Don't suppress *running when doing finish.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 int debug_displaced = 0;
107 static void
108 show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112 }
113
114 static int debug_infrun = 0;
115 static void
116 show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120 }
121
122 /* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
141
142 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
160
161 /* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169 #ifndef SOLIB_IN_DYNAMIC_LINKER
170 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171 #endif
172
173
174 /* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
177 #ifndef CANNOT_STEP_HW_WATCHPOINTS
178 #define CANNOT_STEP_HW_WATCHPOINTS 0
179 #else
180 #undef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 1
182 #endif
183
184 /* Tables of how to react to signals; the user sets them. */
185
186 static unsigned char *signal_stop;
187 static unsigned char *signal_print;
188 static unsigned char *signal_program;
189
190 #define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198 #define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
206 /* Value to pass to target_resume() to cause all threads to resume */
207
208 #define RESUME_ALL (pid_to_ptid (-1))
209
210 /* Command list pointer for the "stop" placeholder. */
211
212 static struct cmd_list_element *stop_command;
213
214 /* Function inferior was in as of last step command. */
215
216 static struct symbol *step_start_function;
217
218 /* Nonzero if we are presently stepping over a breakpoint.
219
220 If we hit a breakpoint or watchpoint, and then continue,
221 we need to single step the current thread with breakpoints
222 disabled, to avoid hitting the same breakpoint or
223 watchpoint again. And we should step just a single
224 thread and keep other threads stopped, so that
225 other threads don't miss breakpoints while they are removed.
226
227 So, this variable simultaneously means that we need to single
228 step the current thread, keep other threads stopped, and that
229 breakpoints should be removed while we step.
230
231 This variable is set either:
232 - in proceed, when we resume inferior on user's explicit request
233 - in keep_going, if handle_inferior_event decides we need to
234 step over breakpoint.
235
236 The variable is cleared in clear_proceed_status, called every
237 time before we call proceed. The proceed calls wait_for_inferior,
238 which calls handle_inferior_event in a loop, and until
239 wait_for_inferior exits, this variable is changed only by keep_going. */
240
241 static int stepping_over_breakpoint;
242
243 /* Nonzero if we want to give control to the user when we're notified
244 of shared library events by the dynamic linker. */
245 static int stop_on_solib_events;
246 static void
247 show_stop_on_solib_events (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249 {
250 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
251 value);
252 }
253
254 /* Nonzero means expecting a trace trap
255 and should stop the inferior and return silently when it happens. */
256
257 int stop_after_trap;
258
259 /* Nonzero means expecting a trap and caller will handle it themselves.
260 It is used after attach, due to attaching to a process;
261 when running in the shell before the child program has been exec'd;
262 and when running some kinds of remote stuff (FIXME?). */
263
264 enum stop_kind stop_soon;
265
266 /* Nonzero if proceed is being used for a "finish" command or a similar
267 situation when stop_registers should be saved. */
268
269 int proceed_to_finish;
270
271 /* Save register contents here when about to pop a stack dummy frame,
272 if-and-only-if proceed_to_finish is set.
273 Thus this contains the return value from the called function (assuming
274 values are returned in a register). */
275
276 struct regcache *stop_registers;
277
278 /* Nonzero after stop if current stack frame should be printed. */
279
280 static int stop_print_frame;
281
282 /* Step-resume or longjmp-resume breakpoint. */
283 static struct breakpoint *step_resume_breakpoint = NULL;
284
285 /* This is a cached copy of the pid/waitstatus of the last event
286 returned by target_wait()/deprecated_target_wait_hook(). This
287 information is returned by get_last_target_status(). */
288 static ptid_t target_last_wait_ptid;
289 static struct target_waitstatus target_last_waitstatus;
290
291 /* This is used to remember when a fork, vfork or exec event
292 was caught by a catchpoint, and thus the event is to be
293 followed at the next resume of the inferior, and not
294 immediately. */
295 static struct
296 {
297 enum target_waitkind kind;
298 struct
299 {
300 int parent_pid;
301 int child_pid;
302 }
303 fork_event;
304 char *execd_pathname;
305 }
306 pending_follow;
307
308 static const char follow_fork_mode_child[] = "child";
309 static const char follow_fork_mode_parent[] = "parent";
310
311 static const char *follow_fork_mode_kind_names[] = {
312 follow_fork_mode_child,
313 follow_fork_mode_parent,
314 NULL
315 };
316
317 static const char *follow_fork_mode_string = follow_fork_mode_parent;
318 static void
319 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
320 struct cmd_list_element *c, const char *value)
321 {
322 fprintf_filtered (file, _("\
323 Debugger response to a program call of fork or vfork is \"%s\".\n"),
324 value);
325 }
326 \f
327
328 static int
329 follow_fork (void)
330 {
331 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
332
333 return target_follow_fork (follow_child);
334 }
335
336 void
337 follow_inferior_reset_breakpoints (void)
338 {
339 /* Was there a step_resume breakpoint? (There was if the user
340 did a "next" at the fork() call.) If so, explicitly reset its
341 thread number.
342
343 step_resumes are a form of bp that are made to be per-thread.
344 Since we created the step_resume bp when the parent process
345 was being debugged, and now are switching to the child process,
346 from the breakpoint package's viewpoint, that's a switch of
347 "threads". We must update the bp's notion of which thread
348 it is for, or it'll be ignored when it triggers. */
349
350 if (step_resume_breakpoint)
351 breakpoint_re_set_thread (step_resume_breakpoint);
352
353 /* Reinsert all breakpoints in the child. The user may have set
354 breakpoints after catching the fork, in which case those
355 were never set in the child, but only in the parent. This makes
356 sure the inserted breakpoints match the breakpoint list. */
357
358 breakpoint_re_set ();
359 insert_breakpoints ();
360 }
361
362 /* EXECD_PATHNAME is assumed to be non-NULL. */
363
364 static void
365 follow_exec (int pid, char *execd_pathname)
366 {
367 int saved_pid = pid;
368 struct target_ops *tgt;
369
370 /* This is an exec event that we actually wish to pay attention to.
371 Refresh our symbol table to the newly exec'd program, remove any
372 momentary bp's, etc.
373
374 If there are breakpoints, they aren't really inserted now,
375 since the exec() transformed our inferior into a fresh set
376 of instructions.
377
378 We want to preserve symbolic breakpoints on the list, since
379 we have hopes that they can be reset after the new a.out's
380 symbol table is read.
381
382 However, any "raw" breakpoints must be removed from the list
383 (e.g., the solib bp's), since their address is probably invalid
384 now.
385
386 And, we DON'T want to call delete_breakpoints() here, since
387 that may write the bp's "shadow contents" (the instruction
388 value that was overwritten witha TRAP instruction). Since
389 we now have a new a.out, those shadow contents aren't valid. */
390 update_breakpoints_after_exec ();
391
392 /* If there was one, it's gone now. We cannot truly step-to-next
393 statement through an exec(). */
394 step_resume_breakpoint = NULL;
395 step_range_start = 0;
396 step_range_end = 0;
397
398 /* What is this a.out's name? */
399 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
400
401 /* We've followed the inferior through an exec. Therefore, the
402 inferior has essentially been killed & reborn. */
403
404 gdb_flush (gdb_stdout);
405 generic_mourn_inferior ();
406 /* Because mourn_inferior resets inferior_ptid. */
407 inferior_ptid = pid_to_ptid (saved_pid);
408
409 if (gdb_sysroot && *gdb_sysroot)
410 {
411 char *name = alloca (strlen (gdb_sysroot)
412 + strlen (execd_pathname)
413 + 1);
414 strcpy (name, gdb_sysroot);
415 strcat (name, execd_pathname);
416 execd_pathname = name;
417 }
418
419 /* That a.out is now the one to use. */
420 exec_file_attach (execd_pathname, 0);
421
422 /* And also is where symbols can be found. */
423 symbol_file_add_main (execd_pathname, 0);
424
425 /* Reset the shared library package. This ensures that we get
426 a shlib event when the child reaches "_start", at which point
427 the dld will have had a chance to initialize the child. */
428 no_shared_libraries (NULL, 0);
429 #ifdef SOLIB_CREATE_INFERIOR_HOOK
430 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
431 #else
432 solib_create_inferior_hook ();
433 #endif
434
435 /* Reinsert all breakpoints. (Those which were symbolic have
436 been reset to the proper address in the new a.out, thanks
437 to symbol_file_command...) */
438 insert_breakpoints ();
439
440 /* The next resume of this inferior should bring it to the shlib
441 startup breakpoints. (If the user had also set bp's on
442 "main" from the old (parent) process, then they'll auto-
443 matically get reset there in the new process.) */
444 }
445
446 /* Non-zero if we just simulating a single-step. This is needed
447 because we cannot remove the breakpoints in the inferior process
448 until after the `wait' in `wait_for_inferior'. */
449 static int singlestep_breakpoints_inserted_p = 0;
450
451 /* The thread we inserted single-step breakpoints for. */
452 static ptid_t singlestep_ptid;
453
454 /* PC when we started this single-step. */
455 static CORE_ADDR singlestep_pc;
456
457 /* If another thread hit the singlestep breakpoint, we save the original
458 thread here so that we can resume single-stepping it later. */
459 static ptid_t saved_singlestep_ptid;
460 static int stepping_past_singlestep_breakpoint;
461
462 /* If not equal to null_ptid, this means that after stepping over breakpoint
463 is finished, we need to switch to deferred_step_ptid, and step it.
464
465 The use case is when one thread has hit a breakpoint, and then the user
466 has switched to another thread and issued 'step'. We need to step over
467 breakpoint in the thread which hit the breakpoint, but then continue
468 stepping the thread user has selected. */
469 static ptid_t deferred_step_ptid;
470 \f
471 /* Displaced stepping. */
472
473 /* In non-stop debugging mode, we must take special care to manage
474 breakpoints properly; in particular, the traditional strategy for
475 stepping a thread past a breakpoint it has hit is unsuitable.
476 'Displaced stepping' is a tactic for stepping one thread past a
477 breakpoint it has hit while ensuring that other threads running
478 concurrently will hit the breakpoint as they should.
479
480 The traditional way to step a thread T off a breakpoint in a
481 multi-threaded program in all-stop mode is as follows:
482
483 a0) Initially, all threads are stopped, and breakpoints are not
484 inserted.
485 a1) We single-step T, leaving breakpoints uninserted.
486 a2) We insert breakpoints, and resume all threads.
487
488 In non-stop debugging, however, this strategy is unsuitable: we
489 don't want to have to stop all threads in the system in order to
490 continue or step T past a breakpoint. Instead, we use displaced
491 stepping:
492
493 n0) Initially, T is stopped, other threads are running, and
494 breakpoints are inserted.
495 n1) We copy the instruction "under" the breakpoint to a separate
496 location, outside the main code stream, making any adjustments
497 to the instruction, register, and memory state as directed by
498 T's architecture.
499 n2) We single-step T over the instruction at its new location.
500 n3) We adjust the resulting register and memory state as directed
501 by T's architecture. This includes resetting T's PC to point
502 back into the main instruction stream.
503 n4) We resume T.
504
505 This approach depends on the following gdbarch methods:
506
507 - gdbarch_max_insn_length and gdbarch_displaced_step_location
508 indicate where to copy the instruction, and how much space must
509 be reserved there. We use these in step n1.
510
511 - gdbarch_displaced_step_copy_insn copies a instruction to a new
512 address, and makes any necessary adjustments to the instruction,
513 register contents, and memory. We use this in step n1.
514
515 - gdbarch_displaced_step_fixup adjusts registers and memory after
516 we have successfuly single-stepped the instruction, to yield the
517 same effect the instruction would have had if we had executed it
518 at its original address. We use this in step n3.
519
520 - gdbarch_displaced_step_free_closure provides cleanup.
521
522 The gdbarch_displaced_step_copy_insn and
523 gdbarch_displaced_step_fixup functions must be written so that
524 copying an instruction with gdbarch_displaced_step_copy_insn,
525 single-stepping across the copied instruction, and then applying
526 gdbarch_displaced_insn_fixup should have the same effects on the
527 thread's memory and registers as stepping the instruction in place
528 would have. Exactly which responsibilities fall to the copy and
529 which fall to the fixup is up to the author of those functions.
530
531 See the comments in gdbarch.sh for details.
532
533 Note that displaced stepping and software single-step cannot
534 currently be used in combination, although with some care I think
535 they could be made to. Software single-step works by placing
536 breakpoints on all possible subsequent instructions; if the
537 displaced instruction is a PC-relative jump, those breakpoints
538 could fall in very strange places --- on pages that aren't
539 executable, or at addresses that are not proper instruction
540 boundaries. (We do generally let other threads run while we wait
541 to hit the software single-step breakpoint, and they might
542 encounter such a corrupted instruction.) One way to work around
543 this would be to have gdbarch_displaced_step_copy_insn fully
544 simulate the effect of PC-relative instructions (and return NULL)
545 on architectures that use software single-stepping.
546
547 In non-stop mode, we can have independent and simultaneous step
548 requests, so more than one thread may need to simultaneously step
549 over a breakpoint. The current implementation assumes there is
550 only one scratch space per process. In this case, we have to
551 serialize access to the scratch space. If thread A wants to step
552 over a breakpoint, but we are currently waiting for some other
553 thread to complete a displaced step, we leave thread A stopped and
554 place it in the displaced_step_request_queue. Whenever a displaced
555 step finishes, we pick the next thread in the queue and start a new
556 displaced step operation on it. See displaced_step_prepare and
557 displaced_step_fixup for details. */
558
559 /* If this is not null_ptid, this is the thread carrying out a
560 displaced single-step. This thread's state will require fixing up
561 once it has completed its step. */
562 static ptid_t displaced_step_ptid;
563
564 struct displaced_step_request
565 {
566 ptid_t ptid;
567 struct displaced_step_request *next;
568 };
569
570 /* A queue of pending displaced stepping requests. */
571 struct displaced_step_request *displaced_step_request_queue;
572
573 /* The architecture the thread had when we stepped it. */
574 static struct gdbarch *displaced_step_gdbarch;
575
576 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
577 for post-step cleanup. */
578 static struct displaced_step_closure *displaced_step_closure;
579
580 /* The address of the original instruction, and the copy we made. */
581 static CORE_ADDR displaced_step_original, displaced_step_copy;
582
583 /* Saved contents of copy area. */
584 static gdb_byte *displaced_step_saved_copy;
585
586 /* When this is non-zero, we are allowed to use displaced stepping, if
587 the architecture supports it. When this is zero, we use
588 traditional the hold-and-step approach. */
589 int can_use_displaced_stepping = 1;
590 static void
591 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
592 struct cmd_list_element *c,
593 const char *value)
594 {
595 fprintf_filtered (file, _("\
596 Debugger's willingness to use displaced stepping to step over "
597 "breakpoints is %s.\n"), value);
598 }
599
600 /* Return non-zero if displaced stepping is enabled, and can be used
601 with GDBARCH. */
602 static int
603 use_displaced_stepping (struct gdbarch *gdbarch)
604 {
605 return (can_use_displaced_stepping
606 && gdbarch_displaced_step_copy_insn_p (gdbarch));
607 }
608
609 /* Clean out any stray displaced stepping state. */
610 static void
611 displaced_step_clear (void)
612 {
613 /* Indicate that there is no cleanup pending. */
614 displaced_step_ptid = null_ptid;
615
616 if (displaced_step_closure)
617 {
618 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
619 displaced_step_closure);
620 displaced_step_closure = NULL;
621 }
622 }
623
624 static void
625 cleanup_displaced_step_closure (void *ptr)
626 {
627 struct displaced_step_closure *closure = ptr;
628
629 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
630 }
631
632 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
633 void
634 displaced_step_dump_bytes (struct ui_file *file,
635 const gdb_byte *buf,
636 size_t len)
637 {
638 int i;
639
640 for (i = 0; i < len; i++)
641 fprintf_unfiltered (file, "%02x ", buf[i]);
642 fputs_unfiltered ("\n", file);
643 }
644
645 /* Prepare to single-step, using displaced stepping.
646
647 Note that we cannot use displaced stepping when we have a signal to
648 deliver. If we have a signal to deliver and an instruction to step
649 over, then after the step, there will be no indication from the
650 target whether the thread entered a signal handler or ignored the
651 signal and stepped over the instruction successfully --- both cases
652 result in a simple SIGTRAP. In the first case we mustn't do a
653 fixup, and in the second case we must --- but we can't tell which.
654 Comments in the code for 'random signals' in handle_inferior_event
655 explain how we handle this case instead.
656
657 Returns 1 if preparing was successful -- this thread is going to be
658 stepped now; or 0 if displaced stepping this thread got queued. */
659 static int
660 displaced_step_prepare (ptid_t ptid)
661 {
662 struct cleanup *old_cleanups;
663 struct regcache *regcache = get_thread_regcache (ptid);
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 CORE_ADDR original, copy;
666 ULONGEST len;
667 struct displaced_step_closure *closure;
668
669 /* We should never reach this function if the architecture does not
670 support displaced stepping. */
671 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
672
673 /* For the first cut, we're displaced stepping one thread at a
674 time. */
675
676 if (!ptid_equal (displaced_step_ptid, null_ptid))
677 {
678 /* Already waiting for a displaced step to finish. Defer this
679 request and place in queue. */
680 struct displaced_step_request *req, *new_req;
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: defering step of %s\n",
685 target_pid_to_str (ptid));
686
687 new_req = xmalloc (sizeof (*new_req));
688 new_req->ptid = ptid;
689 new_req->next = NULL;
690
691 if (displaced_step_request_queue)
692 {
693 for (req = displaced_step_request_queue;
694 req && req->next;
695 req = req->next)
696 ;
697 req->next = new_req;
698 }
699 else
700 displaced_step_request_queue = new_req;
701
702 return 0;
703 }
704 else
705 {
706 if (debug_displaced)
707 fprintf_unfiltered (gdb_stdlog,
708 "displaced: stepping %s now\n",
709 target_pid_to_str (ptid));
710 }
711
712 displaced_step_clear ();
713
714 original = regcache_read_pc (regcache);
715
716 copy = gdbarch_displaced_step_location (gdbarch);
717 len = gdbarch_max_insn_length (gdbarch);
718
719 /* Save the original contents of the copy area. */
720 displaced_step_saved_copy = xmalloc (len);
721 old_cleanups = make_cleanup (free_current_contents,
722 &displaced_step_saved_copy);
723 read_memory (copy, displaced_step_saved_copy, len);
724 if (debug_displaced)
725 {
726 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
727 paddr_nz (copy));
728 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
729 };
730
731 closure = gdbarch_displaced_step_copy_insn (gdbarch,
732 original, copy, regcache);
733
734 /* We don't support the fully-simulated case at present. */
735 gdb_assert (closure);
736
737 make_cleanup (cleanup_displaced_step_closure, closure);
738
739 /* Resume execution at the copy. */
740 regcache_write_pc (regcache, copy);
741
742 discard_cleanups (old_cleanups);
743
744 if (debug_displaced)
745 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
746 paddr_nz (copy));
747
748 /* Save the information we need to fix things up if the step
749 succeeds. */
750 displaced_step_ptid = ptid;
751 displaced_step_gdbarch = gdbarch;
752 displaced_step_closure = closure;
753 displaced_step_original = original;
754 displaced_step_copy = copy;
755 return 1;
756 }
757
758 static void
759 displaced_step_clear_cleanup (void *ignore)
760 {
761 displaced_step_clear ();
762 }
763
764 static void
765 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
766 {
767 struct cleanup *ptid_cleanup = save_inferior_ptid ();
768 inferior_ptid = ptid;
769 write_memory (memaddr, myaddr, len);
770 do_cleanups (ptid_cleanup);
771 }
772
773 static void
774 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
775 {
776 struct cleanup *old_cleanups;
777
778 /* Was this event for the pid we displaced? */
779 if (ptid_equal (displaced_step_ptid, null_ptid)
780 || ! ptid_equal (displaced_step_ptid, event_ptid))
781 return;
782
783 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
784
785 /* Restore the contents of the copy area. */
786 {
787 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
788 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
789 displaced_step_saved_copy, len);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
792 paddr_nz (displaced_step_copy));
793 }
794
795 /* Did the instruction complete successfully? */
796 if (signal == TARGET_SIGNAL_TRAP)
797 {
798 /* Fix up the resulting state. */
799 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
800 displaced_step_closure,
801 displaced_step_original,
802 displaced_step_copy,
803 get_thread_regcache (displaced_step_ptid));
804 }
805 else
806 {
807 /* Since the instruction didn't complete, all we can do is
808 relocate the PC. */
809 struct regcache *regcache = get_thread_regcache (event_ptid);
810 CORE_ADDR pc = regcache_read_pc (regcache);
811 pc = displaced_step_original + (pc - displaced_step_copy);
812 regcache_write_pc (regcache, pc);
813 }
814
815 do_cleanups (old_cleanups);
816
817 /* Are there any pending displaced stepping requests? If so, run
818 one now. */
819 if (displaced_step_request_queue)
820 {
821 struct displaced_step_request *head;
822 ptid_t ptid;
823
824 head = displaced_step_request_queue;
825 ptid = head->ptid;
826 displaced_step_request_queue = head->next;
827 xfree (head);
828
829 if (debug_displaced)
830 fprintf_unfiltered (gdb_stdlog,
831 "displaced: stepping queued %s now\n",
832 target_pid_to_str (ptid));
833
834
835 displaced_step_ptid = null_ptid;
836 displaced_step_prepare (ptid);
837 target_resume (ptid, 1, TARGET_SIGNAL_0);
838 }
839 }
840
841 \f
842 /* Resuming. */
843
844 /* Things to clean up if we QUIT out of resume (). */
845 static void
846 resume_cleanups (void *ignore)
847 {
848 normal_stop ();
849 }
850
851 static const char schedlock_off[] = "off";
852 static const char schedlock_on[] = "on";
853 static const char schedlock_step[] = "step";
854 static const char *scheduler_enums[] = {
855 schedlock_off,
856 schedlock_on,
857 schedlock_step,
858 NULL
859 };
860 static const char *scheduler_mode = schedlock_off;
861 static void
862 show_scheduler_mode (struct ui_file *file, int from_tty,
863 struct cmd_list_element *c, const char *value)
864 {
865 fprintf_filtered (file, _("\
866 Mode for locking scheduler during execution is \"%s\".\n"),
867 value);
868 }
869
870 static void
871 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
872 {
873 if (!target_can_lock_scheduler)
874 {
875 scheduler_mode = schedlock_off;
876 error (_("Target '%s' cannot support this command."), target_shortname);
877 }
878 }
879
880
881 /* Resume the inferior, but allow a QUIT. This is useful if the user
882 wants to interrupt some lengthy single-stepping operation
883 (for child processes, the SIGINT goes to the inferior, and so
884 we get a SIGINT random_signal, but for remote debugging and perhaps
885 other targets, that's not true).
886
887 STEP nonzero if we should step (zero to continue instead).
888 SIG is the signal to give the inferior (zero for none). */
889 void
890 resume (int step, enum target_signal sig)
891 {
892 int should_resume = 1;
893 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
894 struct regcache *regcache = get_current_regcache ();
895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
896 CORE_ADDR pc = regcache_read_pc (regcache);
897 QUIT;
898
899 if (debug_infrun)
900 fprintf_unfiltered (gdb_stdlog,
901 "infrun: resume (step=%d, signal=%d), "
902 "stepping_over_breakpoint=%d\n",
903 step, sig, stepping_over_breakpoint);
904
905 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
906 over an instruction that causes a page fault without triggering
907 a hardware watchpoint. The kernel properly notices that it shouldn't
908 stop, because the hardware watchpoint is not triggered, but it forgets
909 the step request and continues the program normally.
910 Work around the problem by removing hardware watchpoints if a step is
911 requested, GDB will check for a hardware watchpoint trigger after the
912 step anyway. */
913 if (CANNOT_STEP_HW_WATCHPOINTS && step)
914 remove_hw_watchpoints ();
915
916
917 /* Normally, by the time we reach `resume', the breakpoints are either
918 removed or inserted, as appropriate. The exception is if we're sitting
919 at a permanent breakpoint; we need to step over it, but permanent
920 breakpoints can't be removed. So we have to test for it here. */
921 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
922 {
923 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
924 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
925 else
926 error (_("\
927 The program is stopped at a permanent breakpoint, but GDB does not know\n\
928 how to step past a permanent breakpoint on this architecture. Try using\n\
929 a command like `return' or `jump' to continue execution."));
930 }
931
932 /* If enabled, step over breakpoints by executing a copy of the
933 instruction at a different address.
934
935 We can't use displaced stepping when we have a signal to deliver;
936 the comments for displaced_step_prepare explain why. The
937 comments in the handle_inferior event for dealing with 'random
938 signals' explain what we do instead. */
939 if (use_displaced_stepping (gdbarch)
940 && stepping_over_breakpoint
941 && sig == TARGET_SIGNAL_0)
942 {
943 if (!displaced_step_prepare (inferior_ptid))
944 /* Got placed in displaced stepping queue. Will be resumed
945 later when all the currently queued displaced stepping
946 requests finish. */
947 return;
948 }
949
950 if (step && gdbarch_software_single_step_p (gdbarch))
951 {
952 /* Do it the hard way, w/temp breakpoints */
953 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
954 {
955 /* ...and don't ask hardware to do it. */
956 step = 0;
957 /* and do not pull these breakpoints until after a `wait' in
958 `wait_for_inferior' */
959 singlestep_breakpoints_inserted_p = 1;
960 singlestep_ptid = inferior_ptid;
961 singlestep_pc = pc;
962 }
963 }
964
965 /* If there were any forks/vforks/execs that were caught and are
966 now to be followed, then do so. */
967 switch (pending_follow.kind)
968 {
969 case TARGET_WAITKIND_FORKED:
970 case TARGET_WAITKIND_VFORKED:
971 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
972 if (follow_fork ())
973 should_resume = 0;
974 break;
975
976 case TARGET_WAITKIND_EXECD:
977 /* follow_exec is called as soon as the exec event is seen. */
978 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
979 break;
980
981 default:
982 break;
983 }
984
985 /* Install inferior's terminal modes. */
986 target_terminal_inferior ();
987
988 if (should_resume)
989 {
990 ptid_t resume_ptid;
991
992 resume_ptid = RESUME_ALL; /* Default */
993
994 /* If STEP is set, it's a request to use hardware stepping
995 facilities. But in that case, we should never
996 use singlestep breakpoint. */
997 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
998
999 if (singlestep_breakpoints_inserted_p
1000 && stepping_past_singlestep_breakpoint)
1001 {
1002 /* The situation here is as follows. In thread T1 we wanted to
1003 single-step. Lacking hardware single-stepping we've
1004 set breakpoint at the PC of the next instruction -- call it
1005 P. After resuming, we've hit that breakpoint in thread T2.
1006 Now we've removed original breakpoint, inserted breakpoint
1007 at P+1, and try to step to advance T2 past breakpoint.
1008 We need to step only T2, as if T1 is allowed to freely run,
1009 it can run past P, and if other threads are allowed to run,
1010 they can hit breakpoint at P+1, and nested hits of single-step
1011 breakpoints is not something we'd want -- that's complicated
1012 to support, and has no value. */
1013 resume_ptid = inferior_ptid;
1014 }
1015
1016 if ((step || singlestep_breakpoints_inserted_p)
1017 && stepping_over_breakpoint)
1018 {
1019 /* We're allowing a thread to run past a breakpoint it has
1020 hit, by single-stepping the thread with the breakpoint
1021 removed. In which case, we need to single-step only this
1022 thread, and keep others stopped, as they can miss this
1023 breakpoint if allowed to run.
1024
1025 The current code actually removes all breakpoints when
1026 doing this, not just the one being stepped over, so if we
1027 let other threads run, we can actually miss any
1028 breakpoint, not just the one at PC. */
1029 resume_ptid = inferior_ptid;
1030 }
1031
1032 if ((scheduler_mode == schedlock_on)
1033 || (scheduler_mode == schedlock_step
1034 && (step || singlestep_breakpoints_inserted_p)))
1035 {
1036 /* User-settable 'scheduler' mode requires solo thread resume. */
1037 resume_ptid = inferior_ptid;
1038 }
1039
1040 if (gdbarch_cannot_step_breakpoint (gdbarch))
1041 {
1042 /* Most targets can step a breakpoint instruction, thus
1043 executing it normally. But if this one cannot, just
1044 continue and we will hit it anyway. */
1045 if (step && breakpoint_inserted_here_p (pc))
1046 step = 0;
1047 }
1048
1049 if (debug_displaced
1050 && use_displaced_stepping (gdbarch)
1051 && stepping_over_breakpoint)
1052 {
1053 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1054 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1055 gdb_byte buf[4];
1056
1057 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1058 paddr_nz (actual_pc));
1059 read_memory (actual_pc, buf, sizeof (buf));
1060 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1061 }
1062
1063 target_resume (resume_ptid, step, sig);
1064 }
1065
1066 discard_cleanups (old_cleanups);
1067 }
1068 \f
1069 /* Proceeding. */
1070
1071 /* Clear out all variables saying what to do when inferior is continued.
1072 First do this, then set the ones you want, then call `proceed'. */
1073
1074 void
1075 clear_proceed_status (void)
1076 {
1077 stepping_over_breakpoint = 0;
1078 step_range_start = 0;
1079 step_range_end = 0;
1080 step_frame_id = null_frame_id;
1081 step_over_calls = STEP_OVER_UNDEBUGGABLE;
1082 stop_after_trap = 0;
1083 stop_soon = NO_STOP_QUIETLY;
1084 proceed_to_finish = 0;
1085 breakpoint_proceeded = 1; /* We're about to proceed... */
1086
1087 if (stop_registers)
1088 {
1089 regcache_xfree (stop_registers);
1090 stop_registers = NULL;
1091 }
1092
1093 /* Discard any remaining commands or status from previous stop. */
1094 bpstat_clear (&stop_bpstat);
1095 }
1096
1097 /* This should be suitable for any targets that support threads. */
1098
1099 static int
1100 prepare_to_proceed (int step)
1101 {
1102 ptid_t wait_ptid;
1103 struct target_waitstatus wait_status;
1104
1105 /* Get the last target status returned by target_wait(). */
1106 get_last_target_status (&wait_ptid, &wait_status);
1107
1108 /* Make sure we were stopped at a breakpoint. */
1109 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1110 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1111 {
1112 return 0;
1113 }
1114
1115 /* Switched over from WAIT_PID. */
1116 if (!ptid_equal (wait_ptid, minus_one_ptid)
1117 && !ptid_equal (inferior_ptid, wait_ptid))
1118 {
1119 struct regcache *regcache = get_thread_regcache (wait_ptid);
1120
1121 if (breakpoint_here_p (regcache_read_pc (regcache)))
1122 {
1123 /* If stepping, remember current thread to switch back to. */
1124 if (step)
1125 deferred_step_ptid = inferior_ptid;
1126
1127 /* Switch back to WAIT_PID thread. */
1128 switch_to_thread (wait_ptid);
1129
1130 /* We return 1 to indicate that there is a breakpoint here,
1131 so we need to step over it before continuing to avoid
1132 hitting it straight away. */
1133 return 1;
1134 }
1135 }
1136
1137 return 0;
1138 }
1139
1140 /* Record the pc of the program the last time it stopped. This is
1141 just used internally by wait_for_inferior, but need to be preserved
1142 over calls to it and cleared when the inferior is started. */
1143 static CORE_ADDR prev_pc;
1144
1145 /* Basic routine for continuing the program in various fashions.
1146
1147 ADDR is the address to resume at, or -1 for resume where stopped.
1148 SIGGNAL is the signal to give it, or 0 for none,
1149 or -1 for act according to how it stopped.
1150 STEP is nonzero if should trap after one instruction.
1151 -1 means return after that and print nothing.
1152 You should probably set various step_... variables
1153 before calling here, if you are stepping.
1154
1155 You should call clear_proceed_status before calling proceed. */
1156
1157 void
1158 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1159 {
1160 struct regcache *regcache = get_current_regcache ();
1161 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1162 CORE_ADDR pc = regcache_read_pc (regcache);
1163 int oneproc = 0;
1164
1165 if (step > 0)
1166 step_start_function = find_pc_function (pc);
1167 if (step < 0)
1168 stop_after_trap = 1;
1169
1170 if (addr == (CORE_ADDR) -1)
1171 {
1172 if (pc == stop_pc && breakpoint_here_p (pc))
1173 /* There is a breakpoint at the address we will resume at,
1174 step one instruction before inserting breakpoints so that
1175 we do not stop right away (and report a second hit at this
1176 breakpoint). */
1177 oneproc = 1;
1178 else if (gdbarch_single_step_through_delay_p (gdbarch)
1179 && gdbarch_single_step_through_delay (gdbarch,
1180 get_current_frame ()))
1181 /* We stepped onto an instruction that needs to be stepped
1182 again before re-inserting the breakpoint, do so. */
1183 oneproc = 1;
1184 }
1185 else
1186 {
1187 regcache_write_pc (regcache, addr);
1188 }
1189
1190 if (debug_infrun)
1191 fprintf_unfiltered (gdb_stdlog,
1192 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1193 paddr_nz (addr), siggnal, step);
1194
1195 /* In a multi-threaded task we may select another thread
1196 and then continue or step.
1197
1198 But if the old thread was stopped at a breakpoint, it
1199 will immediately cause another breakpoint stop without
1200 any execution (i.e. it will report a breakpoint hit
1201 incorrectly). So we must step over it first.
1202
1203 prepare_to_proceed checks the current thread against the thread
1204 that reported the most recent event. If a step-over is required
1205 it returns TRUE and sets the current thread to the old thread. */
1206 if (prepare_to_proceed (step))
1207 oneproc = 1;
1208
1209 if (oneproc)
1210 {
1211 stepping_over_breakpoint = 1;
1212 /* If displaced stepping is enabled, we can step over the
1213 breakpoint without hitting it, so leave all breakpoints
1214 inserted. Otherwise we need to disable all breakpoints, step
1215 one instruction, and then re-add them when that step is
1216 finished. */
1217 if (!use_displaced_stepping (gdbarch))
1218 remove_breakpoints ();
1219 }
1220
1221 /* We can insert breakpoints if we're not trying to step over one,
1222 or if we are stepping over one but we're using displaced stepping
1223 to do so. */
1224 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
1225 insert_breakpoints ();
1226
1227 if (siggnal != TARGET_SIGNAL_DEFAULT)
1228 stop_signal = siggnal;
1229 /* If this signal should not be seen by program,
1230 give it zero. Used for debugging signals. */
1231 else if (!signal_program[stop_signal])
1232 stop_signal = TARGET_SIGNAL_0;
1233
1234 annotate_starting ();
1235
1236 /* Make sure that output from GDB appears before output from the
1237 inferior. */
1238 gdb_flush (gdb_stdout);
1239
1240 /* Refresh prev_pc value just prior to resuming. This used to be
1241 done in stop_stepping, however, setting prev_pc there did not handle
1242 scenarios such as inferior function calls or returning from
1243 a function via the return command. In those cases, the prev_pc
1244 value was not set properly for subsequent commands. The prev_pc value
1245 is used to initialize the starting line number in the ecs. With an
1246 invalid value, the gdb next command ends up stopping at the position
1247 represented by the next line table entry past our start position.
1248 On platforms that generate one line table entry per line, this
1249 is not a problem. However, on the ia64, the compiler generates
1250 extraneous line table entries that do not increase the line number.
1251 When we issue the gdb next command on the ia64 after an inferior call
1252 or a return command, we often end up a few instructions forward, still
1253 within the original line we started.
1254
1255 An attempt was made to have init_execution_control_state () refresh
1256 the prev_pc value before calculating the line number. This approach
1257 did not work because on platforms that use ptrace, the pc register
1258 cannot be read unless the inferior is stopped. At that point, we
1259 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1260 call can fail. Setting the prev_pc value here ensures the value is
1261 updated correctly when the inferior is stopped. */
1262 prev_pc = regcache_read_pc (get_current_regcache ());
1263
1264 /* Resume inferior. */
1265 resume (oneproc || step || bpstat_should_step (), stop_signal);
1266
1267 /* Wait for it to stop (if not standalone)
1268 and in any case decode why it stopped, and act accordingly. */
1269 /* Do this only if we are not using the event loop, or if the target
1270 does not support asynchronous execution. */
1271 if (!target_can_async_p ())
1272 {
1273 wait_for_inferior (0);
1274 normal_stop ();
1275 }
1276 }
1277 \f
1278
1279 /* Start remote-debugging of a machine over a serial link. */
1280
1281 void
1282 start_remote (int from_tty)
1283 {
1284 init_thread_list ();
1285 init_wait_for_inferior ();
1286 stop_soon = STOP_QUIETLY_REMOTE;
1287 stepping_over_breakpoint = 0;
1288
1289 /* Always go on waiting for the target, regardless of the mode. */
1290 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1291 indicate to wait_for_inferior that a target should timeout if
1292 nothing is returned (instead of just blocking). Because of this,
1293 targets expecting an immediate response need to, internally, set
1294 things up so that the target_wait() is forced to eventually
1295 timeout. */
1296 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1297 differentiate to its caller what the state of the target is after
1298 the initial open has been performed. Here we're assuming that
1299 the target has stopped. It should be possible to eventually have
1300 target_open() return to the caller an indication that the target
1301 is currently running and GDB state should be set to the same as
1302 for an async run. */
1303 wait_for_inferior (0);
1304
1305 /* Now that the inferior has stopped, do any bookkeeping like
1306 loading shared libraries. We want to do this before normal_stop,
1307 so that the displayed frame is up to date. */
1308 post_create_inferior (&current_target, from_tty);
1309
1310 normal_stop ();
1311 }
1312
1313 /* Initialize static vars when a new inferior begins. */
1314
1315 void
1316 init_wait_for_inferior (void)
1317 {
1318 /* These are meaningless until the first time through wait_for_inferior. */
1319 prev_pc = 0;
1320
1321 breakpoint_init_inferior (inf_starting);
1322
1323 /* Don't confuse first call to proceed(). */
1324 stop_signal = TARGET_SIGNAL_0;
1325
1326 /* The first resume is not following a fork/vfork/exec. */
1327 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1328
1329 clear_proceed_status ();
1330
1331 stepping_past_singlestep_breakpoint = 0;
1332 deferred_step_ptid = null_ptid;
1333
1334 target_last_wait_ptid = minus_one_ptid;
1335
1336 displaced_step_clear ();
1337 }
1338
1339 \f
1340 /* This enum encodes possible reasons for doing a target_wait, so that
1341 wfi can call target_wait in one place. (Ultimately the call will be
1342 moved out of the infinite loop entirely.) */
1343
1344 enum infwait_states
1345 {
1346 infwait_normal_state,
1347 infwait_thread_hop_state,
1348 infwait_step_watch_state,
1349 infwait_nonstep_watch_state
1350 };
1351
1352 /* Why did the inferior stop? Used to print the appropriate messages
1353 to the interface from within handle_inferior_event(). */
1354 enum inferior_stop_reason
1355 {
1356 /* Step, next, nexti, stepi finished. */
1357 END_STEPPING_RANGE,
1358 /* Inferior terminated by signal. */
1359 SIGNAL_EXITED,
1360 /* Inferior exited. */
1361 EXITED,
1362 /* Inferior received signal, and user asked to be notified. */
1363 SIGNAL_RECEIVED
1364 };
1365
1366 /* This structure contains what used to be local variables in
1367 wait_for_inferior. Probably many of them can return to being
1368 locals in handle_inferior_event. */
1369
1370 struct execution_control_state
1371 {
1372 struct target_waitstatus ws;
1373 struct target_waitstatus *wp;
1374 /* Should we step over breakpoint next time keep_going
1375 is called? */
1376 int stepping_over_breakpoint;
1377 int random_signal;
1378 CORE_ADDR stop_func_start;
1379 CORE_ADDR stop_func_end;
1380 char *stop_func_name;
1381 struct symtab_and_line sal;
1382 int current_line;
1383 struct symtab *current_symtab;
1384 ptid_t ptid;
1385 ptid_t saved_inferior_ptid;
1386 int step_after_step_resume_breakpoint;
1387 int stepping_through_solib_after_catch;
1388 bpstat stepping_through_solib_catchpoints;
1389 int new_thread_event;
1390 struct target_waitstatus tmpstatus;
1391 enum infwait_states infwait_state;
1392 ptid_t waiton_ptid;
1393 int wait_some_more;
1394 };
1395
1396 void init_execution_control_state (struct execution_control_state *ecs);
1397
1398 void handle_inferior_event (struct execution_control_state *ecs);
1399
1400 static void step_into_function (struct execution_control_state *ecs);
1401 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1402 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1403 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1404 struct frame_id sr_id);
1405 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1406
1407 static void stop_stepping (struct execution_control_state *ecs);
1408 static void prepare_to_wait (struct execution_control_state *ecs);
1409 static void keep_going (struct execution_control_state *ecs);
1410 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1411 int stop_info);
1412
1413 /* Wait for control to return from inferior to debugger.
1414
1415 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1416 as if they were SIGTRAP signals. This can be useful during
1417 the startup sequence on some targets such as HP/UX, where
1418 we receive an EXEC event instead of the expected SIGTRAP.
1419
1420 If inferior gets a signal, we may decide to start it up again
1421 instead of returning. That is why there is a loop in this function.
1422 When this function actually returns it means the inferior
1423 should be left stopped and GDB should read more commands. */
1424
1425 void
1426 wait_for_inferior (int treat_exec_as_sigtrap)
1427 {
1428 struct cleanup *old_cleanups;
1429 struct execution_control_state ecss;
1430 struct execution_control_state *ecs;
1431
1432 if (debug_infrun)
1433 fprintf_unfiltered
1434 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1435 treat_exec_as_sigtrap);
1436
1437 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1438 &step_resume_breakpoint);
1439
1440 /* wfi still stays in a loop, so it's OK just to take the address of
1441 a local to get the ecs pointer. */
1442 ecs = &ecss;
1443
1444 /* Fill in with reasonable starting values. */
1445 init_execution_control_state (ecs);
1446
1447 /* We'll update this if & when we switch to a new thread. */
1448 previous_inferior_ptid = inferior_ptid;
1449
1450 overlay_cache_invalid = 1;
1451
1452 /* We have to invalidate the registers BEFORE calling target_wait
1453 because they can be loaded from the target while in target_wait.
1454 This makes remote debugging a bit more efficient for those
1455 targets that provide critical registers as part of their normal
1456 status mechanism. */
1457
1458 registers_changed ();
1459
1460 while (1)
1461 {
1462 if (deprecated_target_wait_hook)
1463 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
1464 else
1465 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1466
1467 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1468 {
1469 xfree (ecs->ws.value.execd_pathname);
1470 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1471 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1472 }
1473
1474 /* Now figure out what to do with the result of the result. */
1475 handle_inferior_event (ecs);
1476
1477 if (!ecs->wait_some_more)
1478 break;
1479 }
1480 do_cleanups (old_cleanups);
1481 }
1482
1483 /* Asynchronous version of wait_for_inferior. It is called by the
1484 event loop whenever a change of state is detected on the file
1485 descriptor corresponding to the target. It can be called more than
1486 once to complete a single execution command. In such cases we need
1487 to keep the state in a global variable ASYNC_ECSS. If it is the
1488 last time that this function is called for a single execution
1489 command, then report to the user that the inferior has stopped, and
1490 do the necessary cleanups. */
1491
1492 struct execution_control_state async_ecss;
1493 struct execution_control_state *async_ecs;
1494
1495 void
1496 fetch_inferior_event (void *client_data)
1497 {
1498 static struct cleanup *old_cleanups;
1499
1500 async_ecs = &async_ecss;
1501
1502 if (!async_ecs->wait_some_more)
1503 {
1504 /* Fill in with reasonable starting values. */
1505 init_execution_control_state (async_ecs);
1506
1507 /* We'll update this if & when we switch to a new thread. */
1508 previous_inferior_ptid = inferior_ptid;
1509
1510 overlay_cache_invalid = 1;
1511
1512 /* We have to invalidate the registers BEFORE calling target_wait
1513 because they can be loaded from the target while in target_wait.
1514 This makes remote debugging a bit more efficient for those
1515 targets that provide critical registers as part of their normal
1516 status mechanism. */
1517
1518 registers_changed ();
1519 }
1520
1521 if (deprecated_target_wait_hook)
1522 async_ecs->ptid =
1523 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1524 else
1525 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1526
1527 /* Now figure out what to do with the result of the result. */
1528 handle_inferior_event (async_ecs);
1529
1530 if (!async_ecs->wait_some_more)
1531 {
1532 delete_step_resume_breakpoint (&step_resume_breakpoint);
1533
1534 normal_stop ();
1535 if (step_multi && stop_step)
1536 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1537 else
1538 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1539 }
1540 }
1541
1542 /* Prepare an execution control state for looping through a
1543 wait_for_inferior-type loop. */
1544
1545 void
1546 init_execution_control_state (struct execution_control_state *ecs)
1547 {
1548 ecs->stepping_over_breakpoint = 0;
1549 ecs->random_signal = 0;
1550 ecs->step_after_step_resume_breakpoint = 0;
1551 ecs->stepping_through_solib_after_catch = 0;
1552 ecs->stepping_through_solib_catchpoints = NULL;
1553 ecs->sal = find_pc_line (prev_pc, 0);
1554 ecs->current_line = ecs->sal.line;
1555 ecs->current_symtab = ecs->sal.symtab;
1556 ecs->infwait_state = infwait_normal_state;
1557 ecs->waiton_ptid = pid_to_ptid (-1);
1558 ecs->wp = &(ecs->ws);
1559 }
1560
1561 /* Return the cached copy of the last pid/waitstatus returned by
1562 target_wait()/deprecated_target_wait_hook(). The data is actually
1563 cached by handle_inferior_event(), which gets called immediately
1564 after target_wait()/deprecated_target_wait_hook(). */
1565
1566 void
1567 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1568 {
1569 *ptidp = target_last_wait_ptid;
1570 *status = target_last_waitstatus;
1571 }
1572
1573 void
1574 nullify_last_target_wait_ptid (void)
1575 {
1576 target_last_wait_ptid = minus_one_ptid;
1577 }
1578
1579 /* Switch thread contexts, maintaining "infrun state". */
1580
1581 static void
1582 context_switch (struct execution_control_state *ecs)
1583 {
1584 /* Caution: it may happen that the new thread (or the old one!)
1585 is not in the thread list. In this case we must not attempt
1586 to "switch context", or we run the risk that our context may
1587 be lost. This may happen as a result of the target module
1588 mishandling thread creation. */
1589
1590 if (debug_infrun)
1591 {
1592 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1593 target_pid_to_str (inferior_ptid));
1594 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1595 target_pid_to_str (ecs->ptid));
1596 }
1597
1598 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1599 { /* Perform infrun state context switch: */
1600 /* Save infrun state for the old thread. */
1601 save_infrun_state (inferior_ptid, prev_pc,
1602 stepping_over_breakpoint, step_resume_breakpoint,
1603 step_range_start,
1604 step_range_end, &step_frame_id,
1605 ecs->stepping_over_breakpoint,
1606 ecs->stepping_through_solib_after_catch,
1607 ecs->stepping_through_solib_catchpoints,
1608 ecs->current_line, ecs->current_symtab);
1609
1610 /* Load infrun state for the new thread. */
1611 load_infrun_state (ecs->ptid, &prev_pc,
1612 &stepping_over_breakpoint, &step_resume_breakpoint,
1613 &step_range_start,
1614 &step_range_end, &step_frame_id,
1615 &ecs->stepping_over_breakpoint,
1616 &ecs->stepping_through_solib_after_catch,
1617 &ecs->stepping_through_solib_catchpoints,
1618 &ecs->current_line, &ecs->current_symtab);
1619 }
1620
1621 switch_to_thread (ecs->ptid);
1622 }
1623
1624 static void
1625 adjust_pc_after_break (struct execution_control_state *ecs)
1626 {
1627 struct regcache *regcache = get_thread_regcache (ecs->ptid);
1628 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1629 CORE_ADDR breakpoint_pc;
1630
1631 /* If this target does not decrement the PC after breakpoints, then
1632 we have nothing to do. */
1633 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1634 return;
1635
1636 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1637 we aren't, just return.
1638
1639 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1640 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1641 implemented by software breakpoints should be handled through the normal
1642 breakpoint layer.
1643
1644 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1645 different signals (SIGILL or SIGEMT for instance), but it is less
1646 clear where the PC is pointing afterwards. It may not match
1647 gdbarch_decr_pc_after_break. I don't know any specific target that
1648 generates these signals at breakpoints (the code has been in GDB since at
1649 least 1992) so I can not guess how to handle them here.
1650
1651 In earlier versions of GDB, a target with
1652 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1653 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1654 target with both of these set in GDB history, and it seems unlikely to be
1655 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1656
1657 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1658 return;
1659
1660 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1661 return;
1662
1663 /* Find the location where (if we've hit a breakpoint) the
1664 breakpoint would be. */
1665 breakpoint_pc = regcache_read_pc (regcache)
1666 - gdbarch_decr_pc_after_break (gdbarch);
1667
1668 /* Check whether there actually is a software breakpoint inserted
1669 at that location. */
1670 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1671 {
1672 /* When using hardware single-step, a SIGTRAP is reported for both
1673 a completed single-step and a software breakpoint. Need to
1674 differentiate between the two, as the latter needs adjusting
1675 but the former does not.
1676
1677 The SIGTRAP can be due to a completed hardware single-step only if
1678 - we didn't insert software single-step breakpoints
1679 - the thread to be examined is still the current thread
1680 - this thread is currently being stepped
1681
1682 If any of these events did not occur, we must have stopped due
1683 to hitting a software breakpoint, and have to back up to the
1684 breakpoint address.
1685
1686 As a special case, we could have hardware single-stepped a
1687 software breakpoint. In this case (prev_pc == breakpoint_pc),
1688 we also need to back up to the breakpoint address. */
1689
1690 if (singlestep_breakpoints_inserted_p
1691 || !ptid_equal (ecs->ptid, inferior_ptid)
1692 || !currently_stepping (ecs)
1693 || prev_pc == breakpoint_pc)
1694 regcache_write_pc (regcache, breakpoint_pc);
1695 }
1696 }
1697
1698 /* Given an execution control state that has been freshly filled in
1699 by an event from the inferior, figure out what it means and take
1700 appropriate action. */
1701
1702 void
1703 handle_inferior_event (struct execution_control_state *ecs)
1704 {
1705 int sw_single_step_trap_p = 0;
1706 int stopped_by_watchpoint;
1707 int stepped_after_stopped_by_watchpoint = 0;
1708
1709 /* Cache the last pid/waitstatus. */
1710 target_last_wait_ptid = ecs->ptid;
1711 target_last_waitstatus = *ecs->wp;
1712
1713 /* Always clear state belonging to the previous time we stopped. */
1714 stop_stack_dummy = 0;
1715
1716 adjust_pc_after_break (ecs);
1717
1718 switch (ecs->infwait_state)
1719 {
1720 case infwait_thread_hop_state:
1721 if (debug_infrun)
1722 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1723 /* Cancel the waiton_ptid. */
1724 ecs->waiton_ptid = pid_to_ptid (-1);
1725 break;
1726
1727 case infwait_normal_state:
1728 if (debug_infrun)
1729 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1730 break;
1731
1732 case infwait_step_watch_state:
1733 if (debug_infrun)
1734 fprintf_unfiltered (gdb_stdlog,
1735 "infrun: infwait_step_watch_state\n");
1736
1737 stepped_after_stopped_by_watchpoint = 1;
1738 break;
1739
1740 case infwait_nonstep_watch_state:
1741 if (debug_infrun)
1742 fprintf_unfiltered (gdb_stdlog,
1743 "infrun: infwait_nonstep_watch_state\n");
1744 insert_breakpoints ();
1745
1746 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1747 handle things like signals arriving and other things happening
1748 in combination correctly? */
1749 stepped_after_stopped_by_watchpoint = 1;
1750 break;
1751
1752 default:
1753 internal_error (__FILE__, __LINE__, _("bad switch"));
1754 }
1755 ecs->infwait_state = infwait_normal_state;
1756
1757 reinit_frame_cache ();
1758
1759 /* If it's a new process, add it to the thread database */
1760
1761 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1762 && !ptid_equal (ecs->ptid, minus_one_ptid)
1763 && !in_thread_list (ecs->ptid));
1764
1765 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1766 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1767 add_thread (ecs->ptid);
1768
1769 switch (ecs->ws.kind)
1770 {
1771 case TARGET_WAITKIND_LOADED:
1772 if (debug_infrun)
1773 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1774 /* Ignore gracefully during startup of the inferior, as it might
1775 be the shell which has just loaded some objects, otherwise
1776 add the symbols for the newly loaded objects. Also ignore at
1777 the beginning of an attach or remote session; we will query
1778 the full list of libraries once the connection is
1779 established. */
1780 if (stop_soon == NO_STOP_QUIETLY)
1781 {
1782 /* Check for any newly added shared libraries if we're
1783 supposed to be adding them automatically. Switch
1784 terminal for any messages produced by
1785 breakpoint_re_set. */
1786 target_terminal_ours_for_output ();
1787 /* NOTE: cagney/2003-11-25: Make certain that the target
1788 stack's section table is kept up-to-date. Architectures,
1789 (e.g., PPC64), use the section table to perform
1790 operations such as address => section name and hence
1791 require the table to contain all sections (including
1792 those found in shared libraries). */
1793 /* NOTE: cagney/2003-11-25: Pass current_target and not
1794 exec_ops to SOLIB_ADD. This is because current GDB is
1795 only tooled to propagate section_table changes out from
1796 the "current_target" (see target_resize_to_sections), and
1797 not up from the exec stratum. This, of course, isn't
1798 right. "infrun.c" should only interact with the
1799 exec/process stratum, instead relying on the target stack
1800 to propagate relevant changes (stop, section table
1801 changed, ...) up to other layers. */
1802 #ifdef SOLIB_ADD
1803 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1804 #else
1805 solib_add (NULL, 0, &current_target, auto_solib_add);
1806 #endif
1807 target_terminal_inferior ();
1808
1809 /* If requested, stop when the dynamic linker notifies
1810 gdb of events. This allows the user to get control
1811 and place breakpoints in initializer routines for
1812 dynamically loaded objects (among other things). */
1813 if (stop_on_solib_events)
1814 {
1815 stop_stepping (ecs);
1816 return;
1817 }
1818
1819 /* NOTE drow/2007-05-11: This might be a good place to check
1820 for "catch load". */
1821 }
1822
1823 /* If we are skipping through a shell, or through shared library
1824 loading that we aren't interested in, resume the program. If
1825 we're running the program normally, also resume. But stop if
1826 we're attaching or setting up a remote connection. */
1827 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1828 {
1829 /* Loading of shared libraries might have changed breakpoint
1830 addresses. Make sure new breakpoints are inserted. */
1831 if (stop_soon == NO_STOP_QUIETLY
1832 && !breakpoints_always_inserted_mode ())
1833 insert_breakpoints ();
1834 resume (0, TARGET_SIGNAL_0);
1835 prepare_to_wait (ecs);
1836 return;
1837 }
1838
1839 break;
1840
1841 case TARGET_WAITKIND_SPURIOUS:
1842 if (debug_infrun)
1843 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1844 resume (0, TARGET_SIGNAL_0);
1845 prepare_to_wait (ecs);
1846 return;
1847
1848 case TARGET_WAITKIND_EXITED:
1849 if (debug_infrun)
1850 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1851 target_terminal_ours (); /* Must do this before mourn anyway */
1852 print_stop_reason (EXITED, ecs->ws.value.integer);
1853
1854 /* Record the exit code in the convenience variable $_exitcode, so
1855 that the user can inspect this again later. */
1856 set_internalvar (lookup_internalvar ("_exitcode"),
1857 value_from_longest (builtin_type_int,
1858 (LONGEST) ecs->ws.value.integer));
1859 gdb_flush (gdb_stdout);
1860 target_mourn_inferior ();
1861 singlestep_breakpoints_inserted_p = 0;
1862 stop_print_frame = 0;
1863 stop_stepping (ecs);
1864 return;
1865
1866 case TARGET_WAITKIND_SIGNALLED:
1867 if (debug_infrun)
1868 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1869 stop_print_frame = 0;
1870 stop_signal = ecs->ws.value.sig;
1871 target_terminal_ours (); /* Must do this before mourn anyway */
1872
1873 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1874 reach here unless the inferior is dead. However, for years
1875 target_kill() was called here, which hints that fatal signals aren't
1876 really fatal on some systems. If that's true, then some changes
1877 may be needed. */
1878 target_mourn_inferior ();
1879
1880 print_stop_reason (SIGNAL_EXITED, stop_signal);
1881 singlestep_breakpoints_inserted_p = 0;
1882 stop_stepping (ecs);
1883 return;
1884
1885 /* The following are the only cases in which we keep going;
1886 the above cases end in a continue or goto. */
1887 case TARGET_WAITKIND_FORKED:
1888 case TARGET_WAITKIND_VFORKED:
1889 if (debug_infrun)
1890 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1891 stop_signal = TARGET_SIGNAL_TRAP;
1892 pending_follow.kind = ecs->ws.kind;
1893
1894 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1895 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1896
1897 if (!ptid_equal (ecs->ptid, inferior_ptid))
1898 {
1899 context_switch (ecs);
1900 reinit_frame_cache ();
1901 }
1902
1903 stop_pc = read_pc ();
1904
1905 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1906
1907 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1908
1909 /* If no catchpoint triggered for this, then keep going. */
1910 if (ecs->random_signal)
1911 {
1912 stop_signal = TARGET_SIGNAL_0;
1913 keep_going (ecs);
1914 return;
1915 }
1916 goto process_event_stop_test;
1917
1918 case TARGET_WAITKIND_EXECD:
1919 if (debug_infrun)
1920 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1921 stop_signal = TARGET_SIGNAL_TRAP;
1922
1923 pending_follow.execd_pathname =
1924 savestring (ecs->ws.value.execd_pathname,
1925 strlen (ecs->ws.value.execd_pathname));
1926
1927 /* This causes the eventpoints and symbol table to be reset. Must
1928 do this now, before trying to determine whether to stop. */
1929 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1930 xfree (pending_follow.execd_pathname);
1931
1932 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
1933 ecs->saved_inferior_ptid = inferior_ptid;
1934 inferior_ptid = ecs->ptid;
1935
1936 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1937
1938 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1939 inferior_ptid = ecs->saved_inferior_ptid;
1940
1941 if (!ptid_equal (ecs->ptid, inferior_ptid))
1942 {
1943 context_switch (ecs);
1944 reinit_frame_cache ();
1945 }
1946
1947 /* If no catchpoint triggered for this, then keep going. */
1948 if (ecs->random_signal)
1949 {
1950 stop_signal = TARGET_SIGNAL_0;
1951 keep_going (ecs);
1952 return;
1953 }
1954 goto process_event_stop_test;
1955
1956 /* Be careful not to try to gather much state about a thread
1957 that's in a syscall. It's frequently a losing proposition. */
1958 case TARGET_WAITKIND_SYSCALL_ENTRY:
1959 if (debug_infrun)
1960 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1961 resume (0, TARGET_SIGNAL_0);
1962 prepare_to_wait (ecs);
1963 return;
1964
1965 /* Before examining the threads further, step this thread to
1966 get it entirely out of the syscall. (We get notice of the
1967 event when the thread is just on the verge of exiting a
1968 syscall. Stepping one instruction seems to get it back
1969 into user code.) */
1970 case TARGET_WAITKIND_SYSCALL_RETURN:
1971 if (debug_infrun)
1972 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1973 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1974 prepare_to_wait (ecs);
1975 return;
1976
1977 case TARGET_WAITKIND_STOPPED:
1978 if (debug_infrun)
1979 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1980 stop_signal = ecs->ws.value.sig;
1981 break;
1982
1983 /* We had an event in the inferior, but we are not interested
1984 in handling it at this level. The lower layers have already
1985 done what needs to be done, if anything.
1986
1987 One of the possible circumstances for this is when the
1988 inferior produces output for the console. The inferior has
1989 not stopped, and we are ignoring the event. Another possible
1990 circumstance is any event which the lower level knows will be
1991 reported multiple times without an intervening resume. */
1992 case TARGET_WAITKIND_IGNORE:
1993 if (debug_infrun)
1994 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1995 prepare_to_wait (ecs);
1996 return;
1997 }
1998
1999 /* We may want to consider not doing a resume here in order to give
2000 the user a chance to play with the new thread. It might be good
2001 to make that a user-settable option. */
2002
2003 /* At this point, all threads are stopped (happens automatically in
2004 either the OS or the native code). Therefore we need to continue
2005 all threads in order to make progress. */
2006 if (ecs->new_thread_event)
2007 {
2008 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2009 prepare_to_wait (ecs);
2010 return;
2011 }
2012
2013 /* Do we need to clean up the state of a thread that has completed a
2014 displaced single-step? (Doing so usually affects the PC, so do
2015 it here, before we set stop_pc.) */
2016 displaced_step_fixup (ecs->ptid, stop_signal);
2017
2018 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2019
2020 if (debug_infrun)
2021 {
2022 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2023 paddr_nz (stop_pc));
2024 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2025 {
2026 CORE_ADDR addr;
2027 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2028
2029 if (target_stopped_data_address (&current_target, &addr))
2030 fprintf_unfiltered (gdb_stdlog,
2031 "infrun: stopped data address = 0x%s\n",
2032 paddr_nz (addr));
2033 else
2034 fprintf_unfiltered (gdb_stdlog,
2035 "infrun: (no data address available)\n");
2036 }
2037 }
2038
2039 if (stepping_past_singlestep_breakpoint)
2040 {
2041 gdb_assert (singlestep_breakpoints_inserted_p);
2042 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2043 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2044
2045 stepping_past_singlestep_breakpoint = 0;
2046
2047 /* We've either finished single-stepping past the single-step
2048 breakpoint, or stopped for some other reason. It would be nice if
2049 we could tell, but we can't reliably. */
2050 if (stop_signal == TARGET_SIGNAL_TRAP)
2051 {
2052 if (debug_infrun)
2053 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2054 /* Pull the single step breakpoints out of the target. */
2055 remove_single_step_breakpoints ();
2056 singlestep_breakpoints_inserted_p = 0;
2057
2058 ecs->random_signal = 0;
2059
2060 ecs->ptid = saved_singlestep_ptid;
2061 context_switch (ecs);
2062 if (deprecated_context_hook)
2063 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2064
2065 resume (1, TARGET_SIGNAL_0);
2066 prepare_to_wait (ecs);
2067 return;
2068 }
2069 }
2070
2071 stepping_past_singlestep_breakpoint = 0;
2072
2073 if (!ptid_equal (deferred_step_ptid, null_ptid))
2074 {
2075 /* If we stopped for some other reason than single-stepping, ignore
2076 the fact that we were supposed to switch back. */
2077 if (stop_signal == TARGET_SIGNAL_TRAP)
2078 {
2079 if (debug_infrun)
2080 fprintf_unfiltered (gdb_stdlog,
2081 "infrun: handling deferred step\n");
2082
2083 /* Pull the single step breakpoints out of the target. */
2084 if (singlestep_breakpoints_inserted_p)
2085 {
2086 remove_single_step_breakpoints ();
2087 singlestep_breakpoints_inserted_p = 0;
2088 }
2089
2090 /* Note: We do not call context_switch at this point, as the
2091 context is already set up for stepping the original thread. */
2092 switch_to_thread (deferred_step_ptid);
2093 deferred_step_ptid = null_ptid;
2094 /* Suppress spurious "Switching to ..." message. */
2095 previous_inferior_ptid = inferior_ptid;
2096
2097 resume (1, TARGET_SIGNAL_0);
2098 prepare_to_wait (ecs);
2099 return;
2100 }
2101
2102 deferred_step_ptid = null_ptid;
2103 }
2104
2105 /* See if a thread hit a thread-specific breakpoint that was meant for
2106 another thread. If so, then step that thread past the breakpoint,
2107 and continue it. */
2108
2109 if (stop_signal == TARGET_SIGNAL_TRAP)
2110 {
2111 int thread_hop_needed = 0;
2112
2113 /* Check if a regular breakpoint has been hit before checking
2114 for a potential single step breakpoint. Otherwise, GDB will
2115 not see this breakpoint hit when stepping onto breakpoints. */
2116 if (regular_breakpoint_inserted_here_p (stop_pc))
2117 {
2118 ecs->random_signal = 0;
2119 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2120 thread_hop_needed = 1;
2121 }
2122 else if (singlestep_breakpoints_inserted_p)
2123 {
2124 /* We have not context switched yet, so this should be true
2125 no matter which thread hit the singlestep breakpoint. */
2126 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2127 if (debug_infrun)
2128 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2129 "trap for %s\n",
2130 target_pid_to_str (ecs->ptid));
2131
2132 ecs->random_signal = 0;
2133 /* The call to in_thread_list is necessary because PTIDs sometimes
2134 change when we go from single-threaded to multi-threaded. If
2135 the singlestep_ptid is still in the list, assume that it is
2136 really different from ecs->ptid. */
2137 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2138 && in_thread_list (singlestep_ptid))
2139 {
2140 /* If the PC of the thread we were trying to single-step
2141 has changed, discard this event (which we were going
2142 to ignore anyway), and pretend we saw that thread
2143 trap. This prevents us continuously moving the
2144 single-step breakpoint forward, one instruction at a
2145 time. If the PC has changed, then the thread we were
2146 trying to single-step has trapped or been signalled,
2147 but the event has not been reported to GDB yet.
2148
2149 There might be some cases where this loses signal
2150 information, if a signal has arrived at exactly the
2151 same time that the PC changed, but this is the best
2152 we can do with the information available. Perhaps we
2153 should arrange to report all events for all threads
2154 when they stop, or to re-poll the remote looking for
2155 this particular thread (i.e. temporarily enable
2156 schedlock). */
2157
2158 CORE_ADDR new_singlestep_pc
2159 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2160
2161 if (new_singlestep_pc != singlestep_pc)
2162 {
2163 if (debug_infrun)
2164 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2165 " but expected thread advanced also\n");
2166
2167 /* The current context still belongs to
2168 singlestep_ptid. Don't swap here, since that's
2169 the context we want to use. Just fudge our
2170 state and continue. */
2171 ecs->ptid = singlestep_ptid;
2172 stop_pc = new_singlestep_pc;
2173 }
2174 else
2175 {
2176 if (debug_infrun)
2177 fprintf_unfiltered (gdb_stdlog,
2178 "infrun: unexpected thread\n");
2179
2180 thread_hop_needed = 1;
2181 stepping_past_singlestep_breakpoint = 1;
2182 saved_singlestep_ptid = singlestep_ptid;
2183 }
2184 }
2185 }
2186
2187 if (thread_hop_needed)
2188 {
2189 int remove_status = 0;
2190
2191 if (debug_infrun)
2192 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2193
2194 /* Saw a breakpoint, but it was hit by the wrong thread.
2195 Just continue. */
2196
2197 if (singlestep_breakpoints_inserted_p)
2198 {
2199 /* Pull the single step breakpoints out of the target. */
2200 remove_single_step_breakpoints ();
2201 singlestep_breakpoints_inserted_p = 0;
2202 }
2203
2204 /* If the arch can displace step, don't remove the
2205 breakpoints. */
2206 if (!use_displaced_stepping (current_gdbarch))
2207 remove_status = remove_breakpoints ();
2208
2209 /* Did we fail to remove breakpoints? If so, try
2210 to set the PC past the bp. (There's at least
2211 one situation in which we can fail to remove
2212 the bp's: On HP-UX's that use ttrace, we can't
2213 change the address space of a vforking child
2214 process until the child exits (well, okay, not
2215 then either :-) or execs. */
2216 if (remove_status != 0)
2217 error (_("Cannot step over breakpoint hit in wrong thread"));
2218 else
2219 { /* Single step */
2220 if (!ptid_equal (inferior_ptid, ecs->ptid))
2221 context_switch (ecs);
2222 ecs->waiton_ptid = ecs->ptid;
2223 ecs->wp = &(ecs->ws);
2224 ecs->stepping_over_breakpoint = 1;
2225
2226 ecs->infwait_state = infwait_thread_hop_state;
2227 keep_going (ecs);
2228 registers_changed ();
2229 return;
2230 }
2231 }
2232 else if (singlestep_breakpoints_inserted_p)
2233 {
2234 sw_single_step_trap_p = 1;
2235 ecs->random_signal = 0;
2236 }
2237 }
2238 else
2239 ecs->random_signal = 1;
2240
2241 /* See if something interesting happened to the non-current thread. If
2242 so, then switch to that thread. */
2243 if (!ptid_equal (ecs->ptid, inferior_ptid))
2244 {
2245 if (debug_infrun)
2246 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2247
2248 context_switch (ecs);
2249
2250 if (deprecated_context_hook)
2251 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2252 }
2253
2254 if (singlestep_breakpoints_inserted_p)
2255 {
2256 /* Pull the single step breakpoints out of the target. */
2257 remove_single_step_breakpoints ();
2258 singlestep_breakpoints_inserted_p = 0;
2259 }
2260
2261 if (stepped_after_stopped_by_watchpoint)
2262 stopped_by_watchpoint = 0;
2263 else
2264 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2265
2266 /* If necessary, step over this watchpoint. We'll be back to display
2267 it in a moment. */
2268 if (stopped_by_watchpoint
2269 && (HAVE_STEPPABLE_WATCHPOINT
2270 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2271 {
2272 /* At this point, we are stopped at an instruction which has
2273 attempted to write to a piece of memory under control of
2274 a watchpoint. The instruction hasn't actually executed
2275 yet. If we were to evaluate the watchpoint expression
2276 now, we would get the old value, and therefore no change
2277 would seem to have occurred.
2278
2279 In order to make watchpoints work `right', we really need
2280 to complete the memory write, and then evaluate the
2281 watchpoint expression. We do this by single-stepping the
2282 target.
2283
2284 It may not be necessary to disable the watchpoint to stop over
2285 it. For example, the PA can (with some kernel cooperation)
2286 single step over a watchpoint without disabling the watchpoint.
2287
2288 It is far more common to need to disable a watchpoint to step
2289 the inferior over it. If we have non-steppable watchpoints,
2290 we must disable the current watchpoint; it's simplest to
2291 disable all watchpoints and breakpoints. */
2292
2293 if (!HAVE_STEPPABLE_WATCHPOINT)
2294 remove_breakpoints ();
2295 registers_changed ();
2296 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2297 ecs->waiton_ptid = ecs->ptid;
2298 if (HAVE_STEPPABLE_WATCHPOINT)
2299 ecs->infwait_state = infwait_step_watch_state;
2300 else
2301 ecs->infwait_state = infwait_nonstep_watch_state;
2302 prepare_to_wait (ecs);
2303 return;
2304 }
2305
2306 ecs->stop_func_start = 0;
2307 ecs->stop_func_end = 0;
2308 ecs->stop_func_name = 0;
2309 /* Don't care about return value; stop_func_start and stop_func_name
2310 will both be 0 if it doesn't work. */
2311 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2312 &ecs->stop_func_start, &ecs->stop_func_end);
2313 ecs->stop_func_start
2314 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2315 ecs->stepping_over_breakpoint = 0;
2316 bpstat_clear (&stop_bpstat);
2317 stop_step = 0;
2318 stop_print_frame = 1;
2319 ecs->random_signal = 0;
2320 stopped_by_random_signal = 0;
2321
2322 if (stop_signal == TARGET_SIGNAL_TRAP
2323 && stepping_over_breakpoint
2324 && gdbarch_single_step_through_delay_p (current_gdbarch)
2325 && currently_stepping (ecs))
2326 {
2327 /* We're trying to step off a breakpoint. Turns out that we're
2328 also on an instruction that needs to be stepped multiple
2329 times before it's been fully executing. E.g., architectures
2330 with a delay slot. It needs to be stepped twice, once for
2331 the instruction and once for the delay slot. */
2332 int step_through_delay
2333 = gdbarch_single_step_through_delay (current_gdbarch,
2334 get_current_frame ());
2335 if (debug_infrun && step_through_delay)
2336 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2337 if (step_range_end == 0 && step_through_delay)
2338 {
2339 /* The user issued a continue when stopped at a breakpoint.
2340 Set up for another trap and get out of here. */
2341 ecs->stepping_over_breakpoint = 1;
2342 keep_going (ecs);
2343 return;
2344 }
2345 else if (step_through_delay)
2346 {
2347 /* The user issued a step when stopped at a breakpoint.
2348 Maybe we should stop, maybe we should not - the delay
2349 slot *might* correspond to a line of source. In any
2350 case, don't decide that here, just set
2351 ecs->stepping_over_breakpoint, making sure we
2352 single-step again before breakpoints are re-inserted. */
2353 ecs->stepping_over_breakpoint = 1;
2354 }
2355 }
2356
2357 /* Look at the cause of the stop, and decide what to do.
2358 The alternatives are:
2359 1) break; to really stop and return to the debugger,
2360 2) drop through to start up again
2361 (set ecs->stepping_over_breakpoint to 1 to single step once)
2362 3) set ecs->random_signal to 1, and the decision between 1 and 2
2363 will be made according to the signal handling tables. */
2364
2365 /* First, distinguish signals caused by the debugger from signals
2366 that have to do with the program's own actions. Note that
2367 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2368 on the operating system version. Here we detect when a SIGILL or
2369 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2370 something similar for SIGSEGV, since a SIGSEGV will be generated
2371 when we're trying to execute a breakpoint instruction on a
2372 non-executable stack. This happens for call dummy breakpoints
2373 for architectures like SPARC that place call dummies on the
2374 stack.
2375
2376 If we're doing a displaced step past a breakpoint, then the
2377 breakpoint is always inserted at the original instruction;
2378 non-standard signals can't be explained by the breakpoint. */
2379 if (stop_signal == TARGET_SIGNAL_TRAP
2380 || (! stepping_over_breakpoint
2381 && breakpoint_inserted_here_p (stop_pc)
2382 && (stop_signal == TARGET_SIGNAL_ILL
2383 || stop_signal == TARGET_SIGNAL_SEGV
2384 || stop_signal == TARGET_SIGNAL_EMT))
2385 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2386 || stop_soon == STOP_QUIETLY_REMOTE)
2387 {
2388 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2389 {
2390 if (debug_infrun)
2391 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2392 stop_print_frame = 0;
2393 stop_stepping (ecs);
2394 return;
2395 }
2396
2397 /* This is originated from start_remote(), start_inferior() and
2398 shared libraries hook functions. */
2399 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2400 {
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2403 stop_stepping (ecs);
2404 return;
2405 }
2406
2407 /* This originates from attach_command(). We need to overwrite
2408 the stop_signal here, because some kernels don't ignore a
2409 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2410 See more comments in inferior.h. On the other hand, if we
2411 get a non-SIGSTOP, report it to the user - assume the backend
2412 will handle the SIGSTOP if it should show up later. */
2413 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2414 && stop_signal == TARGET_SIGNAL_STOP)
2415 {
2416 stop_stepping (ecs);
2417 stop_signal = TARGET_SIGNAL_0;
2418 return;
2419 }
2420
2421 /* See if there is a breakpoint at the current PC. */
2422 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2423
2424 /* Following in case break condition called a
2425 function. */
2426 stop_print_frame = 1;
2427
2428 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2429 at one stage in the past included checks for an inferior
2430 function call's call dummy's return breakpoint. The original
2431 comment, that went with the test, read:
2432
2433 ``End of a stack dummy. Some systems (e.g. Sony news) give
2434 another signal besides SIGTRAP, so check here as well as
2435 above.''
2436
2437 If someone ever tries to get get call dummys on a
2438 non-executable stack to work (where the target would stop
2439 with something like a SIGSEGV), then those tests might need
2440 to be re-instated. Given, however, that the tests were only
2441 enabled when momentary breakpoints were not being used, I
2442 suspect that it won't be the case.
2443
2444 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2445 be necessary for call dummies on a non-executable stack on
2446 SPARC. */
2447
2448 if (stop_signal == TARGET_SIGNAL_TRAP)
2449 ecs->random_signal
2450 = !(bpstat_explains_signal (stop_bpstat)
2451 || stepping_over_breakpoint
2452 || (step_range_end && step_resume_breakpoint == NULL));
2453 else
2454 {
2455 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2456 if (!ecs->random_signal)
2457 stop_signal = TARGET_SIGNAL_TRAP;
2458 }
2459 }
2460
2461 /* When we reach this point, we've pretty much decided
2462 that the reason for stopping must've been a random
2463 (unexpected) signal. */
2464
2465 else
2466 ecs->random_signal = 1;
2467
2468 process_event_stop_test:
2469 /* For the program's own signals, act according to
2470 the signal handling tables. */
2471
2472 if (ecs->random_signal)
2473 {
2474 /* Signal not for debugging purposes. */
2475 int printed = 0;
2476
2477 if (debug_infrun)
2478 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2479
2480 stopped_by_random_signal = 1;
2481
2482 if (signal_print[stop_signal])
2483 {
2484 printed = 1;
2485 target_terminal_ours_for_output ();
2486 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2487 }
2488 if (signal_stop_state (stop_signal))
2489 {
2490 stop_stepping (ecs);
2491 return;
2492 }
2493 /* If not going to stop, give terminal back
2494 if we took it away. */
2495 else if (printed)
2496 target_terminal_inferior ();
2497
2498 /* Clear the signal if it should not be passed. */
2499 if (signal_program[stop_signal] == 0)
2500 stop_signal = TARGET_SIGNAL_0;
2501
2502 if (prev_pc == read_pc ()
2503 && stepping_over_breakpoint
2504 && step_resume_breakpoint == NULL)
2505 {
2506 /* We were just starting a new sequence, attempting to
2507 single-step off of a breakpoint and expecting a SIGTRAP.
2508 Instead this signal arrives. This signal will take us out
2509 of the stepping range so GDB needs to remember to, when
2510 the signal handler returns, resume stepping off that
2511 breakpoint. */
2512 /* To simplify things, "continue" is forced to use the same
2513 code paths as single-step - set a breakpoint at the
2514 signal return address and then, once hit, step off that
2515 breakpoint. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: signal arrived while stepping over "
2519 "breakpoint\n");
2520
2521 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2522 ecs->step_after_step_resume_breakpoint = 1;
2523 keep_going (ecs);
2524 return;
2525 }
2526
2527 if (step_range_end != 0
2528 && stop_signal != TARGET_SIGNAL_0
2529 && stop_pc >= step_range_start && stop_pc < step_range_end
2530 && frame_id_eq (get_frame_id (get_current_frame ()),
2531 step_frame_id)
2532 && step_resume_breakpoint == NULL)
2533 {
2534 /* The inferior is about to take a signal that will take it
2535 out of the single step range. Set a breakpoint at the
2536 current PC (which is presumably where the signal handler
2537 will eventually return) and then allow the inferior to
2538 run free.
2539
2540 Note that this is only needed for a signal delivered
2541 while in the single-step range. Nested signals aren't a
2542 problem as they eventually all return. */
2543 if (debug_infrun)
2544 fprintf_unfiltered (gdb_stdlog,
2545 "infrun: signal may take us out of "
2546 "single-step range\n");
2547
2548 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2549 keep_going (ecs);
2550 return;
2551 }
2552
2553 /* Note: step_resume_breakpoint may be non-NULL. This occures
2554 when either there's a nested signal, or when there's a
2555 pending signal enabled just as the signal handler returns
2556 (leaving the inferior at the step-resume-breakpoint without
2557 actually executing it). Either way continue until the
2558 breakpoint is really hit. */
2559 keep_going (ecs);
2560 return;
2561 }
2562
2563 /* Handle cases caused by hitting a breakpoint. */
2564 {
2565 CORE_ADDR jmp_buf_pc;
2566 struct bpstat_what what;
2567
2568 what = bpstat_what (stop_bpstat);
2569
2570 if (what.call_dummy)
2571 {
2572 stop_stack_dummy = 1;
2573 }
2574
2575 switch (what.main_action)
2576 {
2577 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2578 /* If we hit the breakpoint at longjmp while stepping, we
2579 install a momentary breakpoint at the target of the
2580 jmp_buf. */
2581
2582 if (debug_infrun)
2583 fprintf_unfiltered (gdb_stdlog,
2584 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2585
2586 ecs->stepping_over_breakpoint = 1;
2587
2588 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2589 || !gdbarch_get_longjmp_target (current_gdbarch,
2590 get_current_frame (), &jmp_buf_pc))
2591 {
2592 if (debug_infrun)
2593 fprintf_unfiltered (gdb_stdlog, "\
2594 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2595 keep_going (ecs);
2596 return;
2597 }
2598
2599 /* We're going to replace the current step-resume breakpoint
2600 with a longjmp-resume breakpoint. */
2601 if (step_resume_breakpoint != NULL)
2602 delete_step_resume_breakpoint (&step_resume_breakpoint);
2603
2604 /* Insert a breakpoint at resume address. */
2605 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2606
2607 keep_going (ecs);
2608 return;
2609
2610 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2611 if (debug_infrun)
2612 fprintf_unfiltered (gdb_stdlog,
2613 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2614
2615 gdb_assert (step_resume_breakpoint != NULL);
2616 delete_step_resume_breakpoint (&step_resume_breakpoint);
2617
2618 stop_step = 1;
2619 print_stop_reason (END_STEPPING_RANGE, 0);
2620 stop_stepping (ecs);
2621 return;
2622
2623 case BPSTAT_WHAT_SINGLE:
2624 if (debug_infrun)
2625 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2626 ecs->stepping_over_breakpoint = 1;
2627 /* Still need to check other stuff, at least the case
2628 where we are stepping and step out of the right range. */
2629 break;
2630
2631 case BPSTAT_WHAT_STOP_NOISY:
2632 if (debug_infrun)
2633 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2634 stop_print_frame = 1;
2635
2636 /* We are about to nuke the step_resume_breakpointt via the
2637 cleanup chain, so no need to worry about it here. */
2638
2639 stop_stepping (ecs);
2640 return;
2641
2642 case BPSTAT_WHAT_STOP_SILENT:
2643 if (debug_infrun)
2644 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2645 stop_print_frame = 0;
2646
2647 /* We are about to nuke the step_resume_breakpoin via the
2648 cleanup chain, so no need to worry about it here. */
2649
2650 stop_stepping (ecs);
2651 return;
2652
2653 case BPSTAT_WHAT_STEP_RESUME:
2654 /* This proably demands a more elegant solution, but, yeah
2655 right...
2656
2657 This function's use of the simple variable
2658 step_resume_breakpoint doesn't seem to accomodate
2659 simultaneously active step-resume bp's, although the
2660 breakpoint list certainly can.
2661
2662 If we reach here and step_resume_breakpoint is already
2663 NULL, then apparently we have multiple active
2664 step-resume bp's. We'll just delete the breakpoint we
2665 stopped at, and carry on.
2666
2667 Correction: what the code currently does is delete a
2668 step-resume bp, but it makes no effort to ensure that
2669 the one deleted is the one currently stopped at. MVS */
2670
2671 if (debug_infrun)
2672 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2673
2674 if (step_resume_breakpoint == NULL)
2675 {
2676 step_resume_breakpoint =
2677 bpstat_find_step_resume_breakpoint (stop_bpstat);
2678 }
2679 delete_step_resume_breakpoint (&step_resume_breakpoint);
2680 if (ecs->step_after_step_resume_breakpoint)
2681 {
2682 /* Back when the step-resume breakpoint was inserted, we
2683 were trying to single-step off a breakpoint. Go back
2684 to doing that. */
2685 ecs->step_after_step_resume_breakpoint = 0;
2686 ecs->stepping_over_breakpoint = 1;
2687 keep_going (ecs);
2688 return;
2689 }
2690 break;
2691
2692 case BPSTAT_WHAT_CHECK_SHLIBS:
2693 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2694 {
2695 if (debug_infrun)
2696 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2697
2698 /* Check for any newly added shared libraries if we're
2699 supposed to be adding them automatically. Switch
2700 terminal for any messages produced by
2701 breakpoint_re_set. */
2702 target_terminal_ours_for_output ();
2703 /* NOTE: cagney/2003-11-25: Make certain that the target
2704 stack's section table is kept up-to-date. Architectures,
2705 (e.g., PPC64), use the section table to perform
2706 operations such as address => section name and hence
2707 require the table to contain all sections (including
2708 those found in shared libraries). */
2709 /* NOTE: cagney/2003-11-25: Pass current_target and not
2710 exec_ops to SOLIB_ADD. This is because current GDB is
2711 only tooled to propagate section_table changes out from
2712 the "current_target" (see target_resize_to_sections), and
2713 not up from the exec stratum. This, of course, isn't
2714 right. "infrun.c" should only interact with the
2715 exec/process stratum, instead relying on the target stack
2716 to propagate relevant changes (stop, section table
2717 changed, ...) up to other layers. */
2718 #ifdef SOLIB_ADD
2719 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2720 #else
2721 solib_add (NULL, 0, &current_target, auto_solib_add);
2722 #endif
2723 target_terminal_inferior ();
2724
2725 /* If requested, stop when the dynamic linker notifies
2726 gdb of events. This allows the user to get control
2727 and place breakpoints in initializer routines for
2728 dynamically loaded objects (among other things). */
2729 if (stop_on_solib_events || stop_stack_dummy)
2730 {
2731 stop_stepping (ecs);
2732 return;
2733 }
2734
2735 /* If we stopped due to an explicit catchpoint, then the
2736 (see above) call to SOLIB_ADD pulled in any symbols
2737 from a newly-loaded library, if appropriate.
2738
2739 We do want the inferior to stop, but not where it is
2740 now, which is in the dynamic linker callback. Rather,
2741 we would like it stop in the user's program, just after
2742 the call that caused this catchpoint to trigger. That
2743 gives the user a more useful vantage from which to
2744 examine their program's state. */
2745 else if (what.main_action
2746 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2747 {
2748 /* ??rehrauer: If I could figure out how to get the
2749 right return PC from here, we could just set a temp
2750 breakpoint and resume. I'm not sure we can without
2751 cracking open the dld's shared libraries and sniffing
2752 their unwind tables and text/data ranges, and that's
2753 not a terribly portable notion.
2754
2755 Until that time, we must step the inferior out of the
2756 dld callback, and also out of the dld itself (and any
2757 code or stubs in libdld.sl, such as "shl_load" and
2758 friends) until we reach non-dld code. At that point,
2759 we can stop stepping. */
2760 bpstat_get_triggered_catchpoints (stop_bpstat,
2761 &ecs->
2762 stepping_through_solib_catchpoints);
2763 ecs->stepping_through_solib_after_catch = 1;
2764
2765 /* Be sure to lift all breakpoints, so the inferior does
2766 actually step past this point... */
2767 ecs->stepping_over_breakpoint = 1;
2768 break;
2769 }
2770 else
2771 {
2772 /* We want to step over this breakpoint, then keep going. */
2773 ecs->stepping_over_breakpoint = 1;
2774 break;
2775 }
2776 }
2777 break;
2778
2779 case BPSTAT_WHAT_LAST:
2780 /* Not a real code, but listed here to shut up gcc -Wall. */
2781
2782 case BPSTAT_WHAT_KEEP_CHECKING:
2783 break;
2784 }
2785 }
2786
2787 /* We come here if we hit a breakpoint but should not
2788 stop for it. Possibly we also were stepping
2789 and should stop for that. So fall through and
2790 test for stepping. But, if not stepping,
2791 do not stop. */
2792
2793 /* Are we stepping to get the inferior out of the dynamic linker's
2794 hook (and possibly the dld itself) after catching a shlib
2795 event? */
2796 if (ecs->stepping_through_solib_after_catch)
2797 {
2798 #if defined(SOLIB_ADD)
2799 /* Have we reached our destination? If not, keep going. */
2800 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2801 {
2802 if (debug_infrun)
2803 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2804 ecs->stepping_over_breakpoint = 1;
2805 keep_going (ecs);
2806 return;
2807 }
2808 #endif
2809 if (debug_infrun)
2810 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2811 /* Else, stop and report the catchpoint(s) whose triggering
2812 caused us to begin stepping. */
2813 ecs->stepping_through_solib_after_catch = 0;
2814 bpstat_clear (&stop_bpstat);
2815 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2816 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2817 stop_print_frame = 1;
2818 stop_stepping (ecs);
2819 return;
2820 }
2821
2822 if (step_resume_breakpoint)
2823 {
2824 if (debug_infrun)
2825 fprintf_unfiltered (gdb_stdlog,
2826 "infrun: step-resume breakpoint is inserted\n");
2827
2828 /* Having a step-resume breakpoint overrides anything
2829 else having to do with stepping commands until
2830 that breakpoint is reached. */
2831 keep_going (ecs);
2832 return;
2833 }
2834
2835 if (step_range_end == 0)
2836 {
2837 if (debug_infrun)
2838 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2839 /* Likewise if we aren't even stepping. */
2840 keep_going (ecs);
2841 return;
2842 }
2843
2844 /* If stepping through a line, keep going if still within it.
2845
2846 Note that step_range_end is the address of the first instruction
2847 beyond the step range, and NOT the address of the last instruction
2848 within it! */
2849 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2850 {
2851 if (debug_infrun)
2852 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2853 paddr_nz (step_range_start),
2854 paddr_nz (step_range_end));
2855 keep_going (ecs);
2856 return;
2857 }
2858
2859 /* We stepped out of the stepping range. */
2860
2861 /* If we are stepping at the source level and entered the runtime
2862 loader dynamic symbol resolution code, we keep on single stepping
2863 until we exit the run time loader code and reach the callee's
2864 address. */
2865 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2866 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2867 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2868 #else
2869 && in_solib_dynsym_resolve_code (stop_pc)
2870 #endif
2871 )
2872 {
2873 CORE_ADDR pc_after_resolver =
2874 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2875
2876 if (debug_infrun)
2877 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2878
2879 if (pc_after_resolver)
2880 {
2881 /* Set up a step-resume breakpoint at the address
2882 indicated by SKIP_SOLIB_RESOLVER. */
2883 struct symtab_and_line sr_sal;
2884 init_sal (&sr_sal);
2885 sr_sal.pc = pc_after_resolver;
2886
2887 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2888 }
2889
2890 keep_going (ecs);
2891 return;
2892 }
2893
2894 if (step_range_end != 1
2895 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2896 || step_over_calls == STEP_OVER_ALL)
2897 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2898 {
2899 if (debug_infrun)
2900 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2901 /* The inferior, while doing a "step" or "next", has ended up in
2902 a signal trampoline (either by a signal being delivered or by
2903 the signal handler returning). Just single-step until the
2904 inferior leaves the trampoline (either by calling the handler
2905 or returning). */
2906 keep_going (ecs);
2907 return;
2908 }
2909
2910 /* Check for subroutine calls. The check for the current frame
2911 equalling the step ID is not necessary - the check of the
2912 previous frame's ID is sufficient - but it is a common case and
2913 cheaper than checking the previous frame's ID.
2914
2915 NOTE: frame_id_eq will never report two invalid frame IDs as
2916 being equal, so to get into this block, both the current and
2917 previous frame must have valid frame IDs. */
2918 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2919 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2920 {
2921 CORE_ADDR real_stop_pc;
2922
2923 if (debug_infrun)
2924 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2925
2926 if ((step_over_calls == STEP_OVER_NONE)
2927 || ((step_range_end == 1)
2928 && in_prologue (prev_pc, ecs->stop_func_start)))
2929 {
2930 /* I presume that step_over_calls is only 0 when we're
2931 supposed to be stepping at the assembly language level
2932 ("stepi"). Just stop. */
2933 /* Also, maybe we just did a "nexti" inside a prolog, so we
2934 thought it was a subroutine call but it was not. Stop as
2935 well. FENN */
2936 stop_step = 1;
2937 print_stop_reason (END_STEPPING_RANGE, 0);
2938 stop_stepping (ecs);
2939 return;
2940 }
2941
2942 if (step_over_calls == STEP_OVER_ALL)
2943 {
2944 /* We're doing a "next", set a breakpoint at callee's return
2945 address (the address at which the caller will
2946 resume). */
2947 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2948 keep_going (ecs);
2949 return;
2950 }
2951
2952 /* If we are in a function call trampoline (a stub between the
2953 calling routine and the real function), locate the real
2954 function. That's what tells us (a) whether we want to step
2955 into it at all, and (b) what prologue we want to run to the
2956 end of, if we do step into it. */
2957 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2958 if (real_stop_pc == 0)
2959 real_stop_pc = gdbarch_skip_trampoline_code
2960 (current_gdbarch, get_current_frame (), stop_pc);
2961 if (real_stop_pc != 0)
2962 ecs->stop_func_start = real_stop_pc;
2963
2964 if (
2965 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2966 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2967 #else
2968 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2969 #endif
2970 )
2971 {
2972 struct symtab_and_line sr_sal;
2973 init_sal (&sr_sal);
2974 sr_sal.pc = ecs->stop_func_start;
2975
2976 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2977 keep_going (ecs);
2978 return;
2979 }
2980
2981 /* If we have line number information for the function we are
2982 thinking of stepping into, step into it.
2983
2984 If there are several symtabs at that PC (e.g. with include
2985 files), just want to know whether *any* of them have line
2986 numbers. find_pc_line handles this. */
2987 {
2988 struct symtab_and_line tmp_sal;
2989
2990 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2991 if (tmp_sal.line != 0)
2992 {
2993 step_into_function (ecs);
2994 return;
2995 }
2996 }
2997
2998 /* If we have no line number and the step-stop-if-no-debug is
2999 set, we stop the step so that the user has a chance to switch
3000 in assembly mode. */
3001 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3002 {
3003 stop_step = 1;
3004 print_stop_reason (END_STEPPING_RANGE, 0);
3005 stop_stepping (ecs);
3006 return;
3007 }
3008
3009 /* Set a breakpoint at callee's return address (the address at
3010 which the caller will resume). */
3011 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3012 keep_going (ecs);
3013 return;
3014 }
3015
3016 /* If we're in the return path from a shared library trampoline,
3017 we want to proceed through the trampoline when stepping. */
3018 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3019 stop_pc, ecs->stop_func_name))
3020 {
3021 /* Determine where this trampoline returns. */
3022 CORE_ADDR real_stop_pc;
3023 real_stop_pc = gdbarch_skip_trampoline_code
3024 (current_gdbarch, get_current_frame (), stop_pc);
3025
3026 if (debug_infrun)
3027 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3028
3029 /* Only proceed through if we know where it's going. */
3030 if (real_stop_pc)
3031 {
3032 /* And put the step-breakpoint there and go until there. */
3033 struct symtab_and_line sr_sal;
3034
3035 init_sal (&sr_sal); /* initialize to zeroes */
3036 sr_sal.pc = real_stop_pc;
3037 sr_sal.section = find_pc_overlay (sr_sal.pc);
3038
3039 /* Do not specify what the fp should be when we stop since
3040 on some machines the prologue is where the new fp value
3041 is established. */
3042 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3043
3044 /* Restart without fiddling with the step ranges or
3045 other state. */
3046 keep_going (ecs);
3047 return;
3048 }
3049 }
3050
3051 ecs->sal = find_pc_line (stop_pc, 0);
3052
3053 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3054 the trampoline processing logic, however, there are some trampolines
3055 that have no names, so we should do trampoline handling first. */
3056 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3057 && ecs->stop_func_name == NULL
3058 && ecs->sal.line == 0)
3059 {
3060 if (debug_infrun)
3061 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3062
3063 /* The inferior just stepped into, or returned to, an
3064 undebuggable function (where there is no debugging information
3065 and no line number corresponding to the address where the
3066 inferior stopped). Since we want to skip this kind of code,
3067 we keep going until the inferior returns from this
3068 function - unless the user has asked us not to (via
3069 set step-mode) or we no longer know how to get back
3070 to the call site. */
3071 if (step_stop_if_no_debug
3072 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3073 {
3074 /* If we have no line number and the step-stop-if-no-debug
3075 is set, we stop the step so that the user has a chance to
3076 switch in assembly mode. */
3077 stop_step = 1;
3078 print_stop_reason (END_STEPPING_RANGE, 0);
3079 stop_stepping (ecs);
3080 return;
3081 }
3082 else
3083 {
3084 /* Set a breakpoint at callee's return address (the address
3085 at which the caller will resume). */
3086 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3087 keep_going (ecs);
3088 return;
3089 }
3090 }
3091
3092 if (step_range_end == 1)
3093 {
3094 /* It is stepi or nexti. We always want to stop stepping after
3095 one instruction. */
3096 if (debug_infrun)
3097 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3098 stop_step = 1;
3099 print_stop_reason (END_STEPPING_RANGE, 0);
3100 stop_stepping (ecs);
3101 return;
3102 }
3103
3104 if (ecs->sal.line == 0)
3105 {
3106 /* We have no line number information. That means to stop
3107 stepping (does this always happen right after one instruction,
3108 when we do "s" in a function with no line numbers,
3109 or can this happen as a result of a return or longjmp?). */
3110 if (debug_infrun)
3111 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3112 stop_step = 1;
3113 print_stop_reason (END_STEPPING_RANGE, 0);
3114 stop_stepping (ecs);
3115 return;
3116 }
3117
3118 if ((stop_pc == ecs->sal.pc)
3119 && (ecs->current_line != ecs->sal.line
3120 || ecs->current_symtab != ecs->sal.symtab))
3121 {
3122 /* We are at the start of a different line. So stop. Note that
3123 we don't stop if we step into the middle of a different line.
3124 That is said to make things like for (;;) statements work
3125 better. */
3126 if (debug_infrun)
3127 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3128 stop_step = 1;
3129 print_stop_reason (END_STEPPING_RANGE, 0);
3130 stop_stepping (ecs);
3131 return;
3132 }
3133
3134 /* We aren't done stepping.
3135
3136 Optimize by setting the stepping range to the line.
3137 (We might not be in the original line, but if we entered a
3138 new line in mid-statement, we continue stepping. This makes
3139 things like for(;;) statements work better.) */
3140
3141 step_range_start = ecs->sal.pc;
3142 step_range_end = ecs->sal.end;
3143 step_frame_id = get_frame_id (get_current_frame ());
3144 ecs->current_line = ecs->sal.line;
3145 ecs->current_symtab = ecs->sal.symtab;
3146
3147 /* In the case where we just stepped out of a function into the
3148 middle of a line of the caller, continue stepping, but
3149 step_frame_id must be modified to current frame */
3150 #if 0
3151 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3152 generous. It will trigger on things like a step into a frameless
3153 stackless leaf function. I think the logic should instead look
3154 at the unwound frame ID has that should give a more robust
3155 indication of what happened. */
3156 if (step - ID == current - ID)
3157 still stepping in same function;
3158 else if (step - ID == unwind (current - ID))
3159 stepped into a function;
3160 else
3161 stepped out of a function;
3162 /* Of course this assumes that the frame ID unwind code is robust
3163 and we're willing to introduce frame unwind logic into this
3164 function. Fortunately, those days are nearly upon us. */
3165 #endif
3166 {
3167 struct frame_info *frame = get_current_frame ();
3168 struct frame_id current_frame = get_frame_id (frame);
3169 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3170 step_frame_id)))
3171 step_frame_id = current_frame;
3172 }
3173
3174 if (debug_infrun)
3175 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3176 keep_going (ecs);
3177 }
3178
3179 /* Are we in the middle of stepping? */
3180
3181 static int
3182 currently_stepping (struct execution_control_state *ecs)
3183 {
3184 return (((step_range_end && step_resume_breakpoint == NULL)
3185 || stepping_over_breakpoint)
3186 || ecs->stepping_through_solib_after_catch
3187 || bpstat_should_step ());
3188 }
3189
3190 /* Subroutine call with source code we should not step over. Do step
3191 to the first line of code in it. */
3192
3193 static void
3194 step_into_function (struct execution_control_state *ecs)
3195 {
3196 struct symtab *s;
3197 struct symtab_and_line sr_sal;
3198
3199 s = find_pc_symtab (stop_pc);
3200 if (s && s->language != language_asm)
3201 ecs->stop_func_start = gdbarch_skip_prologue
3202 (current_gdbarch, ecs->stop_func_start);
3203
3204 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
3205 /* Use the step_resume_break to step until the end of the prologue,
3206 even if that involves jumps (as it seems to on the vax under
3207 4.2). */
3208 /* If the prologue ends in the middle of a source line, continue to
3209 the end of that source line (if it is still within the function).
3210 Otherwise, just go to end of prologue. */
3211 if (ecs->sal.end
3212 && ecs->sal.pc != ecs->stop_func_start
3213 && ecs->sal.end < ecs->stop_func_end)
3214 ecs->stop_func_start = ecs->sal.end;
3215
3216 /* Architectures which require breakpoint adjustment might not be able
3217 to place a breakpoint at the computed address. If so, the test
3218 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3219 ecs->stop_func_start to an address at which a breakpoint may be
3220 legitimately placed.
3221
3222 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3223 made, GDB will enter an infinite loop when stepping through
3224 optimized code consisting of VLIW instructions which contain
3225 subinstructions corresponding to different source lines. On
3226 FR-V, it's not permitted to place a breakpoint on any but the
3227 first subinstruction of a VLIW instruction. When a breakpoint is
3228 set, GDB will adjust the breakpoint address to the beginning of
3229 the VLIW instruction. Thus, we need to make the corresponding
3230 adjustment here when computing the stop address. */
3231
3232 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3233 {
3234 ecs->stop_func_start
3235 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3236 ecs->stop_func_start);
3237 }
3238
3239 if (ecs->stop_func_start == stop_pc)
3240 {
3241 /* We are already there: stop now. */
3242 stop_step = 1;
3243 print_stop_reason (END_STEPPING_RANGE, 0);
3244 stop_stepping (ecs);
3245 return;
3246 }
3247 else
3248 {
3249 /* Put the step-breakpoint there and go until there. */
3250 init_sal (&sr_sal); /* initialize to zeroes */
3251 sr_sal.pc = ecs->stop_func_start;
3252 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3253
3254 /* Do not specify what the fp should be when we stop since on
3255 some machines the prologue is where the new fp value is
3256 established. */
3257 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3258
3259 /* And make sure stepping stops right away then. */
3260 step_range_end = step_range_start;
3261 }
3262 keep_going (ecs);
3263 }
3264
3265 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3266 This is used to both functions and to skip over code. */
3267
3268 static void
3269 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3270 struct frame_id sr_id)
3271 {
3272 /* There should never be more than one step-resume or longjmp-resume
3273 breakpoint per thread, so we should never be setting a new
3274 step_resume_breakpoint when one is already active. */
3275 gdb_assert (step_resume_breakpoint == NULL);
3276
3277 if (debug_infrun)
3278 fprintf_unfiltered (gdb_stdlog,
3279 "infrun: inserting step-resume breakpoint at 0x%s\n",
3280 paddr_nz (sr_sal.pc));
3281
3282 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3283 bp_step_resume);
3284 }
3285
3286 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3287 to skip a potential signal handler.
3288
3289 This is called with the interrupted function's frame. The signal
3290 handler, when it returns, will resume the interrupted function at
3291 RETURN_FRAME.pc. */
3292
3293 static void
3294 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3295 {
3296 struct symtab_and_line sr_sal;
3297
3298 gdb_assert (return_frame != NULL);
3299 init_sal (&sr_sal); /* initialize to zeros */
3300
3301 sr_sal.pc = gdbarch_addr_bits_remove
3302 (current_gdbarch, get_frame_pc (return_frame));
3303 sr_sal.section = find_pc_overlay (sr_sal.pc);
3304
3305 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3306 }
3307
3308 /* Similar to insert_step_resume_breakpoint_at_frame, except
3309 but a breakpoint at the previous frame's PC. This is used to
3310 skip a function after stepping into it (for "next" or if the called
3311 function has no debugging information).
3312
3313 The current function has almost always been reached by single
3314 stepping a call or return instruction. NEXT_FRAME belongs to the
3315 current function, and the breakpoint will be set at the caller's
3316 resume address.
3317
3318 This is a separate function rather than reusing
3319 insert_step_resume_breakpoint_at_frame in order to avoid
3320 get_prev_frame, which may stop prematurely (see the implementation
3321 of frame_unwind_id for an example). */
3322
3323 static void
3324 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3325 {
3326 struct symtab_and_line sr_sal;
3327
3328 /* We shouldn't have gotten here if we don't know where the call site
3329 is. */
3330 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3331
3332 init_sal (&sr_sal); /* initialize to zeros */
3333
3334 sr_sal.pc = gdbarch_addr_bits_remove
3335 (current_gdbarch, frame_pc_unwind (next_frame));
3336 sr_sal.section = find_pc_overlay (sr_sal.pc);
3337
3338 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3339 }
3340
3341 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3342 new breakpoint at the target of a jmp_buf. The handling of
3343 longjmp-resume uses the same mechanisms used for handling
3344 "step-resume" breakpoints. */
3345
3346 static void
3347 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3348 {
3349 /* There should never be more than one step-resume or longjmp-resume
3350 breakpoint per thread, so we should never be setting a new
3351 longjmp_resume_breakpoint when one is already active. */
3352 gdb_assert (step_resume_breakpoint == NULL);
3353
3354 if (debug_infrun)
3355 fprintf_unfiltered (gdb_stdlog,
3356 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3357 paddr_nz (pc));
3358
3359 step_resume_breakpoint =
3360 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3361 }
3362
3363 static void
3364 stop_stepping (struct execution_control_state *ecs)
3365 {
3366 if (debug_infrun)
3367 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3368
3369 /* Let callers know we don't want to wait for the inferior anymore. */
3370 ecs->wait_some_more = 0;
3371 }
3372
3373 /* This function handles various cases where we need to continue
3374 waiting for the inferior. */
3375 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3376
3377 static void
3378 keep_going (struct execution_control_state *ecs)
3379 {
3380 /* Save the pc before execution, to compare with pc after stop. */
3381 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3382
3383 /* If we did not do break;, it means we should keep running the
3384 inferior and not return to debugger. */
3385
3386 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
3387 {
3388 /* We took a signal (which we are supposed to pass through to
3389 the inferior, else we'd have done a break above) and we
3390 haven't yet gotten our trap. Simply continue. */
3391 resume (currently_stepping (ecs), stop_signal);
3392 }
3393 else
3394 {
3395 /* Either the trap was not expected, but we are continuing
3396 anyway (the user asked that this signal be passed to the
3397 child)
3398 -- or --
3399 The signal was SIGTRAP, e.g. it was our signal, but we
3400 decided we should resume from it.
3401
3402 We're going to run this baby now!
3403
3404 Note that insert_breakpoints won't try to re-insert
3405 already inserted breakpoints. Therefore, we don't
3406 care if breakpoints were already inserted, or not. */
3407
3408 if (ecs->stepping_over_breakpoint)
3409 {
3410 if (! use_displaced_stepping (current_gdbarch))
3411 /* Since we can't do a displaced step, we have to remove
3412 the breakpoint while we step it. To keep things
3413 simple, we remove them all. */
3414 remove_breakpoints ();
3415 }
3416 else
3417 {
3418 struct gdb_exception e;
3419 /* Stop stepping when inserting breakpoints
3420 has failed. */
3421 TRY_CATCH (e, RETURN_MASK_ERROR)
3422 {
3423 insert_breakpoints ();
3424 }
3425 if (e.reason < 0)
3426 {
3427 stop_stepping (ecs);
3428 return;
3429 }
3430 }
3431
3432 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
3433
3434 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3435 specifies that such a signal should be delivered to the
3436 target program).
3437
3438 Typically, this would occure when a user is debugging a
3439 target monitor on a simulator: the target monitor sets a
3440 breakpoint; the simulator encounters this break-point and
3441 halts the simulation handing control to GDB; GDB, noteing
3442 that the break-point isn't valid, returns control back to the
3443 simulator; the simulator then delivers the hardware
3444 equivalent of a SIGNAL_TRAP to the program being debugged. */
3445
3446 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3447 stop_signal = TARGET_SIGNAL_0;
3448
3449
3450 resume (currently_stepping (ecs), stop_signal);
3451 }
3452
3453 prepare_to_wait (ecs);
3454 }
3455
3456 /* This function normally comes after a resume, before
3457 handle_inferior_event exits. It takes care of any last bits of
3458 housekeeping, and sets the all-important wait_some_more flag. */
3459
3460 static void
3461 prepare_to_wait (struct execution_control_state *ecs)
3462 {
3463 if (debug_infrun)
3464 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3465 if (ecs->infwait_state == infwait_normal_state)
3466 {
3467 overlay_cache_invalid = 1;
3468
3469 /* We have to invalidate the registers BEFORE calling
3470 target_wait because they can be loaded from the target while
3471 in target_wait. This makes remote debugging a bit more
3472 efficient for those targets that provide critical registers
3473 as part of their normal status mechanism. */
3474
3475 registers_changed ();
3476 ecs->waiton_ptid = pid_to_ptid (-1);
3477 ecs->wp = &(ecs->ws);
3478 }
3479 /* This is the old end of the while loop. Let everybody know we
3480 want to wait for the inferior some more and get called again
3481 soon. */
3482 ecs->wait_some_more = 1;
3483 }
3484
3485 /* Print why the inferior has stopped. We always print something when
3486 the inferior exits, or receives a signal. The rest of the cases are
3487 dealt with later on in normal_stop() and print_it_typical(). Ideally
3488 there should be a call to this function from handle_inferior_event()
3489 each time stop_stepping() is called.*/
3490 static void
3491 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3492 {
3493 switch (stop_reason)
3494 {
3495 case END_STEPPING_RANGE:
3496 /* We are done with a step/next/si/ni command. */
3497 /* For now print nothing. */
3498 /* Print a message only if not in the middle of doing a "step n"
3499 operation for n > 1 */
3500 if (!step_multi || !stop_step)
3501 if (ui_out_is_mi_like_p (uiout))
3502 ui_out_field_string
3503 (uiout, "reason",
3504 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3505 break;
3506 case SIGNAL_EXITED:
3507 /* The inferior was terminated by a signal. */
3508 annotate_signalled ();
3509 if (ui_out_is_mi_like_p (uiout))
3510 ui_out_field_string
3511 (uiout, "reason",
3512 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3513 ui_out_text (uiout, "\nProgram terminated with signal ");
3514 annotate_signal_name ();
3515 ui_out_field_string (uiout, "signal-name",
3516 target_signal_to_name (stop_info));
3517 annotate_signal_name_end ();
3518 ui_out_text (uiout, ", ");
3519 annotate_signal_string ();
3520 ui_out_field_string (uiout, "signal-meaning",
3521 target_signal_to_string (stop_info));
3522 annotate_signal_string_end ();
3523 ui_out_text (uiout, ".\n");
3524 ui_out_text (uiout, "The program no longer exists.\n");
3525 break;
3526 case EXITED:
3527 /* The inferior program is finished. */
3528 annotate_exited (stop_info);
3529 if (stop_info)
3530 {
3531 if (ui_out_is_mi_like_p (uiout))
3532 ui_out_field_string (uiout, "reason",
3533 async_reason_lookup (EXEC_ASYNC_EXITED));
3534 ui_out_text (uiout, "\nProgram exited with code ");
3535 ui_out_field_fmt (uiout, "exit-code", "0%o",
3536 (unsigned int) stop_info);
3537 ui_out_text (uiout, ".\n");
3538 }
3539 else
3540 {
3541 if (ui_out_is_mi_like_p (uiout))
3542 ui_out_field_string
3543 (uiout, "reason",
3544 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3545 ui_out_text (uiout, "\nProgram exited normally.\n");
3546 }
3547 /* Support the --return-child-result option. */
3548 return_child_result_value = stop_info;
3549 break;
3550 case SIGNAL_RECEIVED:
3551 /* Signal received. The signal table tells us to print about
3552 it. */
3553 annotate_signal ();
3554 ui_out_text (uiout, "\nProgram received signal ");
3555 annotate_signal_name ();
3556 if (ui_out_is_mi_like_p (uiout))
3557 ui_out_field_string
3558 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3559 ui_out_field_string (uiout, "signal-name",
3560 target_signal_to_name (stop_info));
3561 annotate_signal_name_end ();
3562 ui_out_text (uiout, ", ");
3563 annotate_signal_string ();
3564 ui_out_field_string (uiout, "signal-meaning",
3565 target_signal_to_string (stop_info));
3566 annotate_signal_string_end ();
3567 ui_out_text (uiout, ".\n");
3568 break;
3569 default:
3570 internal_error (__FILE__, __LINE__,
3571 _("print_stop_reason: unrecognized enum value"));
3572 break;
3573 }
3574 }
3575 \f
3576
3577 /* Here to return control to GDB when the inferior stops for real.
3578 Print appropriate messages, remove breakpoints, give terminal our modes.
3579
3580 STOP_PRINT_FRAME nonzero means print the executing frame
3581 (pc, function, args, file, line number and line text).
3582 BREAKPOINTS_FAILED nonzero means stop was due to error
3583 attempting to insert breakpoints. */
3584
3585 void
3586 normal_stop (void)
3587 {
3588 struct target_waitstatus last;
3589 ptid_t last_ptid;
3590
3591 get_last_target_status (&last_ptid, &last);
3592
3593 /* As with the notification of thread events, we want to delay
3594 notifying the user that we've switched thread context until
3595 the inferior actually stops.
3596
3597 There's no point in saying anything if the inferior has exited.
3598 Note that SIGNALLED here means "exited with a signal", not
3599 "received a signal". */
3600 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3601 && target_has_execution
3602 && last.kind != TARGET_WAITKIND_SIGNALLED
3603 && last.kind != TARGET_WAITKIND_EXITED)
3604 {
3605 target_terminal_ours_for_output ();
3606 printf_filtered (_("[Switching to %s]\n"),
3607 target_pid_to_str (inferior_ptid));
3608 annotate_thread_changed ();
3609 previous_inferior_ptid = inferior_ptid;
3610 }
3611
3612 /* NOTE drow/2004-01-17: Is this still necessary? */
3613 /* Make sure that the current_frame's pc is correct. This
3614 is a correction for setting up the frame info before doing
3615 gdbarch_decr_pc_after_break */
3616 if (target_has_execution)
3617 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3618 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3619 frame code to check for this and sort out any resultant mess.
3620 gdbarch_decr_pc_after_break needs to just go away. */
3621 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3622
3623 if (!breakpoints_always_inserted_mode () && target_has_execution)
3624 {
3625 if (remove_breakpoints ())
3626 {
3627 target_terminal_ours_for_output ();
3628 printf_filtered (_("\
3629 Cannot remove breakpoints because program is no longer writable.\n\
3630 It might be running in another process.\n\
3631 Further execution is probably impossible.\n"));
3632 }
3633 }
3634
3635 /* If an auto-display called a function and that got a signal,
3636 delete that auto-display to avoid an infinite recursion. */
3637
3638 if (stopped_by_random_signal)
3639 disable_current_display ();
3640
3641 /* Don't print a message if in the middle of doing a "step n"
3642 operation for n > 1 */
3643 if (step_multi && stop_step)
3644 goto done;
3645
3646 target_terminal_ours ();
3647
3648 /* Set the current source location. This will also happen if we
3649 display the frame below, but the current SAL will be incorrect
3650 during a user hook-stop function. */
3651 if (target_has_stack && !stop_stack_dummy)
3652 set_current_sal_from_frame (get_current_frame (), 1);
3653
3654 /* Look up the hook_stop and run it (CLI internally handles problem
3655 of stop_command's pre-hook not existing). */
3656 if (stop_command)
3657 catch_errors (hook_stop_stub, stop_command,
3658 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3659
3660 if (!target_has_stack)
3661 {
3662
3663 goto done;
3664 }
3665
3666 /* Select innermost stack frame - i.e., current frame is frame 0,
3667 and current location is based on that.
3668 Don't do this on return from a stack dummy routine,
3669 or if the program has exited. */
3670
3671 if (!stop_stack_dummy)
3672 {
3673 select_frame (get_current_frame ());
3674
3675 /* Print current location without a level number, if
3676 we have changed functions or hit a breakpoint.
3677 Print source line if we have one.
3678 bpstat_print() contains the logic deciding in detail
3679 what to print, based on the event(s) that just occurred. */
3680
3681 /* If --batch-silent is enabled then there's no need to print the current
3682 source location, and to try risks causing an error message about
3683 missing source files. */
3684 if (stop_print_frame && !batch_silent)
3685 {
3686 int bpstat_ret;
3687 int source_flag;
3688 int do_frame_printing = 1;
3689
3690 bpstat_ret = bpstat_print (stop_bpstat);
3691 switch (bpstat_ret)
3692 {
3693 case PRINT_UNKNOWN:
3694 /* If we had hit a shared library event breakpoint,
3695 bpstat_print would print out this message. If we hit
3696 an OS-level shared library event, do the same
3697 thing. */
3698 if (last.kind == TARGET_WAITKIND_LOADED)
3699 {
3700 printf_filtered (_("Stopped due to shared library event\n"));
3701 source_flag = SRC_LINE; /* something bogus */
3702 do_frame_printing = 0;
3703 break;
3704 }
3705
3706 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3707 (or should) carry around the function and does (or
3708 should) use that when doing a frame comparison. */
3709 if (stop_step
3710 && frame_id_eq (step_frame_id,
3711 get_frame_id (get_current_frame ()))
3712 && step_start_function == find_pc_function (stop_pc))
3713 source_flag = SRC_LINE; /* finished step, just print source line */
3714 else
3715 source_flag = SRC_AND_LOC; /* print location and source line */
3716 break;
3717 case PRINT_SRC_AND_LOC:
3718 source_flag = SRC_AND_LOC; /* print location and source line */
3719 break;
3720 case PRINT_SRC_ONLY:
3721 source_flag = SRC_LINE;
3722 break;
3723 case PRINT_NOTHING:
3724 source_flag = SRC_LINE; /* something bogus */
3725 do_frame_printing = 0;
3726 break;
3727 default:
3728 internal_error (__FILE__, __LINE__, _("Unknown value."));
3729 }
3730
3731 if (ui_out_is_mi_like_p (uiout))
3732 ui_out_field_int (uiout, "thread-id",
3733 pid_to_thread_id (inferior_ptid));
3734 /* The behavior of this routine with respect to the source
3735 flag is:
3736 SRC_LINE: Print only source line
3737 LOCATION: Print only location
3738 SRC_AND_LOC: Print location and source line */
3739 if (do_frame_printing)
3740 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3741
3742 /* Display the auto-display expressions. */
3743 do_displays ();
3744 }
3745 }
3746
3747 /* Save the function value return registers, if we care.
3748 We might be about to restore their previous contents. */
3749 if (proceed_to_finish)
3750 {
3751 /* This should not be necessary. */
3752 if (stop_registers)
3753 regcache_xfree (stop_registers);
3754
3755 /* NB: The copy goes through to the target picking up the value of
3756 all the registers. */
3757 stop_registers = regcache_dup (get_current_regcache ());
3758 }
3759
3760 if (stop_stack_dummy)
3761 {
3762 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3763 ends with a setting of the current frame, so we can use that
3764 next. */
3765 frame_pop (get_current_frame ());
3766 /* Set stop_pc to what it was before we called the function.
3767 Can't rely on restore_inferior_status because that only gets
3768 called if we don't stop in the called function. */
3769 stop_pc = read_pc ();
3770 select_frame (get_current_frame ());
3771 }
3772
3773 done:
3774 annotate_stopped ();
3775 if (!suppress_stop_observer && !step_multi)
3776 observer_notify_normal_stop (stop_bpstat);
3777 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3778 Delete any breakpoint that is to be deleted at the next stop. */
3779 breakpoint_auto_delete (stop_bpstat);
3780 set_running (pid_to_ptid (-1), 0);
3781 }
3782
3783 static int
3784 hook_stop_stub (void *cmd)
3785 {
3786 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3787 return (0);
3788 }
3789 \f
3790 int
3791 signal_stop_state (int signo)
3792 {
3793 /* Always stop on signals if we're just gaining control of the
3794 program. */
3795 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3796 }
3797
3798 int
3799 signal_print_state (int signo)
3800 {
3801 return signal_print[signo];
3802 }
3803
3804 int
3805 signal_pass_state (int signo)
3806 {
3807 return signal_program[signo];
3808 }
3809
3810 int
3811 signal_stop_update (int signo, int state)
3812 {
3813 int ret = signal_stop[signo];
3814 signal_stop[signo] = state;
3815 return ret;
3816 }
3817
3818 int
3819 signal_print_update (int signo, int state)
3820 {
3821 int ret = signal_print[signo];
3822 signal_print[signo] = state;
3823 return ret;
3824 }
3825
3826 int
3827 signal_pass_update (int signo, int state)
3828 {
3829 int ret = signal_program[signo];
3830 signal_program[signo] = state;
3831 return ret;
3832 }
3833
3834 static void
3835 sig_print_header (void)
3836 {
3837 printf_filtered (_("\
3838 Signal Stop\tPrint\tPass to program\tDescription\n"));
3839 }
3840
3841 static void
3842 sig_print_info (enum target_signal oursig)
3843 {
3844 char *name = target_signal_to_name (oursig);
3845 int name_padding = 13 - strlen (name);
3846
3847 if (name_padding <= 0)
3848 name_padding = 0;
3849
3850 printf_filtered ("%s", name);
3851 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3852 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3853 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3854 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3855 printf_filtered ("%s\n", target_signal_to_string (oursig));
3856 }
3857
3858 /* Specify how various signals in the inferior should be handled. */
3859
3860 static void
3861 handle_command (char *args, int from_tty)
3862 {
3863 char **argv;
3864 int digits, wordlen;
3865 int sigfirst, signum, siglast;
3866 enum target_signal oursig;
3867 int allsigs;
3868 int nsigs;
3869 unsigned char *sigs;
3870 struct cleanup *old_chain;
3871
3872 if (args == NULL)
3873 {
3874 error_no_arg (_("signal to handle"));
3875 }
3876
3877 /* Allocate and zero an array of flags for which signals to handle. */
3878
3879 nsigs = (int) TARGET_SIGNAL_LAST;
3880 sigs = (unsigned char *) alloca (nsigs);
3881 memset (sigs, 0, nsigs);
3882
3883 /* Break the command line up into args. */
3884
3885 argv = buildargv (args);
3886 if (argv == NULL)
3887 {
3888 nomem (0);
3889 }
3890 old_chain = make_cleanup_freeargv (argv);
3891
3892 /* Walk through the args, looking for signal oursigs, signal names, and
3893 actions. Signal numbers and signal names may be interspersed with
3894 actions, with the actions being performed for all signals cumulatively
3895 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3896
3897 while (*argv != NULL)
3898 {
3899 wordlen = strlen (*argv);
3900 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3901 {;
3902 }
3903 allsigs = 0;
3904 sigfirst = siglast = -1;
3905
3906 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3907 {
3908 /* Apply action to all signals except those used by the
3909 debugger. Silently skip those. */
3910 allsigs = 1;
3911 sigfirst = 0;
3912 siglast = nsigs - 1;
3913 }
3914 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3915 {
3916 SET_SIGS (nsigs, sigs, signal_stop);
3917 SET_SIGS (nsigs, sigs, signal_print);
3918 }
3919 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3920 {
3921 UNSET_SIGS (nsigs, sigs, signal_program);
3922 }
3923 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3924 {
3925 SET_SIGS (nsigs, sigs, signal_print);
3926 }
3927 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3928 {
3929 SET_SIGS (nsigs, sigs, signal_program);
3930 }
3931 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3932 {
3933 UNSET_SIGS (nsigs, sigs, signal_stop);
3934 }
3935 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3936 {
3937 SET_SIGS (nsigs, sigs, signal_program);
3938 }
3939 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3940 {
3941 UNSET_SIGS (nsigs, sigs, signal_print);
3942 UNSET_SIGS (nsigs, sigs, signal_stop);
3943 }
3944 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3945 {
3946 UNSET_SIGS (nsigs, sigs, signal_program);
3947 }
3948 else if (digits > 0)
3949 {
3950 /* It is numeric. The numeric signal refers to our own
3951 internal signal numbering from target.h, not to host/target
3952 signal number. This is a feature; users really should be
3953 using symbolic names anyway, and the common ones like
3954 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3955
3956 sigfirst = siglast = (int)
3957 target_signal_from_command (atoi (*argv));
3958 if ((*argv)[digits] == '-')
3959 {
3960 siglast = (int)
3961 target_signal_from_command (atoi ((*argv) + digits + 1));
3962 }
3963 if (sigfirst > siglast)
3964 {
3965 /* Bet he didn't figure we'd think of this case... */
3966 signum = sigfirst;
3967 sigfirst = siglast;
3968 siglast = signum;
3969 }
3970 }
3971 else
3972 {
3973 oursig = target_signal_from_name (*argv);
3974 if (oursig != TARGET_SIGNAL_UNKNOWN)
3975 {
3976 sigfirst = siglast = (int) oursig;
3977 }
3978 else
3979 {
3980 /* Not a number and not a recognized flag word => complain. */
3981 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3982 }
3983 }
3984
3985 /* If any signal numbers or symbol names were found, set flags for
3986 which signals to apply actions to. */
3987
3988 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3989 {
3990 switch ((enum target_signal) signum)
3991 {
3992 case TARGET_SIGNAL_TRAP:
3993 case TARGET_SIGNAL_INT:
3994 if (!allsigs && !sigs[signum])
3995 {
3996 if (query ("%s is used by the debugger.\n\
3997 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3998 {
3999 sigs[signum] = 1;
4000 }
4001 else
4002 {
4003 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4004 gdb_flush (gdb_stdout);
4005 }
4006 }
4007 break;
4008 case TARGET_SIGNAL_0:
4009 case TARGET_SIGNAL_DEFAULT:
4010 case TARGET_SIGNAL_UNKNOWN:
4011 /* Make sure that "all" doesn't print these. */
4012 break;
4013 default:
4014 sigs[signum] = 1;
4015 break;
4016 }
4017 }
4018
4019 argv++;
4020 }
4021
4022 target_notice_signals (inferior_ptid);
4023
4024 if (from_tty)
4025 {
4026 /* Show the results. */
4027 sig_print_header ();
4028 for (signum = 0; signum < nsigs; signum++)
4029 {
4030 if (sigs[signum])
4031 {
4032 sig_print_info (signum);
4033 }
4034 }
4035 }
4036
4037 do_cleanups (old_chain);
4038 }
4039
4040 static void
4041 xdb_handle_command (char *args, int from_tty)
4042 {
4043 char **argv;
4044 struct cleanup *old_chain;
4045
4046 /* Break the command line up into args. */
4047
4048 argv = buildargv (args);
4049 if (argv == NULL)
4050 {
4051 nomem (0);
4052 }
4053 old_chain = make_cleanup_freeargv (argv);
4054 if (argv[1] != (char *) NULL)
4055 {
4056 char *argBuf;
4057 int bufLen;
4058
4059 bufLen = strlen (argv[0]) + 20;
4060 argBuf = (char *) xmalloc (bufLen);
4061 if (argBuf)
4062 {
4063 int validFlag = 1;
4064 enum target_signal oursig;
4065
4066 oursig = target_signal_from_name (argv[0]);
4067 memset (argBuf, 0, bufLen);
4068 if (strcmp (argv[1], "Q") == 0)
4069 sprintf (argBuf, "%s %s", argv[0], "noprint");
4070 else
4071 {
4072 if (strcmp (argv[1], "s") == 0)
4073 {
4074 if (!signal_stop[oursig])
4075 sprintf (argBuf, "%s %s", argv[0], "stop");
4076 else
4077 sprintf (argBuf, "%s %s", argv[0], "nostop");
4078 }
4079 else if (strcmp (argv[1], "i") == 0)
4080 {
4081 if (!signal_program[oursig])
4082 sprintf (argBuf, "%s %s", argv[0], "pass");
4083 else
4084 sprintf (argBuf, "%s %s", argv[0], "nopass");
4085 }
4086 else if (strcmp (argv[1], "r") == 0)
4087 {
4088 if (!signal_print[oursig])
4089 sprintf (argBuf, "%s %s", argv[0], "print");
4090 else
4091 sprintf (argBuf, "%s %s", argv[0], "noprint");
4092 }
4093 else
4094 validFlag = 0;
4095 }
4096 if (validFlag)
4097 handle_command (argBuf, from_tty);
4098 else
4099 printf_filtered (_("Invalid signal handling flag.\n"));
4100 if (argBuf)
4101 xfree (argBuf);
4102 }
4103 }
4104 do_cleanups (old_chain);
4105 }
4106
4107 /* Print current contents of the tables set by the handle command.
4108 It is possible we should just be printing signals actually used
4109 by the current target (but for things to work right when switching
4110 targets, all signals should be in the signal tables). */
4111
4112 static void
4113 signals_info (char *signum_exp, int from_tty)
4114 {
4115 enum target_signal oursig;
4116 sig_print_header ();
4117
4118 if (signum_exp)
4119 {
4120 /* First see if this is a symbol name. */
4121 oursig = target_signal_from_name (signum_exp);
4122 if (oursig == TARGET_SIGNAL_UNKNOWN)
4123 {
4124 /* No, try numeric. */
4125 oursig =
4126 target_signal_from_command (parse_and_eval_long (signum_exp));
4127 }
4128 sig_print_info (oursig);
4129 return;
4130 }
4131
4132 printf_filtered ("\n");
4133 /* These ugly casts brought to you by the native VAX compiler. */
4134 for (oursig = TARGET_SIGNAL_FIRST;
4135 (int) oursig < (int) TARGET_SIGNAL_LAST;
4136 oursig = (enum target_signal) ((int) oursig + 1))
4137 {
4138 QUIT;
4139
4140 if (oursig != TARGET_SIGNAL_UNKNOWN
4141 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4142 sig_print_info (oursig);
4143 }
4144
4145 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4146 }
4147 \f
4148 struct inferior_status
4149 {
4150 enum target_signal stop_signal;
4151 CORE_ADDR stop_pc;
4152 bpstat stop_bpstat;
4153 int stop_step;
4154 int stop_stack_dummy;
4155 int stopped_by_random_signal;
4156 int stepping_over_breakpoint;
4157 CORE_ADDR step_range_start;
4158 CORE_ADDR step_range_end;
4159 struct frame_id step_frame_id;
4160 enum step_over_calls_kind step_over_calls;
4161 CORE_ADDR step_resume_break_address;
4162 int stop_after_trap;
4163 int stop_soon;
4164
4165 /* These are here because if call_function_by_hand has written some
4166 registers and then decides to call error(), we better not have changed
4167 any registers. */
4168 struct regcache *registers;
4169
4170 /* A frame unique identifier. */
4171 struct frame_id selected_frame_id;
4172
4173 int breakpoint_proceeded;
4174 int restore_stack_info;
4175 int proceed_to_finish;
4176 };
4177
4178 void
4179 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4180 LONGEST val)
4181 {
4182 int size = register_size (current_gdbarch, regno);
4183 void *buf = alloca (size);
4184 store_signed_integer (buf, size, val);
4185 regcache_raw_write (inf_status->registers, regno, buf);
4186 }
4187
4188 /* Save all of the information associated with the inferior<==>gdb
4189 connection. INF_STATUS is a pointer to a "struct inferior_status"
4190 (defined in inferior.h). */
4191
4192 struct inferior_status *
4193 save_inferior_status (int restore_stack_info)
4194 {
4195 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4196
4197 inf_status->stop_signal = stop_signal;
4198 inf_status->stop_pc = stop_pc;
4199 inf_status->stop_step = stop_step;
4200 inf_status->stop_stack_dummy = stop_stack_dummy;
4201 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4202 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
4203 inf_status->step_range_start = step_range_start;
4204 inf_status->step_range_end = step_range_end;
4205 inf_status->step_frame_id = step_frame_id;
4206 inf_status->step_over_calls = step_over_calls;
4207 inf_status->stop_after_trap = stop_after_trap;
4208 inf_status->stop_soon = stop_soon;
4209 /* Save original bpstat chain here; replace it with copy of chain.
4210 If caller's caller is walking the chain, they'll be happier if we
4211 hand them back the original chain when restore_inferior_status is
4212 called. */
4213 inf_status->stop_bpstat = stop_bpstat;
4214 stop_bpstat = bpstat_copy (stop_bpstat);
4215 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4216 inf_status->restore_stack_info = restore_stack_info;
4217 inf_status->proceed_to_finish = proceed_to_finish;
4218
4219 inf_status->registers = regcache_dup (get_current_regcache ());
4220
4221 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4222 return inf_status;
4223 }
4224
4225 static int
4226 restore_selected_frame (void *args)
4227 {
4228 struct frame_id *fid = (struct frame_id *) args;
4229 struct frame_info *frame;
4230
4231 frame = frame_find_by_id (*fid);
4232
4233 /* If inf_status->selected_frame_id is NULL, there was no previously
4234 selected frame. */
4235 if (frame == NULL)
4236 {
4237 warning (_("Unable to restore previously selected frame."));
4238 return 0;
4239 }
4240
4241 select_frame (frame);
4242
4243 return (1);
4244 }
4245
4246 void
4247 restore_inferior_status (struct inferior_status *inf_status)
4248 {
4249 stop_signal = inf_status->stop_signal;
4250 stop_pc = inf_status->stop_pc;
4251 stop_step = inf_status->stop_step;
4252 stop_stack_dummy = inf_status->stop_stack_dummy;
4253 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4254 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
4255 step_range_start = inf_status->step_range_start;
4256 step_range_end = inf_status->step_range_end;
4257 step_frame_id = inf_status->step_frame_id;
4258 step_over_calls = inf_status->step_over_calls;
4259 stop_after_trap = inf_status->stop_after_trap;
4260 stop_soon = inf_status->stop_soon;
4261 bpstat_clear (&stop_bpstat);
4262 stop_bpstat = inf_status->stop_bpstat;
4263 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4264 proceed_to_finish = inf_status->proceed_to_finish;
4265
4266 /* The inferior can be gone if the user types "print exit(0)"
4267 (and perhaps other times). */
4268 if (target_has_execution)
4269 /* NB: The register write goes through to the target. */
4270 regcache_cpy (get_current_regcache (), inf_status->registers);
4271 regcache_xfree (inf_status->registers);
4272
4273 /* FIXME: If we are being called after stopping in a function which
4274 is called from gdb, we should not be trying to restore the
4275 selected frame; it just prints a spurious error message (The
4276 message is useful, however, in detecting bugs in gdb (like if gdb
4277 clobbers the stack)). In fact, should we be restoring the
4278 inferior status at all in that case? . */
4279
4280 if (target_has_stack && inf_status->restore_stack_info)
4281 {
4282 /* The point of catch_errors is that if the stack is clobbered,
4283 walking the stack might encounter a garbage pointer and
4284 error() trying to dereference it. */
4285 if (catch_errors
4286 (restore_selected_frame, &inf_status->selected_frame_id,
4287 "Unable to restore previously selected frame:\n",
4288 RETURN_MASK_ERROR) == 0)
4289 /* Error in restoring the selected frame. Select the innermost
4290 frame. */
4291 select_frame (get_current_frame ());
4292
4293 }
4294
4295 xfree (inf_status);
4296 }
4297
4298 static void
4299 do_restore_inferior_status_cleanup (void *sts)
4300 {
4301 restore_inferior_status (sts);
4302 }
4303
4304 struct cleanup *
4305 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4306 {
4307 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4308 }
4309
4310 void
4311 discard_inferior_status (struct inferior_status *inf_status)
4312 {
4313 /* See save_inferior_status for info on stop_bpstat. */
4314 bpstat_clear (&inf_status->stop_bpstat);
4315 regcache_xfree (inf_status->registers);
4316 xfree (inf_status);
4317 }
4318
4319 int
4320 inferior_has_forked (int pid, int *child_pid)
4321 {
4322 struct target_waitstatus last;
4323 ptid_t last_ptid;
4324
4325 get_last_target_status (&last_ptid, &last);
4326
4327 if (last.kind != TARGET_WAITKIND_FORKED)
4328 return 0;
4329
4330 if (ptid_get_pid (last_ptid) != pid)
4331 return 0;
4332
4333 *child_pid = last.value.related_pid;
4334 return 1;
4335 }
4336
4337 int
4338 inferior_has_vforked (int pid, int *child_pid)
4339 {
4340 struct target_waitstatus last;
4341 ptid_t last_ptid;
4342
4343 get_last_target_status (&last_ptid, &last);
4344
4345 if (last.kind != TARGET_WAITKIND_VFORKED)
4346 return 0;
4347
4348 if (ptid_get_pid (last_ptid) != pid)
4349 return 0;
4350
4351 *child_pid = last.value.related_pid;
4352 return 1;
4353 }
4354
4355 int
4356 inferior_has_execd (int pid, char **execd_pathname)
4357 {
4358 struct target_waitstatus last;
4359 ptid_t last_ptid;
4360
4361 get_last_target_status (&last_ptid, &last);
4362
4363 if (last.kind != TARGET_WAITKIND_EXECD)
4364 return 0;
4365
4366 if (ptid_get_pid (last_ptid) != pid)
4367 return 0;
4368
4369 *execd_pathname = xstrdup (last.value.execd_pathname);
4370 return 1;
4371 }
4372
4373 /* Oft used ptids */
4374 ptid_t null_ptid;
4375 ptid_t minus_one_ptid;
4376
4377 /* Create a ptid given the necessary PID, LWP, and TID components. */
4378
4379 ptid_t
4380 ptid_build (int pid, long lwp, long tid)
4381 {
4382 ptid_t ptid;
4383
4384 ptid.pid = pid;
4385 ptid.lwp = lwp;
4386 ptid.tid = tid;
4387 return ptid;
4388 }
4389
4390 /* Create a ptid from just a pid. */
4391
4392 ptid_t
4393 pid_to_ptid (int pid)
4394 {
4395 return ptid_build (pid, 0, 0);
4396 }
4397
4398 /* Fetch the pid (process id) component from a ptid. */
4399
4400 int
4401 ptid_get_pid (ptid_t ptid)
4402 {
4403 return ptid.pid;
4404 }
4405
4406 /* Fetch the lwp (lightweight process) component from a ptid. */
4407
4408 long
4409 ptid_get_lwp (ptid_t ptid)
4410 {
4411 return ptid.lwp;
4412 }
4413
4414 /* Fetch the tid (thread id) component from a ptid. */
4415
4416 long
4417 ptid_get_tid (ptid_t ptid)
4418 {
4419 return ptid.tid;
4420 }
4421
4422 /* ptid_equal() is used to test equality of two ptids. */
4423
4424 int
4425 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4426 {
4427 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4428 && ptid1.tid == ptid2.tid);
4429 }
4430
4431 /* restore_inferior_ptid() will be used by the cleanup machinery
4432 to restore the inferior_ptid value saved in a call to
4433 save_inferior_ptid(). */
4434
4435 static void
4436 restore_inferior_ptid (void *arg)
4437 {
4438 ptid_t *saved_ptid_ptr = arg;
4439 inferior_ptid = *saved_ptid_ptr;
4440 xfree (arg);
4441 }
4442
4443 /* Save the value of inferior_ptid so that it may be restored by a
4444 later call to do_cleanups(). Returns the struct cleanup pointer
4445 needed for later doing the cleanup. */
4446
4447 struct cleanup *
4448 save_inferior_ptid (void)
4449 {
4450 ptid_t *saved_ptid_ptr;
4451
4452 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4453 *saved_ptid_ptr = inferior_ptid;
4454 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4455 }
4456 \f
4457
4458 void
4459 _initialize_infrun (void)
4460 {
4461 int i;
4462 int numsigs;
4463 struct cmd_list_element *c;
4464
4465 add_info ("signals", signals_info, _("\
4466 What debugger does when program gets various signals.\n\
4467 Specify a signal as argument to print info on that signal only."));
4468 add_info_alias ("handle", "signals", 0);
4469
4470 add_com ("handle", class_run, handle_command, _("\
4471 Specify how to handle a signal.\n\
4472 Args are signals and actions to apply to those signals.\n\
4473 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4474 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4475 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4476 The special arg \"all\" is recognized to mean all signals except those\n\
4477 used by the debugger, typically SIGTRAP and SIGINT.\n\
4478 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4479 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4480 Stop means reenter debugger if this signal happens (implies print).\n\
4481 Print means print a message if this signal happens.\n\
4482 Pass means let program see this signal; otherwise program doesn't know.\n\
4483 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4484 Pass and Stop may be combined."));
4485 if (xdb_commands)
4486 {
4487 add_com ("lz", class_info, signals_info, _("\
4488 What debugger does when program gets various signals.\n\
4489 Specify a signal as argument to print info on that signal only."));
4490 add_com ("z", class_run, xdb_handle_command, _("\
4491 Specify how to handle a signal.\n\
4492 Args are signals and actions to apply to those signals.\n\
4493 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4494 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4495 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4496 The special arg \"all\" is recognized to mean all signals except those\n\
4497 used by the debugger, typically SIGTRAP and SIGINT.\n\
4498 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4499 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4500 nopass), \"Q\" (noprint)\n\
4501 Stop means reenter debugger if this signal happens (implies print).\n\
4502 Print means print a message if this signal happens.\n\
4503 Pass means let program see this signal; otherwise program doesn't know.\n\
4504 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4505 Pass and Stop may be combined."));
4506 }
4507
4508 if (!dbx_commands)
4509 stop_command = add_cmd ("stop", class_obscure,
4510 not_just_help_class_command, _("\
4511 There is no `stop' command, but you can set a hook on `stop'.\n\
4512 This allows you to set a list of commands to be run each time execution\n\
4513 of the program stops."), &cmdlist);
4514
4515 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4516 Set inferior debugging."), _("\
4517 Show inferior debugging."), _("\
4518 When non-zero, inferior specific debugging is enabled."),
4519 NULL,
4520 show_debug_infrun,
4521 &setdebuglist, &showdebuglist);
4522
4523 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4524 Set displaced stepping debugging."), _("\
4525 Show displaced stepping debugging."), _("\
4526 When non-zero, displaced stepping specific debugging is enabled."),
4527 NULL,
4528 show_debug_displaced,
4529 &setdebuglist, &showdebuglist);
4530
4531 numsigs = (int) TARGET_SIGNAL_LAST;
4532 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4533 signal_print = (unsigned char *)
4534 xmalloc (sizeof (signal_print[0]) * numsigs);
4535 signal_program = (unsigned char *)
4536 xmalloc (sizeof (signal_program[0]) * numsigs);
4537 for (i = 0; i < numsigs; i++)
4538 {
4539 signal_stop[i] = 1;
4540 signal_print[i] = 1;
4541 signal_program[i] = 1;
4542 }
4543
4544 /* Signals caused by debugger's own actions
4545 should not be given to the program afterwards. */
4546 signal_program[TARGET_SIGNAL_TRAP] = 0;
4547 signal_program[TARGET_SIGNAL_INT] = 0;
4548
4549 /* Signals that are not errors should not normally enter the debugger. */
4550 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4551 signal_print[TARGET_SIGNAL_ALRM] = 0;
4552 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4553 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4554 signal_stop[TARGET_SIGNAL_PROF] = 0;
4555 signal_print[TARGET_SIGNAL_PROF] = 0;
4556 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4557 signal_print[TARGET_SIGNAL_CHLD] = 0;
4558 signal_stop[TARGET_SIGNAL_IO] = 0;
4559 signal_print[TARGET_SIGNAL_IO] = 0;
4560 signal_stop[TARGET_SIGNAL_POLL] = 0;
4561 signal_print[TARGET_SIGNAL_POLL] = 0;
4562 signal_stop[TARGET_SIGNAL_URG] = 0;
4563 signal_print[TARGET_SIGNAL_URG] = 0;
4564 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4565 signal_print[TARGET_SIGNAL_WINCH] = 0;
4566
4567 /* These signals are used internally by user-level thread
4568 implementations. (See signal(5) on Solaris.) Like the above
4569 signals, a healthy program receives and handles them as part of
4570 its normal operation. */
4571 signal_stop[TARGET_SIGNAL_LWP] = 0;
4572 signal_print[TARGET_SIGNAL_LWP] = 0;
4573 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4574 signal_print[TARGET_SIGNAL_WAITING] = 0;
4575 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4576 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4577
4578 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4579 &stop_on_solib_events, _("\
4580 Set stopping for shared library events."), _("\
4581 Show stopping for shared library events."), _("\
4582 If nonzero, gdb will give control to the user when the dynamic linker\n\
4583 notifies gdb of shared library events. The most common event of interest\n\
4584 to the user would be loading/unloading of a new library."),
4585 NULL,
4586 show_stop_on_solib_events,
4587 &setlist, &showlist);
4588
4589 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4590 follow_fork_mode_kind_names,
4591 &follow_fork_mode_string, _("\
4592 Set debugger response to a program call of fork or vfork."), _("\
4593 Show debugger response to a program call of fork or vfork."), _("\
4594 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4595 parent - the original process is debugged after a fork\n\
4596 child - the new process is debugged after a fork\n\
4597 The unfollowed process will continue to run.\n\
4598 By default, the debugger will follow the parent process."),
4599 NULL,
4600 show_follow_fork_mode_string,
4601 &setlist, &showlist);
4602
4603 add_setshow_enum_cmd ("scheduler-locking", class_run,
4604 scheduler_enums, &scheduler_mode, _("\
4605 Set mode for locking scheduler during execution."), _("\
4606 Show mode for locking scheduler during execution."), _("\
4607 off == no locking (threads may preempt at any time)\n\
4608 on == full locking (no thread except the current thread may run)\n\
4609 step == scheduler locked during every single-step operation.\n\
4610 In this mode, no other thread may run during a step command.\n\
4611 Other threads may run while stepping over a function call ('next')."),
4612 set_schedlock_func, /* traps on target vector */
4613 show_scheduler_mode,
4614 &setlist, &showlist);
4615
4616 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4617 Set mode of the step operation."), _("\
4618 Show mode of the step operation."), _("\
4619 When set, doing a step over a function without debug line information\n\
4620 will stop at the first instruction of that function. Otherwise, the\n\
4621 function is skipped and the step command stops at a different source line."),
4622 NULL,
4623 show_step_stop_if_no_debug,
4624 &setlist, &showlist);
4625
4626 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4627 &can_use_displaced_stepping, _("\
4628 Set debugger's willingness to use displaced stepping."), _("\
4629 Show debugger's willingness to use displaced stepping."), _("\
4630 If zero, gdb will not use to use displaced stepping to step over\n\
4631 breakpoints, even if such is supported by the target."),
4632 NULL,
4633 show_can_use_displaced_stepping,
4634 &maintenance_set_cmdlist,
4635 &maintenance_show_cmdlist);
4636
4637
4638 /* ptid initializations */
4639 null_ptid = ptid_build (0, 0, 0);
4640 minus_one_ptid = ptid_build (-1, 0, 0);
4641 inferior_ptid = null_ptid;
4642 target_last_wait_ptid = minus_one_ptid;
4643 displaced_step_ptid = null_ptid;
4644 }
This page took 0.126102 seconds and 4 git commands to generate.