efb3a239275c4afd97346596e42aa55ce1383c86
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "gdbsupport/common-defs.h"
24 #include "gdbsupport/common-utils.h"
25 #include "infrun.h"
26 #include <ctype.h>
27 #include "symtab.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "breakpoint.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "target-connection.h"
35 #include "gdbthread.h"
36 #include "annotate.h"
37 #include "symfile.h"
38 #include "top.h"
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "utils.h"
42 #include "value.h"
43 #include "observable.h"
44 #include "language.h"
45 #include "solib.h"
46 #include "main.h"
47 #include "block.h"
48 #include "mi/mi-common.h"
49 #include "event-top.h"
50 #include "record.h"
51 #include "record-full.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "skip.h"
56 #include "probe.h"
57 #include "objfiles.h"
58 #include "completer.h"
59 #include "target-descriptions.h"
60 #include "target-dcache.h"
61 #include "terminal.h"
62 #include "solist.h"
63 #include "gdbsupport/event-loop.h"
64 #include "thread-fsm.h"
65 #include "gdbsupport/enum-flags.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "arch-utils.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/forward-scope-exit.h"
71 #include "gdbsupport/gdb_select.h"
72 #include <unordered_map>
73 #include "async-event.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 #define infrun_log_debug(fmt, args...) \
106 infrun_log_debug_1 (__LINE__, __func__, fmt, ##args)
107
108 static void ATTRIBUTE_PRINTF(3, 4)
109 infrun_log_debug_1 (int line, const char *func,
110 const char *fmt, ...)
111 {
112 if (debug_infrun)
113 {
114 va_list args;
115 va_start (args, fmt);
116 std::string msg = string_vprintf (fmt, args);
117 va_end (args);
118
119 fprintf_unfiltered (gdb_stdout, "infrun: %s: %s\n", func, msg.c_str ());
120 }
121 }
122
123 /* See infrun.h. */
124
125 void
126 infrun_async (int enable)
127 {
128 if (infrun_is_async != enable)
129 {
130 infrun_is_async = enable;
131
132 infrun_log_debug ("enable=%d", enable);
133
134 if (enable)
135 mark_async_event_handler (infrun_async_inferior_event_token);
136 else
137 clear_async_event_handler (infrun_async_inferior_event_token);
138 }
139 }
140
141 /* See infrun.h. */
142
143 void
144 mark_infrun_async_event_handler (void)
145 {
146 mark_async_event_handler (infrun_async_inferior_event_token);
147 }
148
149 /* When set, stop the 'step' command if we enter a function which has
150 no line number information. The normal behavior is that we step
151 over such function. */
152 bool step_stop_if_no_debug = false;
153 static void
154 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
158 }
159
160 /* proceed and normal_stop use this to notify the user when the
161 inferior stopped in a different thread than it had been running
162 in. */
163
164 static ptid_t previous_inferior_ptid;
165
166 /* If set (default for legacy reasons), when following a fork, GDB
167 will detach from one of the fork branches, child or parent.
168 Exactly which branch is detached depends on 'set follow-fork-mode'
169 setting. */
170
171 static bool detach_fork = true;
172
173 bool debug_displaced = false;
174 static void
175 show_debug_displaced (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
179 }
180
181 unsigned int debug_infrun = 0;
182 static void
183 show_debug_infrun (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185 {
186 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
187 }
188
189
190 /* Support for disabling address space randomization. */
191
192 bool disable_randomization = true;
193
194 static void
195 show_disable_randomization (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 if (target_supports_disable_randomization ())
199 fprintf_filtered (file,
200 _("Disabling randomization of debuggee's "
201 "virtual address space is %s.\n"),
202 value);
203 else
204 fputs_filtered (_("Disabling randomization of debuggee's "
205 "virtual address space is unsupported on\n"
206 "this platform.\n"), file);
207 }
208
209 static void
210 set_disable_randomization (const char *args, int from_tty,
211 struct cmd_list_element *c)
212 {
213 if (!target_supports_disable_randomization ())
214 error (_("Disabling randomization of debuggee's "
215 "virtual address space is unsupported on\n"
216 "this platform."));
217 }
218
219 /* User interface for non-stop mode. */
220
221 bool non_stop = false;
222 static bool non_stop_1 = false;
223
224 static void
225 set_non_stop (const char *args, int from_tty,
226 struct cmd_list_element *c)
227 {
228 if (target_has_execution)
229 {
230 non_stop_1 = non_stop;
231 error (_("Cannot change this setting while the inferior is running."));
232 }
233
234 non_stop = non_stop_1;
235 }
236
237 static void
238 show_non_stop (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file,
242 _("Controlling the inferior in non-stop mode is %s.\n"),
243 value);
244 }
245
246 /* "Observer mode" is somewhat like a more extreme version of
247 non-stop, in which all GDB operations that might affect the
248 target's execution have been disabled. */
249
250 bool observer_mode = false;
251 static bool observer_mode_1 = false;
252
253 static void
254 set_observer_mode (const char *args, int from_tty,
255 struct cmd_list_element *c)
256 {
257 if (target_has_execution)
258 {
259 observer_mode_1 = observer_mode;
260 error (_("Cannot change this setting while the inferior is running."));
261 }
262
263 observer_mode = observer_mode_1;
264
265 may_write_registers = !observer_mode;
266 may_write_memory = !observer_mode;
267 may_insert_breakpoints = !observer_mode;
268 may_insert_tracepoints = !observer_mode;
269 /* We can insert fast tracepoints in or out of observer mode,
270 but enable them if we're going into this mode. */
271 if (observer_mode)
272 may_insert_fast_tracepoints = true;
273 may_stop = !observer_mode;
274 update_target_permissions ();
275
276 /* Going *into* observer mode we must force non-stop, then
277 going out we leave it that way. */
278 if (observer_mode)
279 {
280 pagination_enabled = 0;
281 non_stop = non_stop_1 = true;
282 }
283
284 if (from_tty)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (observer_mode ? "on" : "off"));
287 }
288
289 static void
290 show_observer_mode (struct ui_file *file, int from_tty,
291 struct cmd_list_element *c, const char *value)
292 {
293 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
294 }
295
296 /* This updates the value of observer mode based on changes in
297 permissions. Note that we are deliberately ignoring the values of
298 may-write-registers and may-write-memory, since the user may have
299 reason to enable these during a session, for instance to turn on a
300 debugging-related global. */
301
302 void
303 update_observer_mode (void)
304 {
305 bool newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317 }
318
319 /* Tables of how to react to signals; the user sets them. */
320
321 static unsigned char signal_stop[GDB_SIGNAL_LAST];
322 static unsigned char signal_print[GDB_SIGNAL_LAST];
323 static unsigned char signal_program[GDB_SIGNAL_LAST];
324
325 /* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. */
328 static unsigned char signal_catch[GDB_SIGNAL_LAST];
329
330 /* Table of signals that the target may silently handle.
331 This is automatically determined from the flags above,
332 and simply cached here. */
333 static unsigned char signal_pass[GDB_SIGNAL_LAST];
334
335 #define SET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 1; \
341 } while (0)
342
343 #define UNSET_SIGS(nsigs,sigs,flags) \
344 do { \
345 int signum = (nsigs); \
346 while (signum-- > 0) \
347 if ((sigs)[signum]) \
348 (flags)[signum] = 0; \
349 } while (0)
350
351 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
352 this function is to avoid exporting `signal_program'. */
353
354 void
355 update_signals_program_target (void)
356 {
357 target_program_signals (signal_program);
358 }
359
360 /* Value to pass to target_resume() to cause all threads to resume. */
361
362 #define RESUME_ALL minus_one_ptid
363
364 /* Command list pointer for the "stop" placeholder. */
365
366 static struct cmd_list_element *stop_command;
367
368 /* Nonzero if we want to give control to the user when we're notified
369 of shared library events by the dynamic linker. */
370 int stop_on_solib_events;
371
372 /* Enable or disable optional shared library event breakpoints
373 as appropriate when the above flag is changed. */
374
375 static void
376 set_stop_on_solib_events (const char *args,
377 int from_tty, struct cmd_list_element *c)
378 {
379 update_solib_breakpoints ();
380 }
381
382 static void
383 show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388 }
389
390 /* Nonzero after stop if current stack frame should be printed. */
391
392 static int stop_print_frame;
393
394 /* This is a cached copy of the target/ptid/waitstatus of the last
395 event returned by target_wait()/deprecated_target_wait_hook().
396 This information is returned by get_last_target_status(). */
397 static process_stratum_target *target_last_proc_target;
398 static ptid_t target_last_wait_ptid;
399 static struct target_waitstatus target_last_waitstatus;
400
401 void init_thread_stepping_state (struct thread_info *tss);
402
403 static const char follow_fork_mode_child[] = "child";
404 static const char follow_fork_mode_parent[] = "parent";
405
406 static const char *const follow_fork_mode_kind_names[] = {
407 follow_fork_mode_child,
408 follow_fork_mode_parent,
409 NULL
410 };
411
412 static const char *follow_fork_mode_string = follow_fork_mode_parent;
413 static void
414 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c, const char *value)
416 {
417 fprintf_filtered (file,
418 _("Debugger response to a program "
419 "call of fork or vfork is \"%s\".\n"),
420 value);
421 }
422 \f
423
424 /* Handle changes to the inferior list based on the type of fork,
425 which process is being followed, and whether the other process
426 should be detached. On entry inferior_ptid must be the ptid of
427 the fork parent. At return inferior_ptid is the ptid of the
428 followed inferior. */
429
430 static bool
431 follow_fork_inferior (bool follow_child, bool detach_fork)
432 {
433 int has_vforked;
434 ptid_t parent_ptid, child_ptid;
435
436 has_vforked = (inferior_thread ()->pending_follow.kind
437 == TARGET_WAITKIND_VFORKED);
438 parent_ptid = inferior_ptid;
439 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
440
441 if (has_vforked
442 && !non_stop /* Non-stop always resumes both branches. */
443 && current_ui->prompt_state == PROMPT_BLOCKED
444 && !(follow_child || detach_fork || sched_multi))
445 {
446 /* The parent stays blocked inside the vfork syscall until the
447 child execs or exits. If we don't let the child run, then
448 the parent stays blocked. If we're telling the parent to run
449 in the foreground, the user will not be able to ctrl-c to get
450 back the terminal, effectively hanging the debug session. */
451 fprintf_filtered (gdb_stderr, _("\
452 Can not resume the parent process over vfork in the foreground while\n\
453 holding the child stopped. Try \"set detach-on-fork\" or \
454 \"set schedule-multiple\".\n"));
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
473 remove_breakpoints_inf (current_inferior ());
474 }
475
476 if (print_inferior_events)
477 {
478 /* Ensure that we have a process ptid. */
479 ptid_t process_ptid = ptid_t (child_ptid.pid ());
480
481 target_terminal::ours_for_output ();
482 fprintf_filtered (gdb_stdlog,
483 _("[Detaching after %s from child %s]\n"),
484 has_vforked ? "vfork" : "fork",
485 target_pid_to_str (process_ptid).c_str ());
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (child_ptid.pid ());
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
502
503 set_current_inferior (child_inf);
504 switch_to_no_thread ();
505 child_inf->symfile_flags = SYMFILE_NO_READ;
506 push_target (parent_inf->process_target ());
507 thread_info *child_thr
508 = add_thread_silent (child_inf->process_target (), child_ptid);
509
510 /* If this is a vfork child, then the address-space is
511 shared with the parent. */
512 if (has_vforked)
513 {
514 child_inf->pspace = parent_inf->pspace;
515 child_inf->aspace = parent_inf->aspace;
516
517 exec_on_vfork ();
518
519 /* The parent will be frozen until the child is done
520 with the shared region. Keep track of the
521 parent. */
522 child_inf->vfork_parent = parent_inf;
523 child_inf->pending_detach = 0;
524 parent_inf->vfork_child = child_inf;
525 parent_inf->pending_detach = 0;
526
527 /* Now that the inferiors and program spaces are all
528 wired up, we can switch to the child thread (which
529 switches inferior and program space too). */
530 switch_to_thread (child_thr);
531 }
532 else
533 {
534 child_inf->aspace = new_address_space ();
535 child_inf->pspace = new program_space (child_inf->aspace);
536 child_inf->removable = 1;
537 set_current_program_space (child_inf->pspace);
538 clone_program_space (child_inf->pspace, parent_inf->pspace);
539
540 /* solib_create_inferior_hook relies on the current
541 thread. */
542 switch_to_thread (child_thr);
543
544 /* Let the shared library layer (e.g., solib-svr4) learn
545 about this new process, relocate the cloned exec, pull
546 in shared libraries, and install the solib event
547 breakpoint. If a "cloned-VM" event was propagated
548 better throughout the core, this wouldn't be
549 required. */
550 solib_create_inferior_hook (0);
551 }
552 }
553
554 if (has_vforked)
555 {
556 struct inferior *parent_inf;
557
558 parent_inf = current_inferior ();
559
560 /* If we detached from the child, then we have to be careful
561 to not insert breakpoints in the parent until the child
562 is done with the shared memory region. However, if we're
563 staying attached to the child, then we can and should
564 insert breakpoints, so that we can debug it. A
565 subsequent child exec or exit is enough to know when does
566 the child stops using the parent's address space. */
567 parent_inf->waiting_for_vfork_done = detach_fork;
568 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
569 }
570 }
571 else
572 {
573 /* Follow the child. */
574 struct inferior *parent_inf, *child_inf;
575 struct program_space *parent_pspace;
576
577 if (print_inferior_events)
578 {
579 std::string parent_pid = target_pid_to_str (parent_ptid);
580 std::string child_pid = target_pid_to_str (child_ptid);
581
582 target_terminal::ours_for_output ();
583 fprintf_filtered (gdb_stdlog,
584 _("[Attaching after %s %s to child %s]\n"),
585 parent_pid.c_str (),
586 has_vforked ? "vfork" : "fork",
587 child_pid.c_str ());
588 }
589
590 /* Add the new inferior first, so that the target_detach below
591 doesn't unpush the target. */
592
593 child_inf = add_inferior (child_ptid.pid ());
594
595 parent_inf = current_inferior ();
596 child_inf->attach_flag = parent_inf->attach_flag;
597 copy_terminal_info (child_inf, parent_inf);
598 child_inf->gdbarch = parent_inf->gdbarch;
599 copy_inferior_target_desc_info (child_inf, parent_inf);
600
601 parent_pspace = parent_inf->pspace;
602
603 process_stratum_target *target = parent_inf->process_target ();
604
605 {
606 /* Hold a strong reference to the target while (maybe)
607 detaching the parent. Otherwise detaching could close the
608 target. */
609 auto target_ref = target_ops_ref::new_reference (target);
610
611 /* If we're vforking, we want to hold on to the parent until
612 the child exits or execs. At child exec or exit time we
613 can remove the old breakpoints from the parent and detach
614 or resume debugging it. Otherwise, detach the parent now;
615 we'll want to reuse it's program/address spaces, but we
616 can't set them to the child before removing breakpoints
617 from the parent, otherwise, the breakpoints module could
618 decide to remove breakpoints from the wrong process (since
619 they'd be assigned to the same address space). */
620
621 if (has_vforked)
622 {
623 gdb_assert (child_inf->vfork_parent == NULL);
624 gdb_assert (parent_inf->vfork_child == NULL);
625 child_inf->vfork_parent = parent_inf;
626 child_inf->pending_detach = 0;
627 parent_inf->vfork_child = child_inf;
628 parent_inf->pending_detach = detach_fork;
629 parent_inf->waiting_for_vfork_done = 0;
630 }
631 else if (detach_fork)
632 {
633 if (print_inferior_events)
634 {
635 /* Ensure that we have a process ptid. */
636 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
637
638 target_terminal::ours_for_output ();
639 fprintf_filtered (gdb_stdlog,
640 _("[Detaching after fork from "
641 "parent %s]\n"),
642 target_pid_to_str (process_ptid).c_str ());
643 }
644
645 target_detach (parent_inf, 0);
646 parent_inf = NULL;
647 }
648
649 /* Note that the detach above makes PARENT_INF dangling. */
650
651 /* Add the child thread to the appropriate lists, and switch
652 to this new thread, before cloning the program space, and
653 informing the solib layer about this new process. */
654
655 set_current_inferior (child_inf);
656 push_target (target);
657 }
658
659 thread_info *child_thr = add_thread_silent (target, child_ptid);
660
661 /* If this is a vfork child, then the address-space is shared
662 with the parent. If we detached from the parent, then we can
663 reuse the parent's program/address spaces. */
664 if (has_vforked || detach_fork)
665 {
666 child_inf->pspace = parent_pspace;
667 child_inf->aspace = child_inf->pspace->aspace;
668
669 exec_on_vfork ();
670 }
671 else
672 {
673 child_inf->aspace = new_address_space ();
674 child_inf->pspace = new program_space (child_inf->aspace);
675 child_inf->removable = 1;
676 child_inf->symfile_flags = SYMFILE_NO_READ;
677 set_current_program_space (child_inf->pspace);
678 clone_program_space (child_inf->pspace, parent_pspace);
679
680 /* Let the shared library layer (e.g., solib-svr4) learn
681 about this new process, relocate the cloned exec, pull in
682 shared libraries, and install the solib event breakpoint.
683 If a "cloned-VM" event was propagated better throughout
684 the core, this wouldn't be required. */
685 solib_create_inferior_hook (0);
686 }
687
688 switch_to_thread (child_thr);
689 }
690
691 return target_follow_fork (follow_child, detach_fork);
692 }
693
694 /* Tell the target to follow the fork we're stopped at. Returns true
695 if the inferior should be resumed; false, if the target for some
696 reason decided it's best not to resume. */
697
698 static bool
699 follow_fork ()
700 {
701 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
702 bool should_resume = true;
703 struct thread_info *tp;
704
705 /* Copy user stepping state to the new inferior thread. FIXME: the
706 followed fork child thread should have a copy of most of the
707 parent thread structure's run control related fields, not just these.
708 Initialized to avoid "may be used uninitialized" warnings from gcc. */
709 struct breakpoint *step_resume_breakpoint = NULL;
710 struct breakpoint *exception_resume_breakpoint = NULL;
711 CORE_ADDR step_range_start = 0;
712 CORE_ADDR step_range_end = 0;
713 int current_line = 0;
714 symtab *current_symtab = NULL;
715 struct frame_id step_frame_id = { 0 };
716 struct thread_fsm *thread_fsm = NULL;
717
718 if (!non_stop)
719 {
720 process_stratum_target *wait_target;
721 ptid_t wait_ptid;
722 struct target_waitstatus wait_status;
723
724 /* Get the last target status returned by target_wait(). */
725 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
726
727 /* If not stopped at a fork event, then there's nothing else to
728 do. */
729 if (wait_status.kind != TARGET_WAITKIND_FORKED
730 && wait_status.kind != TARGET_WAITKIND_VFORKED)
731 return 1;
732
733 /* Check if we switched over from WAIT_PTID, since the event was
734 reported. */
735 if (wait_ptid != minus_one_ptid
736 && (current_inferior ()->process_target () != wait_target
737 || inferior_ptid != wait_ptid))
738 {
739 /* We did. Switch back to WAIT_PTID thread, to tell the
740 target to follow it (in either direction). We'll
741 afterwards refuse to resume, and inform the user what
742 happened. */
743 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
744 switch_to_thread (wait_thread);
745 should_resume = false;
746 }
747 }
748
749 tp = inferior_thread ();
750
751 /* If there were any forks/vforks that were caught and are now to be
752 followed, then do so now. */
753 switch (tp->pending_follow.kind)
754 {
755 case TARGET_WAITKIND_FORKED:
756 case TARGET_WAITKIND_VFORKED:
757 {
758 ptid_t parent, child;
759
760 /* If the user did a next/step, etc, over a fork call,
761 preserve the stepping state in the fork child. */
762 if (follow_child && should_resume)
763 {
764 step_resume_breakpoint = clone_momentary_breakpoint
765 (tp->control.step_resume_breakpoint);
766 step_range_start = tp->control.step_range_start;
767 step_range_end = tp->control.step_range_end;
768 current_line = tp->current_line;
769 current_symtab = tp->current_symtab;
770 step_frame_id = tp->control.step_frame_id;
771 exception_resume_breakpoint
772 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
773 thread_fsm = tp->thread_fsm;
774
775 /* For now, delete the parent's sr breakpoint, otherwise,
776 parent/child sr breakpoints are considered duplicates,
777 and the child version will not be installed. Remove
778 this when the breakpoints module becomes aware of
779 inferiors and address spaces. */
780 delete_step_resume_breakpoint (tp);
781 tp->control.step_range_start = 0;
782 tp->control.step_range_end = 0;
783 tp->control.step_frame_id = null_frame_id;
784 delete_exception_resume_breakpoint (tp);
785 tp->thread_fsm = NULL;
786 }
787
788 parent = inferior_ptid;
789 child = tp->pending_follow.value.related_pid;
790
791 process_stratum_target *parent_targ = tp->inf->process_target ();
792 /* Set up inferior(s) as specified by the caller, and tell the
793 target to do whatever is necessary to follow either parent
794 or child. */
795 if (follow_fork_inferior (follow_child, detach_fork))
796 {
797 /* Target refused to follow, or there's some other reason
798 we shouldn't resume. */
799 should_resume = 0;
800 }
801 else
802 {
803 /* This pending follow fork event is now handled, one way
804 or another. The previous selected thread may be gone
805 from the lists by now, but if it is still around, need
806 to clear the pending follow request. */
807 tp = find_thread_ptid (parent_targ, parent);
808 if (tp)
809 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
810
811 /* This makes sure we don't try to apply the "Switched
812 over from WAIT_PID" logic above. */
813 nullify_last_target_wait_ptid ();
814
815 /* If we followed the child, switch to it... */
816 if (follow_child)
817 {
818 thread_info *child_thr = find_thread_ptid (parent_targ, child);
819 switch_to_thread (child_thr);
820
821 /* ... and preserve the stepping state, in case the
822 user was stepping over the fork call. */
823 if (should_resume)
824 {
825 tp = inferior_thread ();
826 tp->control.step_resume_breakpoint
827 = step_resume_breakpoint;
828 tp->control.step_range_start = step_range_start;
829 tp->control.step_range_end = step_range_end;
830 tp->current_line = current_line;
831 tp->current_symtab = current_symtab;
832 tp->control.step_frame_id = step_frame_id;
833 tp->control.exception_resume_breakpoint
834 = exception_resume_breakpoint;
835 tp->thread_fsm = thread_fsm;
836 }
837 else
838 {
839 /* If we get here, it was because we're trying to
840 resume from a fork catchpoint, but, the user
841 has switched threads away from the thread that
842 forked. In that case, the resume command
843 issued is most likely not applicable to the
844 child, so just warn, and refuse to resume. */
845 warning (_("Not resuming: switched threads "
846 "before following fork child."));
847 }
848
849 /* Reset breakpoints in the child as appropriate. */
850 follow_inferior_reset_breakpoints ();
851 }
852 }
853 }
854 break;
855 case TARGET_WAITKIND_SPURIOUS:
856 /* Nothing to follow. */
857 break;
858 default:
859 internal_error (__FILE__, __LINE__,
860 "Unexpected pending_follow.kind %d\n",
861 tp->pending_follow.kind);
862 break;
863 }
864
865 return should_resume;
866 }
867
868 static void
869 follow_inferior_reset_breakpoints (void)
870 {
871 struct thread_info *tp = inferior_thread ();
872
873 /* Was there a step_resume breakpoint? (There was if the user
874 did a "next" at the fork() call.) If so, explicitly reset its
875 thread number. Cloned step_resume breakpoints are disabled on
876 creation, so enable it here now that it is associated with the
877 correct thread.
878
879 step_resumes are a form of bp that are made to be per-thread.
880 Since we created the step_resume bp when the parent process
881 was being debugged, and now are switching to the child process,
882 from the breakpoint package's viewpoint, that's a switch of
883 "threads". We must update the bp's notion of which thread
884 it is for, or it'll be ignored when it triggers. */
885
886 if (tp->control.step_resume_breakpoint)
887 {
888 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
889 tp->control.step_resume_breakpoint->loc->enabled = 1;
890 }
891
892 /* Treat exception_resume breakpoints like step_resume breakpoints. */
893 if (tp->control.exception_resume_breakpoint)
894 {
895 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
896 tp->control.exception_resume_breakpoint->loc->enabled = 1;
897 }
898
899 /* Reinsert all breakpoints in the child. The user may have set
900 breakpoints after catching the fork, in which case those
901 were never set in the child, but only in the parent. This makes
902 sure the inserted breakpoints match the breakpoint list. */
903
904 breakpoint_re_set ();
905 insert_breakpoints ();
906 }
907
908 /* The child has exited or execed: resume threads of the parent the
909 user wanted to be executing. */
910
911 static int
912 proceed_after_vfork_done (struct thread_info *thread,
913 void *arg)
914 {
915 int pid = * (int *) arg;
916
917 if (thread->ptid.pid () == pid
918 && thread->state == THREAD_RUNNING
919 && !thread->executing
920 && !thread->stop_requested
921 && thread->suspend.stop_signal == GDB_SIGNAL_0)
922 {
923 infrun_log_debug ("resuming vfork parent thread %s",
924 target_pid_to_str (thread->ptid).c_str ());
925
926 switch_to_thread (thread);
927 clear_proceed_status (0);
928 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
929 }
930
931 return 0;
932 }
933
934 /* Called whenever we notice an exec or exit event, to handle
935 detaching or resuming a vfork parent. */
936
937 static void
938 handle_vfork_child_exec_or_exit (int exec)
939 {
940 struct inferior *inf = current_inferior ();
941
942 if (inf->vfork_parent)
943 {
944 int resume_parent = -1;
945
946 /* This exec or exit marks the end of the shared memory region
947 between the parent and the child. Break the bonds. */
948 inferior *vfork_parent = inf->vfork_parent;
949 inf->vfork_parent->vfork_child = NULL;
950 inf->vfork_parent = NULL;
951
952 /* If the user wanted to detach from the parent, now is the
953 time. */
954 if (vfork_parent->pending_detach)
955 {
956 struct program_space *pspace;
957 struct address_space *aspace;
958
959 /* follow-fork child, detach-on-fork on. */
960
961 vfork_parent->pending_detach = 0;
962
963 scoped_restore_current_pspace_and_thread restore_thread;
964
965 /* We're letting loose of the parent. */
966 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
967 switch_to_thread (tp);
968
969 /* We're about to detach from the parent, which implicitly
970 removes breakpoints from its address space. There's a
971 catch here: we want to reuse the spaces for the child,
972 but, parent/child are still sharing the pspace at this
973 point, although the exec in reality makes the kernel give
974 the child a fresh set of new pages. The problem here is
975 that the breakpoints module being unaware of this, would
976 likely chose the child process to write to the parent
977 address space. Swapping the child temporarily away from
978 the spaces has the desired effect. Yes, this is "sort
979 of" a hack. */
980
981 pspace = inf->pspace;
982 aspace = inf->aspace;
983 inf->aspace = NULL;
984 inf->pspace = NULL;
985
986 if (print_inferior_events)
987 {
988 std::string pidstr
989 = target_pid_to_str (ptid_t (vfork_parent->pid));
990
991 target_terminal::ours_for_output ();
992
993 if (exec)
994 {
995 fprintf_filtered (gdb_stdlog,
996 _("[Detaching vfork parent %s "
997 "after child exec]\n"), pidstr.c_str ());
998 }
999 else
1000 {
1001 fprintf_filtered (gdb_stdlog,
1002 _("[Detaching vfork parent %s "
1003 "after child exit]\n"), pidstr.c_str ());
1004 }
1005 }
1006
1007 target_detach (vfork_parent, 0);
1008
1009 /* Put it back. */
1010 inf->pspace = pspace;
1011 inf->aspace = aspace;
1012 }
1013 else if (exec)
1014 {
1015 /* We're staying attached to the parent, so, really give the
1016 child a new address space. */
1017 inf->pspace = new program_space (maybe_new_address_space ());
1018 inf->aspace = inf->pspace->aspace;
1019 inf->removable = 1;
1020 set_current_program_space (inf->pspace);
1021
1022 resume_parent = vfork_parent->pid;
1023 }
1024 else
1025 {
1026 /* If this is a vfork child exiting, then the pspace and
1027 aspaces were shared with the parent. Since we're
1028 reporting the process exit, we'll be mourning all that is
1029 found in the address space, and switching to null_ptid,
1030 preparing to start a new inferior. But, since we don't
1031 want to clobber the parent's address/program spaces, we
1032 go ahead and create a new one for this exiting
1033 inferior. */
1034
1035 /* Switch to no-thread while running clone_program_space, so
1036 that clone_program_space doesn't want to read the
1037 selected frame of a dead process. */
1038 scoped_restore_current_thread restore_thread;
1039 switch_to_no_thread ();
1040
1041 inf->pspace = new program_space (maybe_new_address_space ());
1042 inf->aspace = inf->pspace->aspace;
1043 set_current_program_space (inf->pspace);
1044 inf->removable = 1;
1045 inf->symfile_flags = SYMFILE_NO_READ;
1046 clone_program_space (inf->pspace, vfork_parent->pspace);
1047
1048 resume_parent = vfork_parent->pid;
1049 }
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 scoped_restore_current_thread restore_thread;
1058
1059 infrun_log_debug ("resuming vfork parent process %d",
1060 resume_parent);
1061
1062 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1063 }
1064 }
1065 }
1066
1067 /* Enum strings for "set|show follow-exec-mode". */
1068
1069 static const char follow_exec_mode_new[] = "new";
1070 static const char follow_exec_mode_same[] = "same";
1071 static const char *const follow_exec_mode_names[] =
1072 {
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076 };
1077
1078 static const char *follow_exec_mode_string = follow_exec_mode_same;
1079 static void
1080 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082 {
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084 }
1085
1086 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1087
1088 static void
1089 follow_exec (ptid_t ptid, const char *exec_file_target)
1090 {
1091 struct inferior *inf = current_inferior ();
1092 int pid = ptid.pid ();
1093 ptid_t process_ptid;
1094
1095 /* Switch terminal for any messages produced e.g. by
1096 breakpoint_re_set. */
1097 target_terminal::ours_for_output ();
1098
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
1117 value that was overwritten with a TRAP instruction). Since
1118 we now have a new a.out, those shadow contents aren't valid. */
1119
1120 mark_breakpoints_out ();
1121
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
1141 for (thread_info *th : all_threads_safe ())
1142 if (th->ptid.pid () == pid && th->ptid != ptid)
1143 delete_thread (th);
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
1149 thread_info *th = inferior_thread ();
1150 th->control.step_resume_breakpoint = NULL;
1151 th->control.exception_resume_breakpoint = NULL;
1152 th->control.single_step_breakpoints = NULL;
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
1155
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
1159 th->stop_requested = 0;
1160
1161 update_breakpoints_after_exec ();
1162
1163 /* What is this a.out's name? */
1164 process_ptid = ptid_t (pid);
1165 printf_unfiltered (_("%s is executing new program: %s\n"),
1166 target_pid_to_str (process_ptid).c_str (),
1167 exec_file_target);
1168
1169 /* We've followed the inferior through an exec. Therefore, the
1170 inferior has essentially been killed & reborn. */
1171
1172 breakpoint_init_inferior (inf_execd);
1173
1174 gdb::unique_xmalloc_ptr<char> exec_file_host
1175 = exec_file_find (exec_file_target, NULL);
1176
1177 /* If we were unable to map the executable target pathname onto a host
1178 pathname, tell the user that. Otherwise GDB's subsequent behavior
1179 is confusing. Maybe it would even be better to stop at this point
1180 so that the user can specify a file manually before continuing. */
1181 if (exec_file_host == NULL)
1182 warning (_("Could not load symbols for executable %s.\n"
1183 "Do you need \"set sysroot\"?"),
1184 exec_file_target);
1185
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
1199 /* Do exit processing for the original inferior before setting the new
1200 inferior's pid. Having two inferiors with the same pid would confuse
1201 find_inferior_p(t)id. Transfer the terminal state and info from the
1202 old to the new inferior. */
1203 inf = add_inferior_with_spaces ();
1204 swap_terminal_info (inf, current_inferior ());
1205 exit_inferior_silent (current_inferior ());
1206
1207 inf->pid = pid;
1208 target_follow_exec (inf, exec_file_target);
1209
1210 inferior *org_inferior = current_inferior ();
1211 switch_to_inferior_no_thread (inf);
1212 push_target (org_inferior->process_target ());
1213 thread_info *thr = add_thread (inf->process_target (), ptid);
1214 switch_to_thread (thr);
1215 }
1216 else
1217 {
1218 /* The old description may no longer be fit for the new image.
1219 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1220 old description; we'll read a new one below. No need to do
1221 this on "follow-exec-mode new", as the old inferior stays
1222 around (its description is later cleared/refetched on
1223 restart). */
1224 target_clear_description ();
1225 }
1226
1227 gdb_assert (current_program_space == inf->pspace);
1228
1229 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1230 because the proper displacement for a PIE (Position Independent
1231 Executable) main symbol file will only be computed by
1232 solib_create_inferior_hook below. breakpoint_re_set would fail
1233 to insert the breakpoints with the zero displacement. */
1234 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1235
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
1244 solib_create_inferior_hook (0);
1245
1246 jit_inferior_created_hook ();
1247
1248 breakpoint_re_set ();
1249
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1252 to symbol_file_command...). */
1253 insert_breakpoints ();
1254
1255 gdb::observers::inferior_execd.notify (inf);
1256
1257 /* The next resume of this inferior should bring it to the shlib
1258 startup breakpoints. (If the user had also set bp's on
1259 "main" from the old (parent) process, then they'll auto-
1260 matically get reset there in the new process.). */
1261 }
1262
1263 /* The queue of threads that need to do a step-over operation to get
1264 past e.g., a breakpoint. What technique is used to step over the
1265 breakpoint/watchpoint does not matter -- all threads end up in the
1266 same queue, to maintain rough temporal order of execution, in order
1267 to avoid starvation, otherwise, we could e.g., find ourselves
1268 constantly stepping the same couple threads past their breakpoints
1269 over and over, if the single-step finish fast enough. */
1270 struct thread_info *global_thread_step_over_chain_head;
1271
1272 /* Bit flags indicating what the thread needs to step over. */
1273
1274 enum step_over_what_flag
1275 {
1276 /* Step over a breakpoint. */
1277 STEP_OVER_BREAKPOINT = 1,
1278
1279 /* Step past a non-continuable watchpoint, in order to let the
1280 instruction execute so we can evaluate the watchpoint
1281 expression. */
1282 STEP_OVER_WATCHPOINT = 2
1283 };
1284 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1285
1286 /* Info about an instruction that is being stepped over. */
1287
1288 struct step_over_info
1289 {
1290 /* If we're stepping past a breakpoint, this is the address space
1291 and address of the instruction the breakpoint is set at. We'll
1292 skip inserting all breakpoints here. Valid iff ASPACE is
1293 non-NULL. */
1294 const address_space *aspace;
1295 CORE_ADDR address;
1296
1297 /* The instruction being stepped over triggers a nonsteppable
1298 watchpoint. If true, we'll skip inserting watchpoints. */
1299 int nonsteppable_watchpoint_p;
1300
1301 /* The thread's global number. */
1302 int thread;
1303 };
1304
1305 /* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329 static struct step_over_info step_over_info;
1330
1331 /* Record the address of the breakpoint/instruction we're currently
1332 stepping over.
1333 N.B. We record the aspace and address now, instead of say just the thread,
1334 because when we need the info later the thread may be running. */
1335
1336 static void
1337 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1338 int nonsteppable_watchpoint_p,
1339 int thread)
1340 {
1341 step_over_info.aspace = aspace;
1342 step_over_info.address = address;
1343 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1344 step_over_info.thread = thread;
1345 }
1346
1347 /* Called when we're not longer stepping over a breakpoint / an
1348 instruction, so all breakpoints are free to be (re)inserted. */
1349
1350 static void
1351 clear_step_over_info (void)
1352 {
1353 infrun_log_debug ("clearing step over info");
1354 step_over_info.aspace = NULL;
1355 step_over_info.address = 0;
1356 step_over_info.nonsteppable_watchpoint_p = 0;
1357 step_over_info.thread = -1;
1358 }
1359
1360 /* See infrun.h. */
1361
1362 int
1363 stepping_past_instruction_at (struct address_space *aspace,
1364 CORE_ADDR address)
1365 {
1366 return (step_over_info.aspace != NULL
1367 && breakpoint_address_match (aspace, address,
1368 step_over_info.aspace,
1369 step_over_info.address));
1370 }
1371
1372 /* See infrun.h. */
1373
1374 int
1375 thread_is_stepping_over_breakpoint (int thread)
1376 {
1377 return (step_over_info.thread != -1
1378 && thread == step_over_info.thread);
1379 }
1380
1381 /* See infrun.h. */
1382
1383 int
1384 stepping_past_nonsteppable_watchpoint (void)
1385 {
1386 return step_over_info.nonsteppable_watchpoint_p;
1387 }
1388
1389 /* Returns true if step-over info is valid. */
1390
1391 static int
1392 step_over_info_valid_p (void)
1393 {
1394 return (step_over_info.aspace != NULL
1395 || stepping_past_nonsteppable_watchpoint ());
1396 }
1397
1398 \f
1399 /* Displaced stepping. */
1400
1401 /* In non-stop debugging mode, we must take special care to manage
1402 breakpoints properly; in particular, the traditional strategy for
1403 stepping a thread past a breakpoint it has hit is unsuitable.
1404 'Displaced stepping' is a tactic for stepping one thread past a
1405 breakpoint it has hit while ensuring that other threads running
1406 concurrently will hit the breakpoint as they should.
1407
1408 The traditional way to step a thread T off a breakpoint in a
1409 multi-threaded program in all-stop mode is as follows:
1410
1411 a0) Initially, all threads are stopped, and breakpoints are not
1412 inserted.
1413 a1) We single-step T, leaving breakpoints uninserted.
1414 a2) We insert breakpoints, and resume all threads.
1415
1416 In non-stop debugging, however, this strategy is unsuitable: we
1417 don't want to have to stop all threads in the system in order to
1418 continue or step T past a breakpoint. Instead, we use displaced
1419 stepping:
1420
1421 n0) Initially, T is stopped, other threads are running, and
1422 breakpoints are inserted.
1423 n1) We copy the instruction "under" the breakpoint to a separate
1424 location, outside the main code stream, making any adjustments
1425 to the instruction, register, and memory state as directed by
1426 T's architecture.
1427 n2) We single-step T over the instruction at its new location.
1428 n3) We adjust the resulting register and memory state as directed
1429 by T's architecture. This includes resetting T's PC to point
1430 back into the main instruction stream.
1431 n4) We resume T.
1432
1433 This approach depends on the following gdbarch methods:
1434
1435 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1436 indicate where to copy the instruction, and how much space must
1437 be reserved there. We use these in step n1.
1438
1439 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1440 address, and makes any necessary adjustments to the instruction,
1441 register contents, and memory. We use this in step n1.
1442
1443 - gdbarch_displaced_step_fixup adjusts registers and memory after
1444 we have successfully single-stepped the instruction, to yield the
1445 same effect the instruction would have had if we had executed it
1446 at its original address. We use this in step n3.
1447
1448 The gdbarch_displaced_step_copy_insn and
1449 gdbarch_displaced_step_fixup functions must be written so that
1450 copying an instruction with gdbarch_displaced_step_copy_insn,
1451 single-stepping across the copied instruction, and then applying
1452 gdbarch_displaced_insn_fixup should have the same effects on the
1453 thread's memory and registers as stepping the instruction in place
1454 would have. Exactly which responsibilities fall to the copy and
1455 which fall to the fixup is up to the author of those functions.
1456
1457 See the comments in gdbarch.sh for details.
1458
1459 Note that displaced stepping and software single-step cannot
1460 currently be used in combination, although with some care I think
1461 they could be made to. Software single-step works by placing
1462 breakpoints on all possible subsequent instructions; if the
1463 displaced instruction is a PC-relative jump, those breakpoints
1464 could fall in very strange places --- on pages that aren't
1465 executable, or at addresses that are not proper instruction
1466 boundaries. (We do generally let other threads run while we wait
1467 to hit the software single-step breakpoint, and they might
1468 encounter such a corrupted instruction.) One way to work around
1469 this would be to have gdbarch_displaced_step_copy_insn fully
1470 simulate the effect of PC-relative instructions (and return NULL)
1471 on architectures that use software single-stepping.
1472
1473 In non-stop mode, we can have independent and simultaneous step
1474 requests, so more than one thread may need to simultaneously step
1475 over a breakpoint. The current implementation assumes there is
1476 only one scratch space per process. In this case, we have to
1477 serialize access to the scratch space. If thread A wants to step
1478 over a breakpoint, but we are currently waiting for some other
1479 thread to complete a displaced step, we leave thread A stopped and
1480 place it in the displaced_step_request_queue. Whenever a displaced
1481 step finishes, we pick the next thread in the queue and start a new
1482 displaced step operation on it. See displaced_step_prepare and
1483 displaced_step_fixup for details. */
1484
1485 /* Get the displaced stepping state of inferior INF. */
1486
1487 static displaced_step_inferior_state *
1488 get_displaced_stepping_state (inferior *inf)
1489 {
1490 return &inf->displaced_step_state;
1491 }
1492
1493 /* Get the displaced stepping state of thread THREAD. */
1494
1495 static displaced_step_thread_state *
1496 get_displaced_stepping_state (thread_info *thread)
1497 {
1498 return &thread->displaced_step_state;
1499 }
1500
1501 /* Return true if the given thread is doing a displaced step. */
1502
1503 static bool
1504 displaced_step_in_progress (thread_info *thread)
1505 {
1506 gdb_assert (thread != NULL);
1507
1508 return get_displaced_stepping_state (thread)->in_progress ();
1509 }
1510
1511 /* Return true if any thread of this inferior is doing a displaced step. */
1512
1513 static bool
1514 displaced_step_in_progress (inferior *inf)
1515 {
1516 for (thread_info *thread : inf->non_exited_threads ())
1517 {
1518 if (displaced_step_in_progress (thread))
1519 return true;
1520 }
1521
1522 return false;
1523 }
1524
1525 /* Return true if any thread is doing a displaced step. */
1526
1527 static bool
1528 displaced_step_in_progress_any_thread ()
1529 {
1530 for (thread_info *thread : all_non_exited_threads ())
1531 {
1532 if (displaced_step_in_progress (thread))
1533 return true;
1534 }
1535
1536 return false;
1537 }
1538
1539 /* If inferior is in displaced stepping, and ADDR equals to starting address
1540 of copy area, return corresponding displaced_step_copy_insn_closure. Otherwise,
1541 return NULL. */
1542
1543 struct displaced_step_copy_insn_closure *
1544 get_displaced_step_copy_insn_closure_by_addr (CORE_ADDR addr)
1545 {
1546 // FIXME: implement me (only needed on ARM).
1547 // displaced_step_inferior_state *displaced
1548 // = get_displaced_stepping_state (current_inferior ());
1549 //
1550 // /* If checking the mode of displaced instruction in copy area. */
1551 // if (displaced->step_thread != nullptr
1552 // && displaced->step_copy == addr)
1553 // return displaced->step_closure.get ();
1554 //
1555 return NULL;
1556 }
1557
1558 static void
1559 infrun_inferior_exit (struct inferior *inf)
1560 {
1561 inf->displaced_step_state.reset ();
1562 }
1563
1564 /* If ON, and the architecture supports it, GDB will use displaced
1565 stepping to step over breakpoints. If OFF, or if the architecture
1566 doesn't support it, GDB will instead use the traditional
1567 hold-and-step approach. If AUTO (which is the default), GDB will
1568 decide which technique to use to step over breakpoints depending on
1569 whether the target works in a non-stop way (see use_displaced_stepping). */
1570
1571 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1572
1573 static void
1574 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1575 struct cmd_list_element *c,
1576 const char *value)
1577 {
1578 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1579 fprintf_filtered (file,
1580 _("Debugger's willingness to use displaced stepping "
1581 "to step over breakpoints is %s (currently %s).\n"),
1582 value, target_is_non_stop_p () ? "on" : "off");
1583 else
1584 fprintf_filtered (file,
1585 _("Debugger's willingness to use displaced stepping "
1586 "to step over breakpoints is %s.\n"), value);
1587 }
1588
1589 /* Return true if the gdbarch implements the required methods to use
1590 displaced stepping. */
1591
1592 static bool
1593 gdbarch_supports_displaced_stepping (gdbarch *arch)
1594 {
1595 /* Only check for the presence of `prepare`. `finish` is required by the
1596 gdbarch verification to be provided if `prepare` is provided. */
1597 return gdbarch_displaced_step_prepare_p (arch);
1598 }
1599
1600 /* Return non-zero if displaced stepping can/should be used to step
1601 over breakpoints of thread TP. */
1602
1603 static bool
1604 use_displaced_stepping (thread_info *tp)
1605 {
1606 /* If the user disabled it explicitly, don't use displaced stepping. */
1607 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1608 return false;
1609
1610 /* If "auto", only use displaced stepping if the target operates in a non-stop
1611 way. */
1612 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1613 && !target_is_non_stop_p ())
1614 return false;
1615
1616 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1617
1618 /* If the architecture doesn't implement displaced stepping, don't use
1619 it. */
1620 if (!gdbarch_supports_displaced_stepping (gdbarch))
1621 return false;
1622
1623 /* If recording, don't use displaced stepping. */
1624 if (find_record_target () != nullptr)
1625 return false;
1626
1627 displaced_step_inferior_state *displaced_state
1628 = get_displaced_stepping_state (tp->inf);
1629
1630 /* If displaced stepping failed before for this inferior, don't bother trying
1631 again. */
1632 if (displaced_state->failed_before)
1633 return false;
1634
1635 return true;
1636 }
1637
1638 /* Simple function wrapper around displaced_step_thread_state::reset. */
1639
1640 static void
1641 displaced_step_reset (displaced_step_thread_state *displaced)
1642 {
1643 displaced->reset ();
1644 }
1645
1646 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1647 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1648
1649 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1650
1651 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1652 void
1653 displaced_step_dump_bytes (struct ui_file *file,
1654 const gdb_byte *buf,
1655 size_t len)
1656 {
1657 int i;
1658
1659 for (i = 0; i < len; i++)
1660 fprintf_unfiltered (file, "%02x ", buf[i]);
1661 fputs_unfiltered ("\n", file);
1662 }
1663
1664 /* Prepare to single-step, using displaced stepping.
1665
1666 Note that we cannot use displaced stepping when we have a signal to
1667 deliver. If we have a signal to deliver and an instruction to step
1668 over, then after the step, there will be no indication from the
1669 target whether the thread entered a signal handler or ignored the
1670 signal and stepped over the instruction successfully --- both cases
1671 result in a simple SIGTRAP. In the first case we mustn't do a
1672 fixup, and in the second case we must --- but we can't tell which.
1673 Comments in the code for 'random signals' in handle_inferior_event
1674 explain how we handle this case instead.
1675
1676 Returns 1 if preparing was successful -- this thread is going to be
1677 stepped now; 0 if displaced stepping this thread got queued; or -1
1678 if this instruction can't be displaced stepped. */
1679
1680 static displaced_step_prepare_status
1681 displaced_step_prepare_throw (thread_info *tp)
1682 {
1683 regcache *regcache = get_thread_regcache (tp);
1684 struct gdbarch *gdbarch = regcache->arch ();
1685 displaced_step_thread_state *thread_disp_step_state
1686 = get_displaced_stepping_state (tp);
1687
1688 /* We should never reach this function if the architecture does not
1689 support displaced stepping. */
1690 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1691
1692 /* Nor if the thread isn't meant to step over a breakpoint. */
1693 gdb_assert (tp->control.trap_expected);
1694
1695 /* Disable range stepping while executing in the scratch pad. We
1696 want a single-step even if executing the displaced instruction in
1697 the scratch buffer lands within the stepping range (e.g., a
1698 jump/branch). */
1699 tp->control.may_range_step = 0;
1700
1701 /* We are about to start a displaced step for this thread, if one is already
1702 in progress, we goofed up somewhere. */
1703 gdb_assert (!thread_disp_step_state->in_progress ());
1704
1705 scoped_restore_current_thread restore_thread;
1706
1707 switch_to_thread (tp);
1708
1709 CORE_ADDR original_pc = regcache_read_pc (regcache);
1710
1711 displaced_step_prepare_status status =
1712 tp->inf->top_target ()->displaced_step_prepare (tp);
1713
1714 if (status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
1715 {
1716 if (debug_displaced)
1717 fprintf_unfiltered (gdb_stdlog,
1718 "displaced: failed to prepare (%s)",
1719 target_pid_to_str (tp->ptid).c_str ());
1720
1721 return DISPLACED_STEP_PREPARE_STATUS_ERROR;
1722 }
1723 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1724 {
1725 /* Not enough displaced stepping resources available, defer this
1726 request by placing it the queue. */
1727
1728 if (debug_displaced)
1729 fprintf_unfiltered (gdb_stdlog,
1730 "displaced: not enough resources available, "
1731 "deferring step of %s\n",
1732 target_pid_to_str (tp->ptid).c_str ());
1733
1734 global_thread_step_over_chain_enqueue (tp);
1735 tp->inf->displaced_step_state.unavailable = true;
1736
1737 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1738 }
1739
1740 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1741
1742 // FIXME: Should probably replicated in the arch implementation now.
1743 //
1744 // if (breakpoint_in_range_p (aspace, copy, len))
1745 // {
1746 // /* There's a breakpoint set in the scratch pad location range
1747 // (which is usually around the entry point). We'd either
1748 // install it before resuming, which would overwrite/corrupt the
1749 // scratch pad, or if it was already inserted, this displaced
1750 // step would overwrite it. The latter is OK in the sense that
1751 // we already assume that no thread is going to execute the code
1752 // in the scratch pad range (after initial startup) anyway, but
1753 // the former is unacceptable. Simply punt and fallback to
1754 // stepping over this breakpoint in-line. */
1755 // if (debug_displaced)
1756 // {
1757 // fprintf_unfiltered (gdb_stdlog,
1758 // "displaced: breakpoint set in scratch pad. "
1759 // "Stepping over breakpoint in-line instead.\n");
1760 // }
1761 //
1762 // gdb_assert (false);
1763 // gdbarch_displaced_step_release_location (gdbarch, copy);
1764 //
1765 // return -1;
1766 // }
1767
1768 /* Save the information we need to fix things up if the step
1769 succeeds. */
1770 thread_disp_step_state->set (gdbarch);
1771
1772 // FIXME: get it from _prepare?
1773 CORE_ADDR displaced_pc = 0;
1774
1775 if (debug_displaced)
1776 fprintf_unfiltered (gdb_stdlog,
1777 "displaced: prepared successfully thread=%s, "
1778 "original_pc=%s, displaced_pc=%s\n",
1779 target_pid_to_str (tp->ptid).c_str (),
1780 paddress (gdbarch, original_pc),
1781 paddress (gdbarch, displaced_pc));
1782
1783 return DISPLACED_STEP_PREPARE_STATUS_OK;
1784 }
1785
1786 /* Wrapper for displaced_step_prepare_throw that disabled further
1787 attempts at displaced stepping if we get a memory error. */
1788
1789 static displaced_step_prepare_status
1790 displaced_step_prepare (thread_info *thread)
1791 {
1792 displaced_step_prepare_status status
1793 = DISPLACED_STEP_PREPARE_STATUS_ERROR;
1794
1795 try
1796 {
1797 status = displaced_step_prepare_throw (thread);
1798 }
1799 catch (const gdb_exception_error &ex)
1800 {
1801 struct displaced_step_inferior_state *displaced_state;
1802
1803 if (ex.error != MEMORY_ERROR
1804 && ex.error != NOT_SUPPORTED_ERROR)
1805 throw;
1806
1807 infrun_log_debug ("caught exception, disabling displaced stepping: %s",
1808 ex.what ());
1809
1810 /* Be verbose if "set displaced-stepping" is "on", silent if
1811 "auto". */
1812 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1813 {
1814 warning (_("disabling displaced stepping: %s"),
1815 ex.what ());
1816 }
1817
1818 /* Disable further displaced stepping attempts. */
1819 displaced_state
1820 = get_displaced_stepping_state (thread->inf);
1821 displaced_state->failed_before = 1;
1822 }
1823
1824 return status;
1825 }
1826
1827 /* If we displaced stepped an instruction successfully, adjust
1828 registers and memory to yield the same effect the instruction would
1829 have had if we had executed it at its original address, and return
1830 1. If the instruction didn't complete, relocate the PC and return
1831 -1. If the thread wasn't displaced stepping, return 0. */
1832
1833 static int
1834 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1835 {
1836 displaced_step_thread_state *displaced
1837 = get_displaced_stepping_state (event_thread);
1838
1839 /* Was this thread performing a displaced step? */
1840 if (!displaced->in_progress ())
1841 return 0;
1842
1843 displaced_step_reset_cleanup cleanup (displaced);
1844
1845 /* Fixup may need to read memory/registers. Switch to the thread
1846 that we're fixing up. Also, target_stopped_by_watchpoint checks
1847 the current thread, and displaced_step_restore performs ptid-dependent
1848 memory accesses using current_inferior() and current_top_target(). */
1849 switch_to_thread (event_thread);
1850
1851 /* Do the fixup, and release the resources acquired to do the displaced
1852 step. */
1853 displaced_step_finish_status finish_status =
1854 event_thread->inf->top_target ()->displaced_step_finish (event_thread,
1855 signal);
1856
1857 if (finish_status == DISPLACED_STEP_FINISH_STATUS_OK)
1858 return 1;
1859 else
1860 return -1;
1861 }
1862
1863 /* Data to be passed around while handling an event. This data is
1864 discarded between events. */
1865 struct execution_control_state
1866 {
1867 process_stratum_target *target;
1868 ptid_t ptid;
1869 /* The thread that got the event, if this was a thread event; NULL
1870 otherwise. */
1871 struct thread_info *event_thread;
1872
1873 struct target_waitstatus ws;
1874 int stop_func_filled_in;
1875 CORE_ADDR stop_func_start;
1876 CORE_ADDR stop_func_end;
1877 const char *stop_func_name;
1878 int wait_some_more;
1879
1880 /* True if the event thread hit the single-step breakpoint of
1881 another thread. Thus the event doesn't cause a stop, the thread
1882 needs to be single-stepped past the single-step breakpoint before
1883 we can switch back to the original stepping thread. */
1884 int hit_singlestep_breakpoint;
1885 };
1886
1887 /* Clear ECS and set it to point at TP. */
1888
1889 static void
1890 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1891 {
1892 memset (ecs, 0, sizeof (*ecs));
1893 ecs->event_thread = tp;
1894 ecs->ptid = tp->ptid;
1895 }
1896
1897 static void keep_going_pass_signal (struct execution_control_state *ecs);
1898 static void prepare_to_wait (struct execution_control_state *ecs);
1899 static int keep_going_stepped_thread (struct thread_info *tp);
1900 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1901
1902 /* Are there any pending step-over requests? If so, run all we can
1903 now and return true. Otherwise, return false. */
1904
1905 static int
1906 start_step_over (void)
1907 {
1908 struct thread_info *tp, *next;
1909 int started = 0;
1910
1911 /* Don't start a new step-over if we already have an in-line
1912 step-over operation ongoing. */
1913 if (step_over_info_valid_p ())
1914 return started;
1915
1916 /* Steal the global thread step over chain. */
1917 thread_info *threads_to_step = global_thread_step_over_chain_head;
1918 global_thread_step_over_chain_head = NULL;
1919
1920 if (debug_infrun)
1921 fprintf_unfiltered (gdb_stdlog,
1922 "infrun: stealing list of %d threads to step from global queue\n",
1923 thread_step_over_chain_length (threads_to_step));
1924
1925 for (inferior *inf : all_inferiors ())
1926 inf->displaced_step_state.unavailable = false;
1927
1928 for (tp = threads_to_step; tp != NULL; tp = next)
1929 {
1930 struct execution_control_state ecss;
1931 struct execution_control_state *ecs = &ecss;
1932 step_over_what step_what;
1933 int must_be_in_line;
1934
1935 gdb_assert (!tp->stop_requested);
1936
1937 next = thread_step_over_chain_next (threads_to_step, tp);
1938
1939 step_what = thread_still_needs_step_over (tp);
1940 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1941 || ((step_what & STEP_OVER_BREAKPOINT)
1942 && !use_displaced_stepping (tp)));
1943
1944 /* We currently stop all threads of all processes to step-over
1945 in-line. If we need to start a new in-line step-over, let
1946 any pending displaced steps finish first. */
1947 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1948 continue;
1949
1950 thread_step_over_chain_remove (&threads_to_step, tp);
1951
1952 if (tp->control.trap_expected
1953 || tp->resumed
1954 || tp->executing)
1955 {
1956 internal_error (__FILE__, __LINE__,
1957 "[%s] has inconsistent state: "
1958 "trap_expected=%d, resumed=%d, executing=%d\n",
1959 target_pid_to_str (tp->ptid).c_str (),
1960 tp->control.trap_expected,
1961 tp->resumed,
1962 tp->executing);
1963 }
1964
1965 infrun_log_debug ("resuming [%s] for step-over",
1966 target_pid_to_str (tp->ptid).c_str ());
1967
1968 /* keep_going_pass_signal skips the step-over if the breakpoint
1969 is no longer inserted. In all-stop, we want to keep looking
1970 for a thread that needs a step-over instead of resuming TP,
1971 because we wouldn't be able to resume anything else until the
1972 target stops again. In non-stop, the resume always resumes
1973 only TP, so it's OK to let the thread resume freely. */
1974 if (!target_is_non_stop_p () && !step_what)
1975 continue;
1976
1977 if (tp->inf->displaced_step_state.unavailable)
1978 {
1979 global_thread_step_over_chain_enqueue (tp);
1980 continue;
1981 }
1982
1983 switch_to_thread (tp);
1984 reset_ecs (ecs, tp);
1985 keep_going_pass_signal (ecs);
1986
1987 if (!ecs->wait_some_more)
1988 error (_("Command aborted."));
1989
1990 /* If the thread's step over could not be initiated, it was re-added
1991 to the global step over chain. */
1992 if (tp->resumed)
1993 {
1994 infrun_log_debug ("start_step_over: [%s] was resumed.\n",
1995 target_pid_to_str (tp->ptid).c_str ());
1996 gdb_assert (!thread_is_in_step_over_chain (tp));
1997 }
1998 else
1999 {
2000 infrun_log_debug ("infrun: start_step_over: [%s] was NOT resumed.\n",
2001 target_pid_to_str (tp->ptid).c_str ());
2002 gdb_assert (thread_is_in_step_over_chain (tp));
2003
2004 }
2005
2006 /* If we started a new in-line step-over, we're done. */
2007 if (step_over_info_valid_p ())
2008 {
2009 gdb_assert (tp->control.trap_expected);
2010 started = 1;
2011 break;
2012 }
2013
2014 if (!target_is_non_stop_p ())
2015 {
2016 /* On all-stop, shouldn't have resumed unless we needed a
2017 step over. */
2018 gdb_assert (tp->control.trap_expected
2019 || tp->step_after_step_resume_breakpoint);
2020
2021 /* With remote targets (at least), in all-stop, we can't
2022 issue any further remote commands until the program stops
2023 again. */
2024 started = 1;
2025 break;
2026 }
2027
2028 /* Either the thread no longer needed a step-over, or a new
2029 displaced stepping sequence started. Even in the latter
2030 case, continue looking. Maybe we can also start another
2031 displaced step on a thread of other process. */
2032 }
2033
2034 /* If there are threads left in the THREADS_TO_STEP list, but we have
2035 detected that we can't start anything more, put back these threads
2036 in the global list. */
2037 if (threads_to_step == NULL)
2038 {
2039 if (debug_infrun)
2040 fprintf_unfiltered (gdb_stdlog,
2041 "infrun: step-over queue now empty\n");
2042 }
2043 else
2044 {
2045 if (debug_infrun)
2046 fprintf_unfiltered (gdb_stdlog,
2047 "infrun: putting back %d threads to step in global queue\n",
2048 thread_step_over_chain_length (threads_to_step));
2049 while (threads_to_step != nullptr)
2050 {
2051 thread_info *thread = threads_to_step;
2052
2053 /* Remove from that list. */
2054 thread_step_over_chain_remove (&threads_to_step, thread);
2055
2056 /* Add to global list. */
2057 global_thread_step_over_chain_enqueue (thread);
2058
2059 }
2060 }
2061
2062 return started;
2063 }
2064
2065 /* Update global variables holding ptids to hold NEW_PTID if they were
2066 holding OLD_PTID. */
2067 static void
2068 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2069 {
2070 if (inferior_ptid == old_ptid)
2071 inferior_ptid = new_ptid;
2072 }
2073
2074 \f
2075
2076 static const char schedlock_off[] = "off";
2077 static const char schedlock_on[] = "on";
2078 static const char schedlock_step[] = "step";
2079 static const char schedlock_replay[] = "replay";
2080 static const char *const scheduler_enums[] = {
2081 schedlock_off,
2082 schedlock_on,
2083 schedlock_step,
2084 schedlock_replay,
2085 NULL
2086 };
2087 static const char *scheduler_mode = schedlock_replay;
2088 static void
2089 show_scheduler_mode (struct ui_file *file, int from_tty,
2090 struct cmd_list_element *c, const char *value)
2091 {
2092 fprintf_filtered (file,
2093 _("Mode for locking scheduler "
2094 "during execution is \"%s\".\n"),
2095 value);
2096 }
2097
2098 static void
2099 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2100 {
2101 if (!target_can_lock_scheduler)
2102 {
2103 scheduler_mode = schedlock_off;
2104 error (_("Target '%s' cannot support this command."), target_shortname);
2105 }
2106 }
2107
2108 /* True if execution commands resume all threads of all processes by
2109 default; otherwise, resume only threads of the current inferior
2110 process. */
2111 bool sched_multi = false;
2112
2113 /* Try to setup for software single stepping over the specified location.
2114 Return 1 if target_resume() should use hardware single step.
2115
2116 GDBARCH the current gdbarch.
2117 PC the location to step over. */
2118
2119 static int
2120 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2121 {
2122 int hw_step = 1;
2123
2124 if (execution_direction == EXEC_FORWARD
2125 && gdbarch_software_single_step_p (gdbarch))
2126 hw_step = !insert_single_step_breakpoints (gdbarch);
2127
2128 return hw_step;
2129 }
2130
2131 /* See infrun.h. */
2132
2133 ptid_t
2134 user_visible_resume_ptid (int step)
2135 {
2136 ptid_t resume_ptid;
2137
2138 if (non_stop)
2139 {
2140 /* With non-stop mode on, threads are always handled
2141 individually. */
2142 resume_ptid = inferior_ptid;
2143 }
2144 else if ((scheduler_mode == schedlock_on)
2145 || (scheduler_mode == schedlock_step && step))
2146 {
2147 /* User-settable 'scheduler' mode requires solo thread
2148 resume. */
2149 resume_ptid = inferior_ptid;
2150 }
2151 else if ((scheduler_mode == schedlock_replay)
2152 && target_record_will_replay (minus_one_ptid, execution_direction))
2153 {
2154 /* User-settable 'scheduler' mode requires solo thread resume in replay
2155 mode. */
2156 resume_ptid = inferior_ptid;
2157 }
2158 else if (!sched_multi && target_supports_multi_process ())
2159 {
2160 /* Resume all threads of the current process (and none of other
2161 processes). */
2162 resume_ptid = ptid_t (inferior_ptid.pid ());
2163 }
2164 else
2165 {
2166 /* Resume all threads of all processes. */
2167 resume_ptid = RESUME_ALL;
2168 }
2169
2170 return resume_ptid;
2171 }
2172
2173 /* See infrun.h. */
2174
2175 process_stratum_target *
2176 user_visible_resume_target (ptid_t resume_ptid)
2177 {
2178 return (resume_ptid == minus_one_ptid && sched_multi
2179 ? NULL
2180 : current_inferior ()->process_target ());
2181 }
2182
2183 /* Return a ptid representing the set of threads that we will resume,
2184 in the perspective of the target, assuming run control handling
2185 does not require leaving some threads stopped (e.g., stepping past
2186 breakpoint). USER_STEP indicates whether we're about to start the
2187 target for a stepping command. */
2188
2189 static ptid_t
2190 internal_resume_ptid (int user_step)
2191 {
2192 /* In non-stop, we always control threads individually. Note that
2193 the target may always work in non-stop mode even with "set
2194 non-stop off", in which case user_visible_resume_ptid could
2195 return a wildcard ptid. */
2196 if (target_is_non_stop_p ())
2197 return inferior_ptid;
2198 else
2199 return user_visible_resume_ptid (user_step);
2200 }
2201
2202 /* Wrapper for target_resume, that handles infrun-specific
2203 bookkeeping. */
2204
2205 static void
2206 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2207 {
2208 struct thread_info *tp = inferior_thread ();
2209
2210 gdb_assert (!tp->stop_requested);
2211
2212 /* Install inferior's terminal modes. */
2213 target_terminal::inferior ();
2214
2215 /* Avoid confusing the next resume, if the next stop/resume
2216 happens to apply to another thread. */
2217 tp->suspend.stop_signal = GDB_SIGNAL_0;
2218
2219 /* Advise target which signals may be handled silently.
2220
2221 If we have removed breakpoints because we are stepping over one
2222 in-line (in any thread), we need to receive all signals to avoid
2223 accidentally skipping a breakpoint during execution of a signal
2224 handler.
2225
2226 Likewise if we're displaced stepping, otherwise a trap for a
2227 breakpoint in a signal handler might be confused with the
2228 displaced step finishing. We don't make the displaced_step_fixup
2229 step distinguish the cases instead, because:
2230
2231 - a backtrace while stopped in the signal handler would show the
2232 scratch pad as frame older than the signal handler, instead of
2233 the real mainline code.
2234
2235 - when the thread is later resumed, the signal handler would
2236 return to the scratch pad area, which would no longer be
2237 valid. */
2238 if (step_over_info_valid_p ()
2239 || displaced_step_in_progress (tp->inf))
2240 target_pass_signals ({});
2241 else
2242 target_pass_signals (signal_pass);
2243
2244 target_resume (resume_ptid, step, sig);
2245
2246 target_commit_resume ();
2247
2248 if (target_can_async_p ())
2249 target_async (1);
2250 }
2251
2252 /* Resume the inferior. SIG is the signal to give the inferior
2253 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2254 call 'resume', which handles exceptions. */
2255
2256 static void
2257 resume_1 (enum gdb_signal sig)
2258 {
2259 struct regcache *regcache = get_current_regcache ();
2260 struct gdbarch *gdbarch = regcache->arch ();
2261 struct thread_info *tp = inferior_thread ();
2262 const address_space *aspace = regcache->aspace ();
2263 ptid_t resume_ptid;
2264 /* This represents the user's step vs continue request. When
2265 deciding whether "set scheduler-locking step" applies, it's the
2266 user's intention that counts. */
2267 const int user_step = tp->control.stepping_command;
2268 /* This represents what we'll actually request the target to do.
2269 This can decay from a step to a continue, if e.g., we need to
2270 implement single-stepping with breakpoints (software
2271 single-step). */
2272 int step;
2273
2274 gdb_assert (!tp->stop_requested);
2275 gdb_assert (!thread_is_in_step_over_chain (tp));
2276
2277 if (tp->suspend.waitstatus_pending_p)
2278 {
2279 infrun_log_debug
2280 ("thread %s has pending wait "
2281 "status %s (currently_stepping=%d).",
2282 target_pid_to_str (tp->ptid).c_str (),
2283 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2284 currently_stepping (tp));
2285
2286 tp->inf->process_target ()->threads_executing = true;
2287 tp->resumed = true;
2288
2289 /* FIXME: What should we do if we are supposed to resume this
2290 thread with a signal? Maybe we should maintain a queue of
2291 pending signals to deliver. */
2292 if (sig != GDB_SIGNAL_0)
2293 {
2294 warning (_("Couldn't deliver signal %s to %s."),
2295 gdb_signal_to_name (sig),
2296 target_pid_to_str (tp->ptid).c_str ());
2297 }
2298
2299 tp->suspend.stop_signal = GDB_SIGNAL_0;
2300
2301 if (target_can_async_p ())
2302 {
2303 target_async (1);
2304 /* Tell the event loop we have an event to process. */
2305 mark_async_event_handler (infrun_async_inferior_event_token);
2306 }
2307 return;
2308 }
2309
2310 tp->stepped_breakpoint = 0;
2311
2312 /* Depends on stepped_breakpoint. */
2313 step = currently_stepping (tp);
2314
2315 if (current_inferior ()->waiting_for_vfork_done)
2316 {
2317 /* Don't try to single-step a vfork parent that is waiting for
2318 the child to get out of the shared memory region (by exec'ing
2319 or exiting). This is particularly important on software
2320 single-step archs, as the child process would trip on the
2321 software single step breakpoint inserted for the parent
2322 process. Since the parent will not actually execute any
2323 instruction until the child is out of the shared region (such
2324 are vfork's semantics), it is safe to simply continue it.
2325 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2326 the parent, and tell it to `keep_going', which automatically
2327 re-sets it stepping. */
2328 infrun_log_debug ("resume : clear step");
2329 step = 0;
2330 }
2331
2332 CORE_ADDR pc = regcache_read_pc (regcache);
2333
2334 infrun_log_debug ("step=%d, signal=%s, trap_expected=%d, "
2335 "current thread [%s] at %s",
2336 step, gdb_signal_to_symbol_string (sig),
2337 tp->control.trap_expected,
2338 target_pid_to_str (inferior_ptid).c_str (),
2339 paddress (gdbarch, pc));
2340
2341 /* Normally, by the time we reach `resume', the breakpoints are either
2342 removed or inserted, as appropriate. The exception is if we're sitting
2343 at a permanent breakpoint; we need to step over it, but permanent
2344 breakpoints can't be removed. So we have to test for it here. */
2345 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2346 {
2347 if (sig != GDB_SIGNAL_0)
2348 {
2349 /* We have a signal to pass to the inferior. The resume
2350 may, or may not take us to the signal handler. If this
2351 is a step, we'll need to stop in the signal handler, if
2352 there's one, (if the target supports stepping into
2353 handlers), or in the next mainline instruction, if
2354 there's no handler. If this is a continue, we need to be
2355 sure to run the handler with all breakpoints inserted.
2356 In all cases, set a breakpoint at the current address
2357 (where the handler returns to), and once that breakpoint
2358 is hit, resume skipping the permanent breakpoint. If
2359 that breakpoint isn't hit, then we've stepped into the
2360 signal handler (or hit some other event). We'll delete
2361 the step-resume breakpoint then. */
2362
2363 infrun_log_debug ("resume: skipping permanent breakpoint, "
2364 "deliver signal first");
2365
2366 clear_step_over_info ();
2367 tp->control.trap_expected = 0;
2368
2369 if (tp->control.step_resume_breakpoint == NULL)
2370 {
2371 /* Set a "high-priority" step-resume, as we don't want
2372 user breakpoints at PC to trigger (again) when this
2373 hits. */
2374 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2375 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2376
2377 tp->step_after_step_resume_breakpoint = step;
2378 }
2379
2380 insert_breakpoints ();
2381 }
2382 else
2383 {
2384 /* There's no signal to pass, we can go ahead and skip the
2385 permanent breakpoint manually. */
2386 infrun_log_debug ("skipping permanent breakpoint");
2387 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2388 /* Update pc to reflect the new address from which we will
2389 execute instructions. */
2390 pc = regcache_read_pc (regcache);
2391
2392 if (step)
2393 {
2394 /* We've already advanced the PC, so the stepping part
2395 is done. Now we need to arrange for a trap to be
2396 reported to handle_inferior_event. Set a breakpoint
2397 at the current PC, and run to it. Don't update
2398 prev_pc, because if we end in
2399 switch_back_to_stepped_thread, we want the "expected
2400 thread advanced also" branch to be taken. IOW, we
2401 don't want this thread to step further from PC
2402 (overstep). */
2403 gdb_assert (!step_over_info_valid_p ());
2404 insert_single_step_breakpoint (gdbarch, aspace, pc);
2405 insert_breakpoints ();
2406
2407 resume_ptid = internal_resume_ptid (user_step);
2408 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2409 tp->resumed = true;
2410 return;
2411 }
2412 }
2413 }
2414
2415 /* If we have a breakpoint to step over, make sure to do a single
2416 step only. Same if we have software watchpoints. */
2417 if (tp->control.trap_expected || bpstat_should_step ())
2418 tp->control.may_range_step = 0;
2419
2420 /* If displaced stepping is enabled, step over breakpoints by executing a
2421 copy of the instruction at a different address.
2422
2423 We can't use displaced stepping when we have a signal to deliver;
2424 the comments for displaced_step_prepare explain why. The
2425 comments in the handle_inferior event for dealing with 'random
2426 signals' explain what we do instead.
2427
2428 We can't use displaced stepping when we are waiting for vfork_done
2429 event, displaced stepping breaks the vfork child similarly as single
2430 step software breakpoint. */
2431 if (tp->control.trap_expected
2432 && use_displaced_stepping (tp)
2433 && !step_over_info_valid_p ()
2434 && sig == GDB_SIGNAL_0
2435 && !current_inferior ()->waiting_for_vfork_done)
2436 {
2437 displaced_step_prepare_status prepare_status
2438 = displaced_step_prepare (tp);
2439
2440 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2441 {
2442 infrun_log_debug ("Got placed in step-over queue");
2443
2444 tp->control.trap_expected = 0;
2445 return;
2446 }
2447 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
2448 {
2449 /* Fallback to stepping over the breakpoint in-line. */
2450
2451 if (target_is_non_stop_p ())
2452 stop_all_threads ();
2453
2454 set_step_over_info (regcache->aspace (),
2455 regcache_read_pc (regcache), 0, tp->global_num);
2456
2457 step = maybe_software_singlestep (gdbarch, pc);
2458
2459 insert_breakpoints ();
2460 }
2461 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2462 {
2463 step = gdbarch_displaced_step_hw_singlestep (gdbarch, NULL);
2464 }
2465 else
2466 gdb_assert_not_reached ("invalid displaced_step_prepare_status value");
2467 }
2468
2469 /* Do we need to do it the hard way, w/temp breakpoints? */
2470 else if (step)
2471 step = maybe_software_singlestep (gdbarch, pc);
2472
2473 /* Currently, our software single-step implementation leads to different
2474 results than hardware single-stepping in one situation: when stepping
2475 into delivering a signal which has an associated signal handler,
2476 hardware single-step will stop at the first instruction of the handler,
2477 while software single-step will simply skip execution of the handler.
2478
2479 For now, this difference in behavior is accepted since there is no
2480 easy way to actually implement single-stepping into a signal handler
2481 without kernel support.
2482
2483 However, there is one scenario where this difference leads to follow-on
2484 problems: if we're stepping off a breakpoint by removing all breakpoints
2485 and then single-stepping. In this case, the software single-step
2486 behavior means that even if there is a *breakpoint* in the signal
2487 handler, GDB still would not stop.
2488
2489 Fortunately, we can at least fix this particular issue. We detect
2490 here the case where we are about to deliver a signal while software
2491 single-stepping with breakpoints removed. In this situation, we
2492 revert the decisions to remove all breakpoints and insert single-
2493 step breakpoints, and instead we install a step-resume breakpoint
2494 at the current address, deliver the signal without stepping, and
2495 once we arrive back at the step-resume breakpoint, actually step
2496 over the breakpoint we originally wanted to step over. */
2497 if (thread_has_single_step_breakpoints_set (tp)
2498 && sig != GDB_SIGNAL_0
2499 && step_over_info_valid_p ())
2500 {
2501 /* If we have nested signals or a pending signal is delivered
2502 immediately after a handler returns, might already have
2503 a step-resume breakpoint set on the earlier handler. We cannot
2504 set another step-resume breakpoint; just continue on until the
2505 original breakpoint is hit. */
2506 if (tp->control.step_resume_breakpoint == NULL)
2507 {
2508 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2509 tp->step_after_step_resume_breakpoint = 1;
2510 }
2511
2512 delete_single_step_breakpoints (tp);
2513
2514 clear_step_over_info ();
2515 tp->control.trap_expected = 0;
2516
2517 insert_breakpoints ();
2518 }
2519
2520 /* If STEP is set, it's a request to use hardware stepping
2521 facilities. But in that case, we should never
2522 use singlestep breakpoint. */
2523 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2524
2525 /* Decide the set of threads to ask the target to resume. */
2526 if (tp->control.trap_expected)
2527 {
2528 /* We're allowing a thread to run past a breakpoint it has
2529 hit, either by single-stepping the thread with the breakpoint
2530 removed, or by displaced stepping, with the breakpoint inserted.
2531 In the former case, we need to single-step only this thread,
2532 and keep others stopped, as they can miss this breakpoint if
2533 allowed to run. That's not really a problem for displaced
2534 stepping, but, we still keep other threads stopped, in case
2535 another thread is also stopped for a breakpoint waiting for
2536 its turn in the displaced stepping queue. */
2537 resume_ptid = inferior_ptid;
2538 }
2539 else
2540 resume_ptid = internal_resume_ptid (user_step);
2541
2542 if (execution_direction != EXEC_REVERSE
2543 && step && breakpoint_inserted_here_p (aspace, pc))
2544 {
2545 /* There are two cases where we currently need to step a
2546 breakpoint instruction when we have a signal to deliver:
2547
2548 - See handle_signal_stop where we handle random signals that
2549 could take out us out of the stepping range. Normally, in
2550 that case we end up continuing (instead of stepping) over the
2551 signal handler with a breakpoint at PC, but there are cases
2552 where we should _always_ single-step, even if we have a
2553 step-resume breakpoint, like when a software watchpoint is
2554 set. Assuming single-stepping and delivering a signal at the
2555 same time would takes us to the signal handler, then we could
2556 have removed the breakpoint at PC to step over it. However,
2557 some hardware step targets (like e.g., Mac OS) can't step
2558 into signal handlers, and for those, we need to leave the
2559 breakpoint at PC inserted, as otherwise if the handler
2560 recurses and executes PC again, it'll miss the breakpoint.
2561 So we leave the breakpoint inserted anyway, but we need to
2562 record that we tried to step a breakpoint instruction, so
2563 that adjust_pc_after_break doesn't end up confused.
2564
2565 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2566 in one thread after another thread that was stepping had been
2567 momentarily paused for a step-over. When we re-resume the
2568 stepping thread, it may be resumed from that address with a
2569 breakpoint that hasn't trapped yet. Seen with
2570 gdb.threads/non-stop-fair-events.exp, on targets that don't
2571 do displaced stepping. */
2572
2573 infrun_log_debug ("resume: [%s] stepped breakpoint",
2574 target_pid_to_str (tp->ptid).c_str ());
2575
2576 tp->stepped_breakpoint = 1;
2577
2578 /* Most targets can step a breakpoint instruction, thus
2579 executing it normally. But if this one cannot, just
2580 continue and we will hit it anyway. */
2581 if (gdbarch_cannot_step_breakpoint (gdbarch))
2582 step = 0;
2583 }
2584
2585 if (debug_displaced
2586 && tp->control.trap_expected
2587 && use_displaced_stepping (tp)
2588 && !step_over_info_valid_p ())
2589 {
2590 struct regcache *resume_regcache = get_thread_regcache (tp);
2591 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2592 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2593 gdb_byte buf[4];
2594
2595 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2596 paddress (resume_gdbarch, actual_pc));
2597 read_memory (actual_pc, buf, sizeof (buf));
2598 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2599 }
2600
2601 if (tp->control.may_range_step)
2602 {
2603 /* If we're resuming a thread with the PC out of the step
2604 range, then we're doing some nested/finer run control
2605 operation, like stepping the thread out of the dynamic
2606 linker or the displaced stepping scratch pad. We
2607 shouldn't have allowed a range step then. */
2608 gdb_assert (pc_in_thread_step_range (pc, tp));
2609 }
2610
2611 do_target_resume (resume_ptid, step, sig);
2612 tp->resumed = true;
2613 }
2614
2615 /* Resume the inferior. SIG is the signal to give the inferior
2616 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2617 rolls back state on error. */
2618
2619 static void
2620 resume (gdb_signal sig)
2621 {
2622 try
2623 {
2624 resume_1 (sig);
2625 }
2626 catch (const gdb_exception &ex)
2627 {
2628 /* If resuming is being aborted for any reason, delete any
2629 single-step breakpoint resume_1 may have created, to avoid
2630 confusing the following resumption, and to avoid leaving
2631 single-step breakpoints perturbing other threads, in case
2632 we're running in non-stop mode. */
2633 if (inferior_ptid != null_ptid)
2634 delete_single_step_breakpoints (inferior_thread ());
2635 throw;
2636 }
2637 }
2638
2639 \f
2640 /* Proceeding. */
2641
2642 /* See infrun.h. */
2643
2644 /* Counter that tracks number of user visible stops. This can be used
2645 to tell whether a command has proceeded the inferior past the
2646 current location. This allows e.g., inferior function calls in
2647 breakpoint commands to not interrupt the command list. When the
2648 call finishes successfully, the inferior is standing at the same
2649 breakpoint as if nothing happened (and so we don't call
2650 normal_stop). */
2651 static ULONGEST current_stop_id;
2652
2653 /* See infrun.h. */
2654
2655 ULONGEST
2656 get_stop_id (void)
2657 {
2658 return current_stop_id;
2659 }
2660
2661 /* Called when we report a user visible stop. */
2662
2663 static void
2664 new_stop_id (void)
2665 {
2666 current_stop_id++;
2667 }
2668
2669 /* Clear out all variables saying what to do when inferior is continued.
2670 First do this, then set the ones you want, then call `proceed'. */
2671
2672 static void
2673 clear_proceed_status_thread (struct thread_info *tp)
2674 {
2675 infrun_log_debug ("%s", target_pid_to_str (tp->ptid).c_str ());
2676
2677 /* If we're starting a new sequence, then the previous finished
2678 single-step is no longer relevant. */
2679 if (tp->suspend.waitstatus_pending_p)
2680 {
2681 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2682 {
2683 infrun_log_debug ("pending event of %s was a finished step. "
2684 "Discarding.",
2685 target_pid_to_str (tp->ptid).c_str ());
2686
2687 tp->suspend.waitstatus_pending_p = 0;
2688 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2689 }
2690 else
2691 {
2692 infrun_log_debug
2693 ("thread %s has pending wait status %s (currently_stepping=%d).",
2694 target_pid_to_str (tp->ptid).c_str (),
2695 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2696 currently_stepping (tp));
2697 }
2698 }
2699
2700 /* If this signal should not be seen by program, give it zero.
2701 Used for debugging signals. */
2702 if (!signal_pass_state (tp->suspend.stop_signal))
2703 tp->suspend.stop_signal = GDB_SIGNAL_0;
2704
2705 delete tp->thread_fsm;
2706 tp->thread_fsm = NULL;
2707
2708 tp->control.trap_expected = 0;
2709 tp->control.step_range_start = 0;
2710 tp->control.step_range_end = 0;
2711 tp->control.may_range_step = 0;
2712 tp->control.step_frame_id = null_frame_id;
2713 tp->control.step_stack_frame_id = null_frame_id;
2714 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2715 tp->control.step_start_function = NULL;
2716 tp->stop_requested = 0;
2717
2718 tp->control.stop_step = 0;
2719
2720 tp->control.proceed_to_finish = 0;
2721
2722 tp->control.stepping_command = 0;
2723
2724 /* Discard any remaining commands or status from previous stop. */
2725 bpstat_clear (&tp->control.stop_bpstat);
2726 }
2727
2728 void
2729 clear_proceed_status (int step)
2730 {
2731 /* With scheduler-locking replay, stop replaying other threads if we're
2732 not replaying the user-visible resume ptid.
2733
2734 This is a convenience feature to not require the user to explicitly
2735 stop replaying the other threads. We're assuming that the user's
2736 intent is to resume tracing the recorded process. */
2737 if (!non_stop && scheduler_mode == schedlock_replay
2738 && target_record_is_replaying (minus_one_ptid)
2739 && !target_record_will_replay (user_visible_resume_ptid (step),
2740 execution_direction))
2741 target_record_stop_replaying ();
2742
2743 if (!non_stop && inferior_ptid != null_ptid)
2744 {
2745 ptid_t resume_ptid = user_visible_resume_ptid (step);
2746 process_stratum_target *resume_target
2747 = user_visible_resume_target (resume_ptid);
2748
2749 /* In all-stop mode, delete the per-thread status of all threads
2750 we're about to resume, implicitly and explicitly. */
2751 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2752 clear_proceed_status_thread (tp);
2753 }
2754
2755 if (inferior_ptid != null_ptid)
2756 {
2757 struct inferior *inferior;
2758
2759 if (non_stop)
2760 {
2761 /* If in non-stop mode, only delete the per-thread status of
2762 the current thread. */
2763 clear_proceed_status_thread (inferior_thread ());
2764 }
2765
2766 inferior = current_inferior ();
2767 inferior->control.stop_soon = NO_STOP_QUIETLY;
2768 }
2769
2770 gdb::observers::about_to_proceed.notify ();
2771 }
2772
2773 /* Returns true if TP is still stopped at a breakpoint that needs
2774 stepping-over in order to make progress. If the breakpoint is gone
2775 meanwhile, we can skip the whole step-over dance. */
2776
2777 static int
2778 thread_still_needs_step_over_bp (struct thread_info *tp)
2779 {
2780 if (tp->stepping_over_breakpoint)
2781 {
2782 struct regcache *regcache = get_thread_regcache (tp);
2783
2784 if (breakpoint_here_p (regcache->aspace (),
2785 regcache_read_pc (regcache))
2786 == ordinary_breakpoint_here)
2787 return 1;
2788
2789 tp->stepping_over_breakpoint = 0;
2790 }
2791
2792 return 0;
2793 }
2794
2795 /* Check whether thread TP still needs to start a step-over in order
2796 to make progress when resumed. Returns an bitwise or of enum
2797 step_over_what bits, indicating what needs to be stepped over. */
2798
2799 static step_over_what
2800 thread_still_needs_step_over (struct thread_info *tp)
2801 {
2802 step_over_what what = 0;
2803
2804 if (thread_still_needs_step_over_bp (tp))
2805 what |= STEP_OVER_BREAKPOINT;
2806
2807 if (tp->stepping_over_watchpoint
2808 && !target_have_steppable_watchpoint)
2809 what |= STEP_OVER_WATCHPOINT;
2810
2811 return what;
2812 }
2813
2814 /* Returns true if scheduler locking applies. STEP indicates whether
2815 we're about to do a step/next-like command to a thread. */
2816
2817 static int
2818 schedlock_applies (struct thread_info *tp)
2819 {
2820 return (scheduler_mode == schedlock_on
2821 || (scheduler_mode == schedlock_step
2822 && tp->control.stepping_command)
2823 || (scheduler_mode == schedlock_replay
2824 && target_record_will_replay (minus_one_ptid,
2825 execution_direction)));
2826 }
2827
2828 /* Calls target_commit_resume on all targets. */
2829
2830 static void
2831 commit_resume_all_targets ()
2832 {
2833 scoped_restore_current_thread restore_thread;
2834
2835 /* Map between process_target and a representative inferior. This
2836 is to avoid committing a resume in the same target more than
2837 once. Resumptions must be idempotent, so this is an
2838 optimization. */
2839 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2840
2841 for (inferior *inf : all_non_exited_inferiors ())
2842 if (inf->has_execution ())
2843 conn_inf[inf->process_target ()] = inf;
2844
2845 for (const auto &ci : conn_inf)
2846 {
2847 inferior *inf = ci.second;
2848 switch_to_inferior_no_thread (inf);
2849 target_commit_resume ();
2850 }
2851 }
2852
2853 /* Check that all the targets we're about to resume are in non-stop
2854 mode. Ideally, we'd only care whether all targets support
2855 target-async, but we're not there yet. E.g., stop_all_threads
2856 doesn't know how to handle all-stop targets. Also, the remote
2857 protocol in all-stop mode is synchronous, irrespective of
2858 target-async, which means that things like a breakpoint re-set
2859 triggered by one target would try to read memory from all targets
2860 and fail. */
2861
2862 static void
2863 check_multi_target_resumption (process_stratum_target *resume_target)
2864 {
2865 if (!non_stop && resume_target == nullptr)
2866 {
2867 scoped_restore_current_thread restore_thread;
2868
2869 /* This is used to track whether we're resuming more than one
2870 target. */
2871 process_stratum_target *first_connection = nullptr;
2872
2873 /* The first inferior we see with a target that does not work in
2874 always-non-stop mode. */
2875 inferior *first_not_non_stop = nullptr;
2876
2877 for (inferior *inf : all_non_exited_inferiors (resume_target))
2878 {
2879 switch_to_inferior_no_thread (inf);
2880
2881 if (!target_has_execution)
2882 continue;
2883
2884 process_stratum_target *proc_target
2885 = current_inferior ()->process_target();
2886
2887 if (!target_is_non_stop_p ())
2888 first_not_non_stop = inf;
2889
2890 if (first_connection == nullptr)
2891 first_connection = proc_target;
2892 else if (first_connection != proc_target
2893 && first_not_non_stop != nullptr)
2894 {
2895 switch_to_inferior_no_thread (first_not_non_stop);
2896
2897 proc_target = current_inferior ()->process_target();
2898
2899 error (_("Connection %d (%s) does not support "
2900 "multi-target resumption."),
2901 proc_target->connection_number,
2902 make_target_connection_string (proc_target).c_str ());
2903 }
2904 }
2905 }
2906 }
2907
2908 /* Basic routine for continuing the program in various fashions.
2909
2910 ADDR is the address to resume at, or -1 for resume where stopped.
2911 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2912 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2913
2914 You should call clear_proceed_status before calling proceed. */
2915
2916 void
2917 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2918 {
2919 struct regcache *regcache;
2920 struct gdbarch *gdbarch;
2921 CORE_ADDR pc;
2922 struct execution_control_state ecss;
2923 struct execution_control_state *ecs = &ecss;
2924 int started;
2925
2926 /* If we're stopped at a fork/vfork, follow the branch set by the
2927 "set follow-fork-mode" command; otherwise, we'll just proceed
2928 resuming the current thread. */
2929 if (!follow_fork ())
2930 {
2931 /* The target for some reason decided not to resume. */
2932 normal_stop ();
2933 if (target_can_async_p ())
2934 inferior_event_handler (INF_EXEC_COMPLETE);
2935 return;
2936 }
2937
2938 /* We'll update this if & when we switch to a new thread. */
2939 previous_inferior_ptid = inferior_ptid;
2940
2941 regcache = get_current_regcache ();
2942 gdbarch = regcache->arch ();
2943 const address_space *aspace = regcache->aspace ();
2944
2945 pc = regcache_read_pc_protected (regcache);
2946
2947 thread_info *cur_thr = inferior_thread ();
2948
2949 /* Fill in with reasonable starting values. */
2950 init_thread_stepping_state (cur_thr);
2951
2952 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2953
2954 ptid_t resume_ptid
2955 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2956 process_stratum_target *resume_target
2957 = user_visible_resume_target (resume_ptid);
2958
2959 check_multi_target_resumption (resume_target);
2960
2961 if (addr == (CORE_ADDR) -1)
2962 {
2963 if (pc == cur_thr->suspend.stop_pc
2964 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2965 && execution_direction != EXEC_REVERSE)
2966 /* There is a breakpoint at the address we will resume at,
2967 step one instruction before inserting breakpoints so that
2968 we do not stop right away (and report a second hit at this
2969 breakpoint).
2970
2971 Note, we don't do this in reverse, because we won't
2972 actually be executing the breakpoint insn anyway.
2973 We'll be (un-)executing the previous instruction. */
2974 cur_thr->stepping_over_breakpoint = 1;
2975 else if (gdbarch_single_step_through_delay_p (gdbarch)
2976 && gdbarch_single_step_through_delay (gdbarch,
2977 get_current_frame ()))
2978 /* We stepped onto an instruction that needs to be stepped
2979 again before re-inserting the breakpoint, do so. */
2980 cur_thr->stepping_over_breakpoint = 1;
2981 }
2982 else
2983 {
2984 regcache_write_pc (regcache, addr);
2985 }
2986
2987 if (siggnal != GDB_SIGNAL_DEFAULT)
2988 cur_thr->suspend.stop_signal = siggnal;
2989
2990 /* If an exception is thrown from this point on, make sure to
2991 propagate GDB's knowledge of the executing state to the
2992 frontend/user running state. */
2993 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
2994
2995 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2996 threads (e.g., we might need to set threads stepping over
2997 breakpoints first), from the user/frontend's point of view, all
2998 threads in RESUME_PTID are now running. Unless we're calling an
2999 inferior function, as in that case we pretend the inferior
3000 doesn't run at all. */
3001 if (!cur_thr->control.in_infcall)
3002 set_running (resume_target, resume_ptid, true);
3003
3004 infrun_log_debug ("addr=%s, signal=%s", paddress (gdbarch, addr),
3005 gdb_signal_to_symbol_string (siggnal));
3006
3007 annotate_starting ();
3008
3009 /* Make sure that output from GDB appears before output from the
3010 inferior. */
3011 gdb_flush (gdb_stdout);
3012
3013 /* Since we've marked the inferior running, give it the terminal. A
3014 QUIT/Ctrl-C from here on is forwarded to the target (which can
3015 still detect attempts to unblock a stuck connection with repeated
3016 Ctrl-C from within target_pass_ctrlc). */
3017 target_terminal::inferior ();
3018
3019 /* In a multi-threaded task we may select another thread and
3020 then continue or step.
3021
3022 But if a thread that we're resuming had stopped at a breakpoint,
3023 it will immediately cause another breakpoint stop without any
3024 execution (i.e. it will report a breakpoint hit incorrectly). So
3025 we must step over it first.
3026
3027 Look for threads other than the current (TP) that reported a
3028 breakpoint hit and haven't been resumed yet since. */
3029
3030 /* If scheduler locking applies, we can avoid iterating over all
3031 threads. */
3032 if (!non_stop && !schedlock_applies (cur_thr))
3033 {
3034 for (thread_info *tp : all_non_exited_threads (resume_target,
3035 resume_ptid))
3036 {
3037 switch_to_thread_no_regs (tp);
3038
3039 /* Ignore the current thread here. It's handled
3040 afterwards. */
3041 if (tp == cur_thr)
3042 continue;
3043
3044 if (!thread_still_needs_step_over (tp))
3045 continue;
3046
3047 gdb_assert (!thread_is_in_step_over_chain (tp));
3048
3049 infrun_log_debug ("need to step-over [%s] first",
3050 target_pid_to_str (tp->ptid).c_str ());
3051
3052 global_thread_step_over_chain_enqueue (tp);
3053 }
3054
3055 switch_to_thread (cur_thr);
3056 }
3057
3058 /* Enqueue the current thread last, so that we move all other
3059 threads over their breakpoints first. */
3060 if (cur_thr->stepping_over_breakpoint)
3061 global_thread_step_over_chain_enqueue (cur_thr);
3062
3063 /* If the thread isn't started, we'll still need to set its prev_pc,
3064 so that switch_back_to_stepped_thread knows the thread hasn't
3065 advanced. Must do this before resuming any thread, as in
3066 all-stop/remote, once we resume we can't send any other packet
3067 until the target stops again. */
3068 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3069
3070 {
3071 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3072
3073 started = start_step_over ();
3074
3075 if (step_over_info_valid_p ())
3076 {
3077 /* Either this thread started a new in-line step over, or some
3078 other thread was already doing one. In either case, don't
3079 resume anything else until the step-over is finished. */
3080 }
3081 else if (started && !target_is_non_stop_p ())
3082 {
3083 /* A new displaced stepping sequence was started. In all-stop,
3084 we can't talk to the target anymore until it next stops. */
3085 }
3086 else if (!non_stop && target_is_non_stop_p ())
3087 {
3088 /* In all-stop, but the target is always in non-stop mode.
3089 Start all other threads that are implicitly resumed too. */
3090 for (thread_info *tp : all_non_exited_threads (resume_target,
3091 resume_ptid))
3092 {
3093 switch_to_thread_no_regs (tp);
3094
3095 if (!tp->inf->has_execution ())
3096 {
3097 infrun_log_debug ("[%s] target has no execution",
3098 target_pid_to_str (tp->ptid).c_str ());
3099 continue;
3100 }
3101
3102 if (tp->resumed)
3103 {
3104 infrun_log_debug ("[%s] resumed",
3105 target_pid_to_str (tp->ptid).c_str ());
3106 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3107 continue;
3108 }
3109
3110 if (thread_is_in_step_over_chain (tp))
3111 {
3112 infrun_log_debug ("[%s] needs step-over",
3113 target_pid_to_str (tp->ptid).c_str ());
3114 continue;
3115 }
3116
3117 infrun_log_debug ("resuming %s",
3118 target_pid_to_str (tp->ptid).c_str ());
3119
3120 reset_ecs (ecs, tp);
3121 switch_to_thread (tp);
3122 keep_going_pass_signal (ecs);
3123 if (!ecs->wait_some_more)
3124 error (_("Command aborted."));
3125 }
3126 }
3127 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3128 {
3129 /* The thread wasn't started, and isn't queued, run it now. */
3130 reset_ecs (ecs, cur_thr);
3131 switch_to_thread (cur_thr);
3132 keep_going_pass_signal (ecs);
3133 if (!ecs->wait_some_more)
3134 error (_("Command aborted."));
3135 }
3136 }
3137
3138 commit_resume_all_targets ();
3139
3140 finish_state.release ();
3141
3142 /* If we've switched threads above, switch back to the previously
3143 current thread. We don't want the user to see a different
3144 selected thread. */
3145 switch_to_thread (cur_thr);
3146
3147 /* Tell the event loop to wait for it to stop. If the target
3148 supports asynchronous execution, it'll do this from within
3149 target_resume. */
3150 if (!target_can_async_p ())
3151 mark_async_event_handler (infrun_async_inferior_event_token);
3152 }
3153 \f
3154
3155 /* Start remote-debugging of a machine over a serial link. */
3156
3157 void
3158 start_remote (int from_tty)
3159 {
3160 inferior *inf = current_inferior ();
3161 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3162
3163 /* Always go on waiting for the target, regardless of the mode. */
3164 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3165 indicate to wait_for_inferior that a target should timeout if
3166 nothing is returned (instead of just blocking). Because of this,
3167 targets expecting an immediate response need to, internally, set
3168 things up so that the target_wait() is forced to eventually
3169 timeout. */
3170 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3171 differentiate to its caller what the state of the target is after
3172 the initial open has been performed. Here we're assuming that
3173 the target has stopped. It should be possible to eventually have
3174 target_open() return to the caller an indication that the target
3175 is currently running and GDB state should be set to the same as
3176 for an async run. */
3177 wait_for_inferior (inf);
3178
3179 /* Now that the inferior has stopped, do any bookkeeping like
3180 loading shared libraries. We want to do this before normal_stop,
3181 so that the displayed frame is up to date. */
3182 post_create_inferior (current_top_target (), from_tty);
3183
3184 normal_stop ();
3185 }
3186
3187 /* Initialize static vars when a new inferior begins. */
3188
3189 void
3190 init_wait_for_inferior (void)
3191 {
3192 /* These are meaningless until the first time through wait_for_inferior. */
3193
3194 breakpoint_init_inferior (inf_starting);
3195
3196 clear_proceed_status (0);
3197
3198 nullify_last_target_wait_ptid ();
3199
3200 previous_inferior_ptid = inferior_ptid;
3201 }
3202
3203 \f
3204
3205 static void handle_inferior_event (struct execution_control_state *ecs);
3206
3207 static void handle_step_into_function (struct gdbarch *gdbarch,
3208 struct execution_control_state *ecs);
3209 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3210 struct execution_control_state *ecs);
3211 static void handle_signal_stop (struct execution_control_state *ecs);
3212 static void check_exception_resume (struct execution_control_state *,
3213 struct frame_info *);
3214
3215 static void end_stepping_range (struct execution_control_state *ecs);
3216 static void stop_waiting (struct execution_control_state *ecs);
3217 static void keep_going (struct execution_control_state *ecs);
3218 static void process_event_stop_test (struct execution_control_state *ecs);
3219 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3220
3221 /* This function is attached as a "thread_stop_requested" observer.
3222 Cleanup local state that assumed the PTID was to be resumed, and
3223 report the stop to the frontend. */
3224
3225 static void
3226 infrun_thread_stop_requested (ptid_t ptid)
3227 {
3228 process_stratum_target *curr_target = current_inferior ()->process_target ();
3229
3230 /* PTID was requested to stop. If the thread was already stopped,
3231 but the user/frontend doesn't know about that yet (e.g., the
3232 thread had been temporarily paused for some step-over), set up
3233 for reporting the stop now. */
3234 for (thread_info *tp : all_threads (curr_target, ptid))
3235 {
3236 if (tp->state != THREAD_RUNNING)
3237 continue;
3238 if (tp->executing)
3239 continue;
3240
3241 /* Remove matching threads from the step-over queue, so
3242 start_step_over doesn't try to resume them
3243 automatically. */
3244 if (thread_is_in_step_over_chain (tp))
3245 global_thread_step_over_chain_remove (tp);
3246
3247 /* If the thread is stopped, but the user/frontend doesn't
3248 know about that yet, queue a pending event, as if the
3249 thread had just stopped now. Unless the thread already had
3250 a pending event. */
3251 if (!tp->suspend.waitstatus_pending_p)
3252 {
3253 tp->suspend.waitstatus_pending_p = 1;
3254 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3255 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3256 }
3257
3258 /* Clear the inline-frame state, since we're re-processing the
3259 stop. */
3260 clear_inline_frame_state (tp);
3261
3262 /* If this thread was paused because some other thread was
3263 doing an inline-step over, let that finish first. Once
3264 that happens, we'll restart all threads and consume pending
3265 stop events then. */
3266 if (step_over_info_valid_p ())
3267 continue;
3268
3269 /* Otherwise we can process the (new) pending event now. Set
3270 it so this pending event is considered by
3271 do_target_wait. */
3272 tp->resumed = true;
3273 }
3274 }
3275
3276 static void
3277 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3278 {
3279 if (target_last_proc_target == tp->inf->process_target ()
3280 && target_last_wait_ptid == tp->ptid)
3281 nullify_last_target_wait_ptid ();
3282 }
3283
3284 /* Delete the step resume, single-step and longjmp/exception resume
3285 breakpoints of TP. */
3286
3287 static void
3288 delete_thread_infrun_breakpoints (struct thread_info *tp)
3289 {
3290 delete_step_resume_breakpoint (tp);
3291 delete_exception_resume_breakpoint (tp);
3292 delete_single_step_breakpoints (tp);
3293 }
3294
3295 /* If the target still has execution, call FUNC for each thread that
3296 just stopped. In all-stop, that's all the non-exited threads; in
3297 non-stop, that's the current thread, only. */
3298
3299 typedef void (*for_each_just_stopped_thread_callback_func)
3300 (struct thread_info *tp);
3301
3302 static void
3303 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3304 {
3305 if (!target_has_execution || inferior_ptid == null_ptid)
3306 return;
3307
3308 if (target_is_non_stop_p ())
3309 {
3310 /* If in non-stop mode, only the current thread stopped. */
3311 func (inferior_thread ());
3312 }
3313 else
3314 {
3315 /* In all-stop mode, all threads have stopped. */
3316 for (thread_info *tp : all_non_exited_threads ())
3317 func (tp);
3318 }
3319 }
3320
3321 /* Delete the step resume and longjmp/exception resume breakpoints of
3322 the threads that just stopped. */
3323
3324 static void
3325 delete_just_stopped_threads_infrun_breakpoints (void)
3326 {
3327 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3328 }
3329
3330 /* Delete the single-step breakpoints of the threads that just
3331 stopped. */
3332
3333 static void
3334 delete_just_stopped_threads_single_step_breakpoints (void)
3335 {
3336 for_each_just_stopped_thread (delete_single_step_breakpoints);
3337 }
3338
3339 /* See infrun.h. */
3340
3341 void
3342 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3343 const struct target_waitstatus *ws)
3344 {
3345 std::string status_string = target_waitstatus_to_string (ws);
3346 string_file stb;
3347
3348 /* The text is split over several lines because it was getting too long.
3349 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3350 output as a unit; we want only one timestamp printed if debug_timestamp
3351 is set. */
3352
3353 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3354 waiton_ptid.pid (),
3355 waiton_ptid.lwp (),
3356 waiton_ptid.tid ());
3357 if (waiton_ptid.pid () != -1)
3358 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3359 stb.printf (", status) =\n");
3360 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3361 result_ptid.pid (),
3362 result_ptid.lwp (),
3363 result_ptid.tid (),
3364 target_pid_to_str (result_ptid).c_str ());
3365 stb.printf ("infrun: %s\n", status_string.c_str ());
3366
3367 /* This uses %s in part to handle %'s in the text, but also to avoid
3368 a gcc error: the format attribute requires a string literal. */
3369 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3370 }
3371
3372 /* Select a thread at random, out of those which are resumed and have
3373 had events. */
3374
3375 static struct thread_info *
3376 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3377 {
3378 int num_events = 0;
3379
3380 auto has_event = [&] (thread_info *tp)
3381 {
3382 return (tp->ptid.matches (waiton_ptid)
3383 && tp->resumed
3384 && tp->suspend.waitstatus_pending_p);
3385 };
3386
3387 /* First see how many events we have. Count only resumed threads
3388 that have an event pending. */
3389 for (thread_info *tp : inf->non_exited_threads ())
3390 if (has_event (tp))
3391 num_events++;
3392
3393 if (num_events == 0)
3394 return NULL;
3395
3396 /* Now randomly pick a thread out of those that have had events. */
3397 int random_selector = (int) ((num_events * (double) rand ())
3398 / (RAND_MAX + 1.0));
3399
3400 if (num_events > 1)
3401 infrun_log_debug ("Found %d events, selecting #%d",
3402 num_events, random_selector);
3403
3404 /* Select the Nth thread that has had an event. */
3405 for (thread_info *tp : inf->non_exited_threads ())
3406 if (has_event (tp))
3407 if (random_selector-- == 0)
3408 return tp;
3409
3410 gdb_assert_not_reached ("event thread not found");
3411 }
3412
3413 /* Wrapper for target_wait that first checks whether threads have
3414 pending statuses to report before actually asking the target for
3415 more events. INF is the inferior we're using to call target_wait
3416 on. */
3417
3418 static ptid_t
3419 do_target_wait_1 (inferior *inf, ptid_t ptid,
3420 target_waitstatus *status, int options)
3421 {
3422 ptid_t event_ptid;
3423 struct thread_info *tp;
3424
3425 /* We know that we are looking for an event in the target of inferior
3426 INF, but we don't know which thread the event might come from. As
3427 such we want to make sure that INFERIOR_PTID is reset so that none of
3428 the wait code relies on it - doing so is always a mistake. */
3429 switch_to_inferior_no_thread (inf);
3430
3431 /* First check if there is a resumed thread with a wait status
3432 pending. */
3433 if (ptid == minus_one_ptid || ptid.is_pid ())
3434 {
3435 tp = random_pending_event_thread (inf, ptid);
3436 }
3437 else
3438 {
3439 infrun_log_debug ("Waiting for specific thread %s.",
3440 target_pid_to_str (ptid).c_str ());
3441
3442 /* We have a specific thread to check. */
3443 tp = find_thread_ptid (inf, ptid);
3444 gdb_assert (tp != NULL);
3445 if (!tp->suspend.waitstatus_pending_p)
3446 tp = NULL;
3447 }
3448
3449 if (tp != NULL
3450 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3451 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3452 {
3453 struct regcache *regcache = get_thread_regcache (tp);
3454 struct gdbarch *gdbarch = regcache->arch ();
3455 CORE_ADDR pc;
3456 int discard = 0;
3457
3458 pc = regcache_read_pc (regcache);
3459
3460 if (pc != tp->suspend.stop_pc)
3461 {
3462 infrun_log_debug ("PC of %s changed. was=%s, now=%s",
3463 target_pid_to_str (tp->ptid).c_str (),
3464 paddress (gdbarch, tp->suspend.stop_pc),
3465 paddress (gdbarch, pc));
3466 discard = 1;
3467 }
3468 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3469 {
3470 infrun_log_debug ("previous breakpoint of %s, at %s gone",
3471 target_pid_to_str (tp->ptid).c_str (),
3472 paddress (gdbarch, pc));
3473
3474 discard = 1;
3475 }
3476
3477 if (discard)
3478 {
3479 infrun_log_debug ("pending event of %s cancelled.",
3480 target_pid_to_str (tp->ptid).c_str ());
3481
3482 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3483 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3484 }
3485 }
3486
3487 if (tp != NULL)
3488 {
3489 infrun_log_debug ("Using pending wait status %s for %s.",
3490 target_waitstatus_to_string
3491 (&tp->suspend.waitstatus).c_str (),
3492 target_pid_to_str (tp->ptid).c_str ());
3493
3494 /* Now that we've selected our final event LWP, un-adjust its PC
3495 if it was a software breakpoint (and the target doesn't
3496 always adjust the PC itself). */
3497 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3498 && !target_supports_stopped_by_sw_breakpoint ())
3499 {
3500 struct regcache *regcache;
3501 struct gdbarch *gdbarch;
3502 int decr_pc;
3503
3504 regcache = get_thread_regcache (tp);
3505 gdbarch = regcache->arch ();
3506
3507 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3508 if (decr_pc != 0)
3509 {
3510 CORE_ADDR pc;
3511
3512 pc = regcache_read_pc (regcache);
3513 regcache_write_pc (regcache, pc + decr_pc);
3514 }
3515 }
3516
3517 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3518 *status = tp->suspend.waitstatus;
3519 tp->suspend.waitstatus_pending_p = 0;
3520
3521 /* Wake up the event loop again, until all pending events are
3522 processed. */
3523 if (target_is_async_p ())
3524 mark_async_event_handler (infrun_async_inferior_event_token);
3525 return tp->ptid;
3526 }
3527
3528 /* But if we don't find one, we'll have to wait. */
3529
3530 if (deprecated_target_wait_hook)
3531 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3532 else
3533 event_ptid = target_wait (ptid, status, options);
3534
3535 return event_ptid;
3536 }
3537
3538 /* Wrapper for target_wait that first checks whether threads have
3539 pending statuses to report before actually asking the target for
3540 more events. Polls for events from all inferiors/targets. */
3541
3542 static bool
3543 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3544 {
3545 int num_inferiors = 0;
3546 int random_selector;
3547
3548 /* For fairness, we pick the first inferior/target to poll at random
3549 out of all inferiors that may report events, and then continue
3550 polling the rest of the inferior list starting from that one in a
3551 circular fashion until the whole list is polled once. */
3552
3553 auto inferior_matches = [&wait_ptid] (inferior *inf)
3554 {
3555 return (inf->process_target () != NULL
3556 && ptid_t (inf->pid).matches (wait_ptid));
3557 };
3558
3559 /* First see how many matching inferiors we have. */
3560 for (inferior *inf : all_inferiors ())
3561 if (inferior_matches (inf))
3562 num_inferiors++;
3563
3564 if (num_inferiors == 0)
3565 {
3566 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3567 return false;
3568 }
3569
3570 /* Now randomly pick an inferior out of those that matched. */
3571 random_selector = (int)
3572 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3573
3574 if (num_inferiors > 1)
3575 infrun_log_debug ("Found %d inferiors, starting at #%d",
3576 num_inferiors, random_selector);
3577
3578 /* Select the Nth inferior that matched. */
3579
3580 inferior *selected = nullptr;
3581
3582 for (inferior *inf : all_inferiors ())
3583 if (inferior_matches (inf))
3584 if (random_selector-- == 0)
3585 {
3586 selected = inf;
3587 break;
3588 }
3589
3590 /* Now poll for events out of each of the matching inferior's
3591 targets, starting from the selected one. */
3592
3593 auto do_wait = [&] (inferior *inf)
3594 {
3595 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3596 ecs->target = inf->process_target ();
3597 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3598 };
3599
3600 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3601 here spuriously after the target is all stopped and we've already
3602 reported the stop to the user, polling for events. */
3603 scoped_restore_current_thread restore_thread;
3604
3605 int inf_num = selected->num;
3606 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3607 if (inferior_matches (inf))
3608 if (do_wait (inf))
3609 return true;
3610
3611 for (inferior *inf = inferior_list;
3612 inf != NULL && inf->num < inf_num;
3613 inf = inf->next)
3614 if (inferior_matches (inf))
3615 if (do_wait (inf))
3616 return true;
3617
3618 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3619 return false;
3620 }
3621
3622 /* Prepare and stabilize the inferior for detaching it. E.g.,
3623 detaching while a thread is displaced stepping is a recipe for
3624 crashing it, as nothing would readjust the PC out of the scratch
3625 pad. */
3626
3627 void
3628 prepare_for_detach (void)
3629 {
3630 struct inferior *inf = current_inferior ();
3631 ptid_t pid_ptid = ptid_t (inf->pid);
3632
3633 // displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3634
3635 /* Is any thread of this process displaced stepping? If not,
3636 there's nothing else to do. */
3637 if (displaced_step_in_progress (inf))
3638 return;
3639
3640 infrun_log_debug ("displaced-stepping in-process while detaching");
3641
3642 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3643
3644 // FIXME
3645 while (false)
3646 {
3647 struct execution_control_state ecss;
3648 struct execution_control_state *ecs;
3649
3650 ecs = &ecss;
3651 memset (ecs, 0, sizeof (*ecs));
3652
3653 overlay_cache_invalid = 1;
3654 /* Flush target cache before starting to handle each event.
3655 Target was running and cache could be stale. This is just a
3656 heuristic. Running threads may modify target memory, but we
3657 don't get any event. */
3658 target_dcache_invalidate ();
3659
3660 do_target_wait (pid_ptid, ecs, 0);
3661
3662 if (debug_infrun)
3663 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3664
3665 /* If an error happens while handling the event, propagate GDB's
3666 knowledge of the executing state to the frontend/user running
3667 state. */
3668 scoped_finish_thread_state finish_state (inf->process_target (),
3669 minus_one_ptid);
3670
3671 /* Now figure out what to do with the result of the result. */
3672 handle_inferior_event (ecs);
3673
3674 /* No error, don't finish the state yet. */
3675 finish_state.release ();
3676
3677 /* Breakpoints and watchpoints are not installed on the target
3678 at this point, and signals are passed directly to the
3679 inferior, so this must mean the process is gone. */
3680 if (!ecs->wait_some_more)
3681 {
3682 restore_detaching.release ();
3683 error (_("Program exited while detaching"));
3684 }
3685 }
3686
3687 restore_detaching.release ();
3688 }
3689
3690 /* Wait for control to return from inferior to debugger.
3691
3692 If inferior gets a signal, we may decide to start it up again
3693 instead of returning. That is why there is a loop in this function.
3694 When this function actually returns it means the inferior
3695 should be left stopped and GDB should read more commands. */
3696
3697 static void
3698 wait_for_inferior (inferior *inf)
3699 {
3700 infrun_log_debug ("wait_for_inferior ()");
3701
3702 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3703
3704 /* If an error happens while handling the event, propagate GDB's
3705 knowledge of the executing state to the frontend/user running
3706 state. */
3707 scoped_finish_thread_state finish_state
3708 (inf->process_target (), minus_one_ptid);
3709
3710 while (1)
3711 {
3712 struct execution_control_state ecss;
3713 struct execution_control_state *ecs = &ecss;
3714
3715 memset (ecs, 0, sizeof (*ecs));
3716
3717 overlay_cache_invalid = 1;
3718
3719 /* Flush target cache before starting to handle each event.
3720 Target was running and cache could be stale. This is just a
3721 heuristic. Running threads may modify target memory, but we
3722 don't get any event. */
3723 target_dcache_invalidate ();
3724
3725 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3726 ecs->target = inf->process_target ();
3727
3728 if (debug_infrun)
3729 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3730
3731 /* Now figure out what to do with the result of the result. */
3732 handle_inferior_event (ecs);
3733
3734 if (!ecs->wait_some_more)
3735 break;
3736 }
3737
3738 /* No error, don't finish the state yet. */
3739 finish_state.release ();
3740 }
3741
3742 /* Cleanup that reinstalls the readline callback handler, if the
3743 target is running in the background. If while handling the target
3744 event something triggered a secondary prompt, like e.g., a
3745 pagination prompt, we'll have removed the callback handler (see
3746 gdb_readline_wrapper_line). Need to do this as we go back to the
3747 event loop, ready to process further input. Note this has no
3748 effect if the handler hasn't actually been removed, because calling
3749 rl_callback_handler_install resets the line buffer, thus losing
3750 input. */
3751
3752 static void
3753 reinstall_readline_callback_handler_cleanup ()
3754 {
3755 struct ui *ui = current_ui;
3756
3757 if (!ui->async)
3758 {
3759 /* We're not going back to the top level event loop yet. Don't
3760 install the readline callback, as it'd prep the terminal,
3761 readline-style (raw, noecho) (e.g., --batch). We'll install
3762 it the next time the prompt is displayed, when we're ready
3763 for input. */
3764 return;
3765 }
3766
3767 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3768 gdb_rl_callback_handler_reinstall ();
3769 }
3770
3771 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3772 that's just the event thread. In all-stop, that's all threads. */
3773
3774 static void
3775 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3776 {
3777 if (ecs->event_thread != NULL
3778 && ecs->event_thread->thread_fsm != NULL)
3779 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3780
3781 if (!non_stop)
3782 {
3783 for (thread_info *thr : all_non_exited_threads ())
3784 {
3785 if (thr->thread_fsm == NULL)
3786 continue;
3787 if (thr == ecs->event_thread)
3788 continue;
3789
3790 switch_to_thread (thr);
3791 thr->thread_fsm->clean_up (thr);
3792 }
3793
3794 if (ecs->event_thread != NULL)
3795 switch_to_thread (ecs->event_thread);
3796 }
3797 }
3798
3799 /* Helper for all_uis_check_sync_execution_done that works on the
3800 current UI. */
3801
3802 static void
3803 check_curr_ui_sync_execution_done (void)
3804 {
3805 struct ui *ui = current_ui;
3806
3807 if (ui->prompt_state == PROMPT_NEEDED
3808 && ui->async
3809 && !gdb_in_secondary_prompt_p (ui))
3810 {
3811 target_terminal::ours ();
3812 gdb::observers::sync_execution_done.notify ();
3813 ui_register_input_event_handler (ui);
3814 }
3815 }
3816
3817 /* See infrun.h. */
3818
3819 void
3820 all_uis_check_sync_execution_done (void)
3821 {
3822 SWITCH_THRU_ALL_UIS ()
3823 {
3824 check_curr_ui_sync_execution_done ();
3825 }
3826 }
3827
3828 /* See infrun.h. */
3829
3830 void
3831 all_uis_on_sync_execution_starting (void)
3832 {
3833 SWITCH_THRU_ALL_UIS ()
3834 {
3835 if (current_ui->prompt_state == PROMPT_NEEDED)
3836 async_disable_stdin ();
3837 }
3838 }
3839
3840 /* Asynchronous version of wait_for_inferior. It is called by the
3841 event loop whenever a change of state is detected on the file
3842 descriptor corresponding to the target. It can be called more than
3843 once to complete a single execution command. In such cases we need
3844 to keep the state in a global variable ECSS. If it is the last time
3845 that this function is called for a single execution command, then
3846 report to the user that the inferior has stopped, and do the
3847 necessary cleanups. */
3848
3849 void
3850 fetch_inferior_event ()
3851 {
3852 struct execution_control_state ecss;
3853 struct execution_control_state *ecs = &ecss;
3854 int cmd_done = 0;
3855
3856 memset (ecs, 0, sizeof (*ecs));
3857
3858 /* Events are always processed with the main UI as current UI. This
3859 way, warnings, debug output, etc. are always consistently sent to
3860 the main console. */
3861 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3862
3863 /* End up with readline processing input, if necessary. */
3864 {
3865 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3866
3867 /* We're handling a live event, so make sure we're doing live
3868 debugging. If we're looking at traceframes while the target is
3869 running, we're going to need to get back to that mode after
3870 handling the event. */
3871 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3872 if (non_stop)
3873 {
3874 maybe_restore_traceframe.emplace ();
3875 set_current_traceframe (-1);
3876 }
3877
3878 /* The user/frontend should not notice a thread switch due to
3879 internal events. Make sure we revert to the user selected
3880 thread and frame after handling the event and running any
3881 breakpoint commands. */
3882 scoped_restore_current_thread restore_thread;
3883
3884 overlay_cache_invalid = 1;
3885 /* Flush target cache before starting to handle each event. Target
3886 was running and cache could be stale. This is just a heuristic.
3887 Running threads may modify target memory, but we don't get any
3888 event. */
3889 target_dcache_invalidate ();
3890
3891 scoped_restore save_exec_dir
3892 = make_scoped_restore (&execution_direction,
3893 target_execution_direction ());
3894
3895 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3896 return;
3897
3898 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3899
3900 /* Switch to the target that generated the event, so we can do
3901 target calls. Any inferior bound to the target will do, so we
3902 just switch to the first we find. */
3903 for (inferior *inf : all_inferiors (ecs->target))
3904 {
3905 switch_to_inferior_no_thread (inf);
3906 break;
3907 }
3908
3909 if (debug_infrun)
3910 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3911
3912 /* If an error happens while handling the event, propagate GDB's
3913 knowledge of the executing state to the frontend/user running
3914 state. */
3915 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3916 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3917
3918 /* Get executed before scoped_restore_current_thread above to apply
3919 still for the thread which has thrown the exception. */
3920 auto defer_bpstat_clear
3921 = make_scope_exit (bpstat_clear_actions);
3922 auto defer_delete_threads
3923 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3924
3925 /* Now figure out what to do with the result of the result. */
3926 handle_inferior_event (ecs);
3927
3928 if (!ecs->wait_some_more)
3929 {
3930 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3931 int should_stop = 1;
3932 struct thread_info *thr = ecs->event_thread;
3933
3934 delete_just_stopped_threads_infrun_breakpoints ();
3935
3936 if (thr != NULL)
3937 {
3938 struct thread_fsm *thread_fsm = thr->thread_fsm;
3939
3940 if (thread_fsm != NULL)
3941 should_stop = thread_fsm->should_stop (thr);
3942 }
3943
3944 if (!should_stop)
3945 {
3946 keep_going (ecs);
3947 }
3948 else
3949 {
3950 bool should_notify_stop = true;
3951 int proceeded = 0;
3952
3953 clean_up_just_stopped_threads_fsms (ecs);
3954
3955 if (thr != NULL && thr->thread_fsm != NULL)
3956 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3957
3958 if (should_notify_stop)
3959 {
3960 /* We may not find an inferior if this was a process exit. */
3961 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3962 proceeded = normal_stop ();
3963 }
3964
3965 if (!proceeded)
3966 {
3967 inferior_event_handler (INF_EXEC_COMPLETE);
3968 cmd_done = 1;
3969 }
3970
3971 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3972 previously selected thread is gone. We have two
3973 choices - switch to no thread selected, or restore the
3974 previously selected thread (now exited). We chose the
3975 later, just because that's what GDB used to do. After
3976 this, "info threads" says "The current thread <Thread
3977 ID 2> has terminated." instead of "No thread
3978 selected.". */
3979 if (!non_stop
3980 && cmd_done
3981 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3982 restore_thread.dont_restore ();
3983 }
3984 }
3985
3986 defer_delete_threads.release ();
3987 defer_bpstat_clear.release ();
3988
3989 /* No error, don't finish the thread states yet. */
3990 finish_state.release ();
3991
3992 /* This scope is used to ensure that readline callbacks are
3993 reinstalled here. */
3994 }
3995
3996 /* If a UI was in sync execution mode, and now isn't, restore its
3997 prompt (a synchronous execution command has finished, and we're
3998 ready for input). */
3999 all_uis_check_sync_execution_done ();
4000
4001 if (cmd_done
4002 && exec_done_display_p
4003 && (inferior_ptid == null_ptid
4004 || inferior_thread ()->state != THREAD_RUNNING))
4005 printf_unfiltered (_("completed.\n"));
4006 }
4007
4008 /* See infrun.h. */
4009
4010 void
4011 set_step_info (thread_info *tp, struct frame_info *frame,
4012 struct symtab_and_line sal)
4013 {
4014 /* This can be removed once this function no longer implicitly relies on the
4015 inferior_ptid value. */
4016 gdb_assert (inferior_ptid == tp->ptid);
4017
4018 tp->control.step_frame_id = get_frame_id (frame);
4019 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4020
4021 tp->current_symtab = sal.symtab;
4022 tp->current_line = sal.line;
4023 }
4024
4025 /* Clear context switchable stepping state. */
4026
4027 void
4028 init_thread_stepping_state (struct thread_info *tss)
4029 {
4030 tss->stepped_breakpoint = 0;
4031 tss->stepping_over_breakpoint = 0;
4032 tss->stepping_over_watchpoint = 0;
4033 tss->step_after_step_resume_breakpoint = 0;
4034 }
4035
4036 /* See infrun.h. */
4037
4038 void
4039 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4040 target_waitstatus status)
4041 {
4042 target_last_proc_target = target;
4043 target_last_wait_ptid = ptid;
4044 target_last_waitstatus = status;
4045 }
4046
4047 /* See infrun.h. */
4048
4049 void
4050 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4051 target_waitstatus *status)
4052 {
4053 if (target != nullptr)
4054 *target = target_last_proc_target;
4055 if (ptid != nullptr)
4056 *ptid = target_last_wait_ptid;
4057 if (status != nullptr)
4058 *status = target_last_waitstatus;
4059 }
4060
4061 /* See infrun.h. */
4062
4063 void
4064 nullify_last_target_wait_ptid (void)
4065 {
4066 target_last_proc_target = nullptr;
4067 target_last_wait_ptid = minus_one_ptid;
4068 target_last_waitstatus = {};
4069 }
4070
4071 /* Switch thread contexts. */
4072
4073 static void
4074 context_switch (execution_control_state *ecs)
4075 {
4076 if (ecs->ptid != inferior_ptid
4077 && (inferior_ptid == null_ptid
4078 || ecs->event_thread != inferior_thread ()))
4079 {
4080 infrun_log_debug ("Switching context from %s to %s",
4081 target_pid_to_str (inferior_ptid).c_str (),
4082 target_pid_to_str (ecs->ptid).c_str ());
4083 }
4084
4085 switch_to_thread (ecs->event_thread);
4086 }
4087
4088 /* If the target can't tell whether we've hit breakpoints
4089 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4090 check whether that could have been caused by a breakpoint. If so,
4091 adjust the PC, per gdbarch_decr_pc_after_break. */
4092
4093 static void
4094 adjust_pc_after_break (struct thread_info *thread,
4095 struct target_waitstatus *ws)
4096 {
4097 struct regcache *regcache;
4098 struct gdbarch *gdbarch;
4099 CORE_ADDR breakpoint_pc, decr_pc;
4100
4101 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4102 we aren't, just return.
4103
4104 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4105 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4106 implemented by software breakpoints should be handled through the normal
4107 breakpoint layer.
4108
4109 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4110 different signals (SIGILL or SIGEMT for instance), but it is less
4111 clear where the PC is pointing afterwards. It may not match
4112 gdbarch_decr_pc_after_break. I don't know any specific target that
4113 generates these signals at breakpoints (the code has been in GDB since at
4114 least 1992) so I can not guess how to handle them here.
4115
4116 In earlier versions of GDB, a target with
4117 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4118 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4119 target with both of these set in GDB history, and it seems unlikely to be
4120 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4121
4122 if (ws->kind != TARGET_WAITKIND_STOPPED)
4123 return;
4124
4125 if (ws->value.sig != GDB_SIGNAL_TRAP)
4126 return;
4127
4128 /* In reverse execution, when a breakpoint is hit, the instruction
4129 under it has already been de-executed. The reported PC always
4130 points at the breakpoint address, so adjusting it further would
4131 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4132 architecture:
4133
4134 B1 0x08000000 : INSN1
4135 B2 0x08000001 : INSN2
4136 0x08000002 : INSN3
4137 PC -> 0x08000003 : INSN4
4138
4139 Say you're stopped at 0x08000003 as above. Reverse continuing
4140 from that point should hit B2 as below. Reading the PC when the
4141 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4142 been de-executed already.
4143
4144 B1 0x08000000 : INSN1
4145 B2 PC -> 0x08000001 : INSN2
4146 0x08000002 : INSN3
4147 0x08000003 : INSN4
4148
4149 We can't apply the same logic as for forward execution, because
4150 we would wrongly adjust the PC to 0x08000000, since there's a
4151 breakpoint at PC - 1. We'd then report a hit on B1, although
4152 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4153 behaviour. */
4154 if (execution_direction == EXEC_REVERSE)
4155 return;
4156
4157 /* If the target can tell whether the thread hit a SW breakpoint,
4158 trust it. Targets that can tell also adjust the PC
4159 themselves. */
4160 if (target_supports_stopped_by_sw_breakpoint ())
4161 return;
4162
4163 /* Note that relying on whether a breakpoint is planted in memory to
4164 determine this can fail. E.g,. the breakpoint could have been
4165 removed since. Or the thread could have been told to step an
4166 instruction the size of a breakpoint instruction, and only
4167 _after_ was a breakpoint inserted at its address. */
4168
4169 /* If this target does not decrement the PC after breakpoints, then
4170 we have nothing to do. */
4171 regcache = get_thread_regcache (thread);
4172 gdbarch = regcache->arch ();
4173
4174 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4175 if (decr_pc == 0)
4176 return;
4177
4178 const address_space *aspace = regcache->aspace ();
4179
4180 /* Find the location where (if we've hit a breakpoint) the
4181 breakpoint would be. */
4182 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4183
4184 /* If the target can't tell whether a software breakpoint triggered,
4185 fallback to figuring it out based on breakpoints we think were
4186 inserted in the target, and on whether the thread was stepped or
4187 continued. */
4188
4189 /* Check whether there actually is a software breakpoint inserted at
4190 that location.
4191
4192 If in non-stop mode, a race condition is possible where we've
4193 removed a breakpoint, but stop events for that breakpoint were
4194 already queued and arrive later. To suppress those spurious
4195 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4196 and retire them after a number of stop events are reported. Note
4197 this is an heuristic and can thus get confused. The real fix is
4198 to get the "stopped by SW BP and needs adjustment" info out of
4199 the target/kernel (and thus never reach here; see above). */
4200 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4201 || (target_is_non_stop_p ()
4202 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4203 {
4204 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4205
4206 if (record_full_is_used ())
4207 restore_operation_disable.emplace
4208 (record_full_gdb_operation_disable_set ());
4209
4210 /* When using hardware single-step, a SIGTRAP is reported for both
4211 a completed single-step and a software breakpoint. Need to
4212 differentiate between the two, as the latter needs adjusting
4213 but the former does not.
4214
4215 The SIGTRAP can be due to a completed hardware single-step only if
4216 - we didn't insert software single-step breakpoints
4217 - this thread is currently being stepped
4218
4219 If any of these events did not occur, we must have stopped due
4220 to hitting a software breakpoint, and have to back up to the
4221 breakpoint address.
4222
4223 As a special case, we could have hardware single-stepped a
4224 software breakpoint. In this case (prev_pc == breakpoint_pc),
4225 we also need to back up to the breakpoint address. */
4226
4227 if (thread_has_single_step_breakpoints_set (thread)
4228 || !currently_stepping (thread)
4229 || (thread->stepped_breakpoint
4230 && thread->prev_pc == breakpoint_pc))
4231 regcache_write_pc (regcache, breakpoint_pc);
4232 }
4233 }
4234
4235 static int
4236 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4237 {
4238 for (frame = get_prev_frame (frame);
4239 frame != NULL;
4240 frame = get_prev_frame (frame))
4241 {
4242 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4243 return 1;
4244 if (get_frame_type (frame) != INLINE_FRAME)
4245 break;
4246 }
4247
4248 return 0;
4249 }
4250
4251 /* Look for an inline frame that is marked for skip.
4252 If PREV_FRAME is TRUE start at the previous frame,
4253 otherwise start at the current frame. Stop at the
4254 first non-inline frame, or at the frame where the
4255 step started. */
4256
4257 static bool
4258 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4259 {
4260 struct frame_info *frame = get_current_frame ();
4261
4262 if (prev_frame)
4263 frame = get_prev_frame (frame);
4264
4265 for (; frame != NULL; frame = get_prev_frame (frame))
4266 {
4267 const char *fn = NULL;
4268 symtab_and_line sal;
4269 struct symbol *sym;
4270
4271 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4272 break;
4273 if (get_frame_type (frame) != INLINE_FRAME)
4274 break;
4275
4276 sal = find_frame_sal (frame);
4277 sym = get_frame_function (frame);
4278
4279 if (sym != NULL)
4280 fn = sym->print_name ();
4281
4282 if (sal.line != 0
4283 && function_name_is_marked_for_skip (fn, sal))
4284 return true;
4285 }
4286
4287 return false;
4288 }
4289
4290 /* If the event thread has the stop requested flag set, pretend it
4291 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4292 target_stop). */
4293
4294 static bool
4295 handle_stop_requested (struct execution_control_state *ecs)
4296 {
4297 if (ecs->event_thread->stop_requested)
4298 {
4299 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4300 ecs->ws.value.sig = GDB_SIGNAL_0;
4301 handle_signal_stop (ecs);
4302 return true;
4303 }
4304 return false;
4305 }
4306
4307 /* Auxiliary function that handles syscall entry/return events.
4308 It returns 1 if the inferior should keep going (and GDB
4309 should ignore the event), or 0 if the event deserves to be
4310 processed. */
4311
4312 static int
4313 handle_syscall_event (struct execution_control_state *ecs)
4314 {
4315 struct regcache *regcache;
4316 int syscall_number;
4317
4318 context_switch (ecs);
4319
4320 regcache = get_thread_regcache (ecs->event_thread);
4321 syscall_number = ecs->ws.value.syscall_number;
4322 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4323
4324 if (catch_syscall_enabled () > 0
4325 && catching_syscall_number (syscall_number) > 0)
4326 {
4327 infrun_log_debug ("syscall number=%d", syscall_number);
4328
4329 ecs->event_thread->control.stop_bpstat
4330 = bpstat_stop_status (regcache->aspace (),
4331 ecs->event_thread->suspend.stop_pc,
4332 ecs->event_thread, &ecs->ws);
4333
4334 if (handle_stop_requested (ecs))
4335 return 0;
4336
4337 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4338 {
4339 /* Catchpoint hit. */
4340 return 0;
4341 }
4342 }
4343
4344 if (handle_stop_requested (ecs))
4345 return 0;
4346
4347 /* If no catchpoint triggered for this, then keep going. */
4348 keep_going (ecs);
4349 return 1;
4350 }
4351
4352 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4353
4354 static void
4355 fill_in_stop_func (struct gdbarch *gdbarch,
4356 struct execution_control_state *ecs)
4357 {
4358 if (!ecs->stop_func_filled_in)
4359 {
4360 const block *block;
4361
4362 /* Don't care about return value; stop_func_start and stop_func_name
4363 will both be 0 if it doesn't work. */
4364 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4365 &ecs->stop_func_name,
4366 &ecs->stop_func_start,
4367 &ecs->stop_func_end,
4368 &block);
4369
4370 /* The call to find_pc_partial_function, above, will set
4371 stop_func_start and stop_func_end to the start and end
4372 of the range containing the stop pc. If this range
4373 contains the entry pc for the block (which is always the
4374 case for contiguous blocks), advance stop_func_start past
4375 the function's start offset and entrypoint. Note that
4376 stop_func_start is NOT advanced when in a range of a
4377 non-contiguous block that does not contain the entry pc. */
4378 if (block != nullptr
4379 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4380 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4381 {
4382 ecs->stop_func_start
4383 += gdbarch_deprecated_function_start_offset (gdbarch);
4384
4385 if (gdbarch_skip_entrypoint_p (gdbarch))
4386 ecs->stop_func_start
4387 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4388 }
4389
4390 ecs->stop_func_filled_in = 1;
4391 }
4392 }
4393
4394
4395 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4396
4397 static enum stop_kind
4398 get_inferior_stop_soon (execution_control_state *ecs)
4399 {
4400 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4401
4402 gdb_assert (inf != NULL);
4403 return inf->control.stop_soon;
4404 }
4405
4406 /* Poll for one event out of the current target. Store the resulting
4407 waitstatus in WS, and return the event ptid. Does not block. */
4408
4409 static ptid_t
4410 poll_one_curr_target (struct target_waitstatus *ws)
4411 {
4412 ptid_t event_ptid;
4413
4414 overlay_cache_invalid = 1;
4415
4416 /* Flush target cache before starting to handle each event.
4417 Target was running and cache could be stale. This is just a
4418 heuristic. Running threads may modify target memory, but we
4419 don't get any event. */
4420 target_dcache_invalidate ();
4421
4422 if (deprecated_target_wait_hook)
4423 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4424 else
4425 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4426
4427 if (debug_infrun)
4428 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4429
4430 return event_ptid;
4431 }
4432
4433 /* An event reported by wait_one. */
4434
4435 struct wait_one_event
4436 {
4437 /* The target the event came out of. */
4438 process_stratum_target *target;
4439
4440 /* The PTID the event was for. */
4441 ptid_t ptid;
4442
4443 /* The waitstatus. */
4444 target_waitstatus ws;
4445 };
4446
4447 /* Wait for one event out of any target. */
4448
4449 static wait_one_event
4450 wait_one ()
4451 {
4452 while (1)
4453 {
4454 for (inferior *inf : all_inferiors ())
4455 {
4456 process_stratum_target *target = inf->process_target ();
4457 if (target == NULL
4458 || !target->is_async_p ()
4459 || !target->threads_executing)
4460 continue;
4461
4462 switch_to_inferior_no_thread (inf);
4463
4464 wait_one_event event;
4465 event.target = target;
4466 event.ptid = poll_one_curr_target (&event.ws);
4467
4468 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4469 {
4470 /* If nothing is resumed, remove the target from the
4471 event loop. */
4472 target_async (0);
4473 }
4474 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4475 return event;
4476 }
4477
4478 /* Block waiting for some event. */
4479
4480 fd_set readfds;
4481 int nfds = 0;
4482
4483 FD_ZERO (&readfds);
4484
4485 for (inferior *inf : all_inferiors ())
4486 {
4487 process_stratum_target *target = inf->process_target ();
4488 if (target == NULL
4489 || !target->is_async_p ()
4490 || !target->threads_executing)
4491 continue;
4492
4493 int fd = target->async_wait_fd ();
4494 FD_SET (fd, &readfds);
4495 if (nfds <= fd)
4496 nfds = fd + 1;
4497 }
4498
4499 if (nfds == 0)
4500 {
4501 /* No waitable targets left. All must be stopped. */
4502 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4503 }
4504
4505 QUIT;
4506
4507 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4508 if (numfds < 0)
4509 {
4510 if (errno == EINTR)
4511 continue;
4512 else
4513 perror_with_name ("interruptible_select");
4514 }
4515 }
4516 }
4517
4518 /* Save the thread's event and stop reason to process it later. */
4519
4520 static void
4521 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4522 {
4523 infrun_log_debug ("saving status %s for %d.%ld.%ld",
4524 target_waitstatus_to_string (ws).c_str (),
4525 tp->ptid.pid (),
4526 tp->ptid.lwp (),
4527 tp->ptid.tid ());
4528
4529 /* Record for later. */
4530 tp->suspend.waitstatus = *ws;
4531 tp->suspend.waitstatus_pending_p = 1;
4532
4533 struct regcache *regcache = get_thread_regcache (tp);
4534 const address_space *aspace = regcache->aspace ();
4535
4536 if (ws->kind == TARGET_WAITKIND_STOPPED
4537 && ws->value.sig == GDB_SIGNAL_TRAP)
4538 {
4539 CORE_ADDR pc = regcache_read_pc (regcache);
4540
4541 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4542
4543 scoped_restore_current_thread restore_thread;
4544 switch_to_thread (tp);
4545
4546 if (target_stopped_by_watchpoint ())
4547 {
4548 tp->suspend.stop_reason
4549 = TARGET_STOPPED_BY_WATCHPOINT;
4550 }
4551 else if (target_supports_stopped_by_sw_breakpoint ()
4552 && target_stopped_by_sw_breakpoint ())
4553 {
4554 tp->suspend.stop_reason
4555 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4556 }
4557 else if (target_supports_stopped_by_hw_breakpoint ()
4558 && target_stopped_by_hw_breakpoint ())
4559 {
4560 tp->suspend.stop_reason
4561 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4562 }
4563 else if (!target_supports_stopped_by_hw_breakpoint ()
4564 && hardware_breakpoint_inserted_here_p (aspace,
4565 pc))
4566 {
4567 tp->suspend.stop_reason
4568 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4569 }
4570 else if (!target_supports_stopped_by_sw_breakpoint ()
4571 && software_breakpoint_inserted_here_p (aspace,
4572 pc))
4573 {
4574 tp->suspend.stop_reason
4575 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4576 }
4577 else if (!thread_has_single_step_breakpoints_set (tp)
4578 && currently_stepping (tp))
4579 {
4580 tp->suspend.stop_reason
4581 = TARGET_STOPPED_BY_SINGLE_STEP;
4582 }
4583 }
4584 }
4585
4586 /* Mark the non-executing threads accordingly. In all-stop, all
4587 threads of all processes are stopped when we get any event
4588 reported. In non-stop mode, only the event thread stops. */
4589
4590 static void
4591 mark_non_executing_threads (process_stratum_target *target,
4592 ptid_t event_ptid,
4593 struct target_waitstatus ws)
4594 {
4595 ptid_t mark_ptid;
4596
4597 if (!target_is_non_stop_p ())
4598 mark_ptid = minus_one_ptid;
4599 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4600 || ws.kind == TARGET_WAITKIND_EXITED)
4601 {
4602 /* If we're handling a process exit in non-stop mode, even
4603 though threads haven't been deleted yet, one would think
4604 that there is nothing to do, as threads of the dead process
4605 will be soon deleted, and threads of any other process were
4606 left running. However, on some targets, threads survive a
4607 process exit event. E.g., for the "checkpoint" command,
4608 when the current checkpoint/fork exits, linux-fork.c
4609 automatically switches to another fork from within
4610 target_mourn_inferior, by associating the same
4611 inferior/thread to another fork. We haven't mourned yet at
4612 this point, but we must mark any threads left in the
4613 process as not-executing so that finish_thread_state marks
4614 them stopped (in the user's perspective) if/when we present
4615 the stop to the user. */
4616 mark_ptid = ptid_t (event_ptid.pid ());
4617 }
4618 else
4619 mark_ptid = event_ptid;
4620
4621 set_executing (target, mark_ptid, false);
4622
4623 /* Likewise the resumed flag. */
4624 set_resumed (target, mark_ptid, false);
4625 }
4626
4627 /* See infrun.h. */
4628
4629 void
4630 stop_all_threads (void)
4631 {
4632 /* We may need multiple passes to discover all threads. */
4633 int pass;
4634 int iterations = 0;
4635
4636 gdb_assert (exists_non_stop_target ());
4637
4638 infrun_log_debug ("stop_all_threads");
4639
4640 scoped_restore_current_thread restore_thread;
4641
4642 /* Enable thread events of all targets. */
4643 for (auto *target : all_non_exited_process_targets ())
4644 {
4645 switch_to_target_no_thread (target);
4646 target_thread_events (true);
4647 }
4648
4649 SCOPE_EXIT
4650 {
4651 /* Disable thread events of all targets. */
4652 for (auto *target : all_non_exited_process_targets ())
4653 {
4654 switch_to_target_no_thread (target);
4655 target_thread_events (false);
4656 }
4657
4658
4659 infrun_log_debug ("stop_all_threads done");
4660 };
4661
4662 /* Request threads to stop, and then wait for the stops. Because
4663 threads we already know about can spawn more threads while we're
4664 trying to stop them, and we only learn about new threads when we
4665 update the thread list, do this in a loop, and keep iterating
4666 until two passes find no threads that need to be stopped. */
4667 for (pass = 0; pass < 2; pass++, iterations++)
4668 {
4669 infrun_log_debug ("stop_all_threads, pass=%d, iterations=%d",
4670 pass, iterations);
4671 while (1)
4672 {
4673 int waits_needed = 0;
4674
4675 for (auto *target : all_non_exited_process_targets ())
4676 {
4677 switch_to_target_no_thread (target);
4678 update_thread_list ();
4679 }
4680
4681 /* Go through all threads looking for threads that we need
4682 to tell the target to stop. */
4683 for (thread_info *t : all_non_exited_threads ())
4684 {
4685 /* For a single-target setting with an all-stop target,
4686 we would not even arrive here. For a multi-target
4687 setting, until GDB is able to handle a mixture of
4688 all-stop and non-stop targets, simply skip all-stop
4689 targets' threads. This should be fine due to the
4690 protection of 'check_multi_target_resumption'. */
4691
4692 switch_to_thread_no_regs (t);
4693 if (!target_is_non_stop_p ())
4694 continue;
4695
4696 if (t->executing)
4697 {
4698 /* If already stopping, don't request a stop again.
4699 We just haven't seen the notification yet. */
4700 if (!t->stop_requested)
4701 {
4702 infrun_log_debug (" %s executing, need stop",
4703 target_pid_to_str (t->ptid).c_str ());
4704 target_stop (t->ptid);
4705 t->stop_requested = 1;
4706 }
4707 else
4708 {
4709 infrun_log_debug (" %s executing, already stopping",
4710 target_pid_to_str (t->ptid).c_str ());
4711 }
4712
4713 if (t->stop_requested)
4714 waits_needed++;
4715 }
4716 else
4717 {
4718 infrun_log_debug (" %s not executing",
4719 target_pid_to_str (t->ptid).c_str ());
4720
4721 /* The thread may be not executing, but still be
4722 resumed with a pending status to process. */
4723 t->resumed = false;
4724 }
4725 }
4726
4727 if (waits_needed == 0)
4728 break;
4729
4730 /* If we find new threads on the second iteration, restart
4731 over. We want to see two iterations in a row with all
4732 threads stopped. */
4733 if (pass > 0)
4734 pass = -1;
4735
4736 for (int i = 0; i < waits_needed; i++)
4737 {
4738 wait_one_event event = wait_one ();
4739
4740 infrun_log_debug ("%s %s\n",
4741 target_waitstatus_to_string (&event.ws).c_str (),
4742 target_pid_to_str (event.ptid).c_str ());
4743
4744 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4745 {
4746 /* All resumed threads exited. */
4747 break;
4748 }
4749 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4750 || event.ws.kind == TARGET_WAITKIND_EXITED
4751 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4752 {
4753 /* One thread/process exited/signalled. */
4754
4755 thread_info *t = nullptr;
4756
4757 /* The target may have reported just a pid. If so, try
4758 the first non-exited thread. */
4759 if (event.ptid.is_pid ())
4760 {
4761 int pid = event.ptid.pid ();
4762 inferior *inf = find_inferior_pid (event.target, pid);
4763 for (thread_info *tp : inf->non_exited_threads ())
4764 {
4765 t = tp;
4766 break;
4767 }
4768
4769 /* If there is no available thread, the event would
4770 have to be appended to a per-inferior event list,
4771 which does not exist (and if it did, we'd have
4772 to adjust run control command to be able to
4773 resume such an inferior). We assert here instead
4774 of going into an infinite loop. */
4775 gdb_assert (t != nullptr);
4776
4777 infrun_log_debug ("using %s\n",
4778 target_pid_to_str (t->ptid).c_str ());
4779 }
4780 else
4781 {
4782 t = find_thread_ptid (event.target, event.ptid);
4783 /* Check if this is the first time we see this thread.
4784 Don't bother adding if it individually exited. */
4785 if (t == nullptr
4786 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4787 t = add_thread (event.target, event.ptid);
4788 }
4789
4790 if (t != nullptr)
4791 {
4792 /* Set the threads as non-executing to avoid
4793 another stop attempt on them. */
4794 switch_to_thread_no_regs (t);
4795 mark_non_executing_threads (event.target, event.ptid,
4796 event.ws);
4797 save_waitstatus (t, &event.ws);
4798 t->stop_requested = false;
4799 }
4800 }
4801 else
4802 {
4803 thread_info *t = find_thread_ptid (event.target, event.ptid);
4804 if (t == NULL)
4805 t = add_thread (event.target, event.ptid);
4806
4807 t->stop_requested = 0;
4808 t->executing = 0;
4809 t->resumed = false;
4810 t->control.may_range_step = 0;
4811
4812 /* This may be the first time we see the inferior report
4813 a stop. */
4814 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4815 if (inf->needs_setup)
4816 {
4817 switch_to_thread_no_regs (t);
4818 setup_inferior (0);
4819 }
4820
4821 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4822 && event.ws.value.sig == GDB_SIGNAL_0)
4823 {
4824 /* We caught the event that we intended to catch, so
4825 there's no event pending. */
4826 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4827 t->suspend.waitstatus_pending_p = 0;
4828
4829 if (displaced_step_finish (t, GDB_SIGNAL_0) < 0)
4830 {
4831 /* Add it back to the step-over queue. */
4832 infrun_log_debug ("displaced-step of %s "
4833 "canceled: adding back to the "
4834 "step-over queue\n",
4835 target_pid_to_str (t->ptid).c_str ());
4836
4837 t->control.trap_expected = 0;
4838 global_thread_step_over_chain_enqueue (t);
4839 }
4840 }
4841 else
4842 {
4843 enum gdb_signal sig;
4844 struct regcache *regcache;
4845
4846 if (debug_infrun)
4847 {
4848 std::string statstr = target_waitstatus_to_string (&event.ws);
4849
4850 infrun_log_debug ("target_wait %s, saving "
4851 "status for %d.%ld.%ld\n",
4852 statstr.c_str (),
4853 t->ptid.pid (),
4854 t->ptid.lwp (),
4855 t->ptid.tid ());
4856 }
4857
4858 /* Record for later. */
4859 save_waitstatus (t, &event.ws);
4860
4861 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4862 ? event.ws.value.sig : GDB_SIGNAL_0);
4863
4864 if (displaced_step_finish (t, sig) < 0)
4865 {
4866 /* Add it back to the step-over queue. */
4867 t->control.trap_expected = 0;
4868 global_thread_step_over_chain_enqueue (t);
4869 }
4870
4871 regcache = get_thread_regcache (t);
4872 t->suspend.stop_pc = regcache_read_pc (regcache);
4873
4874 infrun_log_debug ("saved stop_pc=%s for %s "
4875 "(currently_stepping=%d)\n",
4876 paddress (target_gdbarch (),
4877 t->suspend.stop_pc),
4878 target_pid_to_str (t->ptid).c_str (),
4879 currently_stepping (t));
4880 }
4881 }
4882 }
4883 }
4884 }
4885 }
4886
4887 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4888
4889 static int
4890 handle_no_resumed (struct execution_control_state *ecs)
4891 {
4892 if (target_can_async_p ())
4893 {
4894 int any_sync = 0;
4895
4896 for (ui *ui : all_uis ())
4897 {
4898 if (ui->prompt_state == PROMPT_BLOCKED)
4899 {
4900 any_sync = 1;
4901 break;
4902 }
4903 }
4904 if (!any_sync)
4905 {
4906 /* There were no unwaited-for children left in the target, but,
4907 we're not synchronously waiting for events either. Just
4908 ignore. */
4909
4910 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4911 prepare_to_wait (ecs);
4912 return 1;
4913 }
4914 }
4915
4916 /* Otherwise, if we were running a synchronous execution command, we
4917 may need to cancel it and give the user back the terminal.
4918
4919 In non-stop mode, the target can't tell whether we've already
4920 consumed previous stop events, so it can end up sending us a
4921 no-resumed event like so:
4922
4923 #0 - thread 1 is left stopped
4924
4925 #1 - thread 2 is resumed and hits breakpoint
4926 -> TARGET_WAITKIND_STOPPED
4927
4928 #2 - thread 3 is resumed and exits
4929 this is the last resumed thread, so
4930 -> TARGET_WAITKIND_NO_RESUMED
4931
4932 #3 - gdb processes stop for thread 2 and decides to re-resume
4933 it.
4934
4935 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4936 thread 2 is now resumed, so the event should be ignored.
4937
4938 IOW, if the stop for thread 2 doesn't end a foreground command,
4939 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4940 event. But it could be that the event meant that thread 2 itself
4941 (or whatever other thread was the last resumed thread) exited.
4942
4943 To address this we refresh the thread list and check whether we
4944 have resumed threads _now_. In the example above, this removes
4945 thread 3 from the thread list. If thread 2 was re-resumed, we
4946 ignore this event. If we find no thread resumed, then we cancel
4947 the synchronous command and show "no unwaited-for " to the
4948 user. */
4949
4950 inferior *curr_inf = current_inferior ();
4951
4952 scoped_restore_current_thread restore_thread;
4953
4954 for (auto *target : all_non_exited_process_targets ())
4955 {
4956 switch_to_target_no_thread (target);
4957 update_thread_list ();
4958 }
4959
4960 /* If:
4961
4962 - the current target has no thread executing, and
4963 - the current inferior is native, and
4964 - the current inferior is the one which has the terminal, and
4965 - we did nothing,
4966
4967 then a Ctrl-C from this point on would remain stuck in the
4968 kernel, until a thread resumes and dequeues it. That would
4969 result in the GDB CLI not reacting to Ctrl-C, not able to
4970 interrupt the program. To address this, if the current inferior
4971 no longer has any thread executing, we give the terminal to some
4972 other inferior that has at least one thread executing. */
4973 bool swap_terminal = true;
4974
4975 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4976 whether to report it to the user. */
4977 bool ignore_event = false;
4978
4979 for (thread_info *thread : all_non_exited_threads ())
4980 {
4981 if (swap_terminal && thread->executing)
4982 {
4983 if (thread->inf != curr_inf)
4984 {
4985 target_terminal::ours ();
4986
4987 switch_to_thread (thread);
4988 target_terminal::inferior ();
4989 }
4990 swap_terminal = false;
4991 }
4992
4993 if (!ignore_event
4994 && (thread->executing
4995 || thread->suspend.waitstatus_pending_p))
4996 {
4997 /* Either there were no unwaited-for children left in the
4998 target at some point, but there are now, or some target
4999 other than the eventing one has unwaited-for children
5000 left. Just ignore. */
5001 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED "
5002 "(ignoring: found resumed)\n");
5003
5004 ignore_event = true;
5005 }
5006
5007 if (ignore_event && !swap_terminal)
5008 break;
5009 }
5010
5011 if (ignore_event)
5012 {
5013 switch_to_inferior_no_thread (curr_inf);
5014 prepare_to_wait (ecs);
5015 return 1;
5016 }
5017
5018 /* Go ahead and report the event. */
5019 return 0;
5020 }
5021
5022 /* Given an execution control state that has been freshly filled in by
5023 an event from the inferior, figure out what it means and take
5024 appropriate action.
5025
5026 The alternatives are:
5027
5028 1) stop_waiting and return; to really stop and return to the
5029 debugger.
5030
5031 2) keep_going and return; to wait for the next event (set
5032 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5033 once). */
5034
5035 static void
5036 handle_inferior_event (struct execution_control_state *ecs)
5037 {
5038 /* Make sure that all temporary struct value objects that were
5039 created during the handling of the event get deleted at the
5040 end. */
5041 scoped_value_mark free_values;
5042
5043 enum stop_kind stop_soon;
5044
5045 infrun_log_debug ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5046
5047 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5048 {
5049 /* We had an event in the inferior, but we are not interested in
5050 handling it at this level. The lower layers have already
5051 done what needs to be done, if anything.
5052
5053 One of the possible circumstances for this is when the
5054 inferior produces output for the console. The inferior has
5055 not stopped, and we are ignoring the event. Another possible
5056 circumstance is any event which the lower level knows will be
5057 reported multiple times without an intervening resume. */
5058 prepare_to_wait (ecs);
5059 return;
5060 }
5061
5062 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5063 {
5064 prepare_to_wait (ecs);
5065 return;
5066 }
5067
5068 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5069 && handle_no_resumed (ecs))
5070 return;
5071
5072 /* Cache the last target/ptid/waitstatus. */
5073 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5074
5075 /* Always clear state belonging to the previous time we stopped. */
5076 stop_stack_dummy = STOP_NONE;
5077
5078 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5079 {
5080 /* No unwaited-for children left. IOW, all resumed children
5081 have exited. */
5082 stop_print_frame = 0;
5083 stop_waiting (ecs);
5084 return;
5085 }
5086
5087 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5088 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5089 {
5090 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5091 /* If it's a new thread, add it to the thread database. */
5092 if (ecs->event_thread == NULL)
5093 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5094
5095 /* Disable range stepping. If the next step request could use a
5096 range, this will be end up re-enabled then. */
5097 ecs->event_thread->control.may_range_step = 0;
5098 }
5099
5100 /* Dependent on valid ECS->EVENT_THREAD. */
5101 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5102
5103 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5104 reinit_frame_cache ();
5105
5106 breakpoint_retire_moribund ();
5107
5108 /* First, distinguish signals caused by the debugger from signals
5109 that have to do with the program's own actions. Note that
5110 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5111 on the operating system version. Here we detect when a SIGILL or
5112 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5113 something similar for SIGSEGV, since a SIGSEGV will be generated
5114 when we're trying to execute a breakpoint instruction on a
5115 non-executable stack. This happens for call dummy breakpoints
5116 for architectures like SPARC that place call dummies on the
5117 stack. */
5118 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5119 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5120 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5121 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5122 {
5123 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5124
5125 if (breakpoint_inserted_here_p (regcache->aspace (),
5126 regcache_read_pc (regcache)))
5127 {
5128 infrun_log_debug ("Treating signal as SIGTRAP");
5129 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5130 }
5131 }
5132
5133 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5134
5135 switch (ecs->ws.kind)
5136 {
5137 case TARGET_WAITKIND_LOADED:
5138 context_switch (ecs);
5139 /* Ignore gracefully during startup of the inferior, as it might
5140 be the shell which has just loaded some objects, otherwise
5141 add the symbols for the newly loaded objects. Also ignore at
5142 the beginning of an attach or remote session; we will query
5143 the full list of libraries once the connection is
5144 established. */
5145
5146 stop_soon = get_inferior_stop_soon (ecs);
5147 if (stop_soon == NO_STOP_QUIETLY)
5148 {
5149 struct regcache *regcache;
5150
5151 regcache = get_thread_regcache (ecs->event_thread);
5152
5153 handle_solib_event ();
5154
5155 ecs->event_thread->control.stop_bpstat
5156 = bpstat_stop_status (regcache->aspace (),
5157 ecs->event_thread->suspend.stop_pc,
5158 ecs->event_thread, &ecs->ws);
5159
5160 if (handle_stop_requested (ecs))
5161 return;
5162
5163 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5164 {
5165 /* A catchpoint triggered. */
5166 process_event_stop_test (ecs);
5167 return;
5168 }
5169
5170 /* If requested, stop when the dynamic linker notifies
5171 gdb of events. This allows the user to get control
5172 and place breakpoints in initializer routines for
5173 dynamically loaded objects (among other things). */
5174 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5175 if (stop_on_solib_events)
5176 {
5177 /* Make sure we print "Stopped due to solib-event" in
5178 normal_stop. */
5179 stop_print_frame = 1;
5180
5181 stop_waiting (ecs);
5182 return;
5183 }
5184 }
5185
5186 /* If we are skipping through a shell, or through shared library
5187 loading that we aren't interested in, resume the program. If
5188 we're running the program normally, also resume. */
5189 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5190 {
5191 /* Loading of shared libraries might have changed breakpoint
5192 addresses. Make sure new breakpoints are inserted. */
5193 if (stop_soon == NO_STOP_QUIETLY)
5194 insert_breakpoints ();
5195 resume (GDB_SIGNAL_0);
5196 prepare_to_wait (ecs);
5197 return;
5198 }
5199
5200 /* But stop if we're attaching or setting up a remote
5201 connection. */
5202 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5203 || stop_soon == STOP_QUIETLY_REMOTE)
5204 {
5205 infrun_log_debug ("quietly stopped");
5206 stop_waiting (ecs);
5207 return;
5208 }
5209
5210 internal_error (__FILE__, __LINE__,
5211 _("unhandled stop_soon: %d"), (int) stop_soon);
5212
5213 case TARGET_WAITKIND_SPURIOUS:
5214 if (handle_stop_requested (ecs))
5215 return;
5216 context_switch (ecs);
5217 resume (GDB_SIGNAL_0);
5218 prepare_to_wait (ecs);
5219 return;
5220
5221 case TARGET_WAITKIND_THREAD_CREATED:
5222 if (handle_stop_requested (ecs))
5223 return;
5224 context_switch (ecs);
5225 if (!switch_back_to_stepped_thread (ecs))
5226 keep_going (ecs);
5227 return;
5228
5229 case TARGET_WAITKIND_EXITED:
5230 case TARGET_WAITKIND_SIGNALLED:
5231 {
5232 /* Depending on the system, ecs->ptid may point to a thread or
5233 to a process. On some targets, target_mourn_inferior may
5234 need to have access to the just-exited thread. That is the
5235 case of GNU/Linux's "checkpoint" support, for example.
5236 Call the switch_to_xxx routine as appropriate. */
5237 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5238 if (thr != nullptr)
5239 switch_to_thread (thr);
5240 else
5241 {
5242 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5243 switch_to_inferior_no_thread (inf);
5244 }
5245 }
5246 handle_vfork_child_exec_or_exit (0);
5247 target_terminal::ours (); /* Must do this before mourn anyway. */
5248
5249 /* Clearing any previous state of convenience variables. */
5250 clear_exit_convenience_vars ();
5251
5252 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5253 {
5254 /* Record the exit code in the convenience variable $_exitcode, so
5255 that the user can inspect this again later. */
5256 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5257 (LONGEST) ecs->ws.value.integer);
5258
5259 /* Also record this in the inferior itself. */
5260 current_inferior ()->has_exit_code = 1;
5261 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5262
5263 /* Support the --return-child-result option. */
5264 return_child_result_value = ecs->ws.value.integer;
5265
5266 gdb::observers::exited.notify (ecs->ws.value.integer);
5267 }
5268 else
5269 {
5270 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5271
5272 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5273 {
5274 /* Set the value of the internal variable $_exitsignal,
5275 which holds the signal uncaught by the inferior. */
5276 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5277 gdbarch_gdb_signal_to_target (gdbarch,
5278 ecs->ws.value.sig));
5279 }
5280 else
5281 {
5282 /* We don't have access to the target's method used for
5283 converting between signal numbers (GDB's internal
5284 representation <-> target's representation).
5285 Therefore, we cannot do a good job at displaying this
5286 information to the user. It's better to just warn
5287 her about it (if infrun debugging is enabled), and
5288 give up. */
5289 infrun_log_debug ("Cannot fill $_exitsignal with the correct "
5290 "signal number.");
5291 }
5292
5293 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5294 }
5295
5296 gdb_flush (gdb_stdout);
5297 target_mourn_inferior (inferior_ptid);
5298 stop_print_frame = 0;
5299 stop_waiting (ecs);
5300 return;
5301
5302 case TARGET_WAITKIND_FORKED:
5303 case TARGET_WAITKIND_VFORKED:
5304 /* Check whether the inferior is displaced stepping. */
5305 {
5306 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5307 struct gdbarch *gdbarch = regcache->arch ();
5308
5309 /* If checking displaced stepping is supported, and thread
5310 ecs->ptid is displaced stepping. */
5311 if (displaced_step_in_progress (ecs->event_thread))
5312 {
5313 struct inferior *parent_inf
5314 = find_inferior_ptid (ecs->target, ecs->ptid);
5315 struct regcache *child_regcache;
5316 CORE_ADDR parent_pc;
5317
5318 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5319 {
5320 // struct displaced_step_inferior_state *displaced
5321 // = get_displaced_stepping_state (parent_inf);
5322
5323 /* Restore scratch pad for child process. */
5324 //displaced_step_restore (displaced, ecs->ws.value.related_pid);
5325 // FIXME: we should restore all the buffers that were currently in use
5326 }
5327
5328 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5329 indicating that the displaced stepping of syscall instruction
5330 has been done. Perform cleanup for parent process here. Note
5331 that this operation also cleans up the child process for vfork,
5332 because their pages are shared. */
5333 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5334 /* Start a new step-over in another thread if there's one
5335 that needs it. */
5336 start_step_over ();
5337
5338 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5339 the child's PC is also within the scratchpad. Set the child's PC
5340 to the parent's PC value, which has already been fixed up.
5341 FIXME: we use the parent's aspace here, although we're touching
5342 the child, because the child hasn't been added to the inferior
5343 list yet at this point. */
5344
5345 child_regcache
5346 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5347 ecs->ws.value.related_pid,
5348 gdbarch,
5349 parent_inf->aspace);
5350 /* Read PC value of parent process. */
5351 parent_pc = regcache_read_pc (regcache);
5352
5353 if (debug_displaced)
5354 fprintf_unfiltered (gdb_stdlog,
5355 "displaced: write child pc from %s to %s\n",
5356 paddress (gdbarch,
5357 regcache_read_pc (child_regcache)),
5358 paddress (gdbarch, parent_pc));
5359
5360 regcache_write_pc (child_regcache, parent_pc);
5361 }
5362 }
5363
5364 context_switch (ecs);
5365
5366 /* Immediately detach breakpoints from the child before there's
5367 any chance of letting the user delete breakpoints from the
5368 breakpoint lists. If we don't do this early, it's easy to
5369 leave left over traps in the child, vis: "break foo; catch
5370 fork; c; <fork>; del; c; <child calls foo>". We only follow
5371 the fork on the last `continue', and by that time the
5372 breakpoint at "foo" is long gone from the breakpoint table.
5373 If we vforked, then we don't need to unpatch here, since both
5374 parent and child are sharing the same memory pages; we'll
5375 need to unpatch at follow/detach time instead to be certain
5376 that new breakpoints added between catchpoint hit time and
5377 vfork follow are detached. */
5378 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5379 {
5380 /* This won't actually modify the breakpoint list, but will
5381 physically remove the breakpoints from the child. */
5382 detach_breakpoints (ecs->ws.value.related_pid);
5383 }
5384
5385 delete_just_stopped_threads_single_step_breakpoints ();
5386
5387 /* In case the event is caught by a catchpoint, remember that
5388 the event is to be followed at the next resume of the thread,
5389 and not immediately. */
5390 ecs->event_thread->pending_follow = ecs->ws;
5391
5392 ecs->event_thread->suspend.stop_pc
5393 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5394
5395 ecs->event_thread->control.stop_bpstat
5396 = bpstat_stop_status (get_current_regcache ()->aspace (),
5397 ecs->event_thread->suspend.stop_pc,
5398 ecs->event_thread, &ecs->ws);
5399
5400 if (handle_stop_requested (ecs))
5401 return;
5402
5403 /* If no catchpoint triggered for this, then keep going. Note
5404 that we're interested in knowing the bpstat actually causes a
5405 stop, not just if it may explain the signal. Software
5406 watchpoints, for example, always appear in the bpstat. */
5407 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5408 {
5409 bool follow_child
5410 = (follow_fork_mode_string == follow_fork_mode_child);
5411
5412 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5413
5414 process_stratum_target *targ
5415 = ecs->event_thread->inf->process_target ();
5416
5417 bool should_resume = follow_fork ();
5418
5419 /* Note that one of these may be an invalid pointer,
5420 depending on detach_fork. */
5421 thread_info *parent = ecs->event_thread;
5422 thread_info *child
5423 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5424
5425 /* At this point, the parent is marked running, and the
5426 child is marked stopped. */
5427
5428 /* If not resuming the parent, mark it stopped. */
5429 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5430 parent->set_running (false);
5431
5432 /* If resuming the child, mark it running. */
5433 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5434 child->set_running (true);
5435
5436 /* In non-stop mode, also resume the other branch. */
5437 if (!detach_fork && (non_stop
5438 || (sched_multi && target_is_non_stop_p ())))
5439 {
5440 if (follow_child)
5441 switch_to_thread (parent);
5442 else
5443 switch_to_thread (child);
5444
5445 ecs->event_thread = inferior_thread ();
5446 ecs->ptid = inferior_ptid;
5447 keep_going (ecs);
5448 }
5449
5450 if (follow_child)
5451 switch_to_thread (child);
5452 else
5453 switch_to_thread (parent);
5454
5455 ecs->event_thread = inferior_thread ();
5456 ecs->ptid = inferior_ptid;
5457
5458 if (should_resume)
5459 keep_going (ecs);
5460 else
5461 stop_waiting (ecs);
5462 return;
5463 }
5464 process_event_stop_test (ecs);
5465 return;
5466
5467 case TARGET_WAITKIND_VFORK_DONE:
5468 /* Done with the shared memory region. Re-insert breakpoints in
5469 the parent, and keep going. */
5470
5471 context_switch (ecs);
5472
5473 current_inferior ()->waiting_for_vfork_done = 0;
5474 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5475
5476 if (handle_stop_requested (ecs))
5477 return;
5478
5479 /* This also takes care of reinserting breakpoints in the
5480 previously locked inferior. */
5481 keep_going (ecs);
5482 return;
5483
5484 case TARGET_WAITKIND_EXECD:
5485
5486 /* Note we can't read registers yet (the stop_pc), because we
5487 don't yet know the inferior's post-exec architecture.
5488 'stop_pc' is explicitly read below instead. */
5489 switch_to_thread_no_regs (ecs->event_thread);
5490
5491 /* Do whatever is necessary to the parent branch of the vfork. */
5492 handle_vfork_child_exec_or_exit (1);
5493
5494 /* This causes the eventpoints and symbol table to be reset.
5495 Must do this now, before trying to determine whether to
5496 stop. */
5497 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5498
5499 /* In follow_exec we may have deleted the original thread and
5500 created a new one. Make sure that the event thread is the
5501 execd thread for that case (this is a nop otherwise). */
5502 ecs->event_thread = inferior_thread ();
5503
5504 ecs->event_thread->suspend.stop_pc
5505 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5506
5507 ecs->event_thread->control.stop_bpstat
5508 = bpstat_stop_status (get_current_regcache ()->aspace (),
5509 ecs->event_thread->suspend.stop_pc,
5510 ecs->event_thread, &ecs->ws);
5511
5512 /* Note that this may be referenced from inside
5513 bpstat_stop_status above, through inferior_has_execd. */
5514 xfree (ecs->ws.value.execd_pathname);
5515 ecs->ws.value.execd_pathname = NULL;
5516
5517 if (handle_stop_requested (ecs))
5518 return;
5519
5520 /* If no catchpoint triggered for this, then keep going. */
5521 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5522 {
5523 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5524 keep_going (ecs);
5525 return;
5526 }
5527 process_event_stop_test (ecs);
5528 return;
5529
5530 /* Be careful not to try to gather much state about a thread
5531 that's in a syscall. It's frequently a losing proposition. */
5532 case TARGET_WAITKIND_SYSCALL_ENTRY:
5533 /* Getting the current syscall number. */
5534 if (handle_syscall_event (ecs) == 0)
5535 process_event_stop_test (ecs);
5536 return;
5537
5538 /* Before examining the threads further, step this thread to
5539 get it entirely out of the syscall. (We get notice of the
5540 event when the thread is just on the verge of exiting a
5541 syscall. Stepping one instruction seems to get it back
5542 into user code.) */
5543 case TARGET_WAITKIND_SYSCALL_RETURN:
5544 if (handle_syscall_event (ecs) == 0)
5545 process_event_stop_test (ecs);
5546 return;
5547
5548 case TARGET_WAITKIND_STOPPED:
5549 handle_signal_stop (ecs);
5550 return;
5551
5552 case TARGET_WAITKIND_NO_HISTORY:
5553 /* Reverse execution: target ran out of history info. */
5554
5555 /* Switch to the stopped thread. */
5556 context_switch (ecs);
5557 infrun_log_debug ("stopped");
5558
5559 delete_just_stopped_threads_single_step_breakpoints ();
5560 ecs->event_thread->suspend.stop_pc
5561 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5562
5563 if (handle_stop_requested (ecs))
5564 return;
5565
5566 gdb::observers::no_history.notify ();
5567 stop_waiting (ecs);
5568 return;
5569 }
5570 }
5571
5572 /* Restart threads back to what they were trying to do back when we
5573 paused them for an in-line step-over. The EVENT_THREAD thread is
5574 ignored. */
5575
5576 static void
5577 restart_threads (struct thread_info *event_thread)
5578 {
5579 /* In case the instruction just stepped spawned a new thread. */
5580 update_thread_list ();
5581
5582 for (thread_info *tp : all_non_exited_threads ())
5583 {
5584 switch_to_thread_no_regs (tp);
5585
5586 if (tp == event_thread)
5587 {
5588 infrun_log_debug ("restart threads: [%s] is event thread",
5589 target_pid_to_str (tp->ptid).c_str ());
5590 continue;
5591 }
5592
5593 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5594 {
5595 infrun_log_debug ("restart threads: [%s] not meant to be running",
5596 target_pid_to_str (tp->ptid).c_str ());
5597 continue;
5598 }
5599
5600 if (tp->resumed)
5601 {
5602 infrun_log_debug ("restart threads: [%s] resumed",
5603 target_pid_to_str (tp->ptid).c_str ());
5604 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5605 continue;
5606 }
5607
5608 if (thread_is_in_step_over_chain (tp))
5609 {
5610 infrun_log_debug ("restart threads: [%s] needs step-over",
5611 target_pid_to_str (tp->ptid).c_str ());
5612 gdb_assert (!tp->resumed);
5613 continue;
5614 }
5615
5616
5617 if (tp->suspend.waitstatus_pending_p)
5618 {
5619 infrun_log_debug ("restart threads: [%s] has pending status",
5620 target_pid_to_str (tp->ptid).c_str ());
5621 tp->resumed = true;
5622 continue;
5623 }
5624
5625 gdb_assert (!tp->stop_requested);
5626
5627 /* If some thread needs to start a step-over at this point, it
5628 should still be in the step-over queue, and thus skipped
5629 above. */
5630 if (thread_still_needs_step_over (tp))
5631 {
5632 internal_error (__FILE__, __LINE__,
5633 "thread [%s] needs a step-over, but not in "
5634 "step-over queue\n",
5635 target_pid_to_str (tp->ptid).c_str ());
5636 }
5637
5638 if (currently_stepping (tp))
5639 {
5640 infrun_log_debug ("restart threads: [%s] was stepping",
5641 target_pid_to_str (tp->ptid).c_str ());
5642 keep_going_stepped_thread (tp);
5643 }
5644 else
5645 {
5646 struct execution_control_state ecss;
5647 struct execution_control_state *ecs = &ecss;
5648
5649 infrun_log_debug ("restart threads: [%s] continuing",
5650 target_pid_to_str (tp->ptid).c_str ());
5651 reset_ecs (ecs, tp);
5652 switch_to_thread (tp);
5653 keep_going_pass_signal (ecs);
5654 }
5655 }
5656 }
5657
5658 /* Callback for iterate_over_threads. Find a resumed thread that has
5659 a pending waitstatus. */
5660
5661 static int
5662 resumed_thread_with_pending_status (struct thread_info *tp,
5663 void *arg)
5664 {
5665 return (tp->resumed
5666 && tp->suspend.waitstatus_pending_p);
5667 }
5668
5669 /* Called when we get an event that may finish an in-line or
5670 out-of-line (displaced stepping) step-over started previously.
5671 Return true if the event is processed and we should go back to the
5672 event loop; false if the caller should continue processing the
5673 event. */
5674
5675 static int
5676 finish_step_over (struct execution_control_state *ecs)
5677 {
5678 int had_step_over_info;
5679
5680 displaced_step_finish (ecs->event_thread,
5681 ecs->event_thread->suspend.stop_signal);
5682
5683 had_step_over_info = step_over_info_valid_p ();
5684
5685 if (had_step_over_info)
5686 {
5687 /* If we're stepping over a breakpoint with all threads locked,
5688 then only the thread that was stepped should be reporting
5689 back an event. */
5690 gdb_assert (ecs->event_thread->control.trap_expected);
5691
5692 clear_step_over_info ();
5693 }
5694
5695 if (!target_is_non_stop_p ())
5696 return 0;
5697
5698 /* Start a new step-over in another thread if there's one that
5699 needs it. */
5700 start_step_over ();
5701
5702 /* If we were stepping over a breakpoint before, and haven't started
5703 a new in-line step-over sequence, then restart all other threads
5704 (except the event thread). We can't do this in all-stop, as then
5705 e.g., we wouldn't be able to issue any other remote packet until
5706 these other threads stop. */
5707 if (had_step_over_info && !step_over_info_valid_p ())
5708 {
5709 struct thread_info *pending;
5710
5711 /* If we only have threads with pending statuses, the restart
5712 below won't restart any thread and so nothing re-inserts the
5713 breakpoint we just stepped over. But we need it inserted
5714 when we later process the pending events, otherwise if
5715 another thread has a pending event for this breakpoint too,
5716 we'd discard its event (because the breakpoint that
5717 originally caused the event was no longer inserted). */
5718 context_switch (ecs);
5719 insert_breakpoints ();
5720
5721 restart_threads (ecs->event_thread);
5722
5723 /* If we have events pending, go through handle_inferior_event
5724 again, picking up a pending event at random. This avoids
5725 thread starvation. */
5726
5727 /* But not if we just stepped over a watchpoint in order to let
5728 the instruction execute so we can evaluate its expression.
5729 The set of watchpoints that triggered is recorded in the
5730 breakpoint objects themselves (see bp->watchpoint_triggered).
5731 If we processed another event first, that other event could
5732 clobber this info. */
5733 if (ecs->event_thread->stepping_over_watchpoint)
5734 return 0;
5735
5736 pending = iterate_over_threads (resumed_thread_with_pending_status,
5737 NULL);
5738 if (pending != NULL)
5739 {
5740 struct thread_info *tp = ecs->event_thread;
5741 struct regcache *regcache;
5742
5743 infrun_log_debug ("found resumed threads with "
5744 "pending events, saving status");
5745
5746 gdb_assert (pending != tp);
5747
5748 /* Record the event thread's event for later. */
5749 save_waitstatus (tp, &ecs->ws);
5750 /* This was cleared early, by handle_inferior_event. Set it
5751 so this pending event is considered by
5752 do_target_wait. */
5753 tp->resumed = true;
5754
5755 gdb_assert (!tp->executing);
5756
5757 regcache = get_thread_regcache (tp);
5758 tp->suspend.stop_pc = regcache_read_pc (regcache);
5759
5760 infrun_log_debug ("saved stop_pc=%s for %s "
5761 "(currently_stepping=%d)\n",
5762 paddress (target_gdbarch (),
5763 tp->suspend.stop_pc),
5764 target_pid_to_str (tp->ptid).c_str (),
5765 currently_stepping (tp));
5766
5767 /* This in-line step-over finished; clear this so we won't
5768 start a new one. This is what handle_signal_stop would
5769 do, if we returned false. */
5770 tp->stepping_over_breakpoint = 0;
5771
5772 /* Wake up the event loop again. */
5773 mark_async_event_handler (infrun_async_inferior_event_token);
5774
5775 prepare_to_wait (ecs);
5776 return 1;
5777 }
5778 }
5779
5780 return 0;
5781 }
5782
5783 /* Come here when the program has stopped with a signal. */
5784
5785 static void
5786 handle_signal_stop (struct execution_control_state *ecs)
5787 {
5788 struct frame_info *frame;
5789 struct gdbarch *gdbarch;
5790 int stopped_by_watchpoint;
5791 enum stop_kind stop_soon;
5792 int random_signal;
5793
5794 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5795
5796 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5797
5798 /* Do we need to clean up the state of a thread that has
5799 completed a displaced single-step? (Doing so usually affects
5800 the PC, so do it here, before we set stop_pc.) */
5801 if (finish_step_over (ecs))
5802 return;
5803
5804 /* If we either finished a single-step or hit a breakpoint, but
5805 the user wanted this thread to be stopped, pretend we got a
5806 SIG0 (generic unsignaled stop). */
5807 if (ecs->event_thread->stop_requested
5808 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5809 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5810
5811 ecs->event_thread->suspend.stop_pc
5812 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5813
5814 if (debug_infrun)
5815 {
5816 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5817 struct gdbarch *reg_gdbarch = regcache->arch ();
5818
5819 switch_to_thread (ecs->event_thread);
5820
5821 infrun_log_debug ("stop_pc=%s",
5822 paddress (reg_gdbarch,
5823 ecs->event_thread->suspend.stop_pc));
5824 if (target_stopped_by_watchpoint ())
5825 {
5826 CORE_ADDR addr;
5827
5828 infrun_log_debug ("stopped by watchpoint");
5829
5830 if (target_stopped_data_address (current_top_target (), &addr))
5831 infrun_log_debug ("stopped data address=%s",
5832 paddress (reg_gdbarch, addr));
5833 else
5834 infrun_log_debug ("(no data address available)");
5835 }
5836 }
5837
5838 /* This is originated from start_remote(), start_inferior() and
5839 shared libraries hook functions. */
5840 stop_soon = get_inferior_stop_soon (ecs);
5841 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5842 {
5843 context_switch (ecs);
5844 infrun_log_debug ("quietly stopped");
5845 stop_print_frame = 1;
5846 stop_waiting (ecs);
5847 return;
5848 }
5849
5850 /* This originates from attach_command(). We need to overwrite
5851 the stop_signal here, because some kernels don't ignore a
5852 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5853 See more comments in inferior.h. On the other hand, if we
5854 get a non-SIGSTOP, report it to the user - assume the backend
5855 will handle the SIGSTOP if it should show up later.
5856
5857 Also consider that the attach is complete when we see a
5858 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5859 target extended-remote report it instead of a SIGSTOP
5860 (e.g. gdbserver). We already rely on SIGTRAP being our
5861 signal, so this is no exception.
5862
5863 Also consider that the attach is complete when we see a
5864 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5865 the target to stop all threads of the inferior, in case the
5866 low level attach operation doesn't stop them implicitly. If
5867 they weren't stopped implicitly, then the stub will report a
5868 GDB_SIGNAL_0, meaning: stopped for no particular reason
5869 other than GDB's request. */
5870 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5871 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5872 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5873 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5874 {
5875 stop_print_frame = 1;
5876 stop_waiting (ecs);
5877 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5878 return;
5879 }
5880
5881 /* See if something interesting happened to the non-current thread. If
5882 so, then switch to that thread. */
5883 if (ecs->ptid != inferior_ptid)
5884 {
5885 infrun_log_debug ("context switch");
5886
5887 context_switch (ecs);
5888
5889 if (deprecated_context_hook)
5890 deprecated_context_hook (ecs->event_thread->global_num);
5891 }
5892
5893 /* At this point, get hold of the now-current thread's frame. */
5894 frame = get_current_frame ();
5895 gdbarch = get_frame_arch (frame);
5896
5897 /* Pull the single step breakpoints out of the target. */
5898 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5899 {
5900 struct regcache *regcache;
5901 CORE_ADDR pc;
5902
5903 regcache = get_thread_regcache (ecs->event_thread);
5904 const address_space *aspace = regcache->aspace ();
5905
5906 pc = regcache_read_pc (regcache);
5907
5908 /* However, before doing so, if this single-step breakpoint was
5909 actually for another thread, set this thread up for moving
5910 past it. */
5911 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5912 aspace, pc))
5913 {
5914 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5915 {
5916 infrun_log_debug ("[%s] hit another thread's single-step "
5917 "breakpoint",
5918 target_pid_to_str (ecs->ptid).c_str ());
5919 ecs->hit_singlestep_breakpoint = 1;
5920 }
5921 }
5922 else
5923 {
5924 infrun_log_debug ("[%s] hit its single-step breakpoint",
5925 target_pid_to_str (ecs->ptid).c_str ());
5926 }
5927 }
5928 delete_just_stopped_threads_single_step_breakpoints ();
5929
5930 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5931 && ecs->event_thread->control.trap_expected
5932 && ecs->event_thread->stepping_over_watchpoint)
5933 stopped_by_watchpoint = 0;
5934 else
5935 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5936
5937 /* If necessary, step over this watchpoint. We'll be back to display
5938 it in a moment. */
5939 if (stopped_by_watchpoint
5940 && (target_have_steppable_watchpoint
5941 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5942 {
5943 /* At this point, we are stopped at an instruction which has
5944 attempted to write to a piece of memory under control of
5945 a watchpoint. The instruction hasn't actually executed
5946 yet. If we were to evaluate the watchpoint expression
5947 now, we would get the old value, and therefore no change
5948 would seem to have occurred.
5949
5950 In order to make watchpoints work `right', we really need
5951 to complete the memory write, and then evaluate the
5952 watchpoint expression. We do this by single-stepping the
5953 target.
5954
5955 It may not be necessary to disable the watchpoint to step over
5956 it. For example, the PA can (with some kernel cooperation)
5957 single step over a watchpoint without disabling the watchpoint.
5958
5959 It is far more common to need to disable a watchpoint to step
5960 the inferior over it. If we have non-steppable watchpoints,
5961 we must disable the current watchpoint; it's simplest to
5962 disable all watchpoints.
5963
5964 Any breakpoint at PC must also be stepped over -- if there's
5965 one, it will have already triggered before the watchpoint
5966 triggered, and we either already reported it to the user, or
5967 it didn't cause a stop and we called keep_going. In either
5968 case, if there was a breakpoint at PC, we must be trying to
5969 step past it. */
5970 ecs->event_thread->stepping_over_watchpoint = 1;
5971 keep_going (ecs);
5972 return;
5973 }
5974
5975 ecs->event_thread->stepping_over_breakpoint = 0;
5976 ecs->event_thread->stepping_over_watchpoint = 0;
5977 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5978 ecs->event_thread->control.stop_step = 0;
5979 stop_print_frame = 1;
5980 stopped_by_random_signal = 0;
5981 bpstat stop_chain = NULL;
5982
5983 /* Hide inlined functions starting here, unless we just performed stepi or
5984 nexti. After stepi and nexti, always show the innermost frame (not any
5985 inline function call sites). */
5986 if (ecs->event_thread->control.step_range_end != 1)
5987 {
5988 const address_space *aspace
5989 = get_thread_regcache (ecs->event_thread)->aspace ();
5990
5991 /* skip_inline_frames is expensive, so we avoid it if we can
5992 determine that the address is one where functions cannot have
5993 been inlined. This improves performance with inferiors that
5994 load a lot of shared libraries, because the solib event
5995 breakpoint is defined as the address of a function (i.e. not
5996 inline). Note that we have to check the previous PC as well
5997 as the current one to catch cases when we have just
5998 single-stepped off a breakpoint prior to reinstating it.
5999 Note that we're assuming that the code we single-step to is
6000 not inline, but that's not definitive: there's nothing
6001 preventing the event breakpoint function from containing
6002 inlined code, and the single-step ending up there. If the
6003 user had set a breakpoint on that inlined code, the missing
6004 skip_inline_frames call would break things. Fortunately
6005 that's an extremely unlikely scenario. */
6006 if (!pc_at_non_inline_function (aspace,
6007 ecs->event_thread->suspend.stop_pc,
6008 &ecs->ws)
6009 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6010 && ecs->event_thread->control.trap_expected
6011 && pc_at_non_inline_function (aspace,
6012 ecs->event_thread->prev_pc,
6013 &ecs->ws)))
6014 {
6015 stop_chain = build_bpstat_chain (aspace,
6016 ecs->event_thread->suspend.stop_pc,
6017 &ecs->ws);
6018 skip_inline_frames (ecs->event_thread, stop_chain);
6019
6020 /* Re-fetch current thread's frame in case that invalidated
6021 the frame cache. */
6022 frame = get_current_frame ();
6023 gdbarch = get_frame_arch (frame);
6024 }
6025 }
6026
6027 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6028 && ecs->event_thread->control.trap_expected
6029 && gdbarch_single_step_through_delay_p (gdbarch)
6030 && currently_stepping (ecs->event_thread))
6031 {
6032 /* We're trying to step off a breakpoint. Turns out that we're
6033 also on an instruction that needs to be stepped multiple
6034 times before it's been fully executing. E.g., architectures
6035 with a delay slot. It needs to be stepped twice, once for
6036 the instruction and once for the delay slot. */
6037 int step_through_delay
6038 = gdbarch_single_step_through_delay (gdbarch, frame);
6039
6040 if (step_through_delay)
6041 infrun_log_debug ("step through delay");
6042
6043 if (ecs->event_thread->control.step_range_end == 0
6044 && step_through_delay)
6045 {
6046 /* The user issued a continue when stopped at a breakpoint.
6047 Set up for another trap and get out of here. */
6048 ecs->event_thread->stepping_over_breakpoint = 1;
6049 keep_going (ecs);
6050 return;
6051 }
6052 else if (step_through_delay)
6053 {
6054 /* The user issued a step when stopped at a breakpoint.
6055 Maybe we should stop, maybe we should not - the delay
6056 slot *might* correspond to a line of source. In any
6057 case, don't decide that here, just set
6058 ecs->stepping_over_breakpoint, making sure we
6059 single-step again before breakpoints are re-inserted. */
6060 ecs->event_thread->stepping_over_breakpoint = 1;
6061 }
6062 }
6063
6064 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6065 handles this event. */
6066 ecs->event_thread->control.stop_bpstat
6067 = bpstat_stop_status (get_current_regcache ()->aspace (),
6068 ecs->event_thread->suspend.stop_pc,
6069 ecs->event_thread, &ecs->ws, stop_chain);
6070
6071 /* Following in case break condition called a
6072 function. */
6073 stop_print_frame = 1;
6074
6075 /* This is where we handle "moribund" watchpoints. Unlike
6076 software breakpoints traps, hardware watchpoint traps are
6077 always distinguishable from random traps. If no high-level
6078 watchpoint is associated with the reported stop data address
6079 anymore, then the bpstat does not explain the signal ---
6080 simply make sure to ignore it if `stopped_by_watchpoint' is
6081 set. */
6082
6083 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6084 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6085 GDB_SIGNAL_TRAP)
6086 && stopped_by_watchpoint)
6087 {
6088 infrun_log_debug ("no user watchpoint explains watchpoint SIGTRAP, "
6089 "ignoring");
6090 }
6091
6092 /* NOTE: cagney/2003-03-29: These checks for a random signal
6093 at one stage in the past included checks for an inferior
6094 function call's call dummy's return breakpoint. The original
6095 comment, that went with the test, read:
6096
6097 ``End of a stack dummy. Some systems (e.g. Sony news) give
6098 another signal besides SIGTRAP, so check here as well as
6099 above.''
6100
6101 If someone ever tries to get call dummys on a
6102 non-executable stack to work (where the target would stop
6103 with something like a SIGSEGV), then those tests might need
6104 to be re-instated. Given, however, that the tests were only
6105 enabled when momentary breakpoints were not being used, I
6106 suspect that it won't be the case.
6107
6108 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6109 be necessary for call dummies on a non-executable stack on
6110 SPARC. */
6111
6112 /* See if the breakpoints module can explain the signal. */
6113 random_signal
6114 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6115 ecs->event_thread->suspend.stop_signal);
6116
6117 /* Maybe this was a trap for a software breakpoint that has since
6118 been removed. */
6119 if (random_signal && target_stopped_by_sw_breakpoint ())
6120 {
6121 if (gdbarch_program_breakpoint_here_p (gdbarch,
6122 ecs->event_thread->suspend.stop_pc))
6123 {
6124 struct regcache *regcache;
6125 int decr_pc;
6126
6127 /* Re-adjust PC to what the program would see if GDB was not
6128 debugging it. */
6129 regcache = get_thread_regcache (ecs->event_thread);
6130 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6131 if (decr_pc != 0)
6132 {
6133 gdb::optional<scoped_restore_tmpl<int>>
6134 restore_operation_disable;
6135
6136 if (record_full_is_used ())
6137 restore_operation_disable.emplace
6138 (record_full_gdb_operation_disable_set ());
6139
6140 regcache_write_pc (regcache,
6141 ecs->event_thread->suspend.stop_pc + decr_pc);
6142 }
6143 }
6144 else
6145 {
6146 /* A delayed software breakpoint event. Ignore the trap. */
6147 infrun_log_debug ("delayed software breakpoint trap, ignoring");
6148 random_signal = 0;
6149 }
6150 }
6151
6152 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6153 has since been removed. */
6154 if (random_signal && target_stopped_by_hw_breakpoint ())
6155 {
6156 /* A delayed hardware breakpoint event. Ignore the trap. */
6157 infrun_log_debug ("delayed hardware breakpoint/watchpoint "
6158 "trap, ignoring");
6159 random_signal = 0;
6160 }
6161
6162 /* If not, perhaps stepping/nexting can. */
6163 if (random_signal)
6164 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6165 && currently_stepping (ecs->event_thread));
6166
6167 /* Perhaps the thread hit a single-step breakpoint of _another_
6168 thread. Single-step breakpoints are transparent to the
6169 breakpoints module. */
6170 if (random_signal)
6171 random_signal = !ecs->hit_singlestep_breakpoint;
6172
6173 /* No? Perhaps we got a moribund watchpoint. */
6174 if (random_signal)
6175 random_signal = !stopped_by_watchpoint;
6176
6177 /* Always stop if the user explicitly requested this thread to
6178 remain stopped. */
6179 if (ecs->event_thread->stop_requested)
6180 {
6181 random_signal = 1;
6182 infrun_log_debug ("user-requested stop");
6183 }
6184
6185 /* For the program's own signals, act according to
6186 the signal handling tables. */
6187
6188 if (random_signal)
6189 {
6190 /* Signal not for debugging purposes. */
6191 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6192 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6193
6194 infrun_log_debug ("random signal (%s)",
6195 gdb_signal_to_symbol_string (stop_signal));
6196
6197 stopped_by_random_signal = 1;
6198
6199 /* Always stop on signals if we're either just gaining control
6200 of the program, or the user explicitly requested this thread
6201 to remain stopped. */
6202 if (stop_soon != NO_STOP_QUIETLY
6203 || ecs->event_thread->stop_requested
6204 || (!inf->detaching
6205 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6206 {
6207 stop_waiting (ecs);
6208 return;
6209 }
6210
6211 /* Notify observers the signal has "handle print" set. Note we
6212 returned early above if stopping; normal_stop handles the
6213 printing in that case. */
6214 if (signal_print[ecs->event_thread->suspend.stop_signal])
6215 {
6216 /* The signal table tells us to print about this signal. */
6217 target_terminal::ours_for_output ();
6218 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6219 target_terminal::inferior ();
6220 }
6221
6222 /* Clear the signal if it should not be passed. */
6223 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6224 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6225
6226 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6227 && ecs->event_thread->control.trap_expected
6228 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6229 {
6230 /* We were just starting a new sequence, attempting to
6231 single-step off of a breakpoint and expecting a SIGTRAP.
6232 Instead this signal arrives. This signal will take us out
6233 of the stepping range so GDB needs to remember to, when
6234 the signal handler returns, resume stepping off that
6235 breakpoint. */
6236 /* To simplify things, "continue" is forced to use the same
6237 code paths as single-step - set a breakpoint at the
6238 signal return address and then, once hit, step off that
6239 breakpoint. */
6240 infrun_log_debug ("signal arrived while stepping over breakpoint");
6241
6242 insert_hp_step_resume_breakpoint_at_frame (frame);
6243 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6244 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6245 ecs->event_thread->control.trap_expected = 0;
6246
6247 /* If we were nexting/stepping some other thread, switch to
6248 it, so that we don't continue it, losing control. */
6249 if (!switch_back_to_stepped_thread (ecs))
6250 keep_going (ecs);
6251 return;
6252 }
6253
6254 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6255 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6256 ecs->event_thread)
6257 || ecs->event_thread->control.step_range_end == 1)
6258 && frame_id_eq (get_stack_frame_id (frame),
6259 ecs->event_thread->control.step_stack_frame_id)
6260 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6261 {
6262 /* The inferior is about to take a signal that will take it
6263 out of the single step range. Set a breakpoint at the
6264 current PC (which is presumably where the signal handler
6265 will eventually return) and then allow the inferior to
6266 run free.
6267
6268 Note that this is only needed for a signal delivered
6269 while in the single-step range. Nested signals aren't a
6270 problem as they eventually all return. */
6271 infrun_log_debug ("signal may take us out of single-step range");
6272
6273 clear_step_over_info ();
6274 insert_hp_step_resume_breakpoint_at_frame (frame);
6275 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6276 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6277 ecs->event_thread->control.trap_expected = 0;
6278 keep_going (ecs);
6279 return;
6280 }
6281
6282 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6283 when either there's a nested signal, or when there's a
6284 pending signal enabled just as the signal handler returns
6285 (leaving the inferior at the step-resume-breakpoint without
6286 actually executing it). Either way continue until the
6287 breakpoint is really hit. */
6288
6289 if (!switch_back_to_stepped_thread (ecs))
6290 {
6291 infrun_log_debug ("random signal, keep going");
6292
6293 keep_going (ecs);
6294 }
6295 return;
6296 }
6297
6298 process_event_stop_test (ecs);
6299 }
6300
6301 /* Come here when we've got some debug event / signal we can explain
6302 (IOW, not a random signal), and test whether it should cause a
6303 stop, or whether we should resume the inferior (transparently).
6304 E.g., could be a breakpoint whose condition evaluates false; we
6305 could be still stepping within the line; etc. */
6306
6307 static void
6308 process_event_stop_test (struct execution_control_state *ecs)
6309 {
6310 struct symtab_and_line stop_pc_sal;
6311 struct frame_info *frame;
6312 struct gdbarch *gdbarch;
6313 CORE_ADDR jmp_buf_pc;
6314 struct bpstat_what what;
6315
6316 /* Handle cases caused by hitting a breakpoint. */
6317
6318 frame = get_current_frame ();
6319 gdbarch = get_frame_arch (frame);
6320
6321 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6322
6323 if (what.call_dummy)
6324 {
6325 stop_stack_dummy = what.call_dummy;
6326 }
6327
6328 /* A few breakpoint types have callbacks associated (e.g.,
6329 bp_jit_event). Run them now. */
6330 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6331
6332 /* If we hit an internal event that triggers symbol changes, the
6333 current frame will be invalidated within bpstat_what (e.g., if we
6334 hit an internal solib event). Re-fetch it. */
6335 frame = get_current_frame ();
6336 gdbarch = get_frame_arch (frame);
6337
6338 switch (what.main_action)
6339 {
6340 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6341 /* If we hit the breakpoint at longjmp while stepping, we
6342 install a momentary breakpoint at the target of the
6343 jmp_buf. */
6344
6345 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6346
6347 ecs->event_thread->stepping_over_breakpoint = 1;
6348
6349 if (what.is_longjmp)
6350 {
6351 struct value *arg_value;
6352
6353 /* If we set the longjmp breakpoint via a SystemTap probe,
6354 then use it to extract the arguments. The destination PC
6355 is the third argument to the probe. */
6356 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6357 if (arg_value)
6358 {
6359 jmp_buf_pc = value_as_address (arg_value);
6360 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6361 }
6362 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6363 || !gdbarch_get_longjmp_target (gdbarch,
6364 frame, &jmp_buf_pc))
6365 {
6366 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6367 "(!gdbarch_get_longjmp_target)");
6368 keep_going (ecs);
6369 return;
6370 }
6371
6372 /* Insert a breakpoint at resume address. */
6373 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6374 }
6375 else
6376 check_exception_resume (ecs, frame);
6377 keep_going (ecs);
6378 return;
6379
6380 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6381 {
6382 struct frame_info *init_frame;
6383
6384 /* There are several cases to consider.
6385
6386 1. The initiating frame no longer exists. In this case we
6387 must stop, because the exception or longjmp has gone too
6388 far.
6389
6390 2. The initiating frame exists, and is the same as the
6391 current frame. We stop, because the exception or longjmp
6392 has been caught.
6393
6394 3. The initiating frame exists and is different from the
6395 current frame. This means the exception or longjmp has
6396 been caught beneath the initiating frame, so keep going.
6397
6398 4. longjmp breakpoint has been placed just to protect
6399 against stale dummy frames and user is not interested in
6400 stopping around longjmps. */
6401
6402 infrun_log_debug ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6403
6404 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6405 != NULL);
6406 delete_exception_resume_breakpoint (ecs->event_thread);
6407
6408 if (what.is_longjmp)
6409 {
6410 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6411
6412 if (!frame_id_p (ecs->event_thread->initiating_frame))
6413 {
6414 /* Case 4. */
6415 keep_going (ecs);
6416 return;
6417 }
6418 }
6419
6420 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6421
6422 if (init_frame)
6423 {
6424 struct frame_id current_id
6425 = get_frame_id (get_current_frame ());
6426 if (frame_id_eq (current_id,
6427 ecs->event_thread->initiating_frame))
6428 {
6429 /* Case 2. Fall through. */
6430 }
6431 else
6432 {
6433 /* Case 3. */
6434 keep_going (ecs);
6435 return;
6436 }
6437 }
6438
6439 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6440 exists. */
6441 delete_step_resume_breakpoint (ecs->event_thread);
6442
6443 end_stepping_range (ecs);
6444 }
6445 return;
6446
6447 case BPSTAT_WHAT_SINGLE:
6448 infrun_log_debug ("BPSTAT_WHAT_SINGLE");
6449 ecs->event_thread->stepping_over_breakpoint = 1;
6450 /* Still need to check other stuff, at least the case where we
6451 are stepping and step out of the right range. */
6452 break;
6453
6454 case BPSTAT_WHAT_STEP_RESUME:
6455 infrun_log_debug ("BPSTAT_WHAT_STEP_RESUME");
6456
6457 delete_step_resume_breakpoint (ecs->event_thread);
6458 if (ecs->event_thread->control.proceed_to_finish
6459 && execution_direction == EXEC_REVERSE)
6460 {
6461 struct thread_info *tp = ecs->event_thread;
6462
6463 /* We are finishing a function in reverse, and just hit the
6464 step-resume breakpoint at the start address of the
6465 function, and we're almost there -- just need to back up
6466 by one more single-step, which should take us back to the
6467 function call. */
6468 tp->control.step_range_start = tp->control.step_range_end = 1;
6469 keep_going (ecs);
6470 return;
6471 }
6472 fill_in_stop_func (gdbarch, ecs);
6473 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6474 && execution_direction == EXEC_REVERSE)
6475 {
6476 /* We are stepping over a function call in reverse, and just
6477 hit the step-resume breakpoint at the start address of
6478 the function. Go back to single-stepping, which should
6479 take us back to the function call. */
6480 ecs->event_thread->stepping_over_breakpoint = 1;
6481 keep_going (ecs);
6482 return;
6483 }
6484 break;
6485
6486 case BPSTAT_WHAT_STOP_NOISY:
6487 infrun_log_debug ("BPSTAT_WHAT_STOP_NOISY");
6488 stop_print_frame = 1;
6489
6490 /* Assume the thread stopped for a breapoint. We'll still check
6491 whether a/the breakpoint is there when the thread is next
6492 resumed. */
6493 ecs->event_thread->stepping_over_breakpoint = 1;
6494
6495 stop_waiting (ecs);
6496 return;
6497
6498 case BPSTAT_WHAT_STOP_SILENT:
6499 infrun_log_debug ("BPSTAT_WHAT_STOP_SILENT");
6500 stop_print_frame = 0;
6501
6502 /* Assume the thread stopped for a breapoint. We'll still check
6503 whether a/the breakpoint is there when the thread is next
6504 resumed. */
6505 ecs->event_thread->stepping_over_breakpoint = 1;
6506 stop_waiting (ecs);
6507 return;
6508
6509 case BPSTAT_WHAT_HP_STEP_RESUME:
6510 infrun_log_debug ("BPSTAT_WHAT_HP_STEP_RESUME");
6511
6512 delete_step_resume_breakpoint (ecs->event_thread);
6513 if (ecs->event_thread->step_after_step_resume_breakpoint)
6514 {
6515 /* Back when the step-resume breakpoint was inserted, we
6516 were trying to single-step off a breakpoint. Go back to
6517 doing that. */
6518 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6519 ecs->event_thread->stepping_over_breakpoint = 1;
6520 keep_going (ecs);
6521 return;
6522 }
6523 break;
6524
6525 case BPSTAT_WHAT_KEEP_CHECKING:
6526 break;
6527 }
6528
6529 /* If we stepped a permanent breakpoint and we had a high priority
6530 step-resume breakpoint for the address we stepped, but we didn't
6531 hit it, then we must have stepped into the signal handler. The
6532 step-resume was only necessary to catch the case of _not_
6533 stepping into the handler, so delete it, and fall through to
6534 checking whether the step finished. */
6535 if (ecs->event_thread->stepped_breakpoint)
6536 {
6537 struct breakpoint *sr_bp
6538 = ecs->event_thread->control.step_resume_breakpoint;
6539
6540 if (sr_bp != NULL
6541 && sr_bp->loc->permanent
6542 && sr_bp->type == bp_hp_step_resume
6543 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6544 {
6545 infrun_log_debug ("stepped permanent breakpoint, stopped in handler");
6546 delete_step_resume_breakpoint (ecs->event_thread);
6547 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6548 }
6549 }
6550
6551 /* We come here if we hit a breakpoint but should not stop for it.
6552 Possibly we also were stepping and should stop for that. So fall
6553 through and test for stepping. But, if not stepping, do not
6554 stop. */
6555
6556 /* In all-stop mode, if we're currently stepping but have stopped in
6557 some other thread, we need to switch back to the stepped thread. */
6558 if (switch_back_to_stepped_thread (ecs))
6559 return;
6560
6561 if (ecs->event_thread->control.step_resume_breakpoint)
6562 {
6563 infrun_log_debug ("step-resume breakpoint is inserted");
6564
6565 /* Having a step-resume breakpoint overrides anything
6566 else having to do with stepping commands until
6567 that breakpoint is reached. */
6568 keep_going (ecs);
6569 return;
6570 }
6571
6572 if (ecs->event_thread->control.step_range_end == 0)
6573 {
6574 infrun_log_debug ("no stepping, continue");
6575 /* Likewise if we aren't even stepping. */
6576 keep_going (ecs);
6577 return;
6578 }
6579
6580 /* Re-fetch current thread's frame in case the code above caused
6581 the frame cache to be re-initialized, making our FRAME variable
6582 a dangling pointer. */
6583 frame = get_current_frame ();
6584 gdbarch = get_frame_arch (frame);
6585 fill_in_stop_func (gdbarch, ecs);
6586
6587 /* If stepping through a line, keep going if still within it.
6588
6589 Note that step_range_end is the address of the first instruction
6590 beyond the step range, and NOT the address of the last instruction
6591 within it!
6592
6593 Note also that during reverse execution, we may be stepping
6594 through a function epilogue and therefore must detect when
6595 the current-frame changes in the middle of a line. */
6596
6597 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6598 ecs->event_thread)
6599 && (execution_direction != EXEC_REVERSE
6600 || frame_id_eq (get_frame_id (frame),
6601 ecs->event_thread->control.step_frame_id)))
6602 {
6603 infrun_log_debug
6604 ("stepping inside range [%s-%s]",
6605 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6606 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6607
6608 /* Tentatively re-enable range stepping; `resume' disables it if
6609 necessary (e.g., if we're stepping over a breakpoint or we
6610 have software watchpoints). */
6611 ecs->event_thread->control.may_range_step = 1;
6612
6613 /* When stepping backward, stop at beginning of line range
6614 (unless it's the function entry point, in which case
6615 keep going back to the call point). */
6616 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6617 if (stop_pc == ecs->event_thread->control.step_range_start
6618 && stop_pc != ecs->stop_func_start
6619 && execution_direction == EXEC_REVERSE)
6620 end_stepping_range (ecs);
6621 else
6622 keep_going (ecs);
6623
6624 return;
6625 }
6626
6627 /* We stepped out of the stepping range. */
6628
6629 /* If we are stepping at the source level and entered the runtime
6630 loader dynamic symbol resolution code...
6631
6632 EXEC_FORWARD: we keep on single stepping until we exit the run
6633 time loader code and reach the callee's address.
6634
6635 EXEC_REVERSE: we've already executed the callee (backward), and
6636 the runtime loader code is handled just like any other
6637 undebuggable function call. Now we need only keep stepping
6638 backward through the trampoline code, and that's handled further
6639 down, so there is nothing for us to do here. */
6640
6641 if (execution_direction != EXEC_REVERSE
6642 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6643 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6644 {
6645 CORE_ADDR pc_after_resolver =
6646 gdbarch_skip_solib_resolver (gdbarch,
6647 ecs->event_thread->suspend.stop_pc);
6648
6649 infrun_log_debug ("stepped into dynsym resolve code");
6650
6651 if (pc_after_resolver)
6652 {
6653 /* Set up a step-resume breakpoint at the address
6654 indicated by SKIP_SOLIB_RESOLVER. */
6655 symtab_and_line sr_sal;
6656 sr_sal.pc = pc_after_resolver;
6657 sr_sal.pspace = get_frame_program_space (frame);
6658
6659 insert_step_resume_breakpoint_at_sal (gdbarch,
6660 sr_sal, null_frame_id);
6661 }
6662
6663 keep_going (ecs);
6664 return;
6665 }
6666
6667 /* Step through an indirect branch thunk. */
6668 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6669 && gdbarch_in_indirect_branch_thunk (gdbarch,
6670 ecs->event_thread->suspend.stop_pc))
6671 {
6672 infrun_log_debug ("stepped into indirect branch thunk");
6673 keep_going (ecs);
6674 return;
6675 }
6676
6677 if (ecs->event_thread->control.step_range_end != 1
6678 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6679 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6680 && get_frame_type (frame) == SIGTRAMP_FRAME)
6681 {
6682 infrun_log_debug ("stepped into signal trampoline");
6683 /* The inferior, while doing a "step" or "next", has ended up in
6684 a signal trampoline (either by a signal being delivered or by
6685 the signal handler returning). Just single-step until the
6686 inferior leaves the trampoline (either by calling the handler
6687 or returning). */
6688 keep_going (ecs);
6689 return;
6690 }
6691
6692 /* If we're in the return path from a shared library trampoline,
6693 we want to proceed through the trampoline when stepping. */
6694 /* macro/2012-04-25: This needs to come before the subroutine
6695 call check below as on some targets return trampolines look
6696 like subroutine calls (MIPS16 return thunks). */
6697 if (gdbarch_in_solib_return_trampoline (gdbarch,
6698 ecs->event_thread->suspend.stop_pc,
6699 ecs->stop_func_name)
6700 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6701 {
6702 /* Determine where this trampoline returns. */
6703 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6704 CORE_ADDR real_stop_pc
6705 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6706
6707 infrun_log_debug ("stepped into solib return tramp");
6708
6709 /* Only proceed through if we know where it's going. */
6710 if (real_stop_pc)
6711 {
6712 /* And put the step-breakpoint there and go until there. */
6713 symtab_and_line sr_sal;
6714 sr_sal.pc = real_stop_pc;
6715 sr_sal.section = find_pc_overlay (sr_sal.pc);
6716 sr_sal.pspace = get_frame_program_space (frame);
6717
6718 /* Do not specify what the fp should be when we stop since
6719 on some machines the prologue is where the new fp value
6720 is established. */
6721 insert_step_resume_breakpoint_at_sal (gdbarch,
6722 sr_sal, null_frame_id);
6723
6724 /* Restart without fiddling with the step ranges or
6725 other state. */
6726 keep_going (ecs);
6727 return;
6728 }
6729 }
6730
6731 /* Check for subroutine calls. The check for the current frame
6732 equalling the step ID is not necessary - the check of the
6733 previous frame's ID is sufficient - but it is a common case and
6734 cheaper than checking the previous frame's ID.
6735
6736 NOTE: frame_id_eq will never report two invalid frame IDs as
6737 being equal, so to get into this block, both the current and
6738 previous frame must have valid frame IDs. */
6739 /* The outer_frame_id check is a heuristic to detect stepping
6740 through startup code. If we step over an instruction which
6741 sets the stack pointer from an invalid value to a valid value,
6742 we may detect that as a subroutine call from the mythical
6743 "outermost" function. This could be fixed by marking
6744 outermost frames as !stack_p,code_p,special_p. Then the
6745 initial outermost frame, before sp was valid, would
6746 have code_addr == &_start. See the comment in frame_id_eq
6747 for more. */
6748 if (!frame_id_eq (get_stack_frame_id (frame),
6749 ecs->event_thread->control.step_stack_frame_id)
6750 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6751 ecs->event_thread->control.step_stack_frame_id)
6752 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6753 outer_frame_id)
6754 || (ecs->event_thread->control.step_start_function
6755 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6756 {
6757 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6758 CORE_ADDR real_stop_pc;
6759
6760 infrun_log_debug ("stepped into subroutine");
6761
6762 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6763 {
6764 /* I presume that step_over_calls is only 0 when we're
6765 supposed to be stepping at the assembly language level
6766 ("stepi"). Just stop. */
6767 /* And this works the same backward as frontward. MVS */
6768 end_stepping_range (ecs);
6769 return;
6770 }
6771
6772 /* Reverse stepping through solib trampolines. */
6773
6774 if (execution_direction == EXEC_REVERSE
6775 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6776 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6777 || (ecs->stop_func_start == 0
6778 && in_solib_dynsym_resolve_code (stop_pc))))
6779 {
6780 /* Any solib trampoline code can be handled in reverse
6781 by simply continuing to single-step. We have already
6782 executed the solib function (backwards), and a few
6783 steps will take us back through the trampoline to the
6784 caller. */
6785 keep_going (ecs);
6786 return;
6787 }
6788
6789 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6790 {
6791 /* We're doing a "next".
6792
6793 Normal (forward) execution: set a breakpoint at the
6794 callee's return address (the address at which the caller
6795 will resume).
6796
6797 Reverse (backward) execution. set the step-resume
6798 breakpoint at the start of the function that we just
6799 stepped into (backwards), and continue to there. When we
6800 get there, we'll need to single-step back to the caller. */
6801
6802 if (execution_direction == EXEC_REVERSE)
6803 {
6804 /* If we're already at the start of the function, we've either
6805 just stepped backward into a single instruction function,
6806 or stepped back out of a signal handler to the first instruction
6807 of the function. Just keep going, which will single-step back
6808 to the caller. */
6809 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6810 {
6811 /* Normal function call return (static or dynamic). */
6812 symtab_and_line sr_sal;
6813 sr_sal.pc = ecs->stop_func_start;
6814 sr_sal.pspace = get_frame_program_space (frame);
6815 insert_step_resume_breakpoint_at_sal (gdbarch,
6816 sr_sal, null_frame_id);
6817 }
6818 }
6819 else
6820 insert_step_resume_breakpoint_at_caller (frame);
6821
6822 keep_going (ecs);
6823 return;
6824 }
6825
6826 /* If we are in a function call trampoline (a stub between the
6827 calling routine and the real function), locate the real
6828 function. That's what tells us (a) whether we want to step
6829 into it at all, and (b) what prologue we want to run to the
6830 end of, if we do step into it. */
6831 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6832 if (real_stop_pc == 0)
6833 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6834 if (real_stop_pc != 0)
6835 ecs->stop_func_start = real_stop_pc;
6836
6837 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6838 {
6839 symtab_and_line sr_sal;
6840 sr_sal.pc = ecs->stop_func_start;
6841 sr_sal.pspace = get_frame_program_space (frame);
6842
6843 insert_step_resume_breakpoint_at_sal (gdbarch,
6844 sr_sal, null_frame_id);
6845 keep_going (ecs);
6846 return;
6847 }
6848
6849 /* If we have line number information for the function we are
6850 thinking of stepping into and the function isn't on the skip
6851 list, step into it.
6852
6853 If there are several symtabs at that PC (e.g. with include
6854 files), just want to know whether *any* of them have line
6855 numbers. find_pc_line handles this. */
6856 {
6857 struct symtab_and_line tmp_sal;
6858
6859 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6860 if (tmp_sal.line != 0
6861 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6862 tmp_sal)
6863 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6864 {
6865 if (execution_direction == EXEC_REVERSE)
6866 handle_step_into_function_backward (gdbarch, ecs);
6867 else
6868 handle_step_into_function (gdbarch, ecs);
6869 return;
6870 }
6871 }
6872
6873 /* If we have no line number and the step-stop-if-no-debug is
6874 set, we stop the step so that the user has a chance to switch
6875 in assembly mode. */
6876 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6877 && step_stop_if_no_debug)
6878 {
6879 end_stepping_range (ecs);
6880 return;
6881 }
6882
6883 if (execution_direction == EXEC_REVERSE)
6884 {
6885 /* If we're already at the start of the function, we've either just
6886 stepped backward into a single instruction function without line
6887 number info, or stepped back out of a signal handler to the first
6888 instruction of the function without line number info. Just keep
6889 going, which will single-step back to the caller. */
6890 if (ecs->stop_func_start != stop_pc)
6891 {
6892 /* Set a breakpoint at callee's start address.
6893 From there we can step once and be back in the caller. */
6894 symtab_and_line sr_sal;
6895 sr_sal.pc = ecs->stop_func_start;
6896 sr_sal.pspace = get_frame_program_space (frame);
6897 insert_step_resume_breakpoint_at_sal (gdbarch,
6898 sr_sal, null_frame_id);
6899 }
6900 }
6901 else
6902 /* Set a breakpoint at callee's return address (the address
6903 at which the caller will resume). */
6904 insert_step_resume_breakpoint_at_caller (frame);
6905
6906 keep_going (ecs);
6907 return;
6908 }
6909
6910 /* Reverse stepping through solib trampolines. */
6911
6912 if (execution_direction == EXEC_REVERSE
6913 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6914 {
6915 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6916
6917 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6918 || (ecs->stop_func_start == 0
6919 && in_solib_dynsym_resolve_code (stop_pc)))
6920 {
6921 /* Any solib trampoline code can be handled in reverse
6922 by simply continuing to single-step. We have already
6923 executed the solib function (backwards), and a few
6924 steps will take us back through the trampoline to the
6925 caller. */
6926 keep_going (ecs);
6927 return;
6928 }
6929 else if (in_solib_dynsym_resolve_code (stop_pc))
6930 {
6931 /* Stepped backward into the solib dynsym resolver.
6932 Set a breakpoint at its start and continue, then
6933 one more step will take us out. */
6934 symtab_and_line sr_sal;
6935 sr_sal.pc = ecs->stop_func_start;
6936 sr_sal.pspace = get_frame_program_space (frame);
6937 insert_step_resume_breakpoint_at_sal (gdbarch,
6938 sr_sal, null_frame_id);
6939 keep_going (ecs);
6940 return;
6941 }
6942 }
6943
6944 /* This always returns the sal for the inner-most frame when we are in a
6945 stack of inlined frames, even if GDB actually believes that it is in a
6946 more outer frame. This is checked for below by calls to
6947 inline_skipped_frames. */
6948 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6949
6950 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6951 the trampoline processing logic, however, there are some trampolines
6952 that have no names, so we should do trampoline handling first. */
6953 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6954 && ecs->stop_func_name == NULL
6955 && stop_pc_sal.line == 0)
6956 {
6957 infrun_log_debug ("stepped into undebuggable function");
6958
6959 /* The inferior just stepped into, or returned to, an
6960 undebuggable function (where there is no debugging information
6961 and no line number corresponding to the address where the
6962 inferior stopped). Since we want to skip this kind of code,
6963 we keep going until the inferior returns from this
6964 function - unless the user has asked us not to (via
6965 set step-mode) or we no longer know how to get back
6966 to the call site. */
6967 if (step_stop_if_no_debug
6968 || !frame_id_p (frame_unwind_caller_id (frame)))
6969 {
6970 /* If we have no line number and the step-stop-if-no-debug
6971 is set, we stop the step so that the user has a chance to
6972 switch in assembly mode. */
6973 end_stepping_range (ecs);
6974 return;
6975 }
6976 else
6977 {
6978 /* Set a breakpoint at callee's return address (the address
6979 at which the caller will resume). */
6980 insert_step_resume_breakpoint_at_caller (frame);
6981 keep_going (ecs);
6982 return;
6983 }
6984 }
6985
6986 if (ecs->event_thread->control.step_range_end == 1)
6987 {
6988 /* It is stepi or nexti. We always want to stop stepping after
6989 one instruction. */
6990 infrun_log_debug ("stepi/nexti");
6991 end_stepping_range (ecs);
6992 return;
6993 }
6994
6995 if (stop_pc_sal.line == 0)
6996 {
6997 /* We have no line number information. That means to stop
6998 stepping (does this always happen right after one instruction,
6999 when we do "s" in a function with no line numbers,
7000 or can this happen as a result of a return or longjmp?). */
7001 infrun_log_debug ("line number info");
7002 end_stepping_range (ecs);
7003 return;
7004 }
7005
7006 /* Look for "calls" to inlined functions, part one. If the inline
7007 frame machinery detected some skipped call sites, we have entered
7008 a new inline function. */
7009
7010 if (frame_id_eq (get_frame_id (get_current_frame ()),
7011 ecs->event_thread->control.step_frame_id)
7012 && inline_skipped_frames (ecs->event_thread))
7013 {
7014 infrun_log_debug ("stepped into inlined function");
7015
7016 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7017
7018 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7019 {
7020 /* For "step", we're going to stop. But if the call site
7021 for this inlined function is on the same source line as
7022 we were previously stepping, go down into the function
7023 first. Otherwise stop at the call site. */
7024
7025 if (call_sal.line == ecs->event_thread->current_line
7026 && call_sal.symtab == ecs->event_thread->current_symtab)
7027 {
7028 step_into_inline_frame (ecs->event_thread);
7029 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7030 {
7031 keep_going (ecs);
7032 return;
7033 }
7034 }
7035
7036 end_stepping_range (ecs);
7037 return;
7038 }
7039 else
7040 {
7041 /* For "next", we should stop at the call site if it is on a
7042 different source line. Otherwise continue through the
7043 inlined function. */
7044 if (call_sal.line == ecs->event_thread->current_line
7045 && call_sal.symtab == ecs->event_thread->current_symtab)
7046 keep_going (ecs);
7047 else
7048 end_stepping_range (ecs);
7049 return;
7050 }
7051 }
7052
7053 /* Look for "calls" to inlined functions, part two. If we are still
7054 in the same real function we were stepping through, but we have
7055 to go further up to find the exact frame ID, we are stepping
7056 through a more inlined call beyond its call site. */
7057
7058 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7059 && !frame_id_eq (get_frame_id (get_current_frame ()),
7060 ecs->event_thread->control.step_frame_id)
7061 && stepped_in_from (get_current_frame (),
7062 ecs->event_thread->control.step_frame_id))
7063 {
7064 infrun_log_debug ("stepping through inlined function");
7065
7066 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7067 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7068 keep_going (ecs);
7069 else
7070 end_stepping_range (ecs);
7071 return;
7072 }
7073
7074 bool refresh_step_info = true;
7075 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7076 && (ecs->event_thread->current_line != stop_pc_sal.line
7077 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7078 {
7079 if (stop_pc_sal.is_stmt)
7080 {
7081 /* We are at the start of a different line. So stop. Note that
7082 we don't stop if we step into the middle of a different line.
7083 That is said to make things like for (;;) statements work
7084 better. */
7085 infrun_log_debug ("infrun: stepped to a different line\n");
7086 end_stepping_range (ecs);
7087 return;
7088 }
7089 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7090 ecs->event_thread->control.step_frame_id))
7091 {
7092 /* We are at the start of a different line, however, this line is
7093 not marked as a statement, and we have not changed frame. We
7094 ignore this line table entry, and continue stepping forward,
7095 looking for a better place to stop. */
7096 refresh_step_info = false;
7097 infrun_log_debug ("infrun: stepped to a different line, but "
7098 "it's not the start of a statement\n");
7099 }
7100 }
7101
7102 /* We aren't done stepping.
7103
7104 Optimize by setting the stepping range to the line.
7105 (We might not be in the original line, but if we entered a
7106 new line in mid-statement, we continue stepping. This makes
7107 things like for(;;) statements work better.)
7108
7109 If we entered a SAL that indicates a non-statement line table entry,
7110 then we update the stepping range, but we don't update the step info,
7111 which includes things like the line number we are stepping away from.
7112 This means we will stop when we find a line table entry that is marked
7113 as is-statement, even if it matches the non-statement one we just
7114 stepped into. */
7115
7116 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7117 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7118 ecs->event_thread->control.may_range_step = 1;
7119 if (refresh_step_info)
7120 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7121
7122 infrun_log_debug ("keep going");
7123 keep_going (ecs);
7124 }
7125
7126 /* In all-stop mode, if we're currently stepping but have stopped in
7127 some other thread, we may need to switch back to the stepped
7128 thread. Returns true we set the inferior running, false if we left
7129 it stopped (and the event needs further processing). */
7130
7131 static int
7132 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7133 {
7134 if (!target_is_non_stop_p ())
7135 {
7136 struct thread_info *stepping_thread;
7137
7138 /* If any thread is blocked on some internal breakpoint, and we
7139 simply need to step over that breakpoint to get it going
7140 again, do that first. */
7141
7142 /* However, if we see an event for the stepping thread, then we
7143 know all other threads have been moved past their breakpoints
7144 already. Let the caller check whether the step is finished,
7145 etc., before deciding to move it past a breakpoint. */
7146 if (ecs->event_thread->control.step_range_end != 0)
7147 return 0;
7148
7149 /* Check if the current thread is blocked on an incomplete
7150 step-over, interrupted by a random signal. */
7151 if (ecs->event_thread->control.trap_expected
7152 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7153 {
7154 infrun_log_debug ("need to finish step-over of [%s]",
7155 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7156 keep_going (ecs);
7157 return 1;
7158 }
7159
7160 /* Check if the current thread is blocked by a single-step
7161 breakpoint of another thread. */
7162 if (ecs->hit_singlestep_breakpoint)
7163 {
7164 infrun_log_debug ("need to step [%s] over single-step breakpoint",
7165 target_pid_to_str (ecs->ptid).c_str ());
7166 keep_going (ecs);
7167 return 1;
7168 }
7169
7170 /* If this thread needs yet another step-over (e.g., stepping
7171 through a delay slot), do it first before moving on to
7172 another thread. */
7173 if (thread_still_needs_step_over (ecs->event_thread))
7174 {
7175 infrun_log_debug
7176 ("thread [%s] still needs step-over",
7177 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7178 keep_going (ecs);
7179 return 1;
7180 }
7181
7182 /* If scheduler locking applies even if not stepping, there's no
7183 need to walk over threads. Above we've checked whether the
7184 current thread is stepping. If some other thread not the
7185 event thread is stepping, then it must be that scheduler
7186 locking is not in effect. */
7187 if (schedlock_applies (ecs->event_thread))
7188 return 0;
7189
7190 /* Otherwise, we no longer expect a trap in the current thread.
7191 Clear the trap_expected flag before switching back -- this is
7192 what keep_going does as well, if we call it. */
7193 ecs->event_thread->control.trap_expected = 0;
7194
7195 /* Likewise, clear the signal if it should not be passed. */
7196 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7197 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7198
7199 /* Do all pending step-overs before actually proceeding with
7200 step/next/etc. */
7201 if (start_step_over ())
7202 {
7203 prepare_to_wait (ecs);
7204 return 1;
7205 }
7206
7207 /* Look for the stepping/nexting thread. */
7208 stepping_thread = NULL;
7209
7210 for (thread_info *tp : all_non_exited_threads ())
7211 {
7212 switch_to_thread_no_regs (tp);
7213
7214 /* Ignore threads of processes the caller is not
7215 resuming. */
7216 if (!sched_multi
7217 && (tp->inf->process_target () != ecs->target
7218 || tp->inf->pid != ecs->ptid.pid ()))
7219 continue;
7220
7221 /* When stepping over a breakpoint, we lock all threads
7222 except the one that needs to move past the breakpoint.
7223 If a non-event thread has this set, the "incomplete
7224 step-over" check above should have caught it earlier. */
7225 if (tp->control.trap_expected)
7226 {
7227 internal_error (__FILE__, __LINE__,
7228 "[%s] has inconsistent state: "
7229 "trap_expected=%d\n",
7230 target_pid_to_str (tp->ptid).c_str (),
7231 tp->control.trap_expected);
7232 }
7233
7234 /* Did we find the stepping thread? */
7235 if (tp->control.step_range_end)
7236 {
7237 /* Yep. There should only one though. */
7238 gdb_assert (stepping_thread == NULL);
7239
7240 /* The event thread is handled at the top, before we
7241 enter this loop. */
7242 gdb_assert (tp != ecs->event_thread);
7243
7244 /* If some thread other than the event thread is
7245 stepping, then scheduler locking can't be in effect,
7246 otherwise we wouldn't have resumed the current event
7247 thread in the first place. */
7248 gdb_assert (!schedlock_applies (tp));
7249
7250 stepping_thread = tp;
7251 }
7252 }
7253
7254 if (stepping_thread != NULL)
7255 {
7256 infrun_log_debug ("switching back to stepped thread");
7257
7258 if (keep_going_stepped_thread (stepping_thread))
7259 {
7260 prepare_to_wait (ecs);
7261 return 1;
7262 }
7263 }
7264
7265 switch_to_thread (ecs->event_thread);
7266 }
7267
7268 return 0;
7269 }
7270
7271 /* Set a previously stepped thread back to stepping. Returns true on
7272 success, false if the resume is not possible (e.g., the thread
7273 vanished). */
7274
7275 static int
7276 keep_going_stepped_thread (struct thread_info *tp)
7277 {
7278 struct frame_info *frame;
7279 struct execution_control_state ecss;
7280 struct execution_control_state *ecs = &ecss;
7281
7282 /* If the stepping thread exited, then don't try to switch back and
7283 resume it, which could fail in several different ways depending
7284 on the target. Instead, just keep going.
7285
7286 We can find a stepping dead thread in the thread list in two
7287 cases:
7288
7289 - The target supports thread exit events, and when the target
7290 tries to delete the thread from the thread list, inferior_ptid
7291 pointed at the exiting thread. In such case, calling
7292 delete_thread does not really remove the thread from the list;
7293 instead, the thread is left listed, with 'exited' state.
7294
7295 - The target's debug interface does not support thread exit
7296 events, and so we have no idea whatsoever if the previously
7297 stepping thread is still alive. For that reason, we need to
7298 synchronously query the target now. */
7299
7300 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7301 {
7302 infrun_log_debug ("not resuming previously stepped thread, it has "
7303 "vanished");
7304
7305 delete_thread (tp);
7306 return 0;
7307 }
7308
7309 infrun_log_debug ("resuming previously stepped thread");
7310
7311 reset_ecs (ecs, tp);
7312 switch_to_thread (tp);
7313
7314 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7315 frame = get_current_frame ();
7316
7317 /* If the PC of the thread we were trying to single-step has
7318 changed, then that thread has trapped or been signaled, but the
7319 event has not been reported to GDB yet. Re-poll the target
7320 looking for this particular thread's event (i.e. temporarily
7321 enable schedlock) by:
7322
7323 - setting a break at the current PC
7324 - resuming that particular thread, only (by setting trap
7325 expected)
7326
7327 This prevents us continuously moving the single-step breakpoint
7328 forward, one instruction at a time, overstepping. */
7329
7330 if (tp->suspend.stop_pc != tp->prev_pc)
7331 {
7332 ptid_t resume_ptid;
7333
7334 infrun_log_debug ("expected thread advanced also (%s -> %s)",
7335 paddress (target_gdbarch (), tp->prev_pc),
7336 paddress (target_gdbarch (), tp->suspend.stop_pc));
7337
7338 /* Clear the info of the previous step-over, as it's no longer
7339 valid (if the thread was trying to step over a breakpoint, it
7340 has already succeeded). It's what keep_going would do too,
7341 if we called it. Do this before trying to insert the sss
7342 breakpoint, otherwise if we were previously trying to step
7343 over this exact address in another thread, the breakpoint is
7344 skipped. */
7345 clear_step_over_info ();
7346 tp->control.trap_expected = 0;
7347
7348 insert_single_step_breakpoint (get_frame_arch (frame),
7349 get_frame_address_space (frame),
7350 tp->suspend.stop_pc);
7351
7352 tp->resumed = true;
7353 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7354 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7355 }
7356 else
7357 {
7358 infrun_log_debug ("expected thread still hasn't advanced");
7359
7360 keep_going_pass_signal (ecs);
7361 }
7362 return 1;
7363 }
7364
7365 /* Is thread TP in the middle of (software or hardware)
7366 single-stepping? (Note the result of this function must never be
7367 passed directly as target_resume's STEP parameter.) */
7368
7369 static int
7370 currently_stepping (struct thread_info *tp)
7371 {
7372 return ((tp->control.step_range_end
7373 && tp->control.step_resume_breakpoint == NULL)
7374 || tp->control.trap_expected
7375 || tp->stepped_breakpoint
7376 || bpstat_should_step ());
7377 }
7378
7379 /* Inferior has stepped into a subroutine call with source code that
7380 we should not step over. Do step to the first line of code in
7381 it. */
7382
7383 static void
7384 handle_step_into_function (struct gdbarch *gdbarch,
7385 struct execution_control_state *ecs)
7386 {
7387 fill_in_stop_func (gdbarch, ecs);
7388
7389 compunit_symtab *cust
7390 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7391 if (cust != NULL && compunit_language (cust) != language_asm)
7392 ecs->stop_func_start
7393 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7394
7395 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7396 /* Use the step_resume_break to step until the end of the prologue,
7397 even if that involves jumps (as it seems to on the vax under
7398 4.2). */
7399 /* If the prologue ends in the middle of a source line, continue to
7400 the end of that source line (if it is still within the function).
7401 Otherwise, just go to end of prologue. */
7402 if (stop_func_sal.end
7403 && stop_func_sal.pc != ecs->stop_func_start
7404 && stop_func_sal.end < ecs->stop_func_end)
7405 ecs->stop_func_start = stop_func_sal.end;
7406
7407 /* Architectures which require breakpoint adjustment might not be able
7408 to place a breakpoint at the computed address. If so, the test
7409 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7410 ecs->stop_func_start to an address at which a breakpoint may be
7411 legitimately placed.
7412
7413 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7414 made, GDB will enter an infinite loop when stepping through
7415 optimized code consisting of VLIW instructions which contain
7416 subinstructions corresponding to different source lines. On
7417 FR-V, it's not permitted to place a breakpoint on any but the
7418 first subinstruction of a VLIW instruction. When a breakpoint is
7419 set, GDB will adjust the breakpoint address to the beginning of
7420 the VLIW instruction. Thus, we need to make the corresponding
7421 adjustment here when computing the stop address. */
7422
7423 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7424 {
7425 ecs->stop_func_start
7426 = gdbarch_adjust_breakpoint_address (gdbarch,
7427 ecs->stop_func_start);
7428 }
7429
7430 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7431 {
7432 /* We are already there: stop now. */
7433 end_stepping_range (ecs);
7434 return;
7435 }
7436 else
7437 {
7438 /* Put the step-breakpoint there and go until there. */
7439 symtab_and_line sr_sal;
7440 sr_sal.pc = ecs->stop_func_start;
7441 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7442 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7443
7444 /* Do not specify what the fp should be when we stop since on
7445 some machines the prologue is where the new fp value is
7446 established. */
7447 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7448
7449 /* And make sure stepping stops right away then. */
7450 ecs->event_thread->control.step_range_end
7451 = ecs->event_thread->control.step_range_start;
7452 }
7453 keep_going (ecs);
7454 }
7455
7456 /* Inferior has stepped backward into a subroutine call with source
7457 code that we should not step over. Do step to the beginning of the
7458 last line of code in it. */
7459
7460 static void
7461 handle_step_into_function_backward (struct gdbarch *gdbarch,
7462 struct execution_control_state *ecs)
7463 {
7464 struct compunit_symtab *cust;
7465 struct symtab_and_line stop_func_sal;
7466
7467 fill_in_stop_func (gdbarch, ecs);
7468
7469 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7470 if (cust != NULL && compunit_language (cust) != language_asm)
7471 ecs->stop_func_start
7472 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7473
7474 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7475
7476 /* OK, we're just going to keep stepping here. */
7477 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7478 {
7479 /* We're there already. Just stop stepping now. */
7480 end_stepping_range (ecs);
7481 }
7482 else
7483 {
7484 /* Else just reset the step range and keep going.
7485 No step-resume breakpoint, they don't work for
7486 epilogues, which can have multiple entry paths. */
7487 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7488 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7489 keep_going (ecs);
7490 }
7491 return;
7492 }
7493
7494 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7495 This is used to both functions and to skip over code. */
7496
7497 static void
7498 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7499 struct symtab_and_line sr_sal,
7500 struct frame_id sr_id,
7501 enum bptype sr_type)
7502 {
7503 /* There should never be more than one step-resume or longjmp-resume
7504 breakpoint per thread, so we should never be setting a new
7505 step_resume_breakpoint when one is already active. */
7506 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7507 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7508
7509 infrun_log_debug ("inserting step-resume breakpoint at %s",
7510 paddress (gdbarch, sr_sal.pc));
7511
7512 inferior_thread ()->control.step_resume_breakpoint
7513 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7514 }
7515
7516 void
7517 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7518 struct symtab_and_line sr_sal,
7519 struct frame_id sr_id)
7520 {
7521 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7522 sr_sal, sr_id,
7523 bp_step_resume);
7524 }
7525
7526 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7527 This is used to skip a potential signal handler.
7528
7529 This is called with the interrupted function's frame. The signal
7530 handler, when it returns, will resume the interrupted function at
7531 RETURN_FRAME.pc. */
7532
7533 static void
7534 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7535 {
7536 gdb_assert (return_frame != NULL);
7537
7538 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7539
7540 symtab_and_line sr_sal;
7541 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7542 sr_sal.section = find_pc_overlay (sr_sal.pc);
7543 sr_sal.pspace = get_frame_program_space (return_frame);
7544
7545 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7546 get_stack_frame_id (return_frame),
7547 bp_hp_step_resume);
7548 }
7549
7550 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7551 is used to skip a function after stepping into it (for "next" or if
7552 the called function has no debugging information).
7553
7554 The current function has almost always been reached by single
7555 stepping a call or return instruction. NEXT_FRAME belongs to the
7556 current function, and the breakpoint will be set at the caller's
7557 resume address.
7558
7559 This is a separate function rather than reusing
7560 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7561 get_prev_frame, which may stop prematurely (see the implementation
7562 of frame_unwind_caller_id for an example). */
7563
7564 static void
7565 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7566 {
7567 /* We shouldn't have gotten here if we don't know where the call site
7568 is. */
7569 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7570
7571 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7572
7573 symtab_and_line sr_sal;
7574 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7575 frame_unwind_caller_pc (next_frame));
7576 sr_sal.section = find_pc_overlay (sr_sal.pc);
7577 sr_sal.pspace = frame_unwind_program_space (next_frame);
7578
7579 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7580 frame_unwind_caller_id (next_frame));
7581 }
7582
7583 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7584 new breakpoint at the target of a jmp_buf. The handling of
7585 longjmp-resume uses the same mechanisms used for handling
7586 "step-resume" breakpoints. */
7587
7588 static void
7589 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7590 {
7591 /* There should never be more than one longjmp-resume breakpoint per
7592 thread, so we should never be setting a new
7593 longjmp_resume_breakpoint when one is already active. */
7594 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7595
7596 infrun_log_debug ("inserting longjmp-resume breakpoint at %s",
7597 paddress (gdbarch, pc));
7598
7599 inferior_thread ()->control.exception_resume_breakpoint =
7600 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7601 }
7602
7603 /* Insert an exception resume breakpoint. TP is the thread throwing
7604 the exception. The block B is the block of the unwinder debug hook
7605 function. FRAME is the frame corresponding to the call to this
7606 function. SYM is the symbol of the function argument holding the
7607 target PC of the exception. */
7608
7609 static void
7610 insert_exception_resume_breakpoint (struct thread_info *tp,
7611 const struct block *b,
7612 struct frame_info *frame,
7613 struct symbol *sym)
7614 {
7615 try
7616 {
7617 struct block_symbol vsym;
7618 struct value *value;
7619 CORE_ADDR handler;
7620 struct breakpoint *bp;
7621
7622 vsym = lookup_symbol_search_name (sym->search_name (),
7623 b, VAR_DOMAIN);
7624 value = read_var_value (vsym.symbol, vsym.block, frame);
7625 /* If the value was optimized out, revert to the old behavior. */
7626 if (! value_optimized_out (value))
7627 {
7628 handler = value_as_address (value);
7629
7630 infrun_log_debug ("exception resume at %lx",
7631 (unsigned long) handler);
7632
7633 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7634 handler,
7635 bp_exception_resume).release ();
7636
7637 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7638 frame = NULL;
7639
7640 bp->thread = tp->global_num;
7641 inferior_thread ()->control.exception_resume_breakpoint = bp;
7642 }
7643 }
7644 catch (const gdb_exception_error &e)
7645 {
7646 /* We want to ignore errors here. */
7647 }
7648 }
7649
7650 /* A helper for check_exception_resume that sets an
7651 exception-breakpoint based on a SystemTap probe. */
7652
7653 static void
7654 insert_exception_resume_from_probe (struct thread_info *tp,
7655 const struct bound_probe *probe,
7656 struct frame_info *frame)
7657 {
7658 struct value *arg_value;
7659 CORE_ADDR handler;
7660 struct breakpoint *bp;
7661
7662 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7663 if (!arg_value)
7664 return;
7665
7666 handler = value_as_address (arg_value);
7667
7668 infrun_log_debug ("exception resume at %s",
7669 paddress (probe->objfile->arch (), handler));
7670
7671 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7672 handler, bp_exception_resume).release ();
7673 bp->thread = tp->global_num;
7674 inferior_thread ()->control.exception_resume_breakpoint = bp;
7675 }
7676
7677 /* This is called when an exception has been intercepted. Check to
7678 see whether the exception's destination is of interest, and if so,
7679 set an exception resume breakpoint there. */
7680
7681 static void
7682 check_exception_resume (struct execution_control_state *ecs,
7683 struct frame_info *frame)
7684 {
7685 struct bound_probe probe;
7686 struct symbol *func;
7687
7688 /* First see if this exception unwinding breakpoint was set via a
7689 SystemTap probe point. If so, the probe has two arguments: the
7690 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7691 set a breakpoint there. */
7692 probe = find_probe_by_pc (get_frame_pc (frame));
7693 if (probe.prob)
7694 {
7695 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7696 return;
7697 }
7698
7699 func = get_frame_function (frame);
7700 if (!func)
7701 return;
7702
7703 try
7704 {
7705 const struct block *b;
7706 struct block_iterator iter;
7707 struct symbol *sym;
7708 int argno = 0;
7709
7710 /* The exception breakpoint is a thread-specific breakpoint on
7711 the unwinder's debug hook, declared as:
7712
7713 void _Unwind_DebugHook (void *cfa, void *handler);
7714
7715 The CFA argument indicates the frame to which control is
7716 about to be transferred. HANDLER is the destination PC.
7717
7718 We ignore the CFA and set a temporary breakpoint at HANDLER.
7719 This is not extremely efficient but it avoids issues in gdb
7720 with computing the DWARF CFA, and it also works even in weird
7721 cases such as throwing an exception from inside a signal
7722 handler. */
7723
7724 b = SYMBOL_BLOCK_VALUE (func);
7725 ALL_BLOCK_SYMBOLS (b, iter, sym)
7726 {
7727 if (!SYMBOL_IS_ARGUMENT (sym))
7728 continue;
7729
7730 if (argno == 0)
7731 ++argno;
7732 else
7733 {
7734 insert_exception_resume_breakpoint (ecs->event_thread,
7735 b, frame, sym);
7736 break;
7737 }
7738 }
7739 }
7740 catch (const gdb_exception_error &e)
7741 {
7742 }
7743 }
7744
7745 static void
7746 stop_waiting (struct execution_control_state *ecs)
7747 {
7748 infrun_log_debug ("stop_waiting");
7749
7750 /* Let callers know we don't want to wait for the inferior anymore. */
7751 ecs->wait_some_more = 0;
7752
7753 /* If all-stop, but there exists a non-stop target, stop all
7754 threads now that we're presenting the stop to the user. */
7755 if (!non_stop && exists_non_stop_target ())
7756 stop_all_threads ();
7757 }
7758
7759 /* Like keep_going, but passes the signal to the inferior, even if the
7760 signal is set to nopass. */
7761
7762 static void
7763 keep_going_pass_signal (struct execution_control_state *ecs)
7764 {
7765 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7766 gdb_assert (!ecs->event_thread->resumed);
7767
7768 /* Save the pc before execution, to compare with pc after stop. */
7769 ecs->event_thread->prev_pc
7770 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7771
7772 if (ecs->event_thread->control.trap_expected)
7773 {
7774 struct thread_info *tp = ecs->event_thread;
7775
7776 infrun_log_debug ("%s has trap_expected set, "
7777 "resuming to collect trap",
7778 target_pid_to_str (tp->ptid).c_str ());
7779
7780 /* We haven't yet gotten our trap, and either: intercepted a
7781 non-signal event (e.g., a fork); or took a signal which we
7782 are supposed to pass through to the inferior. Simply
7783 continue. */
7784 resume (ecs->event_thread->suspend.stop_signal);
7785 }
7786 else if (step_over_info_valid_p ())
7787 {
7788 /* Another thread is stepping over a breakpoint in-line. If
7789 this thread needs a step-over too, queue the request. In
7790 either case, this resume must be deferred for later. */
7791 struct thread_info *tp = ecs->event_thread;
7792
7793 if (ecs->hit_singlestep_breakpoint
7794 || thread_still_needs_step_over (tp))
7795 {
7796 infrun_log_debug ("step-over already in progress: "
7797 "step-over for %s deferred",
7798 target_pid_to_str (tp->ptid).c_str ());
7799 global_thread_step_over_chain_enqueue (tp);
7800 }
7801 else
7802 {
7803 infrun_log_debug ("step-over in progress: resume of %s deferred",
7804 target_pid_to_str (tp->ptid).c_str ());
7805 }
7806 }
7807 else
7808 {
7809 struct regcache *regcache = get_current_regcache ();
7810 int remove_bp;
7811 int remove_wps;
7812 step_over_what step_what;
7813
7814 /* Either the trap was not expected, but we are continuing
7815 anyway (if we got a signal, the user asked it be passed to
7816 the child)
7817 -- or --
7818 We got our expected trap, but decided we should resume from
7819 it.
7820
7821 We're going to run this baby now!
7822
7823 Note that insert_breakpoints won't try to re-insert
7824 already inserted breakpoints. Therefore, we don't
7825 care if breakpoints were already inserted, or not. */
7826
7827 /* If we need to step over a breakpoint, and we're not using
7828 displaced stepping to do so, insert all breakpoints
7829 (watchpoints, etc.) but the one we're stepping over, step one
7830 instruction, and then re-insert the breakpoint when that step
7831 is finished. */
7832
7833 step_what = thread_still_needs_step_over (ecs->event_thread);
7834
7835 remove_bp = (ecs->hit_singlestep_breakpoint
7836 || (step_what & STEP_OVER_BREAKPOINT));
7837 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7838
7839 /* We can't use displaced stepping if we need to step past a
7840 watchpoint. The instruction copied to the scratch pad would
7841 still trigger the watchpoint. */
7842 if (remove_bp
7843 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7844 {
7845 set_step_over_info (regcache->aspace (),
7846 regcache_read_pc (regcache), remove_wps,
7847 ecs->event_thread->global_num);
7848 }
7849 else if (remove_wps)
7850 set_step_over_info (NULL, 0, remove_wps, -1);
7851
7852 /* If we now need to do an in-line step-over, we need to stop
7853 all other threads. Note this must be done before
7854 insert_breakpoints below, because that removes the breakpoint
7855 we're about to step over, otherwise other threads could miss
7856 it. */
7857 if (step_over_info_valid_p () && target_is_non_stop_p ())
7858 stop_all_threads ();
7859
7860 /* Stop stepping if inserting breakpoints fails. */
7861 try
7862 {
7863 insert_breakpoints ();
7864 }
7865 catch (const gdb_exception_error &e)
7866 {
7867 exception_print (gdb_stderr, e);
7868 stop_waiting (ecs);
7869 clear_step_over_info ();
7870 return;
7871 }
7872
7873 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7874
7875 resume (ecs->event_thread->suspend.stop_signal);
7876 }
7877
7878 prepare_to_wait (ecs);
7879 }
7880
7881 /* Called when we should continue running the inferior, because the
7882 current event doesn't cause a user visible stop. This does the
7883 resuming part; waiting for the next event is done elsewhere. */
7884
7885 static void
7886 keep_going (struct execution_control_state *ecs)
7887 {
7888 if (ecs->event_thread->control.trap_expected
7889 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7890 ecs->event_thread->control.trap_expected = 0;
7891
7892 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7893 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7894 keep_going_pass_signal (ecs);
7895 }
7896
7897 /* This function normally comes after a resume, before
7898 handle_inferior_event exits. It takes care of any last bits of
7899 housekeeping, and sets the all-important wait_some_more flag. */
7900
7901 static void
7902 prepare_to_wait (struct execution_control_state *ecs)
7903 {
7904 infrun_log_debug ("prepare_to_wait");
7905
7906 ecs->wait_some_more = 1;
7907
7908 /* If the target can't async, emulate it by marking the infrun event
7909 handler such that as soon as we get back to the event-loop, we
7910 immediately end up in fetch_inferior_event again calling
7911 target_wait. */
7912 if (!target_can_async_p ())
7913 mark_infrun_async_event_handler ();
7914 }
7915
7916 /* We are done with the step range of a step/next/si/ni command.
7917 Called once for each n of a "step n" operation. */
7918
7919 static void
7920 end_stepping_range (struct execution_control_state *ecs)
7921 {
7922 ecs->event_thread->control.stop_step = 1;
7923 stop_waiting (ecs);
7924 }
7925
7926 /* Several print_*_reason functions to print why the inferior has stopped.
7927 We always print something when the inferior exits, or receives a signal.
7928 The rest of the cases are dealt with later on in normal_stop and
7929 print_it_typical. Ideally there should be a call to one of these
7930 print_*_reason functions functions from handle_inferior_event each time
7931 stop_waiting is called.
7932
7933 Note that we don't call these directly, instead we delegate that to
7934 the interpreters, through observers. Interpreters then call these
7935 with whatever uiout is right. */
7936
7937 void
7938 print_end_stepping_range_reason (struct ui_out *uiout)
7939 {
7940 /* For CLI-like interpreters, print nothing. */
7941
7942 if (uiout->is_mi_like_p ())
7943 {
7944 uiout->field_string ("reason",
7945 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7946 }
7947 }
7948
7949 void
7950 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7951 {
7952 annotate_signalled ();
7953 if (uiout->is_mi_like_p ())
7954 uiout->field_string
7955 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7956 uiout->text ("\nProgram terminated with signal ");
7957 annotate_signal_name ();
7958 uiout->field_string ("signal-name",
7959 gdb_signal_to_name (siggnal));
7960 annotate_signal_name_end ();
7961 uiout->text (", ");
7962 annotate_signal_string ();
7963 uiout->field_string ("signal-meaning",
7964 gdb_signal_to_string (siggnal));
7965 annotate_signal_string_end ();
7966 uiout->text (".\n");
7967 uiout->text ("The program no longer exists.\n");
7968 }
7969
7970 void
7971 print_exited_reason (struct ui_out *uiout, int exitstatus)
7972 {
7973 struct inferior *inf = current_inferior ();
7974 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7975
7976 annotate_exited (exitstatus);
7977 if (exitstatus)
7978 {
7979 if (uiout->is_mi_like_p ())
7980 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7981 std::string exit_code_str
7982 = string_printf ("0%o", (unsigned int) exitstatus);
7983 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7984 plongest (inf->num), pidstr.c_str (),
7985 string_field ("exit-code", exit_code_str.c_str ()));
7986 }
7987 else
7988 {
7989 if (uiout->is_mi_like_p ())
7990 uiout->field_string
7991 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7992 uiout->message ("[Inferior %s (%s) exited normally]\n",
7993 plongest (inf->num), pidstr.c_str ());
7994 }
7995 }
7996
7997 /* Some targets/architectures can do extra processing/display of
7998 segmentation faults. E.g., Intel MPX boundary faults.
7999 Call the architecture dependent function to handle the fault. */
8000
8001 static void
8002 handle_segmentation_fault (struct ui_out *uiout)
8003 {
8004 struct regcache *regcache = get_current_regcache ();
8005 struct gdbarch *gdbarch = regcache->arch ();
8006
8007 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8008 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8009 }
8010
8011 void
8012 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8013 {
8014 struct thread_info *thr = inferior_thread ();
8015
8016 annotate_signal ();
8017
8018 if (uiout->is_mi_like_p ())
8019 ;
8020 else if (show_thread_that_caused_stop ())
8021 {
8022 const char *name;
8023
8024 uiout->text ("\nThread ");
8025 uiout->field_string ("thread-id", print_thread_id (thr));
8026
8027 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8028 if (name != NULL)
8029 {
8030 uiout->text (" \"");
8031 uiout->field_string ("name", name);
8032 uiout->text ("\"");
8033 }
8034 }
8035 else
8036 uiout->text ("\nProgram");
8037
8038 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8039 uiout->text (" stopped");
8040 else
8041 {
8042 uiout->text (" received signal ");
8043 annotate_signal_name ();
8044 if (uiout->is_mi_like_p ())
8045 uiout->field_string
8046 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8047 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8048 annotate_signal_name_end ();
8049 uiout->text (", ");
8050 annotate_signal_string ();
8051 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8052
8053 if (siggnal == GDB_SIGNAL_SEGV)
8054 handle_segmentation_fault (uiout);
8055
8056 annotate_signal_string_end ();
8057 }
8058 uiout->text (".\n");
8059 }
8060
8061 void
8062 print_no_history_reason (struct ui_out *uiout)
8063 {
8064 uiout->text ("\nNo more reverse-execution history.\n");
8065 }
8066
8067 /* Print current location without a level number, if we have changed
8068 functions or hit a breakpoint. Print source line if we have one.
8069 bpstat_print contains the logic deciding in detail what to print,
8070 based on the event(s) that just occurred. */
8071
8072 static void
8073 print_stop_location (struct target_waitstatus *ws)
8074 {
8075 int bpstat_ret;
8076 enum print_what source_flag;
8077 int do_frame_printing = 1;
8078 struct thread_info *tp = inferior_thread ();
8079
8080 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8081 switch (bpstat_ret)
8082 {
8083 case PRINT_UNKNOWN:
8084 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8085 should) carry around the function and does (or should) use
8086 that when doing a frame comparison. */
8087 if (tp->control.stop_step
8088 && frame_id_eq (tp->control.step_frame_id,
8089 get_frame_id (get_current_frame ()))
8090 && (tp->control.step_start_function
8091 == find_pc_function (tp->suspend.stop_pc)))
8092 {
8093 /* Finished step, just print source line. */
8094 source_flag = SRC_LINE;
8095 }
8096 else
8097 {
8098 /* Print location and source line. */
8099 source_flag = SRC_AND_LOC;
8100 }
8101 break;
8102 case PRINT_SRC_AND_LOC:
8103 /* Print location and source line. */
8104 source_flag = SRC_AND_LOC;
8105 break;
8106 case PRINT_SRC_ONLY:
8107 source_flag = SRC_LINE;
8108 break;
8109 case PRINT_NOTHING:
8110 /* Something bogus. */
8111 source_flag = SRC_LINE;
8112 do_frame_printing = 0;
8113 break;
8114 default:
8115 internal_error (__FILE__, __LINE__, _("Unknown value."));
8116 }
8117
8118 /* The behavior of this routine with respect to the source
8119 flag is:
8120 SRC_LINE: Print only source line
8121 LOCATION: Print only location
8122 SRC_AND_LOC: Print location and source line. */
8123 if (do_frame_printing)
8124 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8125 }
8126
8127 /* See infrun.h. */
8128
8129 void
8130 print_stop_event (struct ui_out *uiout, bool displays)
8131 {
8132 struct target_waitstatus last;
8133 struct thread_info *tp;
8134
8135 get_last_target_status (nullptr, nullptr, &last);
8136
8137 {
8138 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8139
8140 print_stop_location (&last);
8141
8142 /* Display the auto-display expressions. */
8143 if (displays)
8144 do_displays ();
8145 }
8146
8147 tp = inferior_thread ();
8148 if (tp->thread_fsm != NULL
8149 && tp->thread_fsm->finished_p ())
8150 {
8151 struct return_value_info *rv;
8152
8153 rv = tp->thread_fsm->return_value ();
8154 if (rv != NULL)
8155 print_return_value (uiout, rv);
8156 }
8157 }
8158
8159 /* See infrun.h. */
8160
8161 void
8162 maybe_remove_breakpoints (void)
8163 {
8164 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8165 {
8166 if (remove_breakpoints ())
8167 {
8168 target_terminal::ours_for_output ();
8169 printf_filtered (_("Cannot remove breakpoints because "
8170 "program is no longer writable.\nFurther "
8171 "execution is probably impossible.\n"));
8172 }
8173 }
8174 }
8175
8176 /* The execution context that just caused a normal stop. */
8177
8178 struct stop_context
8179 {
8180 stop_context ();
8181 ~stop_context ();
8182
8183 DISABLE_COPY_AND_ASSIGN (stop_context);
8184
8185 bool changed () const;
8186
8187 /* The stop ID. */
8188 ULONGEST stop_id;
8189
8190 /* The event PTID. */
8191
8192 ptid_t ptid;
8193
8194 /* If stopp for a thread event, this is the thread that caused the
8195 stop. */
8196 struct thread_info *thread;
8197
8198 /* The inferior that caused the stop. */
8199 int inf_num;
8200 };
8201
8202 /* Initializes a new stop context. If stopped for a thread event, this
8203 takes a strong reference to the thread. */
8204
8205 stop_context::stop_context ()
8206 {
8207 stop_id = get_stop_id ();
8208 ptid = inferior_ptid;
8209 inf_num = current_inferior ()->num;
8210
8211 if (inferior_ptid != null_ptid)
8212 {
8213 /* Take a strong reference so that the thread can't be deleted
8214 yet. */
8215 thread = inferior_thread ();
8216 thread->incref ();
8217 }
8218 else
8219 thread = NULL;
8220 }
8221
8222 /* Release a stop context previously created with save_stop_context.
8223 Releases the strong reference to the thread as well. */
8224
8225 stop_context::~stop_context ()
8226 {
8227 if (thread != NULL)
8228 thread->decref ();
8229 }
8230
8231 /* Return true if the current context no longer matches the saved stop
8232 context. */
8233
8234 bool
8235 stop_context::changed () const
8236 {
8237 if (ptid != inferior_ptid)
8238 return true;
8239 if (inf_num != current_inferior ()->num)
8240 return true;
8241 if (thread != NULL && thread->state != THREAD_STOPPED)
8242 return true;
8243 if (get_stop_id () != stop_id)
8244 return true;
8245 return false;
8246 }
8247
8248 /* See infrun.h. */
8249
8250 int
8251 normal_stop (void)
8252 {
8253 struct target_waitstatus last;
8254
8255 get_last_target_status (nullptr, nullptr, &last);
8256
8257 new_stop_id ();
8258
8259 /* If an exception is thrown from this point on, make sure to
8260 propagate GDB's knowledge of the executing state to the
8261 frontend/user running state. A QUIT is an easy exception to see
8262 here, so do this before any filtered output. */
8263
8264 ptid_t finish_ptid = null_ptid;
8265
8266 if (!non_stop)
8267 finish_ptid = minus_one_ptid;
8268 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8269 || last.kind == TARGET_WAITKIND_EXITED)
8270 {
8271 /* On some targets, we may still have live threads in the
8272 inferior when we get a process exit event. E.g., for
8273 "checkpoint", when the current checkpoint/fork exits,
8274 linux-fork.c automatically switches to another fork from
8275 within target_mourn_inferior. */
8276 if (inferior_ptid != null_ptid)
8277 finish_ptid = ptid_t (inferior_ptid.pid ());
8278 }
8279 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8280 finish_ptid = inferior_ptid;
8281
8282 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8283 if (finish_ptid != null_ptid)
8284 {
8285 maybe_finish_thread_state.emplace
8286 (user_visible_resume_target (finish_ptid), finish_ptid);
8287 }
8288
8289 /* As we're presenting a stop, and potentially removing breakpoints,
8290 update the thread list so we can tell whether there are threads
8291 running on the target. With target remote, for example, we can
8292 only learn about new threads when we explicitly update the thread
8293 list. Do this before notifying the interpreters about signal
8294 stops, end of stepping ranges, etc., so that the "new thread"
8295 output is emitted before e.g., "Program received signal FOO",
8296 instead of after. */
8297 update_thread_list ();
8298
8299 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8300 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8301
8302 /* As with the notification of thread events, we want to delay
8303 notifying the user that we've switched thread context until
8304 the inferior actually stops.
8305
8306 There's no point in saying anything if the inferior has exited.
8307 Note that SIGNALLED here means "exited with a signal", not
8308 "received a signal".
8309
8310 Also skip saying anything in non-stop mode. In that mode, as we
8311 don't want GDB to switch threads behind the user's back, to avoid
8312 races where the user is typing a command to apply to thread x,
8313 but GDB switches to thread y before the user finishes entering
8314 the command, fetch_inferior_event installs a cleanup to restore
8315 the current thread back to the thread the user had selected right
8316 after this event is handled, so we're not really switching, only
8317 informing of a stop. */
8318 if (!non_stop
8319 && previous_inferior_ptid != inferior_ptid
8320 && target_has_execution
8321 && last.kind != TARGET_WAITKIND_SIGNALLED
8322 && last.kind != TARGET_WAITKIND_EXITED
8323 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8324 {
8325 SWITCH_THRU_ALL_UIS ()
8326 {
8327 target_terminal::ours_for_output ();
8328 printf_filtered (_("[Switching to %s]\n"),
8329 target_pid_to_str (inferior_ptid).c_str ());
8330 annotate_thread_changed ();
8331 }
8332 previous_inferior_ptid = inferior_ptid;
8333 }
8334
8335 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8336 {
8337 SWITCH_THRU_ALL_UIS ()
8338 if (current_ui->prompt_state == PROMPT_BLOCKED)
8339 {
8340 target_terminal::ours_for_output ();
8341 printf_filtered (_("No unwaited-for children left.\n"));
8342 }
8343 }
8344
8345 /* Note: this depends on the update_thread_list call above. */
8346 maybe_remove_breakpoints ();
8347
8348 /* If an auto-display called a function and that got a signal,
8349 delete that auto-display to avoid an infinite recursion. */
8350
8351 if (stopped_by_random_signal)
8352 disable_current_display ();
8353
8354 SWITCH_THRU_ALL_UIS ()
8355 {
8356 async_enable_stdin ();
8357 }
8358
8359 /* Let the user/frontend see the threads as stopped. */
8360 maybe_finish_thread_state.reset ();
8361
8362 /* Select innermost stack frame - i.e., current frame is frame 0,
8363 and current location is based on that. Handle the case where the
8364 dummy call is returning after being stopped. E.g. the dummy call
8365 previously hit a breakpoint. (If the dummy call returns
8366 normally, we won't reach here.) Do this before the stop hook is
8367 run, so that it doesn't get to see the temporary dummy frame,
8368 which is not where we'll present the stop. */
8369 if (has_stack_frames ())
8370 {
8371 if (stop_stack_dummy == STOP_STACK_DUMMY)
8372 {
8373 /* Pop the empty frame that contains the stack dummy. This
8374 also restores inferior state prior to the call (struct
8375 infcall_suspend_state). */
8376 struct frame_info *frame = get_current_frame ();
8377
8378 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8379 frame_pop (frame);
8380 /* frame_pop calls reinit_frame_cache as the last thing it
8381 does which means there's now no selected frame. */
8382 }
8383
8384 select_frame (get_current_frame ());
8385
8386 /* Set the current source location. */
8387 set_current_sal_from_frame (get_current_frame ());
8388 }
8389
8390 /* Look up the hook_stop and run it (CLI internally handles problem
8391 of stop_command's pre-hook not existing). */
8392 if (stop_command != NULL)
8393 {
8394 stop_context saved_context;
8395
8396 try
8397 {
8398 execute_cmd_pre_hook (stop_command);
8399 }
8400 catch (const gdb_exception &ex)
8401 {
8402 exception_fprintf (gdb_stderr, ex,
8403 "Error while running hook_stop:\n");
8404 }
8405
8406 /* If the stop hook resumes the target, then there's no point in
8407 trying to notify about the previous stop; its context is
8408 gone. Likewise if the command switches thread or inferior --
8409 the observers would print a stop for the wrong
8410 thread/inferior. */
8411 if (saved_context.changed ())
8412 return 1;
8413 }
8414
8415 /* Notify observers about the stop. This is where the interpreters
8416 print the stop event. */
8417 if (inferior_ptid != null_ptid)
8418 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8419 stop_print_frame);
8420 else
8421 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8422
8423 annotate_stopped ();
8424
8425 if (target_has_execution)
8426 {
8427 if (last.kind != TARGET_WAITKIND_SIGNALLED
8428 && last.kind != TARGET_WAITKIND_EXITED
8429 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8430 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8431 Delete any breakpoint that is to be deleted at the next stop. */
8432 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8433 }
8434
8435 /* Try to get rid of automatically added inferiors that are no
8436 longer needed. Keeping those around slows down things linearly.
8437 Note that this never removes the current inferior. */
8438 prune_inferiors ();
8439
8440 return 0;
8441 }
8442 \f
8443 int
8444 signal_stop_state (int signo)
8445 {
8446 return signal_stop[signo];
8447 }
8448
8449 int
8450 signal_print_state (int signo)
8451 {
8452 return signal_print[signo];
8453 }
8454
8455 int
8456 signal_pass_state (int signo)
8457 {
8458 return signal_program[signo];
8459 }
8460
8461 static void
8462 signal_cache_update (int signo)
8463 {
8464 if (signo == -1)
8465 {
8466 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8467 signal_cache_update (signo);
8468
8469 return;
8470 }
8471
8472 signal_pass[signo] = (signal_stop[signo] == 0
8473 && signal_print[signo] == 0
8474 && signal_program[signo] == 1
8475 && signal_catch[signo] == 0);
8476 }
8477
8478 int
8479 signal_stop_update (int signo, int state)
8480 {
8481 int ret = signal_stop[signo];
8482
8483 signal_stop[signo] = state;
8484 signal_cache_update (signo);
8485 return ret;
8486 }
8487
8488 int
8489 signal_print_update (int signo, int state)
8490 {
8491 int ret = signal_print[signo];
8492
8493 signal_print[signo] = state;
8494 signal_cache_update (signo);
8495 return ret;
8496 }
8497
8498 int
8499 signal_pass_update (int signo, int state)
8500 {
8501 int ret = signal_program[signo];
8502
8503 signal_program[signo] = state;
8504 signal_cache_update (signo);
8505 return ret;
8506 }
8507
8508 /* Update the global 'signal_catch' from INFO and notify the
8509 target. */
8510
8511 void
8512 signal_catch_update (const unsigned int *info)
8513 {
8514 int i;
8515
8516 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8517 signal_catch[i] = info[i] > 0;
8518 signal_cache_update (-1);
8519 target_pass_signals (signal_pass);
8520 }
8521
8522 static void
8523 sig_print_header (void)
8524 {
8525 printf_filtered (_("Signal Stop\tPrint\tPass "
8526 "to program\tDescription\n"));
8527 }
8528
8529 static void
8530 sig_print_info (enum gdb_signal oursig)
8531 {
8532 const char *name = gdb_signal_to_name (oursig);
8533 int name_padding = 13 - strlen (name);
8534
8535 if (name_padding <= 0)
8536 name_padding = 0;
8537
8538 printf_filtered ("%s", name);
8539 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8540 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8541 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8542 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8543 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8544 }
8545
8546 /* Specify how various signals in the inferior should be handled. */
8547
8548 static void
8549 handle_command (const char *args, int from_tty)
8550 {
8551 int digits, wordlen;
8552 int sigfirst, siglast;
8553 enum gdb_signal oursig;
8554 int allsigs;
8555
8556 if (args == NULL)
8557 {
8558 error_no_arg (_("signal to handle"));
8559 }
8560
8561 /* Allocate and zero an array of flags for which signals to handle. */
8562
8563 const size_t nsigs = GDB_SIGNAL_LAST;
8564 unsigned char sigs[nsigs] {};
8565
8566 /* Break the command line up into args. */
8567
8568 gdb_argv built_argv (args);
8569
8570 /* Walk through the args, looking for signal oursigs, signal names, and
8571 actions. Signal numbers and signal names may be interspersed with
8572 actions, with the actions being performed for all signals cumulatively
8573 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8574
8575 for (char *arg : built_argv)
8576 {
8577 wordlen = strlen (arg);
8578 for (digits = 0; isdigit (arg[digits]); digits++)
8579 {;
8580 }
8581 allsigs = 0;
8582 sigfirst = siglast = -1;
8583
8584 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8585 {
8586 /* Apply action to all signals except those used by the
8587 debugger. Silently skip those. */
8588 allsigs = 1;
8589 sigfirst = 0;
8590 siglast = nsigs - 1;
8591 }
8592 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8593 {
8594 SET_SIGS (nsigs, sigs, signal_stop);
8595 SET_SIGS (nsigs, sigs, signal_print);
8596 }
8597 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8598 {
8599 UNSET_SIGS (nsigs, sigs, signal_program);
8600 }
8601 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8602 {
8603 SET_SIGS (nsigs, sigs, signal_print);
8604 }
8605 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8606 {
8607 SET_SIGS (nsigs, sigs, signal_program);
8608 }
8609 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8610 {
8611 UNSET_SIGS (nsigs, sigs, signal_stop);
8612 }
8613 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8614 {
8615 SET_SIGS (nsigs, sigs, signal_program);
8616 }
8617 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8618 {
8619 UNSET_SIGS (nsigs, sigs, signal_print);
8620 UNSET_SIGS (nsigs, sigs, signal_stop);
8621 }
8622 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8623 {
8624 UNSET_SIGS (nsigs, sigs, signal_program);
8625 }
8626 else if (digits > 0)
8627 {
8628 /* It is numeric. The numeric signal refers to our own
8629 internal signal numbering from target.h, not to host/target
8630 signal number. This is a feature; users really should be
8631 using symbolic names anyway, and the common ones like
8632 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8633
8634 sigfirst = siglast = (int)
8635 gdb_signal_from_command (atoi (arg));
8636 if (arg[digits] == '-')
8637 {
8638 siglast = (int)
8639 gdb_signal_from_command (atoi (arg + digits + 1));
8640 }
8641 if (sigfirst > siglast)
8642 {
8643 /* Bet he didn't figure we'd think of this case... */
8644 std::swap (sigfirst, siglast);
8645 }
8646 }
8647 else
8648 {
8649 oursig = gdb_signal_from_name (arg);
8650 if (oursig != GDB_SIGNAL_UNKNOWN)
8651 {
8652 sigfirst = siglast = (int) oursig;
8653 }
8654 else
8655 {
8656 /* Not a number and not a recognized flag word => complain. */
8657 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8658 }
8659 }
8660
8661 /* If any signal numbers or symbol names were found, set flags for
8662 which signals to apply actions to. */
8663
8664 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8665 {
8666 switch ((enum gdb_signal) signum)
8667 {
8668 case GDB_SIGNAL_TRAP:
8669 case GDB_SIGNAL_INT:
8670 if (!allsigs && !sigs[signum])
8671 {
8672 if (query (_("%s is used by the debugger.\n\
8673 Are you sure you want to change it? "),
8674 gdb_signal_to_name ((enum gdb_signal) signum)))
8675 {
8676 sigs[signum] = 1;
8677 }
8678 else
8679 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8680 }
8681 break;
8682 case GDB_SIGNAL_0:
8683 case GDB_SIGNAL_DEFAULT:
8684 case GDB_SIGNAL_UNKNOWN:
8685 /* Make sure that "all" doesn't print these. */
8686 break;
8687 default:
8688 sigs[signum] = 1;
8689 break;
8690 }
8691 }
8692 }
8693
8694 for (int signum = 0; signum < nsigs; signum++)
8695 if (sigs[signum])
8696 {
8697 signal_cache_update (-1);
8698 target_pass_signals (signal_pass);
8699 target_program_signals (signal_program);
8700
8701 if (from_tty)
8702 {
8703 /* Show the results. */
8704 sig_print_header ();
8705 for (; signum < nsigs; signum++)
8706 if (sigs[signum])
8707 sig_print_info ((enum gdb_signal) signum);
8708 }
8709
8710 break;
8711 }
8712 }
8713
8714 /* Complete the "handle" command. */
8715
8716 static void
8717 handle_completer (struct cmd_list_element *ignore,
8718 completion_tracker &tracker,
8719 const char *text, const char *word)
8720 {
8721 static const char * const keywords[] =
8722 {
8723 "all",
8724 "stop",
8725 "ignore",
8726 "print",
8727 "pass",
8728 "nostop",
8729 "noignore",
8730 "noprint",
8731 "nopass",
8732 NULL,
8733 };
8734
8735 signal_completer (ignore, tracker, text, word);
8736 complete_on_enum (tracker, keywords, word, word);
8737 }
8738
8739 enum gdb_signal
8740 gdb_signal_from_command (int num)
8741 {
8742 if (num >= 1 && num <= 15)
8743 return (enum gdb_signal) num;
8744 error (_("Only signals 1-15 are valid as numeric signals.\n\
8745 Use \"info signals\" for a list of symbolic signals."));
8746 }
8747
8748 /* Print current contents of the tables set by the handle command.
8749 It is possible we should just be printing signals actually used
8750 by the current target (but for things to work right when switching
8751 targets, all signals should be in the signal tables). */
8752
8753 static void
8754 info_signals_command (const char *signum_exp, int from_tty)
8755 {
8756 enum gdb_signal oursig;
8757
8758 sig_print_header ();
8759
8760 if (signum_exp)
8761 {
8762 /* First see if this is a symbol name. */
8763 oursig = gdb_signal_from_name (signum_exp);
8764 if (oursig == GDB_SIGNAL_UNKNOWN)
8765 {
8766 /* No, try numeric. */
8767 oursig =
8768 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8769 }
8770 sig_print_info (oursig);
8771 return;
8772 }
8773
8774 printf_filtered ("\n");
8775 /* These ugly casts brought to you by the native VAX compiler. */
8776 for (oursig = GDB_SIGNAL_FIRST;
8777 (int) oursig < (int) GDB_SIGNAL_LAST;
8778 oursig = (enum gdb_signal) ((int) oursig + 1))
8779 {
8780 QUIT;
8781
8782 if (oursig != GDB_SIGNAL_UNKNOWN
8783 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8784 sig_print_info (oursig);
8785 }
8786
8787 printf_filtered (_("\nUse the \"handle\" command "
8788 "to change these tables.\n"));
8789 }
8790
8791 /* The $_siginfo convenience variable is a bit special. We don't know
8792 for sure the type of the value until we actually have a chance to
8793 fetch the data. The type can change depending on gdbarch, so it is
8794 also dependent on which thread you have selected.
8795
8796 1. making $_siginfo be an internalvar that creates a new value on
8797 access.
8798
8799 2. making the value of $_siginfo be an lval_computed value. */
8800
8801 /* This function implements the lval_computed support for reading a
8802 $_siginfo value. */
8803
8804 static void
8805 siginfo_value_read (struct value *v)
8806 {
8807 LONGEST transferred;
8808
8809 /* If we can access registers, so can we access $_siginfo. Likewise
8810 vice versa. */
8811 validate_registers_access ();
8812
8813 transferred =
8814 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8815 NULL,
8816 value_contents_all_raw (v),
8817 value_offset (v),
8818 TYPE_LENGTH (value_type (v)));
8819
8820 if (transferred != TYPE_LENGTH (value_type (v)))
8821 error (_("Unable to read siginfo"));
8822 }
8823
8824 /* This function implements the lval_computed support for writing a
8825 $_siginfo value. */
8826
8827 static void
8828 siginfo_value_write (struct value *v, struct value *fromval)
8829 {
8830 LONGEST transferred;
8831
8832 /* If we can access registers, so can we access $_siginfo. Likewise
8833 vice versa. */
8834 validate_registers_access ();
8835
8836 transferred = target_write (current_top_target (),
8837 TARGET_OBJECT_SIGNAL_INFO,
8838 NULL,
8839 value_contents_all_raw (fromval),
8840 value_offset (v),
8841 TYPE_LENGTH (value_type (fromval)));
8842
8843 if (transferred != TYPE_LENGTH (value_type (fromval)))
8844 error (_("Unable to write siginfo"));
8845 }
8846
8847 static const struct lval_funcs siginfo_value_funcs =
8848 {
8849 siginfo_value_read,
8850 siginfo_value_write
8851 };
8852
8853 /* Return a new value with the correct type for the siginfo object of
8854 the current thread using architecture GDBARCH. Return a void value
8855 if there's no object available. */
8856
8857 static struct value *
8858 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8859 void *ignore)
8860 {
8861 if (target_has_stack
8862 && inferior_ptid != null_ptid
8863 && gdbarch_get_siginfo_type_p (gdbarch))
8864 {
8865 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8866
8867 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8868 }
8869
8870 return allocate_value (builtin_type (gdbarch)->builtin_void);
8871 }
8872
8873 \f
8874 /* infcall_suspend_state contains state about the program itself like its
8875 registers and any signal it received when it last stopped.
8876 This state must be restored regardless of how the inferior function call
8877 ends (either successfully, or after it hits a breakpoint or signal)
8878 if the program is to properly continue where it left off. */
8879
8880 class infcall_suspend_state
8881 {
8882 public:
8883 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8884 once the inferior function call has finished. */
8885 infcall_suspend_state (struct gdbarch *gdbarch,
8886 const struct thread_info *tp,
8887 struct regcache *regcache)
8888 : m_thread_suspend (tp->suspend),
8889 m_registers (new readonly_detached_regcache (*regcache))
8890 {
8891 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8892
8893 if (gdbarch_get_siginfo_type_p (gdbarch))
8894 {
8895 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8896 size_t len = TYPE_LENGTH (type);
8897
8898 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8899
8900 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8901 siginfo_data.get (), 0, len) != len)
8902 {
8903 /* Errors ignored. */
8904 siginfo_data.reset (nullptr);
8905 }
8906 }
8907
8908 if (siginfo_data)
8909 {
8910 m_siginfo_gdbarch = gdbarch;
8911 m_siginfo_data = std::move (siginfo_data);
8912 }
8913 }
8914
8915 /* Return a pointer to the stored register state. */
8916
8917 readonly_detached_regcache *registers () const
8918 {
8919 return m_registers.get ();
8920 }
8921
8922 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8923
8924 void restore (struct gdbarch *gdbarch,
8925 struct thread_info *tp,
8926 struct regcache *regcache) const
8927 {
8928 tp->suspend = m_thread_suspend;
8929
8930 if (m_siginfo_gdbarch == gdbarch)
8931 {
8932 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8933
8934 /* Errors ignored. */
8935 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8936 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8937 }
8938
8939 /* The inferior can be gone if the user types "print exit(0)"
8940 (and perhaps other times). */
8941 if (target_has_execution)
8942 /* NB: The register write goes through to the target. */
8943 regcache->restore (registers ());
8944 }
8945
8946 private:
8947 /* How the current thread stopped before the inferior function call was
8948 executed. */
8949 struct thread_suspend_state m_thread_suspend;
8950
8951 /* The registers before the inferior function call was executed. */
8952 std::unique_ptr<readonly_detached_regcache> m_registers;
8953
8954 /* Format of SIGINFO_DATA or NULL if it is not present. */
8955 struct gdbarch *m_siginfo_gdbarch = nullptr;
8956
8957 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8958 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8959 content would be invalid. */
8960 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8961 };
8962
8963 infcall_suspend_state_up
8964 save_infcall_suspend_state ()
8965 {
8966 struct thread_info *tp = inferior_thread ();
8967 struct regcache *regcache = get_current_regcache ();
8968 struct gdbarch *gdbarch = regcache->arch ();
8969
8970 infcall_suspend_state_up inf_state
8971 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8972
8973 /* Having saved the current state, adjust the thread state, discarding
8974 any stop signal information. The stop signal is not useful when
8975 starting an inferior function call, and run_inferior_call will not use
8976 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8977 tp->suspend.stop_signal = GDB_SIGNAL_0;
8978
8979 return inf_state;
8980 }
8981
8982 /* Restore inferior session state to INF_STATE. */
8983
8984 void
8985 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8986 {
8987 struct thread_info *tp = inferior_thread ();
8988 struct regcache *regcache = get_current_regcache ();
8989 struct gdbarch *gdbarch = regcache->arch ();
8990
8991 inf_state->restore (gdbarch, tp, regcache);
8992 discard_infcall_suspend_state (inf_state);
8993 }
8994
8995 void
8996 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8997 {
8998 delete inf_state;
8999 }
9000
9001 readonly_detached_regcache *
9002 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9003 {
9004 return inf_state->registers ();
9005 }
9006
9007 /* infcall_control_state contains state regarding gdb's control of the
9008 inferior itself like stepping control. It also contains session state like
9009 the user's currently selected frame. */
9010
9011 struct infcall_control_state
9012 {
9013 struct thread_control_state thread_control;
9014 struct inferior_control_state inferior_control;
9015
9016 /* Other fields: */
9017 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9018 int stopped_by_random_signal = 0;
9019
9020 /* ID if the selected frame when the inferior function call was made. */
9021 struct frame_id selected_frame_id {};
9022 };
9023
9024 /* Save all of the information associated with the inferior<==>gdb
9025 connection. */
9026
9027 infcall_control_state_up
9028 save_infcall_control_state ()
9029 {
9030 infcall_control_state_up inf_status (new struct infcall_control_state);
9031 struct thread_info *tp = inferior_thread ();
9032 struct inferior *inf = current_inferior ();
9033
9034 inf_status->thread_control = tp->control;
9035 inf_status->inferior_control = inf->control;
9036
9037 tp->control.step_resume_breakpoint = NULL;
9038 tp->control.exception_resume_breakpoint = NULL;
9039
9040 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9041 chain. If caller's caller is walking the chain, they'll be happier if we
9042 hand them back the original chain when restore_infcall_control_state is
9043 called. */
9044 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9045
9046 /* Other fields: */
9047 inf_status->stop_stack_dummy = stop_stack_dummy;
9048 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9049
9050 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9051
9052 return inf_status;
9053 }
9054
9055 static void
9056 restore_selected_frame (const frame_id &fid)
9057 {
9058 frame_info *frame = frame_find_by_id (fid);
9059
9060 /* If inf_status->selected_frame_id is NULL, there was no previously
9061 selected frame. */
9062 if (frame == NULL)
9063 {
9064 warning (_("Unable to restore previously selected frame."));
9065 return;
9066 }
9067
9068 select_frame (frame);
9069 }
9070
9071 /* Restore inferior session state to INF_STATUS. */
9072
9073 void
9074 restore_infcall_control_state (struct infcall_control_state *inf_status)
9075 {
9076 struct thread_info *tp = inferior_thread ();
9077 struct inferior *inf = current_inferior ();
9078
9079 if (tp->control.step_resume_breakpoint)
9080 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9081
9082 if (tp->control.exception_resume_breakpoint)
9083 tp->control.exception_resume_breakpoint->disposition
9084 = disp_del_at_next_stop;
9085
9086 /* Handle the bpstat_copy of the chain. */
9087 bpstat_clear (&tp->control.stop_bpstat);
9088
9089 tp->control = inf_status->thread_control;
9090 inf->control = inf_status->inferior_control;
9091
9092 /* Other fields: */
9093 stop_stack_dummy = inf_status->stop_stack_dummy;
9094 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9095
9096 if (target_has_stack)
9097 {
9098 /* The point of the try/catch is that if the stack is clobbered,
9099 walking the stack might encounter a garbage pointer and
9100 error() trying to dereference it. */
9101 try
9102 {
9103 restore_selected_frame (inf_status->selected_frame_id);
9104 }
9105 catch (const gdb_exception_error &ex)
9106 {
9107 exception_fprintf (gdb_stderr, ex,
9108 "Unable to restore previously selected frame:\n");
9109 /* Error in restoring the selected frame. Select the
9110 innermost frame. */
9111 select_frame (get_current_frame ());
9112 }
9113 }
9114
9115 delete inf_status;
9116 }
9117
9118 void
9119 discard_infcall_control_state (struct infcall_control_state *inf_status)
9120 {
9121 if (inf_status->thread_control.step_resume_breakpoint)
9122 inf_status->thread_control.step_resume_breakpoint->disposition
9123 = disp_del_at_next_stop;
9124
9125 if (inf_status->thread_control.exception_resume_breakpoint)
9126 inf_status->thread_control.exception_resume_breakpoint->disposition
9127 = disp_del_at_next_stop;
9128
9129 /* See save_infcall_control_state for info on stop_bpstat. */
9130 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9131
9132 delete inf_status;
9133 }
9134 \f
9135 /* See infrun.h. */
9136
9137 void
9138 clear_exit_convenience_vars (void)
9139 {
9140 clear_internalvar (lookup_internalvar ("_exitsignal"));
9141 clear_internalvar (lookup_internalvar ("_exitcode"));
9142 }
9143 \f
9144
9145 /* User interface for reverse debugging:
9146 Set exec-direction / show exec-direction commands
9147 (returns error unless target implements to_set_exec_direction method). */
9148
9149 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9150 static const char exec_forward[] = "forward";
9151 static const char exec_reverse[] = "reverse";
9152 static const char *exec_direction = exec_forward;
9153 static const char *const exec_direction_names[] = {
9154 exec_forward,
9155 exec_reverse,
9156 NULL
9157 };
9158
9159 static void
9160 set_exec_direction_func (const char *args, int from_tty,
9161 struct cmd_list_element *cmd)
9162 {
9163 if (target_can_execute_reverse)
9164 {
9165 if (!strcmp (exec_direction, exec_forward))
9166 execution_direction = EXEC_FORWARD;
9167 else if (!strcmp (exec_direction, exec_reverse))
9168 execution_direction = EXEC_REVERSE;
9169 }
9170 else
9171 {
9172 exec_direction = exec_forward;
9173 error (_("Target does not support this operation."));
9174 }
9175 }
9176
9177 static void
9178 show_exec_direction_func (struct ui_file *out, int from_tty,
9179 struct cmd_list_element *cmd, const char *value)
9180 {
9181 switch (execution_direction) {
9182 case EXEC_FORWARD:
9183 fprintf_filtered (out, _("Forward.\n"));
9184 break;
9185 case EXEC_REVERSE:
9186 fprintf_filtered (out, _("Reverse.\n"));
9187 break;
9188 default:
9189 internal_error (__FILE__, __LINE__,
9190 _("bogus execution_direction value: %d"),
9191 (int) execution_direction);
9192 }
9193 }
9194
9195 static void
9196 show_schedule_multiple (struct ui_file *file, int from_tty,
9197 struct cmd_list_element *c, const char *value)
9198 {
9199 fprintf_filtered (file, _("Resuming the execution of threads "
9200 "of all processes is %s.\n"), value);
9201 }
9202
9203 /* Implementation of `siginfo' variable. */
9204
9205 static const struct internalvar_funcs siginfo_funcs =
9206 {
9207 siginfo_make_value,
9208 NULL,
9209 NULL
9210 };
9211
9212 /* Callback for infrun's target events source. This is marked when a
9213 thread has a pending status to process. */
9214
9215 static void
9216 infrun_async_inferior_event_handler (gdb_client_data data)
9217 {
9218 inferior_event_handler (INF_REG_EVENT);
9219 }
9220
9221 void _initialize_infrun ();
9222 void
9223 _initialize_infrun ()
9224 {
9225 struct cmd_list_element *c;
9226
9227 /* Register extra event sources in the event loop. */
9228 infrun_async_inferior_event_token
9229 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9230
9231 add_info ("signals", info_signals_command, _("\
9232 What debugger does when program gets various signals.\n\
9233 Specify a signal as argument to print info on that signal only."));
9234 add_info_alias ("handle", "signals", 0);
9235
9236 c = add_com ("handle", class_run, handle_command, _("\
9237 Specify how to handle signals.\n\
9238 Usage: handle SIGNAL [ACTIONS]\n\
9239 Args are signals and actions to apply to those signals.\n\
9240 If no actions are specified, the current settings for the specified signals\n\
9241 will be displayed instead.\n\
9242 \n\
9243 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9244 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9245 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9246 The special arg \"all\" is recognized to mean all signals except those\n\
9247 used by the debugger, typically SIGTRAP and SIGINT.\n\
9248 \n\
9249 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9250 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9251 Stop means reenter debugger if this signal happens (implies print).\n\
9252 Print means print a message if this signal happens.\n\
9253 Pass means let program see this signal; otherwise program doesn't know.\n\
9254 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9255 Pass and Stop may be combined.\n\
9256 \n\
9257 Multiple signals may be specified. Signal numbers and signal names\n\
9258 may be interspersed with actions, with the actions being performed for\n\
9259 all signals cumulatively specified."));
9260 set_cmd_completer (c, handle_completer);
9261
9262 if (!dbx_commands)
9263 stop_command = add_cmd ("stop", class_obscure,
9264 not_just_help_class_command, _("\
9265 There is no `stop' command, but you can set a hook on `stop'.\n\
9266 This allows you to set a list of commands to be run each time execution\n\
9267 of the program stops."), &cmdlist);
9268
9269 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9270 Set inferior debugging."), _("\
9271 Show inferior debugging."), _("\
9272 When non-zero, inferior specific debugging is enabled."),
9273 NULL,
9274 show_debug_infrun,
9275 &setdebuglist, &showdebuglist);
9276
9277 add_setshow_boolean_cmd ("displaced", class_maintenance,
9278 &debug_displaced, _("\
9279 Set displaced stepping debugging."), _("\
9280 Show displaced stepping debugging."), _("\
9281 When non-zero, displaced stepping specific debugging is enabled."),
9282 NULL,
9283 show_debug_displaced,
9284 &setdebuglist, &showdebuglist);
9285
9286 add_setshow_boolean_cmd ("non-stop", no_class,
9287 &non_stop_1, _("\
9288 Set whether gdb controls the inferior in non-stop mode."), _("\
9289 Show whether gdb controls the inferior in non-stop mode."), _("\
9290 When debugging a multi-threaded program and this setting is\n\
9291 off (the default, also called all-stop mode), when one thread stops\n\
9292 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9293 all other threads in the program while you interact with the thread of\n\
9294 interest. When you continue or step a thread, you can allow the other\n\
9295 threads to run, or have them remain stopped, but while you inspect any\n\
9296 thread's state, all threads stop.\n\
9297 \n\
9298 In non-stop mode, when one thread stops, other threads can continue\n\
9299 to run freely. You'll be able to step each thread independently,\n\
9300 leave it stopped or free to run as needed."),
9301 set_non_stop,
9302 show_non_stop,
9303 &setlist,
9304 &showlist);
9305
9306 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9307 {
9308 signal_stop[i] = 1;
9309 signal_print[i] = 1;
9310 signal_program[i] = 1;
9311 signal_catch[i] = 0;
9312 }
9313
9314 /* Signals caused by debugger's own actions should not be given to
9315 the program afterwards.
9316
9317 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9318 explicitly specifies that it should be delivered to the target
9319 program. Typically, that would occur when a user is debugging a
9320 target monitor on a simulator: the target monitor sets a
9321 breakpoint; the simulator encounters this breakpoint and halts
9322 the simulation handing control to GDB; GDB, noting that the stop
9323 address doesn't map to any known breakpoint, returns control back
9324 to the simulator; the simulator then delivers the hardware
9325 equivalent of a GDB_SIGNAL_TRAP to the program being
9326 debugged. */
9327 signal_program[GDB_SIGNAL_TRAP] = 0;
9328 signal_program[GDB_SIGNAL_INT] = 0;
9329
9330 /* Signals that are not errors should not normally enter the debugger. */
9331 signal_stop[GDB_SIGNAL_ALRM] = 0;
9332 signal_print[GDB_SIGNAL_ALRM] = 0;
9333 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9334 signal_print[GDB_SIGNAL_VTALRM] = 0;
9335 signal_stop[GDB_SIGNAL_PROF] = 0;
9336 signal_print[GDB_SIGNAL_PROF] = 0;
9337 signal_stop[GDB_SIGNAL_CHLD] = 0;
9338 signal_print[GDB_SIGNAL_CHLD] = 0;
9339 signal_stop[GDB_SIGNAL_IO] = 0;
9340 signal_print[GDB_SIGNAL_IO] = 0;
9341 signal_stop[GDB_SIGNAL_POLL] = 0;
9342 signal_print[GDB_SIGNAL_POLL] = 0;
9343 signal_stop[GDB_SIGNAL_URG] = 0;
9344 signal_print[GDB_SIGNAL_URG] = 0;
9345 signal_stop[GDB_SIGNAL_WINCH] = 0;
9346 signal_print[GDB_SIGNAL_WINCH] = 0;
9347 signal_stop[GDB_SIGNAL_PRIO] = 0;
9348 signal_print[GDB_SIGNAL_PRIO] = 0;
9349
9350 /* These signals are used internally by user-level thread
9351 implementations. (See signal(5) on Solaris.) Like the above
9352 signals, a healthy program receives and handles them as part of
9353 its normal operation. */
9354 signal_stop[GDB_SIGNAL_LWP] = 0;
9355 signal_print[GDB_SIGNAL_LWP] = 0;
9356 signal_stop[GDB_SIGNAL_WAITING] = 0;
9357 signal_print[GDB_SIGNAL_WAITING] = 0;
9358 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9359 signal_print[GDB_SIGNAL_CANCEL] = 0;
9360 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9361 signal_print[GDB_SIGNAL_LIBRT] = 0;
9362
9363 /* Update cached state. */
9364 signal_cache_update (-1);
9365
9366 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9367 &stop_on_solib_events, _("\
9368 Set stopping for shared library events."), _("\
9369 Show stopping for shared library events."), _("\
9370 If nonzero, gdb will give control to the user when the dynamic linker\n\
9371 notifies gdb of shared library events. The most common event of interest\n\
9372 to the user would be loading/unloading of a new library."),
9373 set_stop_on_solib_events,
9374 show_stop_on_solib_events,
9375 &setlist, &showlist);
9376
9377 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9378 follow_fork_mode_kind_names,
9379 &follow_fork_mode_string, _("\
9380 Set debugger response to a program call of fork or vfork."), _("\
9381 Show debugger response to a program call of fork or vfork."), _("\
9382 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9383 parent - the original process is debugged after a fork\n\
9384 child - the new process is debugged after a fork\n\
9385 The unfollowed process will continue to run.\n\
9386 By default, the debugger will follow the parent process."),
9387 NULL,
9388 show_follow_fork_mode_string,
9389 &setlist, &showlist);
9390
9391 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9392 follow_exec_mode_names,
9393 &follow_exec_mode_string, _("\
9394 Set debugger response to a program call of exec."), _("\
9395 Show debugger response to a program call of exec."), _("\
9396 An exec call replaces the program image of a process.\n\
9397 \n\
9398 follow-exec-mode can be:\n\
9399 \n\
9400 new - the debugger creates a new inferior and rebinds the process\n\
9401 to this new inferior. The program the process was running before\n\
9402 the exec call can be restarted afterwards by restarting the original\n\
9403 inferior.\n\
9404 \n\
9405 same - the debugger keeps the process bound to the same inferior.\n\
9406 The new executable image replaces the previous executable loaded in\n\
9407 the inferior. Restarting the inferior after the exec call restarts\n\
9408 the executable the process was running after the exec call.\n\
9409 \n\
9410 By default, the debugger will use the same inferior."),
9411 NULL,
9412 show_follow_exec_mode_string,
9413 &setlist, &showlist);
9414
9415 add_setshow_enum_cmd ("scheduler-locking", class_run,
9416 scheduler_enums, &scheduler_mode, _("\
9417 Set mode for locking scheduler during execution."), _("\
9418 Show mode for locking scheduler during execution."), _("\
9419 off == no locking (threads may preempt at any time)\n\
9420 on == full locking (no thread except the current thread may run)\n\
9421 This applies to both normal execution and replay mode.\n\
9422 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9423 In this mode, other threads may run during other commands.\n\
9424 This applies to both normal execution and replay mode.\n\
9425 replay == scheduler locked in replay mode and unlocked during normal execution."),
9426 set_schedlock_func, /* traps on target vector */
9427 show_scheduler_mode,
9428 &setlist, &showlist);
9429
9430 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9431 Set mode for resuming threads of all processes."), _("\
9432 Show mode for resuming threads of all processes."), _("\
9433 When on, execution commands (such as 'continue' or 'next') resume all\n\
9434 threads of all processes. When off (which is the default), execution\n\
9435 commands only resume the threads of the current process. The set of\n\
9436 threads that are resumed is further refined by the scheduler-locking\n\
9437 mode (see help set scheduler-locking)."),
9438 NULL,
9439 show_schedule_multiple,
9440 &setlist, &showlist);
9441
9442 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9443 Set mode of the step operation."), _("\
9444 Show mode of the step operation."), _("\
9445 When set, doing a step over a function without debug line information\n\
9446 will stop at the first instruction of that function. Otherwise, the\n\
9447 function is skipped and the step command stops at a different source line."),
9448 NULL,
9449 show_step_stop_if_no_debug,
9450 &setlist, &showlist);
9451
9452 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9453 &can_use_displaced_stepping, _("\
9454 Set debugger's willingness to use displaced stepping."), _("\
9455 Show debugger's willingness to use displaced stepping."), _("\
9456 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9457 supported by the target architecture. If off, gdb will not use displaced\n\
9458 stepping to step over breakpoints, even if such is supported by the target\n\
9459 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9460 if the target architecture supports it and non-stop mode is active, but will not\n\
9461 use it in all-stop mode (see help set non-stop)."),
9462 NULL,
9463 show_can_use_displaced_stepping,
9464 &setlist, &showlist);
9465
9466 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9467 &exec_direction, _("Set direction of execution.\n\
9468 Options are 'forward' or 'reverse'."),
9469 _("Show direction of execution (forward/reverse)."),
9470 _("Tells gdb whether to execute forward or backward."),
9471 set_exec_direction_func, show_exec_direction_func,
9472 &setlist, &showlist);
9473
9474 /* Set/show detach-on-fork: user-settable mode. */
9475
9476 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9477 Set whether gdb will detach the child of a fork."), _("\
9478 Show whether gdb will detach the child of a fork."), _("\
9479 Tells gdb whether to detach the child of a fork."),
9480 NULL, NULL, &setlist, &showlist);
9481
9482 /* Set/show disable address space randomization mode. */
9483
9484 add_setshow_boolean_cmd ("disable-randomization", class_support,
9485 &disable_randomization, _("\
9486 Set disabling of debuggee's virtual address space randomization."), _("\
9487 Show disabling of debuggee's virtual address space randomization."), _("\
9488 When this mode is on (which is the default), randomization of the virtual\n\
9489 address space is disabled. Standalone programs run with the randomization\n\
9490 enabled by default on some platforms."),
9491 &set_disable_randomization,
9492 &show_disable_randomization,
9493 &setlist, &showlist);
9494
9495 /* ptid initializations */
9496 inferior_ptid = null_ptid;
9497 target_last_wait_ptid = minus_one_ptid;
9498
9499 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9500 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9501 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9502 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9503
9504 /* Explicitly create without lookup, since that tries to create a
9505 value with a void typed value, and when we get here, gdbarch
9506 isn't initialized yet. At this point, we're quite sure there
9507 isn't another convenience variable of the same name. */
9508 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9509
9510 add_setshow_boolean_cmd ("observer", no_class,
9511 &observer_mode_1, _("\
9512 Set whether gdb controls the inferior in observer mode."), _("\
9513 Show whether gdb controls the inferior in observer mode."), _("\
9514 In observer mode, GDB can get data from the inferior, but not\n\
9515 affect its execution. Registers and memory may not be changed,\n\
9516 breakpoints may not be set, and the program cannot be interrupted\n\
9517 or signalled."),
9518 set_observer_mode,
9519 show_observer_mode,
9520 &setlist,
9521 &showlist);
9522 }
This page took 0.231242 seconds and 3 git commands to generate.