Don't displaced step when there's a breakpoint in the scratch pad range
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66
67 /* Prototypes for local functions */
68
69 static void signals_info (char *, int);
70
71 static void handle_command (char *, int);
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static void resume_cleanups (void *);
78
79 static int hook_stop_stub (void *);
80
81 static int restore_selected_frame (void *);
82
83 static int follow_fork (void);
84
85 static int follow_fork_inferior (int follow_child, int detach_fork);
86
87 static void follow_inferior_reset_breakpoints (void);
88
89 static void set_schedlock_func (char *args, int from_tty,
90 struct cmd_list_element *c);
91
92 static int currently_stepping (struct thread_info *tp);
93
94 void _initialize_infrun (void);
95
96 void nullify_last_target_wait_ptid (void);
97
98 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
99
100 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
102 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
104 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
106 /* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108 static struct async_event_handler *infrun_async_inferior_event_token;
109
110 /* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112 static int infrun_is_async = -1;
113
114 /* See infrun.h. */
115
116 void
117 infrun_async (int enable)
118 {
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133 }
134
135 /* See infrun.h. */
136
137 void
138 mark_infrun_async_event_handler (void)
139 {
140 mark_async_event_handler (infrun_async_inferior_event_token);
141 }
142
143 /* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146 int step_stop_if_no_debug = 0;
147 static void
148 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152 }
153
154 /* In asynchronous mode, but simulating synchronous execution. */
155
156 int sync_execution = 0;
157
158 /* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
161
162 static ptid_t previous_inferior_ptid;
163
164 /* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169 static int detach_fork = 1;
170
171 int debug_displaced = 0;
172 static void
173 show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177 }
178
179 unsigned int debug_infrun = 0;
180 static void
181 show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185 }
186
187
188 /* Support for disabling address space randomization. */
189
190 int disable_randomization = 1;
191
192 static void
193 show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205 }
206
207 static void
208 set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210 {
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215 }
216
217 /* User interface for non-stop mode. */
218
219 int non_stop = 0;
220 static int non_stop_1 = 0;
221
222 static void
223 set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233 }
234
235 static void
236 show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242 }
243
244 /* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
248 int observer_mode = 0;
249 static int observer_mode_1 = 0;
250
251 static void
252 set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254 {
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285 }
286
287 static void
288 show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290 {
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292 }
293
294 /* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300 void
301 update_observer_mode (void)
302 {
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317 }
318
319 /* Tables of how to react to signals; the user sets them. */
320
321 static unsigned char *signal_stop;
322 static unsigned char *signal_print;
323 static unsigned char *signal_program;
324
325 /* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329 static unsigned char *signal_catch;
330
331 /* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334 static unsigned char *signal_pass;
335
336 #define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344 #define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
352 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355 void
356 update_signals_program_target (void)
357 {
358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
359 }
360
361 /* Value to pass to target_resume() to cause all threads to resume. */
362
363 #define RESUME_ALL minus_one_ptid
364
365 /* Command list pointer for the "stop" placeholder. */
366
367 static struct cmd_list_element *stop_command;
368
369 /* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
371 int stop_on_solib_events;
372
373 /* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376 static void
377 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378 {
379 update_solib_breakpoints ();
380 }
381
382 static void
383 show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388 }
389
390 /* Nonzero after stop if current stack frame should be printed. */
391
392 static int stop_print_frame;
393
394 /* This is a cached copy of the pid/waitstatus of the last event
395 returned by target_wait()/deprecated_target_wait_hook(). This
396 information is returned by get_last_target_status(). */
397 static ptid_t target_last_wait_ptid;
398 static struct target_waitstatus target_last_waitstatus;
399
400 static void context_switch (ptid_t ptid);
401
402 void init_thread_stepping_state (struct thread_info *tss);
403
404 static const char follow_fork_mode_child[] = "child";
405 static const char follow_fork_mode_parent[] = "parent";
406
407 static const char *const follow_fork_mode_kind_names[] = {
408 follow_fork_mode_child,
409 follow_fork_mode_parent,
410 NULL
411 };
412
413 static const char *follow_fork_mode_string = follow_fork_mode_parent;
414 static void
415 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c, const char *value)
417 {
418 fprintf_filtered (file,
419 _("Debugger response to a program "
420 "call of fork or vfork is \"%s\".\n"),
421 value);
422 }
423 \f
424
425 /* Handle changes to the inferior list based on the type of fork,
426 which process is being followed, and whether the other process
427 should be detached. On entry inferior_ptid must be the ptid of
428 the fork parent. At return inferior_ptid is the ptid of the
429 followed inferior. */
430
431 static int
432 follow_fork_inferior (int follow_child, int detach_fork)
433 {
434 int has_vforked;
435 ptid_t parent_ptid, child_ptid;
436
437 has_vforked = (inferior_thread ()->pending_follow.kind
438 == TARGET_WAITKIND_VFORKED);
439 parent_ptid = inferior_ptid;
440 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
441
442 if (has_vforked
443 && !non_stop /* Non-stop always resumes both branches. */
444 && (!target_is_async_p () || sync_execution)
445 && !(follow_child || detach_fork || sched_multi))
446 {
447 /* The parent stays blocked inside the vfork syscall until the
448 child execs or exits. If we don't let the child run, then
449 the parent stays blocked. If we're telling the parent to run
450 in the foreground, the user will not be able to ctrl-c to get
451 back the terminal, effectively hanging the debug session. */
452 fprintf_filtered (gdb_stderr, _("\
453 Can not resume the parent process over vfork in the foreground while\n\
454 holding the child stopped. Try \"set detach-on-fork\" or \
455 \"set schedule-multiple\".\n"));
456 /* FIXME output string > 80 columns. */
457 return 1;
458 }
459
460 if (!follow_child)
461 {
462 /* Detach new forked process? */
463 if (detach_fork)
464 {
465 struct cleanup *old_chain;
466
467 /* Before detaching from the child, remove all breakpoints
468 from it. If we forked, then this has already been taken
469 care of by infrun.c. If we vforked however, any
470 breakpoint inserted in the parent is visible in the
471 child, even those added while stopped in a vfork
472 catchpoint. This will remove the breakpoints from the
473 parent also, but they'll be reinserted below. */
474 if (has_vforked)
475 {
476 /* Keep breakpoints list in sync. */
477 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
478 }
479
480 if (info_verbose || debug_infrun)
481 {
482 /* Ensure that we have a process ptid. */
483 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
484
485 target_terminal_ours_for_output ();
486 fprintf_filtered (gdb_stdlog,
487 _("Detaching after %s from child %s.\n"),
488 has_vforked ? "vfork" : "fork",
489 target_pid_to_str (process_ptid));
490 }
491 }
492 else
493 {
494 struct inferior *parent_inf, *child_inf;
495 struct cleanup *old_chain;
496
497 /* Add process to GDB's tables. */
498 child_inf = add_inferior (ptid_get_pid (child_ptid));
499
500 parent_inf = current_inferior ();
501 child_inf->attach_flag = parent_inf->attach_flag;
502 copy_terminal_info (child_inf, parent_inf);
503 child_inf->gdbarch = parent_inf->gdbarch;
504 copy_inferior_target_desc_info (child_inf, parent_inf);
505
506 old_chain = save_inferior_ptid ();
507 save_current_program_space ();
508
509 inferior_ptid = child_ptid;
510 add_thread (inferior_ptid);
511 child_inf->symfile_flags = SYMFILE_NO_READ;
512
513 /* If this is a vfork child, then the address-space is
514 shared with the parent. */
515 if (has_vforked)
516 {
517 child_inf->pspace = parent_inf->pspace;
518 child_inf->aspace = parent_inf->aspace;
519
520 /* The parent will be frozen until the child is done
521 with the shared region. Keep track of the
522 parent. */
523 child_inf->vfork_parent = parent_inf;
524 child_inf->pending_detach = 0;
525 parent_inf->vfork_child = child_inf;
526 parent_inf->pending_detach = 0;
527 }
528 else
529 {
530 child_inf->aspace = new_address_space ();
531 child_inf->pspace = add_program_space (child_inf->aspace);
532 child_inf->removable = 1;
533 set_current_program_space (child_inf->pspace);
534 clone_program_space (child_inf->pspace, parent_inf->pspace);
535
536 /* Let the shared library layer (e.g., solib-svr4) learn
537 about this new process, relocate the cloned exec, pull
538 in shared libraries, and install the solib event
539 breakpoint. If a "cloned-VM" event was propagated
540 better throughout the core, this wouldn't be
541 required. */
542 solib_create_inferior_hook (0);
543 }
544
545 do_cleanups (old_chain);
546 }
547
548 if (has_vforked)
549 {
550 struct inferior *parent_inf;
551
552 parent_inf = current_inferior ();
553
554 /* If we detached from the child, then we have to be careful
555 to not insert breakpoints in the parent until the child
556 is done with the shared memory region. However, if we're
557 staying attached to the child, then we can and should
558 insert breakpoints, so that we can debug it. A
559 subsequent child exec or exit is enough to know when does
560 the child stops using the parent's address space. */
561 parent_inf->waiting_for_vfork_done = detach_fork;
562 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
563 }
564 }
565 else
566 {
567 /* Follow the child. */
568 struct inferior *parent_inf, *child_inf;
569 struct program_space *parent_pspace;
570
571 if (info_verbose || debug_infrun)
572 {
573 target_terminal_ours_for_output ();
574 fprintf_filtered (gdb_stdlog,
575 _("Attaching after %s %s to child %s.\n"),
576 target_pid_to_str (parent_ptid),
577 has_vforked ? "vfork" : "fork",
578 target_pid_to_str (child_ptid));
579 }
580
581 /* Add the new inferior first, so that the target_detach below
582 doesn't unpush the target. */
583
584 child_inf = add_inferior (ptid_get_pid (child_ptid));
585
586 parent_inf = current_inferior ();
587 child_inf->attach_flag = parent_inf->attach_flag;
588 copy_terminal_info (child_inf, parent_inf);
589 child_inf->gdbarch = parent_inf->gdbarch;
590 copy_inferior_target_desc_info (child_inf, parent_inf);
591
592 parent_pspace = parent_inf->pspace;
593
594 /* If we're vforking, we want to hold on to the parent until the
595 child exits or execs. At child exec or exit time we can
596 remove the old breakpoints from the parent and detach or
597 resume debugging it. Otherwise, detach the parent now; we'll
598 want to reuse it's program/address spaces, but we can't set
599 them to the child before removing breakpoints from the
600 parent, otherwise, the breakpoints module could decide to
601 remove breakpoints from the wrong process (since they'd be
602 assigned to the same address space). */
603
604 if (has_vforked)
605 {
606 gdb_assert (child_inf->vfork_parent == NULL);
607 gdb_assert (parent_inf->vfork_child == NULL);
608 child_inf->vfork_parent = parent_inf;
609 child_inf->pending_detach = 0;
610 parent_inf->vfork_child = child_inf;
611 parent_inf->pending_detach = detach_fork;
612 parent_inf->waiting_for_vfork_done = 0;
613 }
614 else if (detach_fork)
615 {
616 if (info_verbose || debug_infrun)
617 {
618 /* Ensure that we have a process ptid. */
619 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
620
621 target_terminal_ours_for_output ();
622 fprintf_filtered (gdb_stdlog,
623 _("Detaching after fork from "
624 "child %s.\n"),
625 target_pid_to_str (process_ptid));
626 }
627
628 target_detach (NULL, 0);
629 }
630
631 /* Note that the detach above makes PARENT_INF dangling. */
632
633 /* Add the child thread to the appropriate lists, and switch to
634 this new thread, before cloning the program space, and
635 informing the solib layer about this new process. */
636
637 inferior_ptid = child_ptid;
638 add_thread (inferior_ptid);
639
640 /* If this is a vfork child, then the address-space is shared
641 with the parent. If we detached from the parent, then we can
642 reuse the parent's program/address spaces. */
643 if (has_vforked || detach_fork)
644 {
645 child_inf->pspace = parent_pspace;
646 child_inf->aspace = child_inf->pspace->aspace;
647 }
648 else
649 {
650 child_inf->aspace = new_address_space ();
651 child_inf->pspace = add_program_space (child_inf->aspace);
652 child_inf->removable = 1;
653 child_inf->symfile_flags = SYMFILE_NO_READ;
654 set_current_program_space (child_inf->pspace);
655 clone_program_space (child_inf->pspace, parent_pspace);
656
657 /* Let the shared library layer (e.g., solib-svr4) learn
658 about this new process, relocate the cloned exec, pull in
659 shared libraries, and install the solib event breakpoint.
660 If a "cloned-VM" event was propagated better throughout
661 the core, this wouldn't be required. */
662 solib_create_inferior_hook (0);
663 }
664 }
665
666 return target_follow_fork (follow_child, detach_fork);
667 }
668
669 /* Tell the target to follow the fork we're stopped at. Returns true
670 if the inferior should be resumed; false, if the target for some
671 reason decided it's best not to resume. */
672
673 static int
674 follow_fork (void)
675 {
676 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
677 int should_resume = 1;
678 struct thread_info *tp;
679
680 /* Copy user stepping state to the new inferior thread. FIXME: the
681 followed fork child thread should have a copy of most of the
682 parent thread structure's run control related fields, not just these.
683 Initialized to avoid "may be used uninitialized" warnings from gcc. */
684 struct breakpoint *step_resume_breakpoint = NULL;
685 struct breakpoint *exception_resume_breakpoint = NULL;
686 CORE_ADDR step_range_start = 0;
687 CORE_ADDR step_range_end = 0;
688 struct frame_id step_frame_id = { 0 };
689 struct interp *command_interp = NULL;
690
691 if (!non_stop)
692 {
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
697 get_last_target_status (&wait_ptid, &wait_status);
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
707 if (!ptid_equal (wait_ptid, minus_one_ptid)
708 && !ptid_equal (inferior_ptid, wait_ptid))
709 {
710 /* We did. Switch back to WAIT_PTID thread, to tell the
711 target to follow it (in either direction). We'll
712 afterwards refuse to resume, and inform the user what
713 happened. */
714 switch_to_thread (wait_ptid);
715 should_resume = 0;
716 }
717 }
718
719 tp = inferior_thread ();
720
721 /* If there were any forks/vforks that were caught and are now to be
722 followed, then do so now. */
723 switch (tp->pending_follow.kind)
724 {
725 case TARGET_WAITKIND_FORKED:
726 case TARGET_WAITKIND_VFORKED:
727 {
728 ptid_t parent, child;
729
730 /* If the user did a next/step, etc, over a fork call,
731 preserve the stepping state in the fork child. */
732 if (follow_child && should_resume)
733 {
734 step_resume_breakpoint = clone_momentary_breakpoint
735 (tp->control.step_resume_breakpoint);
736 step_range_start = tp->control.step_range_start;
737 step_range_end = tp->control.step_range_end;
738 step_frame_id = tp->control.step_frame_id;
739 exception_resume_breakpoint
740 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
741 command_interp = tp->control.command_interp;
742
743 /* For now, delete the parent's sr breakpoint, otherwise,
744 parent/child sr breakpoints are considered duplicates,
745 and the child version will not be installed. Remove
746 this when the breakpoints module becomes aware of
747 inferiors and address spaces. */
748 delete_step_resume_breakpoint (tp);
749 tp->control.step_range_start = 0;
750 tp->control.step_range_end = 0;
751 tp->control.step_frame_id = null_frame_id;
752 delete_exception_resume_breakpoint (tp);
753 tp->control.command_interp = NULL;
754 }
755
756 parent = inferior_ptid;
757 child = tp->pending_follow.value.related_pid;
758
759 /* Set up inferior(s) as specified by the caller, and tell the
760 target to do whatever is necessary to follow either parent
761 or child. */
762 if (follow_fork_inferior (follow_child, detach_fork))
763 {
764 /* Target refused to follow, or there's some other reason
765 we shouldn't resume. */
766 should_resume = 0;
767 }
768 else
769 {
770 /* This pending follow fork event is now handled, one way
771 or another. The previous selected thread may be gone
772 from the lists by now, but if it is still around, need
773 to clear the pending follow request. */
774 tp = find_thread_ptid (parent);
775 if (tp)
776 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
777
778 /* This makes sure we don't try to apply the "Switched
779 over from WAIT_PID" logic above. */
780 nullify_last_target_wait_ptid ();
781
782 /* If we followed the child, switch to it... */
783 if (follow_child)
784 {
785 switch_to_thread (child);
786
787 /* ... and preserve the stepping state, in case the
788 user was stepping over the fork call. */
789 if (should_resume)
790 {
791 tp = inferior_thread ();
792 tp->control.step_resume_breakpoint
793 = step_resume_breakpoint;
794 tp->control.step_range_start = step_range_start;
795 tp->control.step_range_end = step_range_end;
796 tp->control.step_frame_id = step_frame_id;
797 tp->control.exception_resume_breakpoint
798 = exception_resume_breakpoint;
799 tp->control.command_interp = command_interp;
800 }
801 else
802 {
803 /* If we get here, it was because we're trying to
804 resume from a fork catchpoint, but, the user
805 has switched threads away from the thread that
806 forked. In that case, the resume command
807 issued is most likely not applicable to the
808 child, so just warn, and refuse to resume. */
809 warning (_("Not resuming: switched threads "
810 "before following fork child."));
811 }
812
813 /* Reset breakpoints in the child as appropriate. */
814 follow_inferior_reset_breakpoints ();
815 }
816 else
817 switch_to_thread (parent);
818 }
819 }
820 break;
821 case TARGET_WAITKIND_SPURIOUS:
822 /* Nothing to follow. */
823 break;
824 default:
825 internal_error (__FILE__, __LINE__,
826 "Unexpected pending_follow.kind %d\n",
827 tp->pending_follow.kind);
828 break;
829 }
830
831 return should_resume;
832 }
833
834 static void
835 follow_inferior_reset_breakpoints (void)
836 {
837 struct thread_info *tp = inferior_thread ();
838
839 /* Was there a step_resume breakpoint? (There was if the user
840 did a "next" at the fork() call.) If so, explicitly reset its
841 thread number. Cloned step_resume breakpoints are disabled on
842 creation, so enable it here now that it is associated with the
843 correct thread.
844
845 step_resumes are a form of bp that are made to be per-thread.
846 Since we created the step_resume bp when the parent process
847 was being debugged, and now are switching to the child process,
848 from the breakpoint package's viewpoint, that's a switch of
849 "threads". We must update the bp's notion of which thread
850 it is for, or it'll be ignored when it triggers. */
851
852 if (tp->control.step_resume_breakpoint)
853 {
854 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
855 tp->control.step_resume_breakpoint->loc->enabled = 1;
856 }
857
858 /* Treat exception_resume breakpoints like step_resume breakpoints. */
859 if (tp->control.exception_resume_breakpoint)
860 {
861 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
862 tp->control.exception_resume_breakpoint->loc->enabled = 1;
863 }
864
865 /* Reinsert all breakpoints in the child. The user may have set
866 breakpoints after catching the fork, in which case those
867 were never set in the child, but only in the parent. This makes
868 sure the inserted breakpoints match the breakpoint list. */
869
870 breakpoint_re_set ();
871 insert_breakpoints ();
872 }
873
874 /* The child has exited or execed: resume threads of the parent the
875 user wanted to be executing. */
876
877 static int
878 proceed_after_vfork_done (struct thread_info *thread,
879 void *arg)
880 {
881 int pid = * (int *) arg;
882
883 if (ptid_get_pid (thread->ptid) == pid
884 && is_running (thread->ptid)
885 && !is_executing (thread->ptid)
886 && !thread->stop_requested
887 && thread->suspend.stop_signal == GDB_SIGNAL_0)
888 {
889 if (debug_infrun)
890 fprintf_unfiltered (gdb_stdlog,
891 "infrun: resuming vfork parent thread %s\n",
892 target_pid_to_str (thread->ptid));
893
894 switch_to_thread (thread->ptid);
895 clear_proceed_status (0);
896 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
897 }
898
899 return 0;
900 }
901
902 /* Called whenever we notice an exec or exit event, to handle
903 detaching or resuming a vfork parent. */
904
905 static void
906 handle_vfork_child_exec_or_exit (int exec)
907 {
908 struct inferior *inf = current_inferior ();
909
910 if (inf->vfork_parent)
911 {
912 int resume_parent = -1;
913
914 /* This exec or exit marks the end of the shared memory region
915 between the parent and the child. If the user wanted to
916 detach from the parent, now is the time. */
917
918 if (inf->vfork_parent->pending_detach)
919 {
920 struct thread_info *tp;
921 struct cleanup *old_chain;
922 struct program_space *pspace;
923 struct address_space *aspace;
924
925 /* follow-fork child, detach-on-fork on. */
926
927 inf->vfork_parent->pending_detach = 0;
928
929 if (!exec)
930 {
931 /* If we're handling a child exit, then inferior_ptid
932 points at the inferior's pid, not to a thread. */
933 old_chain = save_inferior_ptid ();
934 save_current_program_space ();
935 save_current_inferior ();
936 }
937 else
938 old_chain = save_current_space_and_thread ();
939
940 /* We're letting loose of the parent. */
941 tp = any_live_thread_of_process (inf->vfork_parent->pid);
942 switch_to_thread (tp->ptid);
943
944 /* We're about to detach from the parent, which implicitly
945 removes breakpoints from its address space. There's a
946 catch here: we want to reuse the spaces for the child,
947 but, parent/child are still sharing the pspace at this
948 point, although the exec in reality makes the kernel give
949 the child a fresh set of new pages. The problem here is
950 that the breakpoints module being unaware of this, would
951 likely chose the child process to write to the parent
952 address space. Swapping the child temporarily away from
953 the spaces has the desired effect. Yes, this is "sort
954 of" a hack. */
955
956 pspace = inf->pspace;
957 aspace = inf->aspace;
958 inf->aspace = NULL;
959 inf->pspace = NULL;
960
961 if (debug_infrun || info_verbose)
962 {
963 target_terminal_ours_for_output ();
964
965 if (exec)
966 {
967 fprintf_filtered (gdb_stdlog,
968 _("Detaching vfork parent process "
969 "%d after child exec.\n"),
970 inf->vfork_parent->pid);
971 }
972 else
973 {
974 fprintf_filtered (gdb_stdlog,
975 _("Detaching vfork parent process "
976 "%d after child exit.\n"),
977 inf->vfork_parent->pid);
978 }
979 }
980
981 target_detach (NULL, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986
987 do_cleanups (old_chain);
988 }
989 else if (exec)
990 {
991 /* We're staying attached to the parent, so, really give the
992 child a new address space. */
993 inf->pspace = add_program_space (maybe_new_address_space ());
994 inf->aspace = inf->pspace->aspace;
995 inf->removable = 1;
996 set_current_program_space (inf->pspace);
997
998 resume_parent = inf->vfork_parent->pid;
999
1000 /* Break the bonds. */
1001 inf->vfork_parent->vfork_child = NULL;
1002 }
1003 else
1004 {
1005 struct cleanup *old_chain;
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
1017 /* Switch to null_ptid, so that clone_program_space doesn't want
1018 to read the selected frame of a dead process. */
1019 old_chain = save_inferior_ptid ();
1020 inferior_ptid = null_ptid;
1021
1022 /* This inferior is dead, so avoid giving the breakpoints
1023 module the option to write through to it (cloning a
1024 program space resets breakpoints). */
1025 inf->aspace = NULL;
1026 inf->pspace = NULL;
1027 pspace = add_program_space (maybe_new_address_space ());
1028 set_current_program_space (pspace);
1029 inf->removable = 1;
1030 inf->symfile_flags = SYMFILE_NO_READ;
1031 clone_program_space (pspace, inf->vfork_parent->pspace);
1032 inf->pspace = pspace;
1033 inf->aspace = pspace->aspace;
1034
1035 /* Put back inferior_ptid. We'll continue mourning this
1036 inferior. */
1037 do_cleanups (old_chain);
1038
1039 resume_parent = inf->vfork_parent->pid;
1040 /* Break the bonds. */
1041 inf->vfork_parent->vfork_child = NULL;
1042 }
1043
1044 inf->vfork_parent = NULL;
1045
1046 gdb_assert (current_program_space == inf->pspace);
1047
1048 if (non_stop && resume_parent != -1)
1049 {
1050 /* If the user wanted the parent to be running, let it go
1051 free now. */
1052 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1053
1054 if (debug_infrun)
1055 fprintf_unfiltered (gdb_stdlog,
1056 "infrun: resuming vfork parent process %d\n",
1057 resume_parent);
1058
1059 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1060
1061 do_cleanups (old_chain);
1062 }
1063 }
1064 }
1065
1066 /* Enum strings for "set|show follow-exec-mode". */
1067
1068 static const char follow_exec_mode_new[] = "new";
1069 static const char follow_exec_mode_same[] = "same";
1070 static const char *const follow_exec_mode_names[] =
1071 {
1072 follow_exec_mode_new,
1073 follow_exec_mode_same,
1074 NULL,
1075 };
1076
1077 static const char *follow_exec_mode_string = follow_exec_mode_same;
1078 static void
1079 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1080 struct cmd_list_element *c, const char *value)
1081 {
1082 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1083 }
1084
1085 /* EXECD_PATHNAME is assumed to be non-NULL. */
1086
1087 static void
1088 follow_exec (ptid_t ptid, char *execd_pathname)
1089 {
1090 struct thread_info *th, *tmp;
1091 struct inferior *inf = current_inferior ();
1092 int pid = ptid_get_pid (ptid);
1093 ptid_t process_ptid;
1094
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
1113 value that was overwritten witha TRAP instruction). Since
1114 we now have a new a.out, those shadow contents aren't valid. */
1115
1116 mark_breakpoints_out ();
1117
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
1137 ALL_THREADS_SAFE (th, tmp)
1138 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1139 delete_thread (th->ptid);
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
1145 th = inferior_thread ();
1146 th->control.step_resume_breakpoint = NULL;
1147 th->control.exception_resume_breakpoint = NULL;
1148 th->control.single_step_breakpoints = NULL;
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
1151
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
1155 th->stop_requested = 0;
1156
1157 update_breakpoints_after_exec ();
1158
1159 /* What is this a.out's name? */
1160 process_ptid = pid_to_ptid (pid);
1161 printf_unfiltered (_("%s is executing new program: %s\n"),
1162 target_pid_to_str (process_ptid),
1163 execd_pathname);
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1166 inferior has essentially been killed & reborn. */
1167
1168 gdb_flush (gdb_stdout);
1169
1170 breakpoint_init_inferior (inf_execd);
1171
1172 if (*gdb_sysroot != '\0')
1173 {
1174 char *name = exec_file_find (execd_pathname, NULL);
1175
1176 execd_pathname = (char *) alloca (strlen (name) + 1);
1177 strcpy (execd_pathname, name);
1178 xfree (name);
1179 }
1180
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
1201 target_follow_exec (inf, execd_pathname);
1202
1203 set_current_inferior (inf);
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
1206 }
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
1220 /* That a.out is now the one to use. */
1221 exec_file_attach (execd_pathname, 0);
1222
1223 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1224 (Position Independent Executable) main symbol file will get applied by
1225 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1226 the breakpoints with the zero displacement. */
1227
1228 symbol_file_add (execd_pathname,
1229 (inf->symfile_flags
1230 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1231 NULL, 0);
1232
1233 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1234 set_initial_language ();
1235
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
1244 solib_create_inferior_hook (0);
1245
1246 jit_inferior_created_hook ();
1247
1248 breakpoint_re_set ();
1249
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1252 to symbol_file_command...). */
1253 insert_breakpoints ();
1254
1255 /* The next resume of this inferior should bring it to the shlib
1256 startup breakpoints. (If the user had also set bp's on
1257 "main" from the old (parent) process, then they'll auto-
1258 matically get reset there in the new process.). */
1259 }
1260
1261 /* The queue of threads that need to do a step-over operation to get
1262 past e.g., a breakpoint. What technique is used to step over the
1263 breakpoint/watchpoint does not matter -- all threads end up in the
1264 same queue, to maintain rough temporal order of execution, in order
1265 to avoid starvation, otherwise, we could e.g., find ourselves
1266 constantly stepping the same couple threads past their breakpoints
1267 over and over, if the single-step finish fast enough. */
1268 struct thread_info *step_over_queue_head;
1269
1270 /* Bit flags indicating what the thread needs to step over. */
1271
1272 enum step_over_what
1273 {
1274 /* Step over a breakpoint. */
1275 STEP_OVER_BREAKPOINT = 1,
1276
1277 /* Step past a non-continuable watchpoint, in order to let the
1278 instruction execute so we can evaluate the watchpoint
1279 expression. */
1280 STEP_OVER_WATCHPOINT = 2
1281 };
1282
1283 /* Info about an instruction that is being stepped over. */
1284
1285 struct step_over_info
1286 {
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
1291 struct address_space *aspace;
1292 CORE_ADDR address;
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
1297 };
1298
1299 /* The step-over info of the location that is being stepped over.
1300
1301 Note that with async/breakpoint always-inserted mode, a user might
1302 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1303 being stepped over. As setting a new breakpoint inserts all
1304 breakpoints, we need to make sure the breakpoint being stepped over
1305 isn't inserted then. We do that by only clearing the step-over
1306 info when the step-over is actually finished (or aborted).
1307
1308 Presently GDB can only step over one breakpoint at any given time.
1309 Given threads that can't run code in the same address space as the
1310 breakpoint's can't really miss the breakpoint, GDB could be taught
1311 to step-over at most one breakpoint per address space (so this info
1312 could move to the address space object if/when GDB is extended).
1313 The set of breakpoints being stepped over will normally be much
1314 smaller than the set of all breakpoints, so a flag in the
1315 breakpoint location structure would be wasteful. A separate list
1316 also saves complexity and run-time, as otherwise we'd have to go
1317 through all breakpoint locations clearing their flag whenever we
1318 start a new sequence. Similar considerations weigh against storing
1319 this info in the thread object. Plus, not all step overs actually
1320 have breakpoint locations -- e.g., stepping past a single-step
1321 breakpoint, or stepping to complete a non-continuable
1322 watchpoint. */
1323 static struct step_over_info step_over_info;
1324
1325 /* Record the address of the breakpoint/instruction we're currently
1326 stepping over. */
1327
1328 static void
1329 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1330 int nonsteppable_watchpoint_p)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 }
1336
1337 /* Called when we're not longer stepping over a breakpoint / an
1338 instruction, so all breakpoints are free to be (re)inserted. */
1339
1340 static void
1341 clear_step_over_info (void)
1342 {
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "infrun: clear_step_over_info\n");
1346 step_over_info.aspace = NULL;
1347 step_over_info.address = 0;
1348 step_over_info.nonsteppable_watchpoint_p = 0;
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356 {
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 stepping_past_nonsteppable_watchpoint (void)
1367 {
1368 return step_over_info.nonsteppable_watchpoint_p;
1369 }
1370
1371 /* Returns true if step-over info is valid. */
1372
1373 static int
1374 step_over_info_valid_p (void)
1375 {
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
1378 }
1379
1380 \f
1381 /* Displaced stepping. */
1382
1383 /* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
1426 we have successfuly single-stepped the instruction, to yield the
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
1430 - gdbarch_displaced_step_free_closure provides cleanup.
1431
1432 The gdbarch_displaced_step_copy_insn and
1433 gdbarch_displaced_step_fixup functions must be written so that
1434 copying an instruction with gdbarch_displaced_step_copy_insn,
1435 single-stepping across the copied instruction, and then applying
1436 gdbarch_displaced_insn_fixup should have the same effects on the
1437 thread's memory and registers as stepping the instruction in place
1438 would have. Exactly which responsibilities fall to the copy and
1439 which fall to the fixup is up to the author of those functions.
1440
1441 See the comments in gdbarch.sh for details.
1442
1443 Note that displaced stepping and software single-step cannot
1444 currently be used in combination, although with some care I think
1445 they could be made to. Software single-step works by placing
1446 breakpoints on all possible subsequent instructions; if the
1447 displaced instruction is a PC-relative jump, those breakpoints
1448 could fall in very strange places --- on pages that aren't
1449 executable, or at addresses that are not proper instruction
1450 boundaries. (We do generally let other threads run while we wait
1451 to hit the software single-step breakpoint, and they might
1452 encounter such a corrupted instruction.) One way to work around
1453 this would be to have gdbarch_displaced_step_copy_insn fully
1454 simulate the effect of PC-relative instructions (and return NULL)
1455 on architectures that use software single-stepping.
1456
1457 In non-stop mode, we can have independent and simultaneous step
1458 requests, so more than one thread may need to simultaneously step
1459 over a breakpoint. The current implementation assumes there is
1460 only one scratch space per process. In this case, we have to
1461 serialize access to the scratch space. If thread A wants to step
1462 over a breakpoint, but we are currently waiting for some other
1463 thread to complete a displaced step, we leave thread A stopped and
1464 place it in the displaced_step_request_queue. Whenever a displaced
1465 step finishes, we pick the next thread in the queue and start a new
1466 displaced step operation on it. See displaced_step_prepare and
1467 displaced_step_fixup for details. */
1468
1469 /* Per-inferior displaced stepping state. */
1470 struct displaced_step_inferior_state
1471 {
1472 /* Pointer to next in linked list. */
1473 struct displaced_step_inferior_state *next;
1474
1475 /* The process this displaced step state refers to. */
1476 int pid;
1477
1478 /* True if preparing a displaced step ever failed. If so, we won't
1479 try displaced stepping for this inferior again. */
1480 int failed_before;
1481
1482 /* If this is not null_ptid, this is the thread carrying out a
1483 displaced single-step in process PID. This thread's state will
1484 require fixing up once it has completed its step. */
1485 ptid_t step_ptid;
1486
1487 /* The architecture the thread had when we stepped it. */
1488 struct gdbarch *step_gdbarch;
1489
1490 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1491 for post-step cleanup. */
1492 struct displaced_step_closure *step_closure;
1493
1494 /* The address of the original instruction, and the copy we
1495 made. */
1496 CORE_ADDR step_original, step_copy;
1497
1498 /* Saved contents of copy area. */
1499 gdb_byte *step_saved_copy;
1500 };
1501
1502 /* The list of states of processes involved in displaced stepping
1503 presently. */
1504 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1505
1506 /* Get the displaced stepping state of process PID. */
1507
1508 static struct displaced_step_inferior_state *
1509 get_displaced_stepping_state (int pid)
1510 {
1511 struct displaced_step_inferior_state *state;
1512
1513 for (state = displaced_step_inferior_states;
1514 state != NULL;
1515 state = state->next)
1516 if (state->pid == pid)
1517 return state;
1518
1519 return NULL;
1520 }
1521
1522 /* Returns true if any inferior has a thread doing a displaced
1523 step. */
1524
1525 static int
1526 displaced_step_in_progress_any_inferior (void)
1527 {
1528 struct displaced_step_inferior_state *state;
1529
1530 for (state = displaced_step_inferior_states;
1531 state != NULL;
1532 state = state->next)
1533 if (!ptid_equal (state->step_ptid, null_ptid))
1534 return 1;
1535
1536 return 0;
1537 }
1538
1539 /* Return true if process PID has a thread doing a displaced step. */
1540
1541 static int
1542 displaced_step_in_progress (int pid)
1543 {
1544 struct displaced_step_inferior_state *displaced;
1545
1546 displaced = get_displaced_stepping_state (pid);
1547 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1548 return 1;
1549
1550 return 0;
1551 }
1552
1553 /* Add a new displaced stepping state for process PID to the displaced
1554 stepping state list, or return a pointer to an already existing
1555 entry, if it already exists. Never returns NULL. */
1556
1557 static struct displaced_step_inferior_state *
1558 add_displaced_stepping_state (int pid)
1559 {
1560 struct displaced_step_inferior_state *state;
1561
1562 for (state = displaced_step_inferior_states;
1563 state != NULL;
1564 state = state->next)
1565 if (state->pid == pid)
1566 return state;
1567
1568 state = XCNEW (struct displaced_step_inferior_state);
1569 state->pid = pid;
1570 state->next = displaced_step_inferior_states;
1571 displaced_step_inferior_states = state;
1572
1573 return state;
1574 }
1575
1576 /* If inferior is in displaced stepping, and ADDR equals to starting address
1577 of copy area, return corresponding displaced_step_closure. Otherwise,
1578 return NULL. */
1579
1580 struct displaced_step_closure*
1581 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1582 {
1583 struct displaced_step_inferior_state *displaced
1584 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1585
1586 /* If checking the mode of displaced instruction in copy area. */
1587 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1588 && (displaced->step_copy == addr))
1589 return displaced->step_closure;
1590
1591 return NULL;
1592 }
1593
1594 /* Remove the displaced stepping state of process PID. */
1595
1596 static void
1597 remove_displaced_stepping_state (int pid)
1598 {
1599 struct displaced_step_inferior_state *it, **prev_next_p;
1600
1601 gdb_assert (pid != 0);
1602
1603 it = displaced_step_inferior_states;
1604 prev_next_p = &displaced_step_inferior_states;
1605 while (it)
1606 {
1607 if (it->pid == pid)
1608 {
1609 *prev_next_p = it->next;
1610 xfree (it);
1611 return;
1612 }
1613
1614 prev_next_p = &it->next;
1615 it = *prev_next_p;
1616 }
1617 }
1618
1619 static void
1620 infrun_inferior_exit (struct inferior *inf)
1621 {
1622 remove_displaced_stepping_state (inf->pid);
1623 }
1624
1625 /* If ON, and the architecture supports it, GDB will use displaced
1626 stepping to step over breakpoints. If OFF, or if the architecture
1627 doesn't support it, GDB will instead use the traditional
1628 hold-and-step approach. If AUTO (which is the default), GDB will
1629 decide which technique to use to step over breakpoints depending on
1630 which of all-stop or non-stop mode is active --- displaced stepping
1631 in non-stop mode; hold-and-step in all-stop mode. */
1632
1633 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1634
1635 static void
1636 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1637 struct cmd_list_element *c,
1638 const char *value)
1639 {
1640 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1641 fprintf_filtered (file,
1642 _("Debugger's willingness to use displaced stepping "
1643 "to step over breakpoints is %s (currently %s).\n"),
1644 value, target_is_non_stop_p () ? "on" : "off");
1645 else
1646 fprintf_filtered (file,
1647 _("Debugger's willingness to use displaced stepping "
1648 "to step over breakpoints is %s.\n"), value);
1649 }
1650
1651 /* Return non-zero if displaced stepping can/should be used to step
1652 over breakpoints of thread TP. */
1653
1654 static int
1655 use_displaced_stepping (struct thread_info *tp)
1656 {
1657 struct regcache *regcache = get_thread_regcache (tp->ptid);
1658 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1659 struct displaced_step_inferior_state *displaced_state;
1660
1661 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1662
1663 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1664 && target_is_non_stop_p ())
1665 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1666 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1667 && find_record_target () == NULL
1668 && (displaced_state == NULL
1669 || !displaced_state->failed_before));
1670 }
1671
1672 /* Clean out any stray displaced stepping state. */
1673 static void
1674 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1675 {
1676 /* Indicate that there is no cleanup pending. */
1677 displaced->step_ptid = null_ptid;
1678
1679 if (displaced->step_closure)
1680 {
1681 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1682 displaced->step_closure);
1683 displaced->step_closure = NULL;
1684 }
1685 }
1686
1687 static void
1688 displaced_step_clear_cleanup (void *arg)
1689 {
1690 struct displaced_step_inferior_state *state
1691 = (struct displaced_step_inferior_state *) arg;
1692
1693 displaced_step_clear (state);
1694 }
1695
1696 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1697 void
1698 displaced_step_dump_bytes (struct ui_file *file,
1699 const gdb_byte *buf,
1700 size_t len)
1701 {
1702 int i;
1703
1704 for (i = 0; i < len; i++)
1705 fprintf_unfiltered (file, "%02x ", buf[i]);
1706 fputs_unfiltered ("\n", file);
1707 }
1708
1709 /* Prepare to single-step, using displaced stepping.
1710
1711 Note that we cannot use displaced stepping when we have a signal to
1712 deliver. If we have a signal to deliver and an instruction to step
1713 over, then after the step, there will be no indication from the
1714 target whether the thread entered a signal handler or ignored the
1715 signal and stepped over the instruction successfully --- both cases
1716 result in a simple SIGTRAP. In the first case we mustn't do a
1717 fixup, and in the second case we must --- but we can't tell which.
1718 Comments in the code for 'random signals' in handle_inferior_event
1719 explain how we handle this case instead.
1720
1721 Returns 1 if preparing was successful -- this thread is going to be
1722 stepped now; 0 if displaced stepping this thread got queued; or -1
1723 if this instruction can't be displaced stepped. */
1724
1725 static int
1726 displaced_step_prepare_throw (ptid_t ptid)
1727 {
1728 struct cleanup *old_cleanups, *ignore_cleanups;
1729 struct thread_info *tp = find_thread_ptid (ptid);
1730 struct regcache *regcache = get_thread_regcache (ptid);
1731 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1732 struct address_space *aspace = get_regcache_aspace (regcache);
1733 CORE_ADDR original, copy;
1734 ULONGEST len;
1735 struct displaced_step_closure *closure;
1736 struct displaced_step_inferior_state *displaced;
1737 int status;
1738
1739 /* We should never reach this function if the architecture does not
1740 support displaced stepping. */
1741 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1742
1743 /* Nor if the thread isn't meant to step over a breakpoint. */
1744 gdb_assert (tp->control.trap_expected);
1745
1746 /* Disable range stepping while executing in the scratch pad. We
1747 want a single-step even if executing the displaced instruction in
1748 the scratch buffer lands within the stepping range (e.g., a
1749 jump/branch). */
1750 tp->control.may_range_step = 0;
1751
1752 /* We have to displaced step one thread at a time, as we only have
1753 access to a single scratch space per inferior. */
1754
1755 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1756
1757 if (!ptid_equal (displaced->step_ptid, null_ptid))
1758 {
1759 /* Already waiting for a displaced step to finish. Defer this
1760 request and place in queue. */
1761
1762 if (debug_displaced)
1763 fprintf_unfiltered (gdb_stdlog,
1764 "displaced: deferring step of %s\n",
1765 target_pid_to_str (ptid));
1766
1767 thread_step_over_chain_enqueue (tp);
1768 return 0;
1769 }
1770 else
1771 {
1772 if (debug_displaced)
1773 fprintf_unfiltered (gdb_stdlog,
1774 "displaced: stepping %s now\n",
1775 target_pid_to_str (ptid));
1776 }
1777
1778 displaced_step_clear (displaced);
1779
1780 old_cleanups = save_inferior_ptid ();
1781 inferior_ptid = ptid;
1782
1783 original = regcache_read_pc (regcache);
1784
1785 copy = gdbarch_displaced_step_location (gdbarch);
1786 len = gdbarch_max_insn_length (gdbarch);
1787
1788 if (breakpoint_in_range_p (aspace, copy, len))
1789 {
1790 /* There's a breakpoint set in the scratch pad location range
1791 (which is usually around the entry point). We'd either
1792 install it before resuming, which would overwrite/corrupt the
1793 scratch pad, or if it was already inserted, this displaced
1794 step would overwrite it. The latter is OK in the sense that
1795 we already assume that no thread is going to execute the code
1796 in the scratch pad range (after initial startup) anyway, but
1797 the former is unacceptable. Simply punt and fallback to
1798 stepping over this breakpoint in-line. */
1799 if (debug_displaced)
1800 {
1801 fprintf_unfiltered (gdb_stdlog,
1802 "displaced: breakpoint set in scratch pad. "
1803 "Stepping over breakpoint in-line instead.\n");
1804 }
1805
1806 do_cleanups (old_cleanups);
1807 return -1;
1808 }
1809
1810 /* Save the original contents of the copy area. */
1811 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1812 ignore_cleanups = make_cleanup (free_current_contents,
1813 &displaced->step_saved_copy);
1814 status = target_read_memory (copy, displaced->step_saved_copy, len);
1815 if (status != 0)
1816 throw_error (MEMORY_ERROR,
1817 _("Error accessing memory address %s (%s) for "
1818 "displaced-stepping scratch space."),
1819 paddress (gdbarch, copy), safe_strerror (status));
1820 if (debug_displaced)
1821 {
1822 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1823 paddress (gdbarch, copy));
1824 displaced_step_dump_bytes (gdb_stdlog,
1825 displaced->step_saved_copy,
1826 len);
1827 };
1828
1829 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1830 original, copy, regcache);
1831 if (closure == NULL)
1832 {
1833 /* The architecture doesn't know how or want to displaced step
1834 this instruction or instruction sequence. Fallback to
1835 stepping over the breakpoint in-line. */
1836 do_cleanups (old_cleanups);
1837 return -1;
1838 }
1839
1840 /* Save the information we need to fix things up if the step
1841 succeeds. */
1842 displaced->step_ptid = ptid;
1843 displaced->step_gdbarch = gdbarch;
1844 displaced->step_closure = closure;
1845 displaced->step_original = original;
1846 displaced->step_copy = copy;
1847
1848 make_cleanup (displaced_step_clear_cleanup, displaced);
1849
1850 /* Resume execution at the copy. */
1851 regcache_write_pc (regcache, copy);
1852
1853 discard_cleanups (ignore_cleanups);
1854
1855 do_cleanups (old_cleanups);
1856
1857 if (debug_displaced)
1858 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1859 paddress (gdbarch, copy));
1860
1861 return 1;
1862 }
1863
1864 /* Wrapper for displaced_step_prepare_throw that disabled further
1865 attempts at displaced stepping if we get a memory error. */
1866
1867 static int
1868 displaced_step_prepare (ptid_t ptid)
1869 {
1870 int prepared = -1;
1871
1872 TRY
1873 {
1874 prepared = displaced_step_prepare_throw (ptid);
1875 }
1876 CATCH (ex, RETURN_MASK_ERROR)
1877 {
1878 struct displaced_step_inferior_state *displaced_state;
1879
1880 if (ex.error != MEMORY_ERROR)
1881 throw_exception (ex);
1882
1883 if (debug_infrun)
1884 {
1885 fprintf_unfiltered (gdb_stdlog,
1886 "infrun: disabling displaced stepping: %s\n",
1887 ex.message);
1888 }
1889
1890 /* Be verbose if "set displaced-stepping" is "on", silent if
1891 "auto". */
1892 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1893 {
1894 warning (_("disabling displaced stepping: %s"),
1895 ex.message);
1896 }
1897
1898 /* Disable further displaced stepping attempts. */
1899 displaced_state
1900 = get_displaced_stepping_state (ptid_get_pid (ptid));
1901 displaced_state->failed_before = 1;
1902 }
1903 END_CATCH
1904
1905 return prepared;
1906 }
1907
1908 static void
1909 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1910 const gdb_byte *myaddr, int len)
1911 {
1912 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1913
1914 inferior_ptid = ptid;
1915 write_memory (memaddr, myaddr, len);
1916 do_cleanups (ptid_cleanup);
1917 }
1918
1919 /* Restore the contents of the copy area for thread PTID. */
1920
1921 static void
1922 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1923 ptid_t ptid)
1924 {
1925 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1926
1927 write_memory_ptid (ptid, displaced->step_copy,
1928 displaced->step_saved_copy, len);
1929 if (debug_displaced)
1930 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1931 target_pid_to_str (ptid),
1932 paddress (displaced->step_gdbarch,
1933 displaced->step_copy));
1934 }
1935
1936 /* If we displaced stepped an instruction successfully, adjust
1937 registers and memory to yield the same effect the instruction would
1938 have had if we had executed it at its original address, and return
1939 1. If the instruction didn't complete, relocate the PC and return
1940 -1. If the thread wasn't displaced stepping, return 0. */
1941
1942 static int
1943 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1944 {
1945 struct cleanup *old_cleanups;
1946 struct displaced_step_inferior_state *displaced
1947 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1948 int ret;
1949
1950 /* Was any thread of this process doing a displaced step? */
1951 if (displaced == NULL)
1952 return 0;
1953
1954 /* Was this event for the pid we displaced? */
1955 if (ptid_equal (displaced->step_ptid, null_ptid)
1956 || ! ptid_equal (displaced->step_ptid, event_ptid))
1957 return 0;
1958
1959 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1960
1961 displaced_step_restore (displaced, displaced->step_ptid);
1962
1963 /* Fixup may need to read memory/registers. Switch to the thread
1964 that we're fixing up. Also, target_stopped_by_watchpoint checks
1965 the current thread. */
1966 switch_to_thread (event_ptid);
1967
1968 /* Did the instruction complete successfully? */
1969 if (signal == GDB_SIGNAL_TRAP
1970 && !(target_stopped_by_watchpoint ()
1971 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1972 || target_have_steppable_watchpoint)))
1973 {
1974 /* Fix up the resulting state. */
1975 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1976 displaced->step_closure,
1977 displaced->step_original,
1978 displaced->step_copy,
1979 get_thread_regcache (displaced->step_ptid));
1980 ret = 1;
1981 }
1982 else
1983 {
1984 /* Since the instruction didn't complete, all we can do is
1985 relocate the PC. */
1986 struct regcache *regcache = get_thread_regcache (event_ptid);
1987 CORE_ADDR pc = regcache_read_pc (regcache);
1988
1989 pc = displaced->step_original + (pc - displaced->step_copy);
1990 regcache_write_pc (regcache, pc);
1991 ret = -1;
1992 }
1993
1994 do_cleanups (old_cleanups);
1995
1996 displaced->step_ptid = null_ptid;
1997
1998 return ret;
1999 }
2000
2001 /* Data to be passed around while handling an event. This data is
2002 discarded between events. */
2003 struct execution_control_state
2004 {
2005 ptid_t ptid;
2006 /* The thread that got the event, if this was a thread event; NULL
2007 otherwise. */
2008 struct thread_info *event_thread;
2009
2010 struct target_waitstatus ws;
2011 int stop_func_filled_in;
2012 CORE_ADDR stop_func_start;
2013 CORE_ADDR stop_func_end;
2014 const char *stop_func_name;
2015 int wait_some_more;
2016
2017 /* True if the event thread hit the single-step breakpoint of
2018 another thread. Thus the event doesn't cause a stop, the thread
2019 needs to be single-stepped past the single-step breakpoint before
2020 we can switch back to the original stepping thread. */
2021 int hit_singlestep_breakpoint;
2022 };
2023
2024 /* Clear ECS and set it to point at TP. */
2025
2026 static void
2027 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2028 {
2029 memset (ecs, 0, sizeof (*ecs));
2030 ecs->event_thread = tp;
2031 ecs->ptid = tp->ptid;
2032 }
2033
2034 static void keep_going_pass_signal (struct execution_control_state *ecs);
2035 static void prepare_to_wait (struct execution_control_state *ecs);
2036 static int keep_going_stepped_thread (struct thread_info *tp);
2037 static int thread_still_needs_step_over (struct thread_info *tp);
2038 static void stop_all_threads (void);
2039
2040 /* Are there any pending step-over requests? If so, run all we can
2041 now and return true. Otherwise, return false. */
2042
2043 static int
2044 start_step_over (void)
2045 {
2046 struct thread_info *tp, *next;
2047
2048 /* Don't start a new step-over if we already have an in-line
2049 step-over operation ongoing. */
2050 if (step_over_info_valid_p ())
2051 return 0;
2052
2053 for (tp = step_over_queue_head; tp != NULL; tp = next)
2054 {
2055 struct execution_control_state ecss;
2056 struct execution_control_state *ecs = &ecss;
2057 enum step_over_what step_what;
2058 int must_be_in_line;
2059
2060 next = thread_step_over_chain_next (tp);
2061
2062 /* If this inferior already has a displaced step in process,
2063 don't start a new one. */
2064 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2065 continue;
2066
2067 step_what = thread_still_needs_step_over (tp);
2068 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2069 || ((step_what & STEP_OVER_BREAKPOINT)
2070 && !use_displaced_stepping (tp)));
2071
2072 /* We currently stop all threads of all processes to step-over
2073 in-line. If we need to start a new in-line step-over, let
2074 any pending displaced steps finish first. */
2075 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2076 return 0;
2077
2078 thread_step_over_chain_remove (tp);
2079
2080 if (step_over_queue_head == NULL)
2081 {
2082 if (debug_infrun)
2083 fprintf_unfiltered (gdb_stdlog,
2084 "infrun: step-over queue now empty\n");
2085 }
2086
2087 if (tp->control.trap_expected
2088 || tp->resumed
2089 || tp->executing)
2090 {
2091 internal_error (__FILE__, __LINE__,
2092 "[%s] has inconsistent state: "
2093 "trap_expected=%d, resumed=%d, executing=%d\n",
2094 target_pid_to_str (tp->ptid),
2095 tp->control.trap_expected,
2096 tp->resumed,
2097 tp->executing);
2098 }
2099
2100 if (debug_infrun)
2101 fprintf_unfiltered (gdb_stdlog,
2102 "infrun: resuming [%s] for step-over\n",
2103 target_pid_to_str (tp->ptid));
2104
2105 /* keep_going_pass_signal skips the step-over if the breakpoint
2106 is no longer inserted. In all-stop, we want to keep looking
2107 for a thread that needs a step-over instead of resuming TP,
2108 because we wouldn't be able to resume anything else until the
2109 target stops again. In non-stop, the resume always resumes
2110 only TP, so it's OK to let the thread resume freely. */
2111 if (!target_is_non_stop_p () && !step_what)
2112 continue;
2113
2114 switch_to_thread (tp->ptid);
2115 reset_ecs (ecs, tp);
2116 keep_going_pass_signal (ecs);
2117
2118 if (!ecs->wait_some_more)
2119 error (_("Command aborted."));
2120
2121 gdb_assert (tp->resumed);
2122
2123 /* If we started a new in-line step-over, we're done. */
2124 if (step_over_info_valid_p ())
2125 {
2126 gdb_assert (tp->control.trap_expected);
2127 return 1;
2128 }
2129
2130 if (!target_is_non_stop_p ())
2131 {
2132 /* On all-stop, shouldn't have resumed unless we needed a
2133 step over. */
2134 gdb_assert (tp->control.trap_expected
2135 || tp->step_after_step_resume_breakpoint);
2136
2137 /* With remote targets (at least), in all-stop, we can't
2138 issue any further remote commands until the program stops
2139 again. */
2140 return 1;
2141 }
2142
2143 /* Either the thread no longer needed a step-over, or a new
2144 displaced stepping sequence started. Even in the latter
2145 case, continue looking. Maybe we can also start another
2146 displaced step on a thread of other process. */
2147 }
2148
2149 return 0;
2150 }
2151
2152 /* Update global variables holding ptids to hold NEW_PTID if they were
2153 holding OLD_PTID. */
2154 static void
2155 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2156 {
2157 struct displaced_step_request *it;
2158 struct displaced_step_inferior_state *displaced;
2159
2160 if (ptid_equal (inferior_ptid, old_ptid))
2161 inferior_ptid = new_ptid;
2162
2163 for (displaced = displaced_step_inferior_states;
2164 displaced;
2165 displaced = displaced->next)
2166 {
2167 if (ptid_equal (displaced->step_ptid, old_ptid))
2168 displaced->step_ptid = new_ptid;
2169 }
2170 }
2171
2172 \f
2173 /* Resuming. */
2174
2175 /* Things to clean up if we QUIT out of resume (). */
2176 static void
2177 resume_cleanups (void *ignore)
2178 {
2179 if (!ptid_equal (inferior_ptid, null_ptid))
2180 delete_single_step_breakpoints (inferior_thread ());
2181
2182 normal_stop ();
2183 }
2184
2185 static const char schedlock_off[] = "off";
2186 static const char schedlock_on[] = "on";
2187 static const char schedlock_step[] = "step";
2188 static const char schedlock_replay[] = "replay";
2189 static const char *const scheduler_enums[] = {
2190 schedlock_off,
2191 schedlock_on,
2192 schedlock_step,
2193 schedlock_replay,
2194 NULL
2195 };
2196 static const char *scheduler_mode = schedlock_replay;
2197 static void
2198 show_scheduler_mode (struct ui_file *file, int from_tty,
2199 struct cmd_list_element *c, const char *value)
2200 {
2201 fprintf_filtered (file,
2202 _("Mode for locking scheduler "
2203 "during execution is \"%s\".\n"),
2204 value);
2205 }
2206
2207 static void
2208 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2209 {
2210 if (!target_can_lock_scheduler)
2211 {
2212 scheduler_mode = schedlock_off;
2213 error (_("Target '%s' cannot support this command."), target_shortname);
2214 }
2215 }
2216
2217 /* True if execution commands resume all threads of all processes by
2218 default; otherwise, resume only threads of the current inferior
2219 process. */
2220 int sched_multi = 0;
2221
2222 /* Try to setup for software single stepping over the specified location.
2223 Return 1 if target_resume() should use hardware single step.
2224
2225 GDBARCH the current gdbarch.
2226 PC the location to step over. */
2227
2228 static int
2229 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2230 {
2231 int hw_step = 1;
2232
2233 if (execution_direction == EXEC_FORWARD
2234 && gdbarch_software_single_step_p (gdbarch)
2235 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2236 {
2237 hw_step = 0;
2238 }
2239 return hw_step;
2240 }
2241
2242 /* See infrun.h. */
2243
2244 ptid_t
2245 user_visible_resume_ptid (int step)
2246 {
2247 ptid_t resume_ptid;
2248
2249 if (non_stop)
2250 {
2251 /* With non-stop mode on, threads are always handled
2252 individually. */
2253 resume_ptid = inferior_ptid;
2254 }
2255 else if ((scheduler_mode == schedlock_on)
2256 || (scheduler_mode == schedlock_step && step))
2257 {
2258 /* User-settable 'scheduler' mode requires solo thread
2259 resume. */
2260 resume_ptid = inferior_ptid;
2261 }
2262 else if ((scheduler_mode == schedlock_replay)
2263 && target_record_will_replay (minus_one_ptid, execution_direction))
2264 {
2265 /* User-settable 'scheduler' mode requires solo thread resume in replay
2266 mode. */
2267 resume_ptid = inferior_ptid;
2268 }
2269 else if (!sched_multi && target_supports_multi_process ())
2270 {
2271 /* Resume all threads of the current process (and none of other
2272 processes). */
2273 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2274 }
2275 else
2276 {
2277 /* Resume all threads of all processes. */
2278 resume_ptid = RESUME_ALL;
2279 }
2280
2281 return resume_ptid;
2282 }
2283
2284 /* Return a ptid representing the set of threads that we will resume,
2285 in the perspective of the target, assuming run control handling
2286 does not require leaving some threads stopped (e.g., stepping past
2287 breakpoint). USER_STEP indicates whether we're about to start the
2288 target for a stepping command. */
2289
2290 static ptid_t
2291 internal_resume_ptid (int user_step)
2292 {
2293 /* In non-stop, we always control threads individually. Note that
2294 the target may always work in non-stop mode even with "set
2295 non-stop off", in which case user_visible_resume_ptid could
2296 return a wildcard ptid. */
2297 if (target_is_non_stop_p ())
2298 return inferior_ptid;
2299 else
2300 return user_visible_resume_ptid (user_step);
2301 }
2302
2303 /* Wrapper for target_resume, that handles infrun-specific
2304 bookkeeping. */
2305
2306 static void
2307 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2308 {
2309 struct thread_info *tp = inferior_thread ();
2310
2311 /* Install inferior's terminal modes. */
2312 target_terminal_inferior ();
2313
2314 /* Avoid confusing the next resume, if the next stop/resume
2315 happens to apply to another thread. */
2316 tp->suspend.stop_signal = GDB_SIGNAL_0;
2317
2318 /* Advise target which signals may be handled silently.
2319
2320 If we have removed breakpoints because we are stepping over one
2321 in-line (in any thread), we need to receive all signals to avoid
2322 accidentally skipping a breakpoint during execution of a signal
2323 handler.
2324
2325 Likewise if we're displaced stepping, otherwise a trap for a
2326 breakpoint in a signal handler might be confused with the
2327 displaced step finishing. We don't make the displaced_step_fixup
2328 step distinguish the cases instead, because:
2329
2330 - a backtrace while stopped in the signal handler would show the
2331 scratch pad as frame older than the signal handler, instead of
2332 the real mainline code.
2333
2334 - when the thread is later resumed, the signal handler would
2335 return to the scratch pad area, which would no longer be
2336 valid. */
2337 if (step_over_info_valid_p ()
2338 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2339 target_pass_signals (0, NULL);
2340 else
2341 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2342
2343 target_resume (resume_ptid, step, sig);
2344 }
2345
2346 /* Resume the inferior, but allow a QUIT. This is useful if the user
2347 wants to interrupt some lengthy single-stepping operation
2348 (for child processes, the SIGINT goes to the inferior, and so
2349 we get a SIGINT random_signal, but for remote debugging and perhaps
2350 other targets, that's not true).
2351
2352 SIG is the signal to give the inferior (zero for none). */
2353 void
2354 resume (enum gdb_signal sig)
2355 {
2356 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2357 struct regcache *regcache = get_current_regcache ();
2358 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2359 struct thread_info *tp = inferior_thread ();
2360 CORE_ADDR pc = regcache_read_pc (regcache);
2361 struct address_space *aspace = get_regcache_aspace (regcache);
2362 ptid_t resume_ptid;
2363 /* This represents the user's step vs continue request. When
2364 deciding whether "set scheduler-locking step" applies, it's the
2365 user's intention that counts. */
2366 const int user_step = tp->control.stepping_command;
2367 /* This represents what we'll actually request the target to do.
2368 This can decay from a step to a continue, if e.g., we need to
2369 implement single-stepping with breakpoints (software
2370 single-step). */
2371 int step;
2372
2373 gdb_assert (!thread_is_in_step_over_chain (tp));
2374
2375 QUIT;
2376
2377 if (tp->suspend.waitstatus_pending_p)
2378 {
2379 if (debug_infrun)
2380 {
2381 char *statstr;
2382
2383 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2384 fprintf_unfiltered (gdb_stdlog,
2385 "infrun: resume: thread %s has pending wait status %s "
2386 "(currently_stepping=%d).\n",
2387 target_pid_to_str (tp->ptid), statstr,
2388 currently_stepping (tp));
2389 xfree (statstr);
2390 }
2391
2392 tp->resumed = 1;
2393
2394 /* FIXME: What should we do if we are supposed to resume this
2395 thread with a signal? Maybe we should maintain a queue of
2396 pending signals to deliver. */
2397 if (sig != GDB_SIGNAL_0)
2398 {
2399 warning (_("Couldn't deliver signal %s to %s."),
2400 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2401 }
2402
2403 tp->suspend.stop_signal = GDB_SIGNAL_0;
2404 discard_cleanups (old_cleanups);
2405
2406 if (target_can_async_p ())
2407 target_async (1);
2408 return;
2409 }
2410
2411 tp->stepped_breakpoint = 0;
2412
2413 /* Depends on stepped_breakpoint. */
2414 step = currently_stepping (tp);
2415
2416 if (current_inferior ()->waiting_for_vfork_done)
2417 {
2418 /* Don't try to single-step a vfork parent that is waiting for
2419 the child to get out of the shared memory region (by exec'ing
2420 or exiting). This is particularly important on software
2421 single-step archs, as the child process would trip on the
2422 software single step breakpoint inserted for the parent
2423 process. Since the parent will not actually execute any
2424 instruction until the child is out of the shared region (such
2425 are vfork's semantics), it is safe to simply continue it.
2426 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2427 the parent, and tell it to `keep_going', which automatically
2428 re-sets it stepping. */
2429 if (debug_infrun)
2430 fprintf_unfiltered (gdb_stdlog,
2431 "infrun: resume : clear step\n");
2432 step = 0;
2433 }
2434
2435 if (debug_infrun)
2436 fprintf_unfiltered (gdb_stdlog,
2437 "infrun: resume (step=%d, signal=%s), "
2438 "trap_expected=%d, current thread [%s] at %s\n",
2439 step, gdb_signal_to_symbol_string (sig),
2440 tp->control.trap_expected,
2441 target_pid_to_str (inferior_ptid),
2442 paddress (gdbarch, pc));
2443
2444 /* Normally, by the time we reach `resume', the breakpoints are either
2445 removed or inserted, as appropriate. The exception is if we're sitting
2446 at a permanent breakpoint; we need to step over it, but permanent
2447 breakpoints can't be removed. So we have to test for it here. */
2448 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2449 {
2450 if (sig != GDB_SIGNAL_0)
2451 {
2452 /* We have a signal to pass to the inferior. The resume
2453 may, or may not take us to the signal handler. If this
2454 is a step, we'll need to stop in the signal handler, if
2455 there's one, (if the target supports stepping into
2456 handlers), or in the next mainline instruction, if
2457 there's no handler. If this is a continue, we need to be
2458 sure to run the handler with all breakpoints inserted.
2459 In all cases, set a breakpoint at the current address
2460 (where the handler returns to), and once that breakpoint
2461 is hit, resume skipping the permanent breakpoint. If
2462 that breakpoint isn't hit, then we've stepped into the
2463 signal handler (or hit some other event). We'll delete
2464 the step-resume breakpoint then. */
2465
2466 if (debug_infrun)
2467 fprintf_unfiltered (gdb_stdlog,
2468 "infrun: resume: skipping permanent breakpoint, "
2469 "deliver signal first\n");
2470
2471 clear_step_over_info ();
2472 tp->control.trap_expected = 0;
2473
2474 if (tp->control.step_resume_breakpoint == NULL)
2475 {
2476 /* Set a "high-priority" step-resume, as we don't want
2477 user breakpoints at PC to trigger (again) when this
2478 hits. */
2479 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2480 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2481
2482 tp->step_after_step_resume_breakpoint = step;
2483 }
2484
2485 insert_breakpoints ();
2486 }
2487 else
2488 {
2489 /* There's no signal to pass, we can go ahead and skip the
2490 permanent breakpoint manually. */
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint\n");
2494 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2495 /* Update pc to reflect the new address from which we will
2496 execute instructions. */
2497 pc = regcache_read_pc (regcache);
2498
2499 if (step)
2500 {
2501 /* We've already advanced the PC, so the stepping part
2502 is done. Now we need to arrange for a trap to be
2503 reported to handle_inferior_event. Set a breakpoint
2504 at the current PC, and run to it. Don't update
2505 prev_pc, because if we end in
2506 switch_back_to_stepped_thread, we want the "expected
2507 thread advanced also" branch to be taken. IOW, we
2508 don't want this thread to step further from PC
2509 (overstep). */
2510 gdb_assert (!step_over_info_valid_p ());
2511 insert_single_step_breakpoint (gdbarch, aspace, pc);
2512 insert_breakpoints ();
2513
2514 resume_ptid = internal_resume_ptid (user_step);
2515 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2516 discard_cleanups (old_cleanups);
2517 tp->resumed = 1;
2518 return;
2519 }
2520 }
2521 }
2522
2523 /* If we have a breakpoint to step over, make sure to do a single
2524 step only. Same if we have software watchpoints. */
2525 if (tp->control.trap_expected || bpstat_should_step ())
2526 tp->control.may_range_step = 0;
2527
2528 /* If enabled, step over breakpoints by executing a copy of the
2529 instruction at a different address.
2530
2531 We can't use displaced stepping when we have a signal to deliver;
2532 the comments for displaced_step_prepare explain why. The
2533 comments in the handle_inferior event for dealing with 'random
2534 signals' explain what we do instead.
2535
2536 We can't use displaced stepping when we are waiting for vfork_done
2537 event, displaced stepping breaks the vfork child similarly as single
2538 step software breakpoint. */
2539 if (tp->control.trap_expected
2540 && use_displaced_stepping (tp)
2541 && !step_over_info_valid_p ()
2542 && sig == GDB_SIGNAL_0
2543 && !current_inferior ()->waiting_for_vfork_done)
2544 {
2545 int prepared = displaced_step_prepare (inferior_ptid);
2546
2547 if (prepared == 0)
2548 {
2549 if (debug_infrun)
2550 fprintf_unfiltered (gdb_stdlog,
2551 "Got placed in step-over queue\n");
2552
2553 tp->control.trap_expected = 0;
2554 discard_cleanups (old_cleanups);
2555 return;
2556 }
2557 else if (prepared < 0)
2558 {
2559 /* Fallback to stepping over the breakpoint in-line. */
2560
2561 if (target_is_non_stop_p ())
2562 stop_all_threads ();
2563
2564 set_step_over_info (get_regcache_aspace (regcache),
2565 regcache_read_pc (regcache), 0);
2566
2567 step = maybe_software_singlestep (gdbarch, pc);
2568
2569 insert_breakpoints ();
2570 }
2571 else if (prepared > 0)
2572 {
2573 struct displaced_step_inferior_state *displaced;
2574
2575 /* Update pc to reflect the new address from which we will
2576 execute instructions due to displaced stepping. */
2577 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2578
2579 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2580 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2581 displaced->step_closure);
2582 }
2583 }
2584
2585 /* Do we need to do it the hard way, w/temp breakpoints? */
2586 else if (step)
2587 step = maybe_software_singlestep (gdbarch, pc);
2588
2589 /* Currently, our software single-step implementation leads to different
2590 results than hardware single-stepping in one situation: when stepping
2591 into delivering a signal which has an associated signal handler,
2592 hardware single-step will stop at the first instruction of the handler,
2593 while software single-step will simply skip execution of the handler.
2594
2595 For now, this difference in behavior is accepted since there is no
2596 easy way to actually implement single-stepping into a signal handler
2597 without kernel support.
2598
2599 However, there is one scenario where this difference leads to follow-on
2600 problems: if we're stepping off a breakpoint by removing all breakpoints
2601 and then single-stepping. In this case, the software single-step
2602 behavior means that even if there is a *breakpoint* in the signal
2603 handler, GDB still would not stop.
2604
2605 Fortunately, we can at least fix this particular issue. We detect
2606 here the case where we are about to deliver a signal while software
2607 single-stepping with breakpoints removed. In this situation, we
2608 revert the decisions to remove all breakpoints and insert single-
2609 step breakpoints, and instead we install a step-resume breakpoint
2610 at the current address, deliver the signal without stepping, and
2611 once we arrive back at the step-resume breakpoint, actually step
2612 over the breakpoint we originally wanted to step over. */
2613 if (thread_has_single_step_breakpoints_set (tp)
2614 && sig != GDB_SIGNAL_0
2615 && step_over_info_valid_p ())
2616 {
2617 /* If we have nested signals or a pending signal is delivered
2618 immediately after a handler returns, might might already have
2619 a step-resume breakpoint set on the earlier handler. We cannot
2620 set another step-resume breakpoint; just continue on until the
2621 original breakpoint is hit. */
2622 if (tp->control.step_resume_breakpoint == NULL)
2623 {
2624 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2625 tp->step_after_step_resume_breakpoint = 1;
2626 }
2627
2628 delete_single_step_breakpoints (tp);
2629
2630 clear_step_over_info ();
2631 tp->control.trap_expected = 0;
2632
2633 insert_breakpoints ();
2634 }
2635
2636 /* If STEP is set, it's a request to use hardware stepping
2637 facilities. But in that case, we should never
2638 use singlestep breakpoint. */
2639 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2640
2641 /* Decide the set of threads to ask the target to resume. */
2642 if ((step || thread_has_single_step_breakpoints_set (tp))
2643 && tp->control.trap_expected)
2644 {
2645 /* We're allowing a thread to run past a breakpoint it has
2646 hit, by single-stepping the thread with the breakpoint
2647 removed. In which case, we need to single-step only this
2648 thread, and keep others stopped, as they can miss this
2649 breakpoint if allowed to run. */
2650 resume_ptid = inferior_ptid;
2651 }
2652 else
2653 resume_ptid = internal_resume_ptid (user_step);
2654
2655 if (execution_direction != EXEC_REVERSE
2656 && step && breakpoint_inserted_here_p (aspace, pc))
2657 {
2658 /* There are two cases where we currently need to step a
2659 breakpoint instruction when we have a signal to deliver:
2660
2661 - See handle_signal_stop where we handle random signals that
2662 could take out us out of the stepping range. Normally, in
2663 that case we end up continuing (instead of stepping) over the
2664 signal handler with a breakpoint at PC, but there are cases
2665 where we should _always_ single-step, even if we have a
2666 step-resume breakpoint, like when a software watchpoint is
2667 set. Assuming single-stepping and delivering a signal at the
2668 same time would takes us to the signal handler, then we could
2669 have removed the breakpoint at PC to step over it. However,
2670 some hardware step targets (like e.g., Mac OS) can't step
2671 into signal handlers, and for those, we need to leave the
2672 breakpoint at PC inserted, as otherwise if the handler
2673 recurses and executes PC again, it'll miss the breakpoint.
2674 So we leave the breakpoint inserted anyway, but we need to
2675 record that we tried to step a breakpoint instruction, so
2676 that adjust_pc_after_break doesn't end up confused.
2677
2678 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2679 in one thread after another thread that was stepping had been
2680 momentarily paused for a step-over. When we re-resume the
2681 stepping thread, it may be resumed from that address with a
2682 breakpoint that hasn't trapped yet. Seen with
2683 gdb.threads/non-stop-fair-events.exp, on targets that don't
2684 do displaced stepping. */
2685
2686 if (debug_infrun)
2687 fprintf_unfiltered (gdb_stdlog,
2688 "infrun: resume: [%s] stepped breakpoint\n",
2689 target_pid_to_str (tp->ptid));
2690
2691 tp->stepped_breakpoint = 1;
2692
2693 /* Most targets can step a breakpoint instruction, thus
2694 executing it normally. But if this one cannot, just
2695 continue and we will hit it anyway. */
2696 if (gdbarch_cannot_step_breakpoint (gdbarch))
2697 step = 0;
2698 }
2699
2700 if (debug_displaced
2701 && tp->control.trap_expected
2702 && use_displaced_stepping (tp)
2703 && !step_over_info_valid_p ())
2704 {
2705 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2706 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2707 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2708 gdb_byte buf[4];
2709
2710 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2711 paddress (resume_gdbarch, actual_pc));
2712 read_memory (actual_pc, buf, sizeof (buf));
2713 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2714 }
2715
2716 if (tp->control.may_range_step)
2717 {
2718 /* If we're resuming a thread with the PC out of the step
2719 range, then we're doing some nested/finer run control
2720 operation, like stepping the thread out of the dynamic
2721 linker or the displaced stepping scratch pad. We
2722 shouldn't have allowed a range step then. */
2723 gdb_assert (pc_in_thread_step_range (pc, tp));
2724 }
2725
2726 do_target_resume (resume_ptid, step, sig);
2727 tp->resumed = 1;
2728 discard_cleanups (old_cleanups);
2729 }
2730 \f
2731 /* Proceeding. */
2732
2733 /* See infrun.h. */
2734
2735 /* Counter that tracks number of user visible stops. This can be used
2736 to tell whether a command has proceeded the inferior past the
2737 current location. This allows e.g., inferior function calls in
2738 breakpoint commands to not interrupt the command list. When the
2739 call finishes successfully, the inferior is standing at the same
2740 breakpoint as if nothing happened (and so we don't call
2741 normal_stop). */
2742 static ULONGEST current_stop_id;
2743
2744 /* See infrun.h. */
2745
2746 ULONGEST
2747 get_stop_id (void)
2748 {
2749 return current_stop_id;
2750 }
2751
2752 /* Called when we report a user visible stop. */
2753
2754 static void
2755 new_stop_id (void)
2756 {
2757 current_stop_id++;
2758 }
2759
2760 /* Clear out all variables saying what to do when inferior is continued.
2761 First do this, then set the ones you want, then call `proceed'. */
2762
2763 static void
2764 clear_proceed_status_thread (struct thread_info *tp)
2765 {
2766 if (debug_infrun)
2767 fprintf_unfiltered (gdb_stdlog,
2768 "infrun: clear_proceed_status_thread (%s)\n",
2769 target_pid_to_str (tp->ptid));
2770
2771 /* If we're starting a new sequence, then the previous finished
2772 single-step is no longer relevant. */
2773 if (tp->suspend.waitstatus_pending_p)
2774 {
2775 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2776 {
2777 if (debug_infrun)
2778 fprintf_unfiltered (gdb_stdlog,
2779 "infrun: clear_proceed_status: pending "
2780 "event of %s was a finished step. "
2781 "Discarding.\n",
2782 target_pid_to_str (tp->ptid));
2783
2784 tp->suspend.waitstatus_pending_p = 0;
2785 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2786 }
2787 else if (debug_infrun)
2788 {
2789 char *statstr;
2790
2791 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2792 fprintf_unfiltered (gdb_stdlog,
2793 "infrun: clear_proceed_status_thread: thread %s "
2794 "has pending wait status %s "
2795 "(currently_stepping=%d).\n",
2796 target_pid_to_str (tp->ptid), statstr,
2797 currently_stepping (tp));
2798 xfree (statstr);
2799 }
2800 }
2801
2802 /* If this signal should not be seen by program, give it zero.
2803 Used for debugging signals. */
2804 if (!signal_pass_state (tp->suspend.stop_signal))
2805 tp->suspend.stop_signal = GDB_SIGNAL_0;
2806
2807 thread_fsm_delete (tp->thread_fsm);
2808 tp->thread_fsm = NULL;
2809
2810 tp->control.trap_expected = 0;
2811 tp->control.step_range_start = 0;
2812 tp->control.step_range_end = 0;
2813 tp->control.may_range_step = 0;
2814 tp->control.step_frame_id = null_frame_id;
2815 tp->control.step_stack_frame_id = null_frame_id;
2816 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2817 tp->control.step_start_function = NULL;
2818 tp->stop_requested = 0;
2819
2820 tp->control.stop_step = 0;
2821
2822 tp->control.proceed_to_finish = 0;
2823
2824 tp->control.command_interp = NULL;
2825 tp->control.stepping_command = 0;
2826
2827 /* Discard any remaining commands or status from previous stop. */
2828 bpstat_clear (&tp->control.stop_bpstat);
2829 }
2830
2831 void
2832 clear_proceed_status (int step)
2833 {
2834 /* With scheduler-locking replay, stop replaying other threads if we're
2835 not replaying the user-visible resume ptid.
2836
2837 This is a convenience feature to not require the user to explicitly
2838 stop replaying the other threads. We're assuming that the user's
2839 intent is to resume tracing the recorded process. */
2840 if (!non_stop && scheduler_mode == schedlock_replay
2841 && target_record_is_replaying (minus_one_ptid)
2842 && !target_record_will_replay (user_visible_resume_ptid (step),
2843 execution_direction))
2844 target_record_stop_replaying ();
2845
2846 if (!non_stop)
2847 {
2848 struct thread_info *tp;
2849 ptid_t resume_ptid;
2850
2851 resume_ptid = user_visible_resume_ptid (step);
2852
2853 /* In all-stop mode, delete the per-thread status of all threads
2854 we're about to resume, implicitly and explicitly. */
2855 ALL_NON_EXITED_THREADS (tp)
2856 {
2857 if (!ptid_match (tp->ptid, resume_ptid))
2858 continue;
2859 clear_proceed_status_thread (tp);
2860 }
2861 }
2862
2863 if (!ptid_equal (inferior_ptid, null_ptid))
2864 {
2865 struct inferior *inferior;
2866
2867 if (non_stop)
2868 {
2869 /* If in non-stop mode, only delete the per-thread status of
2870 the current thread. */
2871 clear_proceed_status_thread (inferior_thread ());
2872 }
2873
2874 inferior = current_inferior ();
2875 inferior->control.stop_soon = NO_STOP_QUIETLY;
2876 }
2877
2878 observer_notify_about_to_proceed ();
2879 }
2880
2881 /* Returns true if TP is still stopped at a breakpoint that needs
2882 stepping-over in order to make progress. If the breakpoint is gone
2883 meanwhile, we can skip the whole step-over dance. */
2884
2885 static int
2886 thread_still_needs_step_over_bp (struct thread_info *tp)
2887 {
2888 if (tp->stepping_over_breakpoint)
2889 {
2890 struct regcache *regcache = get_thread_regcache (tp->ptid);
2891
2892 if (breakpoint_here_p (get_regcache_aspace (regcache),
2893 regcache_read_pc (regcache))
2894 == ordinary_breakpoint_here)
2895 return 1;
2896
2897 tp->stepping_over_breakpoint = 0;
2898 }
2899
2900 return 0;
2901 }
2902
2903 /* Check whether thread TP still needs to start a step-over in order
2904 to make progress when resumed. Returns an bitwise or of enum
2905 step_over_what bits, indicating what needs to be stepped over. */
2906
2907 static int
2908 thread_still_needs_step_over (struct thread_info *tp)
2909 {
2910 struct inferior *inf = find_inferior_ptid (tp->ptid);
2911 int what = 0;
2912
2913 if (thread_still_needs_step_over_bp (tp))
2914 what |= STEP_OVER_BREAKPOINT;
2915
2916 if (tp->stepping_over_watchpoint
2917 && !target_have_steppable_watchpoint)
2918 what |= STEP_OVER_WATCHPOINT;
2919
2920 return what;
2921 }
2922
2923 /* Returns true if scheduler locking applies. STEP indicates whether
2924 we're about to do a step/next-like command to a thread. */
2925
2926 static int
2927 schedlock_applies (struct thread_info *tp)
2928 {
2929 return (scheduler_mode == schedlock_on
2930 || (scheduler_mode == schedlock_step
2931 && tp->control.stepping_command)
2932 || (scheduler_mode == schedlock_replay
2933 && target_record_will_replay (minus_one_ptid,
2934 execution_direction)));
2935 }
2936
2937 /* Basic routine for continuing the program in various fashions.
2938
2939 ADDR is the address to resume at, or -1 for resume where stopped.
2940 SIGGNAL is the signal to give it, or 0 for none,
2941 or -1 for act according to how it stopped.
2942 STEP is nonzero if should trap after one instruction.
2943 -1 means return after that and print nothing.
2944 You should probably set various step_... variables
2945 before calling here, if you are stepping.
2946
2947 You should call clear_proceed_status before calling proceed. */
2948
2949 void
2950 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2951 {
2952 struct regcache *regcache;
2953 struct gdbarch *gdbarch;
2954 struct thread_info *tp;
2955 CORE_ADDR pc;
2956 struct address_space *aspace;
2957 ptid_t resume_ptid;
2958 struct execution_control_state ecss;
2959 struct execution_control_state *ecs = &ecss;
2960 struct cleanup *old_chain;
2961 int started;
2962
2963 /* If we're stopped at a fork/vfork, follow the branch set by the
2964 "set follow-fork-mode" command; otherwise, we'll just proceed
2965 resuming the current thread. */
2966 if (!follow_fork ())
2967 {
2968 /* The target for some reason decided not to resume. */
2969 normal_stop ();
2970 if (target_can_async_p ())
2971 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2972 return;
2973 }
2974
2975 /* We'll update this if & when we switch to a new thread. */
2976 previous_inferior_ptid = inferior_ptid;
2977
2978 regcache = get_current_regcache ();
2979 gdbarch = get_regcache_arch (regcache);
2980 aspace = get_regcache_aspace (regcache);
2981 pc = regcache_read_pc (regcache);
2982 tp = inferior_thread ();
2983
2984 /* Fill in with reasonable starting values. */
2985 init_thread_stepping_state (tp);
2986
2987 gdb_assert (!thread_is_in_step_over_chain (tp));
2988
2989 if (addr == (CORE_ADDR) -1)
2990 {
2991 if (pc == stop_pc
2992 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2993 && execution_direction != EXEC_REVERSE)
2994 /* There is a breakpoint at the address we will resume at,
2995 step one instruction before inserting breakpoints so that
2996 we do not stop right away (and report a second hit at this
2997 breakpoint).
2998
2999 Note, we don't do this in reverse, because we won't
3000 actually be executing the breakpoint insn anyway.
3001 We'll be (un-)executing the previous instruction. */
3002 tp->stepping_over_breakpoint = 1;
3003 else if (gdbarch_single_step_through_delay_p (gdbarch)
3004 && gdbarch_single_step_through_delay (gdbarch,
3005 get_current_frame ()))
3006 /* We stepped onto an instruction that needs to be stepped
3007 again before re-inserting the breakpoint, do so. */
3008 tp->stepping_over_breakpoint = 1;
3009 }
3010 else
3011 {
3012 regcache_write_pc (regcache, addr);
3013 }
3014
3015 if (siggnal != GDB_SIGNAL_DEFAULT)
3016 tp->suspend.stop_signal = siggnal;
3017
3018 /* Record the interpreter that issued the execution command that
3019 caused this thread to resume. If the top level interpreter is
3020 MI/async, and the execution command was a CLI command
3021 (next/step/etc.), we'll want to print stop event output to the MI
3022 console channel (the stepped-to line, etc.), as if the user
3023 entered the execution command on a real GDB console. */
3024 tp->control.command_interp = command_interp ();
3025
3026 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3027
3028 /* If an exception is thrown from this point on, make sure to
3029 propagate GDB's knowledge of the executing state to the
3030 frontend/user running state. */
3031 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3032
3033 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3034 threads (e.g., we might need to set threads stepping over
3035 breakpoints first), from the user/frontend's point of view, all
3036 threads in RESUME_PTID are now running. Unless we're calling an
3037 inferior function, as in that case we pretend the inferior
3038 doesn't run at all. */
3039 if (!tp->control.in_infcall)
3040 set_running (resume_ptid, 1);
3041
3042 if (debug_infrun)
3043 fprintf_unfiltered (gdb_stdlog,
3044 "infrun: proceed (addr=%s, signal=%s)\n",
3045 paddress (gdbarch, addr),
3046 gdb_signal_to_symbol_string (siggnal));
3047
3048 annotate_starting ();
3049
3050 /* Make sure that output from GDB appears before output from the
3051 inferior. */
3052 gdb_flush (gdb_stdout);
3053
3054 /* In a multi-threaded task we may select another thread and
3055 then continue or step.
3056
3057 But if a thread that we're resuming had stopped at a breakpoint,
3058 it will immediately cause another breakpoint stop without any
3059 execution (i.e. it will report a breakpoint hit incorrectly). So
3060 we must step over it first.
3061
3062 Look for threads other than the current (TP) that reported a
3063 breakpoint hit and haven't been resumed yet since. */
3064
3065 /* If scheduler locking applies, we can avoid iterating over all
3066 threads. */
3067 if (!non_stop && !schedlock_applies (tp))
3068 {
3069 struct thread_info *current = tp;
3070
3071 ALL_NON_EXITED_THREADS (tp)
3072 {
3073 /* Ignore the current thread here. It's handled
3074 afterwards. */
3075 if (tp == current)
3076 continue;
3077
3078 /* Ignore threads of processes we're not resuming. */
3079 if (!ptid_match (tp->ptid, resume_ptid))
3080 continue;
3081
3082 if (!thread_still_needs_step_over (tp))
3083 continue;
3084
3085 gdb_assert (!thread_is_in_step_over_chain (tp));
3086
3087 if (debug_infrun)
3088 fprintf_unfiltered (gdb_stdlog,
3089 "infrun: need to step-over [%s] first\n",
3090 target_pid_to_str (tp->ptid));
3091
3092 thread_step_over_chain_enqueue (tp);
3093 }
3094
3095 tp = current;
3096 }
3097
3098 /* Enqueue the current thread last, so that we move all other
3099 threads over their breakpoints first. */
3100 if (tp->stepping_over_breakpoint)
3101 thread_step_over_chain_enqueue (tp);
3102
3103 /* If the thread isn't started, we'll still need to set its prev_pc,
3104 so that switch_back_to_stepped_thread knows the thread hasn't
3105 advanced. Must do this before resuming any thread, as in
3106 all-stop/remote, once we resume we can't send any other packet
3107 until the target stops again. */
3108 tp->prev_pc = regcache_read_pc (regcache);
3109
3110 started = start_step_over ();
3111
3112 if (step_over_info_valid_p ())
3113 {
3114 /* Either this thread started a new in-line step over, or some
3115 other thread was already doing one. In either case, don't
3116 resume anything else until the step-over is finished. */
3117 }
3118 else if (started && !target_is_non_stop_p ())
3119 {
3120 /* A new displaced stepping sequence was started. In all-stop,
3121 we can't talk to the target anymore until it next stops. */
3122 }
3123 else if (!non_stop && target_is_non_stop_p ())
3124 {
3125 /* In all-stop, but the target is always in non-stop mode.
3126 Start all other threads that are implicitly resumed too. */
3127 ALL_NON_EXITED_THREADS (tp)
3128 {
3129 /* Ignore threads of processes we're not resuming. */
3130 if (!ptid_match (tp->ptid, resume_ptid))
3131 continue;
3132
3133 if (tp->resumed)
3134 {
3135 if (debug_infrun)
3136 fprintf_unfiltered (gdb_stdlog,
3137 "infrun: proceed: [%s] resumed\n",
3138 target_pid_to_str (tp->ptid));
3139 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3140 continue;
3141 }
3142
3143 if (thread_is_in_step_over_chain (tp))
3144 {
3145 if (debug_infrun)
3146 fprintf_unfiltered (gdb_stdlog,
3147 "infrun: proceed: [%s] needs step-over\n",
3148 target_pid_to_str (tp->ptid));
3149 continue;
3150 }
3151
3152 if (debug_infrun)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "infrun: proceed: resuming %s\n",
3155 target_pid_to_str (tp->ptid));
3156
3157 reset_ecs (ecs, tp);
3158 switch_to_thread (tp->ptid);
3159 keep_going_pass_signal (ecs);
3160 if (!ecs->wait_some_more)
3161 error (_("Command aborted."));
3162 }
3163 }
3164 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3165 {
3166 /* The thread wasn't started, and isn't queued, run it now. */
3167 reset_ecs (ecs, tp);
3168 switch_to_thread (tp->ptid);
3169 keep_going_pass_signal (ecs);
3170 if (!ecs->wait_some_more)
3171 error (_("Command aborted."));
3172 }
3173
3174 discard_cleanups (old_chain);
3175
3176 /* Tell the event loop to wait for it to stop. If the target
3177 supports asynchronous execution, it'll do this from within
3178 target_resume. */
3179 if (!target_can_async_p ())
3180 mark_async_event_handler (infrun_async_inferior_event_token);
3181 }
3182 \f
3183
3184 /* Start remote-debugging of a machine over a serial link. */
3185
3186 void
3187 start_remote (int from_tty)
3188 {
3189 struct inferior *inferior;
3190
3191 inferior = current_inferior ();
3192 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3193
3194 /* Always go on waiting for the target, regardless of the mode. */
3195 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3196 indicate to wait_for_inferior that a target should timeout if
3197 nothing is returned (instead of just blocking). Because of this,
3198 targets expecting an immediate response need to, internally, set
3199 things up so that the target_wait() is forced to eventually
3200 timeout. */
3201 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3202 differentiate to its caller what the state of the target is after
3203 the initial open has been performed. Here we're assuming that
3204 the target has stopped. It should be possible to eventually have
3205 target_open() return to the caller an indication that the target
3206 is currently running and GDB state should be set to the same as
3207 for an async run. */
3208 wait_for_inferior ();
3209
3210 /* Now that the inferior has stopped, do any bookkeeping like
3211 loading shared libraries. We want to do this before normal_stop,
3212 so that the displayed frame is up to date. */
3213 post_create_inferior (&current_target, from_tty);
3214
3215 normal_stop ();
3216 }
3217
3218 /* Initialize static vars when a new inferior begins. */
3219
3220 void
3221 init_wait_for_inferior (void)
3222 {
3223 /* These are meaningless until the first time through wait_for_inferior. */
3224
3225 breakpoint_init_inferior (inf_starting);
3226
3227 clear_proceed_status (0);
3228
3229 target_last_wait_ptid = minus_one_ptid;
3230
3231 previous_inferior_ptid = inferior_ptid;
3232
3233 /* Discard any skipped inlined frames. */
3234 clear_inline_frame_state (minus_one_ptid);
3235 }
3236
3237 \f
3238
3239 static void handle_inferior_event (struct execution_control_state *ecs);
3240
3241 static void handle_step_into_function (struct gdbarch *gdbarch,
3242 struct execution_control_state *ecs);
3243 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3244 struct execution_control_state *ecs);
3245 static void handle_signal_stop (struct execution_control_state *ecs);
3246 static void check_exception_resume (struct execution_control_state *,
3247 struct frame_info *);
3248
3249 static void end_stepping_range (struct execution_control_state *ecs);
3250 static void stop_waiting (struct execution_control_state *ecs);
3251 static void keep_going (struct execution_control_state *ecs);
3252 static void process_event_stop_test (struct execution_control_state *ecs);
3253 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3254
3255 /* Callback for iterate over threads. If the thread is stopped, but
3256 the user/frontend doesn't know about that yet, go through
3257 normal_stop, as if the thread had just stopped now. ARG points at
3258 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3259 ptid_is_pid(PTID) is true, applies to all threads of the process
3260 pointed at by PTID. Otherwise, apply only to the thread pointed by
3261 PTID. */
3262
3263 static int
3264 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3265 {
3266 ptid_t ptid = * (ptid_t *) arg;
3267
3268 if ((ptid_equal (info->ptid, ptid)
3269 || ptid_equal (minus_one_ptid, ptid)
3270 || (ptid_is_pid (ptid)
3271 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3272 && is_running (info->ptid)
3273 && !is_executing (info->ptid))
3274 {
3275 struct cleanup *old_chain;
3276 struct execution_control_state ecss;
3277 struct execution_control_state *ecs = &ecss;
3278
3279 memset (ecs, 0, sizeof (*ecs));
3280
3281 old_chain = make_cleanup_restore_current_thread ();
3282
3283 overlay_cache_invalid = 1;
3284 /* Flush target cache before starting to handle each event.
3285 Target was running and cache could be stale. This is just a
3286 heuristic. Running threads may modify target memory, but we
3287 don't get any event. */
3288 target_dcache_invalidate ();
3289
3290 /* Go through handle_inferior_event/normal_stop, so we always
3291 have consistent output as if the stop event had been
3292 reported. */
3293 ecs->ptid = info->ptid;
3294 ecs->event_thread = info;
3295 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3296 ecs->ws.value.sig = GDB_SIGNAL_0;
3297
3298 handle_inferior_event (ecs);
3299
3300 if (!ecs->wait_some_more)
3301 {
3302 /* Cancel any running execution command. */
3303 thread_cancel_execution_command (info);
3304
3305 normal_stop ();
3306 }
3307
3308 do_cleanups (old_chain);
3309 }
3310
3311 return 0;
3312 }
3313
3314 /* This function is attached as a "thread_stop_requested" observer.
3315 Cleanup local state that assumed the PTID was to be resumed, and
3316 report the stop to the frontend. */
3317
3318 static void
3319 infrun_thread_stop_requested (ptid_t ptid)
3320 {
3321 struct thread_info *tp;
3322
3323 /* PTID was requested to stop. Remove matching threads from the
3324 step-over queue, so we don't try to resume them
3325 automatically. */
3326 ALL_NON_EXITED_THREADS (tp)
3327 if (ptid_match (tp->ptid, ptid))
3328 {
3329 if (thread_is_in_step_over_chain (tp))
3330 thread_step_over_chain_remove (tp);
3331 }
3332
3333 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3334 }
3335
3336 static void
3337 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3338 {
3339 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3340 nullify_last_target_wait_ptid ();
3341 }
3342
3343 /* Delete the step resume, single-step and longjmp/exception resume
3344 breakpoints of TP. */
3345
3346 static void
3347 delete_thread_infrun_breakpoints (struct thread_info *tp)
3348 {
3349 delete_step_resume_breakpoint (tp);
3350 delete_exception_resume_breakpoint (tp);
3351 delete_single_step_breakpoints (tp);
3352 }
3353
3354 /* If the target still has execution, call FUNC for each thread that
3355 just stopped. In all-stop, that's all the non-exited threads; in
3356 non-stop, that's the current thread, only. */
3357
3358 typedef void (*for_each_just_stopped_thread_callback_func)
3359 (struct thread_info *tp);
3360
3361 static void
3362 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3363 {
3364 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3365 return;
3366
3367 if (target_is_non_stop_p ())
3368 {
3369 /* If in non-stop mode, only the current thread stopped. */
3370 func (inferior_thread ());
3371 }
3372 else
3373 {
3374 struct thread_info *tp;
3375
3376 /* In all-stop mode, all threads have stopped. */
3377 ALL_NON_EXITED_THREADS (tp)
3378 {
3379 func (tp);
3380 }
3381 }
3382 }
3383
3384 /* Delete the step resume and longjmp/exception resume breakpoints of
3385 the threads that just stopped. */
3386
3387 static void
3388 delete_just_stopped_threads_infrun_breakpoints (void)
3389 {
3390 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3391 }
3392
3393 /* Delete the single-step breakpoints of the threads that just
3394 stopped. */
3395
3396 static void
3397 delete_just_stopped_threads_single_step_breakpoints (void)
3398 {
3399 for_each_just_stopped_thread (delete_single_step_breakpoints);
3400 }
3401
3402 /* A cleanup wrapper. */
3403
3404 static void
3405 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3406 {
3407 delete_just_stopped_threads_infrun_breakpoints ();
3408 }
3409
3410 /* See infrun.h. */
3411
3412 void
3413 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3414 const struct target_waitstatus *ws)
3415 {
3416 char *status_string = target_waitstatus_to_string (ws);
3417 struct ui_file *tmp_stream = mem_fileopen ();
3418 char *text;
3419
3420 /* The text is split over several lines because it was getting too long.
3421 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3422 output as a unit; we want only one timestamp printed if debug_timestamp
3423 is set. */
3424
3425 fprintf_unfiltered (tmp_stream,
3426 "infrun: target_wait (%d.%ld.%ld",
3427 ptid_get_pid (waiton_ptid),
3428 ptid_get_lwp (waiton_ptid),
3429 ptid_get_tid (waiton_ptid));
3430 if (ptid_get_pid (waiton_ptid) != -1)
3431 fprintf_unfiltered (tmp_stream,
3432 " [%s]", target_pid_to_str (waiton_ptid));
3433 fprintf_unfiltered (tmp_stream, ", status) =\n");
3434 fprintf_unfiltered (tmp_stream,
3435 "infrun: %d.%ld.%ld [%s],\n",
3436 ptid_get_pid (result_ptid),
3437 ptid_get_lwp (result_ptid),
3438 ptid_get_tid (result_ptid),
3439 target_pid_to_str (result_ptid));
3440 fprintf_unfiltered (tmp_stream,
3441 "infrun: %s\n",
3442 status_string);
3443
3444 text = ui_file_xstrdup (tmp_stream, NULL);
3445
3446 /* This uses %s in part to handle %'s in the text, but also to avoid
3447 a gcc error: the format attribute requires a string literal. */
3448 fprintf_unfiltered (gdb_stdlog, "%s", text);
3449
3450 xfree (status_string);
3451 xfree (text);
3452 ui_file_delete (tmp_stream);
3453 }
3454
3455 /* Select a thread at random, out of those which are resumed and have
3456 had events. */
3457
3458 static struct thread_info *
3459 random_pending_event_thread (ptid_t waiton_ptid)
3460 {
3461 struct thread_info *event_tp;
3462 int num_events = 0;
3463 int random_selector;
3464
3465 /* First see how many events we have. Count only resumed threads
3466 that have an event pending. */
3467 ALL_NON_EXITED_THREADS (event_tp)
3468 if (ptid_match (event_tp->ptid, waiton_ptid)
3469 && event_tp->resumed
3470 && event_tp->suspend.waitstatus_pending_p)
3471 num_events++;
3472
3473 if (num_events == 0)
3474 return NULL;
3475
3476 /* Now randomly pick a thread out of those that have had events. */
3477 random_selector = (int)
3478 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3479
3480 if (debug_infrun && num_events > 1)
3481 fprintf_unfiltered (gdb_stdlog,
3482 "infrun: Found %d events, selecting #%d\n",
3483 num_events, random_selector);
3484
3485 /* Select the Nth thread that has had an event. */
3486 ALL_NON_EXITED_THREADS (event_tp)
3487 if (ptid_match (event_tp->ptid, waiton_ptid)
3488 && event_tp->resumed
3489 && event_tp->suspend.waitstatus_pending_p)
3490 if (random_selector-- == 0)
3491 break;
3492
3493 return event_tp;
3494 }
3495
3496 /* Wrapper for target_wait that first checks whether threads have
3497 pending statuses to report before actually asking the target for
3498 more events. */
3499
3500 static ptid_t
3501 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3502 {
3503 ptid_t event_ptid;
3504 struct thread_info *tp;
3505
3506 /* First check if there is a resumed thread with a wait status
3507 pending. */
3508 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3509 {
3510 tp = random_pending_event_thread (ptid);
3511 }
3512 else
3513 {
3514 if (debug_infrun)
3515 fprintf_unfiltered (gdb_stdlog,
3516 "infrun: Waiting for specific thread %s.\n",
3517 target_pid_to_str (ptid));
3518
3519 /* We have a specific thread to check. */
3520 tp = find_thread_ptid (ptid);
3521 gdb_assert (tp != NULL);
3522 if (!tp->suspend.waitstatus_pending_p)
3523 tp = NULL;
3524 }
3525
3526 if (tp != NULL
3527 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3528 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3529 {
3530 struct regcache *regcache = get_thread_regcache (tp->ptid);
3531 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3532 CORE_ADDR pc;
3533 int discard = 0;
3534
3535 pc = regcache_read_pc (regcache);
3536
3537 if (pc != tp->suspend.stop_pc)
3538 {
3539 if (debug_infrun)
3540 fprintf_unfiltered (gdb_stdlog,
3541 "infrun: PC of %s changed. was=%s, now=%s\n",
3542 target_pid_to_str (tp->ptid),
3543 paddress (gdbarch, tp->prev_pc),
3544 paddress (gdbarch, pc));
3545 discard = 1;
3546 }
3547 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3548 {
3549 if (debug_infrun)
3550 fprintf_unfiltered (gdb_stdlog,
3551 "infrun: previous breakpoint of %s, at %s gone\n",
3552 target_pid_to_str (tp->ptid),
3553 paddress (gdbarch, pc));
3554
3555 discard = 1;
3556 }
3557
3558 if (discard)
3559 {
3560 if (debug_infrun)
3561 fprintf_unfiltered (gdb_stdlog,
3562 "infrun: pending event of %s cancelled.\n",
3563 target_pid_to_str (tp->ptid));
3564
3565 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3566 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3567 }
3568 }
3569
3570 if (tp != NULL)
3571 {
3572 if (debug_infrun)
3573 {
3574 char *statstr;
3575
3576 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3577 fprintf_unfiltered (gdb_stdlog,
3578 "infrun: Using pending wait status %s for %s.\n",
3579 statstr,
3580 target_pid_to_str (tp->ptid));
3581 xfree (statstr);
3582 }
3583
3584 /* Now that we've selected our final event LWP, un-adjust its PC
3585 if it was a software breakpoint (and the target doesn't
3586 always adjust the PC itself). */
3587 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3588 && !target_supports_stopped_by_sw_breakpoint ())
3589 {
3590 struct regcache *regcache;
3591 struct gdbarch *gdbarch;
3592 int decr_pc;
3593
3594 regcache = get_thread_regcache (tp->ptid);
3595 gdbarch = get_regcache_arch (regcache);
3596
3597 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3598 if (decr_pc != 0)
3599 {
3600 CORE_ADDR pc;
3601
3602 pc = regcache_read_pc (regcache);
3603 regcache_write_pc (regcache, pc + decr_pc);
3604 }
3605 }
3606
3607 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3608 *status = tp->suspend.waitstatus;
3609 tp->suspend.waitstatus_pending_p = 0;
3610
3611 /* Wake up the event loop again, until all pending events are
3612 processed. */
3613 if (target_is_async_p ())
3614 mark_async_event_handler (infrun_async_inferior_event_token);
3615 return tp->ptid;
3616 }
3617
3618 /* But if we don't find one, we'll have to wait. */
3619
3620 if (deprecated_target_wait_hook)
3621 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3622 else
3623 event_ptid = target_wait (ptid, status, options);
3624
3625 return event_ptid;
3626 }
3627
3628 /* Prepare and stabilize the inferior for detaching it. E.g.,
3629 detaching while a thread is displaced stepping is a recipe for
3630 crashing it, as nothing would readjust the PC out of the scratch
3631 pad. */
3632
3633 void
3634 prepare_for_detach (void)
3635 {
3636 struct inferior *inf = current_inferior ();
3637 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3638 struct cleanup *old_chain_1;
3639 struct displaced_step_inferior_state *displaced;
3640
3641 displaced = get_displaced_stepping_state (inf->pid);
3642
3643 /* Is any thread of this process displaced stepping? If not,
3644 there's nothing else to do. */
3645 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3646 return;
3647
3648 if (debug_infrun)
3649 fprintf_unfiltered (gdb_stdlog,
3650 "displaced-stepping in-process while detaching");
3651
3652 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3653 inf->detaching = 1;
3654
3655 while (!ptid_equal (displaced->step_ptid, null_ptid))
3656 {
3657 struct cleanup *old_chain_2;
3658 struct execution_control_state ecss;
3659 struct execution_control_state *ecs;
3660
3661 ecs = &ecss;
3662 memset (ecs, 0, sizeof (*ecs));
3663
3664 overlay_cache_invalid = 1;
3665 /* Flush target cache before starting to handle each event.
3666 Target was running and cache could be stale. This is just a
3667 heuristic. Running threads may modify target memory, but we
3668 don't get any event. */
3669 target_dcache_invalidate ();
3670
3671 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3672
3673 if (debug_infrun)
3674 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3675
3676 /* If an error happens while handling the event, propagate GDB's
3677 knowledge of the executing state to the frontend/user running
3678 state. */
3679 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3680 &minus_one_ptid);
3681
3682 /* Now figure out what to do with the result of the result. */
3683 handle_inferior_event (ecs);
3684
3685 /* No error, don't finish the state yet. */
3686 discard_cleanups (old_chain_2);
3687
3688 /* Breakpoints and watchpoints are not installed on the target
3689 at this point, and signals are passed directly to the
3690 inferior, so this must mean the process is gone. */
3691 if (!ecs->wait_some_more)
3692 {
3693 discard_cleanups (old_chain_1);
3694 error (_("Program exited while detaching"));
3695 }
3696 }
3697
3698 discard_cleanups (old_chain_1);
3699 }
3700
3701 /* Wait for control to return from inferior to debugger.
3702
3703 If inferior gets a signal, we may decide to start it up again
3704 instead of returning. That is why there is a loop in this function.
3705 When this function actually returns it means the inferior
3706 should be left stopped and GDB should read more commands. */
3707
3708 void
3709 wait_for_inferior (void)
3710 {
3711 struct cleanup *old_cleanups;
3712 struct cleanup *thread_state_chain;
3713
3714 if (debug_infrun)
3715 fprintf_unfiltered
3716 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3717
3718 old_cleanups
3719 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3720 NULL);
3721
3722 /* If an error happens while handling the event, propagate GDB's
3723 knowledge of the executing state to the frontend/user running
3724 state. */
3725 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3726
3727 while (1)
3728 {
3729 struct execution_control_state ecss;
3730 struct execution_control_state *ecs = &ecss;
3731 ptid_t waiton_ptid = minus_one_ptid;
3732
3733 memset (ecs, 0, sizeof (*ecs));
3734
3735 overlay_cache_invalid = 1;
3736
3737 /* Flush target cache before starting to handle each event.
3738 Target was running and cache could be stale. This is just a
3739 heuristic. Running threads may modify target memory, but we
3740 don't get any event. */
3741 target_dcache_invalidate ();
3742
3743 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3744
3745 if (debug_infrun)
3746 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3747
3748 /* Now figure out what to do with the result of the result. */
3749 handle_inferior_event (ecs);
3750
3751 if (!ecs->wait_some_more)
3752 break;
3753 }
3754
3755 /* No error, don't finish the state yet. */
3756 discard_cleanups (thread_state_chain);
3757
3758 do_cleanups (old_cleanups);
3759 }
3760
3761 /* Cleanup that reinstalls the readline callback handler, if the
3762 target is running in the background. If while handling the target
3763 event something triggered a secondary prompt, like e.g., a
3764 pagination prompt, we'll have removed the callback handler (see
3765 gdb_readline_wrapper_line). Need to do this as we go back to the
3766 event loop, ready to process further input. Note this has no
3767 effect if the handler hasn't actually been removed, because calling
3768 rl_callback_handler_install resets the line buffer, thus losing
3769 input. */
3770
3771 static void
3772 reinstall_readline_callback_handler_cleanup (void *arg)
3773 {
3774 if (!interpreter_async)
3775 {
3776 /* We're not going back to the top level event loop yet. Don't
3777 install the readline callback, as it'd prep the terminal,
3778 readline-style (raw, noecho) (e.g., --batch). We'll install
3779 it the next time the prompt is displayed, when we're ready
3780 for input. */
3781 return;
3782 }
3783
3784 if (async_command_editing_p && !sync_execution)
3785 gdb_rl_callback_handler_reinstall ();
3786 }
3787
3788 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3789 that's just the event thread. In all-stop, that's all threads. */
3790
3791 static void
3792 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3793 {
3794 struct thread_info *thr = ecs->event_thread;
3795
3796 if (thr != NULL && thr->thread_fsm != NULL)
3797 thread_fsm_clean_up (thr->thread_fsm);
3798
3799 if (!non_stop)
3800 {
3801 ALL_NON_EXITED_THREADS (thr)
3802 {
3803 if (thr->thread_fsm == NULL)
3804 continue;
3805 if (thr == ecs->event_thread)
3806 continue;
3807
3808 switch_to_thread (thr->ptid);
3809 thread_fsm_clean_up (thr->thread_fsm);
3810 }
3811
3812 if (ecs->event_thread != NULL)
3813 switch_to_thread (ecs->event_thread->ptid);
3814 }
3815 }
3816
3817 /* A cleanup that restores the execution direction to the value saved
3818 in *ARG. */
3819
3820 static void
3821 restore_execution_direction (void *arg)
3822 {
3823 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3824
3825 execution_direction = *save_exec_dir;
3826 }
3827
3828 /* Asynchronous version of wait_for_inferior. It is called by the
3829 event loop whenever a change of state is detected on the file
3830 descriptor corresponding to the target. It can be called more than
3831 once to complete a single execution command. In such cases we need
3832 to keep the state in a global variable ECSS. If it is the last time
3833 that this function is called for a single execution command, then
3834 report to the user that the inferior has stopped, and do the
3835 necessary cleanups. */
3836
3837 void
3838 fetch_inferior_event (void *client_data)
3839 {
3840 struct execution_control_state ecss;
3841 struct execution_control_state *ecs = &ecss;
3842 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3843 struct cleanup *ts_old_chain;
3844 int was_sync = sync_execution;
3845 enum exec_direction_kind save_exec_dir = execution_direction;
3846 int cmd_done = 0;
3847 ptid_t waiton_ptid = minus_one_ptid;
3848
3849 memset (ecs, 0, sizeof (*ecs));
3850
3851 /* End up with readline processing input, if necessary. */
3852 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3853
3854 /* We're handling a live event, so make sure we're doing live
3855 debugging. If we're looking at traceframes while the target is
3856 running, we're going to need to get back to that mode after
3857 handling the event. */
3858 if (non_stop)
3859 {
3860 make_cleanup_restore_current_traceframe ();
3861 set_current_traceframe (-1);
3862 }
3863
3864 if (non_stop)
3865 /* In non-stop mode, the user/frontend should not notice a thread
3866 switch due to internal events. Make sure we reverse to the
3867 user selected thread and frame after handling the event and
3868 running any breakpoint commands. */
3869 make_cleanup_restore_current_thread ();
3870
3871 overlay_cache_invalid = 1;
3872 /* Flush target cache before starting to handle each event. Target
3873 was running and cache could be stale. This is just a heuristic.
3874 Running threads may modify target memory, but we don't get any
3875 event. */
3876 target_dcache_invalidate ();
3877
3878 make_cleanup (restore_execution_direction, &save_exec_dir);
3879 execution_direction = target_execution_direction ();
3880
3881 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3882 target_can_async_p () ? TARGET_WNOHANG : 0);
3883
3884 if (debug_infrun)
3885 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3886
3887 /* If an error happens while handling the event, propagate GDB's
3888 knowledge of the executing state to the frontend/user running
3889 state. */
3890 if (!target_is_non_stop_p ())
3891 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3892 else
3893 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3894
3895 /* Get executed before make_cleanup_restore_current_thread above to apply
3896 still for the thread which has thrown the exception. */
3897 make_bpstat_clear_actions_cleanup ();
3898
3899 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3900
3901 /* Now figure out what to do with the result of the result. */
3902 handle_inferior_event (ecs);
3903
3904 if (!ecs->wait_some_more)
3905 {
3906 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3907 int should_stop = 1;
3908 struct thread_info *thr = ecs->event_thread;
3909 int should_notify_stop = 1;
3910
3911 delete_just_stopped_threads_infrun_breakpoints ();
3912
3913 if (thr != NULL)
3914 {
3915 struct thread_fsm *thread_fsm = thr->thread_fsm;
3916
3917 if (thread_fsm != NULL)
3918 should_stop = thread_fsm_should_stop (thread_fsm);
3919 }
3920
3921 if (!should_stop)
3922 {
3923 keep_going (ecs);
3924 }
3925 else
3926 {
3927 clean_up_just_stopped_threads_fsms (ecs);
3928
3929 if (thr != NULL && thr->thread_fsm != NULL)
3930 {
3931 should_notify_stop
3932 = thread_fsm_should_notify_stop (thr->thread_fsm);
3933 }
3934
3935 if (should_notify_stop)
3936 {
3937 int proceeded = 0;
3938
3939 /* We may not find an inferior if this was a process exit. */
3940 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3941 proceeded = normal_stop ();
3942
3943 if (!proceeded)
3944 {
3945 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3946 cmd_done = 1;
3947 }
3948 }
3949 }
3950 }
3951
3952 /* No error, don't finish the thread states yet. */
3953 discard_cleanups (ts_old_chain);
3954
3955 /* Revert thread and frame. */
3956 do_cleanups (old_chain);
3957
3958 /* If the inferior was in sync execution mode, and now isn't,
3959 restore the prompt (a synchronous execution command has finished,
3960 and we're ready for input). */
3961 if (interpreter_async && was_sync && !sync_execution)
3962 observer_notify_sync_execution_done ();
3963
3964 if (cmd_done
3965 && !was_sync
3966 && exec_done_display_p
3967 && (ptid_equal (inferior_ptid, null_ptid)
3968 || !is_running (inferior_ptid)))
3969 printf_unfiltered (_("completed.\n"));
3970 }
3971
3972 /* Record the frame and location we're currently stepping through. */
3973 void
3974 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3975 {
3976 struct thread_info *tp = inferior_thread ();
3977
3978 tp->control.step_frame_id = get_frame_id (frame);
3979 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3980
3981 tp->current_symtab = sal.symtab;
3982 tp->current_line = sal.line;
3983 }
3984
3985 /* Clear context switchable stepping state. */
3986
3987 void
3988 init_thread_stepping_state (struct thread_info *tss)
3989 {
3990 tss->stepped_breakpoint = 0;
3991 tss->stepping_over_breakpoint = 0;
3992 tss->stepping_over_watchpoint = 0;
3993 tss->step_after_step_resume_breakpoint = 0;
3994 }
3995
3996 /* Set the cached copy of the last ptid/waitstatus. */
3997
3998 static void
3999 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4000 {
4001 target_last_wait_ptid = ptid;
4002 target_last_waitstatus = status;
4003 }
4004
4005 /* Return the cached copy of the last pid/waitstatus returned by
4006 target_wait()/deprecated_target_wait_hook(). The data is actually
4007 cached by handle_inferior_event(), which gets called immediately
4008 after target_wait()/deprecated_target_wait_hook(). */
4009
4010 void
4011 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4012 {
4013 *ptidp = target_last_wait_ptid;
4014 *status = target_last_waitstatus;
4015 }
4016
4017 void
4018 nullify_last_target_wait_ptid (void)
4019 {
4020 target_last_wait_ptid = minus_one_ptid;
4021 }
4022
4023 /* Switch thread contexts. */
4024
4025 static void
4026 context_switch (ptid_t ptid)
4027 {
4028 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4029 {
4030 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4031 target_pid_to_str (inferior_ptid));
4032 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4033 target_pid_to_str (ptid));
4034 }
4035
4036 switch_to_thread (ptid);
4037 }
4038
4039 /* If the target can't tell whether we've hit breakpoints
4040 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4041 check whether that could have been caused by a breakpoint. If so,
4042 adjust the PC, per gdbarch_decr_pc_after_break. */
4043
4044 static void
4045 adjust_pc_after_break (struct thread_info *thread,
4046 struct target_waitstatus *ws)
4047 {
4048 struct regcache *regcache;
4049 struct gdbarch *gdbarch;
4050 struct address_space *aspace;
4051 CORE_ADDR breakpoint_pc, decr_pc;
4052
4053 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4054 we aren't, just return.
4055
4056 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4057 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4058 implemented by software breakpoints should be handled through the normal
4059 breakpoint layer.
4060
4061 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4062 different signals (SIGILL or SIGEMT for instance), but it is less
4063 clear where the PC is pointing afterwards. It may not match
4064 gdbarch_decr_pc_after_break. I don't know any specific target that
4065 generates these signals at breakpoints (the code has been in GDB since at
4066 least 1992) so I can not guess how to handle them here.
4067
4068 In earlier versions of GDB, a target with
4069 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4070 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4071 target with both of these set in GDB history, and it seems unlikely to be
4072 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4073
4074 if (ws->kind != TARGET_WAITKIND_STOPPED)
4075 return;
4076
4077 if (ws->value.sig != GDB_SIGNAL_TRAP)
4078 return;
4079
4080 /* In reverse execution, when a breakpoint is hit, the instruction
4081 under it has already been de-executed. The reported PC always
4082 points at the breakpoint address, so adjusting it further would
4083 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4084 architecture:
4085
4086 B1 0x08000000 : INSN1
4087 B2 0x08000001 : INSN2
4088 0x08000002 : INSN3
4089 PC -> 0x08000003 : INSN4
4090
4091 Say you're stopped at 0x08000003 as above. Reverse continuing
4092 from that point should hit B2 as below. Reading the PC when the
4093 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4094 been de-executed already.
4095
4096 B1 0x08000000 : INSN1
4097 B2 PC -> 0x08000001 : INSN2
4098 0x08000002 : INSN3
4099 0x08000003 : INSN4
4100
4101 We can't apply the same logic as for forward execution, because
4102 we would wrongly adjust the PC to 0x08000000, since there's a
4103 breakpoint at PC - 1. We'd then report a hit on B1, although
4104 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4105 behaviour. */
4106 if (execution_direction == EXEC_REVERSE)
4107 return;
4108
4109 /* If the target can tell whether the thread hit a SW breakpoint,
4110 trust it. Targets that can tell also adjust the PC
4111 themselves. */
4112 if (target_supports_stopped_by_sw_breakpoint ())
4113 return;
4114
4115 /* Note that relying on whether a breakpoint is planted in memory to
4116 determine this can fail. E.g,. the breakpoint could have been
4117 removed since. Or the thread could have been told to step an
4118 instruction the size of a breakpoint instruction, and only
4119 _after_ was a breakpoint inserted at its address. */
4120
4121 /* If this target does not decrement the PC after breakpoints, then
4122 we have nothing to do. */
4123 regcache = get_thread_regcache (thread->ptid);
4124 gdbarch = get_regcache_arch (regcache);
4125
4126 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4127 if (decr_pc == 0)
4128 return;
4129
4130 aspace = get_regcache_aspace (regcache);
4131
4132 /* Find the location where (if we've hit a breakpoint) the
4133 breakpoint would be. */
4134 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4135
4136 /* If the target can't tell whether a software breakpoint triggered,
4137 fallback to figuring it out based on breakpoints we think were
4138 inserted in the target, and on whether the thread was stepped or
4139 continued. */
4140
4141 /* Check whether there actually is a software breakpoint inserted at
4142 that location.
4143
4144 If in non-stop mode, a race condition is possible where we've
4145 removed a breakpoint, but stop events for that breakpoint were
4146 already queued and arrive later. To suppress those spurious
4147 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4148 and retire them after a number of stop events are reported. Note
4149 this is an heuristic and can thus get confused. The real fix is
4150 to get the "stopped by SW BP and needs adjustment" info out of
4151 the target/kernel (and thus never reach here; see above). */
4152 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4153 || (target_is_non_stop_p ()
4154 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4155 {
4156 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4157
4158 if (record_full_is_used ())
4159 record_full_gdb_operation_disable_set ();
4160
4161 /* When using hardware single-step, a SIGTRAP is reported for both
4162 a completed single-step and a software breakpoint. Need to
4163 differentiate between the two, as the latter needs adjusting
4164 but the former does not.
4165
4166 The SIGTRAP can be due to a completed hardware single-step only if
4167 - we didn't insert software single-step breakpoints
4168 - this thread is currently being stepped
4169
4170 If any of these events did not occur, we must have stopped due
4171 to hitting a software breakpoint, and have to back up to the
4172 breakpoint address.
4173
4174 As a special case, we could have hardware single-stepped a
4175 software breakpoint. In this case (prev_pc == breakpoint_pc),
4176 we also need to back up to the breakpoint address. */
4177
4178 if (thread_has_single_step_breakpoints_set (thread)
4179 || !currently_stepping (thread)
4180 || (thread->stepped_breakpoint
4181 && thread->prev_pc == breakpoint_pc))
4182 regcache_write_pc (regcache, breakpoint_pc);
4183
4184 do_cleanups (old_cleanups);
4185 }
4186 }
4187
4188 static int
4189 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4190 {
4191 for (frame = get_prev_frame (frame);
4192 frame != NULL;
4193 frame = get_prev_frame (frame))
4194 {
4195 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4196 return 1;
4197 if (get_frame_type (frame) != INLINE_FRAME)
4198 break;
4199 }
4200
4201 return 0;
4202 }
4203
4204 /* Auxiliary function that handles syscall entry/return events.
4205 It returns 1 if the inferior should keep going (and GDB
4206 should ignore the event), or 0 if the event deserves to be
4207 processed. */
4208
4209 static int
4210 handle_syscall_event (struct execution_control_state *ecs)
4211 {
4212 struct regcache *regcache;
4213 int syscall_number;
4214
4215 if (!ptid_equal (ecs->ptid, inferior_ptid))
4216 context_switch (ecs->ptid);
4217
4218 regcache = get_thread_regcache (ecs->ptid);
4219 syscall_number = ecs->ws.value.syscall_number;
4220 stop_pc = regcache_read_pc (regcache);
4221
4222 if (catch_syscall_enabled () > 0
4223 && catching_syscall_number (syscall_number) > 0)
4224 {
4225 if (debug_infrun)
4226 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4227 syscall_number);
4228
4229 ecs->event_thread->control.stop_bpstat
4230 = bpstat_stop_status (get_regcache_aspace (regcache),
4231 stop_pc, ecs->ptid, &ecs->ws);
4232
4233 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4234 {
4235 /* Catchpoint hit. */
4236 return 0;
4237 }
4238 }
4239
4240 /* If no catchpoint triggered for this, then keep going. */
4241 keep_going (ecs);
4242 return 1;
4243 }
4244
4245 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4246
4247 static void
4248 fill_in_stop_func (struct gdbarch *gdbarch,
4249 struct execution_control_state *ecs)
4250 {
4251 if (!ecs->stop_func_filled_in)
4252 {
4253 /* Don't care about return value; stop_func_start and stop_func_name
4254 will both be 0 if it doesn't work. */
4255 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4256 &ecs->stop_func_start, &ecs->stop_func_end);
4257 ecs->stop_func_start
4258 += gdbarch_deprecated_function_start_offset (gdbarch);
4259
4260 if (gdbarch_skip_entrypoint_p (gdbarch))
4261 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4262 ecs->stop_func_start);
4263
4264 ecs->stop_func_filled_in = 1;
4265 }
4266 }
4267
4268
4269 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4270
4271 static enum stop_kind
4272 get_inferior_stop_soon (ptid_t ptid)
4273 {
4274 struct inferior *inf = find_inferior_ptid (ptid);
4275
4276 gdb_assert (inf != NULL);
4277 return inf->control.stop_soon;
4278 }
4279
4280 /* Wait for one event. Store the resulting waitstatus in WS, and
4281 return the event ptid. */
4282
4283 static ptid_t
4284 wait_one (struct target_waitstatus *ws)
4285 {
4286 ptid_t event_ptid;
4287 ptid_t wait_ptid = minus_one_ptid;
4288
4289 overlay_cache_invalid = 1;
4290
4291 /* Flush target cache before starting to handle each event.
4292 Target was running and cache could be stale. This is just a
4293 heuristic. Running threads may modify target memory, but we
4294 don't get any event. */
4295 target_dcache_invalidate ();
4296
4297 if (deprecated_target_wait_hook)
4298 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4299 else
4300 event_ptid = target_wait (wait_ptid, ws, 0);
4301
4302 if (debug_infrun)
4303 print_target_wait_results (wait_ptid, event_ptid, ws);
4304
4305 return event_ptid;
4306 }
4307
4308 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4309 instead of the current thread. */
4310 #define THREAD_STOPPED_BY(REASON) \
4311 static int \
4312 thread_stopped_by_ ## REASON (ptid_t ptid) \
4313 { \
4314 struct cleanup *old_chain; \
4315 int res; \
4316 \
4317 old_chain = save_inferior_ptid (); \
4318 inferior_ptid = ptid; \
4319 \
4320 res = target_stopped_by_ ## REASON (); \
4321 \
4322 do_cleanups (old_chain); \
4323 \
4324 return res; \
4325 }
4326
4327 /* Generate thread_stopped_by_watchpoint. */
4328 THREAD_STOPPED_BY (watchpoint)
4329 /* Generate thread_stopped_by_sw_breakpoint. */
4330 THREAD_STOPPED_BY (sw_breakpoint)
4331 /* Generate thread_stopped_by_hw_breakpoint. */
4332 THREAD_STOPPED_BY (hw_breakpoint)
4333
4334 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4335
4336 static void
4337 switch_to_thread_cleanup (void *ptid_p)
4338 {
4339 ptid_t ptid = *(ptid_t *) ptid_p;
4340
4341 switch_to_thread (ptid);
4342 }
4343
4344 /* Save the thread's event and stop reason to process it later. */
4345
4346 static void
4347 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4348 {
4349 struct regcache *regcache;
4350 struct address_space *aspace;
4351
4352 if (debug_infrun)
4353 {
4354 char *statstr;
4355
4356 statstr = target_waitstatus_to_string (ws);
4357 fprintf_unfiltered (gdb_stdlog,
4358 "infrun: saving status %s for %d.%ld.%ld\n",
4359 statstr,
4360 ptid_get_pid (tp->ptid),
4361 ptid_get_lwp (tp->ptid),
4362 ptid_get_tid (tp->ptid));
4363 xfree (statstr);
4364 }
4365
4366 /* Record for later. */
4367 tp->suspend.waitstatus = *ws;
4368 tp->suspend.waitstatus_pending_p = 1;
4369
4370 regcache = get_thread_regcache (tp->ptid);
4371 aspace = get_regcache_aspace (regcache);
4372
4373 if (ws->kind == TARGET_WAITKIND_STOPPED
4374 && ws->value.sig == GDB_SIGNAL_TRAP)
4375 {
4376 CORE_ADDR pc = regcache_read_pc (regcache);
4377
4378 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4379
4380 if (thread_stopped_by_watchpoint (tp->ptid))
4381 {
4382 tp->suspend.stop_reason
4383 = TARGET_STOPPED_BY_WATCHPOINT;
4384 }
4385 else if (target_supports_stopped_by_sw_breakpoint ()
4386 && thread_stopped_by_sw_breakpoint (tp->ptid))
4387 {
4388 tp->suspend.stop_reason
4389 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4390 }
4391 else if (target_supports_stopped_by_hw_breakpoint ()
4392 && thread_stopped_by_hw_breakpoint (tp->ptid))
4393 {
4394 tp->suspend.stop_reason
4395 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4396 }
4397 else if (!target_supports_stopped_by_hw_breakpoint ()
4398 && hardware_breakpoint_inserted_here_p (aspace,
4399 pc))
4400 {
4401 tp->suspend.stop_reason
4402 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4403 }
4404 else if (!target_supports_stopped_by_sw_breakpoint ()
4405 && software_breakpoint_inserted_here_p (aspace,
4406 pc))
4407 {
4408 tp->suspend.stop_reason
4409 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4410 }
4411 else if (!thread_has_single_step_breakpoints_set (tp)
4412 && currently_stepping (tp))
4413 {
4414 tp->suspend.stop_reason
4415 = TARGET_STOPPED_BY_SINGLE_STEP;
4416 }
4417 }
4418 }
4419
4420 /* Stop all threads. */
4421
4422 static void
4423 stop_all_threads (void)
4424 {
4425 /* We may need multiple passes to discover all threads. */
4426 int pass;
4427 int iterations = 0;
4428 ptid_t entry_ptid;
4429 struct cleanup *old_chain;
4430
4431 gdb_assert (target_is_non_stop_p ());
4432
4433 if (debug_infrun)
4434 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4435
4436 entry_ptid = inferior_ptid;
4437 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4438
4439 /* Request threads to stop, and then wait for the stops. Because
4440 threads we already know about can spawn more threads while we're
4441 trying to stop them, and we only learn about new threads when we
4442 update the thread list, do this in a loop, and keep iterating
4443 until two passes find no threads that need to be stopped. */
4444 for (pass = 0; pass < 2; pass++, iterations++)
4445 {
4446 if (debug_infrun)
4447 fprintf_unfiltered (gdb_stdlog,
4448 "infrun: stop_all_threads, pass=%d, "
4449 "iterations=%d\n", pass, iterations);
4450 while (1)
4451 {
4452 ptid_t event_ptid;
4453 struct target_waitstatus ws;
4454 int need_wait = 0;
4455 struct thread_info *t;
4456
4457 update_thread_list ();
4458
4459 /* Go through all threads looking for threads that we need
4460 to tell the target to stop. */
4461 ALL_NON_EXITED_THREADS (t)
4462 {
4463 if (t->executing)
4464 {
4465 /* If already stopping, don't request a stop again.
4466 We just haven't seen the notification yet. */
4467 if (!t->stop_requested)
4468 {
4469 if (debug_infrun)
4470 fprintf_unfiltered (gdb_stdlog,
4471 "infrun: %s executing, "
4472 "need stop\n",
4473 target_pid_to_str (t->ptid));
4474 target_stop (t->ptid);
4475 t->stop_requested = 1;
4476 }
4477 else
4478 {
4479 if (debug_infrun)
4480 fprintf_unfiltered (gdb_stdlog,
4481 "infrun: %s executing, "
4482 "already stopping\n",
4483 target_pid_to_str (t->ptid));
4484 }
4485
4486 if (t->stop_requested)
4487 need_wait = 1;
4488 }
4489 else
4490 {
4491 if (debug_infrun)
4492 fprintf_unfiltered (gdb_stdlog,
4493 "infrun: %s not executing\n",
4494 target_pid_to_str (t->ptid));
4495
4496 /* The thread may be not executing, but still be
4497 resumed with a pending status to process. */
4498 t->resumed = 0;
4499 }
4500 }
4501
4502 if (!need_wait)
4503 break;
4504
4505 /* If we find new threads on the second iteration, restart
4506 over. We want to see two iterations in a row with all
4507 threads stopped. */
4508 if (pass > 0)
4509 pass = -1;
4510
4511 event_ptid = wait_one (&ws);
4512 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4513 {
4514 /* All resumed threads exited. */
4515 }
4516 else if (ws.kind == TARGET_WAITKIND_EXITED
4517 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4518 {
4519 if (debug_infrun)
4520 {
4521 ptid_t ptid = pid_to_ptid (ws.value.integer);
4522
4523 fprintf_unfiltered (gdb_stdlog,
4524 "infrun: %s exited while "
4525 "stopping threads\n",
4526 target_pid_to_str (ptid));
4527 }
4528 }
4529 else
4530 {
4531 t = find_thread_ptid (event_ptid);
4532 if (t == NULL)
4533 t = add_thread (event_ptid);
4534
4535 t->stop_requested = 0;
4536 t->executing = 0;
4537 t->resumed = 0;
4538 t->control.may_range_step = 0;
4539
4540 if (ws.kind == TARGET_WAITKIND_STOPPED
4541 && ws.value.sig == GDB_SIGNAL_0)
4542 {
4543 /* We caught the event that we intended to catch, so
4544 there's no event pending. */
4545 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4546 t->suspend.waitstatus_pending_p = 0;
4547
4548 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4549 {
4550 /* Add it back to the step-over queue. */
4551 if (debug_infrun)
4552 {
4553 fprintf_unfiltered (gdb_stdlog,
4554 "infrun: displaced-step of %s "
4555 "canceled: adding back to the "
4556 "step-over queue\n",
4557 target_pid_to_str (t->ptid));
4558 }
4559 t->control.trap_expected = 0;
4560 thread_step_over_chain_enqueue (t);
4561 }
4562 }
4563 else
4564 {
4565 enum gdb_signal sig;
4566 struct regcache *regcache;
4567 struct address_space *aspace;
4568
4569 if (debug_infrun)
4570 {
4571 char *statstr;
4572
4573 statstr = target_waitstatus_to_string (&ws);
4574 fprintf_unfiltered (gdb_stdlog,
4575 "infrun: target_wait %s, saving "
4576 "status for %d.%ld.%ld\n",
4577 statstr,
4578 ptid_get_pid (t->ptid),
4579 ptid_get_lwp (t->ptid),
4580 ptid_get_tid (t->ptid));
4581 xfree (statstr);
4582 }
4583
4584 /* Record for later. */
4585 save_waitstatus (t, &ws);
4586
4587 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4588 ? ws.value.sig : GDB_SIGNAL_0);
4589
4590 if (displaced_step_fixup (t->ptid, sig) < 0)
4591 {
4592 /* Add it back to the step-over queue. */
4593 t->control.trap_expected = 0;
4594 thread_step_over_chain_enqueue (t);
4595 }
4596
4597 regcache = get_thread_regcache (t->ptid);
4598 t->suspend.stop_pc = regcache_read_pc (regcache);
4599
4600 if (debug_infrun)
4601 {
4602 fprintf_unfiltered (gdb_stdlog,
4603 "infrun: saved stop_pc=%s for %s "
4604 "(currently_stepping=%d)\n",
4605 paddress (target_gdbarch (),
4606 t->suspend.stop_pc),
4607 target_pid_to_str (t->ptid),
4608 currently_stepping (t));
4609 }
4610 }
4611 }
4612 }
4613 }
4614
4615 do_cleanups (old_chain);
4616
4617 if (debug_infrun)
4618 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4619 }
4620
4621 /* Given an execution control state that has been freshly filled in by
4622 an event from the inferior, figure out what it means and take
4623 appropriate action.
4624
4625 The alternatives are:
4626
4627 1) stop_waiting and return; to really stop and return to the
4628 debugger.
4629
4630 2) keep_going and return; to wait for the next event (set
4631 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4632 once). */
4633
4634 static void
4635 handle_inferior_event_1 (struct execution_control_state *ecs)
4636 {
4637 enum stop_kind stop_soon;
4638
4639 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4640 {
4641 /* We had an event in the inferior, but we are not interested in
4642 handling it at this level. The lower layers have already
4643 done what needs to be done, if anything.
4644
4645 One of the possible circumstances for this is when the
4646 inferior produces output for the console. The inferior has
4647 not stopped, and we are ignoring the event. Another possible
4648 circumstance is any event which the lower level knows will be
4649 reported multiple times without an intervening resume. */
4650 if (debug_infrun)
4651 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4652 prepare_to_wait (ecs);
4653 return;
4654 }
4655
4656 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4657 && target_can_async_p () && !sync_execution)
4658 {
4659 /* There were no unwaited-for children left in the target, but,
4660 we're not synchronously waiting for events either. Just
4661 ignore. Otherwise, if we were running a synchronous
4662 execution command, we need to cancel it and give the user
4663 back the terminal. */
4664 if (debug_infrun)
4665 fprintf_unfiltered (gdb_stdlog,
4666 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4667 prepare_to_wait (ecs);
4668 return;
4669 }
4670
4671 /* Cache the last pid/waitstatus. */
4672 set_last_target_status (ecs->ptid, ecs->ws);
4673
4674 /* Always clear state belonging to the previous time we stopped. */
4675 stop_stack_dummy = STOP_NONE;
4676
4677 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4678 {
4679 /* No unwaited-for children left. IOW, all resumed children
4680 have exited. */
4681 if (debug_infrun)
4682 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4683
4684 stop_print_frame = 0;
4685 stop_waiting (ecs);
4686 return;
4687 }
4688
4689 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4690 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4691 {
4692 ecs->event_thread = find_thread_ptid (ecs->ptid);
4693 /* If it's a new thread, add it to the thread database. */
4694 if (ecs->event_thread == NULL)
4695 ecs->event_thread = add_thread (ecs->ptid);
4696
4697 /* Disable range stepping. If the next step request could use a
4698 range, this will be end up re-enabled then. */
4699 ecs->event_thread->control.may_range_step = 0;
4700 }
4701
4702 /* Dependent on valid ECS->EVENT_THREAD. */
4703 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4704
4705 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4706 reinit_frame_cache ();
4707
4708 breakpoint_retire_moribund ();
4709
4710 /* First, distinguish signals caused by the debugger from signals
4711 that have to do with the program's own actions. Note that
4712 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4713 on the operating system version. Here we detect when a SIGILL or
4714 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4715 something similar for SIGSEGV, since a SIGSEGV will be generated
4716 when we're trying to execute a breakpoint instruction on a
4717 non-executable stack. This happens for call dummy breakpoints
4718 for architectures like SPARC that place call dummies on the
4719 stack. */
4720 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4721 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4722 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4723 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4724 {
4725 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4726
4727 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4728 regcache_read_pc (regcache)))
4729 {
4730 if (debug_infrun)
4731 fprintf_unfiltered (gdb_stdlog,
4732 "infrun: Treating signal as SIGTRAP\n");
4733 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4734 }
4735 }
4736
4737 /* Mark the non-executing threads accordingly. In all-stop, all
4738 threads of all processes are stopped when we get any event
4739 reported. In non-stop mode, only the event thread stops. */
4740 {
4741 ptid_t mark_ptid;
4742
4743 if (!target_is_non_stop_p ())
4744 mark_ptid = minus_one_ptid;
4745 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4746 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4747 {
4748 /* If we're handling a process exit in non-stop mode, even
4749 though threads haven't been deleted yet, one would think
4750 that there is nothing to do, as threads of the dead process
4751 will be soon deleted, and threads of any other process were
4752 left running. However, on some targets, threads survive a
4753 process exit event. E.g., for the "checkpoint" command,
4754 when the current checkpoint/fork exits, linux-fork.c
4755 automatically switches to another fork from within
4756 target_mourn_inferior, by associating the same
4757 inferior/thread to another fork. We haven't mourned yet at
4758 this point, but we must mark any threads left in the
4759 process as not-executing so that finish_thread_state marks
4760 them stopped (in the user's perspective) if/when we present
4761 the stop to the user. */
4762 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4763 }
4764 else
4765 mark_ptid = ecs->ptid;
4766
4767 set_executing (mark_ptid, 0);
4768
4769 /* Likewise the resumed flag. */
4770 set_resumed (mark_ptid, 0);
4771 }
4772
4773 switch (ecs->ws.kind)
4774 {
4775 case TARGET_WAITKIND_LOADED:
4776 if (debug_infrun)
4777 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4778 if (!ptid_equal (ecs->ptid, inferior_ptid))
4779 context_switch (ecs->ptid);
4780 /* Ignore gracefully during startup of the inferior, as it might
4781 be the shell which has just loaded some objects, otherwise
4782 add the symbols for the newly loaded objects. Also ignore at
4783 the beginning of an attach or remote session; we will query
4784 the full list of libraries once the connection is
4785 established. */
4786
4787 stop_soon = get_inferior_stop_soon (ecs->ptid);
4788 if (stop_soon == NO_STOP_QUIETLY)
4789 {
4790 struct regcache *regcache;
4791
4792 regcache = get_thread_regcache (ecs->ptid);
4793
4794 handle_solib_event ();
4795
4796 ecs->event_thread->control.stop_bpstat
4797 = bpstat_stop_status (get_regcache_aspace (regcache),
4798 stop_pc, ecs->ptid, &ecs->ws);
4799
4800 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4801 {
4802 /* A catchpoint triggered. */
4803 process_event_stop_test (ecs);
4804 return;
4805 }
4806
4807 /* If requested, stop when the dynamic linker notifies
4808 gdb of events. This allows the user to get control
4809 and place breakpoints in initializer routines for
4810 dynamically loaded objects (among other things). */
4811 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4812 if (stop_on_solib_events)
4813 {
4814 /* Make sure we print "Stopped due to solib-event" in
4815 normal_stop. */
4816 stop_print_frame = 1;
4817
4818 stop_waiting (ecs);
4819 return;
4820 }
4821 }
4822
4823 /* If we are skipping through a shell, or through shared library
4824 loading that we aren't interested in, resume the program. If
4825 we're running the program normally, also resume. */
4826 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4827 {
4828 /* Loading of shared libraries might have changed breakpoint
4829 addresses. Make sure new breakpoints are inserted. */
4830 if (stop_soon == NO_STOP_QUIETLY)
4831 insert_breakpoints ();
4832 resume (GDB_SIGNAL_0);
4833 prepare_to_wait (ecs);
4834 return;
4835 }
4836
4837 /* But stop if we're attaching or setting up a remote
4838 connection. */
4839 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4840 || stop_soon == STOP_QUIETLY_REMOTE)
4841 {
4842 if (debug_infrun)
4843 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4844 stop_waiting (ecs);
4845 return;
4846 }
4847
4848 internal_error (__FILE__, __LINE__,
4849 _("unhandled stop_soon: %d"), (int) stop_soon);
4850
4851 case TARGET_WAITKIND_SPURIOUS:
4852 if (debug_infrun)
4853 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4854 if (!ptid_equal (ecs->ptid, inferior_ptid))
4855 context_switch (ecs->ptid);
4856 resume (GDB_SIGNAL_0);
4857 prepare_to_wait (ecs);
4858 return;
4859
4860 case TARGET_WAITKIND_EXITED:
4861 case TARGET_WAITKIND_SIGNALLED:
4862 if (debug_infrun)
4863 {
4864 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4865 fprintf_unfiltered (gdb_stdlog,
4866 "infrun: TARGET_WAITKIND_EXITED\n");
4867 else
4868 fprintf_unfiltered (gdb_stdlog,
4869 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4870 }
4871
4872 inferior_ptid = ecs->ptid;
4873 set_current_inferior (find_inferior_ptid (ecs->ptid));
4874 set_current_program_space (current_inferior ()->pspace);
4875 handle_vfork_child_exec_or_exit (0);
4876 target_terminal_ours (); /* Must do this before mourn anyway. */
4877
4878 /* Clearing any previous state of convenience variables. */
4879 clear_exit_convenience_vars ();
4880
4881 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4882 {
4883 /* Record the exit code in the convenience variable $_exitcode, so
4884 that the user can inspect this again later. */
4885 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4886 (LONGEST) ecs->ws.value.integer);
4887
4888 /* Also record this in the inferior itself. */
4889 current_inferior ()->has_exit_code = 1;
4890 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4891
4892 /* Support the --return-child-result option. */
4893 return_child_result_value = ecs->ws.value.integer;
4894
4895 observer_notify_exited (ecs->ws.value.integer);
4896 }
4897 else
4898 {
4899 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4900 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4901
4902 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4903 {
4904 /* Set the value of the internal variable $_exitsignal,
4905 which holds the signal uncaught by the inferior. */
4906 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4907 gdbarch_gdb_signal_to_target (gdbarch,
4908 ecs->ws.value.sig));
4909 }
4910 else
4911 {
4912 /* We don't have access to the target's method used for
4913 converting between signal numbers (GDB's internal
4914 representation <-> target's representation).
4915 Therefore, we cannot do a good job at displaying this
4916 information to the user. It's better to just warn
4917 her about it (if infrun debugging is enabled), and
4918 give up. */
4919 if (debug_infrun)
4920 fprintf_filtered (gdb_stdlog, _("\
4921 Cannot fill $_exitsignal with the correct signal number.\n"));
4922 }
4923
4924 observer_notify_signal_exited (ecs->ws.value.sig);
4925 }
4926
4927 gdb_flush (gdb_stdout);
4928 target_mourn_inferior ();
4929 stop_print_frame = 0;
4930 stop_waiting (ecs);
4931 return;
4932
4933 /* The following are the only cases in which we keep going;
4934 the above cases end in a continue or goto. */
4935 case TARGET_WAITKIND_FORKED:
4936 case TARGET_WAITKIND_VFORKED:
4937 if (debug_infrun)
4938 {
4939 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4940 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4941 else
4942 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4943 }
4944
4945 /* Check whether the inferior is displaced stepping. */
4946 {
4947 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4948 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4949 struct displaced_step_inferior_state *displaced
4950 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4951
4952 /* If checking displaced stepping is supported, and thread
4953 ecs->ptid is displaced stepping. */
4954 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4955 {
4956 struct inferior *parent_inf
4957 = find_inferior_ptid (ecs->ptid);
4958 struct regcache *child_regcache;
4959 CORE_ADDR parent_pc;
4960
4961 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4962 indicating that the displaced stepping of syscall instruction
4963 has been done. Perform cleanup for parent process here. Note
4964 that this operation also cleans up the child process for vfork,
4965 because their pages are shared. */
4966 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
4967 /* Start a new step-over in another thread if there's one
4968 that needs it. */
4969 start_step_over ();
4970
4971 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4972 {
4973 /* Restore scratch pad for child process. */
4974 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4975 }
4976
4977 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4978 the child's PC is also within the scratchpad. Set the child's PC
4979 to the parent's PC value, which has already been fixed up.
4980 FIXME: we use the parent's aspace here, although we're touching
4981 the child, because the child hasn't been added to the inferior
4982 list yet at this point. */
4983
4984 child_regcache
4985 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4986 gdbarch,
4987 parent_inf->aspace);
4988 /* Read PC value of parent process. */
4989 parent_pc = regcache_read_pc (regcache);
4990
4991 if (debug_displaced)
4992 fprintf_unfiltered (gdb_stdlog,
4993 "displaced: write child pc from %s to %s\n",
4994 paddress (gdbarch,
4995 regcache_read_pc (child_regcache)),
4996 paddress (gdbarch, parent_pc));
4997
4998 regcache_write_pc (child_regcache, parent_pc);
4999 }
5000 }
5001
5002 if (!ptid_equal (ecs->ptid, inferior_ptid))
5003 context_switch (ecs->ptid);
5004
5005 /* Immediately detach breakpoints from the child before there's
5006 any chance of letting the user delete breakpoints from the
5007 breakpoint lists. If we don't do this early, it's easy to
5008 leave left over traps in the child, vis: "break foo; catch
5009 fork; c; <fork>; del; c; <child calls foo>". We only follow
5010 the fork on the last `continue', and by that time the
5011 breakpoint at "foo" is long gone from the breakpoint table.
5012 If we vforked, then we don't need to unpatch here, since both
5013 parent and child are sharing the same memory pages; we'll
5014 need to unpatch at follow/detach time instead to be certain
5015 that new breakpoints added between catchpoint hit time and
5016 vfork follow are detached. */
5017 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5018 {
5019 /* This won't actually modify the breakpoint list, but will
5020 physically remove the breakpoints from the child. */
5021 detach_breakpoints (ecs->ws.value.related_pid);
5022 }
5023
5024 delete_just_stopped_threads_single_step_breakpoints ();
5025
5026 /* In case the event is caught by a catchpoint, remember that
5027 the event is to be followed at the next resume of the thread,
5028 and not immediately. */
5029 ecs->event_thread->pending_follow = ecs->ws;
5030
5031 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5032
5033 ecs->event_thread->control.stop_bpstat
5034 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5035 stop_pc, ecs->ptid, &ecs->ws);
5036
5037 /* If no catchpoint triggered for this, then keep going. Note
5038 that we're interested in knowing the bpstat actually causes a
5039 stop, not just if it may explain the signal. Software
5040 watchpoints, for example, always appear in the bpstat. */
5041 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5042 {
5043 ptid_t parent;
5044 ptid_t child;
5045 int should_resume;
5046 int follow_child
5047 = (follow_fork_mode_string == follow_fork_mode_child);
5048
5049 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5050
5051 should_resume = follow_fork ();
5052
5053 parent = ecs->ptid;
5054 child = ecs->ws.value.related_pid;
5055
5056 /* In non-stop mode, also resume the other branch. */
5057 if (!detach_fork && (non_stop
5058 || (sched_multi && target_is_non_stop_p ())))
5059 {
5060 if (follow_child)
5061 switch_to_thread (parent);
5062 else
5063 switch_to_thread (child);
5064
5065 ecs->event_thread = inferior_thread ();
5066 ecs->ptid = inferior_ptid;
5067 keep_going (ecs);
5068 }
5069
5070 if (follow_child)
5071 switch_to_thread (child);
5072 else
5073 switch_to_thread (parent);
5074
5075 ecs->event_thread = inferior_thread ();
5076 ecs->ptid = inferior_ptid;
5077
5078 if (should_resume)
5079 keep_going (ecs);
5080 else
5081 stop_waiting (ecs);
5082 return;
5083 }
5084 process_event_stop_test (ecs);
5085 return;
5086
5087 case TARGET_WAITKIND_VFORK_DONE:
5088 /* Done with the shared memory region. Re-insert breakpoints in
5089 the parent, and keep going. */
5090
5091 if (debug_infrun)
5092 fprintf_unfiltered (gdb_stdlog,
5093 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5094
5095 if (!ptid_equal (ecs->ptid, inferior_ptid))
5096 context_switch (ecs->ptid);
5097
5098 current_inferior ()->waiting_for_vfork_done = 0;
5099 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5100 /* This also takes care of reinserting breakpoints in the
5101 previously locked inferior. */
5102 keep_going (ecs);
5103 return;
5104
5105 case TARGET_WAITKIND_EXECD:
5106 if (debug_infrun)
5107 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5108
5109 if (!ptid_equal (ecs->ptid, inferior_ptid))
5110 context_switch (ecs->ptid);
5111
5112 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5113
5114 /* Do whatever is necessary to the parent branch of the vfork. */
5115 handle_vfork_child_exec_or_exit (1);
5116
5117 /* This causes the eventpoints and symbol table to be reset.
5118 Must do this now, before trying to determine whether to
5119 stop. */
5120 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5121
5122 /* In follow_exec we may have deleted the original thread and
5123 created a new one. Make sure that the event thread is the
5124 execd thread for that case (this is a nop otherwise). */
5125 ecs->event_thread = inferior_thread ();
5126
5127 ecs->event_thread->control.stop_bpstat
5128 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5129 stop_pc, ecs->ptid, &ecs->ws);
5130
5131 /* Note that this may be referenced from inside
5132 bpstat_stop_status above, through inferior_has_execd. */
5133 xfree (ecs->ws.value.execd_pathname);
5134 ecs->ws.value.execd_pathname = NULL;
5135
5136 /* If no catchpoint triggered for this, then keep going. */
5137 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5138 {
5139 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5140 keep_going (ecs);
5141 return;
5142 }
5143 process_event_stop_test (ecs);
5144 return;
5145
5146 /* Be careful not to try to gather much state about a thread
5147 that's in a syscall. It's frequently a losing proposition. */
5148 case TARGET_WAITKIND_SYSCALL_ENTRY:
5149 if (debug_infrun)
5150 fprintf_unfiltered (gdb_stdlog,
5151 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5152 /* Getting the current syscall number. */
5153 if (handle_syscall_event (ecs) == 0)
5154 process_event_stop_test (ecs);
5155 return;
5156
5157 /* Before examining the threads further, step this thread to
5158 get it entirely out of the syscall. (We get notice of the
5159 event when the thread is just on the verge of exiting a
5160 syscall. Stepping one instruction seems to get it back
5161 into user code.) */
5162 case TARGET_WAITKIND_SYSCALL_RETURN:
5163 if (debug_infrun)
5164 fprintf_unfiltered (gdb_stdlog,
5165 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5166 if (handle_syscall_event (ecs) == 0)
5167 process_event_stop_test (ecs);
5168 return;
5169
5170 case TARGET_WAITKIND_STOPPED:
5171 if (debug_infrun)
5172 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5173 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5174 handle_signal_stop (ecs);
5175 return;
5176
5177 case TARGET_WAITKIND_NO_HISTORY:
5178 if (debug_infrun)
5179 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5180 /* Reverse execution: target ran out of history info. */
5181
5182 /* Switch to the stopped thread. */
5183 if (!ptid_equal (ecs->ptid, inferior_ptid))
5184 context_switch (ecs->ptid);
5185 if (debug_infrun)
5186 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5187
5188 delete_just_stopped_threads_single_step_breakpoints ();
5189 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5190 observer_notify_no_history ();
5191 stop_waiting (ecs);
5192 return;
5193 }
5194 }
5195
5196 /* A wrapper around handle_inferior_event_1, which also makes sure
5197 that all temporary struct value objects that were created during
5198 the handling of the event get deleted at the end. */
5199
5200 static void
5201 handle_inferior_event (struct execution_control_state *ecs)
5202 {
5203 struct value *mark = value_mark ();
5204
5205 handle_inferior_event_1 (ecs);
5206 /* Purge all temporary values created during the event handling,
5207 as it could be a long time before we return to the command level
5208 where such values would otherwise be purged. */
5209 value_free_to_mark (mark);
5210 }
5211
5212 /* Restart threads back to what they were trying to do back when we
5213 paused them for an in-line step-over. The EVENT_THREAD thread is
5214 ignored. */
5215
5216 static void
5217 restart_threads (struct thread_info *event_thread)
5218 {
5219 struct thread_info *tp;
5220 struct thread_info *step_over = NULL;
5221
5222 /* In case the instruction just stepped spawned a new thread. */
5223 update_thread_list ();
5224
5225 ALL_NON_EXITED_THREADS (tp)
5226 {
5227 if (tp == event_thread)
5228 {
5229 if (debug_infrun)
5230 fprintf_unfiltered (gdb_stdlog,
5231 "infrun: restart threads: "
5232 "[%s] is event thread\n",
5233 target_pid_to_str (tp->ptid));
5234 continue;
5235 }
5236
5237 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5238 {
5239 if (debug_infrun)
5240 fprintf_unfiltered (gdb_stdlog,
5241 "infrun: restart threads: "
5242 "[%s] not meant to be running\n",
5243 target_pid_to_str (tp->ptid));
5244 continue;
5245 }
5246
5247 if (tp->resumed)
5248 {
5249 if (debug_infrun)
5250 fprintf_unfiltered (gdb_stdlog,
5251 "infrun: restart threads: [%s] resumed\n",
5252 target_pid_to_str (tp->ptid));
5253 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5254 continue;
5255 }
5256
5257 if (thread_is_in_step_over_chain (tp))
5258 {
5259 if (debug_infrun)
5260 fprintf_unfiltered (gdb_stdlog,
5261 "infrun: restart threads: "
5262 "[%s] needs step-over\n",
5263 target_pid_to_str (tp->ptid));
5264 gdb_assert (!tp->resumed);
5265 continue;
5266 }
5267
5268
5269 if (tp->suspend.waitstatus_pending_p)
5270 {
5271 if (debug_infrun)
5272 fprintf_unfiltered (gdb_stdlog,
5273 "infrun: restart threads: "
5274 "[%s] has pending status\n",
5275 target_pid_to_str (tp->ptid));
5276 tp->resumed = 1;
5277 continue;
5278 }
5279
5280 /* If some thread needs to start a step-over at this point, it
5281 should still be in the step-over queue, and thus skipped
5282 above. */
5283 if (thread_still_needs_step_over (tp))
5284 {
5285 internal_error (__FILE__, __LINE__,
5286 "thread [%s] needs a step-over, but not in "
5287 "step-over queue\n",
5288 target_pid_to_str (tp->ptid));
5289 }
5290
5291 if (currently_stepping (tp))
5292 {
5293 if (debug_infrun)
5294 fprintf_unfiltered (gdb_stdlog,
5295 "infrun: restart threads: [%s] was stepping\n",
5296 target_pid_to_str (tp->ptid));
5297 keep_going_stepped_thread (tp);
5298 }
5299 else
5300 {
5301 struct execution_control_state ecss;
5302 struct execution_control_state *ecs = &ecss;
5303
5304 if (debug_infrun)
5305 fprintf_unfiltered (gdb_stdlog,
5306 "infrun: restart threads: [%s] continuing\n",
5307 target_pid_to_str (tp->ptid));
5308 reset_ecs (ecs, tp);
5309 switch_to_thread (tp->ptid);
5310 keep_going_pass_signal (ecs);
5311 }
5312 }
5313 }
5314
5315 /* Callback for iterate_over_threads. Find a resumed thread that has
5316 a pending waitstatus. */
5317
5318 static int
5319 resumed_thread_with_pending_status (struct thread_info *tp,
5320 void *arg)
5321 {
5322 return (tp->resumed
5323 && tp->suspend.waitstatus_pending_p);
5324 }
5325
5326 /* Called when we get an event that may finish an in-line or
5327 out-of-line (displaced stepping) step-over started previously.
5328 Return true if the event is processed and we should go back to the
5329 event loop; false if the caller should continue processing the
5330 event. */
5331
5332 static int
5333 finish_step_over (struct execution_control_state *ecs)
5334 {
5335 int had_step_over_info;
5336
5337 displaced_step_fixup (ecs->ptid,
5338 ecs->event_thread->suspend.stop_signal);
5339
5340 had_step_over_info = step_over_info_valid_p ();
5341
5342 if (had_step_over_info)
5343 {
5344 /* If we're stepping over a breakpoint with all threads locked,
5345 then only the thread that was stepped should be reporting
5346 back an event. */
5347 gdb_assert (ecs->event_thread->control.trap_expected);
5348
5349 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5350 clear_step_over_info ();
5351 }
5352
5353 if (!target_is_non_stop_p ())
5354 return 0;
5355
5356 /* Start a new step-over in another thread if there's one that
5357 needs it. */
5358 start_step_over ();
5359
5360 /* If we were stepping over a breakpoint before, and haven't started
5361 a new in-line step-over sequence, then restart all other threads
5362 (except the event thread). We can't do this in all-stop, as then
5363 e.g., we wouldn't be able to issue any other remote packet until
5364 these other threads stop. */
5365 if (had_step_over_info && !step_over_info_valid_p ())
5366 {
5367 struct thread_info *pending;
5368
5369 /* If we only have threads with pending statuses, the restart
5370 below won't restart any thread and so nothing re-inserts the
5371 breakpoint we just stepped over. But we need it inserted
5372 when we later process the pending events, otherwise if
5373 another thread has a pending event for this breakpoint too,
5374 we'd discard its event (because the breakpoint that
5375 originally caused the event was no longer inserted). */
5376 context_switch (ecs->ptid);
5377 insert_breakpoints ();
5378
5379 restart_threads (ecs->event_thread);
5380
5381 /* If we have events pending, go through handle_inferior_event
5382 again, picking up a pending event at random. This avoids
5383 thread starvation. */
5384
5385 /* But not if we just stepped over a watchpoint in order to let
5386 the instruction execute so we can evaluate its expression.
5387 The set of watchpoints that triggered is recorded in the
5388 breakpoint objects themselves (see bp->watchpoint_triggered).
5389 If we processed another event first, that other event could
5390 clobber this info. */
5391 if (ecs->event_thread->stepping_over_watchpoint)
5392 return 0;
5393
5394 pending = iterate_over_threads (resumed_thread_with_pending_status,
5395 NULL);
5396 if (pending != NULL)
5397 {
5398 struct thread_info *tp = ecs->event_thread;
5399 struct regcache *regcache;
5400
5401 if (debug_infrun)
5402 {
5403 fprintf_unfiltered (gdb_stdlog,
5404 "infrun: found resumed threads with "
5405 "pending events, saving status\n");
5406 }
5407
5408 gdb_assert (pending != tp);
5409
5410 /* Record the event thread's event for later. */
5411 save_waitstatus (tp, &ecs->ws);
5412 /* This was cleared early, by handle_inferior_event. Set it
5413 so this pending event is considered by
5414 do_target_wait. */
5415 tp->resumed = 1;
5416
5417 gdb_assert (!tp->executing);
5418
5419 regcache = get_thread_regcache (tp->ptid);
5420 tp->suspend.stop_pc = regcache_read_pc (regcache);
5421
5422 if (debug_infrun)
5423 {
5424 fprintf_unfiltered (gdb_stdlog,
5425 "infrun: saved stop_pc=%s for %s "
5426 "(currently_stepping=%d)\n",
5427 paddress (target_gdbarch (),
5428 tp->suspend.stop_pc),
5429 target_pid_to_str (tp->ptid),
5430 currently_stepping (tp));
5431 }
5432
5433 /* This in-line step-over finished; clear this so we won't
5434 start a new one. This is what handle_signal_stop would
5435 do, if we returned false. */
5436 tp->stepping_over_breakpoint = 0;
5437
5438 /* Wake up the event loop again. */
5439 mark_async_event_handler (infrun_async_inferior_event_token);
5440
5441 prepare_to_wait (ecs);
5442 return 1;
5443 }
5444 }
5445
5446 return 0;
5447 }
5448
5449 /* Come here when the program has stopped with a signal. */
5450
5451 static void
5452 handle_signal_stop (struct execution_control_state *ecs)
5453 {
5454 struct frame_info *frame;
5455 struct gdbarch *gdbarch;
5456 int stopped_by_watchpoint;
5457 enum stop_kind stop_soon;
5458 int random_signal;
5459
5460 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5461
5462 /* Do we need to clean up the state of a thread that has
5463 completed a displaced single-step? (Doing so usually affects
5464 the PC, so do it here, before we set stop_pc.) */
5465 if (finish_step_over (ecs))
5466 return;
5467
5468 /* If we either finished a single-step or hit a breakpoint, but
5469 the user wanted this thread to be stopped, pretend we got a
5470 SIG0 (generic unsignaled stop). */
5471 if (ecs->event_thread->stop_requested
5472 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5473 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5474
5475 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5476
5477 if (debug_infrun)
5478 {
5479 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5480 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5481 struct cleanup *old_chain = save_inferior_ptid ();
5482
5483 inferior_ptid = ecs->ptid;
5484
5485 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5486 paddress (gdbarch, stop_pc));
5487 if (target_stopped_by_watchpoint ())
5488 {
5489 CORE_ADDR addr;
5490
5491 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5492
5493 if (target_stopped_data_address (&current_target, &addr))
5494 fprintf_unfiltered (gdb_stdlog,
5495 "infrun: stopped data address = %s\n",
5496 paddress (gdbarch, addr));
5497 else
5498 fprintf_unfiltered (gdb_stdlog,
5499 "infrun: (no data address available)\n");
5500 }
5501
5502 do_cleanups (old_chain);
5503 }
5504
5505 /* This is originated from start_remote(), start_inferior() and
5506 shared libraries hook functions. */
5507 stop_soon = get_inferior_stop_soon (ecs->ptid);
5508 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5509 {
5510 if (!ptid_equal (ecs->ptid, inferior_ptid))
5511 context_switch (ecs->ptid);
5512 if (debug_infrun)
5513 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5514 stop_print_frame = 1;
5515 stop_waiting (ecs);
5516 return;
5517 }
5518
5519 /* This originates from attach_command(). We need to overwrite
5520 the stop_signal here, because some kernels don't ignore a
5521 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5522 See more comments in inferior.h. On the other hand, if we
5523 get a non-SIGSTOP, report it to the user - assume the backend
5524 will handle the SIGSTOP if it should show up later.
5525
5526 Also consider that the attach is complete when we see a
5527 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5528 target extended-remote report it instead of a SIGSTOP
5529 (e.g. gdbserver). We already rely on SIGTRAP being our
5530 signal, so this is no exception.
5531
5532 Also consider that the attach is complete when we see a
5533 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5534 the target to stop all threads of the inferior, in case the
5535 low level attach operation doesn't stop them implicitly. If
5536 they weren't stopped implicitly, then the stub will report a
5537 GDB_SIGNAL_0, meaning: stopped for no particular reason
5538 other than GDB's request. */
5539 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5540 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5541 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5542 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5543 {
5544 stop_print_frame = 1;
5545 stop_waiting (ecs);
5546 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5547 return;
5548 }
5549
5550 /* See if something interesting happened to the non-current thread. If
5551 so, then switch to that thread. */
5552 if (!ptid_equal (ecs->ptid, inferior_ptid))
5553 {
5554 if (debug_infrun)
5555 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5556
5557 context_switch (ecs->ptid);
5558
5559 if (deprecated_context_hook)
5560 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
5561 }
5562
5563 /* At this point, get hold of the now-current thread's frame. */
5564 frame = get_current_frame ();
5565 gdbarch = get_frame_arch (frame);
5566
5567 /* Pull the single step breakpoints out of the target. */
5568 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5569 {
5570 struct regcache *regcache;
5571 struct address_space *aspace;
5572 CORE_ADDR pc;
5573
5574 regcache = get_thread_regcache (ecs->ptid);
5575 aspace = get_regcache_aspace (regcache);
5576 pc = regcache_read_pc (regcache);
5577
5578 /* However, before doing so, if this single-step breakpoint was
5579 actually for another thread, set this thread up for moving
5580 past it. */
5581 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5582 aspace, pc))
5583 {
5584 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5585 {
5586 if (debug_infrun)
5587 {
5588 fprintf_unfiltered (gdb_stdlog,
5589 "infrun: [%s] hit another thread's "
5590 "single-step breakpoint\n",
5591 target_pid_to_str (ecs->ptid));
5592 }
5593 ecs->hit_singlestep_breakpoint = 1;
5594 }
5595 }
5596 else
5597 {
5598 if (debug_infrun)
5599 {
5600 fprintf_unfiltered (gdb_stdlog,
5601 "infrun: [%s] hit its "
5602 "single-step breakpoint\n",
5603 target_pid_to_str (ecs->ptid));
5604 }
5605 }
5606 }
5607 delete_just_stopped_threads_single_step_breakpoints ();
5608
5609 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5610 && ecs->event_thread->control.trap_expected
5611 && ecs->event_thread->stepping_over_watchpoint)
5612 stopped_by_watchpoint = 0;
5613 else
5614 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5615
5616 /* If necessary, step over this watchpoint. We'll be back to display
5617 it in a moment. */
5618 if (stopped_by_watchpoint
5619 && (target_have_steppable_watchpoint
5620 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5621 {
5622 /* At this point, we are stopped at an instruction which has
5623 attempted to write to a piece of memory under control of
5624 a watchpoint. The instruction hasn't actually executed
5625 yet. If we were to evaluate the watchpoint expression
5626 now, we would get the old value, and therefore no change
5627 would seem to have occurred.
5628
5629 In order to make watchpoints work `right', we really need
5630 to complete the memory write, and then evaluate the
5631 watchpoint expression. We do this by single-stepping the
5632 target.
5633
5634 It may not be necessary to disable the watchpoint to step over
5635 it. For example, the PA can (with some kernel cooperation)
5636 single step over a watchpoint without disabling the watchpoint.
5637
5638 It is far more common to need to disable a watchpoint to step
5639 the inferior over it. If we have non-steppable watchpoints,
5640 we must disable the current watchpoint; it's simplest to
5641 disable all watchpoints.
5642
5643 Any breakpoint at PC must also be stepped over -- if there's
5644 one, it will have already triggered before the watchpoint
5645 triggered, and we either already reported it to the user, or
5646 it didn't cause a stop and we called keep_going. In either
5647 case, if there was a breakpoint at PC, we must be trying to
5648 step past it. */
5649 ecs->event_thread->stepping_over_watchpoint = 1;
5650 keep_going (ecs);
5651 return;
5652 }
5653
5654 ecs->event_thread->stepping_over_breakpoint = 0;
5655 ecs->event_thread->stepping_over_watchpoint = 0;
5656 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5657 ecs->event_thread->control.stop_step = 0;
5658 stop_print_frame = 1;
5659 stopped_by_random_signal = 0;
5660
5661 /* Hide inlined functions starting here, unless we just performed stepi or
5662 nexti. After stepi and nexti, always show the innermost frame (not any
5663 inline function call sites). */
5664 if (ecs->event_thread->control.step_range_end != 1)
5665 {
5666 struct address_space *aspace =
5667 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5668
5669 /* skip_inline_frames is expensive, so we avoid it if we can
5670 determine that the address is one where functions cannot have
5671 been inlined. This improves performance with inferiors that
5672 load a lot of shared libraries, because the solib event
5673 breakpoint is defined as the address of a function (i.e. not
5674 inline). Note that we have to check the previous PC as well
5675 as the current one to catch cases when we have just
5676 single-stepped off a breakpoint prior to reinstating it.
5677 Note that we're assuming that the code we single-step to is
5678 not inline, but that's not definitive: there's nothing
5679 preventing the event breakpoint function from containing
5680 inlined code, and the single-step ending up there. If the
5681 user had set a breakpoint on that inlined code, the missing
5682 skip_inline_frames call would break things. Fortunately
5683 that's an extremely unlikely scenario. */
5684 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5685 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5686 && ecs->event_thread->control.trap_expected
5687 && pc_at_non_inline_function (aspace,
5688 ecs->event_thread->prev_pc,
5689 &ecs->ws)))
5690 {
5691 skip_inline_frames (ecs->ptid);
5692
5693 /* Re-fetch current thread's frame in case that invalidated
5694 the frame cache. */
5695 frame = get_current_frame ();
5696 gdbarch = get_frame_arch (frame);
5697 }
5698 }
5699
5700 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5701 && ecs->event_thread->control.trap_expected
5702 && gdbarch_single_step_through_delay_p (gdbarch)
5703 && currently_stepping (ecs->event_thread))
5704 {
5705 /* We're trying to step off a breakpoint. Turns out that we're
5706 also on an instruction that needs to be stepped multiple
5707 times before it's been fully executing. E.g., architectures
5708 with a delay slot. It needs to be stepped twice, once for
5709 the instruction and once for the delay slot. */
5710 int step_through_delay
5711 = gdbarch_single_step_through_delay (gdbarch, frame);
5712
5713 if (debug_infrun && step_through_delay)
5714 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5715 if (ecs->event_thread->control.step_range_end == 0
5716 && step_through_delay)
5717 {
5718 /* The user issued a continue when stopped at a breakpoint.
5719 Set up for another trap and get out of here. */
5720 ecs->event_thread->stepping_over_breakpoint = 1;
5721 keep_going (ecs);
5722 return;
5723 }
5724 else if (step_through_delay)
5725 {
5726 /* The user issued a step when stopped at a breakpoint.
5727 Maybe we should stop, maybe we should not - the delay
5728 slot *might* correspond to a line of source. In any
5729 case, don't decide that here, just set
5730 ecs->stepping_over_breakpoint, making sure we
5731 single-step again before breakpoints are re-inserted. */
5732 ecs->event_thread->stepping_over_breakpoint = 1;
5733 }
5734 }
5735
5736 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5737 handles this event. */
5738 ecs->event_thread->control.stop_bpstat
5739 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5740 stop_pc, ecs->ptid, &ecs->ws);
5741
5742 /* Following in case break condition called a
5743 function. */
5744 stop_print_frame = 1;
5745
5746 /* This is where we handle "moribund" watchpoints. Unlike
5747 software breakpoints traps, hardware watchpoint traps are
5748 always distinguishable from random traps. If no high-level
5749 watchpoint is associated with the reported stop data address
5750 anymore, then the bpstat does not explain the signal ---
5751 simply make sure to ignore it if `stopped_by_watchpoint' is
5752 set. */
5753
5754 if (debug_infrun
5755 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5756 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5757 GDB_SIGNAL_TRAP)
5758 && stopped_by_watchpoint)
5759 fprintf_unfiltered (gdb_stdlog,
5760 "infrun: no user watchpoint explains "
5761 "watchpoint SIGTRAP, ignoring\n");
5762
5763 /* NOTE: cagney/2003-03-29: These checks for a random signal
5764 at one stage in the past included checks for an inferior
5765 function call's call dummy's return breakpoint. The original
5766 comment, that went with the test, read:
5767
5768 ``End of a stack dummy. Some systems (e.g. Sony news) give
5769 another signal besides SIGTRAP, so check here as well as
5770 above.''
5771
5772 If someone ever tries to get call dummys on a
5773 non-executable stack to work (where the target would stop
5774 with something like a SIGSEGV), then those tests might need
5775 to be re-instated. Given, however, that the tests were only
5776 enabled when momentary breakpoints were not being used, I
5777 suspect that it won't be the case.
5778
5779 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5780 be necessary for call dummies on a non-executable stack on
5781 SPARC. */
5782
5783 /* See if the breakpoints module can explain the signal. */
5784 random_signal
5785 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5786 ecs->event_thread->suspend.stop_signal);
5787
5788 /* Maybe this was a trap for a software breakpoint that has since
5789 been removed. */
5790 if (random_signal && target_stopped_by_sw_breakpoint ())
5791 {
5792 if (program_breakpoint_here_p (gdbarch, stop_pc))
5793 {
5794 struct regcache *regcache;
5795 int decr_pc;
5796
5797 /* Re-adjust PC to what the program would see if GDB was not
5798 debugging it. */
5799 regcache = get_thread_regcache (ecs->event_thread->ptid);
5800 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5801 if (decr_pc != 0)
5802 {
5803 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5804
5805 if (record_full_is_used ())
5806 record_full_gdb_operation_disable_set ();
5807
5808 regcache_write_pc (regcache, stop_pc + decr_pc);
5809
5810 do_cleanups (old_cleanups);
5811 }
5812 }
5813 else
5814 {
5815 /* A delayed software breakpoint event. Ignore the trap. */
5816 if (debug_infrun)
5817 fprintf_unfiltered (gdb_stdlog,
5818 "infrun: delayed software breakpoint "
5819 "trap, ignoring\n");
5820 random_signal = 0;
5821 }
5822 }
5823
5824 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5825 has since been removed. */
5826 if (random_signal && target_stopped_by_hw_breakpoint ())
5827 {
5828 /* A delayed hardware breakpoint event. Ignore the trap. */
5829 if (debug_infrun)
5830 fprintf_unfiltered (gdb_stdlog,
5831 "infrun: delayed hardware breakpoint/watchpoint "
5832 "trap, ignoring\n");
5833 random_signal = 0;
5834 }
5835
5836 /* If not, perhaps stepping/nexting can. */
5837 if (random_signal)
5838 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5839 && currently_stepping (ecs->event_thread));
5840
5841 /* Perhaps the thread hit a single-step breakpoint of _another_
5842 thread. Single-step breakpoints are transparent to the
5843 breakpoints module. */
5844 if (random_signal)
5845 random_signal = !ecs->hit_singlestep_breakpoint;
5846
5847 /* No? Perhaps we got a moribund watchpoint. */
5848 if (random_signal)
5849 random_signal = !stopped_by_watchpoint;
5850
5851 /* For the program's own signals, act according to
5852 the signal handling tables. */
5853
5854 if (random_signal)
5855 {
5856 /* Signal not for debugging purposes. */
5857 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5858 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5859
5860 if (debug_infrun)
5861 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5862 gdb_signal_to_symbol_string (stop_signal));
5863
5864 stopped_by_random_signal = 1;
5865
5866 /* Always stop on signals if we're either just gaining control
5867 of the program, or the user explicitly requested this thread
5868 to remain stopped. */
5869 if (stop_soon != NO_STOP_QUIETLY
5870 || ecs->event_thread->stop_requested
5871 || (!inf->detaching
5872 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5873 {
5874 stop_waiting (ecs);
5875 return;
5876 }
5877
5878 /* Notify observers the signal has "handle print" set. Note we
5879 returned early above if stopping; normal_stop handles the
5880 printing in that case. */
5881 if (signal_print[ecs->event_thread->suspend.stop_signal])
5882 {
5883 /* The signal table tells us to print about this signal. */
5884 target_terminal_ours_for_output ();
5885 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5886 target_terminal_inferior ();
5887 }
5888
5889 /* Clear the signal if it should not be passed. */
5890 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5891 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5892
5893 if (ecs->event_thread->prev_pc == stop_pc
5894 && ecs->event_thread->control.trap_expected
5895 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5896 {
5897 int was_in_line;
5898
5899 /* We were just starting a new sequence, attempting to
5900 single-step off of a breakpoint and expecting a SIGTRAP.
5901 Instead this signal arrives. This signal will take us out
5902 of the stepping range so GDB needs to remember to, when
5903 the signal handler returns, resume stepping off that
5904 breakpoint. */
5905 /* To simplify things, "continue" is forced to use the same
5906 code paths as single-step - set a breakpoint at the
5907 signal return address and then, once hit, step off that
5908 breakpoint. */
5909 if (debug_infrun)
5910 fprintf_unfiltered (gdb_stdlog,
5911 "infrun: signal arrived while stepping over "
5912 "breakpoint\n");
5913
5914 was_in_line = step_over_info_valid_p ();
5915 clear_step_over_info ();
5916 insert_hp_step_resume_breakpoint_at_frame (frame);
5917 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5918 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5919 ecs->event_thread->control.trap_expected = 0;
5920
5921 if (target_is_non_stop_p ())
5922 {
5923 /* Either "set non-stop" is "on", or the target is
5924 always in non-stop mode. In this case, we have a bit
5925 more work to do. Resume the current thread, and if
5926 we had paused all threads, restart them while the
5927 signal handler runs. */
5928 keep_going (ecs);
5929
5930 if (was_in_line)
5931 {
5932 restart_threads (ecs->event_thread);
5933 }
5934 else if (debug_infrun)
5935 {
5936 fprintf_unfiltered (gdb_stdlog,
5937 "infrun: no need to restart threads\n");
5938 }
5939 return;
5940 }
5941
5942 /* If we were nexting/stepping some other thread, switch to
5943 it, so that we don't continue it, losing control. */
5944 if (!switch_back_to_stepped_thread (ecs))
5945 keep_going (ecs);
5946 return;
5947 }
5948
5949 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5950 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5951 || ecs->event_thread->control.step_range_end == 1)
5952 && frame_id_eq (get_stack_frame_id (frame),
5953 ecs->event_thread->control.step_stack_frame_id)
5954 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5955 {
5956 /* The inferior is about to take a signal that will take it
5957 out of the single step range. Set a breakpoint at the
5958 current PC (which is presumably where the signal handler
5959 will eventually return) and then allow the inferior to
5960 run free.
5961
5962 Note that this is only needed for a signal delivered
5963 while in the single-step range. Nested signals aren't a
5964 problem as they eventually all return. */
5965 if (debug_infrun)
5966 fprintf_unfiltered (gdb_stdlog,
5967 "infrun: signal may take us out of "
5968 "single-step range\n");
5969
5970 clear_step_over_info ();
5971 insert_hp_step_resume_breakpoint_at_frame (frame);
5972 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5973 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5974 ecs->event_thread->control.trap_expected = 0;
5975 keep_going (ecs);
5976 return;
5977 }
5978
5979 /* Note: step_resume_breakpoint may be non-NULL. This occures
5980 when either there's a nested signal, or when there's a
5981 pending signal enabled just as the signal handler returns
5982 (leaving the inferior at the step-resume-breakpoint without
5983 actually executing it). Either way continue until the
5984 breakpoint is really hit. */
5985
5986 if (!switch_back_to_stepped_thread (ecs))
5987 {
5988 if (debug_infrun)
5989 fprintf_unfiltered (gdb_stdlog,
5990 "infrun: random signal, keep going\n");
5991
5992 keep_going (ecs);
5993 }
5994 return;
5995 }
5996
5997 process_event_stop_test (ecs);
5998 }
5999
6000 /* Come here when we've got some debug event / signal we can explain
6001 (IOW, not a random signal), and test whether it should cause a
6002 stop, or whether we should resume the inferior (transparently).
6003 E.g., could be a breakpoint whose condition evaluates false; we
6004 could be still stepping within the line; etc. */
6005
6006 static void
6007 process_event_stop_test (struct execution_control_state *ecs)
6008 {
6009 struct symtab_and_line stop_pc_sal;
6010 struct frame_info *frame;
6011 struct gdbarch *gdbarch;
6012 CORE_ADDR jmp_buf_pc;
6013 struct bpstat_what what;
6014
6015 /* Handle cases caused by hitting a breakpoint. */
6016
6017 frame = get_current_frame ();
6018 gdbarch = get_frame_arch (frame);
6019
6020 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6021
6022 if (what.call_dummy)
6023 {
6024 stop_stack_dummy = what.call_dummy;
6025 }
6026
6027 /* A few breakpoint types have callbacks associated (e.g.,
6028 bp_jit_event). Run them now. */
6029 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6030
6031 /* If we hit an internal event that triggers symbol changes, the
6032 current frame will be invalidated within bpstat_what (e.g., if we
6033 hit an internal solib event). Re-fetch it. */
6034 frame = get_current_frame ();
6035 gdbarch = get_frame_arch (frame);
6036
6037 switch (what.main_action)
6038 {
6039 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6040 /* If we hit the breakpoint at longjmp while stepping, we
6041 install a momentary breakpoint at the target of the
6042 jmp_buf. */
6043
6044 if (debug_infrun)
6045 fprintf_unfiltered (gdb_stdlog,
6046 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6047
6048 ecs->event_thread->stepping_over_breakpoint = 1;
6049
6050 if (what.is_longjmp)
6051 {
6052 struct value *arg_value;
6053
6054 /* If we set the longjmp breakpoint via a SystemTap probe,
6055 then use it to extract the arguments. The destination PC
6056 is the third argument to the probe. */
6057 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6058 if (arg_value)
6059 {
6060 jmp_buf_pc = value_as_address (arg_value);
6061 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6062 }
6063 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6064 || !gdbarch_get_longjmp_target (gdbarch,
6065 frame, &jmp_buf_pc))
6066 {
6067 if (debug_infrun)
6068 fprintf_unfiltered (gdb_stdlog,
6069 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6070 "(!gdbarch_get_longjmp_target)\n");
6071 keep_going (ecs);
6072 return;
6073 }
6074
6075 /* Insert a breakpoint at resume address. */
6076 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6077 }
6078 else
6079 check_exception_resume (ecs, frame);
6080 keep_going (ecs);
6081 return;
6082
6083 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6084 {
6085 struct frame_info *init_frame;
6086
6087 /* There are several cases to consider.
6088
6089 1. The initiating frame no longer exists. In this case we
6090 must stop, because the exception or longjmp has gone too
6091 far.
6092
6093 2. The initiating frame exists, and is the same as the
6094 current frame. We stop, because the exception or longjmp
6095 has been caught.
6096
6097 3. The initiating frame exists and is different from the
6098 current frame. This means the exception or longjmp has
6099 been caught beneath the initiating frame, so keep going.
6100
6101 4. longjmp breakpoint has been placed just to protect
6102 against stale dummy frames and user is not interested in
6103 stopping around longjmps. */
6104
6105 if (debug_infrun)
6106 fprintf_unfiltered (gdb_stdlog,
6107 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6108
6109 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6110 != NULL);
6111 delete_exception_resume_breakpoint (ecs->event_thread);
6112
6113 if (what.is_longjmp)
6114 {
6115 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6116
6117 if (!frame_id_p (ecs->event_thread->initiating_frame))
6118 {
6119 /* Case 4. */
6120 keep_going (ecs);
6121 return;
6122 }
6123 }
6124
6125 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6126
6127 if (init_frame)
6128 {
6129 struct frame_id current_id
6130 = get_frame_id (get_current_frame ());
6131 if (frame_id_eq (current_id,
6132 ecs->event_thread->initiating_frame))
6133 {
6134 /* Case 2. Fall through. */
6135 }
6136 else
6137 {
6138 /* Case 3. */
6139 keep_going (ecs);
6140 return;
6141 }
6142 }
6143
6144 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6145 exists. */
6146 delete_step_resume_breakpoint (ecs->event_thread);
6147
6148 end_stepping_range (ecs);
6149 }
6150 return;
6151
6152 case BPSTAT_WHAT_SINGLE:
6153 if (debug_infrun)
6154 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6155 ecs->event_thread->stepping_over_breakpoint = 1;
6156 /* Still need to check other stuff, at least the case where we
6157 are stepping and step out of the right range. */
6158 break;
6159
6160 case BPSTAT_WHAT_STEP_RESUME:
6161 if (debug_infrun)
6162 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6163
6164 delete_step_resume_breakpoint (ecs->event_thread);
6165 if (ecs->event_thread->control.proceed_to_finish
6166 && execution_direction == EXEC_REVERSE)
6167 {
6168 struct thread_info *tp = ecs->event_thread;
6169
6170 /* We are finishing a function in reverse, and just hit the
6171 step-resume breakpoint at the start address of the
6172 function, and we're almost there -- just need to back up
6173 by one more single-step, which should take us back to the
6174 function call. */
6175 tp->control.step_range_start = tp->control.step_range_end = 1;
6176 keep_going (ecs);
6177 return;
6178 }
6179 fill_in_stop_func (gdbarch, ecs);
6180 if (stop_pc == ecs->stop_func_start
6181 && execution_direction == EXEC_REVERSE)
6182 {
6183 /* We are stepping over a function call in reverse, and just
6184 hit the step-resume breakpoint at the start address of
6185 the function. Go back to single-stepping, which should
6186 take us back to the function call. */
6187 ecs->event_thread->stepping_over_breakpoint = 1;
6188 keep_going (ecs);
6189 return;
6190 }
6191 break;
6192
6193 case BPSTAT_WHAT_STOP_NOISY:
6194 if (debug_infrun)
6195 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6196 stop_print_frame = 1;
6197
6198 /* Assume the thread stopped for a breapoint. We'll still check
6199 whether a/the breakpoint is there when the thread is next
6200 resumed. */
6201 ecs->event_thread->stepping_over_breakpoint = 1;
6202
6203 stop_waiting (ecs);
6204 return;
6205
6206 case BPSTAT_WHAT_STOP_SILENT:
6207 if (debug_infrun)
6208 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6209 stop_print_frame = 0;
6210
6211 /* Assume the thread stopped for a breapoint. We'll still check
6212 whether a/the breakpoint is there when the thread is next
6213 resumed. */
6214 ecs->event_thread->stepping_over_breakpoint = 1;
6215 stop_waiting (ecs);
6216 return;
6217
6218 case BPSTAT_WHAT_HP_STEP_RESUME:
6219 if (debug_infrun)
6220 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6221
6222 delete_step_resume_breakpoint (ecs->event_thread);
6223 if (ecs->event_thread->step_after_step_resume_breakpoint)
6224 {
6225 /* Back when the step-resume breakpoint was inserted, we
6226 were trying to single-step off a breakpoint. Go back to
6227 doing that. */
6228 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6229 ecs->event_thread->stepping_over_breakpoint = 1;
6230 keep_going (ecs);
6231 return;
6232 }
6233 break;
6234
6235 case BPSTAT_WHAT_KEEP_CHECKING:
6236 break;
6237 }
6238
6239 /* If we stepped a permanent breakpoint and we had a high priority
6240 step-resume breakpoint for the address we stepped, but we didn't
6241 hit it, then we must have stepped into the signal handler. The
6242 step-resume was only necessary to catch the case of _not_
6243 stepping into the handler, so delete it, and fall through to
6244 checking whether the step finished. */
6245 if (ecs->event_thread->stepped_breakpoint)
6246 {
6247 struct breakpoint *sr_bp
6248 = ecs->event_thread->control.step_resume_breakpoint;
6249
6250 if (sr_bp != NULL
6251 && sr_bp->loc->permanent
6252 && sr_bp->type == bp_hp_step_resume
6253 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6254 {
6255 if (debug_infrun)
6256 fprintf_unfiltered (gdb_stdlog,
6257 "infrun: stepped permanent breakpoint, stopped in "
6258 "handler\n");
6259 delete_step_resume_breakpoint (ecs->event_thread);
6260 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6261 }
6262 }
6263
6264 /* We come here if we hit a breakpoint but should not stop for it.
6265 Possibly we also were stepping and should stop for that. So fall
6266 through and test for stepping. But, if not stepping, do not
6267 stop. */
6268
6269 /* In all-stop mode, if we're currently stepping but have stopped in
6270 some other thread, we need to switch back to the stepped thread. */
6271 if (switch_back_to_stepped_thread (ecs))
6272 return;
6273
6274 if (ecs->event_thread->control.step_resume_breakpoint)
6275 {
6276 if (debug_infrun)
6277 fprintf_unfiltered (gdb_stdlog,
6278 "infrun: step-resume breakpoint is inserted\n");
6279
6280 /* Having a step-resume breakpoint overrides anything
6281 else having to do with stepping commands until
6282 that breakpoint is reached. */
6283 keep_going (ecs);
6284 return;
6285 }
6286
6287 if (ecs->event_thread->control.step_range_end == 0)
6288 {
6289 if (debug_infrun)
6290 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6291 /* Likewise if we aren't even stepping. */
6292 keep_going (ecs);
6293 return;
6294 }
6295
6296 /* Re-fetch current thread's frame in case the code above caused
6297 the frame cache to be re-initialized, making our FRAME variable
6298 a dangling pointer. */
6299 frame = get_current_frame ();
6300 gdbarch = get_frame_arch (frame);
6301 fill_in_stop_func (gdbarch, ecs);
6302
6303 /* If stepping through a line, keep going if still within it.
6304
6305 Note that step_range_end is the address of the first instruction
6306 beyond the step range, and NOT the address of the last instruction
6307 within it!
6308
6309 Note also that during reverse execution, we may be stepping
6310 through a function epilogue and therefore must detect when
6311 the current-frame changes in the middle of a line. */
6312
6313 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6314 && (execution_direction != EXEC_REVERSE
6315 || frame_id_eq (get_frame_id (frame),
6316 ecs->event_thread->control.step_frame_id)))
6317 {
6318 if (debug_infrun)
6319 fprintf_unfiltered
6320 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6321 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6322 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6323
6324 /* Tentatively re-enable range stepping; `resume' disables it if
6325 necessary (e.g., if we're stepping over a breakpoint or we
6326 have software watchpoints). */
6327 ecs->event_thread->control.may_range_step = 1;
6328
6329 /* When stepping backward, stop at beginning of line range
6330 (unless it's the function entry point, in which case
6331 keep going back to the call point). */
6332 if (stop_pc == ecs->event_thread->control.step_range_start
6333 && stop_pc != ecs->stop_func_start
6334 && execution_direction == EXEC_REVERSE)
6335 end_stepping_range (ecs);
6336 else
6337 keep_going (ecs);
6338
6339 return;
6340 }
6341
6342 /* We stepped out of the stepping range. */
6343
6344 /* If we are stepping at the source level and entered the runtime
6345 loader dynamic symbol resolution code...
6346
6347 EXEC_FORWARD: we keep on single stepping until we exit the run
6348 time loader code and reach the callee's address.
6349
6350 EXEC_REVERSE: we've already executed the callee (backward), and
6351 the runtime loader code is handled just like any other
6352 undebuggable function call. Now we need only keep stepping
6353 backward through the trampoline code, and that's handled further
6354 down, so there is nothing for us to do here. */
6355
6356 if (execution_direction != EXEC_REVERSE
6357 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6358 && in_solib_dynsym_resolve_code (stop_pc))
6359 {
6360 CORE_ADDR pc_after_resolver =
6361 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6362
6363 if (debug_infrun)
6364 fprintf_unfiltered (gdb_stdlog,
6365 "infrun: stepped into dynsym resolve code\n");
6366
6367 if (pc_after_resolver)
6368 {
6369 /* Set up a step-resume breakpoint at the address
6370 indicated by SKIP_SOLIB_RESOLVER. */
6371 struct symtab_and_line sr_sal;
6372
6373 init_sal (&sr_sal);
6374 sr_sal.pc = pc_after_resolver;
6375 sr_sal.pspace = get_frame_program_space (frame);
6376
6377 insert_step_resume_breakpoint_at_sal (gdbarch,
6378 sr_sal, null_frame_id);
6379 }
6380
6381 keep_going (ecs);
6382 return;
6383 }
6384
6385 if (ecs->event_thread->control.step_range_end != 1
6386 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6387 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6388 && get_frame_type (frame) == SIGTRAMP_FRAME)
6389 {
6390 if (debug_infrun)
6391 fprintf_unfiltered (gdb_stdlog,
6392 "infrun: stepped into signal trampoline\n");
6393 /* The inferior, while doing a "step" or "next", has ended up in
6394 a signal trampoline (either by a signal being delivered or by
6395 the signal handler returning). Just single-step until the
6396 inferior leaves the trampoline (either by calling the handler
6397 or returning). */
6398 keep_going (ecs);
6399 return;
6400 }
6401
6402 /* If we're in the return path from a shared library trampoline,
6403 we want to proceed through the trampoline when stepping. */
6404 /* macro/2012-04-25: This needs to come before the subroutine
6405 call check below as on some targets return trampolines look
6406 like subroutine calls (MIPS16 return thunks). */
6407 if (gdbarch_in_solib_return_trampoline (gdbarch,
6408 stop_pc, ecs->stop_func_name)
6409 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6410 {
6411 /* Determine where this trampoline returns. */
6412 CORE_ADDR real_stop_pc;
6413
6414 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6415
6416 if (debug_infrun)
6417 fprintf_unfiltered (gdb_stdlog,
6418 "infrun: stepped into solib return tramp\n");
6419
6420 /* Only proceed through if we know where it's going. */
6421 if (real_stop_pc)
6422 {
6423 /* And put the step-breakpoint there and go until there. */
6424 struct symtab_and_line sr_sal;
6425
6426 init_sal (&sr_sal); /* initialize to zeroes */
6427 sr_sal.pc = real_stop_pc;
6428 sr_sal.section = find_pc_overlay (sr_sal.pc);
6429 sr_sal.pspace = get_frame_program_space (frame);
6430
6431 /* Do not specify what the fp should be when we stop since
6432 on some machines the prologue is where the new fp value
6433 is established. */
6434 insert_step_resume_breakpoint_at_sal (gdbarch,
6435 sr_sal, null_frame_id);
6436
6437 /* Restart without fiddling with the step ranges or
6438 other state. */
6439 keep_going (ecs);
6440 return;
6441 }
6442 }
6443
6444 /* Check for subroutine calls. The check for the current frame
6445 equalling the step ID is not necessary - the check of the
6446 previous frame's ID is sufficient - but it is a common case and
6447 cheaper than checking the previous frame's ID.
6448
6449 NOTE: frame_id_eq will never report two invalid frame IDs as
6450 being equal, so to get into this block, both the current and
6451 previous frame must have valid frame IDs. */
6452 /* The outer_frame_id check is a heuristic to detect stepping
6453 through startup code. If we step over an instruction which
6454 sets the stack pointer from an invalid value to a valid value,
6455 we may detect that as a subroutine call from the mythical
6456 "outermost" function. This could be fixed by marking
6457 outermost frames as !stack_p,code_p,special_p. Then the
6458 initial outermost frame, before sp was valid, would
6459 have code_addr == &_start. See the comment in frame_id_eq
6460 for more. */
6461 if (!frame_id_eq (get_stack_frame_id (frame),
6462 ecs->event_thread->control.step_stack_frame_id)
6463 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6464 ecs->event_thread->control.step_stack_frame_id)
6465 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6466 outer_frame_id)
6467 || (ecs->event_thread->control.step_start_function
6468 != find_pc_function (stop_pc)))))
6469 {
6470 CORE_ADDR real_stop_pc;
6471
6472 if (debug_infrun)
6473 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6474
6475 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6476 {
6477 /* I presume that step_over_calls is only 0 when we're
6478 supposed to be stepping at the assembly language level
6479 ("stepi"). Just stop. */
6480 /* And this works the same backward as frontward. MVS */
6481 end_stepping_range (ecs);
6482 return;
6483 }
6484
6485 /* Reverse stepping through solib trampolines. */
6486
6487 if (execution_direction == EXEC_REVERSE
6488 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6489 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6490 || (ecs->stop_func_start == 0
6491 && in_solib_dynsym_resolve_code (stop_pc))))
6492 {
6493 /* Any solib trampoline code can be handled in reverse
6494 by simply continuing to single-step. We have already
6495 executed the solib function (backwards), and a few
6496 steps will take us back through the trampoline to the
6497 caller. */
6498 keep_going (ecs);
6499 return;
6500 }
6501
6502 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6503 {
6504 /* We're doing a "next".
6505
6506 Normal (forward) execution: set a breakpoint at the
6507 callee's return address (the address at which the caller
6508 will resume).
6509
6510 Reverse (backward) execution. set the step-resume
6511 breakpoint at the start of the function that we just
6512 stepped into (backwards), and continue to there. When we
6513 get there, we'll need to single-step back to the caller. */
6514
6515 if (execution_direction == EXEC_REVERSE)
6516 {
6517 /* If we're already at the start of the function, we've either
6518 just stepped backward into a single instruction function,
6519 or stepped back out of a signal handler to the first instruction
6520 of the function. Just keep going, which will single-step back
6521 to the caller. */
6522 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6523 {
6524 struct symtab_and_line sr_sal;
6525
6526 /* Normal function call return (static or dynamic). */
6527 init_sal (&sr_sal);
6528 sr_sal.pc = ecs->stop_func_start;
6529 sr_sal.pspace = get_frame_program_space (frame);
6530 insert_step_resume_breakpoint_at_sal (gdbarch,
6531 sr_sal, null_frame_id);
6532 }
6533 }
6534 else
6535 insert_step_resume_breakpoint_at_caller (frame);
6536
6537 keep_going (ecs);
6538 return;
6539 }
6540
6541 /* If we are in a function call trampoline (a stub between the
6542 calling routine and the real function), locate the real
6543 function. That's what tells us (a) whether we want to step
6544 into it at all, and (b) what prologue we want to run to the
6545 end of, if we do step into it. */
6546 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6547 if (real_stop_pc == 0)
6548 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6549 if (real_stop_pc != 0)
6550 ecs->stop_func_start = real_stop_pc;
6551
6552 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6553 {
6554 struct symtab_and_line sr_sal;
6555
6556 init_sal (&sr_sal);
6557 sr_sal.pc = ecs->stop_func_start;
6558 sr_sal.pspace = get_frame_program_space (frame);
6559
6560 insert_step_resume_breakpoint_at_sal (gdbarch,
6561 sr_sal, null_frame_id);
6562 keep_going (ecs);
6563 return;
6564 }
6565
6566 /* If we have line number information for the function we are
6567 thinking of stepping into and the function isn't on the skip
6568 list, step into it.
6569
6570 If there are several symtabs at that PC (e.g. with include
6571 files), just want to know whether *any* of them have line
6572 numbers. find_pc_line handles this. */
6573 {
6574 struct symtab_and_line tmp_sal;
6575
6576 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6577 if (tmp_sal.line != 0
6578 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6579 &tmp_sal))
6580 {
6581 if (execution_direction == EXEC_REVERSE)
6582 handle_step_into_function_backward (gdbarch, ecs);
6583 else
6584 handle_step_into_function (gdbarch, ecs);
6585 return;
6586 }
6587 }
6588
6589 /* If we have no line number and the step-stop-if-no-debug is
6590 set, we stop the step so that the user has a chance to switch
6591 in assembly mode. */
6592 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6593 && step_stop_if_no_debug)
6594 {
6595 end_stepping_range (ecs);
6596 return;
6597 }
6598
6599 if (execution_direction == EXEC_REVERSE)
6600 {
6601 /* If we're already at the start of the function, we've either just
6602 stepped backward into a single instruction function without line
6603 number info, or stepped back out of a signal handler to the first
6604 instruction of the function without line number info. Just keep
6605 going, which will single-step back to the caller. */
6606 if (ecs->stop_func_start != stop_pc)
6607 {
6608 /* Set a breakpoint at callee's start address.
6609 From there we can step once and be back in the caller. */
6610 struct symtab_and_line sr_sal;
6611
6612 init_sal (&sr_sal);
6613 sr_sal.pc = ecs->stop_func_start;
6614 sr_sal.pspace = get_frame_program_space (frame);
6615 insert_step_resume_breakpoint_at_sal (gdbarch,
6616 sr_sal, null_frame_id);
6617 }
6618 }
6619 else
6620 /* Set a breakpoint at callee's return address (the address
6621 at which the caller will resume). */
6622 insert_step_resume_breakpoint_at_caller (frame);
6623
6624 keep_going (ecs);
6625 return;
6626 }
6627
6628 /* Reverse stepping through solib trampolines. */
6629
6630 if (execution_direction == EXEC_REVERSE
6631 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6632 {
6633 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6634 || (ecs->stop_func_start == 0
6635 && in_solib_dynsym_resolve_code (stop_pc)))
6636 {
6637 /* Any solib trampoline code can be handled in reverse
6638 by simply continuing to single-step. We have already
6639 executed the solib function (backwards), and a few
6640 steps will take us back through the trampoline to the
6641 caller. */
6642 keep_going (ecs);
6643 return;
6644 }
6645 else if (in_solib_dynsym_resolve_code (stop_pc))
6646 {
6647 /* Stepped backward into the solib dynsym resolver.
6648 Set a breakpoint at its start and continue, then
6649 one more step will take us out. */
6650 struct symtab_and_line sr_sal;
6651
6652 init_sal (&sr_sal);
6653 sr_sal.pc = ecs->stop_func_start;
6654 sr_sal.pspace = get_frame_program_space (frame);
6655 insert_step_resume_breakpoint_at_sal (gdbarch,
6656 sr_sal, null_frame_id);
6657 keep_going (ecs);
6658 return;
6659 }
6660 }
6661
6662 stop_pc_sal = find_pc_line (stop_pc, 0);
6663
6664 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6665 the trampoline processing logic, however, there are some trampolines
6666 that have no names, so we should do trampoline handling first. */
6667 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6668 && ecs->stop_func_name == NULL
6669 && stop_pc_sal.line == 0)
6670 {
6671 if (debug_infrun)
6672 fprintf_unfiltered (gdb_stdlog,
6673 "infrun: stepped into undebuggable function\n");
6674
6675 /* The inferior just stepped into, or returned to, an
6676 undebuggable function (where there is no debugging information
6677 and no line number corresponding to the address where the
6678 inferior stopped). Since we want to skip this kind of code,
6679 we keep going until the inferior returns from this
6680 function - unless the user has asked us not to (via
6681 set step-mode) or we no longer know how to get back
6682 to the call site. */
6683 if (step_stop_if_no_debug
6684 || !frame_id_p (frame_unwind_caller_id (frame)))
6685 {
6686 /* If we have no line number and the step-stop-if-no-debug
6687 is set, we stop the step so that the user has a chance to
6688 switch in assembly mode. */
6689 end_stepping_range (ecs);
6690 return;
6691 }
6692 else
6693 {
6694 /* Set a breakpoint at callee's return address (the address
6695 at which the caller will resume). */
6696 insert_step_resume_breakpoint_at_caller (frame);
6697 keep_going (ecs);
6698 return;
6699 }
6700 }
6701
6702 if (ecs->event_thread->control.step_range_end == 1)
6703 {
6704 /* It is stepi or nexti. We always want to stop stepping after
6705 one instruction. */
6706 if (debug_infrun)
6707 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6708 end_stepping_range (ecs);
6709 return;
6710 }
6711
6712 if (stop_pc_sal.line == 0)
6713 {
6714 /* We have no line number information. That means to stop
6715 stepping (does this always happen right after one instruction,
6716 when we do "s" in a function with no line numbers,
6717 or can this happen as a result of a return or longjmp?). */
6718 if (debug_infrun)
6719 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6720 end_stepping_range (ecs);
6721 return;
6722 }
6723
6724 /* Look for "calls" to inlined functions, part one. If the inline
6725 frame machinery detected some skipped call sites, we have entered
6726 a new inline function. */
6727
6728 if (frame_id_eq (get_frame_id (get_current_frame ()),
6729 ecs->event_thread->control.step_frame_id)
6730 && inline_skipped_frames (ecs->ptid))
6731 {
6732 struct symtab_and_line call_sal;
6733
6734 if (debug_infrun)
6735 fprintf_unfiltered (gdb_stdlog,
6736 "infrun: stepped into inlined function\n");
6737
6738 find_frame_sal (get_current_frame (), &call_sal);
6739
6740 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6741 {
6742 /* For "step", we're going to stop. But if the call site
6743 for this inlined function is on the same source line as
6744 we were previously stepping, go down into the function
6745 first. Otherwise stop at the call site. */
6746
6747 if (call_sal.line == ecs->event_thread->current_line
6748 && call_sal.symtab == ecs->event_thread->current_symtab)
6749 step_into_inline_frame (ecs->ptid);
6750
6751 end_stepping_range (ecs);
6752 return;
6753 }
6754 else
6755 {
6756 /* For "next", we should stop at the call site if it is on a
6757 different source line. Otherwise continue through the
6758 inlined function. */
6759 if (call_sal.line == ecs->event_thread->current_line
6760 && call_sal.symtab == ecs->event_thread->current_symtab)
6761 keep_going (ecs);
6762 else
6763 end_stepping_range (ecs);
6764 return;
6765 }
6766 }
6767
6768 /* Look for "calls" to inlined functions, part two. If we are still
6769 in the same real function we were stepping through, but we have
6770 to go further up to find the exact frame ID, we are stepping
6771 through a more inlined call beyond its call site. */
6772
6773 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6774 && !frame_id_eq (get_frame_id (get_current_frame ()),
6775 ecs->event_thread->control.step_frame_id)
6776 && stepped_in_from (get_current_frame (),
6777 ecs->event_thread->control.step_frame_id))
6778 {
6779 if (debug_infrun)
6780 fprintf_unfiltered (gdb_stdlog,
6781 "infrun: stepping through inlined function\n");
6782
6783 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6784 keep_going (ecs);
6785 else
6786 end_stepping_range (ecs);
6787 return;
6788 }
6789
6790 if ((stop_pc == stop_pc_sal.pc)
6791 && (ecs->event_thread->current_line != stop_pc_sal.line
6792 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6793 {
6794 /* We are at the start of a different line. So stop. Note that
6795 we don't stop if we step into the middle of a different line.
6796 That is said to make things like for (;;) statements work
6797 better. */
6798 if (debug_infrun)
6799 fprintf_unfiltered (gdb_stdlog,
6800 "infrun: stepped to a different line\n");
6801 end_stepping_range (ecs);
6802 return;
6803 }
6804
6805 /* We aren't done stepping.
6806
6807 Optimize by setting the stepping range to the line.
6808 (We might not be in the original line, but if we entered a
6809 new line in mid-statement, we continue stepping. This makes
6810 things like for(;;) statements work better.) */
6811
6812 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6813 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6814 ecs->event_thread->control.may_range_step = 1;
6815 set_step_info (frame, stop_pc_sal);
6816
6817 if (debug_infrun)
6818 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6819 keep_going (ecs);
6820 }
6821
6822 /* In all-stop mode, if we're currently stepping but have stopped in
6823 some other thread, we may need to switch back to the stepped
6824 thread. Returns true we set the inferior running, false if we left
6825 it stopped (and the event needs further processing). */
6826
6827 static int
6828 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6829 {
6830 if (!target_is_non_stop_p ())
6831 {
6832 struct thread_info *tp;
6833 struct thread_info *stepping_thread;
6834
6835 /* If any thread is blocked on some internal breakpoint, and we
6836 simply need to step over that breakpoint to get it going
6837 again, do that first. */
6838
6839 /* However, if we see an event for the stepping thread, then we
6840 know all other threads have been moved past their breakpoints
6841 already. Let the caller check whether the step is finished,
6842 etc., before deciding to move it past a breakpoint. */
6843 if (ecs->event_thread->control.step_range_end != 0)
6844 return 0;
6845
6846 /* Check if the current thread is blocked on an incomplete
6847 step-over, interrupted by a random signal. */
6848 if (ecs->event_thread->control.trap_expected
6849 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6850 {
6851 if (debug_infrun)
6852 {
6853 fprintf_unfiltered (gdb_stdlog,
6854 "infrun: need to finish step-over of [%s]\n",
6855 target_pid_to_str (ecs->event_thread->ptid));
6856 }
6857 keep_going (ecs);
6858 return 1;
6859 }
6860
6861 /* Check if the current thread is blocked by a single-step
6862 breakpoint of another thread. */
6863 if (ecs->hit_singlestep_breakpoint)
6864 {
6865 if (debug_infrun)
6866 {
6867 fprintf_unfiltered (gdb_stdlog,
6868 "infrun: need to step [%s] over single-step "
6869 "breakpoint\n",
6870 target_pid_to_str (ecs->ptid));
6871 }
6872 keep_going (ecs);
6873 return 1;
6874 }
6875
6876 /* If this thread needs yet another step-over (e.g., stepping
6877 through a delay slot), do it first before moving on to
6878 another thread. */
6879 if (thread_still_needs_step_over (ecs->event_thread))
6880 {
6881 if (debug_infrun)
6882 {
6883 fprintf_unfiltered (gdb_stdlog,
6884 "infrun: thread [%s] still needs step-over\n",
6885 target_pid_to_str (ecs->event_thread->ptid));
6886 }
6887 keep_going (ecs);
6888 return 1;
6889 }
6890
6891 /* If scheduler locking applies even if not stepping, there's no
6892 need to walk over threads. Above we've checked whether the
6893 current thread is stepping. If some other thread not the
6894 event thread is stepping, then it must be that scheduler
6895 locking is not in effect. */
6896 if (schedlock_applies (ecs->event_thread))
6897 return 0;
6898
6899 /* Otherwise, we no longer expect a trap in the current thread.
6900 Clear the trap_expected flag before switching back -- this is
6901 what keep_going does as well, if we call it. */
6902 ecs->event_thread->control.trap_expected = 0;
6903
6904 /* Likewise, clear the signal if it should not be passed. */
6905 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6906 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6907
6908 /* Do all pending step-overs before actually proceeding with
6909 step/next/etc. */
6910 if (start_step_over ())
6911 {
6912 prepare_to_wait (ecs);
6913 return 1;
6914 }
6915
6916 /* Look for the stepping/nexting thread. */
6917 stepping_thread = NULL;
6918
6919 ALL_NON_EXITED_THREADS (tp)
6920 {
6921 /* Ignore threads of processes the caller is not
6922 resuming. */
6923 if (!sched_multi
6924 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
6925 continue;
6926
6927 /* When stepping over a breakpoint, we lock all threads
6928 except the one that needs to move past the breakpoint.
6929 If a non-event thread has this set, the "incomplete
6930 step-over" check above should have caught it earlier. */
6931 if (tp->control.trap_expected)
6932 {
6933 internal_error (__FILE__, __LINE__,
6934 "[%s] has inconsistent state: "
6935 "trap_expected=%d\n",
6936 target_pid_to_str (tp->ptid),
6937 tp->control.trap_expected);
6938 }
6939
6940 /* Did we find the stepping thread? */
6941 if (tp->control.step_range_end)
6942 {
6943 /* Yep. There should only one though. */
6944 gdb_assert (stepping_thread == NULL);
6945
6946 /* The event thread is handled at the top, before we
6947 enter this loop. */
6948 gdb_assert (tp != ecs->event_thread);
6949
6950 /* If some thread other than the event thread is
6951 stepping, then scheduler locking can't be in effect,
6952 otherwise we wouldn't have resumed the current event
6953 thread in the first place. */
6954 gdb_assert (!schedlock_applies (tp));
6955
6956 stepping_thread = tp;
6957 }
6958 }
6959
6960 if (stepping_thread != NULL)
6961 {
6962 if (debug_infrun)
6963 fprintf_unfiltered (gdb_stdlog,
6964 "infrun: switching back to stepped thread\n");
6965
6966 if (keep_going_stepped_thread (stepping_thread))
6967 {
6968 prepare_to_wait (ecs);
6969 return 1;
6970 }
6971 }
6972 }
6973
6974 return 0;
6975 }
6976
6977 /* Set a previously stepped thread back to stepping. Returns true on
6978 success, false if the resume is not possible (e.g., the thread
6979 vanished). */
6980
6981 static int
6982 keep_going_stepped_thread (struct thread_info *tp)
6983 {
6984 struct frame_info *frame;
6985 struct gdbarch *gdbarch;
6986 struct execution_control_state ecss;
6987 struct execution_control_state *ecs = &ecss;
6988
6989 /* If the stepping thread exited, then don't try to switch back and
6990 resume it, which could fail in several different ways depending
6991 on the target. Instead, just keep going.
6992
6993 We can find a stepping dead thread in the thread list in two
6994 cases:
6995
6996 - The target supports thread exit events, and when the target
6997 tries to delete the thread from the thread list, inferior_ptid
6998 pointed at the exiting thread. In such case, calling
6999 delete_thread does not really remove the thread from the list;
7000 instead, the thread is left listed, with 'exited' state.
7001
7002 - The target's debug interface does not support thread exit
7003 events, and so we have no idea whatsoever if the previously
7004 stepping thread is still alive. For that reason, we need to
7005 synchronously query the target now. */
7006
7007 if (is_exited (tp->ptid)
7008 || !target_thread_alive (tp->ptid))
7009 {
7010 if (debug_infrun)
7011 fprintf_unfiltered (gdb_stdlog,
7012 "infrun: not resuming previously "
7013 "stepped thread, it has vanished\n");
7014
7015 delete_thread (tp->ptid);
7016 return 0;
7017 }
7018
7019 if (debug_infrun)
7020 fprintf_unfiltered (gdb_stdlog,
7021 "infrun: resuming previously stepped thread\n");
7022
7023 reset_ecs (ecs, tp);
7024 switch_to_thread (tp->ptid);
7025
7026 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7027 frame = get_current_frame ();
7028 gdbarch = get_frame_arch (frame);
7029
7030 /* If the PC of the thread we were trying to single-step has
7031 changed, then that thread has trapped or been signaled, but the
7032 event has not been reported to GDB yet. Re-poll the target
7033 looking for this particular thread's event (i.e. temporarily
7034 enable schedlock) by:
7035
7036 - setting a break at the current PC
7037 - resuming that particular thread, only (by setting trap
7038 expected)
7039
7040 This prevents us continuously moving the single-step breakpoint
7041 forward, one instruction at a time, overstepping. */
7042
7043 if (stop_pc != tp->prev_pc)
7044 {
7045 ptid_t resume_ptid;
7046
7047 if (debug_infrun)
7048 fprintf_unfiltered (gdb_stdlog,
7049 "infrun: expected thread advanced also (%s -> %s)\n",
7050 paddress (target_gdbarch (), tp->prev_pc),
7051 paddress (target_gdbarch (), stop_pc));
7052
7053 /* Clear the info of the previous step-over, as it's no longer
7054 valid (if the thread was trying to step over a breakpoint, it
7055 has already succeeded). It's what keep_going would do too,
7056 if we called it. Do this before trying to insert the sss
7057 breakpoint, otherwise if we were previously trying to step
7058 over this exact address in another thread, the breakpoint is
7059 skipped. */
7060 clear_step_over_info ();
7061 tp->control.trap_expected = 0;
7062
7063 insert_single_step_breakpoint (get_frame_arch (frame),
7064 get_frame_address_space (frame),
7065 stop_pc);
7066
7067 tp->resumed = 1;
7068 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7069 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7070 }
7071 else
7072 {
7073 if (debug_infrun)
7074 fprintf_unfiltered (gdb_stdlog,
7075 "infrun: expected thread still hasn't advanced\n");
7076
7077 keep_going_pass_signal (ecs);
7078 }
7079 return 1;
7080 }
7081
7082 /* Is thread TP in the middle of (software or hardware)
7083 single-stepping? (Note the result of this function must never be
7084 passed directly as target_resume's STEP parameter.) */
7085
7086 static int
7087 currently_stepping (struct thread_info *tp)
7088 {
7089 return ((tp->control.step_range_end
7090 && tp->control.step_resume_breakpoint == NULL)
7091 || tp->control.trap_expected
7092 || tp->stepped_breakpoint
7093 || bpstat_should_step ());
7094 }
7095
7096 /* Inferior has stepped into a subroutine call with source code that
7097 we should not step over. Do step to the first line of code in
7098 it. */
7099
7100 static void
7101 handle_step_into_function (struct gdbarch *gdbarch,
7102 struct execution_control_state *ecs)
7103 {
7104 struct compunit_symtab *cust;
7105 struct symtab_and_line stop_func_sal, sr_sal;
7106
7107 fill_in_stop_func (gdbarch, ecs);
7108
7109 cust = find_pc_compunit_symtab (stop_pc);
7110 if (cust != NULL && compunit_language (cust) != language_asm)
7111 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7112 ecs->stop_func_start);
7113
7114 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7115 /* Use the step_resume_break to step until the end of the prologue,
7116 even if that involves jumps (as it seems to on the vax under
7117 4.2). */
7118 /* If the prologue ends in the middle of a source line, continue to
7119 the end of that source line (if it is still within the function).
7120 Otherwise, just go to end of prologue. */
7121 if (stop_func_sal.end
7122 && stop_func_sal.pc != ecs->stop_func_start
7123 && stop_func_sal.end < ecs->stop_func_end)
7124 ecs->stop_func_start = stop_func_sal.end;
7125
7126 /* Architectures which require breakpoint adjustment might not be able
7127 to place a breakpoint at the computed address. If so, the test
7128 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7129 ecs->stop_func_start to an address at which a breakpoint may be
7130 legitimately placed.
7131
7132 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7133 made, GDB will enter an infinite loop when stepping through
7134 optimized code consisting of VLIW instructions which contain
7135 subinstructions corresponding to different source lines. On
7136 FR-V, it's not permitted to place a breakpoint on any but the
7137 first subinstruction of a VLIW instruction. When a breakpoint is
7138 set, GDB will adjust the breakpoint address to the beginning of
7139 the VLIW instruction. Thus, we need to make the corresponding
7140 adjustment here when computing the stop address. */
7141
7142 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7143 {
7144 ecs->stop_func_start
7145 = gdbarch_adjust_breakpoint_address (gdbarch,
7146 ecs->stop_func_start);
7147 }
7148
7149 if (ecs->stop_func_start == stop_pc)
7150 {
7151 /* We are already there: stop now. */
7152 end_stepping_range (ecs);
7153 return;
7154 }
7155 else
7156 {
7157 /* Put the step-breakpoint there and go until there. */
7158 init_sal (&sr_sal); /* initialize to zeroes */
7159 sr_sal.pc = ecs->stop_func_start;
7160 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7161 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7162
7163 /* Do not specify what the fp should be when we stop since on
7164 some machines the prologue is where the new fp value is
7165 established. */
7166 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7167
7168 /* And make sure stepping stops right away then. */
7169 ecs->event_thread->control.step_range_end
7170 = ecs->event_thread->control.step_range_start;
7171 }
7172 keep_going (ecs);
7173 }
7174
7175 /* Inferior has stepped backward into a subroutine call with source
7176 code that we should not step over. Do step to the beginning of the
7177 last line of code in it. */
7178
7179 static void
7180 handle_step_into_function_backward (struct gdbarch *gdbarch,
7181 struct execution_control_state *ecs)
7182 {
7183 struct compunit_symtab *cust;
7184 struct symtab_and_line stop_func_sal;
7185
7186 fill_in_stop_func (gdbarch, ecs);
7187
7188 cust = find_pc_compunit_symtab (stop_pc);
7189 if (cust != NULL && compunit_language (cust) != language_asm)
7190 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7191 ecs->stop_func_start);
7192
7193 stop_func_sal = find_pc_line (stop_pc, 0);
7194
7195 /* OK, we're just going to keep stepping here. */
7196 if (stop_func_sal.pc == stop_pc)
7197 {
7198 /* We're there already. Just stop stepping now. */
7199 end_stepping_range (ecs);
7200 }
7201 else
7202 {
7203 /* Else just reset the step range and keep going.
7204 No step-resume breakpoint, they don't work for
7205 epilogues, which can have multiple entry paths. */
7206 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7207 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7208 keep_going (ecs);
7209 }
7210 return;
7211 }
7212
7213 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7214 This is used to both functions and to skip over code. */
7215
7216 static void
7217 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7218 struct symtab_and_line sr_sal,
7219 struct frame_id sr_id,
7220 enum bptype sr_type)
7221 {
7222 /* There should never be more than one step-resume or longjmp-resume
7223 breakpoint per thread, so we should never be setting a new
7224 step_resume_breakpoint when one is already active. */
7225 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7226 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7227
7228 if (debug_infrun)
7229 fprintf_unfiltered (gdb_stdlog,
7230 "infrun: inserting step-resume breakpoint at %s\n",
7231 paddress (gdbarch, sr_sal.pc));
7232
7233 inferior_thread ()->control.step_resume_breakpoint
7234 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7235 }
7236
7237 void
7238 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7239 struct symtab_and_line sr_sal,
7240 struct frame_id sr_id)
7241 {
7242 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7243 sr_sal, sr_id,
7244 bp_step_resume);
7245 }
7246
7247 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7248 This is used to skip a potential signal handler.
7249
7250 This is called with the interrupted function's frame. The signal
7251 handler, when it returns, will resume the interrupted function at
7252 RETURN_FRAME.pc. */
7253
7254 static void
7255 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7256 {
7257 struct symtab_and_line sr_sal;
7258 struct gdbarch *gdbarch;
7259
7260 gdb_assert (return_frame != NULL);
7261 init_sal (&sr_sal); /* initialize to zeros */
7262
7263 gdbarch = get_frame_arch (return_frame);
7264 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7265 sr_sal.section = find_pc_overlay (sr_sal.pc);
7266 sr_sal.pspace = get_frame_program_space (return_frame);
7267
7268 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7269 get_stack_frame_id (return_frame),
7270 bp_hp_step_resume);
7271 }
7272
7273 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7274 is used to skip a function after stepping into it (for "next" or if
7275 the called function has no debugging information).
7276
7277 The current function has almost always been reached by single
7278 stepping a call or return instruction. NEXT_FRAME belongs to the
7279 current function, and the breakpoint will be set at the caller's
7280 resume address.
7281
7282 This is a separate function rather than reusing
7283 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7284 get_prev_frame, which may stop prematurely (see the implementation
7285 of frame_unwind_caller_id for an example). */
7286
7287 static void
7288 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7289 {
7290 struct symtab_and_line sr_sal;
7291 struct gdbarch *gdbarch;
7292
7293 /* We shouldn't have gotten here if we don't know where the call site
7294 is. */
7295 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7296
7297 init_sal (&sr_sal); /* initialize to zeros */
7298
7299 gdbarch = frame_unwind_caller_arch (next_frame);
7300 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7301 frame_unwind_caller_pc (next_frame));
7302 sr_sal.section = find_pc_overlay (sr_sal.pc);
7303 sr_sal.pspace = frame_unwind_program_space (next_frame);
7304
7305 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7306 frame_unwind_caller_id (next_frame));
7307 }
7308
7309 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7310 new breakpoint at the target of a jmp_buf. The handling of
7311 longjmp-resume uses the same mechanisms used for handling
7312 "step-resume" breakpoints. */
7313
7314 static void
7315 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7316 {
7317 /* There should never be more than one longjmp-resume breakpoint per
7318 thread, so we should never be setting a new
7319 longjmp_resume_breakpoint when one is already active. */
7320 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7321
7322 if (debug_infrun)
7323 fprintf_unfiltered (gdb_stdlog,
7324 "infrun: inserting longjmp-resume breakpoint at %s\n",
7325 paddress (gdbarch, pc));
7326
7327 inferior_thread ()->control.exception_resume_breakpoint =
7328 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7329 }
7330
7331 /* Insert an exception resume breakpoint. TP is the thread throwing
7332 the exception. The block B is the block of the unwinder debug hook
7333 function. FRAME is the frame corresponding to the call to this
7334 function. SYM is the symbol of the function argument holding the
7335 target PC of the exception. */
7336
7337 static void
7338 insert_exception_resume_breakpoint (struct thread_info *tp,
7339 const struct block *b,
7340 struct frame_info *frame,
7341 struct symbol *sym)
7342 {
7343 TRY
7344 {
7345 struct block_symbol vsym;
7346 struct value *value;
7347 CORE_ADDR handler;
7348 struct breakpoint *bp;
7349
7350 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7351 value = read_var_value (vsym.symbol, vsym.block, frame);
7352 /* If the value was optimized out, revert to the old behavior. */
7353 if (! value_optimized_out (value))
7354 {
7355 handler = value_as_address (value);
7356
7357 if (debug_infrun)
7358 fprintf_unfiltered (gdb_stdlog,
7359 "infrun: exception resume at %lx\n",
7360 (unsigned long) handler);
7361
7362 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7363 handler, bp_exception_resume);
7364
7365 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7366 frame = NULL;
7367
7368 bp->thread = tp->num;
7369 inferior_thread ()->control.exception_resume_breakpoint = bp;
7370 }
7371 }
7372 CATCH (e, RETURN_MASK_ERROR)
7373 {
7374 /* We want to ignore errors here. */
7375 }
7376 END_CATCH
7377 }
7378
7379 /* A helper for check_exception_resume that sets an
7380 exception-breakpoint based on a SystemTap probe. */
7381
7382 static void
7383 insert_exception_resume_from_probe (struct thread_info *tp,
7384 const struct bound_probe *probe,
7385 struct frame_info *frame)
7386 {
7387 struct value *arg_value;
7388 CORE_ADDR handler;
7389 struct breakpoint *bp;
7390
7391 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7392 if (!arg_value)
7393 return;
7394
7395 handler = value_as_address (arg_value);
7396
7397 if (debug_infrun)
7398 fprintf_unfiltered (gdb_stdlog,
7399 "infrun: exception resume at %s\n",
7400 paddress (get_objfile_arch (probe->objfile),
7401 handler));
7402
7403 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7404 handler, bp_exception_resume);
7405 bp->thread = tp->num;
7406 inferior_thread ()->control.exception_resume_breakpoint = bp;
7407 }
7408
7409 /* This is called when an exception has been intercepted. Check to
7410 see whether the exception's destination is of interest, and if so,
7411 set an exception resume breakpoint there. */
7412
7413 static void
7414 check_exception_resume (struct execution_control_state *ecs,
7415 struct frame_info *frame)
7416 {
7417 struct bound_probe probe;
7418 struct symbol *func;
7419
7420 /* First see if this exception unwinding breakpoint was set via a
7421 SystemTap probe point. If so, the probe has two arguments: the
7422 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7423 set a breakpoint there. */
7424 probe = find_probe_by_pc (get_frame_pc (frame));
7425 if (probe.probe)
7426 {
7427 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7428 return;
7429 }
7430
7431 func = get_frame_function (frame);
7432 if (!func)
7433 return;
7434
7435 TRY
7436 {
7437 const struct block *b;
7438 struct block_iterator iter;
7439 struct symbol *sym;
7440 int argno = 0;
7441
7442 /* The exception breakpoint is a thread-specific breakpoint on
7443 the unwinder's debug hook, declared as:
7444
7445 void _Unwind_DebugHook (void *cfa, void *handler);
7446
7447 The CFA argument indicates the frame to which control is
7448 about to be transferred. HANDLER is the destination PC.
7449
7450 We ignore the CFA and set a temporary breakpoint at HANDLER.
7451 This is not extremely efficient but it avoids issues in gdb
7452 with computing the DWARF CFA, and it also works even in weird
7453 cases such as throwing an exception from inside a signal
7454 handler. */
7455
7456 b = SYMBOL_BLOCK_VALUE (func);
7457 ALL_BLOCK_SYMBOLS (b, iter, sym)
7458 {
7459 if (!SYMBOL_IS_ARGUMENT (sym))
7460 continue;
7461
7462 if (argno == 0)
7463 ++argno;
7464 else
7465 {
7466 insert_exception_resume_breakpoint (ecs->event_thread,
7467 b, frame, sym);
7468 break;
7469 }
7470 }
7471 }
7472 CATCH (e, RETURN_MASK_ERROR)
7473 {
7474 }
7475 END_CATCH
7476 }
7477
7478 static void
7479 stop_waiting (struct execution_control_state *ecs)
7480 {
7481 if (debug_infrun)
7482 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7483
7484 clear_step_over_info ();
7485
7486 /* Let callers know we don't want to wait for the inferior anymore. */
7487 ecs->wait_some_more = 0;
7488
7489 /* If all-stop, but the target is always in non-stop mode, stop all
7490 threads now that we're presenting the stop to the user. */
7491 if (!non_stop && target_is_non_stop_p ())
7492 stop_all_threads ();
7493 }
7494
7495 /* Like keep_going, but passes the signal to the inferior, even if the
7496 signal is set to nopass. */
7497
7498 static void
7499 keep_going_pass_signal (struct execution_control_state *ecs)
7500 {
7501 /* Make sure normal_stop is called if we get a QUIT handled before
7502 reaching resume. */
7503 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7504
7505 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7506 gdb_assert (!ecs->event_thread->resumed);
7507
7508 /* Save the pc before execution, to compare with pc after stop. */
7509 ecs->event_thread->prev_pc
7510 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7511
7512 if (ecs->event_thread->control.trap_expected)
7513 {
7514 struct thread_info *tp = ecs->event_thread;
7515
7516 if (debug_infrun)
7517 fprintf_unfiltered (gdb_stdlog,
7518 "infrun: %s has trap_expected set, "
7519 "resuming to collect trap\n",
7520 target_pid_to_str (tp->ptid));
7521
7522 /* We haven't yet gotten our trap, and either: intercepted a
7523 non-signal event (e.g., a fork); or took a signal which we
7524 are supposed to pass through to the inferior. Simply
7525 continue. */
7526 discard_cleanups (old_cleanups);
7527 resume (ecs->event_thread->suspend.stop_signal);
7528 }
7529 else if (step_over_info_valid_p ())
7530 {
7531 /* Another thread is stepping over a breakpoint in-line. If
7532 this thread needs a step-over too, queue the request. In
7533 either case, this resume must be deferred for later. */
7534 struct thread_info *tp = ecs->event_thread;
7535
7536 if (ecs->hit_singlestep_breakpoint
7537 || thread_still_needs_step_over (tp))
7538 {
7539 if (debug_infrun)
7540 fprintf_unfiltered (gdb_stdlog,
7541 "infrun: step-over already in progress: "
7542 "step-over for %s deferred\n",
7543 target_pid_to_str (tp->ptid));
7544 thread_step_over_chain_enqueue (tp);
7545 }
7546 else
7547 {
7548 if (debug_infrun)
7549 fprintf_unfiltered (gdb_stdlog,
7550 "infrun: step-over in progress: "
7551 "resume of %s deferred\n",
7552 target_pid_to_str (tp->ptid));
7553 }
7554
7555 discard_cleanups (old_cleanups);
7556 }
7557 else
7558 {
7559 struct regcache *regcache = get_current_regcache ();
7560 int remove_bp;
7561 int remove_wps;
7562 enum step_over_what step_what;
7563
7564 /* Either the trap was not expected, but we are continuing
7565 anyway (if we got a signal, the user asked it be passed to
7566 the child)
7567 -- or --
7568 We got our expected trap, but decided we should resume from
7569 it.
7570
7571 We're going to run this baby now!
7572
7573 Note that insert_breakpoints won't try to re-insert
7574 already inserted breakpoints. Therefore, we don't
7575 care if breakpoints were already inserted, or not. */
7576
7577 /* If we need to step over a breakpoint, and we're not using
7578 displaced stepping to do so, insert all breakpoints
7579 (watchpoints, etc.) but the one we're stepping over, step one
7580 instruction, and then re-insert the breakpoint when that step
7581 is finished. */
7582
7583 step_what = thread_still_needs_step_over (ecs->event_thread);
7584
7585 remove_bp = (ecs->hit_singlestep_breakpoint
7586 || (step_what & STEP_OVER_BREAKPOINT));
7587 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7588
7589 /* We can't use displaced stepping if we need to step past a
7590 watchpoint. The instruction copied to the scratch pad would
7591 still trigger the watchpoint. */
7592 if (remove_bp
7593 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7594 {
7595 set_step_over_info (get_regcache_aspace (regcache),
7596 regcache_read_pc (regcache), remove_wps);
7597 }
7598 else if (remove_wps)
7599 set_step_over_info (NULL, 0, remove_wps);
7600
7601 /* If we now need to do an in-line step-over, we need to stop
7602 all other threads. Note this must be done before
7603 insert_breakpoints below, because that removes the breakpoint
7604 we're about to step over, otherwise other threads could miss
7605 it. */
7606 if (step_over_info_valid_p () && target_is_non_stop_p ())
7607 stop_all_threads ();
7608
7609 /* Stop stepping if inserting breakpoints fails. */
7610 TRY
7611 {
7612 insert_breakpoints ();
7613 }
7614 CATCH (e, RETURN_MASK_ERROR)
7615 {
7616 exception_print (gdb_stderr, e);
7617 stop_waiting (ecs);
7618 discard_cleanups (old_cleanups);
7619 return;
7620 }
7621 END_CATCH
7622
7623 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7624
7625 discard_cleanups (old_cleanups);
7626 resume (ecs->event_thread->suspend.stop_signal);
7627 }
7628
7629 prepare_to_wait (ecs);
7630 }
7631
7632 /* Called when we should continue running the inferior, because the
7633 current event doesn't cause a user visible stop. This does the
7634 resuming part; waiting for the next event is done elsewhere. */
7635
7636 static void
7637 keep_going (struct execution_control_state *ecs)
7638 {
7639 if (ecs->event_thread->control.trap_expected
7640 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7641 ecs->event_thread->control.trap_expected = 0;
7642
7643 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7644 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7645 keep_going_pass_signal (ecs);
7646 }
7647
7648 /* This function normally comes after a resume, before
7649 handle_inferior_event exits. It takes care of any last bits of
7650 housekeeping, and sets the all-important wait_some_more flag. */
7651
7652 static void
7653 prepare_to_wait (struct execution_control_state *ecs)
7654 {
7655 if (debug_infrun)
7656 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7657
7658 ecs->wait_some_more = 1;
7659
7660 if (!target_is_async_p ())
7661 mark_infrun_async_event_handler ();
7662 }
7663
7664 /* We are done with the step range of a step/next/si/ni command.
7665 Called once for each n of a "step n" operation. */
7666
7667 static void
7668 end_stepping_range (struct execution_control_state *ecs)
7669 {
7670 ecs->event_thread->control.stop_step = 1;
7671 stop_waiting (ecs);
7672 }
7673
7674 /* Several print_*_reason functions to print why the inferior has stopped.
7675 We always print something when the inferior exits, or receives a signal.
7676 The rest of the cases are dealt with later on in normal_stop and
7677 print_it_typical. Ideally there should be a call to one of these
7678 print_*_reason functions functions from handle_inferior_event each time
7679 stop_waiting is called.
7680
7681 Note that we don't call these directly, instead we delegate that to
7682 the interpreters, through observers. Interpreters then call these
7683 with whatever uiout is right. */
7684
7685 void
7686 print_end_stepping_range_reason (struct ui_out *uiout)
7687 {
7688 /* For CLI-like interpreters, print nothing. */
7689
7690 if (ui_out_is_mi_like_p (uiout))
7691 {
7692 ui_out_field_string (uiout, "reason",
7693 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7694 }
7695 }
7696
7697 void
7698 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7699 {
7700 annotate_signalled ();
7701 if (ui_out_is_mi_like_p (uiout))
7702 ui_out_field_string
7703 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7704 ui_out_text (uiout, "\nProgram terminated with signal ");
7705 annotate_signal_name ();
7706 ui_out_field_string (uiout, "signal-name",
7707 gdb_signal_to_name (siggnal));
7708 annotate_signal_name_end ();
7709 ui_out_text (uiout, ", ");
7710 annotate_signal_string ();
7711 ui_out_field_string (uiout, "signal-meaning",
7712 gdb_signal_to_string (siggnal));
7713 annotate_signal_string_end ();
7714 ui_out_text (uiout, ".\n");
7715 ui_out_text (uiout, "The program no longer exists.\n");
7716 }
7717
7718 void
7719 print_exited_reason (struct ui_out *uiout, int exitstatus)
7720 {
7721 struct inferior *inf = current_inferior ();
7722 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7723
7724 annotate_exited (exitstatus);
7725 if (exitstatus)
7726 {
7727 if (ui_out_is_mi_like_p (uiout))
7728 ui_out_field_string (uiout, "reason",
7729 async_reason_lookup (EXEC_ASYNC_EXITED));
7730 ui_out_text (uiout, "[Inferior ");
7731 ui_out_text (uiout, plongest (inf->num));
7732 ui_out_text (uiout, " (");
7733 ui_out_text (uiout, pidstr);
7734 ui_out_text (uiout, ") exited with code ");
7735 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7736 ui_out_text (uiout, "]\n");
7737 }
7738 else
7739 {
7740 if (ui_out_is_mi_like_p (uiout))
7741 ui_out_field_string
7742 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7743 ui_out_text (uiout, "[Inferior ");
7744 ui_out_text (uiout, plongest (inf->num));
7745 ui_out_text (uiout, " (");
7746 ui_out_text (uiout, pidstr);
7747 ui_out_text (uiout, ") exited normally]\n");
7748 }
7749 }
7750
7751 void
7752 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7753 {
7754 annotate_signal ();
7755
7756 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7757 {
7758 struct thread_info *t = inferior_thread ();
7759
7760 ui_out_text (uiout, "\n[");
7761 ui_out_field_string (uiout, "thread-name",
7762 target_pid_to_str (t->ptid));
7763 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7764 ui_out_text (uiout, " stopped");
7765 }
7766 else
7767 {
7768 ui_out_text (uiout, "\nProgram received signal ");
7769 annotate_signal_name ();
7770 if (ui_out_is_mi_like_p (uiout))
7771 ui_out_field_string
7772 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7773 ui_out_field_string (uiout, "signal-name",
7774 gdb_signal_to_name (siggnal));
7775 annotate_signal_name_end ();
7776 ui_out_text (uiout, ", ");
7777 annotate_signal_string ();
7778 ui_out_field_string (uiout, "signal-meaning",
7779 gdb_signal_to_string (siggnal));
7780 annotate_signal_string_end ();
7781 }
7782 ui_out_text (uiout, ".\n");
7783 }
7784
7785 void
7786 print_no_history_reason (struct ui_out *uiout)
7787 {
7788 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
7789 }
7790
7791 /* Print current location without a level number, if we have changed
7792 functions or hit a breakpoint. Print source line if we have one.
7793 bpstat_print contains the logic deciding in detail what to print,
7794 based on the event(s) that just occurred. */
7795
7796 static void
7797 print_stop_location (struct target_waitstatus *ws)
7798 {
7799 int bpstat_ret;
7800 enum print_what source_flag;
7801 int do_frame_printing = 1;
7802 struct thread_info *tp = inferior_thread ();
7803
7804 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7805 switch (bpstat_ret)
7806 {
7807 case PRINT_UNKNOWN:
7808 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7809 should) carry around the function and does (or should) use
7810 that when doing a frame comparison. */
7811 if (tp->control.stop_step
7812 && frame_id_eq (tp->control.step_frame_id,
7813 get_frame_id (get_current_frame ()))
7814 && tp->control.step_start_function == find_pc_function (stop_pc))
7815 {
7816 /* Finished step, just print source line. */
7817 source_flag = SRC_LINE;
7818 }
7819 else
7820 {
7821 /* Print location and source line. */
7822 source_flag = SRC_AND_LOC;
7823 }
7824 break;
7825 case PRINT_SRC_AND_LOC:
7826 /* Print location and source line. */
7827 source_flag = SRC_AND_LOC;
7828 break;
7829 case PRINT_SRC_ONLY:
7830 source_flag = SRC_LINE;
7831 break;
7832 case PRINT_NOTHING:
7833 /* Something bogus. */
7834 source_flag = SRC_LINE;
7835 do_frame_printing = 0;
7836 break;
7837 default:
7838 internal_error (__FILE__, __LINE__, _("Unknown value."));
7839 }
7840
7841 /* The behavior of this routine with respect to the source
7842 flag is:
7843 SRC_LINE: Print only source line
7844 LOCATION: Print only location
7845 SRC_AND_LOC: Print location and source line. */
7846 if (do_frame_printing)
7847 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7848 }
7849
7850 /* Cleanup that restores a previous current uiout. */
7851
7852 static void
7853 restore_current_uiout_cleanup (void *arg)
7854 {
7855 struct ui_out *saved_uiout = (struct ui_out *) arg;
7856
7857 current_uiout = saved_uiout;
7858 }
7859
7860 /* See infrun.h. */
7861
7862 void
7863 print_stop_event (struct ui_out *uiout)
7864 {
7865 struct cleanup *old_chain;
7866 struct target_waitstatus last;
7867 ptid_t last_ptid;
7868 struct thread_info *tp;
7869
7870 get_last_target_status (&last_ptid, &last);
7871
7872 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7873 current_uiout = uiout;
7874
7875 print_stop_location (&last);
7876
7877 /* Display the auto-display expressions. */
7878 do_displays ();
7879
7880 do_cleanups (old_chain);
7881
7882 tp = inferior_thread ();
7883 if (tp->thread_fsm != NULL
7884 && thread_fsm_finished_p (tp->thread_fsm))
7885 {
7886 struct return_value_info *rv;
7887
7888 rv = thread_fsm_return_value (tp->thread_fsm);
7889 if (rv != NULL)
7890 print_return_value (uiout, rv);
7891 }
7892 }
7893
7894 /* See infrun.h. */
7895
7896 void
7897 maybe_remove_breakpoints (void)
7898 {
7899 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7900 {
7901 if (remove_breakpoints ())
7902 {
7903 target_terminal_ours_for_output ();
7904 printf_filtered (_("Cannot remove breakpoints because "
7905 "program is no longer writable.\nFurther "
7906 "execution is probably impossible.\n"));
7907 }
7908 }
7909 }
7910
7911 /* The execution context that just caused a normal stop. */
7912
7913 struct stop_context
7914 {
7915 /* The stop ID. */
7916 ULONGEST stop_id;
7917
7918 /* The event PTID. */
7919
7920 ptid_t ptid;
7921
7922 /* If stopp for a thread event, this is the thread that caused the
7923 stop. */
7924 struct thread_info *thread;
7925
7926 /* The inferior that caused the stop. */
7927 int inf_num;
7928 };
7929
7930 /* Returns a new stop context. If stopped for a thread event, this
7931 takes a strong reference to the thread. */
7932
7933 static struct stop_context *
7934 save_stop_context (void)
7935 {
7936 struct stop_context *sc = XNEW (struct stop_context);
7937
7938 sc->stop_id = get_stop_id ();
7939 sc->ptid = inferior_ptid;
7940 sc->inf_num = current_inferior ()->num;
7941
7942 if (!ptid_equal (inferior_ptid, null_ptid))
7943 {
7944 /* Take a strong reference so that the thread can't be deleted
7945 yet. */
7946 sc->thread = inferior_thread ();
7947 sc->thread->refcount++;
7948 }
7949 else
7950 sc->thread = NULL;
7951
7952 return sc;
7953 }
7954
7955 /* Release a stop context previously created with save_stop_context.
7956 Releases the strong reference to the thread as well. */
7957
7958 static void
7959 release_stop_context_cleanup (void *arg)
7960 {
7961 struct stop_context *sc = (struct stop_context *) arg;
7962
7963 if (sc->thread != NULL)
7964 sc->thread->refcount--;
7965 xfree (sc);
7966 }
7967
7968 /* Return true if the current context no longer matches the saved stop
7969 context. */
7970
7971 static int
7972 stop_context_changed (struct stop_context *prev)
7973 {
7974 if (!ptid_equal (prev->ptid, inferior_ptid))
7975 return 1;
7976 if (prev->inf_num != current_inferior ()->num)
7977 return 1;
7978 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
7979 return 1;
7980 if (get_stop_id () != prev->stop_id)
7981 return 1;
7982 return 0;
7983 }
7984
7985 /* See infrun.h. */
7986
7987 int
7988 normal_stop (void)
7989 {
7990 struct target_waitstatus last;
7991 ptid_t last_ptid;
7992 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
7993 ptid_t pid_ptid;
7994
7995 get_last_target_status (&last_ptid, &last);
7996
7997 new_stop_id ();
7998
7999 /* If an exception is thrown from this point on, make sure to
8000 propagate GDB's knowledge of the executing state to the
8001 frontend/user running state. A QUIT is an easy exception to see
8002 here, so do this before any filtered output. */
8003 if (!non_stop)
8004 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8005 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8006 || last.kind == TARGET_WAITKIND_EXITED)
8007 {
8008 /* On some targets, we may still have live threads in the
8009 inferior when we get a process exit event. E.g., for
8010 "checkpoint", when the current checkpoint/fork exits,
8011 linux-fork.c automatically switches to another fork from
8012 within target_mourn_inferior. */
8013 if (!ptid_equal (inferior_ptid, null_ptid))
8014 {
8015 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8016 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8017 }
8018 }
8019 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8020 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8021
8022 /* As we're presenting a stop, and potentially removing breakpoints,
8023 update the thread list so we can tell whether there are threads
8024 running on the target. With target remote, for example, we can
8025 only learn about new threads when we explicitly update the thread
8026 list. Do this before notifying the interpreters about signal
8027 stops, end of stepping ranges, etc., so that the "new thread"
8028 output is emitted before e.g., "Program received signal FOO",
8029 instead of after. */
8030 update_thread_list ();
8031
8032 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8033 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8034
8035 /* As with the notification of thread events, we want to delay
8036 notifying the user that we've switched thread context until
8037 the inferior actually stops.
8038
8039 There's no point in saying anything if the inferior has exited.
8040 Note that SIGNALLED here means "exited with a signal", not
8041 "received a signal".
8042
8043 Also skip saying anything in non-stop mode. In that mode, as we
8044 don't want GDB to switch threads behind the user's back, to avoid
8045 races where the user is typing a command to apply to thread x,
8046 but GDB switches to thread y before the user finishes entering
8047 the command, fetch_inferior_event installs a cleanup to restore
8048 the current thread back to the thread the user had selected right
8049 after this event is handled, so we're not really switching, only
8050 informing of a stop. */
8051 if (!non_stop
8052 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8053 && target_has_execution
8054 && last.kind != TARGET_WAITKIND_SIGNALLED
8055 && last.kind != TARGET_WAITKIND_EXITED
8056 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8057 {
8058 target_terminal_ours_for_output ();
8059 printf_filtered (_("[Switching to %s]\n"),
8060 target_pid_to_str (inferior_ptid));
8061 annotate_thread_changed ();
8062 previous_inferior_ptid = inferior_ptid;
8063 }
8064
8065 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8066 {
8067 gdb_assert (sync_execution || !target_can_async_p ());
8068
8069 target_terminal_ours_for_output ();
8070 printf_filtered (_("No unwaited-for children left.\n"));
8071 }
8072
8073 /* Note: this depends on the update_thread_list call above. */
8074 maybe_remove_breakpoints ();
8075
8076 /* If an auto-display called a function and that got a signal,
8077 delete that auto-display to avoid an infinite recursion. */
8078
8079 if (stopped_by_random_signal)
8080 disable_current_display ();
8081
8082 target_terminal_ours ();
8083 async_enable_stdin ();
8084
8085 /* Let the user/frontend see the threads as stopped. */
8086 do_cleanups (old_chain);
8087
8088 /* Select innermost stack frame - i.e., current frame is frame 0,
8089 and current location is based on that. Handle the case where the
8090 dummy call is returning after being stopped. E.g. the dummy call
8091 previously hit a breakpoint. (If the dummy call returns
8092 normally, we won't reach here.) Do this before the stop hook is
8093 run, so that it doesn't get to see the temporary dummy frame,
8094 which is not where we'll present the stop. */
8095 if (has_stack_frames ())
8096 {
8097 if (stop_stack_dummy == STOP_STACK_DUMMY)
8098 {
8099 /* Pop the empty frame that contains the stack dummy. This
8100 also restores inferior state prior to the call (struct
8101 infcall_suspend_state). */
8102 struct frame_info *frame = get_current_frame ();
8103
8104 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8105 frame_pop (frame);
8106 /* frame_pop calls reinit_frame_cache as the last thing it
8107 does which means there's now no selected frame. */
8108 }
8109
8110 select_frame (get_current_frame ());
8111
8112 /* Set the current source location. */
8113 set_current_sal_from_frame (get_current_frame ());
8114 }
8115
8116 /* Look up the hook_stop and run it (CLI internally handles problem
8117 of stop_command's pre-hook not existing). */
8118 if (stop_command != NULL)
8119 {
8120 struct stop_context *saved_context = save_stop_context ();
8121 struct cleanup *old_chain
8122 = make_cleanup (release_stop_context_cleanup, saved_context);
8123
8124 catch_errors (hook_stop_stub, stop_command,
8125 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8126
8127 /* If the stop hook resumes the target, then there's no point in
8128 trying to notify about the previous stop; its context is
8129 gone. Likewise if the command switches thread or inferior --
8130 the observers would print a stop for the wrong
8131 thread/inferior. */
8132 if (stop_context_changed (saved_context))
8133 {
8134 do_cleanups (old_chain);
8135 return 1;
8136 }
8137 do_cleanups (old_chain);
8138 }
8139
8140 /* Notify observers about the stop. This is where the interpreters
8141 print the stop event. */
8142 if (!ptid_equal (inferior_ptid, null_ptid))
8143 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8144 stop_print_frame);
8145 else
8146 observer_notify_normal_stop (NULL, stop_print_frame);
8147
8148 annotate_stopped ();
8149
8150 if (target_has_execution)
8151 {
8152 if (last.kind != TARGET_WAITKIND_SIGNALLED
8153 && last.kind != TARGET_WAITKIND_EXITED)
8154 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8155 Delete any breakpoint that is to be deleted at the next stop. */
8156 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8157 }
8158
8159 /* Try to get rid of automatically added inferiors that are no
8160 longer needed. Keeping those around slows down things linearly.
8161 Note that this never removes the current inferior. */
8162 prune_inferiors ();
8163
8164 return 0;
8165 }
8166
8167 static int
8168 hook_stop_stub (void *cmd)
8169 {
8170 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8171 return (0);
8172 }
8173 \f
8174 int
8175 signal_stop_state (int signo)
8176 {
8177 return signal_stop[signo];
8178 }
8179
8180 int
8181 signal_print_state (int signo)
8182 {
8183 return signal_print[signo];
8184 }
8185
8186 int
8187 signal_pass_state (int signo)
8188 {
8189 return signal_program[signo];
8190 }
8191
8192 static void
8193 signal_cache_update (int signo)
8194 {
8195 if (signo == -1)
8196 {
8197 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8198 signal_cache_update (signo);
8199
8200 return;
8201 }
8202
8203 signal_pass[signo] = (signal_stop[signo] == 0
8204 && signal_print[signo] == 0
8205 && signal_program[signo] == 1
8206 && signal_catch[signo] == 0);
8207 }
8208
8209 int
8210 signal_stop_update (int signo, int state)
8211 {
8212 int ret = signal_stop[signo];
8213
8214 signal_stop[signo] = state;
8215 signal_cache_update (signo);
8216 return ret;
8217 }
8218
8219 int
8220 signal_print_update (int signo, int state)
8221 {
8222 int ret = signal_print[signo];
8223
8224 signal_print[signo] = state;
8225 signal_cache_update (signo);
8226 return ret;
8227 }
8228
8229 int
8230 signal_pass_update (int signo, int state)
8231 {
8232 int ret = signal_program[signo];
8233
8234 signal_program[signo] = state;
8235 signal_cache_update (signo);
8236 return ret;
8237 }
8238
8239 /* Update the global 'signal_catch' from INFO and notify the
8240 target. */
8241
8242 void
8243 signal_catch_update (const unsigned int *info)
8244 {
8245 int i;
8246
8247 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8248 signal_catch[i] = info[i] > 0;
8249 signal_cache_update (-1);
8250 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8251 }
8252
8253 static void
8254 sig_print_header (void)
8255 {
8256 printf_filtered (_("Signal Stop\tPrint\tPass "
8257 "to program\tDescription\n"));
8258 }
8259
8260 static void
8261 sig_print_info (enum gdb_signal oursig)
8262 {
8263 const char *name = gdb_signal_to_name (oursig);
8264 int name_padding = 13 - strlen (name);
8265
8266 if (name_padding <= 0)
8267 name_padding = 0;
8268
8269 printf_filtered ("%s", name);
8270 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8271 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8272 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8273 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8274 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8275 }
8276
8277 /* Specify how various signals in the inferior should be handled. */
8278
8279 static void
8280 handle_command (char *args, int from_tty)
8281 {
8282 char **argv;
8283 int digits, wordlen;
8284 int sigfirst, signum, siglast;
8285 enum gdb_signal oursig;
8286 int allsigs;
8287 int nsigs;
8288 unsigned char *sigs;
8289 struct cleanup *old_chain;
8290
8291 if (args == NULL)
8292 {
8293 error_no_arg (_("signal to handle"));
8294 }
8295
8296 /* Allocate and zero an array of flags for which signals to handle. */
8297
8298 nsigs = (int) GDB_SIGNAL_LAST;
8299 sigs = (unsigned char *) alloca (nsigs);
8300 memset (sigs, 0, nsigs);
8301
8302 /* Break the command line up into args. */
8303
8304 argv = gdb_buildargv (args);
8305 old_chain = make_cleanup_freeargv (argv);
8306
8307 /* Walk through the args, looking for signal oursigs, signal names, and
8308 actions. Signal numbers and signal names may be interspersed with
8309 actions, with the actions being performed for all signals cumulatively
8310 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8311
8312 while (*argv != NULL)
8313 {
8314 wordlen = strlen (*argv);
8315 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8316 {;
8317 }
8318 allsigs = 0;
8319 sigfirst = siglast = -1;
8320
8321 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8322 {
8323 /* Apply action to all signals except those used by the
8324 debugger. Silently skip those. */
8325 allsigs = 1;
8326 sigfirst = 0;
8327 siglast = nsigs - 1;
8328 }
8329 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8330 {
8331 SET_SIGS (nsigs, sigs, signal_stop);
8332 SET_SIGS (nsigs, sigs, signal_print);
8333 }
8334 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8335 {
8336 UNSET_SIGS (nsigs, sigs, signal_program);
8337 }
8338 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8339 {
8340 SET_SIGS (nsigs, sigs, signal_print);
8341 }
8342 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8343 {
8344 SET_SIGS (nsigs, sigs, signal_program);
8345 }
8346 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8347 {
8348 UNSET_SIGS (nsigs, sigs, signal_stop);
8349 }
8350 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8351 {
8352 SET_SIGS (nsigs, sigs, signal_program);
8353 }
8354 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8355 {
8356 UNSET_SIGS (nsigs, sigs, signal_print);
8357 UNSET_SIGS (nsigs, sigs, signal_stop);
8358 }
8359 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8360 {
8361 UNSET_SIGS (nsigs, sigs, signal_program);
8362 }
8363 else if (digits > 0)
8364 {
8365 /* It is numeric. The numeric signal refers to our own
8366 internal signal numbering from target.h, not to host/target
8367 signal number. This is a feature; users really should be
8368 using symbolic names anyway, and the common ones like
8369 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8370
8371 sigfirst = siglast = (int)
8372 gdb_signal_from_command (atoi (*argv));
8373 if ((*argv)[digits] == '-')
8374 {
8375 siglast = (int)
8376 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8377 }
8378 if (sigfirst > siglast)
8379 {
8380 /* Bet he didn't figure we'd think of this case... */
8381 signum = sigfirst;
8382 sigfirst = siglast;
8383 siglast = signum;
8384 }
8385 }
8386 else
8387 {
8388 oursig = gdb_signal_from_name (*argv);
8389 if (oursig != GDB_SIGNAL_UNKNOWN)
8390 {
8391 sigfirst = siglast = (int) oursig;
8392 }
8393 else
8394 {
8395 /* Not a number and not a recognized flag word => complain. */
8396 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8397 }
8398 }
8399
8400 /* If any signal numbers or symbol names were found, set flags for
8401 which signals to apply actions to. */
8402
8403 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8404 {
8405 switch ((enum gdb_signal) signum)
8406 {
8407 case GDB_SIGNAL_TRAP:
8408 case GDB_SIGNAL_INT:
8409 if (!allsigs && !sigs[signum])
8410 {
8411 if (query (_("%s is used by the debugger.\n\
8412 Are you sure you want to change it? "),
8413 gdb_signal_to_name ((enum gdb_signal) signum)))
8414 {
8415 sigs[signum] = 1;
8416 }
8417 else
8418 {
8419 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8420 gdb_flush (gdb_stdout);
8421 }
8422 }
8423 break;
8424 case GDB_SIGNAL_0:
8425 case GDB_SIGNAL_DEFAULT:
8426 case GDB_SIGNAL_UNKNOWN:
8427 /* Make sure that "all" doesn't print these. */
8428 break;
8429 default:
8430 sigs[signum] = 1;
8431 break;
8432 }
8433 }
8434
8435 argv++;
8436 }
8437
8438 for (signum = 0; signum < nsigs; signum++)
8439 if (sigs[signum])
8440 {
8441 signal_cache_update (-1);
8442 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8443 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8444
8445 if (from_tty)
8446 {
8447 /* Show the results. */
8448 sig_print_header ();
8449 for (; signum < nsigs; signum++)
8450 if (sigs[signum])
8451 sig_print_info ((enum gdb_signal) signum);
8452 }
8453
8454 break;
8455 }
8456
8457 do_cleanups (old_chain);
8458 }
8459
8460 /* Complete the "handle" command. */
8461
8462 static VEC (char_ptr) *
8463 handle_completer (struct cmd_list_element *ignore,
8464 const char *text, const char *word)
8465 {
8466 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8467 static const char * const keywords[] =
8468 {
8469 "all",
8470 "stop",
8471 "ignore",
8472 "print",
8473 "pass",
8474 "nostop",
8475 "noignore",
8476 "noprint",
8477 "nopass",
8478 NULL,
8479 };
8480
8481 vec_signals = signal_completer (ignore, text, word);
8482 vec_keywords = complete_on_enum (keywords, word, word);
8483
8484 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8485 VEC_free (char_ptr, vec_signals);
8486 VEC_free (char_ptr, vec_keywords);
8487 return return_val;
8488 }
8489
8490 enum gdb_signal
8491 gdb_signal_from_command (int num)
8492 {
8493 if (num >= 1 && num <= 15)
8494 return (enum gdb_signal) num;
8495 error (_("Only signals 1-15 are valid as numeric signals.\n\
8496 Use \"info signals\" for a list of symbolic signals."));
8497 }
8498
8499 /* Print current contents of the tables set by the handle command.
8500 It is possible we should just be printing signals actually used
8501 by the current target (but for things to work right when switching
8502 targets, all signals should be in the signal tables). */
8503
8504 static void
8505 signals_info (char *signum_exp, int from_tty)
8506 {
8507 enum gdb_signal oursig;
8508
8509 sig_print_header ();
8510
8511 if (signum_exp)
8512 {
8513 /* First see if this is a symbol name. */
8514 oursig = gdb_signal_from_name (signum_exp);
8515 if (oursig == GDB_SIGNAL_UNKNOWN)
8516 {
8517 /* No, try numeric. */
8518 oursig =
8519 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8520 }
8521 sig_print_info (oursig);
8522 return;
8523 }
8524
8525 printf_filtered ("\n");
8526 /* These ugly casts brought to you by the native VAX compiler. */
8527 for (oursig = GDB_SIGNAL_FIRST;
8528 (int) oursig < (int) GDB_SIGNAL_LAST;
8529 oursig = (enum gdb_signal) ((int) oursig + 1))
8530 {
8531 QUIT;
8532
8533 if (oursig != GDB_SIGNAL_UNKNOWN
8534 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8535 sig_print_info (oursig);
8536 }
8537
8538 printf_filtered (_("\nUse the \"handle\" command "
8539 "to change these tables.\n"));
8540 }
8541
8542 /* Check if it makes sense to read $_siginfo from the current thread
8543 at this point. If not, throw an error. */
8544
8545 static void
8546 validate_siginfo_access (void)
8547 {
8548 /* No current inferior, no siginfo. */
8549 if (ptid_equal (inferior_ptid, null_ptid))
8550 error (_("No thread selected."));
8551
8552 /* Don't try to read from a dead thread. */
8553 if (is_exited (inferior_ptid))
8554 error (_("The current thread has terminated"));
8555
8556 /* ... or from a spinning thread. */
8557 if (is_running (inferior_ptid))
8558 error (_("Selected thread is running."));
8559 }
8560
8561 /* The $_siginfo convenience variable is a bit special. We don't know
8562 for sure the type of the value until we actually have a chance to
8563 fetch the data. The type can change depending on gdbarch, so it is
8564 also dependent on which thread you have selected.
8565
8566 1. making $_siginfo be an internalvar that creates a new value on
8567 access.
8568
8569 2. making the value of $_siginfo be an lval_computed value. */
8570
8571 /* This function implements the lval_computed support for reading a
8572 $_siginfo value. */
8573
8574 static void
8575 siginfo_value_read (struct value *v)
8576 {
8577 LONGEST transferred;
8578
8579 validate_siginfo_access ();
8580
8581 transferred =
8582 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8583 NULL,
8584 value_contents_all_raw (v),
8585 value_offset (v),
8586 TYPE_LENGTH (value_type (v)));
8587
8588 if (transferred != TYPE_LENGTH (value_type (v)))
8589 error (_("Unable to read siginfo"));
8590 }
8591
8592 /* This function implements the lval_computed support for writing a
8593 $_siginfo value. */
8594
8595 static void
8596 siginfo_value_write (struct value *v, struct value *fromval)
8597 {
8598 LONGEST transferred;
8599
8600 validate_siginfo_access ();
8601
8602 transferred = target_write (&current_target,
8603 TARGET_OBJECT_SIGNAL_INFO,
8604 NULL,
8605 value_contents_all_raw (fromval),
8606 value_offset (v),
8607 TYPE_LENGTH (value_type (fromval)));
8608
8609 if (transferred != TYPE_LENGTH (value_type (fromval)))
8610 error (_("Unable to write siginfo"));
8611 }
8612
8613 static const struct lval_funcs siginfo_value_funcs =
8614 {
8615 siginfo_value_read,
8616 siginfo_value_write
8617 };
8618
8619 /* Return a new value with the correct type for the siginfo object of
8620 the current thread using architecture GDBARCH. Return a void value
8621 if there's no object available. */
8622
8623 static struct value *
8624 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8625 void *ignore)
8626 {
8627 if (target_has_stack
8628 && !ptid_equal (inferior_ptid, null_ptid)
8629 && gdbarch_get_siginfo_type_p (gdbarch))
8630 {
8631 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8632
8633 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8634 }
8635
8636 return allocate_value (builtin_type (gdbarch)->builtin_void);
8637 }
8638
8639 \f
8640 /* infcall_suspend_state contains state about the program itself like its
8641 registers and any signal it received when it last stopped.
8642 This state must be restored regardless of how the inferior function call
8643 ends (either successfully, or after it hits a breakpoint or signal)
8644 if the program is to properly continue where it left off. */
8645
8646 struct infcall_suspend_state
8647 {
8648 struct thread_suspend_state thread_suspend;
8649
8650 /* Other fields: */
8651 CORE_ADDR stop_pc;
8652 struct regcache *registers;
8653
8654 /* Format of SIGINFO_DATA or NULL if it is not present. */
8655 struct gdbarch *siginfo_gdbarch;
8656
8657 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8658 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8659 content would be invalid. */
8660 gdb_byte *siginfo_data;
8661 };
8662
8663 struct infcall_suspend_state *
8664 save_infcall_suspend_state (void)
8665 {
8666 struct infcall_suspend_state *inf_state;
8667 struct thread_info *tp = inferior_thread ();
8668 struct regcache *regcache = get_current_regcache ();
8669 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8670 gdb_byte *siginfo_data = NULL;
8671
8672 if (gdbarch_get_siginfo_type_p (gdbarch))
8673 {
8674 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8675 size_t len = TYPE_LENGTH (type);
8676 struct cleanup *back_to;
8677
8678 siginfo_data = (gdb_byte *) xmalloc (len);
8679 back_to = make_cleanup (xfree, siginfo_data);
8680
8681 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8682 siginfo_data, 0, len) == len)
8683 discard_cleanups (back_to);
8684 else
8685 {
8686 /* Errors ignored. */
8687 do_cleanups (back_to);
8688 siginfo_data = NULL;
8689 }
8690 }
8691
8692 inf_state = XCNEW (struct infcall_suspend_state);
8693
8694 if (siginfo_data)
8695 {
8696 inf_state->siginfo_gdbarch = gdbarch;
8697 inf_state->siginfo_data = siginfo_data;
8698 }
8699
8700 inf_state->thread_suspend = tp->suspend;
8701
8702 /* run_inferior_call will not use the signal due to its `proceed' call with
8703 GDB_SIGNAL_0 anyway. */
8704 tp->suspend.stop_signal = GDB_SIGNAL_0;
8705
8706 inf_state->stop_pc = stop_pc;
8707
8708 inf_state->registers = regcache_dup (regcache);
8709
8710 return inf_state;
8711 }
8712
8713 /* Restore inferior session state to INF_STATE. */
8714
8715 void
8716 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8717 {
8718 struct thread_info *tp = inferior_thread ();
8719 struct regcache *regcache = get_current_regcache ();
8720 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8721
8722 tp->suspend = inf_state->thread_suspend;
8723
8724 stop_pc = inf_state->stop_pc;
8725
8726 if (inf_state->siginfo_gdbarch == gdbarch)
8727 {
8728 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8729
8730 /* Errors ignored. */
8731 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8732 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8733 }
8734
8735 /* The inferior can be gone if the user types "print exit(0)"
8736 (and perhaps other times). */
8737 if (target_has_execution)
8738 /* NB: The register write goes through to the target. */
8739 regcache_cpy (regcache, inf_state->registers);
8740
8741 discard_infcall_suspend_state (inf_state);
8742 }
8743
8744 static void
8745 do_restore_infcall_suspend_state_cleanup (void *state)
8746 {
8747 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8748 }
8749
8750 struct cleanup *
8751 make_cleanup_restore_infcall_suspend_state
8752 (struct infcall_suspend_state *inf_state)
8753 {
8754 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8755 }
8756
8757 void
8758 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8759 {
8760 regcache_xfree (inf_state->registers);
8761 xfree (inf_state->siginfo_data);
8762 xfree (inf_state);
8763 }
8764
8765 struct regcache *
8766 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8767 {
8768 return inf_state->registers;
8769 }
8770
8771 /* infcall_control_state contains state regarding gdb's control of the
8772 inferior itself like stepping control. It also contains session state like
8773 the user's currently selected frame. */
8774
8775 struct infcall_control_state
8776 {
8777 struct thread_control_state thread_control;
8778 struct inferior_control_state inferior_control;
8779
8780 /* Other fields: */
8781 enum stop_stack_kind stop_stack_dummy;
8782 int stopped_by_random_signal;
8783
8784 /* ID if the selected frame when the inferior function call was made. */
8785 struct frame_id selected_frame_id;
8786 };
8787
8788 /* Save all of the information associated with the inferior<==>gdb
8789 connection. */
8790
8791 struct infcall_control_state *
8792 save_infcall_control_state (void)
8793 {
8794 struct infcall_control_state *inf_status =
8795 XNEW (struct infcall_control_state);
8796 struct thread_info *tp = inferior_thread ();
8797 struct inferior *inf = current_inferior ();
8798
8799 inf_status->thread_control = tp->control;
8800 inf_status->inferior_control = inf->control;
8801
8802 tp->control.step_resume_breakpoint = NULL;
8803 tp->control.exception_resume_breakpoint = NULL;
8804
8805 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8806 chain. If caller's caller is walking the chain, they'll be happier if we
8807 hand them back the original chain when restore_infcall_control_state is
8808 called. */
8809 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8810
8811 /* Other fields: */
8812 inf_status->stop_stack_dummy = stop_stack_dummy;
8813 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8814
8815 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8816
8817 return inf_status;
8818 }
8819
8820 static int
8821 restore_selected_frame (void *args)
8822 {
8823 struct frame_id *fid = (struct frame_id *) args;
8824 struct frame_info *frame;
8825
8826 frame = frame_find_by_id (*fid);
8827
8828 /* If inf_status->selected_frame_id is NULL, there was no previously
8829 selected frame. */
8830 if (frame == NULL)
8831 {
8832 warning (_("Unable to restore previously selected frame."));
8833 return 0;
8834 }
8835
8836 select_frame (frame);
8837
8838 return (1);
8839 }
8840
8841 /* Restore inferior session state to INF_STATUS. */
8842
8843 void
8844 restore_infcall_control_state (struct infcall_control_state *inf_status)
8845 {
8846 struct thread_info *tp = inferior_thread ();
8847 struct inferior *inf = current_inferior ();
8848
8849 if (tp->control.step_resume_breakpoint)
8850 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8851
8852 if (tp->control.exception_resume_breakpoint)
8853 tp->control.exception_resume_breakpoint->disposition
8854 = disp_del_at_next_stop;
8855
8856 /* Handle the bpstat_copy of the chain. */
8857 bpstat_clear (&tp->control.stop_bpstat);
8858
8859 tp->control = inf_status->thread_control;
8860 inf->control = inf_status->inferior_control;
8861
8862 /* Other fields: */
8863 stop_stack_dummy = inf_status->stop_stack_dummy;
8864 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8865
8866 if (target_has_stack)
8867 {
8868 /* The point of catch_errors is that if the stack is clobbered,
8869 walking the stack might encounter a garbage pointer and
8870 error() trying to dereference it. */
8871 if (catch_errors
8872 (restore_selected_frame, &inf_status->selected_frame_id,
8873 "Unable to restore previously selected frame:\n",
8874 RETURN_MASK_ERROR) == 0)
8875 /* Error in restoring the selected frame. Select the innermost
8876 frame. */
8877 select_frame (get_current_frame ());
8878 }
8879
8880 xfree (inf_status);
8881 }
8882
8883 static void
8884 do_restore_infcall_control_state_cleanup (void *sts)
8885 {
8886 restore_infcall_control_state ((struct infcall_control_state *) sts);
8887 }
8888
8889 struct cleanup *
8890 make_cleanup_restore_infcall_control_state
8891 (struct infcall_control_state *inf_status)
8892 {
8893 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
8894 }
8895
8896 void
8897 discard_infcall_control_state (struct infcall_control_state *inf_status)
8898 {
8899 if (inf_status->thread_control.step_resume_breakpoint)
8900 inf_status->thread_control.step_resume_breakpoint->disposition
8901 = disp_del_at_next_stop;
8902
8903 if (inf_status->thread_control.exception_resume_breakpoint)
8904 inf_status->thread_control.exception_resume_breakpoint->disposition
8905 = disp_del_at_next_stop;
8906
8907 /* See save_infcall_control_state for info on stop_bpstat. */
8908 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8909
8910 xfree (inf_status);
8911 }
8912 \f
8913 /* restore_inferior_ptid() will be used by the cleanup machinery
8914 to restore the inferior_ptid value saved in a call to
8915 save_inferior_ptid(). */
8916
8917 static void
8918 restore_inferior_ptid (void *arg)
8919 {
8920 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
8921
8922 inferior_ptid = *saved_ptid_ptr;
8923 xfree (arg);
8924 }
8925
8926 /* Save the value of inferior_ptid so that it may be restored by a
8927 later call to do_cleanups(). Returns the struct cleanup pointer
8928 needed for later doing the cleanup. */
8929
8930 struct cleanup *
8931 save_inferior_ptid (void)
8932 {
8933 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
8934
8935 *saved_ptid_ptr = inferior_ptid;
8936 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8937 }
8938
8939 /* See infrun.h. */
8940
8941 void
8942 clear_exit_convenience_vars (void)
8943 {
8944 clear_internalvar (lookup_internalvar ("_exitsignal"));
8945 clear_internalvar (lookup_internalvar ("_exitcode"));
8946 }
8947 \f
8948
8949 /* User interface for reverse debugging:
8950 Set exec-direction / show exec-direction commands
8951 (returns error unless target implements to_set_exec_direction method). */
8952
8953 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8954 static const char exec_forward[] = "forward";
8955 static const char exec_reverse[] = "reverse";
8956 static const char *exec_direction = exec_forward;
8957 static const char *const exec_direction_names[] = {
8958 exec_forward,
8959 exec_reverse,
8960 NULL
8961 };
8962
8963 static void
8964 set_exec_direction_func (char *args, int from_tty,
8965 struct cmd_list_element *cmd)
8966 {
8967 if (target_can_execute_reverse)
8968 {
8969 if (!strcmp (exec_direction, exec_forward))
8970 execution_direction = EXEC_FORWARD;
8971 else if (!strcmp (exec_direction, exec_reverse))
8972 execution_direction = EXEC_REVERSE;
8973 }
8974 else
8975 {
8976 exec_direction = exec_forward;
8977 error (_("Target does not support this operation."));
8978 }
8979 }
8980
8981 static void
8982 show_exec_direction_func (struct ui_file *out, int from_tty,
8983 struct cmd_list_element *cmd, const char *value)
8984 {
8985 switch (execution_direction) {
8986 case EXEC_FORWARD:
8987 fprintf_filtered (out, _("Forward.\n"));
8988 break;
8989 case EXEC_REVERSE:
8990 fprintf_filtered (out, _("Reverse.\n"));
8991 break;
8992 default:
8993 internal_error (__FILE__, __LINE__,
8994 _("bogus execution_direction value: %d"),
8995 (int) execution_direction);
8996 }
8997 }
8998
8999 static void
9000 show_schedule_multiple (struct ui_file *file, int from_tty,
9001 struct cmd_list_element *c, const char *value)
9002 {
9003 fprintf_filtered (file, _("Resuming the execution of threads "
9004 "of all processes is %s.\n"), value);
9005 }
9006
9007 /* Implementation of `siginfo' variable. */
9008
9009 static const struct internalvar_funcs siginfo_funcs =
9010 {
9011 siginfo_make_value,
9012 NULL,
9013 NULL
9014 };
9015
9016 /* Callback for infrun's target events source. This is marked when a
9017 thread has a pending status to process. */
9018
9019 static void
9020 infrun_async_inferior_event_handler (gdb_client_data data)
9021 {
9022 inferior_event_handler (INF_REG_EVENT, NULL);
9023 }
9024
9025 void
9026 _initialize_infrun (void)
9027 {
9028 int i;
9029 int numsigs;
9030 struct cmd_list_element *c;
9031
9032 /* Register extra event sources in the event loop. */
9033 infrun_async_inferior_event_token
9034 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9035
9036 add_info ("signals", signals_info, _("\
9037 What debugger does when program gets various signals.\n\
9038 Specify a signal as argument to print info on that signal only."));
9039 add_info_alias ("handle", "signals", 0);
9040
9041 c = add_com ("handle", class_run, handle_command, _("\
9042 Specify how to handle signals.\n\
9043 Usage: handle SIGNAL [ACTIONS]\n\
9044 Args are signals and actions to apply to those signals.\n\
9045 If no actions are specified, the current settings for the specified signals\n\
9046 will be displayed instead.\n\
9047 \n\
9048 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9049 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9050 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9051 The special arg \"all\" is recognized to mean all signals except those\n\
9052 used by the debugger, typically SIGTRAP and SIGINT.\n\
9053 \n\
9054 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9055 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9056 Stop means reenter debugger if this signal happens (implies print).\n\
9057 Print means print a message if this signal happens.\n\
9058 Pass means let program see this signal; otherwise program doesn't know.\n\
9059 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9060 Pass and Stop may be combined.\n\
9061 \n\
9062 Multiple signals may be specified. Signal numbers and signal names\n\
9063 may be interspersed with actions, with the actions being performed for\n\
9064 all signals cumulatively specified."));
9065 set_cmd_completer (c, handle_completer);
9066
9067 if (!dbx_commands)
9068 stop_command = add_cmd ("stop", class_obscure,
9069 not_just_help_class_command, _("\
9070 There is no `stop' command, but you can set a hook on `stop'.\n\
9071 This allows you to set a list of commands to be run each time execution\n\
9072 of the program stops."), &cmdlist);
9073
9074 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9075 Set inferior debugging."), _("\
9076 Show inferior debugging."), _("\
9077 When non-zero, inferior specific debugging is enabled."),
9078 NULL,
9079 show_debug_infrun,
9080 &setdebuglist, &showdebuglist);
9081
9082 add_setshow_boolean_cmd ("displaced", class_maintenance,
9083 &debug_displaced, _("\
9084 Set displaced stepping debugging."), _("\
9085 Show displaced stepping debugging."), _("\
9086 When non-zero, displaced stepping specific debugging is enabled."),
9087 NULL,
9088 show_debug_displaced,
9089 &setdebuglist, &showdebuglist);
9090
9091 add_setshow_boolean_cmd ("non-stop", no_class,
9092 &non_stop_1, _("\
9093 Set whether gdb controls the inferior in non-stop mode."), _("\
9094 Show whether gdb controls the inferior in non-stop mode."), _("\
9095 When debugging a multi-threaded program and this setting is\n\
9096 off (the default, also called all-stop mode), when one thread stops\n\
9097 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9098 all other threads in the program while you interact with the thread of\n\
9099 interest. When you continue or step a thread, you can allow the other\n\
9100 threads to run, or have them remain stopped, but while you inspect any\n\
9101 thread's state, all threads stop.\n\
9102 \n\
9103 In non-stop mode, when one thread stops, other threads can continue\n\
9104 to run freely. You'll be able to step each thread independently,\n\
9105 leave it stopped or free to run as needed."),
9106 set_non_stop,
9107 show_non_stop,
9108 &setlist,
9109 &showlist);
9110
9111 numsigs = (int) GDB_SIGNAL_LAST;
9112 signal_stop = XNEWVEC (unsigned char, numsigs);
9113 signal_print = XNEWVEC (unsigned char, numsigs);
9114 signal_program = XNEWVEC (unsigned char, numsigs);
9115 signal_catch = XNEWVEC (unsigned char, numsigs);
9116 signal_pass = XNEWVEC (unsigned char, numsigs);
9117 for (i = 0; i < numsigs; i++)
9118 {
9119 signal_stop[i] = 1;
9120 signal_print[i] = 1;
9121 signal_program[i] = 1;
9122 signal_catch[i] = 0;
9123 }
9124
9125 /* Signals caused by debugger's own actions should not be given to
9126 the program afterwards.
9127
9128 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9129 explicitly specifies that it should be delivered to the target
9130 program. Typically, that would occur when a user is debugging a
9131 target monitor on a simulator: the target monitor sets a
9132 breakpoint; the simulator encounters this breakpoint and halts
9133 the simulation handing control to GDB; GDB, noting that the stop
9134 address doesn't map to any known breakpoint, returns control back
9135 to the simulator; the simulator then delivers the hardware
9136 equivalent of a GDB_SIGNAL_TRAP to the program being
9137 debugged. */
9138 signal_program[GDB_SIGNAL_TRAP] = 0;
9139 signal_program[GDB_SIGNAL_INT] = 0;
9140
9141 /* Signals that are not errors should not normally enter the debugger. */
9142 signal_stop[GDB_SIGNAL_ALRM] = 0;
9143 signal_print[GDB_SIGNAL_ALRM] = 0;
9144 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9145 signal_print[GDB_SIGNAL_VTALRM] = 0;
9146 signal_stop[GDB_SIGNAL_PROF] = 0;
9147 signal_print[GDB_SIGNAL_PROF] = 0;
9148 signal_stop[GDB_SIGNAL_CHLD] = 0;
9149 signal_print[GDB_SIGNAL_CHLD] = 0;
9150 signal_stop[GDB_SIGNAL_IO] = 0;
9151 signal_print[GDB_SIGNAL_IO] = 0;
9152 signal_stop[GDB_SIGNAL_POLL] = 0;
9153 signal_print[GDB_SIGNAL_POLL] = 0;
9154 signal_stop[GDB_SIGNAL_URG] = 0;
9155 signal_print[GDB_SIGNAL_URG] = 0;
9156 signal_stop[GDB_SIGNAL_WINCH] = 0;
9157 signal_print[GDB_SIGNAL_WINCH] = 0;
9158 signal_stop[GDB_SIGNAL_PRIO] = 0;
9159 signal_print[GDB_SIGNAL_PRIO] = 0;
9160
9161 /* These signals are used internally by user-level thread
9162 implementations. (See signal(5) on Solaris.) Like the above
9163 signals, a healthy program receives and handles them as part of
9164 its normal operation. */
9165 signal_stop[GDB_SIGNAL_LWP] = 0;
9166 signal_print[GDB_SIGNAL_LWP] = 0;
9167 signal_stop[GDB_SIGNAL_WAITING] = 0;
9168 signal_print[GDB_SIGNAL_WAITING] = 0;
9169 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9170 signal_print[GDB_SIGNAL_CANCEL] = 0;
9171
9172 /* Update cached state. */
9173 signal_cache_update (-1);
9174
9175 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9176 &stop_on_solib_events, _("\
9177 Set stopping for shared library events."), _("\
9178 Show stopping for shared library events."), _("\
9179 If nonzero, gdb will give control to the user when the dynamic linker\n\
9180 notifies gdb of shared library events. The most common event of interest\n\
9181 to the user would be loading/unloading of a new library."),
9182 set_stop_on_solib_events,
9183 show_stop_on_solib_events,
9184 &setlist, &showlist);
9185
9186 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9187 follow_fork_mode_kind_names,
9188 &follow_fork_mode_string, _("\
9189 Set debugger response to a program call of fork or vfork."), _("\
9190 Show debugger response to a program call of fork or vfork."), _("\
9191 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9192 parent - the original process is debugged after a fork\n\
9193 child - the new process is debugged after a fork\n\
9194 The unfollowed process will continue to run.\n\
9195 By default, the debugger will follow the parent process."),
9196 NULL,
9197 show_follow_fork_mode_string,
9198 &setlist, &showlist);
9199
9200 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9201 follow_exec_mode_names,
9202 &follow_exec_mode_string, _("\
9203 Set debugger response to a program call of exec."), _("\
9204 Show debugger response to a program call of exec."), _("\
9205 An exec call replaces the program image of a process.\n\
9206 \n\
9207 follow-exec-mode can be:\n\
9208 \n\
9209 new - the debugger creates a new inferior and rebinds the process\n\
9210 to this new inferior. The program the process was running before\n\
9211 the exec call can be restarted afterwards by restarting the original\n\
9212 inferior.\n\
9213 \n\
9214 same - the debugger keeps the process bound to the same inferior.\n\
9215 The new executable image replaces the previous executable loaded in\n\
9216 the inferior. Restarting the inferior after the exec call restarts\n\
9217 the executable the process was running after the exec call.\n\
9218 \n\
9219 By default, the debugger will use the same inferior."),
9220 NULL,
9221 show_follow_exec_mode_string,
9222 &setlist, &showlist);
9223
9224 add_setshow_enum_cmd ("scheduler-locking", class_run,
9225 scheduler_enums, &scheduler_mode, _("\
9226 Set mode for locking scheduler during execution."), _("\
9227 Show mode for locking scheduler during execution."), _("\
9228 off == no locking (threads may preempt at any time)\n\
9229 on == full locking (no thread except the current thread may run)\n\
9230 This applies to both normal execution and replay mode.\n\
9231 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9232 In this mode, other threads may run during other commands.\n\
9233 This applies to both normal execution and replay mode.\n\
9234 replay == scheduler locked in replay mode and unlocked during normal execution."),
9235 set_schedlock_func, /* traps on target vector */
9236 show_scheduler_mode,
9237 &setlist, &showlist);
9238
9239 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9240 Set mode for resuming threads of all processes."), _("\
9241 Show mode for resuming threads of all processes."), _("\
9242 When on, execution commands (such as 'continue' or 'next') resume all\n\
9243 threads of all processes. When off (which is the default), execution\n\
9244 commands only resume the threads of the current process. The set of\n\
9245 threads that are resumed is further refined by the scheduler-locking\n\
9246 mode (see help set scheduler-locking)."),
9247 NULL,
9248 show_schedule_multiple,
9249 &setlist, &showlist);
9250
9251 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9252 Set mode of the step operation."), _("\
9253 Show mode of the step operation."), _("\
9254 When set, doing a step over a function without debug line information\n\
9255 will stop at the first instruction of that function. Otherwise, the\n\
9256 function is skipped and the step command stops at a different source line."),
9257 NULL,
9258 show_step_stop_if_no_debug,
9259 &setlist, &showlist);
9260
9261 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9262 &can_use_displaced_stepping, _("\
9263 Set debugger's willingness to use displaced stepping."), _("\
9264 Show debugger's willingness to use displaced stepping."), _("\
9265 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9266 supported by the target architecture. If off, gdb will not use displaced\n\
9267 stepping to step over breakpoints, even if such is supported by the target\n\
9268 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9269 if the target architecture supports it and non-stop mode is active, but will not\n\
9270 use it in all-stop mode (see help set non-stop)."),
9271 NULL,
9272 show_can_use_displaced_stepping,
9273 &setlist, &showlist);
9274
9275 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9276 &exec_direction, _("Set direction of execution.\n\
9277 Options are 'forward' or 'reverse'."),
9278 _("Show direction of execution (forward/reverse)."),
9279 _("Tells gdb whether to execute forward or backward."),
9280 set_exec_direction_func, show_exec_direction_func,
9281 &setlist, &showlist);
9282
9283 /* Set/show detach-on-fork: user-settable mode. */
9284
9285 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9286 Set whether gdb will detach the child of a fork."), _("\
9287 Show whether gdb will detach the child of a fork."), _("\
9288 Tells gdb whether to detach the child of a fork."),
9289 NULL, NULL, &setlist, &showlist);
9290
9291 /* Set/show disable address space randomization mode. */
9292
9293 add_setshow_boolean_cmd ("disable-randomization", class_support,
9294 &disable_randomization, _("\
9295 Set disabling of debuggee's virtual address space randomization."), _("\
9296 Show disabling of debuggee's virtual address space randomization."), _("\
9297 When this mode is on (which is the default), randomization of the virtual\n\
9298 address space is disabled. Standalone programs run with the randomization\n\
9299 enabled by default on some platforms."),
9300 &set_disable_randomization,
9301 &show_disable_randomization,
9302 &setlist, &showlist);
9303
9304 /* ptid initializations */
9305 inferior_ptid = null_ptid;
9306 target_last_wait_ptid = minus_one_ptid;
9307
9308 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9309 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9310 observer_attach_thread_exit (infrun_thread_thread_exit);
9311 observer_attach_inferior_exit (infrun_inferior_exit);
9312
9313 /* Explicitly create without lookup, since that tries to create a
9314 value with a void typed value, and when we get here, gdbarch
9315 isn't initialized yet. At this point, we're quite sure there
9316 isn't another convenience variable of the same name. */
9317 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9318
9319 add_setshow_boolean_cmd ("observer", no_class,
9320 &observer_mode_1, _("\
9321 Set whether gdb controls the inferior in observer mode."), _("\
9322 Show whether gdb controls the inferior in observer mode."), _("\
9323 In observer mode, GDB can get data from the inferior, but not\n\
9324 affect its execution. Registers and memory may not be changed,\n\
9325 breakpoints may not be set, and the program cannot be interrupted\n\
9326 or signalled."),
9327 set_observer_mode,
9328 show_observer_mode,
9329 &setlist,
9330 &showlist);
9331 }
This page took 0.236804 seconds and 4 git commands to generate.