use. */
388 exec_file_attach (execd_pathname, 0);
389
390 /* Reset the shared library package. This ensures that we get a
391 shlib event when the child reaches "_start", at which point the
392 dld will have had a chance to initialize the child. */
393 /* Also, loading a symbol file below may trigger symbol lookups, and
394 we don't want those to be satisfied by the libraries of the
395 previous incarnation of this process. */
396 no_shared_libraries (NULL, 0);
397
398 /* Load the main file's symbols. */
399 symbol_file_add_main (execd_pathname, 0);
400
401 #ifdef SOLIB_CREATE_INFERIOR_HOOK
402 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
403 #else
404 solib_create_inferior_hook ();
405 #endif
406
407 /* Reinsert all breakpoints. (Those which were symbolic have
408 been reset to the proper address in the new a.out, thanks
409 to symbol_file_command...) */
410 insert_breakpoints ();
411
412 /* The next resume of this inferior should bring it to the shlib
413 startup breakpoints. (If the user had also set bp's on
414 "main" from the old (parent) process, then they'll auto-
415 matically get reset there in the new process.) */
416 }
417
418 /* Non-zero if we just simulating a single-step. This is needed
419 because we cannot remove the breakpoints in the inferior process
420 until after the `wait' in `wait_for_inferior'. */
421 static int singlestep_breakpoints_inserted_p = 0;
422
423 /* The thread we inserted single-step breakpoints for. */
424 static ptid_t singlestep_ptid;
425
426 /* PC when we started this single-step. */
427 static CORE_ADDR singlestep_pc;
428
429 /* If another thread hit the singlestep breakpoint, we save the original
430 thread here so that we can resume single-stepping it later. */
431 static ptid_t saved_singlestep_ptid;
432 static int stepping_past_singlestep_breakpoint;
433
434 /* If not equal to null_ptid, this means that after stepping over breakpoint
435 is finished, we need to switch to deferred_step_ptid, and step it.
436
437 The use case is when one thread has hit a breakpoint, and then the user
438 has switched to another thread and issued 'step'. We need to step over
439 breakpoint in the thread which hit the breakpoint, but then continue
440 stepping the thread user has selected. */
441 static ptid_t deferred_step_ptid;
442 \f
443 /* Displaced stepping. */
444
445 /* In non-stop debugging mode, we must take special care to manage
446 breakpoints properly; in particular, the traditional strategy for
447 stepping a thread past a breakpoint it has hit is unsuitable.
448 'Displaced stepping' is a tactic for stepping one thread past a
449 breakpoint it has hit while ensuring that other threads running
450 concurrently will hit the breakpoint as they should.
451
452 The traditional way to step a thread T off a breakpoint in a
453 multi-threaded program in all-stop mode is as follows:
454
455 a0) Initially, all threads are stopped, and breakpoints are not
456 inserted.
457 a1) We single-step T, leaving breakpoints uninserted.
458 a2) We insert breakpoints, and resume all threads.
459
460 In non-stop debugging, however, this strategy is unsuitable: we
461 don't want to have to stop all threads in the system in order to
462 continue or step T past a breakpoint. Instead, we use displaced
463 stepping:
464
465 n0) Initially, T is stopped, other threads are running, and
466 breakpoints are inserted.
467 n1) We copy the instruction "under" the breakpoint to a separate
468 location, outside the main code stream, making any adjustments
469 to the instruction, register, and memory state as directed by
470 T's architecture.
471 n2) We single-step T over the instruction at its new location.
472 n3) We adjust the resulting register and memory state as directed
473 by T's architecture. This includes resetting T's PC to point
474 back into the main instruction stream.
475 n4) We resume T.
476
477 This approach depends on the following gdbarch methods:
478
479 - gdbarch_max_insn_length and gdbarch_displaced_step_location
480 indicate where to copy the instruction, and how much space must
481 be reserved there. We use these in step n1.
482
483 - gdbarch_displaced_step_copy_insn copies a instruction to a new
484 address, and makes any necessary adjustments to the instruction,
485 register contents, and memory. We use this in step n1.
486
487 - gdbarch_displaced_step_fixup adjusts registers and memory after
488 we have successfuly single-stepped the instruction, to yield the
489 same effect the instruction would have had if we had executed it
490 at its original address. We use this in step n3.
491
492 - gdbarch_displaced_step_free_closure provides cleanup.
493
494 The gdbarch_displaced_step_copy_insn and
495 gdbarch_displaced_step_fixup functions must be written so that
496 copying an instruction with gdbarch_displaced_step_copy_insn,
497 single-stepping across the copied instruction, and then applying
498 gdbarch_displaced_insn_fixup should have the same effects on the
499 thread's memory and registers as stepping the instruction in place
500 would have. Exactly which responsibilities fall to the copy and
501 which fall to the fixup is up to the author of those functions.
502
503 See the comments in gdbarch.sh for details.
504
505 Note that displaced stepping and software single-step cannot
506 currently be used in combination, although with some care I think
507 they could be made to. Software single-step works by placing
508 breakpoints on all possible subsequent instructions; if the
509 displaced instruction is a PC-relative jump, those breakpoints
510 could fall in very strange places --- on pages that aren't
511 executable, or at addresses that are not proper instruction
512 boundaries. (We do generally let other threads run while we wait
513 to hit the software single-step breakpoint, and they might
514 encounter such a corrupted instruction.) One way to work around
515 this would be to have gdbarch_displaced_step_copy_insn fully
516 simulate the effect of PC-relative instructions (and return NULL)
517 on architectures that use software single-stepping.
518
519 In non-stop mode, we can have independent and simultaneous step
520 requests, so more than one thread may need to simultaneously step
521 over a breakpoint. The current implementation assumes there is
522 only one scratch space per process. In this case, we have to
523 serialize access to the scratch space. If thread A wants to step
524 over a breakpoint, but we are currently waiting for some other
525 thread to complete a displaced step, we leave thread A stopped and
526 place it in the displaced_step_request_queue. Whenever a displaced
527 step finishes, we pick the next thread in the queue and start a new
528 displaced step operation on it. See displaced_step_prepare and
529 displaced_step_fixup for details. */
530
531 /* If this is not null_ptid, this is the thread carrying out a
532 displaced single-step. This thread's state will require fixing up
533 once it has completed its step. */
534 static ptid_t displaced_step_ptid;
535
536 struct displaced_step_request
537 {
538 ptid_t ptid;
539 struct displaced_step_request *next;
540 };
541
542 /* A queue of pending displaced stepping requests. */
543 struct displaced_step_request *displaced_step_request_queue;
544
545 /* The architecture the thread had when we stepped it. */
546 static struct gdbarch *displaced_step_gdbarch;
547
548 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
549 for post-step cleanup. */
550 static struct displaced_step_closure *displaced_step_closure;
551
552 /* The address of the original instruction, and the copy we made. */
553 static CORE_ADDR displaced_step_original, displaced_step_copy;
554
555 /* Saved contents of copy area. */
556 static gdb_byte *displaced_step_saved_copy;
557
558 /* Enum strings for "set|show displaced-stepping". */
559
560 static const char can_use_displaced_stepping_auto[] = "auto";
561 static const char can_use_displaced_stepping_on[] = "on";
562 static const char can_use_displaced_stepping_off[] = "off";
563 static const char *can_use_displaced_stepping_enum[] =
564 {
565 can_use_displaced_stepping_auto,
566 can_use_displaced_stepping_on,
567 can_use_displaced_stepping_off,
568 NULL,
569 };
570
571 /* If ON, and the architecture supports it, GDB will use displaced
572 stepping to step over breakpoints. If OFF, or if the architecture
573 doesn't support it, GDB will instead use the traditional
574 hold-and-step approach. If AUTO (which is the default), GDB will
575 decide which technique to use to step over breakpoints depending on
576 which of all-stop or non-stop mode is active --- displaced stepping
577 in non-stop mode; hold-and-step in all-stop mode. */
578
579 static const char *can_use_displaced_stepping =
580 can_use_displaced_stepping_auto;
581
582 static void
583 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
584 struct cmd_list_element *c,
585 const char *value)
586 {
587 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
588 fprintf_filtered (file, _("\
589 Debugger's willingness to use displaced stepping to step over \
590 breakpoints is %s (currently %s).\n"),
591 value, non_stop ? "on" : "off");
592 else
593 fprintf_filtered (file, _("\
594 Debugger's willingness to use displaced stepping to step over \
595 breakpoints is %s.\n"), value);
596 }
597
598 /* Return non-zero if displaced stepping can/should be used to step
599 over breakpoints. */
600
601 static int
602 use_displaced_stepping (struct gdbarch *gdbarch)
603 {
604 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
605 && non_stop)
606 || can_use_displaced_stepping == can_use_displaced_stepping_on)
607 && gdbarch_displaced_step_copy_insn_p (gdbarch));
608 }
609
610 /* Clean out any stray displaced stepping state. */
611 static void
612 displaced_step_clear (void)
613 {
614 /* Indicate that there is no cleanup pending. */
615 displaced_step_ptid = null_ptid;
616
617 if (displaced_step_closure)
618 {
619 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
620 displaced_step_closure);
621 displaced_step_closure = NULL;
622 }
623 }
624
625 static void
626 cleanup_displaced_step_closure (void *ptr)
627 {
628 struct displaced_step_closure *closure = ptr;
629
630 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
631 }
632
633 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
634 void
635 displaced_step_dump_bytes (struct ui_file *file,
636 const gdb_byte *buf,
637 size_t len)
638 {
639 int i;
640
641 for (i = 0; i < len; i++)
642 fprintf_unfiltered (file, "%02x ", buf[i]);
643 fputs_unfiltered ("\n", file);
644 }
645
646 /* Prepare to single-step, using displaced stepping.
647
648 Note that we cannot use displaced stepping when we have a signal to
649 deliver. If we have a signal to deliver and an instruction to step
650 over, then after the step, there will be no indication from the
651 target whether the thread entered a signal handler or ignored the
652 signal and stepped over the instruction successfully --- both cases
653 result in a simple SIGTRAP. In the first case we mustn't do a
654 fixup, and in the second case we must --- but we can't tell which.
655 Comments in the code for 'random signals' in handle_inferior_event
656 explain how we handle this case instead.
657
658 Returns 1 if preparing was successful -- this thread is going to be
659 stepped now; or 0 if displaced stepping this thread got queued. */
660 static int
661 displaced_step_prepare (ptid_t ptid)
662 {
663 struct cleanup *old_cleanups, *ignore_cleanups;
664 struct regcache *regcache = get_thread_regcache (ptid);
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 CORE_ADDR original, copy;
667 ULONGEST len;
668 struct displaced_step_closure *closure;
669
670 /* We should never reach this function if the architecture does not
671 support displaced stepping. */
672 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
673
674 /* For the first cut, we're displaced stepping one thread at a
675 time. */
676
677 if (!ptid_equal (displaced_step_ptid, null_ptid))
678 {
679 /* Already waiting for a displaced step to finish. Defer this
680 request and place in queue. */
681 struct displaced_step_request *req, *new_req;
682
683 if (debug_displaced)
684 fprintf_unfiltered (gdb_stdlog,
685 "displaced: defering step of %s\n",
686 target_pid_to_str (ptid));
687
688 new_req = xmalloc (sizeof (*new_req));
689 new_req->ptid = ptid;
690 new_req->next = NULL;
691
692 if (displaced_step_request_queue)
693 {
694 for (req = displaced_step_request_queue;
695 req && req->next;
696 req = req->next)
697 ;
698 req->next = new_req;
699 }
700 else
701 displaced_step_request_queue = new_req;
702
703 return 0;
704 }
705 else
706 {
707 if (debug_displaced)
708 fprintf_unfiltered (gdb_stdlog,
709 "displaced: stepping %s now\n",
710 target_pid_to_str (ptid));
711 }
712
713 displaced_step_clear ();
714
715 old_cleanups = save_inferior_ptid ();
716 inferior_ptid = ptid;
717
718 original = regcache_read_pc (regcache);
719
720 copy = gdbarch_displaced_step_location (gdbarch);
721 len = gdbarch_max_insn_length (gdbarch);
722
723 /* Save the original contents of the copy area. */
724 displaced_step_saved_copy = xmalloc (len);
725 ignore_cleanups = make_cleanup (free_current_contents,
726 &displaced_step_saved_copy);
727 read_memory (copy, displaced_step_saved_copy, len);
728 if (debug_displaced)
729 {
730 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
731 paddr_nz (copy));
732 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
733 };
734
735 closure = gdbarch_displaced_step_copy_insn (gdbarch,
736 original, copy, regcache);
737
738 /* We don't support the fully-simulated case at present. */
739 gdb_assert (closure);
740
741 make_cleanup (cleanup_displaced_step_closure, closure);
742
743 /* Resume execution at the copy. */
744 regcache_write_pc (regcache, copy);
745
746 discard_cleanups (ignore_cleanups);
747
748 do_cleanups (old_cleanups);
749
750 if (debug_displaced)
751 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
752 paddr_nz (copy));
753
754 /* Save the information we need to fix things up if the step
755 succeeds. */
756 displaced_step_ptid = ptid;
757 displaced_step_gdbarch = gdbarch;
758 displaced_step_closure = closure;
759 displaced_step_original = original;
760 displaced_step_copy = copy;
761 return 1;
762 }
763
764 static void
765 displaced_step_clear_cleanup (void *ignore)
766 {
767 displaced_step_clear ();
768 }
769
770 static void
771 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
772 {
773 struct cleanup *ptid_cleanup = save_inferior_ptid ();
774 inferior_ptid = ptid;
775 write_memory (memaddr, myaddr, len);
776 do_cleanups (ptid_cleanup);
777 }
778
779 static void
780 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
781 {
782 struct cleanup *old_cleanups;
783
784 /* Was this event for the pid we displaced? */
785 if (ptid_equal (displaced_step_ptid, null_ptid)
786 || ! ptid_equal (displaced_step_ptid, event_ptid))
787 return;
788
789 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
790
791 /* Restore the contents of the copy area. */
792 {
793 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
794 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
795 displaced_step_saved_copy, len);
796 if (debug_displaced)
797 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
798 paddr_nz (displaced_step_copy));
799 }
800
801 /* Did the instruction complete successfully? */
802 if (signal == TARGET_SIGNAL_TRAP)
803 {
804 /* Fix up the resulting state. */
805 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
806 displaced_step_closure,
807 displaced_step_original,
808 displaced_step_copy,
809 get_thread_regcache (displaced_step_ptid));
810 }
811 else
812 {
813 /* Since the instruction didn't complete, all we can do is
814 relocate the PC. */
815 struct regcache *regcache = get_thread_regcache (event_ptid);
816 CORE_ADDR pc = regcache_read_pc (regcache);
817 pc = displaced_step_original + (pc - displaced_step_copy);
818 regcache_write_pc (regcache, pc);
819 }
820
821 do_cleanups (old_cleanups);
822
823 displaced_step_ptid = null_ptid;
824
825 /* Are there any pending displaced stepping requests? If so, run
826 one now. */
827 while (displaced_step_request_queue)
828 {
829 struct displaced_step_request *head;
830 ptid_t ptid;
831 CORE_ADDR actual_pc;
832
833 head = displaced_step_request_queue;
834 ptid = head->ptid;
835 displaced_step_request_queue = head->next;
836 xfree (head);
837
838 context_switch (ptid);
839
840 actual_pc = read_pc ();
841
842 if (breakpoint_here_p (actual_pc))
843 {
844 if (debug_displaced)
845 fprintf_unfiltered (gdb_stdlog,
846 "displaced: stepping queued %s now\n",
847 target_pid_to_str (ptid));
848
849 displaced_step_prepare (ptid);
850
851 if (debug_displaced)
852 {
853 gdb_byte buf[4];
854
855 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
856 paddr_nz (actual_pc));
857 read_memory (actual_pc, buf, sizeof (buf));
858 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
859 }
860
861 target_resume (ptid, 1, TARGET_SIGNAL_0);
862
863 /* Done, we're stepping a thread. */
864 break;
865 }
866 else
867 {
868 int step;
869 struct thread_info *tp = inferior_thread ();
870
871 /* The breakpoint we were sitting under has since been
872 removed. */
873 tp->trap_expected = 0;
874
875 /* Go back to what we were trying to do. */
876 step = currently_stepping (tp);
877
878 if (debug_displaced)
879 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
880 target_pid_to_str (tp->ptid), step);
881
882 target_resume (ptid, step, TARGET_SIGNAL_0);
883 tp->stop_signal = TARGET_SIGNAL_0;
884
885 /* This request was discarded. See if there's any other
886 thread waiting for its turn. */
887 }
888 }
889 }
890
891 /* Update global variables holding ptids to hold NEW_PTID if they were
892 holding OLD_PTID. */
893 static void
894 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
895 {
896 struct displaced_step_request *it;
897
898 if (ptid_equal (inferior_ptid, old_ptid))
899 inferior_ptid = new_ptid;
900
901 if (ptid_equal (singlestep_ptid, old_ptid))
902 singlestep_ptid = new_ptid;
903
904 if (ptid_equal (displaced_step_ptid, old_ptid))
905 displaced_step_ptid = new_ptid;
906
907 if (ptid_equal (deferred_step_ptid, old_ptid))
908 deferred_step_ptid = new_ptid;
909
910 for (it = displaced_step_request_queue; it; it = it->next)
911 if (ptid_equal (it->ptid, old_ptid))
912 it->ptid = new_ptid;
913 }
914
915 \f
916 /* Resuming. */
917
918 /* Things to clean up if we QUIT out of resume (). */
919 static void
920 resume_cleanups (void *ignore)
921 {
922 normal_stop ();
923 }
924
925 static const char schedlock_off[] = "off";
926 static const char schedlock_on[] = "on";
927 static const char schedlock_step[] = "step";
928 static const char *scheduler_enums[] = {
929 schedlock_off,
930 schedlock_on,
931 schedlock_step,
932 NULL
933 };
934 static const char *scheduler_mode = schedlock_off;
935 static void
936 show_scheduler_mode (struct ui_file *file, int from_tty,
937 struct cmd_list_element *c, const char *value)
938 {
939 fprintf_filtered (file, _("\
940 Mode for locking scheduler during execution is \"%s\".\n"),
941 value);
942 }
943
944 static void
945 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
946 {
947 if (!target_can_lock_scheduler)
948 {
949 scheduler_mode = schedlock_off;
950 error (_("Target '%s' cannot support this command."), target_shortname);
951 }
952 }
953
954
955 /* Resume the inferior, but allow a QUIT. This is useful if the user
956 wants to interrupt some lengthy single-stepping operation
957 (for child processes, the SIGINT goes to the inferior, and so
958 we get a SIGINT random_signal, but for remote debugging and perhaps
959 other targets, that's not true).
960
961 STEP nonzero if we should step (zero to continue instead).
962 SIG is the signal to give the inferior (zero for none). */
963 void
964 resume (int step, enum target_signal sig)
965 {
966 int should_resume = 1;
967 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
968
969 /* Note that these must be reset if we follow a fork below. */
970 struct regcache *regcache = get_current_regcache ();
971 struct gdbarch *gdbarch = get_regcache_arch (regcache);
972 struct thread_info *tp = inferior_thread ();
973 CORE_ADDR pc = regcache_read_pc (regcache);
974
975 QUIT;
976
977 if (debug_infrun)
978 fprintf_unfiltered (gdb_stdlog,
979 "infrun: resume (step=%d, signal=%d), "
980 "trap_expected=%d\n",
981 step, sig, tp->trap_expected);
982
983 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
984 over an instruction that causes a page fault without triggering
985 a hardware watchpoint. The kernel properly notices that it shouldn't
986 stop, because the hardware watchpoint is not triggered, but it forgets
987 the step request and continues the program normally.
988 Work around the problem by removing hardware watchpoints if a step is
989 requested, GDB will check for a hardware watchpoint trigger after the
990 step anyway. */
991 if (CANNOT_STEP_HW_WATCHPOINTS && step)
992 remove_hw_watchpoints ();
993
994
995 /* Normally, by the time we reach `resume', the breakpoints are either
996 removed or inserted, as appropriate. The exception is if we're sitting
997 at a permanent breakpoint; we need to step over it, but permanent
998 breakpoints can't be removed. So we have to test for it here. */
999 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
1000 {
1001 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1002 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1003 else
1004 error (_("\
1005 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1006 how to step past a permanent breakpoint on this architecture. Try using\n\
1007 a command like `return' or `jump' to continue execution."));
1008 }
1009
1010 /* If enabled, step over breakpoints by executing a copy of the
1011 instruction at a different address.
1012
1013 We can't use displaced stepping when we have a signal to deliver;
1014 the comments for displaced_step_prepare explain why. The
1015 comments in the handle_inferior event for dealing with 'random
1016 signals' explain what we do instead. */
1017 if (use_displaced_stepping (gdbarch)
1018 && tp->trap_expected
1019 && sig == TARGET_SIGNAL_0)
1020 {
1021 if (!displaced_step_prepare (inferior_ptid))
1022 {
1023 /* Got placed in displaced stepping queue. Will be resumed
1024 later when all the currently queued displaced stepping
1025 requests finish. The thread is not executing at this point,
1026 and the call to set_executing will be made later. But we
1027 need to call set_running here, since from frontend point of view,
1028 the thread is running. */
1029 set_running (inferior_ptid, 1);
1030 discard_cleanups (old_cleanups);
1031 return;
1032 }
1033 }
1034
1035 if (step && gdbarch_software_single_step_p (gdbarch))
1036 {
1037 /* Do it the hard way, w/temp breakpoints */
1038 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1039 {
1040 /* ...and don't ask hardware to do it. */
1041 step = 0;
1042 /* and do not pull these breakpoints until after a `wait' in
1043 `wait_for_inferior' */
1044 singlestep_breakpoints_inserted_p = 1;
1045 singlestep_ptid = inferior_ptid;
1046 singlestep_pc = pc;
1047 }
1048 }
1049
1050 /* If there were any forks/vforks/execs that were caught and are
1051 now to be followed, then do so. */
1052 switch (pending_follow.kind)
1053 {
1054 case TARGET_WAITKIND_FORKED:
1055 case TARGET_WAITKIND_VFORKED:
1056 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1057 if (follow_fork ())
1058 should_resume = 0;
1059
1060 /* Following a child fork will change our notion of current
1061 thread. */
1062 tp = inferior_thread ();
1063 regcache = get_current_regcache ();
1064 gdbarch = get_regcache_arch (regcache);
1065 pc = regcache_read_pc (regcache);
1066 break;
1067
1068 case TARGET_WAITKIND_EXECD:
1069 /* follow_exec is called as soon as the exec event is seen. */
1070 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1071 break;
1072
1073 default:
1074 break;
1075 }
1076
1077 /* Install inferior's terminal modes. */
1078 target_terminal_inferior ();
1079
1080 if (should_resume)
1081 {
1082 ptid_t resume_ptid;
1083
1084 resume_ptid = RESUME_ALL; /* Default */
1085
1086 /* If STEP is set, it's a request to use hardware stepping
1087 facilities. But in that case, we should never
1088 use singlestep breakpoint. */
1089 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1090
1091 if (singlestep_breakpoints_inserted_p
1092 && stepping_past_singlestep_breakpoint)
1093 {
1094 /* The situation here is as follows. In thread T1 we wanted to
1095 single-step. Lacking hardware single-stepping we've
1096 set breakpoint at the PC of the next instruction -- call it
1097 P. After resuming, we've hit that breakpoint in thread T2.
1098 Now we've removed original breakpoint, inserted breakpoint
1099 at P+1, and try to step to advance T2 past breakpoint.
1100 We need to step only T2, as if T1 is allowed to freely run,
1101 it can run past P, and if other threads are allowed to run,
1102 they can hit breakpoint at P+1, and nested hits of single-step
1103 breakpoints is not something we'd want -- that's complicated
1104 to support, and has no value. */
1105 resume_ptid = inferior_ptid;
1106 }
1107
1108 if ((step || singlestep_breakpoints_inserted_p)
1109 && tp->trap_expected)
1110 {
1111 /* We're allowing a thread to run past a breakpoint it has
1112 hit, by single-stepping the thread with the breakpoint
1113 removed. In which case, we need to single-step only this
1114 thread, and keep others stopped, as they can miss this
1115 breakpoint if allowed to run.
1116
1117 The current code actually removes all breakpoints when
1118 doing this, not just the one being stepped over, so if we
1119 let other threads run, we can actually miss any
1120 breakpoint, not just the one at PC. */
1121 resume_ptid = inferior_ptid;
1122 }
1123
1124 if (non_stop)
1125 {
1126 /* With non-stop mode on, threads are always handled
1127 individually. */
1128 resume_ptid = inferior_ptid;
1129 }
1130 else if ((scheduler_mode == schedlock_on)
1131 || (scheduler_mode == schedlock_step
1132 && (step || singlestep_breakpoints_inserted_p)))
1133 {
1134 /* User-settable 'scheduler' mode requires solo thread resume. */
1135 resume_ptid = inferior_ptid;
1136 }
1137
1138 if (gdbarch_cannot_step_breakpoint (gdbarch))
1139 {
1140 /* Most targets can step a breakpoint instruction, thus
1141 executing it normally. But if this one cannot, just
1142 continue and we will hit it anyway. */
1143 if (step && breakpoint_inserted_here_p (pc))
1144 step = 0;
1145 }
1146
1147 if (debug_displaced
1148 && use_displaced_stepping (gdbarch)
1149 && tp->trap_expected)
1150 {
1151 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1152 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1153 gdb_byte buf[4];
1154
1155 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1156 paddr_nz (actual_pc));
1157 read_memory (actual_pc, buf, sizeof (buf));
1158 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1159 }
1160
1161 /* Avoid confusing the next resume, if the next stop/resume
1162 happens to apply to another thread. */
1163 tp->stop_signal = TARGET_SIGNAL_0;
1164
1165 target_resume (resume_ptid, step, sig);
1166 }
1167
1168 discard_cleanups (old_cleanups);
1169 }
1170 \f
1171 /* Proceeding. */
1172
1173 /* Clear out all variables saying what to do when inferior is continued.
1174 First do this, then set the ones you want, then call `proceed'. */
1175
1176 static void
1177 clear_proceed_status_thread (struct thread_info *tp)
1178 {
1179 if (debug_infrun)
1180 fprintf_unfiltered (gdb_stdlog,
1181 "infrun: clear_proceed_status_thread (%s)\n",
1182 target_pid_to_str (tp->ptid));
1183
1184 tp->trap_expected = 0;
1185 tp->step_range_start = 0;
1186 tp->step_range_end = 0;
1187 tp->step_frame_id = null_frame_id;
1188 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1189 tp->stop_requested = 0;
1190
1191 tp->stop_step = 0;
1192
1193 tp->proceed_to_finish = 0;
1194
1195 /* Discard any remaining commands or status from previous stop. */
1196 bpstat_clear (&tp->stop_bpstat);
1197 }
1198
1199 static int
1200 clear_proceed_status_callback (struct thread_info *tp, void *data)
1201 {
1202 if (is_exited (tp->ptid))
1203 return 0;
1204
1205 clear_proceed_status_thread (tp);
1206 return 0;
1207 }
1208
1209 void
1210 clear_proceed_status (void)
1211 {
1212 if (!ptid_equal (inferior_ptid, null_ptid))
1213 {
1214 struct inferior *inferior;
1215
1216 if (non_stop)
1217 {
1218 /* If in non-stop mode, only delete the per-thread status
1219 of the current thread. */
1220 clear_proceed_status_thread (inferior_thread ());
1221 }
1222 else
1223 {
1224 /* In all-stop mode, delete the per-thread status of
1225 *all* threads. */
1226 iterate_over_threads (clear_proceed_status_callback, NULL);
1227 }
1228
1229 inferior = current_inferior ();
1230 inferior->stop_soon = NO_STOP_QUIETLY;
1231 }
1232
1233 stop_after_trap = 0;
1234 breakpoint_proceeded = 1; /* We're about to proceed... */
1235
1236 if (stop_registers)
1237 {
1238 regcache_xfree (stop_registers);
1239 stop_registers = NULL;
1240 }
1241 }
1242
1243 /* This should be suitable for any targets that support threads. */
1244
1245 static int
1246 prepare_to_proceed (int step)
1247 {
1248 ptid_t wait_ptid;
1249 struct target_waitstatus wait_status;
1250
1251 /* Get the last target status returned by target_wait(). */
1252 get_last_target_status (&wait_ptid, &wait_status);
1253
1254 /* Make sure we were stopped at a breakpoint. */
1255 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1256 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1257 {
1258 return 0;
1259 }
1260
1261 /* Switched over from WAIT_PID. */
1262 if (!ptid_equal (wait_ptid, minus_one_ptid)
1263 && !ptid_equal (inferior_ptid, wait_ptid))
1264 {
1265 struct regcache *regcache = get_thread_regcache (wait_ptid);
1266
1267 if (breakpoint_here_p (regcache_read_pc (regcache)))
1268 {
1269 /* If stepping, remember current thread to switch back to. */
1270 if (step)
1271 deferred_step_ptid = inferior_ptid;
1272
1273 /* Switch back to WAIT_PID thread. */
1274 switch_to_thread (wait_ptid);
1275
1276 /* We return 1 to indicate that there is a breakpoint here,
1277 so we need to step over it before continuing to avoid
1278 hitting it straight away. */
1279 return 1;
1280 }
1281 }
1282
1283 return 0;
1284 }
1285
1286 /* Basic routine for continuing the program in various fashions.
1287
1288 ADDR is the address to resume at, or -1 for resume where stopped.
1289 SIGGNAL is the signal to give it, or 0 for none,
1290 or -1 for act according to how it stopped.
1291 STEP is nonzero if should trap after one instruction.
1292 -1 means return after that and print nothing.
1293 You should probably set various step_... variables
1294 before calling here, if you are stepping.
1295
1296 You should call clear_proceed_status before calling proceed. */
1297
1298 void
1299 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1300 {
1301 struct regcache *regcache = get_current_regcache ();
1302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1303 struct thread_info *tp;
1304 CORE_ADDR pc = regcache_read_pc (regcache);
1305 int oneproc = 0;
1306
1307 if (step > 0)
1308 step_start_function = find_pc_function (pc);
1309 if (step < 0)
1310 stop_after_trap = 1;
1311
1312 if (addr == (CORE_ADDR) -1)
1313 {
1314 if (pc == stop_pc && breakpoint_here_p (pc)
1315 && execution_direction != EXEC_REVERSE)
1316 /* There is a breakpoint at the address we will resume at,
1317 step one instruction before inserting breakpoints so that
1318 we do not stop right away (and report a second hit at this
1319 breakpoint).
1320
1321 Note, we don't do this in reverse, because we won't
1322 actually be executing the breakpoint insn anyway.
1323 We'll be (un-)executing the previous instruction. */
1324
1325 oneproc = 1;
1326 else if (gdbarch_single_step_through_delay_p (gdbarch)
1327 && gdbarch_single_step_through_delay (gdbarch,
1328 get_current_frame ()))
1329 /* We stepped onto an instruction that needs to be stepped
1330 again before re-inserting the breakpoint, do so. */
1331 oneproc = 1;
1332 }
1333 else
1334 {
1335 regcache_write_pc (regcache, addr);
1336 }
1337
1338 if (debug_infrun)
1339 fprintf_unfiltered (gdb_stdlog,
1340 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1341 paddr_nz (addr), siggnal, step);
1342
1343 if (non_stop)
1344 /* In non-stop, each thread is handled individually. The context
1345 must already be set to the right thread here. */
1346 ;
1347 else
1348 {
1349 /* In a multi-threaded task we may select another thread and
1350 then continue or step.
1351
1352 But if the old thread was stopped at a breakpoint, it will
1353 immediately cause another breakpoint stop without any
1354 execution (i.e. it will report a breakpoint hit incorrectly).
1355 So we must step over it first.
1356
1357 prepare_to_proceed checks the current thread against the
1358 thread that reported the most recent event. If a step-over
1359 is required it returns TRUE and sets the current thread to
1360 the old thread. */
1361 if (prepare_to_proceed (step))
1362 oneproc = 1;
1363 }
1364
1365 /* prepare_to_proceed may change the current thread. */
1366 tp = inferior_thread ();
1367
1368 if (oneproc)
1369 {
1370 tp->trap_expected = 1;
1371 /* If displaced stepping is enabled, we can step over the
1372 breakpoint without hitting it, so leave all breakpoints
1373 inserted. Otherwise we need to disable all breakpoints, step
1374 one instruction, and then re-add them when that step is
1375 finished. */
1376 if (!use_displaced_stepping (gdbarch))
1377 remove_breakpoints ();
1378 }
1379
1380 /* We can insert breakpoints if we're not trying to step over one,
1381 or if we are stepping over one but we're using displaced stepping
1382 to do so. */
1383 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1384 insert_breakpoints ();
1385
1386 if (!non_stop)
1387 {
1388 /* Pass the last stop signal to the thread we're resuming,
1389 irrespective of whether the current thread is the thread that
1390 got the last event or not. This was historically GDB's
1391 behaviour before keeping a stop_signal per thread. */
1392
1393 struct thread_info *last_thread;
1394 ptid_t last_ptid;
1395 struct target_waitstatus last_status;
1396
1397 get_last_target_status (&last_ptid, &last_status);
1398 if (!ptid_equal (inferior_ptid, last_ptid)
1399 && !ptid_equal (last_ptid, null_ptid)
1400 && !ptid_equal (last_ptid, minus_one_ptid))
1401 {
1402 last_thread = find_thread_pid (last_ptid);
1403 if (last_thread)
1404 {
1405 tp->stop_signal = last_thread->stop_signal;
1406 last_thread->stop_signal = TARGET_SIGNAL_0;
1407 }
1408 }
1409 }
1410
1411 if (siggnal != TARGET_SIGNAL_DEFAULT)
1412 tp->stop_signal = siggnal;
1413 /* If this signal should not be seen by program,
1414 give it zero. Used for debugging signals. */
1415 else if (!signal_program[tp->stop_signal])
1416 tp->stop_signal = TARGET_SIGNAL_0;
1417
1418 annotate_starting ();
1419
1420 /* Make sure that output from GDB appears before output from the
1421 inferior. */
1422 gdb_flush (gdb_stdout);
1423
1424 /* Refresh prev_pc value just prior to resuming. This used to be
1425 done in stop_stepping, however, setting prev_pc there did not handle
1426 scenarios such as inferior function calls or returning from
1427 a function via the return command. In those cases, the prev_pc
1428 value was not set properly for subsequent commands. The prev_pc value
1429 is used to initialize the starting line number in the ecs. With an
1430 invalid value, the gdb next command ends up stopping at the position
1431 represented by the next line table entry past our start position.
1432 On platforms that generate one line table entry per line, this
1433 is not a problem. However, on the ia64, the compiler generates
1434 extraneous line table entries that do not increase the line number.
1435 When we issue the gdb next command on the ia64 after an inferior call
1436 or a return command, we often end up a few instructions forward, still
1437 within the original line we started.
1438
1439 An attempt was made to have init_execution_control_state () refresh
1440 the prev_pc value before calculating the line number. This approach
1441 did not work because on platforms that use ptrace, the pc register
1442 cannot be read unless the inferior is stopped. At that point, we
1443 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1444 call can fail. Setting the prev_pc value here ensures the value is
1445 updated correctly when the inferior is stopped. */
1446 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1447
1448 /* Fill in with reasonable starting values. */
1449 init_thread_stepping_state (tp);
1450
1451 /* Reset to normal state. */
1452 init_infwait_state ();
1453
1454 /* Resume inferior. */
1455 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1456
1457 /* Wait for it to stop (if not standalone)
1458 and in any case decode why it stopped, and act accordingly. */
1459 /* Do this only if we are not using the event loop, or if the target
1460 does not support asynchronous execution. */
1461 if (!target_can_async_p ())
1462 {
1463 wait_for_inferior (0);
1464 normal_stop ();
1465 }
1466 }
1467 \f
1468
1469 /* Start remote-debugging of a machine over a serial link. */
1470
1471 void
1472 start_remote (int from_tty)
1473 {
1474 struct inferior *inferior;
1475 init_wait_for_inferior ();
1476
1477 inferior = current_inferior ();
1478 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1479
1480 /* Always go on waiting for the target, regardless of the mode. */
1481 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1482 indicate to wait_for_inferior that a target should timeout if
1483 nothing is returned (instead of just blocking). Because of this,
1484 targets expecting an immediate response need to, internally, set
1485 things up so that the target_wait() is forced to eventually
1486 timeout. */
1487 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1488 differentiate to its caller what the state of the target is after
1489 the initial open has been performed. Here we're assuming that
1490 the target has stopped. It should be possible to eventually have
1491 target_open() return to the caller an indication that the target
1492 is currently running and GDB state should be set to the same as
1493 for an async run. */
1494 wait_for_inferior (0);
1495
1496 /* Now that the inferior has stopped, do any bookkeeping like
1497 loading shared libraries. We want to do this before normal_stop,
1498 so that the displayed frame is up to date. */
1499 post_create_inferior (&current_target, from_tty);
1500
1501 normal_stop ();
1502 }
1503
1504 /* Initialize static vars when a new inferior begins. */
1505
1506 void
1507 init_wait_for_inferior (void)
1508 {
1509 /* These are meaningless until the first time through wait_for_inferior. */
1510
1511 breakpoint_init_inferior (inf_starting);
1512
1513 /* The first resume is not following a fork/vfork/exec. */
1514 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1515
1516 clear_proceed_status ();
1517
1518 stepping_past_singlestep_breakpoint = 0;
1519 deferred_step_ptid = null_ptid;
1520
1521 target_last_wait_ptid = minus_one_ptid;
1522
1523 previous_inferior_ptid = null_ptid;
1524 init_infwait_state ();
1525
1526 displaced_step_clear ();
1527 }
1528
1529 \f
1530 /* This enum encodes possible reasons for doing a target_wait, so that
1531 wfi can call target_wait in one place. (Ultimately the call will be
1532 moved out of the infinite loop entirely.) */
1533
1534 enum infwait_states
1535 {
1536 infwait_normal_state,
1537 infwait_thread_hop_state,
1538 infwait_step_watch_state,
1539 infwait_nonstep_watch_state
1540 };
1541
1542 /* Why did the inferior stop? Used to print the appropriate messages
1543 to the interface from within handle_inferior_event(). */
1544 enum inferior_stop_reason
1545 {
1546 /* Step, next, nexti, stepi finished. */
1547 END_STEPPING_RANGE,
1548 /* Inferior terminated by signal. */
1549 SIGNAL_EXITED,
1550 /* Inferior exited. */
1551 EXITED,
1552 /* Inferior received signal, and user asked to be notified. */
1553 SIGNAL_RECEIVED,
1554 /* Reverse execution -- target ran out of history info. */
1555 NO_HISTORY
1556 };
1557
1558 /* The PTID we'll do a target_wait on.*/
1559 ptid_t waiton_ptid;
1560
1561 /* Current inferior wait state. */
1562 enum infwait_states infwait_state;
1563
1564 /* Data to be passed around while handling an event. This data is
1565 discarded between events. */
1566 struct execution_control_state
1567 {
1568 ptid_t ptid;
1569 /* The thread that got the event, if this was a thread event; NULL
1570 otherwise. */
1571 struct thread_info *event_thread;
1572
1573 struct target_waitstatus ws;
1574 int random_signal;
1575 CORE_ADDR stop_func_start;
1576 CORE_ADDR stop_func_end;
1577 char *stop_func_name;
1578 int new_thread_event;
1579 int wait_some_more;
1580 };
1581
1582 void init_execution_control_state (struct execution_control_state *ecs);
1583
1584 void handle_inferior_event (struct execution_control_state *ecs);
1585
1586 static void handle_step_into_function (struct execution_control_state *ecs);
1587 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1588 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1589 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1590 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1591 struct frame_id sr_id);
1592 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1593
1594 static void stop_stepping (struct execution_control_state *ecs);
1595 static void prepare_to_wait (struct execution_control_state *ecs);
1596 static void keep_going (struct execution_control_state *ecs);
1597 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1598 int stop_info);
1599
1600 /* Callback for iterate over threads. If the thread is stopped, but
1601 the user/frontend doesn't know about that yet, go through
1602 normal_stop, as if the thread had just stopped now. ARG points at
1603 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1604 ptid_is_pid(PTID) is true, applies to all threads of the process
1605 pointed at by PTID. Otherwise, apply only to the thread pointed by
1606 PTID. */
1607
1608 static int
1609 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1610 {
1611 ptid_t ptid = * (ptid_t *) arg;
1612
1613 if ((ptid_equal (info->ptid, ptid)
1614 || ptid_equal (minus_one_ptid, ptid)
1615 || (ptid_is_pid (ptid)
1616 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1617 && is_running (info->ptid)
1618 && !is_executing (info->ptid))
1619 {
1620 struct cleanup *old_chain;
1621 struct execution_control_state ecss;
1622 struct execution_control_state *ecs = &ecss;
1623
1624 memset (ecs, 0, sizeof (*ecs));
1625
1626 old_chain = make_cleanup_restore_current_thread ();
1627
1628 switch_to_thread (info->ptid);
1629
1630 /* Go through handle_inferior_event/normal_stop, so we always
1631 have consistent output as if the stop event had been
1632 reported. */
1633 ecs->ptid = info->ptid;
1634 ecs->event_thread = find_thread_pid (info->ptid);
1635 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1636 ecs->ws.value.sig = TARGET_SIGNAL_0;
1637
1638 handle_inferior_event (ecs);
1639
1640 if (!ecs->wait_some_more)
1641 {
1642 struct thread_info *tp;
1643
1644 normal_stop ();
1645
1646 /* Finish off the continuations. The continations
1647 themselves are responsible for realising the thread
1648 didn't finish what it was supposed to do. */
1649 tp = inferior_thread ();
1650 do_all_intermediate_continuations_thread (tp);
1651 do_all_continuations_thread (tp);
1652 }
1653
1654 do_cleanups (old_chain);
1655 }
1656
1657 return 0;
1658 }
1659
1660 /* This function is attached as a "thread_stop_requested" observer.
1661 Cleanup local state that assumed the PTID was to be resumed, and
1662 report the stop to the frontend. */
1663
1664 void
1665 infrun_thread_stop_requested (ptid_t ptid)
1666 {
1667 struct displaced_step_request *it, *next, *prev = NULL;
1668
1669 /* PTID was requested to stop. Remove it from the displaced
1670 stepping queue, so we don't try to resume it automatically. */
1671 for (it = displaced_step_request_queue; it; it = next)
1672 {
1673 next = it->next;
1674
1675 if (ptid_equal (it->ptid, ptid)
1676 || ptid_equal (minus_one_ptid, ptid)
1677 || (ptid_is_pid (ptid)
1678 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1679 {
1680 if (displaced_step_request_queue == it)
1681 displaced_step_request_queue = it->next;
1682 else
1683 prev->next = it->next;
1684
1685 xfree (it);
1686 }
1687 else
1688 prev = it;
1689 }
1690
1691 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1692 }
1693
1694 /* Callback for iterate_over_threads. */
1695
1696 static int
1697 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1698 {
1699 if (is_exited (info->ptid))
1700 return 0;
1701
1702 delete_step_resume_breakpoint (info);
1703 return 0;
1704 }
1705
1706 /* In all-stop, delete the step resume breakpoint of any thread that
1707 had one. In non-stop, delete the step resume breakpoint of the
1708 thread that just stopped. */
1709
1710 static void
1711 delete_step_thread_step_resume_breakpoint (void)
1712 {
1713 if (!target_has_execution
1714 || ptid_equal (inferior_ptid, null_ptid))
1715 /* If the inferior has exited, we have already deleted the step
1716 resume breakpoints out of GDB's lists. */
1717 return;
1718
1719 if (non_stop)
1720 {
1721 /* If in non-stop mode, only delete the step-resume or
1722 longjmp-resume breakpoint of the thread that just stopped
1723 stepping. */
1724 struct thread_info *tp = inferior_thread ();
1725 delete_step_resume_breakpoint (tp);
1726 }
1727 else
1728 /* In all-stop mode, delete all step-resume and longjmp-resume
1729 breakpoints of any thread that had them. */
1730 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1731 }
1732
1733 /* A cleanup wrapper. */
1734
1735 static void
1736 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1737 {
1738 delete_step_thread_step_resume_breakpoint ();
1739 }
1740
1741 /* Wait for control to return from inferior to debugger.
1742
1743 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1744 as if they were SIGTRAP signals. This can be useful during
1745 the startup sequence on some targets such as HP/UX, where
1746 we receive an EXEC event instead of the expected SIGTRAP.
1747
1748 If inferior gets a signal, we may decide to start it up again
1749 instead of returning. That is why there is a loop in this function.
1750 When this function actually returns it means the inferior
1751 should be left stopped and GDB should read more commands. */
1752
1753 void
1754 wait_for_inferior (int treat_exec_as_sigtrap)
1755 {
1756 struct cleanup *old_cleanups;
1757 struct execution_control_state ecss;
1758 struct execution_control_state *ecs;
1759
1760 if (debug_infrun)
1761 fprintf_unfiltered
1762 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1763 treat_exec_as_sigtrap);
1764
1765 old_cleanups =
1766 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1767
1768 ecs = &ecss;
1769 memset (ecs, 0, sizeof (*ecs));
1770
1771 overlay_cache_invalid = 1;
1772
1773 /* We'll update this if & when we switch to a new thread. */
1774 previous_inferior_ptid = inferior_ptid;
1775
1776 /* We have to invalidate the registers BEFORE calling target_wait
1777 because they can be loaded from the target while in target_wait.
1778 This makes remote debugging a bit more efficient for those
1779 targets that provide critical registers as part of their normal
1780 status mechanism. */
1781
1782 registers_changed ();
1783
1784 while (1)
1785 {
1786 if (deprecated_target_wait_hook)
1787 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1788 else
1789 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1790
1791 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1792 {
1793 xfree (ecs->ws.value.execd_pathname);
1794 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1795 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1796 }
1797
1798 /* Now figure out what to do with the result of the result. */
1799 handle_inferior_event (ecs);
1800
1801 if (!ecs->wait_some_more)
1802 break;
1803 }
1804
1805 do_cleanups (old_cleanups);
1806 }
1807
1808 /* Asynchronous version of wait_for_inferior. It is called by the
1809 event loop whenever a change of state is detected on the file
1810 descriptor corresponding to the target. It can be called more than
1811 once to complete a single execution command. In such cases we need
1812 to keep the state in a global variable ECSS. If it is the last time
1813 that this function is called for a single execution command, then
1814 report to the user that the inferior has stopped, and do the
1815 necessary cleanups. */
1816
1817 void
1818 fetch_inferior_event (void *client_data)
1819 {
1820 struct execution_control_state ecss;
1821 struct execution_control_state *ecs = &ecss;
1822 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1823 int was_sync = sync_execution;
1824
1825 memset (ecs, 0, sizeof (*ecs));
1826
1827 overlay_cache_invalid = 1;
1828
1829 /* We can only rely on wait_for_more being correct before handling
1830 the event in all-stop, but previous_inferior_ptid isn't used in
1831 non-stop. */
1832 if (!ecs->wait_some_more)
1833 /* We'll update this if & when we switch to a new thread. */
1834 previous_inferior_ptid = inferior_ptid;
1835
1836 if (non_stop)
1837 /* In non-stop mode, the user/frontend should not notice a thread
1838 switch due to internal events. Make sure we reverse to the
1839 user selected thread and frame after handling the event and
1840 running any breakpoint commands. */
1841 make_cleanup_restore_current_thread ();
1842
1843 /* We have to invalidate the registers BEFORE calling target_wait
1844 because they can be loaded from the target while in target_wait.
1845 This makes remote debugging a bit more efficient for those
1846 targets that provide critical registers as part of their normal
1847 status mechanism. */
1848
1849 registers_changed ();
1850
1851 if (deprecated_target_wait_hook)
1852 ecs->ptid =
1853 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1854 else
1855 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1856
1857 if (non_stop
1858 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1859 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1860 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1861 /* In non-stop mode, each thread is handled individually. Switch
1862 early, so the global state is set correctly for this
1863 thread. */
1864 context_switch (ecs->ptid);
1865
1866 /* Now figure out what to do with the result of the result. */
1867 handle_inferior_event (ecs);
1868
1869 if (!ecs->wait_some_more)
1870 {
1871 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1872
1873 delete_step_thread_step_resume_breakpoint ();
1874
1875 /* We may not find an inferior if this was a process exit. */
1876 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
1877 normal_stop ();
1878
1879 if (target_has_execution
1880 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1881 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1882 && ecs->event_thread->step_multi
1883 && ecs->event_thread->stop_step)
1884 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1885 else
1886 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1887 }
1888
1889 /* Revert thread and frame. */
1890 do_cleanups (old_chain);
1891
1892 /* If the inferior was in sync execution mode, and now isn't,
1893 restore the prompt. */
1894 if (was_sync && !sync_execution)
1895 display_gdb_prompt (0);
1896 }
1897
1898 /* Prepare an execution control state for looping through a
1899 wait_for_inferior-type loop. */
1900
1901 void
1902 init_execution_control_state (struct execution_control_state *ecs)
1903 {
1904 ecs->random_signal = 0;
1905 }
1906
1907 /* Clear context switchable stepping state. */
1908
1909 void
1910 init_thread_stepping_state (struct thread_info *tss)
1911 {
1912 struct symtab_and_line sal;
1913
1914 tss->stepping_over_breakpoint = 0;
1915 tss->step_after_step_resume_breakpoint = 0;
1916 tss->stepping_through_solib_after_catch = 0;
1917 tss->stepping_through_solib_catchpoints = NULL;
1918
1919 sal = find_pc_line (tss->prev_pc, 0);
1920 tss->current_line = sal.line;
1921 tss->current_symtab = sal.symtab;
1922 }
1923
1924 /* Return the cached copy of the last pid/waitstatus returned by
1925 target_wait()/deprecated_target_wait_hook(). The data is actually
1926 cached by handle_inferior_event(), which gets called immediately
1927 after target_wait()/deprecated_target_wait_hook(). */
1928
1929 void
1930 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1931 {
1932 *ptidp = target_last_wait_ptid;
1933 *status = target_last_waitstatus;
1934 }
1935
1936 void
1937 nullify_last_target_wait_ptid (void)
1938 {
1939 target_last_wait_ptid = minus_one_ptid;
1940 }
1941
1942 /* Switch thread contexts. */
1943
1944 static void
1945 context_switch (ptid_t ptid)
1946 {
1947 if (debug_infrun)
1948 {
1949 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1950 target_pid_to_str (inferior_ptid));
1951 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1952 target_pid_to_str (ptid));
1953 }
1954
1955 switch_to_thread (ptid);
1956 }
1957
1958 static void
1959 adjust_pc_after_break (struct execution_control_state *ecs)
1960 {
1961 struct regcache *regcache;
1962 struct gdbarch *gdbarch;
1963 CORE_ADDR breakpoint_pc;
1964
1965 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1966 we aren't, just return.
1967
1968 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1969 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1970 implemented by software breakpoints should be handled through the normal
1971 breakpoint layer.
1972
1973 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1974 different signals (SIGILL or SIGEMT for instance), but it is less
1975 clear where the PC is pointing afterwards. It may not match
1976 gdbarch_decr_pc_after_break. I don't know any specific target that
1977 generates these signals at breakpoints (the code has been in GDB since at
1978 least 1992) so I can not guess how to handle them here.
1979
1980 In earlier versions of GDB, a target with
1981 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1982 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1983 target with both of these set in GDB history, and it seems unlikely to be
1984 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1985
1986 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1987 return;
1988
1989 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1990 return;
1991
1992 /* In reverse execution, when a breakpoint is hit, the instruction
1993 under it has already been de-executed. The reported PC always
1994 points at the breakpoint address, so adjusting it further would
1995 be wrong. E.g., consider this case on a decr_pc_after_break == 1
1996 architecture:
1997
1998 B1 0x08000000 : INSN1
1999 B2 0x08000001 : INSN2
2000 0x08000002 : INSN3
2001 PC -> 0x08000003 : INSN4
2002
2003 Say you're stopped at 0x08000003 as above. Reverse continuing
2004 from that point should hit B2 as below. Reading the PC when the
2005 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2006 been de-executed already.
2007
2008 B1 0x08000000 : INSN1
2009 B2 PC -> 0x08000001 : INSN2
2010 0x08000002 : INSN3
2011 0x08000003 : INSN4
2012
2013 We can't apply the same logic as for forward execution, because
2014 we would wrongly adjust the PC to 0x08000000, since there's a
2015 breakpoint at PC - 1. We'd then report a hit on B1, although
2016 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2017 behaviour. */
2018 if (execution_direction == EXEC_REVERSE)
2019 return;
2020
2021 /* If this target does not decrement the PC after breakpoints, then
2022 we have nothing to do. */
2023 regcache = get_thread_regcache (ecs->ptid);
2024 gdbarch = get_regcache_arch (regcache);
2025 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2026 return;
2027
2028 /* Find the location where (if we've hit a breakpoint) the
2029 breakpoint would be. */
2030 breakpoint_pc = regcache_read_pc (regcache)
2031 - gdbarch_decr_pc_after_break (gdbarch);
2032
2033 /* Check whether there actually is a software breakpoint inserted at
2034 that location.
2035
2036 If in non-stop mode, a race condition is possible where we've
2037 removed a breakpoint, but stop events for that breakpoint were
2038 already queued and arrive later. To suppress those spurious
2039 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2040 and retire them after a number of stop events are reported. */
2041 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2042 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2043 {
2044 /* When using hardware single-step, a SIGTRAP is reported for both
2045 a completed single-step and a software breakpoint. Need to
2046 differentiate between the two, as the latter needs adjusting
2047 but the former does not.
2048
2049 The SIGTRAP can be due to a completed hardware single-step only if
2050 - we didn't insert software single-step breakpoints
2051 - the thread to be examined is still the current thread
2052 - this thread is currently being stepped
2053
2054 If any of these events did not occur, we must have stopped due
2055 to hitting a software breakpoint, and have to back up to the
2056 breakpoint address.
2057
2058 As a special case, we could have hardware single-stepped a
2059 software breakpoint. In this case (prev_pc == breakpoint_pc),
2060 we also need to back up to the breakpoint address. */
2061
2062 if (singlestep_breakpoints_inserted_p
2063 || !ptid_equal (ecs->ptid, inferior_ptid)
2064 || !currently_stepping (ecs->event_thread)
2065 || ecs->event_thread->prev_pc == breakpoint_pc)
2066 regcache_write_pc (regcache, breakpoint_pc);
2067 }
2068 }
2069
2070 void
2071 init_infwait_state (void)
2072 {
2073 waiton_ptid = pid_to_ptid (-1);
2074 infwait_state = infwait_normal_state;
2075 }
2076
2077 void
2078 error_is_running (void)
2079 {
2080 error (_("\
2081 Cannot execute this command while the selected thread is running."));
2082 }
2083
2084 void
2085 ensure_not_running (void)
2086 {
2087 if (is_running (inferior_ptid))
2088 error_is_running ();
2089 }
2090
2091 /* Given an execution control state that has been freshly filled in
2092 by an event from the inferior, figure out what it means and take
2093 appropriate action. */
2094
2095 void
2096 handle_inferior_event (struct execution_control_state *ecs)
2097 {
2098 int sw_single_step_trap_p = 0;
2099 int stopped_by_watchpoint;
2100 int stepped_after_stopped_by_watchpoint = 0;
2101 struct symtab_and_line stop_pc_sal;
2102 enum stop_kind stop_soon;
2103
2104 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2105 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2106 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2107 {
2108 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2109 gdb_assert (inf);
2110 stop_soon = inf->stop_soon;
2111 }
2112 else
2113 stop_soon = NO_STOP_QUIETLY;
2114
2115 /* Cache the last pid/waitstatus. */
2116 target_last_wait_ptid = ecs->ptid;
2117 target_last_waitstatus = ecs->ws;
2118
2119 /* Always clear state belonging to the previous time we stopped. */
2120 stop_stack_dummy = 0;
2121
2122 /* If it's a new process, add it to the thread database */
2123
2124 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2125 && !ptid_equal (ecs->ptid, minus_one_ptid)
2126 && !in_thread_list (ecs->ptid));
2127
2128 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2129 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2130 add_thread (ecs->ptid);
2131
2132 ecs->event_thread = find_thread_pid (ecs->ptid);
2133
2134 /* Dependent on valid ECS->EVENT_THREAD. */
2135 adjust_pc_after_break (ecs);
2136
2137 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2138 reinit_frame_cache ();
2139
2140 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2141 {
2142 breakpoint_retire_moribund ();
2143
2144 /* Mark the non-executing threads accordingly. */
2145 if (!non_stop
2146 || ecs->ws.kind == TARGET_WAITKIND_EXITED
2147 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
2148 set_executing (pid_to_ptid (-1), 0);
2149 else
2150 set_executing (ecs->ptid, 0);
2151 }
2152
2153 switch (infwait_state)
2154 {
2155 case infwait_thread_hop_state:
2156 if (debug_infrun)
2157 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2158 /* Cancel the waiton_ptid. */
2159 waiton_ptid = pid_to_ptid (-1);
2160 break;
2161
2162 case infwait_normal_state:
2163 if (debug_infrun)
2164 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2165 break;
2166
2167 case infwait_step_watch_state:
2168 if (debug_infrun)
2169 fprintf_unfiltered (gdb_stdlog,
2170 "infrun: infwait_step_watch_state\n");
2171
2172 stepped_after_stopped_by_watchpoint = 1;
2173 break;
2174
2175 case infwait_nonstep_watch_state:
2176 if (debug_infrun)
2177 fprintf_unfiltered (gdb_stdlog,
2178 "infrun: infwait_nonstep_watch_state\n");
2179 insert_breakpoints ();
2180
2181 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2182 handle things like signals arriving and other things happening
2183 in combination correctly? */
2184 stepped_after_stopped_by_watchpoint = 1;
2185 break;
2186
2187 default:
2188 internal_error (__FILE__, __LINE__, _("bad switch"));
2189 }
2190 infwait_state = infwait_normal_state;
2191
2192 switch (ecs->ws.kind)
2193 {
2194 case TARGET_WAITKIND_LOADED:
2195 if (debug_infrun)
2196 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2197 /* Ignore gracefully during startup of the inferior, as it might
2198 be the shell which has just loaded some objects, otherwise
2199 add the symbols for the newly loaded objects. Also ignore at
2200 the beginning of an attach or remote session; we will query
2201 the full list of libraries once the connection is
2202 established. */
2203 if (stop_soon == NO_STOP_QUIETLY)
2204 {
2205 /* Check for any newly added shared libraries if we're
2206 supposed to be adding them automatically. Switch
2207 terminal for any messages produced by
2208 breakpoint_re_set. */
2209 target_terminal_ours_for_output ();
2210 /* NOTE: cagney/2003-11-25: Make certain that the target
2211 stack's section table is kept up-to-date. Architectures,
2212 (e.g., PPC64), use the section table to perform
2213 operations such as address => section name and hence
2214 require the table to contain all sections (including
2215 those found in shared libraries). */
2216 /* NOTE: cagney/2003-11-25: Pass current_target and not
2217 exec_ops to SOLIB_ADD. This is because current GDB is
2218 only tooled to propagate section_table changes out from
2219 the "current_target" (see target_resize_to_sections), and
2220 not up from the exec stratum. This, of course, isn't
2221 right. "infrun.c" should only interact with the
2222 exec/process stratum, instead relying on the target stack
2223 to propagate relevant changes (stop, section table
2224 changed, ...) up to other layers. */
2225 #ifdef SOLIB_ADD
2226 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2227 #else
2228 solib_add (NULL, 0, &current_target, auto_solib_add);
2229 #endif
2230 target_terminal_inferior ();
2231
2232 /* If requested, stop when the dynamic linker notifies
2233 gdb of events. This allows the user to get control
2234 and place breakpoints in initializer routines for
2235 dynamically loaded objects (among other things). */
2236 if (stop_on_solib_events)
2237 {
2238 stop_stepping (ecs);
2239 return;
2240 }
2241
2242 /* NOTE drow/2007-05-11: This might be a good place to check
2243 for "catch load". */
2244 }
2245
2246 /* If we are skipping through a shell, or through shared library
2247 loading that we aren't interested in, resume the program. If
2248 we're running the program normally, also resume. But stop if
2249 we're attaching or setting up a remote connection. */
2250 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2251 {
2252 /* Loading of shared libraries might have changed breakpoint
2253 addresses. Make sure new breakpoints are inserted. */
2254 if (stop_soon == NO_STOP_QUIETLY
2255 && !breakpoints_always_inserted_mode ())
2256 insert_breakpoints ();
2257 resume (0, TARGET_SIGNAL_0);
2258 prepare_to_wait (ecs);
2259 return;
2260 }
2261
2262 break;
2263
2264 case TARGET_WAITKIND_SPURIOUS:
2265 if (debug_infrun)
2266 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2267 resume (0, TARGET_SIGNAL_0);
2268 prepare_to_wait (ecs);
2269 return;
2270
2271 case TARGET_WAITKIND_EXITED:
2272 if (debug_infrun)
2273 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2274 inferior_ptid = ecs->ptid;
2275 target_terminal_ours (); /* Must do this before mourn anyway */
2276 print_stop_reason (EXITED, ecs->ws.value.integer);
2277
2278 /* Record the exit code in the convenience variable $_exitcode, so
2279 that the user can inspect this again later. */
2280 set_internalvar (lookup_internalvar ("_exitcode"),
2281 value_from_longest (builtin_type_int32,
2282 (LONGEST) ecs->ws.value.integer));
2283 gdb_flush (gdb_stdout);
2284 target_mourn_inferior ();
2285 singlestep_breakpoints_inserted_p = 0;
2286 stop_print_frame = 0;
2287 stop_stepping (ecs);
2288 return;
2289
2290 case TARGET_WAITKIND_SIGNALLED:
2291 if (debug_infrun)
2292 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2293 inferior_ptid = ecs->ptid;
2294 stop_print_frame = 0;
2295 target_terminal_ours (); /* Must do this before mourn anyway */
2296
2297 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2298 reach here unless the inferior is dead. However, for years
2299 target_kill() was called here, which hints that fatal signals aren't
2300 really fatal on some systems. If that's true, then some changes
2301 may be needed. */
2302 target_mourn_inferior ();
2303
2304 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2305 singlestep_breakpoints_inserted_p = 0;
2306 stop_stepping (ecs);
2307 return;
2308
2309 /* The following are the only cases in which we keep going;
2310 the above cases end in a continue or goto. */
2311 case TARGET_WAITKIND_FORKED:
2312 case TARGET_WAITKIND_VFORKED:
2313 if (debug_infrun)
2314 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2315 pending_follow.kind = ecs->ws.kind;
2316
2317 pending_follow.fork_event.parent_pid = ecs->ptid;
2318 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2319
2320 if (!ptid_equal (ecs->ptid, inferior_ptid))
2321 {
2322 context_switch (ecs->ptid);
2323 reinit_frame_cache ();
2324 }
2325
2326 stop_pc = read_pc ();
2327
2328 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2329
2330 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2331
2332 /* If no catchpoint triggered for this, then keep going. */
2333 if (ecs->random_signal)
2334 {
2335 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2336 keep_going (ecs);
2337 return;
2338 }
2339 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2340 goto process_event_stop_test;
2341
2342 case TARGET_WAITKIND_EXECD:
2343 if (debug_infrun)
2344 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2345 pending_follow.execd_pathname =
2346 savestring (ecs->ws.value.execd_pathname,
2347 strlen (ecs->ws.value.execd_pathname));
2348
2349 if (!ptid_equal (ecs->ptid, inferior_ptid))
2350 {
2351 context_switch (ecs->ptid);
2352 reinit_frame_cache ();
2353 }
2354
2355 stop_pc = read_pc ();
2356
2357 /* This causes the eventpoints and symbol table to be reset.
2358 Must do this now, before trying to determine whether to
2359 stop. */
2360 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2361 xfree (pending_follow.execd_pathname);
2362
2363 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2364 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2365
2366 /* If no catchpoint triggered for this, then keep going. */
2367 if (ecs->random_signal)
2368 {
2369 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2370 keep_going (ecs);
2371 return;
2372 }
2373 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2374 goto process_event_stop_test;
2375
2376 /* Be careful not to try to gather much state about a thread
2377 that's in a syscall. It's frequently a losing proposition. */
2378 case TARGET_WAITKIND_SYSCALL_ENTRY:
2379 if (debug_infrun)
2380 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2381 resume (0, TARGET_SIGNAL_0);
2382 prepare_to_wait (ecs);
2383 return;
2384
2385 /* Before examining the threads further, step this thread to
2386 get it entirely out of the syscall. (We get notice of the
2387 event when the thread is just on the verge of exiting a
2388 syscall. Stepping one instruction seems to get it back
2389 into user code.) */
2390 case TARGET_WAITKIND_SYSCALL_RETURN:
2391 if (debug_infrun)
2392 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2393 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2394 prepare_to_wait (ecs);
2395 return;
2396
2397 case TARGET_WAITKIND_STOPPED:
2398 if (debug_infrun)
2399 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2400 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2401 break;
2402
2403 case TARGET_WAITKIND_NO_HISTORY:
2404 /* Reverse execution: target ran out of history info. */
2405 stop_pc = read_pc ();
2406 print_stop_reason (NO_HISTORY, 0);
2407 stop_stepping (ecs);
2408 return;
2409
2410 /* We had an event in the inferior, but we are not interested
2411 in handling it at this level. The lower layers have already
2412 done what needs to be done, if anything.
2413
2414 One of the possible circumstances for this is when the
2415 inferior produces output for the console. The inferior has
2416 not stopped, and we are ignoring the event. Another possible
2417 circumstance is any event which the lower level knows will be
2418 reported multiple times without an intervening resume. */
2419 case TARGET_WAITKIND_IGNORE:
2420 if (debug_infrun)
2421 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2422 prepare_to_wait (ecs);
2423 return;
2424 }
2425
2426 if (ecs->new_thread_event)
2427 {
2428 if (non_stop)
2429 /* Non-stop assumes that the target handles adding new threads
2430 to the thread list. */
2431 internal_error (__FILE__, __LINE__, "\
2432 targets should add new threads to the thread list themselves in non-stop mode.");
2433
2434 /* We may want to consider not doing a resume here in order to
2435 give the user a chance to play with the new thread. It might
2436 be good to make that a user-settable option. */
2437
2438 /* At this point, all threads are stopped (happens automatically
2439 in either the OS or the native code). Therefore we need to
2440 continue all threads in order to make progress. */
2441
2442 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2443 prepare_to_wait (ecs);
2444 return;
2445 }
2446
2447 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2448 {
2449 /* Do we need to clean up the state of a thread that has
2450 completed a displaced single-step? (Doing so usually affects
2451 the PC, so do it here, before we set stop_pc.) */
2452 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2453
2454 /* If we either finished a single-step or hit a breakpoint, but
2455 the user wanted this thread to be stopped, pretend we got a
2456 SIG0 (generic unsignaled stop). */
2457
2458 if (ecs->event_thread->stop_requested
2459 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2460 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2461 }
2462
2463 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2464
2465 if (debug_infrun)
2466 {
2467 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2468 paddr_nz (stop_pc));
2469 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2470 {
2471 CORE_ADDR addr;
2472 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2473
2474 if (target_stopped_data_address (&current_target, &addr))
2475 fprintf_unfiltered (gdb_stdlog,
2476 "infrun: stopped data address = 0x%s\n",
2477 paddr_nz (addr));
2478 else
2479 fprintf_unfiltered (gdb_stdlog,
2480 "infrun: (no data address available)\n");
2481 }
2482 }
2483
2484 if (stepping_past_singlestep_breakpoint)
2485 {
2486 gdb_assert (singlestep_breakpoints_inserted_p);
2487 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2488 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2489
2490 stepping_past_singlestep_breakpoint = 0;
2491
2492 /* We've either finished single-stepping past the single-step
2493 breakpoint, or stopped for some other reason. It would be nice if
2494 we could tell, but we can't reliably. */
2495 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2496 {
2497 if (debug_infrun)
2498 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2499 /* Pull the single step breakpoints out of the target. */
2500 remove_single_step_breakpoints ();
2501 singlestep_breakpoints_inserted_p = 0;
2502
2503 ecs->random_signal = 0;
2504
2505 context_switch (saved_singlestep_ptid);
2506 if (deprecated_context_hook)
2507 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2508
2509 resume (1, TARGET_SIGNAL_0);
2510 prepare_to_wait (ecs);
2511 return;
2512 }
2513 }
2514
2515 if (!ptid_equal (deferred_step_ptid, null_ptid))
2516 {
2517 /* In non-stop mode, there's never a deferred_step_ptid set. */
2518 gdb_assert (!non_stop);
2519
2520 /* If we stopped for some other reason than single-stepping, ignore
2521 the fact that we were supposed to switch back. */
2522 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2523 {
2524 if (debug_infrun)
2525 fprintf_unfiltered (gdb_stdlog,
2526 "infrun: handling deferred step\n");
2527
2528 /* Pull the single step breakpoints out of the target. */
2529 if (singlestep_breakpoints_inserted_p)
2530 {
2531 remove_single_step_breakpoints ();
2532 singlestep_breakpoints_inserted_p = 0;
2533 }
2534
2535 /* Note: We do not call context_switch at this point, as the
2536 context is already set up for stepping the original thread. */
2537 switch_to_thread (deferred_step_ptid);
2538 deferred_step_ptid = null_ptid;
2539 /* Suppress spurious "Switching to ..." message. */
2540 previous_inferior_ptid = inferior_ptid;
2541
2542 resume (1, TARGET_SIGNAL_0);
2543 prepare_to_wait (ecs);
2544 return;
2545 }
2546
2547 deferred_step_ptid = null_ptid;
2548 }
2549
2550 /* See if a thread hit a thread-specific breakpoint that was meant for
2551 another thread. If so, then step that thread past the breakpoint,
2552 and continue it. */
2553
2554 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2555 {
2556 int thread_hop_needed = 0;
2557
2558 /* Check if a regular breakpoint has been hit before checking
2559 for a potential single step breakpoint. Otherwise, GDB will
2560 not see this breakpoint hit when stepping onto breakpoints. */
2561 if (regular_breakpoint_inserted_here_p (stop_pc))
2562 {
2563 ecs->random_signal = 0;
2564 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2565 thread_hop_needed = 1;
2566 }
2567 else if (singlestep_breakpoints_inserted_p)
2568 {
2569 /* We have not context switched yet, so this should be true
2570 no matter which thread hit the singlestep breakpoint. */
2571 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2572 if (debug_infrun)
2573 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2574 "trap for %s\n",
2575 target_pid_to_str (ecs->ptid));
2576
2577 ecs->random_signal = 0;
2578 /* The call to in_thread_list is necessary because PTIDs sometimes
2579 change when we go from single-threaded to multi-threaded. If
2580 the singlestep_ptid is still in the list, assume that it is
2581 really different from ecs->ptid. */
2582 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2583 && in_thread_list (singlestep_ptid))
2584 {
2585 /* If the PC of the thread we were trying to single-step
2586 has changed, discard this event (which we were going
2587 to ignore anyway), and pretend we saw that thread
2588 trap. This prevents us continuously moving the
2589 single-step breakpoint forward, one instruction at a
2590 time. If the PC has changed, then the thread we were
2591 trying to single-step has trapped or been signalled,
2592 but the event has not been reported to GDB yet.
2593
2594 There might be some cases where this loses signal
2595 information, if a signal has arrived at exactly the
2596 same time that the PC changed, but this is the best
2597 we can do with the information available. Perhaps we
2598 should arrange to report all events for all threads
2599 when they stop, or to re-poll the remote looking for
2600 this particular thread (i.e. temporarily enable
2601 schedlock). */
2602
2603 CORE_ADDR new_singlestep_pc
2604 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2605
2606 if (new_singlestep_pc != singlestep_pc)
2607 {
2608 enum target_signal stop_signal;
2609
2610 if (debug_infrun)
2611 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2612 " but expected thread advanced also\n");
2613
2614 /* The current context still belongs to
2615 singlestep_ptid. Don't swap here, since that's
2616 the context we want to use. Just fudge our
2617 state and continue. */
2618 stop_signal = ecs->event_thread->stop_signal;
2619 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2620 ecs->ptid = singlestep_ptid;
2621 ecs->event_thread = find_thread_pid (ecs->ptid);
2622 ecs->event_thread->stop_signal = stop_signal;
2623 stop_pc = new_singlestep_pc;
2624 }
2625 else
2626 {
2627 if (debug_infrun)
2628 fprintf_unfiltered (gdb_stdlog,
2629 "infrun: unexpected thread\n");
2630
2631 thread_hop_needed = 1;
2632 stepping_past_singlestep_breakpoint = 1;
2633 saved_singlestep_ptid = singlestep_ptid;
2634 }
2635 }
2636 }
2637
2638 if (thread_hop_needed)
2639 {
2640 int remove_status = 0;
2641
2642 if (debug_infrun)
2643 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2644
2645 /* Saw a breakpoint, but it was hit by the wrong thread.
2646 Just continue. */
2647
2648 if (singlestep_breakpoints_inserted_p)
2649 {
2650 /* Pull the single step breakpoints out of the target. */
2651 remove_single_step_breakpoints ();
2652 singlestep_breakpoints_inserted_p = 0;
2653 }
2654
2655 /* If the arch can displace step, don't remove the
2656 breakpoints. */
2657 if (!use_displaced_stepping (current_gdbarch))
2658 remove_status = remove_breakpoints ();
2659
2660 /* Did we fail to remove breakpoints? If so, try
2661 to set the PC past the bp. (There's at least
2662 one situation in which we can fail to remove
2663 the bp's: On HP-UX's that use ttrace, we can't
2664 change the address space of a vforking child
2665 process until the child exits (well, okay, not
2666 then either :-) or execs. */
2667 if (remove_status != 0)
2668 error (_("Cannot step over breakpoint hit in wrong thread"));
2669 else
2670 { /* Single step */
2671 if (!ptid_equal (inferior_ptid, ecs->ptid))
2672 context_switch (ecs->ptid);
2673
2674 if (!non_stop)
2675 {
2676 /* Only need to require the next event from this
2677 thread in all-stop mode. */
2678 waiton_ptid = ecs->ptid;
2679 infwait_state = infwait_thread_hop_state;
2680 }
2681
2682 ecs->event_thread->stepping_over_breakpoint = 1;
2683 keep_going (ecs);
2684 registers_changed ();
2685 return;
2686 }
2687 }
2688 else if (singlestep_breakpoints_inserted_p)
2689 {
2690 sw_single_step_trap_p = 1;
2691 ecs->random_signal = 0;
2692 }
2693 }
2694 else
2695 ecs->random_signal = 1;
2696
2697 /* See if something interesting happened to the non-current thread. If
2698 so, then switch to that thread. */
2699 if (!ptid_equal (ecs->ptid, inferior_ptid))
2700 {
2701 if (debug_infrun)
2702 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2703
2704 context_switch (ecs->ptid);
2705
2706 if (deprecated_context_hook)
2707 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2708 }
2709
2710 if (singlestep_breakpoints_inserted_p)
2711 {
2712 /* Pull the single step breakpoints out of the target. */
2713 remove_single_step_breakpoints ();
2714 singlestep_breakpoints_inserted_p = 0;
2715 }
2716
2717 if (stepped_after_stopped_by_watchpoint)
2718 stopped_by_watchpoint = 0;
2719 else
2720 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2721
2722 /* If necessary, step over this watchpoint. We'll be back to display
2723 it in a moment. */
2724 if (stopped_by_watchpoint
2725 && (HAVE_STEPPABLE_WATCHPOINT
2726 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2727 {
2728 /* At this point, we are stopped at an instruction which has
2729 attempted to write to a piece of memory under control of
2730 a watchpoint. The instruction hasn't actually executed
2731 yet. If we were to evaluate the watchpoint expression
2732 now, we would get the old value, and therefore no change
2733 would seem to have occurred.
2734
2735 In order to make watchpoints work `right', we really need
2736 to complete the memory write, and then evaluate the
2737 watchpoint expression. We do this by single-stepping the
2738 target.
2739
2740 It may not be necessary to disable the watchpoint to stop over
2741 it. For example, the PA can (with some kernel cooperation)
2742 single step over a watchpoint without disabling the watchpoint.
2743
2744 It is far more common to need to disable a watchpoint to step
2745 the inferior over it. If we have non-steppable watchpoints,
2746 we must disable the current watchpoint; it's simplest to
2747 disable all watchpoints and breakpoints. */
2748
2749 if (!HAVE_STEPPABLE_WATCHPOINT)
2750 remove_breakpoints ();
2751 registers_changed ();
2752 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2753 waiton_ptid = ecs->ptid;
2754 if (HAVE_STEPPABLE_WATCHPOINT)
2755 infwait_state = infwait_step_watch_state;
2756 else
2757 infwait_state = infwait_nonstep_watch_state;
2758 prepare_to_wait (ecs);
2759 return;
2760 }
2761
2762 ecs->stop_func_start = 0;
2763 ecs->stop_func_end = 0;
2764 ecs->stop_func_name = 0;
2765 /* Don't care about return value; stop_func_start and stop_func_name
2766 will both be 0 if it doesn't work. */
2767 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2768 &ecs->stop_func_start, &ecs->stop_func_end);
2769 ecs->stop_func_start
2770 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2771 ecs->event_thread->stepping_over_breakpoint = 0;
2772 bpstat_clear (&ecs->event_thread->stop_bpstat);
2773 ecs->event_thread->stop_step = 0;
2774 stop_print_frame = 1;
2775 ecs->random_signal = 0;
2776 stopped_by_random_signal = 0;
2777
2778 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2779 && ecs->event_thread->trap_expected
2780 && gdbarch_single_step_through_delay_p (current_gdbarch)
2781 && currently_stepping (ecs->event_thread))
2782 {
2783 /* We're trying to step off a breakpoint. Turns out that we're
2784 also on an instruction that needs to be stepped multiple
2785 times before it's been fully executing. E.g., architectures
2786 with a delay slot. It needs to be stepped twice, once for
2787 the instruction and once for the delay slot. */
2788 int step_through_delay
2789 = gdbarch_single_step_through_delay (current_gdbarch,
2790 get_current_frame ());
2791 if (debug_infrun && step_through_delay)
2792 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2793 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2794 {
2795 /* The user issued a continue when stopped at a breakpoint.
2796 Set up for another trap and get out of here. */
2797 ecs->event_thread->stepping_over_breakpoint = 1;
2798 keep_going (ecs);
2799 return;
2800 }
2801 else if (step_through_delay)
2802 {
2803 /* The user issued a step when stopped at a breakpoint.
2804 Maybe we should stop, maybe we should not - the delay
2805 slot *might* correspond to a line of source. In any
2806 case, don't decide that here, just set
2807 ecs->stepping_over_breakpoint, making sure we
2808 single-step again before breakpoints are re-inserted. */
2809 ecs->event_thread->stepping_over_breakpoint = 1;
2810 }
2811 }
2812
2813 /* Look at the cause of the stop, and decide what to do.
2814 The alternatives are:
2815 1) stop_stepping and return; to really stop and return to the debugger,
2816 2) keep_going and return to start up again
2817 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2818 3) set ecs->random_signal to 1, and the decision between 1 and 2
2819 will be made according to the signal handling tables. */
2820
2821 /* First, distinguish signals caused by the debugger from signals
2822 that have to do with the program's own actions. Note that
2823 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2824 on the operating system version. Here we detect when a SIGILL or
2825 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2826 something similar for SIGSEGV, since a SIGSEGV will be generated
2827 when we're trying to execute a breakpoint instruction on a
2828 non-executable stack. This happens for call dummy breakpoints
2829 for architectures like SPARC that place call dummies on the
2830 stack.
2831
2832 If we're doing a displaced step past a breakpoint, then the
2833 breakpoint is always inserted at the original instruction;
2834 non-standard signals can't be explained by the breakpoint. */
2835 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2836 || (! ecs->event_thread->trap_expected
2837 && breakpoint_inserted_here_p (stop_pc)
2838 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2839 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2840 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2841 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2842 || stop_soon == STOP_QUIETLY_REMOTE)
2843 {
2844 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2845 {
2846 if (debug_infrun)
2847 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2848 stop_print_frame = 0;
2849 stop_stepping (ecs);
2850 return;
2851 }
2852
2853 /* This is originated from start_remote(), start_inferior() and
2854 shared libraries hook functions. */
2855 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2856 {
2857 if (debug_infrun)
2858 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2859 stop_stepping (ecs);
2860 return;
2861 }
2862
2863 /* This originates from attach_command(). We need to overwrite
2864 the stop_signal here, because some kernels don't ignore a
2865 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2866 See more comments in inferior.h. On the other hand, if we
2867 get a non-SIGSTOP, report it to the user - assume the backend
2868 will handle the SIGSTOP if it should show up later.
2869
2870 Also consider that the attach is complete when we see a
2871 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2872 target extended-remote report it instead of a SIGSTOP
2873 (e.g. gdbserver). We already rely on SIGTRAP being our
2874 signal, so this is no exception.
2875
2876 Also consider that the attach is complete when we see a
2877 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2878 the target to stop all threads of the inferior, in case the
2879 low level attach operation doesn't stop them implicitly. If
2880 they weren't stopped implicitly, then the stub will report a
2881 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2882 other than GDB's request. */
2883 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2884 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2885 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2886 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
2887 {
2888 stop_stepping (ecs);
2889 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2890 return;
2891 }
2892
2893 /* See if there is a breakpoint at the current PC. */
2894 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2895
2896 /* Following in case break condition called a
2897 function. */
2898 stop_print_frame = 1;
2899
2900 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2901 at one stage in the past included checks for an inferior
2902 function call's call dummy's return breakpoint. The original
2903 comment, that went with the test, read:
2904
2905 ``End of a stack dummy. Some systems (e.g. Sony news) give
2906 another signal besides SIGTRAP, so check here as well as
2907 above.''
2908
2909 If someone ever tries to get call dummys on a
2910 non-executable stack to work (where the target would stop
2911 with something like a SIGSEGV), then those tests might need
2912 to be re-instated. Given, however, that the tests were only
2913 enabled when momentary breakpoints were not being used, I
2914 suspect that it won't be the case.
2915
2916 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2917 be necessary for call dummies on a non-executable stack on
2918 SPARC. */
2919
2920 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2921 ecs->random_signal
2922 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2923 || ecs->event_thread->trap_expected
2924 || (ecs->event_thread->step_range_end
2925 && ecs->event_thread->step_resume_breakpoint == NULL));
2926 else
2927 {
2928 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2929 if (!ecs->random_signal)
2930 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2931 }
2932 }
2933
2934 /* When we reach this point, we've pretty much decided
2935 that the reason for stopping must've been a random
2936 (unexpected) signal. */
2937
2938 else
2939 ecs->random_signal = 1;
2940
2941 process_event_stop_test:
2942 /* For the program's own signals, act according to
2943 the signal handling tables. */
2944
2945 if (ecs->random_signal)
2946 {
2947 /* Signal not for debugging purposes. */
2948 int printed = 0;
2949
2950 if (debug_infrun)
2951 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2952 ecs->event_thread->stop_signal);
2953
2954 stopped_by_random_signal = 1;
2955
2956 if (signal_print[ecs->event_thread->stop_signal])
2957 {
2958 printed = 1;
2959 target_terminal_ours_for_output ();
2960 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
2961 }
2962 /* Always stop on signals if we're either just gaining control
2963 of the program, or the user explicitly requested this thread
2964 to remain stopped. */
2965 if (stop_soon != NO_STOP_QUIETLY
2966 || ecs->event_thread->stop_requested
2967 || signal_stop_state (ecs->event_thread->stop_signal))
2968 {
2969 stop_stepping (ecs);
2970 return;
2971 }
2972 /* If not going to stop, give terminal back
2973 if we took it away. */
2974 else if (printed)
2975 target_terminal_inferior ();
2976
2977 /* Clear the signal if it should not be passed. */
2978 if (signal_program[ecs->event_thread->stop_signal] == 0)
2979 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2980
2981 if (ecs->event_thread->prev_pc == read_pc ()
2982 && ecs->event_thread->trap_expected
2983 && ecs->event_thread->step_resume_breakpoint == NULL)
2984 {
2985 /* We were just starting a new sequence, attempting to
2986 single-step off of a breakpoint and expecting a SIGTRAP.
2987 Instead this signal arrives. This signal will take us out
2988 of the stepping range so GDB needs to remember to, when
2989 the signal handler returns, resume stepping off that
2990 breakpoint. */
2991 /* To simplify things, "continue" is forced to use the same
2992 code paths as single-step - set a breakpoint at the
2993 signal return address and then, once hit, step off that
2994 breakpoint. */
2995 if (debug_infrun)
2996 fprintf_unfiltered (gdb_stdlog,
2997 "infrun: signal arrived while stepping over "
2998 "breakpoint\n");
2999
3000 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3001 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3002 keep_going (ecs);
3003 return;
3004 }
3005
3006 if (ecs->event_thread->step_range_end != 0
3007 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3008 && (ecs->event_thread->step_range_start <= stop_pc
3009 && stop_pc < ecs->event_thread->step_range_end)
3010 && frame_id_eq (get_frame_id (get_current_frame ()),
3011 ecs->event_thread->step_frame_id)
3012 && ecs->event_thread->step_resume_breakpoint == NULL)
3013 {
3014 /* The inferior is about to take a signal that will take it
3015 out of the single step range. Set a breakpoint at the
3016 current PC (which is presumably where the signal handler
3017 will eventually return) and then allow the inferior to
3018 run free.
3019
3020 Note that this is only needed for a signal delivered
3021 while in the single-step range. Nested signals aren't a
3022 problem as they eventually all return. */
3023 if (debug_infrun)
3024 fprintf_unfiltered (gdb_stdlog,
3025 "infrun: signal may take us out of "
3026 "single-step range\n");
3027
3028 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3029 keep_going (ecs);
3030 return;
3031 }
3032
3033 /* Note: step_resume_breakpoint may be non-NULL. This occures
3034 when either there's a nested signal, or when there's a
3035 pending signal enabled just as the signal handler returns
3036 (leaving the inferior at the step-resume-breakpoint without
3037 actually executing it). Either way continue until the
3038 breakpoint is really hit. */
3039 keep_going (ecs);
3040 return;
3041 }
3042
3043 /* Handle cases caused by hitting a breakpoint. */
3044 {
3045 CORE_ADDR jmp_buf_pc;
3046 struct bpstat_what what;
3047
3048 what = bpstat_what (ecs->event_thread->stop_bpstat);
3049
3050 if (what.call_dummy)
3051 {
3052 stop_stack_dummy = 1;
3053 }
3054
3055 switch (what.main_action)
3056 {
3057 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3058 /* If we hit the breakpoint at longjmp while stepping, we
3059 install a momentary breakpoint at the target of the
3060 jmp_buf. */
3061
3062 if (debug_infrun)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3065
3066 ecs->event_thread->stepping_over_breakpoint = 1;
3067
3068 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
3069 || !gdbarch_get_longjmp_target (current_gdbarch,
3070 get_current_frame (), &jmp_buf_pc))
3071 {
3072 if (debug_infrun)
3073 fprintf_unfiltered (gdb_stdlog, "\
3074 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3075 keep_going (ecs);
3076 return;
3077 }
3078
3079 /* We're going to replace the current step-resume breakpoint
3080 with a longjmp-resume breakpoint. */
3081 delete_step_resume_breakpoint (ecs->event_thread);
3082
3083 /* Insert a breakpoint at resume address. */
3084 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3085
3086 keep_going (ecs);
3087 return;
3088
3089 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3090 if (debug_infrun)
3091 fprintf_unfiltered (gdb_stdlog,
3092 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3093
3094 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3095 delete_step_resume_breakpoint (ecs->event_thread);
3096
3097 ecs->event_thread->stop_step = 1;
3098 print_stop_reason (END_STEPPING_RANGE, 0);
3099 stop_stepping (ecs);
3100 return;
3101
3102 case BPSTAT_WHAT_SINGLE:
3103 if (debug_infrun)
3104 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3105 ecs->event_thread->stepping_over_breakpoint = 1;
3106 /* Still need to check other stuff, at least the case
3107 where we are stepping and step out of the right range. */
3108 break;
3109
3110 case BPSTAT_WHAT_STOP_NOISY:
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3113 stop_print_frame = 1;
3114
3115 /* We are about to nuke the step_resume_breakpointt via the
3116 cleanup chain, so no need to worry about it here. */
3117
3118 stop_stepping (ecs);
3119 return;
3120
3121 case BPSTAT_WHAT_STOP_SILENT:
3122 if (debug_infrun)
3123 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3124 stop_print_frame = 0;
3125
3126 /* We are about to nuke the step_resume_breakpoin via the
3127 cleanup chain, so no need to worry about it here. */
3128
3129 stop_stepping (ecs);
3130 return;
3131
3132 case BPSTAT_WHAT_STEP_RESUME:
3133 if (debug_infrun)
3134 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3135
3136 delete_step_resume_breakpoint (ecs->event_thread);
3137 if (ecs->event_thread->step_after_step_resume_breakpoint)
3138 {
3139 /* Back when the step-resume breakpoint was inserted, we
3140 were trying to single-step off a breakpoint. Go back
3141 to doing that. */
3142 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3143 ecs->event_thread->stepping_over_breakpoint = 1;
3144 keep_going (ecs);
3145 return;
3146 }
3147 if (stop_pc == ecs->stop_func_start
3148 && execution_direction == EXEC_REVERSE)
3149 {
3150 /* We are stepping over a function call in reverse, and
3151 just hit the step-resume breakpoint at the start
3152 address of the function. Go back to single-stepping,
3153 which should take us back to the function call. */
3154 ecs->event_thread->stepping_over_breakpoint = 1;
3155 keep_going (ecs);
3156 return;
3157 }
3158 break;
3159
3160 case BPSTAT_WHAT_CHECK_SHLIBS:
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3164
3165 /* Check for any newly added shared libraries if we're
3166 supposed to be adding them automatically. Switch
3167 terminal for any messages produced by
3168 breakpoint_re_set. */
3169 target_terminal_ours_for_output ();
3170 /* NOTE: cagney/2003-11-25: Make certain that the target
3171 stack's section table is kept up-to-date. Architectures,
3172 (e.g., PPC64), use the section table to perform
3173 operations such as address => section name and hence
3174 require the table to contain all sections (including
3175 those found in shared libraries). */
3176 /* NOTE: cagney/2003-11-25: Pass current_target and not
3177 exec_ops to SOLIB_ADD. This is because current GDB is
3178 only tooled to propagate section_table changes out from
3179 the "current_target" (see target_resize_to_sections), and
3180 not up from the exec stratum. This, of course, isn't
3181 right. "infrun.c" should only interact with the
3182 exec/process stratum, instead relying on the target stack
3183 to propagate relevant changes (stop, section table
3184 changed, ...) up to other layers. */
3185 #ifdef SOLIB_ADD
3186 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3187 #else
3188 solib_add (NULL, 0, &current_target, auto_solib_add);
3189 #endif
3190 target_terminal_inferior ();
3191
3192 /* If requested, stop when the dynamic linker notifies
3193 gdb of events. This allows the user to get control
3194 and place breakpoints in initializer routines for
3195 dynamically loaded objects (among other things). */
3196 if (stop_on_solib_events || stop_stack_dummy)
3197 {
3198 stop_stepping (ecs);
3199 return;
3200 }
3201 else
3202 {
3203 /* We want to step over this breakpoint, then keep going. */
3204 ecs->event_thread->stepping_over_breakpoint = 1;
3205 break;
3206 }
3207 }
3208 break;
3209
3210 case BPSTAT_WHAT_LAST:
3211 /* Not a real code, but listed here to shut up gcc -Wall. */
3212
3213 case BPSTAT_WHAT_KEEP_CHECKING:
3214 break;
3215 }
3216 }
3217
3218 /* We come here if we hit a breakpoint but should not
3219 stop for it. Possibly we also were stepping
3220 and should stop for that. So fall through and
3221 test for stepping. But, if not stepping,
3222 do not stop. */
3223
3224 /* In all-stop mode, if we're currently stepping but have stopped in
3225 some other thread, we need to switch back to the stepped thread. */
3226 if (!non_stop)
3227 {
3228 struct thread_info *tp;
3229 tp = iterate_over_threads (currently_stepping_callback,
3230 ecs->event_thread);
3231 if (tp)
3232 {
3233 /* However, if the current thread is blocked on some internal
3234 breakpoint, and we simply need to step over that breakpoint
3235 to get it going again, do that first. */
3236 if ((ecs->event_thread->trap_expected
3237 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3238 || ecs->event_thread->stepping_over_breakpoint)
3239 {
3240 keep_going (ecs);
3241 return;
3242 }
3243
3244 /* Otherwise, we no longer expect a trap in the current thread.
3245 Clear the trap_expected flag before switching back -- this is
3246 what keep_going would do as well, if we called it. */
3247 ecs->event_thread->trap_expected = 0;
3248
3249 if (debug_infrun)
3250 fprintf_unfiltered (gdb_stdlog,
3251 "infrun: switching back to stepped thread\n");
3252
3253 ecs->event_thread = tp;
3254 ecs->ptid = tp->ptid;
3255 context_switch (ecs->ptid);
3256 keep_going (ecs);
3257 return;
3258 }
3259 }
3260
3261 /* Are we stepping to get the inferior out of the dynamic linker's
3262 hook (and possibly the dld itself) after catching a shlib
3263 event? */
3264 if (ecs->event_thread->stepping_through_solib_after_catch)
3265 {
3266 #if defined(SOLIB_ADD)
3267 /* Have we reached our destination? If not, keep going. */
3268 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3269 {
3270 if (debug_infrun)
3271 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3272 ecs->event_thread->stepping_over_breakpoint = 1;
3273 keep_going (ecs);
3274 return;
3275 }
3276 #endif
3277 if (debug_infrun)
3278 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3279 /* Else, stop and report the catchpoint(s) whose triggering
3280 caused us to begin stepping. */
3281 ecs->event_thread->stepping_through_solib_after_catch = 0;
3282 bpstat_clear (&ecs->event_thread->stop_bpstat);
3283 ecs->event_thread->stop_bpstat
3284 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3285 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3286 stop_print_frame = 1;
3287 stop_stepping (ecs);
3288 return;
3289 }
3290
3291 if (ecs->event_thread->step_resume_breakpoint)
3292 {
3293 if (debug_infrun)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "infrun: step-resume breakpoint is inserted\n");
3296
3297 /* Having a step-resume breakpoint overrides anything
3298 else having to do with stepping commands until
3299 that breakpoint is reached. */
3300 keep_going (ecs);
3301 return;
3302 }
3303
3304 if (ecs->event_thread->step_range_end == 0)
3305 {
3306 if (debug_infrun)
3307 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3308 /* Likewise if we aren't even stepping. */
3309 keep_going (ecs);
3310 return;
3311 }
3312
3313 /* If stepping through a line, keep going if still within it.
3314
3315 Note that step_range_end is the address of the first instruction
3316 beyond the step range, and NOT the address of the last instruction
3317 within it! */
3318 if (stop_pc >= ecs->event_thread->step_range_start
3319 && stop_pc < ecs->event_thread->step_range_end)
3320 {
3321 if (debug_infrun)
3322 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3323 paddr_nz (ecs->event_thread->step_range_start),
3324 paddr_nz (ecs->event_thread->step_range_end));
3325
3326 /* When stepping backward, stop at beginning of line range
3327 (unless it's the function entry point, in which case
3328 keep going back to the call point). */
3329 if (stop_pc == ecs->event_thread->step_range_start
3330 && stop_pc != ecs->stop_func_start
3331 && execution_direction == EXEC_REVERSE)
3332 {
3333 ecs->event_thread->stop_step = 1;
3334 print_stop_reason (END_STEPPING_RANGE, 0);
3335 stop_stepping (ecs);
3336 }
3337 else
3338 keep_going (ecs);
3339
3340 return;
3341 }
3342
3343 /* We stepped out of the stepping range. */
3344
3345 /* If we are stepping at the source level and entered the runtime
3346 loader dynamic symbol resolution code, we keep on single stepping
3347 until we exit the run time loader code and reach the callee's
3348 address. */
3349 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3350 && in_solib_dynsym_resolve_code (stop_pc))
3351 {
3352 CORE_ADDR pc_after_resolver =
3353 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3354
3355 if (debug_infrun)
3356 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3357
3358 if (pc_after_resolver)
3359 {
3360 /* Set up a step-resume breakpoint at the address
3361 indicated by SKIP_SOLIB_RESOLVER. */
3362 struct symtab_and_line sr_sal;
3363 init_sal (&sr_sal);
3364 sr_sal.pc = pc_after_resolver;
3365
3366 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3367 }
3368
3369 keep_going (ecs);
3370 return;
3371 }
3372
3373 if (ecs->event_thread->step_range_end != 1
3374 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3375 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3376 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3377 {
3378 if (debug_infrun)
3379 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3380 /* The inferior, while doing a "step" or "next", has ended up in
3381 a signal trampoline (either by a signal being delivered or by
3382 the signal handler returning). Just single-step until the
3383 inferior leaves the trampoline (either by calling the handler
3384 or returning). */
3385 keep_going (ecs);
3386 return;
3387 }
3388
3389 /* Check for subroutine calls. The check for the current frame
3390 equalling the step ID is not necessary - the check of the
3391 previous frame's ID is sufficient - but it is a common case and
3392 cheaper than checking the previous frame's ID.
3393
3394 NOTE: frame_id_eq will never report two invalid frame IDs as
3395 being equal, so to get into this block, both the current and
3396 previous frame must have valid frame IDs. */
3397 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3398 ecs->event_thread->step_frame_id)
3399 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3400 ecs->event_thread->step_frame_id)
3401 || execution_direction == EXEC_REVERSE))
3402 {
3403 CORE_ADDR real_stop_pc;
3404
3405 if (debug_infrun)
3406 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3407
3408 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3409 || ((ecs->event_thread->step_range_end == 1)
3410 && in_prologue (ecs->event_thread->prev_pc,
3411 ecs->stop_func_start)))
3412 {
3413 /* I presume that step_over_calls is only 0 when we're
3414 supposed to be stepping at the assembly language level
3415 ("stepi"). Just stop. */
3416 /* Also, maybe we just did a "nexti" inside a prolog, so we
3417 thought it was a subroutine call but it was not. Stop as
3418 well. FENN */
3419 ecs->event_thread->stop_step = 1;
3420 print_stop_reason (END_STEPPING_RANGE, 0);
3421 stop_stepping (ecs);
3422 return;
3423 }
3424
3425 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3426 {
3427 /* We're doing a "next".
3428
3429 Normal (forward) execution: set a breakpoint at the
3430 callee's return address (the address at which the caller
3431 will resume).
3432
3433 Reverse (backward) execution. set the step-resume
3434 breakpoint at the start of the function that we just
3435 stepped into (backwards), and continue to there. When we
3436 get there, we'll need to single-step back to the caller. */
3437
3438 if (execution_direction == EXEC_REVERSE)
3439 {
3440 struct symtab_and_line sr_sal;
3441
3442 if (ecs->stop_func_start == 0
3443 && in_solib_dynsym_resolve_code (stop_pc))
3444 {
3445 /* Stepped into runtime loader dynamic symbol
3446 resolution code. Since we're in reverse,
3447 we have already backed up through the runtime
3448 loader and the dynamic function. This is just
3449 the trampoline (jump table).
3450
3451 Just keep stepping, we'll soon be home.
3452 */
3453 keep_going (ecs);
3454 return;
3455 }
3456 /* Normal (staticly linked) function call return. */
3457 init_sal (&sr_sal);
3458 sr_sal.pc = ecs->stop_func_start;
3459 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3460 }
3461 else
3462 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3463
3464 keep_going (ecs);
3465 return;
3466 }
3467
3468 /* If we are in a function call trampoline (a stub between the
3469 calling routine and the real function), locate the real
3470 function. That's what tells us (a) whether we want to step
3471 into it at all, and (b) what prologue we want to run to the
3472 end of, if we do step into it. */
3473 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3474 if (real_stop_pc == 0)
3475 real_stop_pc = gdbarch_skip_trampoline_code
3476 (current_gdbarch, get_current_frame (), stop_pc);
3477 if (real_stop_pc != 0)
3478 ecs->stop_func_start = real_stop_pc;
3479
3480 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3481 {
3482 struct symtab_and_line sr_sal;
3483 init_sal (&sr_sal);
3484 sr_sal.pc = ecs->stop_func_start;
3485
3486 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3487 keep_going (ecs);
3488 return;
3489 }
3490
3491 /* If we have line number information for the function we are
3492 thinking of stepping into, step into it.
3493
3494 If there are several symtabs at that PC (e.g. with include
3495 files), just want to know whether *any* of them have line
3496 numbers. find_pc_line handles this. */
3497 {
3498 struct symtab_and_line tmp_sal;
3499
3500 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3501 if (tmp_sal.line != 0)
3502 {
3503 if (execution_direction == EXEC_REVERSE)
3504 handle_step_into_function_backward (ecs);
3505 else
3506 handle_step_into_function (ecs);
3507 return;
3508 }
3509 }
3510
3511 /* If we have no line number and the step-stop-if-no-debug is
3512 set, we stop the step so that the user has a chance to switch
3513 in assembly mode. */
3514 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3515 && step_stop_if_no_debug)
3516 {
3517 ecs->event_thread->stop_step = 1;
3518 print_stop_reason (END_STEPPING_RANGE, 0);
3519 stop_stepping (ecs);
3520 return;
3521 }
3522
3523 if (execution_direction == EXEC_REVERSE)
3524 {
3525 /* Set a breakpoint at callee's start address.
3526 From there we can step once and be back in the caller. */
3527 struct symtab_and_line sr_sal;
3528 init_sal (&sr_sal);
3529 sr_sal.pc = ecs->stop_func_start;
3530 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3531 }
3532 else
3533 /* Set a breakpoint at callee's return address (the address
3534 at which the caller will resume). */
3535 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3536
3537 keep_going (ecs);
3538 return;
3539 }
3540
3541 /* If we're in the return path from a shared library trampoline,
3542 we want to proceed through the trampoline when stepping. */
3543 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3544 stop_pc, ecs->stop_func_name))
3545 {
3546 /* Determine where this trampoline returns. */
3547 CORE_ADDR real_stop_pc;
3548 real_stop_pc = gdbarch_skip_trampoline_code
3549 (current_gdbarch, get_current_frame (), stop_pc);
3550
3551 if (debug_infrun)
3552 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3553
3554 /* Only proceed through if we know where it's going. */
3555 if (real_stop_pc)
3556 {
3557 /* And put the step-breakpoint there and go until there. */
3558 struct symtab_and_line sr_sal;
3559
3560 init_sal (&sr_sal); /* initialize to zeroes */
3561 sr_sal.pc = real_stop_pc;
3562 sr_sal.section = find_pc_overlay (sr_sal.pc);
3563
3564 /* Do not specify what the fp should be when we stop since
3565 on some machines the prologue is where the new fp value
3566 is established. */
3567 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3568
3569 /* Restart without fiddling with the step ranges or
3570 other state. */
3571 keep_going (ecs);
3572 return;
3573 }
3574 }
3575
3576 stop_pc_sal = find_pc_line (stop_pc, 0);
3577
3578 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3579 the trampoline processing logic, however, there are some trampolines
3580 that have no names, so we should do trampoline handling first. */
3581 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3582 && ecs->stop_func_name == NULL
3583 && stop_pc_sal.line == 0)
3584 {
3585 if (debug_infrun)
3586 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3587
3588 /* The inferior just stepped into, or returned to, an
3589 undebuggable function (where there is no debugging information
3590 and no line number corresponding to the address where the
3591 inferior stopped). Since we want to skip this kind of code,
3592 we keep going until the inferior returns from this
3593 function - unless the user has asked us not to (via
3594 set step-mode) or we no longer know how to get back
3595 to the call site. */
3596 if (step_stop_if_no_debug
3597 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3598 {
3599 /* If we have no line number and the step-stop-if-no-debug
3600 is set, we stop the step so that the user has a chance to
3601 switch in assembly mode. */
3602 ecs->event_thread->stop_step = 1;
3603 print_stop_reason (END_STEPPING_RANGE, 0);
3604 stop_stepping (ecs);
3605 return;
3606 }
3607 else
3608 {
3609 /* Set a breakpoint at callee's return address (the address
3610 at which the caller will resume). */
3611 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3612 keep_going (ecs);
3613 return;
3614 }
3615 }
3616
3617 if (ecs->event_thread->step_range_end == 1)
3618 {
3619 /* It is stepi or nexti. We always want to stop stepping after
3620 one instruction. */
3621 if (debug_infrun)
3622 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3623 ecs->event_thread->stop_step = 1;
3624 print_stop_reason (END_STEPPING_RANGE, 0);
3625 stop_stepping (ecs);
3626 return;
3627 }
3628
3629 if (stop_pc_sal.line == 0)
3630 {
3631 /* We have no line number information. That means to stop
3632 stepping (does this always happen right after one instruction,
3633 when we do "s" in a function with no line numbers,
3634 or can this happen as a result of a return or longjmp?). */
3635 if (debug_infrun)
3636 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3637 ecs->event_thread->stop_step = 1;
3638 print_stop_reason (END_STEPPING_RANGE, 0);
3639 stop_stepping (ecs);
3640 return;
3641 }
3642
3643 if ((stop_pc == stop_pc_sal.pc)
3644 && (ecs->event_thread->current_line != stop_pc_sal.line
3645 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3646 {
3647 /* We are at the start of a different line. So stop. Note that
3648 we don't stop if we step into the middle of a different line.
3649 That is said to make things like for (;;) statements work
3650 better. */
3651 if (debug_infrun)
3652 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3653 ecs->event_thread->stop_step = 1;
3654 print_stop_reason (END_STEPPING_RANGE, 0);
3655 stop_stepping (ecs);
3656 return;
3657 }
3658
3659 /* We aren't done stepping.
3660
3661 Optimize by setting the stepping range to the line.
3662 (We might not be in the original line, but if we entered a
3663 new line in mid-statement, we continue stepping. This makes
3664 things like for(;;) statements work better.) */
3665
3666 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3667 ecs->event_thread->step_range_end = stop_pc_sal.end;
3668 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3669 ecs->event_thread->current_line = stop_pc_sal.line;
3670 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3671
3672 if (debug_infrun)
3673 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3674 keep_going (ecs);
3675 }
3676
3677 /* Are we in the middle of stepping? */
3678
3679 static int
3680 currently_stepping_thread (struct thread_info *tp)
3681 {
3682 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3683 || tp->trap_expected
3684 || tp->stepping_through_solib_after_catch;
3685 }
3686
3687 static int
3688 currently_stepping_callback (struct thread_info *tp, void *data)
3689 {
3690 /* Return true if any thread *but* the one passed in "data" is
3691 in the middle of stepping. */
3692 return tp != data && currently_stepping_thread (tp);
3693 }
3694
3695 static int
3696 currently_stepping (struct thread_info *tp)
3697 {
3698 return currently_stepping_thread (tp) || bpstat_should_step ();
3699 }
3700
3701 /* Inferior has stepped into a subroutine call with source code that
3702 we should not step over. Do step to the first line of code in
3703 it. */
3704
3705 static void
3706 handle_step_into_function (struct execution_control_state *ecs)
3707 {
3708 struct symtab *s;
3709 struct symtab_and_line stop_func_sal, sr_sal;
3710
3711 s = find_pc_symtab (stop_pc);
3712 if (s && s->language != language_asm)
3713 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3714 ecs->stop_func_start);
3715
3716 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3717 /* Use the step_resume_break to step until the end of the prologue,
3718 even if that involves jumps (as it seems to on the vax under
3719 4.2). */
3720 /* If the prologue ends in the middle of a source line, continue to
3721 the end of that source line (if it is still within the function).
3722 Otherwise, just go to end of prologue. */
3723 if (stop_func_sal.end
3724 && stop_func_sal.pc != ecs->stop_func_start
3725 && stop_func_sal.end < ecs->stop_func_end)
3726 ecs->stop_func_start = stop_func_sal.end;
3727
3728 /* Architectures which require breakpoint adjustment might not be able
3729 to place a breakpoint at the computed address. If so, the test
3730 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3731 ecs->stop_func_start to an address at which a breakpoint may be
3732 legitimately placed.
3733
3734 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3735 made, GDB will enter an infinite loop when stepping through
3736 optimized code consisting of VLIW instructions which contain
3737 subinstructions corresponding to different source lines. On
3738 FR-V, it's not permitted to place a breakpoint on any but the
3739 first subinstruction of a VLIW instruction. When a breakpoint is
3740 set, GDB will adjust the breakpoint address to the beginning of
3741 the VLIW instruction. Thus, we need to make the corresponding
3742 adjustment here when computing the stop address. */
3743
3744 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3745 {
3746 ecs->stop_func_start
3747 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3748 ecs->stop_func_start);
3749 }
3750
3751 if (ecs->stop_func_start == stop_pc)
3752 {
3753 /* We are already there: stop now. */
3754 ecs->event_thread->stop_step = 1;
3755 print_stop_reason (END_STEPPING_RANGE, 0);
3756 stop_stepping (ecs);
3757 return;
3758 }
3759 else
3760 {
3761 /* Put the step-breakpoint there and go until there. */
3762 init_sal (&sr_sal); /* initialize to zeroes */
3763 sr_sal.pc = ecs->stop_func_start;
3764 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3765
3766 /* Do not specify what the fp should be when we stop since on
3767 some machines the prologue is where the new fp value is
3768 established. */
3769 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3770
3771 /* And make sure stepping stops right away then. */
3772 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3773 }
3774 keep_going (ecs);
3775 }
3776
3777 /* Inferior has stepped backward into a subroutine call with source
3778 code that we should not step over. Do step to the beginning of the
3779 last line of code in it. */
3780
3781 static void
3782 handle_step_into_function_backward (struct execution_control_state *ecs)
3783 {
3784 struct symtab *s;
3785 struct symtab_and_line stop_func_sal, sr_sal;
3786
3787 s = find_pc_symtab (stop_pc);
3788 if (s && s->language != language_asm)
3789 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3790 ecs->stop_func_start);
3791
3792 stop_func_sal = find_pc_line (stop_pc, 0);
3793
3794 /* OK, we're just going to keep stepping here. */
3795 if (stop_func_sal.pc == stop_pc)
3796 {
3797 /* We're there already. Just stop stepping now. */
3798 ecs->event_thread->stop_step = 1;
3799 print_stop_reason (END_STEPPING_RANGE, 0);
3800 stop_stepping (ecs);
3801 }
3802 else
3803 {
3804 /* Else just reset the step range and keep going.
3805 No step-resume breakpoint, they don't work for
3806 epilogues, which can have multiple entry paths. */
3807 ecs->event_thread->step_range_start = stop_func_sal.pc;
3808 ecs->event_thread->step_range_end = stop_func_sal.end;
3809 keep_going (ecs);
3810 }
3811 return;
3812 }
3813
3814 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3815 This is used to both functions and to skip over code. */
3816
3817 static void
3818 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3819 struct frame_id sr_id)
3820 {
3821 /* There should never be more than one step-resume or longjmp-resume
3822 breakpoint per thread, so we should never be setting a new
3823 step_resume_breakpoint when one is already active. */
3824 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3825
3826 if (debug_infrun)
3827 fprintf_unfiltered (gdb_stdlog,
3828 "infrun: inserting step-resume breakpoint at 0x%s\n",
3829 paddr_nz (sr_sal.pc));
3830
3831 inferior_thread ()->step_resume_breakpoint
3832 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3833 }
3834
3835 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3836 to skip a potential signal handler.
3837
3838 This is called with the interrupted function's frame. The signal
3839 handler, when it returns, will resume the interrupted function at
3840 RETURN_FRAME.pc. */
3841
3842 static void
3843 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3844 {
3845 struct symtab_and_line sr_sal;
3846
3847 gdb_assert (return_frame != NULL);
3848 init_sal (&sr_sal); /* initialize to zeros */
3849
3850 sr_sal.pc = gdbarch_addr_bits_remove
3851 (current_gdbarch, get_frame_pc (return_frame));
3852 sr_sal.section = find_pc_overlay (sr_sal.pc);
3853
3854 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3855 }
3856
3857 /* Similar to insert_step_resume_breakpoint_at_frame, except
3858 but a breakpoint at the previous frame's PC. This is used to
3859 skip a function after stepping into it (for "next" or if the called
3860 function has no debugging information).
3861
3862 The current function has almost always been reached by single
3863 stepping a call or return instruction. NEXT_FRAME belongs to the
3864 current function, and the breakpoint will be set at the caller's
3865 resume address.
3866
3867 This is a separate function rather than reusing
3868 insert_step_resume_breakpoint_at_frame in order to avoid
3869 get_prev_frame, which may stop prematurely (see the implementation
3870 of frame_unwind_id for an example). */
3871
3872 static void
3873 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3874 {
3875 struct symtab_and_line sr_sal;
3876
3877 /* We shouldn't have gotten here if we don't know where the call site
3878 is. */
3879 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3880
3881 init_sal (&sr_sal); /* initialize to zeros */
3882
3883 sr_sal.pc = gdbarch_addr_bits_remove
3884 (current_gdbarch, frame_pc_unwind (next_frame));
3885 sr_sal.section = find_pc_overlay (sr_sal.pc);
3886
3887 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3888 }
3889
3890 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3891 new breakpoint at the target of a jmp_buf. The handling of
3892 longjmp-resume uses the same mechanisms used for handling
3893 "step-resume" breakpoints. */
3894
3895 static void
3896 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3897 {
3898 /* There should never be more than one step-resume or longjmp-resume
3899 breakpoint per thread, so we should never be setting a new
3900 longjmp_resume_breakpoint when one is already active. */
3901 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3902
3903 if (debug_infrun)
3904 fprintf_unfiltered (gdb_stdlog,
3905 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3906 paddr_nz (pc));
3907
3908 inferior_thread ()->step_resume_breakpoint =
3909 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3910 }
3911
3912 static void
3913 stop_stepping (struct execution_control_state *ecs)
3914 {
3915 if (debug_infrun)
3916 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3917
3918 /* Let callers know we don't want to wait for the inferior anymore. */
3919 ecs->wait_some_more = 0;
3920 }
3921
3922 /* This function handles various cases where we need to continue
3923 waiting for the inferior. */
3924 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3925
3926 static void
3927 keep_going (struct execution_control_state *ecs)
3928 {
3929 /* Save the pc before execution, to compare with pc after stop. */
3930 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3931
3932 /* If we did not do break;, it means we should keep running the
3933 inferior and not return to debugger. */
3934
3935 if (ecs->event_thread->trap_expected
3936 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3937 {
3938 /* We took a signal (which we are supposed to pass through to
3939 the inferior, else we'd not get here) and we haven't yet
3940 gotten our trap. Simply continue. */
3941 resume (currently_stepping (ecs->event_thread),
3942 ecs->event_thread->stop_signal);
3943 }
3944 else
3945 {
3946 /* Either the trap was not expected, but we are continuing
3947 anyway (the user asked that this signal be passed to the
3948 child)
3949 -- or --
3950 The signal was SIGTRAP, e.g. it was our signal, but we
3951 decided we should resume from it.
3952
3953 We're going to run this baby now!
3954
3955 Note that insert_breakpoints won't try to re-insert
3956 already inserted breakpoints. Therefore, we don't
3957 care if breakpoints were already inserted, or not. */
3958
3959 if (ecs->event_thread->stepping_over_breakpoint)
3960 {
3961 if (! use_displaced_stepping (current_gdbarch))
3962 /* Since we can't do a displaced step, we have to remove
3963 the breakpoint while we step it. To keep things
3964 simple, we remove them all. */
3965 remove_breakpoints ();
3966 }
3967 else
3968 {
3969 struct gdb_exception e;
3970 /* Stop stepping when inserting breakpoints
3971 has failed. */
3972 TRY_CATCH (e, RETURN_MASK_ERROR)
3973 {
3974 insert_breakpoints ();
3975 }
3976 if (e.reason < 0)
3977 {
3978 stop_stepping (ecs);
3979 return;
3980 }
3981 }
3982
3983 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
3984
3985 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3986 specifies that such a signal should be delivered to the
3987 target program).
3988
3989 Typically, this would occure when a user is debugging a
3990 target monitor on a simulator: the target monitor sets a
3991 breakpoint; the simulator encounters this break-point and
3992 halts the simulation handing control to GDB; GDB, noteing
3993 that the break-point isn't valid, returns control back to the
3994 simulator; the simulator then delivers the hardware
3995 equivalent of a SIGNAL_TRAP to the program being debugged. */
3996
3997 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3998 && !signal_program[ecs->event_thread->stop_signal])
3999 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4000
4001 resume (currently_stepping (ecs->event_thread),
4002 ecs->event_thread->stop_signal);
4003 }
4004
4005 prepare_to_wait (ecs);
4006 }
4007
4008 /* This function normally comes after a resume, before
4009 handle_inferior_event exits. It takes care of any last bits of
4010 housekeeping, and sets the all-important wait_some_more flag. */
4011
4012 static void
4013 prepare_to_wait (struct execution_control_state *ecs)
4014 {
4015 if (debug_infrun)
4016 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4017 if (infwait_state == infwait_normal_state)
4018 {
4019 overlay_cache_invalid = 1;
4020
4021 /* We have to invalidate the registers BEFORE calling
4022 target_wait because they can be loaded from the target while
4023 in target_wait. This makes remote debugging a bit more
4024 efficient for those targets that provide critical registers
4025 as part of their normal status mechanism. */
4026
4027 registers_changed ();
4028 waiton_ptid = pid_to_ptid (-1);
4029 }
4030 /* This is the old end of the while loop. Let everybody know we
4031 want to wait for the inferior some more and get called again
4032 soon. */
4033 ecs->wait_some_more = 1;
4034 }
4035
4036 /* Print why the inferior has stopped. We always print something when
4037 the inferior exits, or receives a signal. The rest of the cases are
4038 dealt with later on in normal_stop() and print_it_typical(). Ideally
4039 there should be a call to this function from handle_inferior_event()
4040 each time stop_stepping() is called.*/
4041 static void
4042 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4043 {
4044 switch (stop_reason)
4045 {
4046 case END_STEPPING_RANGE:
4047 /* We are done with a step/next/si/ni command. */
4048 /* For now print nothing. */
4049 /* Print a message only if not in the middle of doing a "step n"
4050 operation for n > 1 */
4051 if (!inferior_thread ()->step_multi
4052 || !inferior_thread ()->stop_step)
4053 if (ui_out_is_mi_like_p (uiout))
4054 ui_out_field_string
4055 (uiout, "reason",
4056 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4057 break;
4058 case SIGNAL_EXITED:
4059 /* The inferior was terminated by a signal. */
4060 annotate_signalled ();
4061 if (ui_out_is_mi_like_p (uiout))
4062 ui_out_field_string
4063 (uiout, "reason",
4064 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4065 ui_out_text (uiout, "\nProgram terminated with signal ");
4066 annotate_signal_name ();
4067 ui_out_field_string (uiout, "signal-name",
4068 target_signal_to_name (stop_info));
4069 annotate_signal_name_end ();
4070 ui_out_text (uiout, ", ");
4071 annotate_signal_string ();
4072 ui_out_field_string (uiout, "signal-meaning",
4073 target_signal_to_string (stop_info));
4074 annotate_signal_string_end ();
4075 ui_out_text (uiout, ".\n");
4076 ui_out_text (uiout, "The program no longer exists.\n");
4077 break;
4078 case EXITED:
4079 /* The inferior program is finished. */
4080 annotate_exited (stop_info);
4081 if (stop_info)
4082 {
4083 if (ui_out_is_mi_like_p (uiout))
4084 ui_out_field_string (uiout, "reason",
4085 async_reason_lookup (EXEC_ASYNC_EXITED));
4086 ui_out_text (uiout, "\nProgram exited with code ");
4087 ui_out_field_fmt (uiout, "exit-code", "0%o",
4088 (unsigned int) stop_info);
4089 ui_out_text (uiout, ".\n");
4090 }
4091 else
4092 {
4093 if (ui_out_is_mi_like_p (uiout))
4094 ui_out_field_string
4095 (uiout, "reason",
4096 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4097 ui_out_text (uiout, "\nProgram exited normally.\n");
4098 }
4099 /* Support the --return-child-result option. */
4100 return_child_result_value = stop_info;
4101 break;
4102 case SIGNAL_RECEIVED:
4103 /* Signal received. The signal table tells us to print about
4104 it. */
4105 annotate_signal ();
4106
4107 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4108 {
4109 struct thread_info *t = inferior_thread ();
4110
4111 ui_out_text (uiout, "\n[");
4112 ui_out_field_string (uiout, "thread-name",
4113 target_pid_to_str (t->ptid));
4114 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4115 ui_out_text (uiout, " stopped");
4116 }
4117 else
4118 {
4119 ui_out_text (uiout, "\nProgram received signal ");
4120 annotate_signal_name ();
4121 if (ui_out_is_mi_like_p (uiout))
4122 ui_out_field_string
4123 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4124 ui_out_field_string (uiout, "signal-name",
4125 target_signal_to_name (stop_info));
4126 annotate_signal_name_end ();
4127 ui_out_text (uiout, ", ");
4128 annotate_signal_string ();
4129 ui_out_field_string (uiout, "signal-meaning",
4130 target_signal_to_string (stop_info));
4131 annotate_signal_string_end ();
4132 }
4133 ui_out_text (uiout, ".\n");
4134 break;
4135 case NO_HISTORY:
4136 /* Reverse execution: target ran out of history info. */
4137 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4138 break;
4139 default:
4140 internal_error (__FILE__, __LINE__,
4141 _("print_stop_reason: unrecognized enum value"));
4142 break;
4143 }
4144 }
4145 \f
4146
4147 /* Here to return control to GDB when the inferior stops for real.
4148 Print appropriate messages, remove breakpoints, give terminal our modes.
4149
4150 STOP_PRINT_FRAME nonzero means print the executing frame
4151 (pc, function, args, file, line number and line text).
4152 BREAKPOINTS_FAILED nonzero means stop was due to error
4153 attempting to insert breakpoints. */
4154
4155 void
4156 normal_stop (void)
4157 {
4158 struct target_waitstatus last;
4159 ptid_t last_ptid;
4160
4161 get_last_target_status (&last_ptid, &last);
4162
4163 /* In non-stop mode, we don't want GDB to switch threads behind the
4164 user's back, to avoid races where the user is typing a command to
4165 apply to thread x, but GDB switches to thread y before the user
4166 finishes entering the command. */
4167
4168 /* As with the notification of thread events, we want to delay
4169 notifying the user that we've switched thread context until
4170 the inferior actually stops.
4171
4172 There's no point in saying anything if the inferior has exited.
4173 Note that SIGNALLED here means "exited with a signal", not
4174 "received a signal". */
4175 if (!non_stop
4176 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4177 && target_has_execution
4178 && last.kind != TARGET_WAITKIND_SIGNALLED
4179 && last.kind != TARGET_WAITKIND_EXITED)
4180 {
4181 target_terminal_ours_for_output ();
4182 printf_filtered (_("[Switching to %s]\n"),
4183 target_pid_to_str (inferior_ptid));
4184 annotate_thread_changed ();
4185 previous_inferior_ptid = inferior_ptid;
4186 }
4187
4188 /* NOTE drow/2004-01-17: Is this still necessary? */
4189 /* Make sure that the current_frame's pc is correct. This
4190 is a correction for setting up the frame info before doing
4191 gdbarch_decr_pc_after_break */
4192 if (target_has_execution)
4193 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
4194 gdbarch_decr_pc_after_break, the program counter can change. Ask the
4195 frame code to check for this and sort out any resultant mess.
4196 gdbarch_decr_pc_after_break needs to just go away. */
4197 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
4198
4199 if (!breakpoints_always_inserted_mode () && target_has_execution)
4200 {
4201 if (remove_breakpoints ())
4202 {
4203 target_terminal_ours_for_output ();
4204 printf_filtered (_("\
4205 Cannot remove breakpoints because program is no longer writable.\n\
4206 It might be running in another process.\n\
4207 Further execution is probably impossible.\n"));
4208 }
4209 }
4210
4211 /* If an auto-display called a function and that got a signal,
4212 delete that auto-display to avoid an infinite recursion. */
4213
4214 if (stopped_by_random_signal)
4215 disable_current_display ();
4216
4217 /* Don't print a message if in the middle of doing a "step n"
4218 operation for n > 1 */
4219 if (target_has_execution
4220 && last.kind != TARGET_WAITKIND_SIGNALLED
4221 && last.kind != TARGET_WAITKIND_EXITED
4222 && inferior_thread ()->step_multi
4223 && inferior_thread ()->stop_step)
4224 goto done;
4225
4226 target_terminal_ours ();
4227
4228 /* Set the current source location. This will also happen if we
4229 display the frame below, but the current SAL will be incorrect
4230 during a user hook-stop function. */
4231 if (target_has_stack && !stop_stack_dummy)
4232 set_current_sal_from_frame (get_current_frame (), 1);
4233
4234 if (!target_has_stack)
4235 goto done;
4236
4237 if (last.kind == TARGET_WAITKIND_SIGNALLED
4238 || last.kind == TARGET_WAITKIND_EXITED)
4239 goto done;
4240
4241 /* Select innermost stack frame - i.e., current frame is frame 0,
4242 and current location is based on that.
4243 Don't do this on return from a stack dummy routine,
4244 or if the program has exited. */
4245
4246 if (!stop_stack_dummy)
4247 {
4248 select_frame (get_current_frame ());
4249
4250 /* Print current location without a level number, if
4251 we have changed functions or hit a breakpoint.
4252 Print source line if we have one.
4253 bpstat_print() contains the logic deciding in detail
4254 what to print, based on the event(s) that just occurred. */
4255
4256 /* If --batch-silent is enabled then there's no need to print the current
4257 source location, and to try risks causing an error message about
4258 missing source files. */
4259 if (stop_print_frame && !batch_silent)
4260 {
4261 int bpstat_ret;
4262 int source_flag;
4263 int do_frame_printing = 1;
4264 struct thread_info *tp = inferior_thread ();
4265
4266 bpstat_ret = bpstat_print (tp->stop_bpstat);
4267 switch (bpstat_ret)
4268 {
4269 case PRINT_UNKNOWN:
4270 /* If we had hit a shared library event breakpoint,
4271 bpstat_print would print out this message. If we hit
4272 an OS-level shared library event, do the same
4273 thing. */
4274 if (last.kind == TARGET_WAITKIND_LOADED)
4275 {
4276 printf_filtered (_("Stopped due to shared library event\n"));
4277 source_flag = SRC_LINE; /* something bogus */
4278 do_frame_printing = 0;
4279 break;
4280 }
4281
4282 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4283 (or should) carry around the function and does (or
4284 should) use that when doing a frame comparison. */
4285 if (tp->stop_step
4286 && frame_id_eq (tp->step_frame_id,
4287 get_frame_id (get_current_frame ()))
4288 && step_start_function == find_pc_function (stop_pc))
4289 source_flag = SRC_LINE; /* finished step, just print source line */
4290 else
4291 source_flag = SRC_AND_LOC; /* print location and source line */
4292 break;
4293 case PRINT_SRC_AND_LOC:
4294 source_flag = SRC_AND_LOC; /* print location and source line */
4295 break;
4296 case PRINT_SRC_ONLY:
4297 source_flag = SRC_LINE;
4298 break;
4299 case PRINT_NOTHING:
4300 source_flag = SRC_LINE; /* something bogus */
4301 do_frame_printing = 0;
4302 break;
4303 default:
4304 internal_error (__FILE__, __LINE__, _("Unknown value."));
4305 }
4306
4307 if (ui_out_is_mi_like_p (uiout))
4308 {
4309
4310 ui_out_field_int (uiout, "thread-id",
4311 pid_to_thread_id (inferior_ptid));
4312 if (non_stop)
4313 {
4314 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4315 (uiout, "stopped-threads");
4316 ui_out_field_int (uiout, NULL,
4317 pid_to_thread_id (inferior_ptid));
4318 do_cleanups (back_to);
4319 }
4320 else
4321 ui_out_field_string (uiout, "stopped-threads", "all");
4322 }
4323 /* The behavior of this routine with respect to the source
4324 flag is:
4325 SRC_LINE: Print only source line
4326 LOCATION: Print only location
4327 SRC_AND_LOC: Print location and source line */
4328 if (do_frame_printing)
4329 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4330
4331 /* Display the auto-display expressions. */
4332 do_displays ();
4333 }
4334 }
4335
4336 /* Save the function value return registers, if we care.
4337 We might be about to restore their previous contents. */
4338 if (inferior_thread ()->proceed_to_finish)
4339 {
4340 /* This should not be necessary. */
4341 if (stop_registers)
4342 regcache_xfree (stop_registers);
4343
4344 /* NB: The copy goes through to the target picking up the value of
4345 all the registers. */
4346 stop_registers = regcache_dup (get_current_regcache ());
4347 }
4348
4349 if (stop_stack_dummy)
4350 {
4351 /* Pop the empty frame that contains the stack dummy. POP_FRAME
4352 ends with a setting of the current frame, so we can use that
4353 next. */
4354 frame_pop (get_current_frame ());
4355 /* Set stop_pc to what it was before we called the function.
4356 Can't rely on restore_inferior_status because that only gets
4357 called if we don't stop in the called function. */
4358 stop_pc = read_pc ();
4359 select_frame (get_current_frame ());
4360 }
4361
4362 done:
4363 annotate_stopped ();
4364 if (!suppress_stop_observer
4365 && !(target_has_execution
4366 && last.kind != TARGET_WAITKIND_SIGNALLED
4367 && last.kind != TARGET_WAITKIND_EXITED
4368 && inferior_thread ()->step_multi))
4369 {
4370 if (!ptid_equal (inferior_ptid, null_ptid))
4371 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4372 else
4373 observer_notify_normal_stop (NULL);
4374 }
4375 if (target_has_execution
4376 && last.kind != TARGET_WAITKIND_SIGNALLED
4377 && last.kind != TARGET_WAITKIND_EXITED)
4378 {
4379 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4380 Delete any breakpoint that is to be deleted at the next stop. */
4381 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4382
4383 if (!non_stop)
4384 set_running (pid_to_ptid (-1), 0);
4385 else
4386 set_running (inferior_ptid, 0);
4387 }
4388
4389 /* Look up the hook_stop and run it (CLI internally handles problem
4390 of stop_command's pre-hook not existing). */
4391 if (stop_command)
4392 catch_errors (hook_stop_stub, stop_command,
4393 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4394
4395 }
4396
4397 static int
4398 hook_stop_stub (void *cmd)
4399 {
4400 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4401 return (0);
4402 }
4403 \f
4404 int
4405 signal_stop_state (int signo)
4406 {
4407 return signal_stop[signo];
4408 }
4409
4410 int
4411 signal_print_state (int signo)
4412 {
4413 return signal_print[signo];
4414 }
4415
4416 int
4417 signal_pass_state (int signo)
4418 {
4419 return signal_program[signo];
4420 }
4421
4422 int
4423 signal_stop_update (int signo, int state)
4424 {
4425 int ret = signal_stop[signo];
4426 signal_stop[signo] = state;
4427 return ret;
4428 }
4429
4430 int
4431 signal_print_update (int signo, int state)
4432 {
4433 int ret = signal_print[signo];
4434 signal_print[signo] = state;
4435 return ret;
4436 }
4437
4438 int
4439 signal_pass_update (int signo, int state)
4440 {
4441 int ret = signal_program[signo];
4442 signal_program[signo] = state;
4443 return ret;
4444 }
4445
4446 static void
4447 sig_print_header (void)
4448 {
4449 printf_filtered (_("\
4450 Signal Stop\tPrint\tPass to program\tDescription\n"));
4451 }
4452
4453 static void
4454 sig_print_info (enum target_signal oursig)
4455 {
4456 char *name = target_signal_to_name (oursig);
4457 int name_padding = 13 - strlen (name);
4458
4459 if (name_padding <= 0)
4460 name_padding = 0;
4461
4462 printf_filtered ("%s", name);
4463 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4464 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4465 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4466 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4467 printf_filtered ("%s\n", target_signal_to_string (oursig));
4468 }
4469
4470 /* Specify how various signals in the inferior should be handled. */
4471
4472 static void
4473 handle_command (char *args, int from_tty)
4474 {
4475 char **argv;
4476 int digits, wordlen;
4477 int sigfirst, signum, siglast;
4478 enum target_signal oursig;
4479 int allsigs;
4480 int nsigs;
4481 unsigned char *sigs;
4482 struct cleanup *old_chain;
4483
4484 if (args == NULL)
4485 {
4486 error_no_arg (_("signal to handle"));
4487 }
4488
4489 /* Allocate and zero an array of flags for which signals to handle. */
4490
4491 nsigs = (int) TARGET_SIGNAL_LAST;
4492 sigs = (unsigned char *) alloca (nsigs);
4493 memset (sigs, 0, nsigs);
4494
4495 /* Break the command line up into args. */
4496
4497 argv = gdb_buildargv (args);
4498 old_chain = make_cleanup_freeargv (argv);
4499
4500 /* Walk through the args, looking for signal oursigs, signal names, and
4501 actions. Signal numbers and signal names may be interspersed with
4502 actions, with the actions being performed for all signals cumulatively
4503 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4504
4505 while (*argv != NULL)
4506 {
4507 wordlen = strlen (*argv);
4508 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4509 {;
4510 }
4511 allsigs = 0;
4512 sigfirst = siglast = -1;
4513
4514 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4515 {
4516 /* Apply action to all signals except those used by the
4517 debugger. Silently skip those. */
4518 allsigs = 1;
4519 sigfirst = 0;
4520 siglast = nsigs - 1;
4521 }
4522 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4523 {
4524 SET_SIGS (nsigs, sigs, signal_stop);
4525 SET_SIGS (nsigs, sigs, signal_print);
4526 }
4527 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4528 {
4529 UNSET_SIGS (nsigs, sigs, signal_program);
4530 }
4531 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4532 {
4533 SET_SIGS (nsigs, sigs, signal_print);
4534 }
4535 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4536 {
4537 SET_SIGS (nsigs, sigs, signal_program);
4538 }
4539 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4540 {
4541 UNSET_SIGS (nsigs, sigs, signal_stop);
4542 }
4543 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4544 {
4545 SET_SIGS (nsigs, sigs, signal_program);
4546 }
4547 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4548 {
4549 UNSET_SIGS (nsigs, sigs, signal_print);
4550 UNSET_SIGS (nsigs, sigs, signal_stop);
4551 }
4552 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4553 {
4554 UNSET_SIGS (nsigs, sigs, signal_program);
4555 }
4556 else if (digits > 0)
4557 {
4558 /* It is numeric. The numeric signal refers to our own
4559 internal signal numbering from target.h, not to host/target
4560 signal number. This is a feature; users really should be
4561 using symbolic names anyway, and the common ones like
4562 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4563
4564 sigfirst = siglast = (int)
4565 target_signal_from_command (atoi (*argv));
4566 if ((*argv)[digits] == '-')
4567 {
4568 siglast = (int)
4569 target_signal_from_command (atoi ((*argv) + digits + 1));
4570 }
4571 if (sigfirst > siglast)
4572 {
4573 /* Bet he didn't figure we'd think of this case... */
4574 signum = sigfirst;
4575 sigfirst = siglast;
4576 siglast = signum;
4577 }
4578 }
4579 else
4580 {
4581 oursig = target_signal_from_name (*argv);
4582 if (oursig != TARGET_SIGNAL_UNKNOWN)
4583 {
4584 sigfirst = siglast = (int) oursig;
4585 }
4586 else
4587 {
4588 /* Not a number and not a recognized flag word => complain. */
4589 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4590 }
4591 }
4592
4593 /* If any signal numbers or symbol names were found, set flags for
4594 which signals to apply actions to. */
4595
4596 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4597 {
4598 switch ((enum target_signal) signum)
4599 {
4600 case TARGET_SIGNAL_TRAP:
4601 case TARGET_SIGNAL_INT:
4602 if (!allsigs && !sigs[signum])
4603 {
4604 if (query ("%s is used by the debugger.\n\
4605 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4606 {
4607 sigs[signum] = 1;
4608 }
4609 else
4610 {
4611 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4612 gdb_flush (gdb_stdout);
4613 }
4614 }
4615 break;
4616 case TARGET_SIGNAL_0:
4617 case TARGET_SIGNAL_DEFAULT:
4618 case TARGET_SIGNAL_UNKNOWN:
4619 /* Make sure that "all" doesn't print these. */
4620 break;
4621 default:
4622 sigs[signum] = 1;
4623 break;
4624 }
4625 }
4626
4627 argv++;
4628 }
4629
4630 target_notice_signals (inferior_ptid);
4631
4632 if (from_tty)
4633 {
4634 /* Show the results. */
4635 sig_print_header ();
4636 for (signum = 0; signum < nsigs; signum++)
4637 {
4638 if (sigs[signum])
4639 {
4640 sig_print_info (signum);
4641 }
4642 }
4643 }
4644
4645 do_cleanups (old_chain);
4646 }
4647
4648 static void
4649 xdb_handle_command (char *args, int from_tty)
4650 {
4651 char **argv;
4652 struct cleanup *old_chain;
4653
4654 if (args == NULL)
4655 error_no_arg (_("xdb command"));
4656
4657 /* Break the command line up into args. */
4658
4659 argv = gdb_buildargv (args);
4660 old_chain = make_cleanup_freeargv (argv);
4661 if (argv[1] != (char *) NULL)
4662 {
4663 char *argBuf;
4664 int bufLen;
4665
4666 bufLen = strlen (argv[0]) + 20;
4667 argBuf = (char *) xmalloc (bufLen);
4668 if (argBuf)
4669 {
4670 int validFlag = 1;
4671 enum target_signal oursig;
4672
4673 oursig = target_signal_from_name (argv[0]);
4674 memset (argBuf, 0, bufLen);
4675 if (strcmp (argv[1], "Q") == 0)
4676 sprintf (argBuf, "%s %s", argv[0], "noprint");
4677 else
4678 {
4679 if (strcmp (argv[1], "s") == 0)
4680 {
4681 if (!signal_stop[oursig])
4682 sprintf (argBuf, "%s %s", argv[0], "stop");
4683 else
4684 sprintf (argBuf, "%s %s", argv[0], "nostop");
4685 }
4686 else if (strcmp (argv[1], "i") == 0)
4687 {
4688 if (!signal_program[oursig])
4689 sprintf (argBuf, "%s %s", argv[0], "pass");
4690 else
4691 sprintf (argBuf, "%s %s", argv[0], "nopass");
4692 }
4693 else if (strcmp (argv[1], "r") == 0)
4694 {
4695 if (!signal_print[oursig])
4696 sprintf (argBuf, "%s %s", argv[0], "print");
4697 else
4698 sprintf (argBuf, "%s %s", argv[0], "noprint");
4699 }
4700 else
4701 validFlag = 0;
4702 }
4703 if (validFlag)
4704 handle_command (argBuf, from_tty);
4705 else
4706 printf_filtered (_("Invalid signal handling flag.\n"));
4707 if (argBuf)
4708 xfree (argBuf);
4709 }
4710 }
4711 do_cleanups (old_chain);
4712 }
4713
4714 /* Print current contents of the tables set by the handle command.
4715 It is possible we should just be printing signals actually used
4716 by the current target (but for things to work right when switching
4717 targets, all signals should be in the signal tables). */
4718
4719 static void
4720 signals_info (char *signum_exp, int from_tty)
4721 {
4722 enum target_signal oursig;
4723 sig_print_header ();
4724
4725 if (signum_exp)
4726 {
4727 /* First see if this is a symbol name. */
4728 oursig = target_signal_from_name (signum_exp);
4729 if (oursig == TARGET_SIGNAL_UNKNOWN)
4730 {
4731 /* No, try numeric. */
4732 oursig =
4733 target_signal_from_command (parse_and_eval_long (signum_exp));
4734 }
4735 sig_print_info (oursig);
4736 return;
4737 }
4738
4739 printf_filtered ("\n");
4740 /* These ugly casts brought to you by the native VAX compiler. */
4741 for (oursig = TARGET_SIGNAL_FIRST;
4742 (int) oursig < (int) TARGET_SIGNAL_LAST;
4743 oursig = (enum target_signal) ((int) oursig + 1))
4744 {
4745 QUIT;
4746
4747 if (oursig != TARGET_SIGNAL_UNKNOWN
4748 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4749 sig_print_info (oursig);
4750 }
4751
4752 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4753 }
4754 \f
4755 struct inferior_status
4756 {
4757 enum target_signal stop_signal;
4758 CORE_ADDR stop_pc;
4759 bpstat stop_bpstat;
4760 int stop_step;
4761 int stop_stack_dummy;
4762 int stopped_by_random_signal;
4763 int stepping_over_breakpoint;
4764 CORE_ADDR step_range_start;
4765 CORE_ADDR step_range_end;
4766 struct frame_id step_frame_id;
4767 enum step_over_calls_kind step_over_calls;
4768 CORE_ADDR step_resume_break_address;
4769 int stop_after_trap;
4770 int stop_soon;
4771
4772 /* These are here because if call_function_by_hand has written some
4773 registers and then decides to call error(), we better not have changed
4774 any registers. */
4775 struct regcache *registers;
4776
4777 /* A frame unique identifier. */
4778 struct frame_id selected_frame_id;
4779
4780 int breakpoint_proceeded;
4781 int restore_stack_info;
4782 int proceed_to_finish;
4783 };
4784
4785 /* Save all of the information associated with the inferior<==>gdb
4786 connection. INF_STATUS is a pointer to a "struct inferior_status"
4787 (defined in inferior.h). */
4788
4789 struct inferior_status *
4790 save_inferior_status (int restore_stack_info)
4791 {
4792 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4793 struct thread_info *tp = inferior_thread ();
4794 struct inferior *inf = current_inferior ();
4795
4796 inf_status->stop_signal = tp->stop_signal;
4797 inf_status->stop_pc = stop_pc;
4798 inf_status->stop_step = tp->stop_step;
4799 inf_status->stop_stack_dummy = stop_stack_dummy;
4800 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4801 inf_status->stepping_over_breakpoint = tp->trap_expected;
4802 inf_status->step_range_start = tp->step_range_start;
4803 inf_status->step_range_end = tp->step_range_end;
4804 inf_status->step_frame_id = tp->step_frame_id;
4805 inf_status->step_over_calls = tp->step_over_calls;
4806 inf_status->stop_after_trap = stop_after_trap;
4807 inf_status->stop_soon = inf->stop_soon;
4808 /* Save original bpstat chain here; replace it with copy of chain.
4809 If caller's caller is walking the chain, they'll be happier if we
4810 hand them back the original chain when restore_inferior_status is
4811 called. */
4812 inf_status->stop_bpstat = tp->stop_bpstat;
4813 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4814 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4815 inf_status->restore_stack_info = restore_stack_info;
4816 inf_status->proceed_to_finish = tp->proceed_to_finish;
4817
4818 inf_status->registers = regcache_dup (get_current_regcache ());
4819
4820 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4821 return inf_status;
4822 }
4823
4824 static int
4825 restore_selected_frame (void *args)
4826 {
4827 struct frame_id *fid = (struct frame_id *) args;
4828 struct frame_info *frame;
4829
4830 frame = frame_find_by_id (*fid);
4831
4832 /* If inf_status->selected_frame_id is NULL, there was no previously
4833 selected frame. */
4834 if (frame == NULL)
4835 {
4836 warning (_("Unable to restore previously selected frame."));
4837 return 0;
4838 }
4839
4840 select_frame (frame);
4841
4842 return (1);
4843 }
4844
4845 void
4846 restore_inferior_status (struct inferior_status *inf_status)
4847 {
4848 struct thread_info *tp = inferior_thread ();
4849 struct inferior *inf = current_inferior ();
4850
4851 tp->stop_signal = inf_status->stop_signal;
4852 stop_pc = inf_status->stop_pc;
4853 tp->stop_step = inf_status->stop_step;
4854 stop_stack_dummy = inf_status->stop_stack_dummy;
4855 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4856 tp->trap_expected = inf_status->stepping_over_breakpoint;
4857 tp->step_range_start = inf_status->step_range_start;
4858 tp->step_range_end = inf_status->step_range_end;
4859 tp->step_frame_id = inf_status->step_frame_id;
4860 tp->step_over_calls = inf_status->step_over_calls;
4861 stop_after_trap = inf_status->stop_after_trap;
4862 inf->stop_soon = inf_status->stop_soon;
4863 bpstat_clear (&tp->stop_bpstat);
4864 tp->stop_bpstat = inf_status->stop_bpstat;
4865 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4866 tp->proceed_to_finish = inf_status->proceed_to_finish;
4867
4868 /* The inferior can be gone if the user types "print exit(0)"
4869 (and perhaps other times). */
4870 if (target_has_execution)
4871 /* NB: The register write goes through to the target. */
4872 regcache_cpy (get_current_regcache (), inf_status->registers);
4873 regcache_xfree (inf_status->registers);
4874
4875 /* FIXME: If we are being called after stopping in a function which
4876 is called from gdb, we should not be trying to restore the
4877 selected frame; it just prints a spurious error message (The
4878 message is useful, however, in detecting bugs in gdb (like if gdb
4879 clobbers the stack)). In fact, should we be restoring the
4880 inferior status at all in that case? . */
4881
4882 if (target_has_stack && inf_status->restore_stack_info)
4883 {
4884 /* The point of catch_errors is that if the stack is clobbered,
4885 walking the stack might encounter a garbage pointer and
4886 error() trying to dereference it. */
4887 if (catch_errors
4888 (restore_selected_frame, &inf_status->selected_frame_id,
4889 "Unable to restore previously selected frame:\n",
4890 RETURN_MASK_ERROR) == 0)
4891 /* Error in restoring the selected frame. Select the innermost
4892 frame. */
4893 select_frame (get_current_frame ());
4894
4895 }
4896
4897 xfree (inf_status);
4898 }
4899
4900 static void
4901 do_restore_inferior_status_cleanup (void *sts)
4902 {
4903 restore_inferior_status (sts);
4904 }
4905
4906 struct cleanup *
4907 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4908 {
4909 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4910 }
4911
4912 void
4913 discard_inferior_status (struct inferior_status *inf_status)
4914 {
4915 /* See save_inferior_status for info on stop_bpstat. */
4916 bpstat_clear (&inf_status->stop_bpstat);
4917 regcache_xfree (inf_status->registers);
4918 xfree (inf_status);
4919 }
4920
4921 int
4922 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4923 {
4924 struct target_waitstatus last;
4925 ptid_t last_ptid;
4926
4927 get_last_target_status (&last_ptid, &last);
4928
4929 if (last.kind != TARGET_WAITKIND_FORKED)
4930 return 0;
4931
4932 if (!ptid_equal (last_ptid, pid))
4933 return 0;
4934
4935 *child_pid = last.value.related_pid;
4936 return 1;
4937 }
4938
4939 int
4940 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4941 {
4942 struct target_waitstatus last;
4943 ptid_t last_ptid;
4944
4945 get_last_target_status (&last_ptid, &last);
4946
4947 if (last.kind != TARGET_WAITKIND_VFORKED)
4948 return 0;
4949
4950 if (!ptid_equal (last_ptid, pid))
4951 return 0;
4952
4953 *child_pid = last.value.related_pid;
4954 return 1;
4955 }
4956
4957 int
4958 inferior_has_execd (ptid_t pid, char **execd_pathname)
4959 {
4960 struct target_waitstatus last;
4961 ptid_t last_ptid;
4962
4963 get_last_target_status (&last_ptid, &last);
4964
4965 if (last.kind != TARGET_WAITKIND_EXECD)
4966 return 0;
4967
4968 if (!ptid_equal (last_ptid, pid))
4969 return 0;
4970
4971 *execd_pathname = xstrdup (last.value.execd_pathname);
4972 return 1;
4973 }
4974
4975 /* Oft used ptids */
4976 ptid_t null_ptid;
4977 ptid_t minus_one_ptid;
4978
4979 /* Create a ptid given the necessary PID, LWP, and TID components. */
4980
4981 ptid_t
4982 ptid_build (int pid, long lwp, long tid)
4983 {
4984 ptid_t ptid;
4985
4986 ptid.pid = pid;
4987 ptid.lwp = lwp;
4988 ptid.tid = tid;
4989 return ptid;
4990 }
4991
4992 /* Create a ptid from just a pid. */
4993
4994 ptid_t
4995 pid_to_ptid (int pid)
4996 {
4997 return ptid_build (pid, 0, 0);
4998 }
4999
5000 /* Fetch the pid (process id) component from a ptid. */
5001
5002 int
5003 ptid_get_pid (ptid_t ptid)
5004 {
5005 return ptid.pid;
5006 }
5007
5008 /* Fetch the lwp (lightweight process) component from a ptid. */
5009
5010 long
5011 ptid_get_lwp (ptid_t ptid)
5012 {
5013 return ptid.lwp;
5014 }
5015
5016 /* Fetch the tid (thread id) component from a ptid. */
5017
5018 long
5019 ptid_get_tid (ptid_t ptid)
5020 {
5021 return ptid.tid;
5022 }
5023
5024 /* ptid_equal() is used to test equality of two ptids. */
5025
5026 int
5027 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5028 {
5029 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5030 && ptid1.tid == ptid2.tid);
5031 }
5032
5033 /* Returns true if PTID represents a process. */
5034
5035 int
5036 ptid_is_pid (ptid_t ptid)
5037 {
5038 if (ptid_equal (minus_one_ptid, ptid))
5039 return 0;
5040 if (ptid_equal (null_ptid, ptid))
5041 return 0;
5042
5043 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5044 }
5045
5046 /* restore_inferior_ptid() will be used by the cleanup machinery
5047 to restore the inferior_ptid value saved in a call to
5048 save_inferior_ptid(). */
5049
5050 static void
5051 restore_inferior_ptid (void *arg)
5052 {
5053 ptid_t *saved_ptid_ptr = arg;
5054 inferior_ptid = *saved_ptid_ptr;
5055 xfree (arg);
5056 }
5057
5058 /* Save the value of inferior_ptid so that it may be restored by a
5059 later call to do_cleanups(). Returns the struct cleanup pointer
5060 needed for later doing the cleanup. */
5061
5062 struct cleanup *
5063 save_inferior_ptid (void)
5064 {
5065 ptid_t *saved_ptid_ptr;
5066
5067 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5068 *saved_ptid_ptr = inferior_ptid;
5069 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5070 }
5071 \f
5072
5073 /* User interface for reverse debugging:
5074 Set exec-direction / show exec-direction commands
5075 (returns error unless target implements to_set_exec_direction method). */
5076
5077 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5078 static const char exec_forward[] = "forward";
5079 static const char exec_reverse[] = "reverse";
5080 static const char *exec_direction = exec_forward;
5081 static const char *exec_direction_names[] = {
5082 exec_forward,
5083 exec_reverse,
5084 NULL
5085 };
5086
5087 static void
5088 set_exec_direction_func (char *args, int from_tty,
5089 struct cmd_list_element *cmd)
5090 {
5091 if (target_can_execute_reverse)
5092 {
5093 if (!strcmp (exec_direction, exec_forward))
5094 execution_direction = EXEC_FORWARD;
5095 else if (!strcmp (exec_direction, exec_reverse))
5096 execution_direction = EXEC_REVERSE;
5097 }
5098 }
5099
5100 static void
5101 show_exec_direction_func (struct ui_file *out, int from_tty,
5102 struct cmd_list_element *cmd, const char *value)
5103 {
5104 switch (execution_direction) {
5105 case EXEC_FORWARD:
5106 fprintf_filtered (out, _("Forward.\n"));
5107 break;
5108 case EXEC_REVERSE:
5109 fprintf_filtered (out, _("Reverse.\n"));
5110 break;
5111 case EXEC_ERROR:
5112 default:
5113 fprintf_filtered (out,
5114 _("Forward (target `%s' does not support exec-direction).\n"),
5115 target_shortname);
5116 break;
5117 }
5118 }
5119
5120 /* User interface for non-stop mode. */
5121
5122 int non_stop = 0;
5123 static int non_stop_1 = 0;
5124
5125 static void
5126 set_non_stop (char *args, int from_tty,
5127 struct cmd_list_element *c)
5128 {
5129 if (target_has_execution)
5130 {
5131 non_stop_1 = non_stop;
5132 error (_("Cannot change this setting while the inferior is running."));
5133 }
5134
5135 non_stop = non_stop_1;
5136 }
5137
5138 static void
5139 show_non_stop (struct ui_file *file, int from_tty,
5140 struct cmd_list_element *c, const char *value)
5141 {
5142 fprintf_filtered (file,
5143 _("Controlling the inferior in non-stop mode is %s.\n"),
5144 value);
5145 }
5146
5147
5148 void
5149 _initialize_infrun (void)
5150 {
5151 int i;
5152 int numsigs;
5153 struct cmd_list_element *c;
5154
5155 add_info ("signals", signals_info, _("\
5156 What debugger does when program gets various signals.\n\
5157 Specify a signal as argument to print info on that signal only."));
5158 add_info_alias ("handle", "signals", 0);
5159
5160 add_com ("handle", class_run, handle_command, _("\
5161 Specify how to handle a signal.\n\
5162 Args are signals and actions to apply to those signals.\n\
5163 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5164 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5165 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5166 The special arg \"all\" is recognized to mean all signals except those\n\
5167 used by the debugger, typically SIGTRAP and SIGINT.\n\
5168 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5169 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5170 Stop means reenter debugger if this signal happens (implies print).\n\
5171 Print means print a message if this signal happens.\n\
5172 Pass means let program see this signal; otherwise program doesn't know.\n\
5173 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5174 Pass and Stop may be combined."));
5175 if (xdb_commands)
5176 {
5177 add_com ("lz", class_info, signals_info, _("\
5178 What debugger does when program gets various signals.\n\
5179 Specify a signal as argument to print info on that signal only."));
5180 add_com ("z", class_run, xdb_handle_command, _("\
5181 Specify how to handle a signal.\n\
5182 Args are signals and actions to apply to those signals.\n\
5183 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5184 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5185 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5186 The special arg \"all\" is recognized to mean all signals except those\n\
5187 used by the debugger, typically SIGTRAP and SIGINT.\n\
5188 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5189 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5190 nopass), \"Q\" (noprint)\n\
5191 Stop means reenter debugger if this signal happens (implies print).\n\
5192 Print means print a message if this signal happens.\n\
5193 Pass means let program see this signal; otherwise program doesn't know.\n\
5194 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5195 Pass and Stop may be combined."));
5196 }
5197
5198 if (!dbx_commands)
5199 stop_command = add_cmd ("stop", class_obscure,
5200 not_just_help_class_command, _("\
5201 There is no `stop' command, but you can set a hook on `stop'.\n\
5202 This allows you to set a list of commands to be run each time execution\n\
5203 of the program stops."), &cmdlist);
5204
5205 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5206 Set inferior debugging."), _("\
5207 Show inferior debugging."), _("\
5208 When non-zero, inferior specific debugging is enabled."),
5209 NULL,
5210 show_debug_infrun,
5211 &setdebuglist, &showdebuglist);
5212
5213 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5214 Set displaced stepping debugging."), _("\
5215 Show displaced stepping debugging."), _("\
5216 When non-zero, displaced stepping specific debugging is enabled."),
5217 NULL,
5218 show_debug_displaced,
5219 &setdebuglist, &showdebuglist);
5220
5221 add_setshow_boolean_cmd ("non-stop", no_class,
5222 &non_stop_1, _("\
5223 Set whether gdb controls the inferior in non-stop mode."), _("\
5224 Show whether gdb controls the inferior in non-stop mode."), _("\
5225 When debugging a multi-threaded program and this setting is\n\
5226 off (the default, also called all-stop mode), when one thread stops\n\
5227 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5228 all other threads in the program while you interact with the thread of\n\
5229 interest. When you continue or step a thread, you can allow the other\n\
5230 threads to run, or have them remain stopped, but while you inspect any\n\
5231 thread's state, all threads stop.\n\
5232 \n\
5233 In non-stop mode, when one thread stops, other threads can continue\n\
5234 to run freely. You'll be able to step each thread independently,\n\
5235 leave it stopped or free to run as needed."),
5236 set_non_stop,
5237 show_non_stop,
5238 &setlist,
5239 &showlist);
5240
5241 numsigs = (int) TARGET_SIGNAL_LAST;
5242 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5243 signal_print = (unsigned char *)
5244 xmalloc (sizeof (signal_print[0]) * numsigs);
5245 signal_program = (unsigned char *)
5246 xmalloc (sizeof (signal_program[0]) * numsigs);
5247 for (i = 0; i < numsigs; i++)
5248 {
5249 signal_stop[i] = 1;
5250 signal_print[i] = 1;
5251 signal_program[i] = 1;
5252 }
5253
5254 /* Signals caused by debugger's own actions
5255 should not be given to the program afterwards. */
5256 signal_program[TARGET_SIGNAL_TRAP] = 0;
5257 signal_program[TARGET_SIGNAL_INT] = 0;
5258
5259 /* Signals that are not errors should not normally enter the debugger. */
5260 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5261 signal_print[TARGET_SIGNAL_ALRM] = 0;
5262 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5263 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5264 signal_stop[TARGET_SIGNAL_PROF] = 0;
5265 signal_print[TARGET_SIGNAL_PROF] = 0;
5266 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5267 signal_print[TARGET_SIGNAL_CHLD] = 0;
5268 signal_stop[TARGET_SIGNAL_IO] = 0;
5269 signal_print[TARGET_SIGNAL_IO] = 0;
5270 signal_stop[TARGET_SIGNAL_POLL] = 0;
5271 signal_print[TARGET_SIGNAL_POLL] = 0;
5272 signal_stop[TARGET_SIGNAL_URG] = 0;
5273 signal_print[TARGET_SIGNAL_URG] = 0;
5274 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5275 signal_print[TARGET_SIGNAL_WINCH] = 0;
5276
5277 /* These signals are used internally by user-level thread
5278 implementations. (See signal(5) on Solaris.) Like the above
5279 signals, a healthy program receives and handles them as part of
5280 its normal operation. */
5281 signal_stop[TARGET_SIGNAL_LWP] = 0;
5282 signal_print[TARGET_SIGNAL_LWP] = 0;
5283 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5284 signal_print[TARGET_SIGNAL_WAITING] = 0;
5285 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5286 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5287
5288 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5289 &stop_on_solib_events, _("\
5290 Set stopping for shared library events."), _("\
5291 Show stopping for shared library events."), _("\
5292 If nonzero, gdb will give control to the user when the dynamic linker\n\
5293 notifies gdb of shared library events. The most common event of interest\n\
5294 to the user would be loading/unloading of a new library."),
5295 NULL,
5296 show_stop_on_solib_events,
5297 &setlist, &showlist);
5298
5299 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5300 follow_fork_mode_kind_names,
5301 &follow_fork_mode_string, _("\
5302 Set debugger response to a program call of fork or vfork."), _("\
5303 Show debugger response to a program call of fork or vfork."), _("\
5304 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5305 parent - the original process is debugged after a fork\n\
5306 child - the new process is debugged after a fork\n\
5307 The unfollowed process will continue to run.\n\
5308 By default, the debugger will follow the parent process."),
5309 NULL,
5310 show_follow_fork_mode_string,
5311 &setlist, &showlist);
5312
5313 add_setshow_enum_cmd ("scheduler-locking", class_run,
5314 scheduler_enums, &scheduler_mode, _("\
5315 Set mode for locking scheduler during execution."), _("\
5316 Show mode for locking scheduler during execution."), _("\
5317 off == no locking (threads may preempt at any time)\n\
5318 on == full locking (no thread except the current thread may run)\n\
5319 step == scheduler locked during every single-step operation.\n\
5320 In this mode, no other thread may run during a step command.\n\
5321 Other threads may run while stepping over a function call ('next')."),
5322 set_schedlock_func, /* traps on target vector */
5323 show_scheduler_mode,
5324 &setlist, &showlist);
5325
5326 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5327 Set mode of the step operation."), _("\
5328 Show mode of the step operation."), _("\
5329 When set, doing a step over a function without debug line information\n\
5330 will stop at the first instruction of that function. Otherwise, the\n\
5331 function is skipped and the step command stops at a different source line."),
5332 NULL,
5333 show_step_stop_if_no_debug,
5334 &setlist, &showlist);
5335
5336 add_setshow_enum_cmd ("displaced-stepping", class_run,
5337 can_use_displaced_stepping_enum,
5338 &can_use_displaced_stepping, _("\
5339 Set debugger's willingness to use displaced stepping."), _("\
5340 Show debugger's willingness to use displaced stepping."), _("\
5341 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5342 supported by the target architecture. If off, gdb will not use displaced\n\
5343 stepping to step over breakpoints, even if such is supported by the target\n\
5344 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5345 if the target architecture supports it and non-stop mode is active, but will not\n\
5346 use it in all-stop mode (see help set non-stop)."),
5347 NULL,
5348 show_can_use_displaced_stepping,
5349 &setlist, &showlist);
5350
5351 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5352 &exec_direction, _("Set direction of execution.\n\
5353 Options are 'forward' or 'reverse'."),
5354 _("Show direction of execution (forward/reverse)."),
5355 _("Tells gdb whether to execute forward or backward."),
5356 set_exec_direction_func, show_exec_direction_func,
5357 &setlist, &showlist);
5358
5359 /* ptid initializations */
5360 null_ptid = ptid_build (0, 0, 0);
5361 minus_one_ptid = ptid_build (-1, 0, 0);
5362 inferior_ptid = null_ptid;
5363 target_last_wait_ptid = minus_one_ptid;
5364 displaced_step_ptid = null_ptid;
5365
5366 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5367 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5368 }
This page took 0.143092 seconds and 4 git commands to generate.