2010-12-31 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "dictionary.h"
49 #include "block.h"
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52 #include "event-top.h"
53 #include "record.h"
54 #include "inline-frame.h"
55 #include "jit.h"
56 #include "tracepoint.h"
57
58 /* Prototypes for local functions */
59
60 static void signals_info (char *, int);
61
62 static void handle_command (char *, int);
63
64 static void sig_print_info (enum target_signal);
65
66 static void sig_print_header (void);
67
68 static void resume_cleanups (void *);
69
70 static int hook_stop_stub (void *);
71
72 static int restore_selected_frame (void *);
73
74 static int follow_fork (void);
75
76 static void set_schedlock_func (char *args, int from_tty,
77 struct cmd_list_element *c);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
82 void *data);
83
84 static void xdb_handle_command (char *args, int from_tty);
85
86 static int prepare_to_proceed (int);
87
88 static void print_exited_reason (int exitstatus);
89
90 static void print_signal_exited_reason (enum target_signal siggnal);
91
92 static void print_no_history_reason (void);
93
94 static void print_signal_received_reason (enum target_signal siggnal);
95
96 static void print_end_stepping_range_reason (void);
97
98 void _initialize_infrun (void);
99
100 void nullify_last_target_wait_ptid (void);
101
102 /* When set, stop the 'step' command if we enter a function which has
103 no line number information. The normal behavior is that we step
104 over such function. */
105 int step_stop_if_no_debug = 0;
106 static void
107 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
111 }
112
113 /* In asynchronous mode, but simulating synchronous execution. */
114
115 int sync_execution = 0;
116
117 /* wait_for_inferior and normal_stop use this to notify the user
118 when the inferior stopped in a different thread than it had been
119 running in. */
120
121 static ptid_t previous_inferior_ptid;
122
123 /* Default behavior is to detach newly forked processes (legacy). */
124 int detach_fork = 1;
125
126 int debug_displaced = 0;
127 static void
128 show_debug_displaced (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c, const char *value)
130 {
131 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
132 }
133
134 int debug_infrun = 0;
135 static void
136 show_debug_infrun (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
140 }
141
142 /* If the program uses ELF-style shared libraries, then calls to
143 functions in shared libraries go through stubs, which live in a
144 table called the PLT (Procedure Linkage Table). The first time the
145 function is called, the stub sends control to the dynamic linker,
146 which looks up the function's real address, patches the stub so
147 that future calls will go directly to the function, and then passes
148 control to the function.
149
150 If we are stepping at the source level, we don't want to see any of
151 this --- we just want to skip over the stub and the dynamic linker.
152 The simple approach is to single-step until control leaves the
153 dynamic linker.
154
155 However, on some systems (e.g., Red Hat's 5.2 distribution) the
156 dynamic linker calls functions in the shared C library, so you
157 can't tell from the PC alone whether the dynamic linker is still
158 running. In this case, we use a step-resume breakpoint to get us
159 past the dynamic linker, as if we were using "next" to step over a
160 function call.
161
162 in_solib_dynsym_resolve_code() says whether we're in the dynamic
163 linker code or not. Normally, this means we single-step. However,
164 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
165 address where we can place a step-resume breakpoint to get past the
166 linker's symbol resolution function.
167
168 in_solib_dynsym_resolve_code() can generally be implemented in a
169 pretty portable way, by comparing the PC against the address ranges
170 of the dynamic linker's sections.
171
172 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
173 it depends on internal details of the dynamic linker. It's usually
174 not too hard to figure out where to put a breakpoint, but it
175 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
176 sanity checking. If it can't figure things out, returning zero and
177 getting the (possibly confusing) stepping behavior is better than
178 signalling an error, which will obscure the change in the
179 inferior's state. */
180
181 /* This function returns TRUE if pc is the address of an instruction
182 that lies within the dynamic linker (such as the event hook, or the
183 dld itself).
184
185 This function must be used only when a dynamic linker event has
186 been caught, and the inferior is being stepped out of the hook, or
187 undefined results are guaranteed. */
188
189 #ifndef SOLIB_IN_DYNAMIC_LINKER
190 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
191 #endif
192
193 /* "Observer mode" is somewhat like a more extreme version of
194 non-stop, in which all GDB operations that might affect the
195 target's execution have been disabled. */
196
197 static int non_stop_1 = 0;
198
199 int observer_mode = 0;
200 static int observer_mode_1 = 0;
201
202 static void
203 set_observer_mode (char *args, int from_tty,
204 struct cmd_list_element *c)
205 {
206 extern int pagination_enabled;
207
208 if (target_has_execution)
209 {
210 observer_mode_1 = observer_mode;
211 error (_("Cannot change this setting while the inferior is running."));
212 }
213
214 observer_mode = observer_mode_1;
215
216 may_write_registers = !observer_mode;
217 may_write_memory = !observer_mode;
218 may_insert_breakpoints = !observer_mode;
219 may_insert_tracepoints = !observer_mode;
220 /* We can insert fast tracepoints in or out of observer mode,
221 but enable them if we're going into this mode. */
222 if (observer_mode)
223 may_insert_fast_tracepoints = 1;
224 may_stop = !observer_mode;
225 update_target_permissions ();
226
227 /* Going *into* observer mode we must force non-stop, then
228 going out we leave it that way. */
229 if (observer_mode)
230 {
231 target_async_permitted = 1;
232 pagination_enabled = 0;
233 non_stop = non_stop_1 = 1;
234 }
235
236 if (from_tty)
237 printf_filtered (_("Observer mode is now %s.\n"),
238 (observer_mode ? "on" : "off"));
239 }
240
241 static void
242 show_observer_mode (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
246 }
247
248 /* This updates the value of observer mode based on changes in
249 permissions. Note that we are deliberately ignoring the values of
250 may-write-registers and may-write-memory, since the user may have
251 reason to enable these during a session, for instance to turn on a
252 debugging-related global. */
253
254 void
255 update_observer_mode (void)
256 {
257 int newval;
258
259 newval = (!may_insert_breakpoints
260 && !may_insert_tracepoints
261 && may_insert_fast_tracepoints
262 && !may_stop
263 && non_stop);
264
265 /* Let the user know if things change. */
266 if (newval != observer_mode)
267 printf_filtered (_("Observer mode is now %s.\n"),
268 (newval ? "on" : "off"));
269
270 observer_mode = observer_mode_1 = newval;
271 }
272
273 /* Tables of how to react to signals; the user sets them. */
274
275 static unsigned char *signal_stop;
276 static unsigned char *signal_print;
277 static unsigned char *signal_program;
278
279 #define SET_SIGS(nsigs,sigs,flags) \
280 do { \
281 int signum = (nsigs); \
282 while (signum-- > 0) \
283 if ((sigs)[signum]) \
284 (flags)[signum] = 1; \
285 } while (0)
286
287 #define UNSET_SIGS(nsigs,sigs,flags) \
288 do { \
289 int signum = (nsigs); \
290 while (signum-- > 0) \
291 if ((sigs)[signum]) \
292 (flags)[signum] = 0; \
293 } while (0)
294
295 /* Value to pass to target_resume() to cause all threads to resume */
296
297 #define RESUME_ALL minus_one_ptid
298
299 /* Command list pointer for the "stop" placeholder. */
300
301 static struct cmd_list_element *stop_command;
302
303 /* Function inferior was in as of last step command. */
304
305 static struct symbol *step_start_function;
306
307 /* Nonzero if we want to give control to the user when we're notified
308 of shared library events by the dynamic linker. */
309 int stop_on_solib_events;
310 static void
311 show_stop_on_solib_events (struct ui_file *file, int from_tty,
312 struct cmd_list_element *c, const char *value)
313 {
314 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
315 value);
316 }
317
318 /* Nonzero means expecting a trace trap
319 and should stop the inferior and return silently when it happens. */
320
321 int stop_after_trap;
322
323 /* Save register contents here when executing a "finish" command or are
324 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
325 Thus this contains the return value from the called function (assuming
326 values are returned in a register). */
327
328 struct regcache *stop_registers;
329
330 /* Nonzero after stop if current stack frame should be printed. */
331
332 static int stop_print_frame;
333
334 /* This is a cached copy of the pid/waitstatus of the last event
335 returned by target_wait()/deprecated_target_wait_hook(). This
336 information is returned by get_last_target_status(). */
337 static ptid_t target_last_wait_ptid;
338 static struct target_waitstatus target_last_waitstatus;
339
340 static void context_switch (ptid_t ptid);
341
342 void init_thread_stepping_state (struct thread_info *tss);
343
344 void init_infwait_state (void);
345
346 static const char follow_fork_mode_child[] = "child";
347 static const char follow_fork_mode_parent[] = "parent";
348
349 static const char *follow_fork_mode_kind_names[] = {
350 follow_fork_mode_child,
351 follow_fork_mode_parent,
352 NULL
353 };
354
355 static const char *follow_fork_mode_string = follow_fork_mode_parent;
356 static void
357 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359 {
360 fprintf_filtered (file, _("\
361 Debugger response to a program call of fork or vfork is \"%s\".\n"),
362 value);
363 }
364 \f
365
366 /* Tell the target to follow the fork we're stopped at. Returns true
367 if the inferior should be resumed; false, if the target for some
368 reason decided it's best not to resume. */
369
370 static int
371 follow_fork (void)
372 {
373 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
374 int should_resume = 1;
375 struct thread_info *tp;
376
377 /* Copy user stepping state to the new inferior thread. FIXME: the
378 followed fork child thread should have a copy of most of the
379 parent thread structure's run control related fields, not just these.
380 Initialized to avoid "may be used uninitialized" warnings from gcc. */
381 struct breakpoint *step_resume_breakpoint = NULL;
382 struct breakpoint *exception_resume_breakpoint = NULL;
383 CORE_ADDR step_range_start = 0;
384 CORE_ADDR step_range_end = 0;
385 struct frame_id step_frame_id = { 0 };
386
387 if (!non_stop)
388 {
389 ptid_t wait_ptid;
390 struct target_waitstatus wait_status;
391
392 /* Get the last target status returned by target_wait(). */
393 get_last_target_status (&wait_ptid, &wait_status);
394
395 /* If not stopped at a fork event, then there's nothing else to
396 do. */
397 if (wait_status.kind != TARGET_WAITKIND_FORKED
398 && wait_status.kind != TARGET_WAITKIND_VFORKED)
399 return 1;
400
401 /* Check if we switched over from WAIT_PTID, since the event was
402 reported. */
403 if (!ptid_equal (wait_ptid, minus_one_ptid)
404 && !ptid_equal (inferior_ptid, wait_ptid))
405 {
406 /* We did. Switch back to WAIT_PTID thread, to tell the
407 target to follow it (in either direction). We'll
408 afterwards refuse to resume, and inform the user what
409 happened. */
410 switch_to_thread (wait_ptid);
411 should_resume = 0;
412 }
413 }
414
415 tp = inferior_thread ();
416
417 /* If there were any forks/vforks that were caught and are now to be
418 followed, then do so now. */
419 switch (tp->pending_follow.kind)
420 {
421 case TARGET_WAITKIND_FORKED:
422 case TARGET_WAITKIND_VFORKED:
423 {
424 ptid_t parent, child;
425
426 /* If the user did a next/step, etc, over a fork call,
427 preserve the stepping state in the fork child. */
428 if (follow_child && should_resume)
429 {
430 step_resume_breakpoint = clone_momentary_breakpoint
431 (tp->control.step_resume_breakpoint);
432 step_range_start = tp->control.step_range_start;
433 step_range_end = tp->control.step_range_end;
434 step_frame_id = tp->control.step_frame_id;
435 exception_resume_breakpoint
436 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
437
438 /* For now, delete the parent's sr breakpoint, otherwise,
439 parent/child sr breakpoints are considered duplicates,
440 and the child version will not be installed. Remove
441 this when the breakpoints module becomes aware of
442 inferiors and address spaces. */
443 delete_step_resume_breakpoint (tp);
444 tp->control.step_range_start = 0;
445 tp->control.step_range_end = 0;
446 tp->control.step_frame_id = null_frame_id;
447 delete_exception_resume_breakpoint (tp);
448 }
449
450 parent = inferior_ptid;
451 child = tp->pending_follow.value.related_pid;
452
453 /* Tell the target to do whatever is necessary to follow
454 either parent or child. */
455 if (target_follow_fork (follow_child))
456 {
457 /* Target refused to follow, or there's some other reason
458 we shouldn't resume. */
459 should_resume = 0;
460 }
461 else
462 {
463 /* This pending follow fork event is now handled, one way
464 or another. The previous selected thread may be gone
465 from the lists by now, but if it is still around, need
466 to clear the pending follow request. */
467 tp = find_thread_ptid (parent);
468 if (tp)
469 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
470
471 /* This makes sure we don't try to apply the "Switched
472 over from WAIT_PID" logic above. */
473 nullify_last_target_wait_ptid ();
474
475 /* If we followed the child, switch to it... */
476 if (follow_child)
477 {
478 switch_to_thread (child);
479
480 /* ... and preserve the stepping state, in case the
481 user was stepping over the fork call. */
482 if (should_resume)
483 {
484 tp = inferior_thread ();
485 tp->control.step_resume_breakpoint
486 = step_resume_breakpoint;
487 tp->control.step_range_start = step_range_start;
488 tp->control.step_range_end = step_range_end;
489 tp->control.step_frame_id = step_frame_id;
490 tp->control.exception_resume_breakpoint
491 = exception_resume_breakpoint;
492 }
493 else
494 {
495 /* If we get here, it was because we're trying to
496 resume from a fork catchpoint, but, the user
497 has switched threads away from the thread that
498 forked. In that case, the resume command
499 issued is most likely not applicable to the
500 child, so just warn, and refuse to resume. */
501 warning (_("\
502 Not resuming: switched threads before following fork child.\n"));
503 }
504
505 /* Reset breakpoints in the child as appropriate. */
506 follow_inferior_reset_breakpoints ();
507 }
508 else
509 switch_to_thread (parent);
510 }
511 }
512 break;
513 case TARGET_WAITKIND_SPURIOUS:
514 /* Nothing to follow. */
515 break;
516 default:
517 internal_error (__FILE__, __LINE__,
518 "Unexpected pending_follow.kind %d\n",
519 tp->pending_follow.kind);
520 break;
521 }
522
523 return should_resume;
524 }
525
526 void
527 follow_inferior_reset_breakpoints (void)
528 {
529 struct thread_info *tp = inferior_thread ();
530
531 /* Was there a step_resume breakpoint? (There was if the user
532 did a "next" at the fork() call.) If so, explicitly reset its
533 thread number.
534
535 step_resumes are a form of bp that are made to be per-thread.
536 Since we created the step_resume bp when the parent process
537 was being debugged, and now are switching to the child process,
538 from the breakpoint package's viewpoint, that's a switch of
539 "threads". We must update the bp's notion of which thread
540 it is for, or it'll be ignored when it triggers. */
541
542 if (tp->control.step_resume_breakpoint)
543 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
544
545 if (tp->control.exception_resume_breakpoint)
546 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
547
548 /* Reinsert all breakpoints in the child. The user may have set
549 breakpoints after catching the fork, in which case those
550 were never set in the child, but only in the parent. This makes
551 sure the inserted breakpoints match the breakpoint list. */
552
553 breakpoint_re_set ();
554 insert_breakpoints ();
555 }
556
557 /* The child has exited or execed: resume threads of the parent the
558 user wanted to be executing. */
559
560 static int
561 proceed_after_vfork_done (struct thread_info *thread,
562 void *arg)
563 {
564 int pid = * (int *) arg;
565
566 if (ptid_get_pid (thread->ptid) == pid
567 && is_running (thread->ptid)
568 && !is_executing (thread->ptid)
569 && !thread->stop_requested
570 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
571 {
572 if (debug_infrun)
573 fprintf_unfiltered (gdb_stdlog,
574 "infrun: resuming vfork parent thread %s\n",
575 target_pid_to_str (thread->ptid));
576
577 switch_to_thread (thread->ptid);
578 clear_proceed_status ();
579 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
580 }
581
582 return 0;
583 }
584
585 /* Called whenever we notice an exec or exit event, to handle
586 detaching or resuming a vfork parent. */
587
588 static void
589 handle_vfork_child_exec_or_exit (int exec)
590 {
591 struct inferior *inf = current_inferior ();
592
593 if (inf->vfork_parent)
594 {
595 int resume_parent = -1;
596
597 /* This exec or exit marks the end of the shared memory region
598 between the parent and the child. If the user wanted to
599 detach from the parent, now is the time. */
600
601 if (inf->vfork_parent->pending_detach)
602 {
603 struct thread_info *tp;
604 struct cleanup *old_chain;
605 struct program_space *pspace;
606 struct address_space *aspace;
607
608 /* follow-fork child, detach-on-fork on */
609
610 old_chain = make_cleanup_restore_current_thread ();
611
612 /* We're letting loose of the parent. */
613 tp = any_live_thread_of_process (inf->vfork_parent->pid);
614 switch_to_thread (tp->ptid);
615
616 /* We're about to detach from the parent, which implicitly
617 removes breakpoints from its address space. There's a
618 catch here: we want to reuse the spaces for the child,
619 but, parent/child are still sharing the pspace at this
620 point, although the exec in reality makes the kernel give
621 the child a fresh set of new pages. The problem here is
622 that the breakpoints module being unaware of this, would
623 likely chose the child process to write to the parent
624 address space. Swapping the child temporarily away from
625 the spaces has the desired effect. Yes, this is "sort
626 of" a hack. */
627
628 pspace = inf->pspace;
629 aspace = inf->aspace;
630 inf->aspace = NULL;
631 inf->pspace = NULL;
632
633 if (debug_infrun || info_verbose)
634 {
635 target_terminal_ours ();
636
637 if (exec)
638 fprintf_filtered (gdb_stdlog,
639 "Detaching vfork parent process %d after child exec.\n",
640 inf->vfork_parent->pid);
641 else
642 fprintf_filtered (gdb_stdlog,
643 "Detaching vfork parent process %d after child exit.\n",
644 inf->vfork_parent->pid);
645 }
646
647 target_detach (NULL, 0);
648
649 /* Put it back. */
650 inf->pspace = pspace;
651 inf->aspace = aspace;
652
653 do_cleanups (old_chain);
654 }
655 else if (exec)
656 {
657 /* We're staying attached to the parent, so, really give the
658 child a new address space. */
659 inf->pspace = add_program_space (maybe_new_address_space ());
660 inf->aspace = inf->pspace->aspace;
661 inf->removable = 1;
662 set_current_program_space (inf->pspace);
663
664 resume_parent = inf->vfork_parent->pid;
665
666 /* Break the bonds. */
667 inf->vfork_parent->vfork_child = NULL;
668 }
669 else
670 {
671 struct cleanup *old_chain;
672 struct program_space *pspace;
673
674 /* If this is a vfork child exiting, then the pspace and
675 aspaces were shared with the parent. Since we're
676 reporting the process exit, we'll be mourning all that is
677 found in the address space, and switching to null_ptid,
678 preparing to start a new inferior. But, since we don't
679 want to clobber the parent's address/program spaces, we
680 go ahead and create a new one for this exiting
681 inferior. */
682
683 /* Switch to null_ptid, so that clone_program_space doesn't want
684 to read the selected frame of a dead process. */
685 old_chain = save_inferior_ptid ();
686 inferior_ptid = null_ptid;
687
688 /* This inferior is dead, so avoid giving the breakpoints
689 module the option to write through to it (cloning a
690 program space resets breakpoints). */
691 inf->aspace = NULL;
692 inf->pspace = NULL;
693 pspace = add_program_space (maybe_new_address_space ());
694 set_current_program_space (pspace);
695 inf->removable = 1;
696 clone_program_space (pspace, inf->vfork_parent->pspace);
697 inf->pspace = pspace;
698 inf->aspace = pspace->aspace;
699
700 /* Put back inferior_ptid. We'll continue mourning this
701 inferior. */
702 do_cleanups (old_chain);
703
704 resume_parent = inf->vfork_parent->pid;
705 /* Break the bonds. */
706 inf->vfork_parent->vfork_child = NULL;
707 }
708
709 inf->vfork_parent = NULL;
710
711 gdb_assert (current_program_space == inf->pspace);
712
713 if (non_stop && resume_parent != -1)
714 {
715 /* If the user wanted the parent to be running, let it go
716 free now. */
717 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
718
719 if (debug_infrun)
720 fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
721 resume_parent);
722
723 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
724
725 do_cleanups (old_chain);
726 }
727 }
728 }
729
730 /* Enum strings for "set|show displaced-stepping". */
731
732 static const char follow_exec_mode_new[] = "new";
733 static const char follow_exec_mode_same[] = "same";
734 static const char *follow_exec_mode_names[] =
735 {
736 follow_exec_mode_new,
737 follow_exec_mode_same,
738 NULL,
739 };
740
741 static const char *follow_exec_mode_string = follow_exec_mode_same;
742 static void
743 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
744 struct cmd_list_element *c, const char *value)
745 {
746 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
747 }
748
749 /* EXECD_PATHNAME is assumed to be non-NULL. */
750
751 static void
752 follow_exec (ptid_t pid, char *execd_pathname)
753 {
754 struct thread_info *th = inferior_thread ();
755 struct inferior *inf = current_inferior ();
756
757 /* This is an exec event that we actually wish to pay attention to.
758 Refresh our symbol table to the newly exec'd program, remove any
759 momentary bp's, etc.
760
761 If there are breakpoints, they aren't really inserted now,
762 since the exec() transformed our inferior into a fresh set
763 of instructions.
764
765 We want to preserve symbolic breakpoints on the list, since
766 we have hopes that they can be reset after the new a.out's
767 symbol table is read.
768
769 However, any "raw" breakpoints must be removed from the list
770 (e.g., the solib bp's), since their address is probably invalid
771 now.
772
773 And, we DON'T want to call delete_breakpoints() here, since
774 that may write the bp's "shadow contents" (the instruction
775 value that was overwritten witha TRAP instruction). Since
776 we now have a new a.out, those shadow contents aren't valid. */
777
778 mark_breakpoints_out ();
779
780 update_breakpoints_after_exec ();
781
782 /* If there was one, it's gone now. We cannot truly step-to-next
783 statement through an exec(). */
784 th->control.step_resume_breakpoint = NULL;
785 th->control.exception_resume_breakpoint = NULL;
786 th->control.step_range_start = 0;
787 th->control.step_range_end = 0;
788
789 /* The target reports the exec event to the main thread, even if
790 some other thread does the exec, and even if the main thread was
791 already stopped --- if debugging in non-stop mode, it's possible
792 the user had the main thread held stopped in the previous image
793 --- release it now. This is the same behavior as step-over-exec
794 with scheduler-locking on in all-stop mode. */
795 th->stop_requested = 0;
796
797 /* What is this a.out's name? */
798 printf_unfiltered (_("%s is executing new program: %s\n"),
799 target_pid_to_str (inferior_ptid),
800 execd_pathname);
801
802 /* We've followed the inferior through an exec. Therefore, the
803 inferior has essentially been killed & reborn. */
804
805 gdb_flush (gdb_stdout);
806
807 breakpoint_init_inferior (inf_execd);
808
809 if (gdb_sysroot && *gdb_sysroot)
810 {
811 char *name = alloca (strlen (gdb_sysroot)
812 + strlen (execd_pathname)
813 + 1);
814
815 strcpy (name, gdb_sysroot);
816 strcat (name, execd_pathname);
817 execd_pathname = name;
818 }
819
820 /* Reset the shared library package. This ensures that we get a
821 shlib event when the child reaches "_start", at which point the
822 dld will have had a chance to initialize the child. */
823 /* Also, loading a symbol file below may trigger symbol lookups, and
824 we don't want those to be satisfied by the libraries of the
825 previous incarnation of this process. */
826 no_shared_libraries (NULL, 0);
827
828 if (follow_exec_mode_string == follow_exec_mode_new)
829 {
830 struct program_space *pspace;
831
832 /* The user wants to keep the old inferior and program spaces
833 around. Create a new fresh one, and switch to it. */
834
835 inf = add_inferior (current_inferior ()->pid);
836 pspace = add_program_space (maybe_new_address_space ());
837 inf->pspace = pspace;
838 inf->aspace = pspace->aspace;
839
840 exit_inferior_num_silent (current_inferior ()->num);
841
842 set_current_inferior (inf);
843 set_current_program_space (pspace);
844 }
845
846 gdb_assert (current_program_space == inf->pspace);
847
848 /* That a.out is now the one to use. */
849 exec_file_attach (execd_pathname, 0);
850
851 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
852 (Position Independent Executable) main symbol file will get applied by
853 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
854 the breakpoints with the zero displacement. */
855
856 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
857 NULL, 0);
858
859 set_initial_language ();
860
861 #ifdef SOLIB_CREATE_INFERIOR_HOOK
862 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
863 #else
864 solib_create_inferior_hook (0);
865 #endif
866
867 jit_inferior_created_hook ();
868
869 breakpoint_re_set ();
870
871 /* Reinsert all breakpoints. (Those which were symbolic have
872 been reset to the proper address in the new a.out, thanks
873 to symbol_file_command...) */
874 insert_breakpoints ();
875
876 /* The next resume of this inferior should bring it to the shlib
877 startup breakpoints. (If the user had also set bp's on
878 "main" from the old (parent) process, then they'll auto-
879 matically get reset there in the new process.) */
880 }
881
882 /* Non-zero if we just simulating a single-step. This is needed
883 because we cannot remove the breakpoints in the inferior process
884 until after the `wait' in `wait_for_inferior'. */
885 static int singlestep_breakpoints_inserted_p = 0;
886
887 /* The thread we inserted single-step breakpoints for. */
888 static ptid_t singlestep_ptid;
889
890 /* PC when we started this single-step. */
891 static CORE_ADDR singlestep_pc;
892
893 /* If another thread hit the singlestep breakpoint, we save the original
894 thread here so that we can resume single-stepping it later. */
895 static ptid_t saved_singlestep_ptid;
896 static int stepping_past_singlestep_breakpoint;
897
898 /* If not equal to null_ptid, this means that after stepping over breakpoint
899 is finished, we need to switch to deferred_step_ptid, and step it.
900
901 The use case is when one thread has hit a breakpoint, and then the user
902 has switched to another thread and issued 'step'. We need to step over
903 breakpoint in the thread which hit the breakpoint, but then continue
904 stepping the thread user has selected. */
905 static ptid_t deferred_step_ptid;
906 \f
907 /* Displaced stepping. */
908
909 /* In non-stop debugging mode, we must take special care to manage
910 breakpoints properly; in particular, the traditional strategy for
911 stepping a thread past a breakpoint it has hit is unsuitable.
912 'Displaced stepping' is a tactic for stepping one thread past a
913 breakpoint it has hit while ensuring that other threads running
914 concurrently will hit the breakpoint as they should.
915
916 The traditional way to step a thread T off a breakpoint in a
917 multi-threaded program in all-stop mode is as follows:
918
919 a0) Initially, all threads are stopped, and breakpoints are not
920 inserted.
921 a1) We single-step T, leaving breakpoints uninserted.
922 a2) We insert breakpoints, and resume all threads.
923
924 In non-stop debugging, however, this strategy is unsuitable: we
925 don't want to have to stop all threads in the system in order to
926 continue or step T past a breakpoint. Instead, we use displaced
927 stepping:
928
929 n0) Initially, T is stopped, other threads are running, and
930 breakpoints are inserted.
931 n1) We copy the instruction "under" the breakpoint to a separate
932 location, outside the main code stream, making any adjustments
933 to the instruction, register, and memory state as directed by
934 T's architecture.
935 n2) We single-step T over the instruction at its new location.
936 n3) We adjust the resulting register and memory state as directed
937 by T's architecture. This includes resetting T's PC to point
938 back into the main instruction stream.
939 n4) We resume T.
940
941 This approach depends on the following gdbarch methods:
942
943 - gdbarch_max_insn_length and gdbarch_displaced_step_location
944 indicate where to copy the instruction, and how much space must
945 be reserved there. We use these in step n1.
946
947 - gdbarch_displaced_step_copy_insn copies a instruction to a new
948 address, and makes any necessary adjustments to the instruction,
949 register contents, and memory. We use this in step n1.
950
951 - gdbarch_displaced_step_fixup adjusts registers and memory after
952 we have successfuly single-stepped the instruction, to yield the
953 same effect the instruction would have had if we had executed it
954 at its original address. We use this in step n3.
955
956 - gdbarch_displaced_step_free_closure provides cleanup.
957
958 The gdbarch_displaced_step_copy_insn and
959 gdbarch_displaced_step_fixup functions must be written so that
960 copying an instruction with gdbarch_displaced_step_copy_insn,
961 single-stepping across the copied instruction, and then applying
962 gdbarch_displaced_insn_fixup should have the same effects on the
963 thread's memory and registers as stepping the instruction in place
964 would have. Exactly which responsibilities fall to the copy and
965 which fall to the fixup is up to the author of those functions.
966
967 See the comments in gdbarch.sh for details.
968
969 Note that displaced stepping and software single-step cannot
970 currently be used in combination, although with some care I think
971 they could be made to. Software single-step works by placing
972 breakpoints on all possible subsequent instructions; if the
973 displaced instruction is a PC-relative jump, those breakpoints
974 could fall in very strange places --- on pages that aren't
975 executable, or at addresses that are not proper instruction
976 boundaries. (We do generally let other threads run while we wait
977 to hit the software single-step breakpoint, and they might
978 encounter such a corrupted instruction.) One way to work around
979 this would be to have gdbarch_displaced_step_copy_insn fully
980 simulate the effect of PC-relative instructions (and return NULL)
981 on architectures that use software single-stepping.
982
983 In non-stop mode, we can have independent and simultaneous step
984 requests, so more than one thread may need to simultaneously step
985 over a breakpoint. The current implementation assumes there is
986 only one scratch space per process. In this case, we have to
987 serialize access to the scratch space. If thread A wants to step
988 over a breakpoint, but we are currently waiting for some other
989 thread to complete a displaced step, we leave thread A stopped and
990 place it in the displaced_step_request_queue. Whenever a displaced
991 step finishes, we pick the next thread in the queue and start a new
992 displaced step operation on it. See displaced_step_prepare and
993 displaced_step_fixup for details. */
994
995 struct displaced_step_request
996 {
997 ptid_t ptid;
998 struct displaced_step_request *next;
999 };
1000
1001 /* Per-inferior displaced stepping state. */
1002 struct displaced_step_inferior_state
1003 {
1004 /* Pointer to next in linked list. */
1005 struct displaced_step_inferior_state *next;
1006
1007 /* The process this displaced step state refers to. */
1008 int pid;
1009
1010 /* A queue of pending displaced stepping requests. One entry per
1011 thread that needs to do a displaced step. */
1012 struct displaced_step_request *step_request_queue;
1013
1014 /* If this is not null_ptid, this is the thread carrying out a
1015 displaced single-step in process PID. This thread's state will
1016 require fixing up once it has completed its step. */
1017 ptid_t step_ptid;
1018
1019 /* The architecture the thread had when we stepped it. */
1020 struct gdbarch *step_gdbarch;
1021
1022 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1023 for post-step cleanup. */
1024 struct displaced_step_closure *step_closure;
1025
1026 /* The address of the original instruction, and the copy we
1027 made. */
1028 CORE_ADDR step_original, step_copy;
1029
1030 /* Saved contents of copy area. */
1031 gdb_byte *step_saved_copy;
1032 };
1033
1034 /* The list of states of processes involved in displaced stepping
1035 presently. */
1036 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1037
1038 /* Get the displaced stepping state of process PID. */
1039
1040 static struct displaced_step_inferior_state *
1041 get_displaced_stepping_state (int pid)
1042 {
1043 struct displaced_step_inferior_state *state;
1044
1045 for (state = displaced_step_inferior_states;
1046 state != NULL;
1047 state = state->next)
1048 if (state->pid == pid)
1049 return state;
1050
1051 return NULL;
1052 }
1053
1054 /* Add a new displaced stepping state for process PID to the displaced
1055 stepping state list, or return a pointer to an already existing
1056 entry, if it already exists. Never returns NULL. */
1057
1058 static struct displaced_step_inferior_state *
1059 add_displaced_stepping_state (int pid)
1060 {
1061 struct displaced_step_inferior_state *state;
1062
1063 for (state = displaced_step_inferior_states;
1064 state != NULL;
1065 state = state->next)
1066 if (state->pid == pid)
1067 return state;
1068
1069 state = xcalloc (1, sizeof (*state));
1070 state->pid = pid;
1071 state->next = displaced_step_inferior_states;
1072 displaced_step_inferior_states = state;
1073
1074 return state;
1075 }
1076
1077 /* Remove the displaced stepping state of process PID. */
1078
1079 static void
1080 remove_displaced_stepping_state (int pid)
1081 {
1082 struct displaced_step_inferior_state *it, **prev_next_p;
1083
1084 gdb_assert (pid != 0);
1085
1086 it = displaced_step_inferior_states;
1087 prev_next_p = &displaced_step_inferior_states;
1088 while (it)
1089 {
1090 if (it->pid == pid)
1091 {
1092 *prev_next_p = it->next;
1093 xfree (it);
1094 return;
1095 }
1096
1097 prev_next_p = &it->next;
1098 it = *prev_next_p;
1099 }
1100 }
1101
1102 static void
1103 infrun_inferior_exit (struct inferior *inf)
1104 {
1105 remove_displaced_stepping_state (inf->pid);
1106 }
1107
1108 /* Enum strings for "set|show displaced-stepping". */
1109
1110 static const char can_use_displaced_stepping_auto[] = "auto";
1111 static const char can_use_displaced_stepping_on[] = "on";
1112 static const char can_use_displaced_stepping_off[] = "off";
1113 static const char *can_use_displaced_stepping_enum[] =
1114 {
1115 can_use_displaced_stepping_auto,
1116 can_use_displaced_stepping_on,
1117 can_use_displaced_stepping_off,
1118 NULL,
1119 };
1120
1121 /* If ON, and the architecture supports it, GDB will use displaced
1122 stepping to step over breakpoints. If OFF, or if the architecture
1123 doesn't support it, GDB will instead use the traditional
1124 hold-and-step approach. If AUTO (which is the default), GDB will
1125 decide which technique to use to step over breakpoints depending on
1126 which of all-stop or non-stop mode is active --- displaced stepping
1127 in non-stop mode; hold-and-step in all-stop mode. */
1128
1129 static const char *can_use_displaced_stepping =
1130 can_use_displaced_stepping_auto;
1131
1132 static void
1133 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1134 struct cmd_list_element *c,
1135 const char *value)
1136 {
1137 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1138 fprintf_filtered (file, _("\
1139 Debugger's willingness to use displaced stepping to step over \
1140 breakpoints is %s (currently %s).\n"),
1141 value, non_stop ? "on" : "off");
1142 else
1143 fprintf_filtered (file, _("\
1144 Debugger's willingness to use displaced stepping to step over \
1145 breakpoints is %s.\n"), value);
1146 }
1147
1148 /* Return non-zero if displaced stepping can/should be used to step
1149 over breakpoints. */
1150
1151 static int
1152 use_displaced_stepping (struct gdbarch *gdbarch)
1153 {
1154 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1155 && non_stop)
1156 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1157 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1158 && !RECORD_IS_USED);
1159 }
1160
1161 /* Clean out any stray displaced stepping state. */
1162 static void
1163 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1164 {
1165 /* Indicate that there is no cleanup pending. */
1166 displaced->step_ptid = null_ptid;
1167
1168 if (displaced->step_closure)
1169 {
1170 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1171 displaced->step_closure);
1172 displaced->step_closure = NULL;
1173 }
1174 }
1175
1176 static void
1177 displaced_step_clear_cleanup (void *arg)
1178 {
1179 struct displaced_step_inferior_state *state = arg;
1180
1181 displaced_step_clear (state);
1182 }
1183
1184 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1185 void
1186 displaced_step_dump_bytes (struct ui_file *file,
1187 const gdb_byte *buf,
1188 size_t len)
1189 {
1190 int i;
1191
1192 for (i = 0; i < len; i++)
1193 fprintf_unfiltered (file, "%02x ", buf[i]);
1194 fputs_unfiltered ("\n", file);
1195 }
1196
1197 /* Prepare to single-step, using displaced stepping.
1198
1199 Note that we cannot use displaced stepping when we have a signal to
1200 deliver. If we have a signal to deliver and an instruction to step
1201 over, then after the step, there will be no indication from the
1202 target whether the thread entered a signal handler or ignored the
1203 signal and stepped over the instruction successfully --- both cases
1204 result in a simple SIGTRAP. In the first case we mustn't do a
1205 fixup, and in the second case we must --- but we can't tell which.
1206 Comments in the code for 'random signals' in handle_inferior_event
1207 explain how we handle this case instead.
1208
1209 Returns 1 if preparing was successful -- this thread is going to be
1210 stepped now; or 0 if displaced stepping this thread got queued. */
1211 static int
1212 displaced_step_prepare (ptid_t ptid)
1213 {
1214 struct cleanup *old_cleanups, *ignore_cleanups;
1215 struct regcache *regcache = get_thread_regcache (ptid);
1216 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1217 CORE_ADDR original, copy;
1218 ULONGEST len;
1219 struct displaced_step_closure *closure;
1220 struct displaced_step_inferior_state *displaced;
1221
1222 /* We should never reach this function if the architecture does not
1223 support displaced stepping. */
1224 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1225
1226 /* We have to displaced step one thread at a time, as we only have
1227 access to a single scratch space per inferior. */
1228
1229 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1230
1231 if (!ptid_equal (displaced->step_ptid, null_ptid))
1232 {
1233 /* Already waiting for a displaced step to finish. Defer this
1234 request and place in queue. */
1235 struct displaced_step_request *req, *new_req;
1236
1237 if (debug_displaced)
1238 fprintf_unfiltered (gdb_stdlog,
1239 "displaced: defering step of %s\n",
1240 target_pid_to_str (ptid));
1241
1242 new_req = xmalloc (sizeof (*new_req));
1243 new_req->ptid = ptid;
1244 new_req->next = NULL;
1245
1246 if (displaced->step_request_queue)
1247 {
1248 for (req = displaced->step_request_queue;
1249 req && req->next;
1250 req = req->next)
1251 ;
1252 req->next = new_req;
1253 }
1254 else
1255 displaced->step_request_queue = new_req;
1256
1257 return 0;
1258 }
1259 else
1260 {
1261 if (debug_displaced)
1262 fprintf_unfiltered (gdb_stdlog,
1263 "displaced: stepping %s now\n",
1264 target_pid_to_str (ptid));
1265 }
1266
1267 displaced_step_clear (displaced);
1268
1269 old_cleanups = save_inferior_ptid ();
1270 inferior_ptid = ptid;
1271
1272 original = regcache_read_pc (regcache);
1273
1274 copy = gdbarch_displaced_step_location (gdbarch);
1275 len = gdbarch_max_insn_length (gdbarch);
1276
1277 /* Save the original contents of the copy area. */
1278 displaced->step_saved_copy = xmalloc (len);
1279 ignore_cleanups = make_cleanup (free_current_contents,
1280 &displaced->step_saved_copy);
1281 read_memory (copy, displaced->step_saved_copy, len);
1282 if (debug_displaced)
1283 {
1284 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1285 paddress (gdbarch, copy));
1286 displaced_step_dump_bytes (gdb_stdlog,
1287 displaced->step_saved_copy,
1288 len);
1289 };
1290
1291 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1292 original, copy, regcache);
1293
1294 /* We don't support the fully-simulated case at present. */
1295 gdb_assert (closure);
1296
1297 /* Save the information we need to fix things up if the step
1298 succeeds. */
1299 displaced->step_ptid = ptid;
1300 displaced->step_gdbarch = gdbarch;
1301 displaced->step_closure = closure;
1302 displaced->step_original = original;
1303 displaced->step_copy = copy;
1304
1305 make_cleanup (displaced_step_clear_cleanup, displaced);
1306
1307 /* Resume execution at the copy. */
1308 regcache_write_pc (regcache, copy);
1309
1310 discard_cleanups (ignore_cleanups);
1311
1312 do_cleanups (old_cleanups);
1313
1314 if (debug_displaced)
1315 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1316 paddress (gdbarch, copy));
1317
1318 return 1;
1319 }
1320
1321 static void
1322 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1323 {
1324 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1325
1326 inferior_ptid = ptid;
1327 write_memory (memaddr, myaddr, len);
1328 do_cleanups (ptid_cleanup);
1329 }
1330
1331 static void
1332 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1333 {
1334 struct cleanup *old_cleanups;
1335 struct displaced_step_inferior_state *displaced
1336 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1337
1338 /* Was any thread of this process doing a displaced step? */
1339 if (displaced == NULL)
1340 return;
1341
1342 /* Was this event for the pid we displaced? */
1343 if (ptid_equal (displaced->step_ptid, null_ptid)
1344 || ! ptid_equal (displaced->step_ptid, event_ptid))
1345 return;
1346
1347 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1348
1349 /* Restore the contents of the copy area. */
1350 {
1351 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1352
1353 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1354 displaced->step_saved_copy, len);
1355 if (debug_displaced)
1356 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1357 paddress (displaced->step_gdbarch,
1358 displaced->step_copy));
1359 }
1360
1361 /* Did the instruction complete successfully? */
1362 if (signal == TARGET_SIGNAL_TRAP)
1363 {
1364 /* Fix up the resulting state. */
1365 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1366 displaced->step_closure,
1367 displaced->step_original,
1368 displaced->step_copy,
1369 get_thread_regcache (displaced->step_ptid));
1370 }
1371 else
1372 {
1373 /* Since the instruction didn't complete, all we can do is
1374 relocate the PC. */
1375 struct regcache *regcache = get_thread_regcache (event_ptid);
1376 CORE_ADDR pc = regcache_read_pc (regcache);
1377
1378 pc = displaced->step_original + (pc - displaced->step_copy);
1379 regcache_write_pc (regcache, pc);
1380 }
1381
1382 do_cleanups (old_cleanups);
1383
1384 displaced->step_ptid = null_ptid;
1385
1386 /* Are there any pending displaced stepping requests? If so, run
1387 one now. Leave the state object around, since we're likely to
1388 need it again soon. */
1389 while (displaced->step_request_queue)
1390 {
1391 struct displaced_step_request *head;
1392 ptid_t ptid;
1393 struct regcache *regcache;
1394 struct gdbarch *gdbarch;
1395 CORE_ADDR actual_pc;
1396 struct address_space *aspace;
1397
1398 head = displaced->step_request_queue;
1399 ptid = head->ptid;
1400 displaced->step_request_queue = head->next;
1401 xfree (head);
1402
1403 context_switch (ptid);
1404
1405 regcache = get_thread_regcache (ptid);
1406 actual_pc = regcache_read_pc (regcache);
1407 aspace = get_regcache_aspace (regcache);
1408
1409 if (breakpoint_here_p (aspace, actual_pc))
1410 {
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog,
1413 "displaced: stepping queued %s now\n",
1414 target_pid_to_str (ptid));
1415
1416 displaced_step_prepare (ptid);
1417
1418 gdbarch = get_regcache_arch (regcache);
1419
1420 if (debug_displaced)
1421 {
1422 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1423 gdb_byte buf[4];
1424
1425 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1426 paddress (gdbarch, actual_pc));
1427 read_memory (actual_pc, buf, sizeof (buf));
1428 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1429 }
1430
1431 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1432 displaced->step_closure))
1433 target_resume (ptid, 1, TARGET_SIGNAL_0);
1434 else
1435 target_resume (ptid, 0, TARGET_SIGNAL_0);
1436
1437 /* Done, we're stepping a thread. */
1438 break;
1439 }
1440 else
1441 {
1442 int step;
1443 struct thread_info *tp = inferior_thread ();
1444
1445 /* The breakpoint we were sitting under has since been
1446 removed. */
1447 tp->control.trap_expected = 0;
1448
1449 /* Go back to what we were trying to do. */
1450 step = currently_stepping (tp);
1451
1452 if (debug_displaced)
1453 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1454 target_pid_to_str (tp->ptid), step);
1455
1456 target_resume (ptid, step, TARGET_SIGNAL_0);
1457 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1458
1459 /* This request was discarded. See if there's any other
1460 thread waiting for its turn. */
1461 }
1462 }
1463 }
1464
1465 /* Update global variables holding ptids to hold NEW_PTID if they were
1466 holding OLD_PTID. */
1467 static void
1468 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1469 {
1470 struct displaced_step_request *it;
1471 struct displaced_step_inferior_state *displaced;
1472
1473 if (ptid_equal (inferior_ptid, old_ptid))
1474 inferior_ptid = new_ptid;
1475
1476 if (ptid_equal (singlestep_ptid, old_ptid))
1477 singlestep_ptid = new_ptid;
1478
1479 if (ptid_equal (deferred_step_ptid, old_ptid))
1480 deferred_step_ptid = new_ptid;
1481
1482 for (displaced = displaced_step_inferior_states;
1483 displaced;
1484 displaced = displaced->next)
1485 {
1486 if (ptid_equal (displaced->step_ptid, old_ptid))
1487 displaced->step_ptid = new_ptid;
1488
1489 for (it = displaced->step_request_queue; it; it = it->next)
1490 if (ptid_equal (it->ptid, old_ptid))
1491 it->ptid = new_ptid;
1492 }
1493 }
1494
1495 \f
1496 /* Resuming. */
1497
1498 /* Things to clean up if we QUIT out of resume (). */
1499 static void
1500 resume_cleanups (void *ignore)
1501 {
1502 normal_stop ();
1503 }
1504
1505 static const char schedlock_off[] = "off";
1506 static const char schedlock_on[] = "on";
1507 static const char schedlock_step[] = "step";
1508 static const char *scheduler_enums[] = {
1509 schedlock_off,
1510 schedlock_on,
1511 schedlock_step,
1512 NULL
1513 };
1514 static const char *scheduler_mode = schedlock_off;
1515 static void
1516 show_scheduler_mode (struct ui_file *file, int from_tty,
1517 struct cmd_list_element *c, const char *value)
1518 {
1519 fprintf_filtered (file, _("\
1520 Mode for locking scheduler during execution is \"%s\".\n"),
1521 value);
1522 }
1523
1524 static void
1525 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1526 {
1527 if (!target_can_lock_scheduler)
1528 {
1529 scheduler_mode = schedlock_off;
1530 error (_("Target '%s' cannot support this command."), target_shortname);
1531 }
1532 }
1533
1534 /* True if execution commands resume all threads of all processes by
1535 default; otherwise, resume only threads of the current inferior
1536 process. */
1537 int sched_multi = 0;
1538
1539 /* Try to setup for software single stepping over the specified location.
1540 Return 1 if target_resume() should use hardware single step.
1541
1542 GDBARCH the current gdbarch.
1543 PC the location to step over. */
1544
1545 static int
1546 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1547 {
1548 int hw_step = 1;
1549
1550 if (execution_direction == EXEC_FORWARD
1551 && gdbarch_software_single_step_p (gdbarch)
1552 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1553 {
1554 hw_step = 0;
1555 /* Do not pull these breakpoints until after a `wait' in
1556 `wait_for_inferior' */
1557 singlestep_breakpoints_inserted_p = 1;
1558 singlestep_ptid = inferior_ptid;
1559 singlestep_pc = pc;
1560 }
1561 return hw_step;
1562 }
1563
1564 /* Resume the inferior, but allow a QUIT. This is useful if the user
1565 wants to interrupt some lengthy single-stepping operation
1566 (for child processes, the SIGINT goes to the inferior, and so
1567 we get a SIGINT random_signal, but for remote debugging and perhaps
1568 other targets, that's not true).
1569
1570 STEP nonzero if we should step (zero to continue instead).
1571 SIG is the signal to give the inferior (zero for none). */
1572 void
1573 resume (int step, enum target_signal sig)
1574 {
1575 int should_resume = 1;
1576 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1577 struct regcache *regcache = get_current_regcache ();
1578 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1579 struct thread_info *tp = inferior_thread ();
1580 CORE_ADDR pc = regcache_read_pc (regcache);
1581 struct address_space *aspace = get_regcache_aspace (regcache);
1582
1583 QUIT;
1584
1585 if (current_inferior ()->waiting_for_vfork_done)
1586 {
1587 /* Don't try to single-step a vfork parent that is waiting for
1588 the child to get out of the shared memory region (by exec'ing
1589 or exiting). This is particularly important on software
1590 single-step archs, as the child process would trip on the
1591 software single step breakpoint inserted for the parent
1592 process. Since the parent will not actually execute any
1593 instruction until the child is out of the shared region (such
1594 are vfork's semantics), it is safe to simply continue it.
1595 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1596 the parent, and tell it to `keep_going', which automatically
1597 re-sets it stepping. */
1598 if (debug_infrun)
1599 fprintf_unfiltered (gdb_stdlog,
1600 "infrun: resume : clear step\n");
1601 step = 0;
1602 }
1603
1604 if (debug_infrun)
1605 fprintf_unfiltered (gdb_stdlog,
1606 "infrun: resume (step=%d, signal=%d), "
1607 "trap_expected=%d\n",
1608 step, sig, tp->control.trap_expected);
1609
1610 /* Normally, by the time we reach `resume', the breakpoints are either
1611 removed or inserted, as appropriate. The exception is if we're sitting
1612 at a permanent breakpoint; we need to step over it, but permanent
1613 breakpoints can't be removed. So we have to test for it here. */
1614 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1615 {
1616 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1617 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1618 else
1619 error (_("\
1620 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1621 how to step past a permanent breakpoint on this architecture. Try using\n\
1622 a command like `return' or `jump' to continue execution."));
1623 }
1624
1625 /* If enabled, step over breakpoints by executing a copy of the
1626 instruction at a different address.
1627
1628 We can't use displaced stepping when we have a signal to deliver;
1629 the comments for displaced_step_prepare explain why. The
1630 comments in the handle_inferior event for dealing with 'random
1631 signals' explain what we do instead.
1632
1633 We can't use displaced stepping when we are waiting for vfork_done
1634 event, displaced stepping breaks the vfork child similarly as single
1635 step software breakpoint. */
1636 if (use_displaced_stepping (gdbarch)
1637 && (tp->control.trap_expected
1638 || (step && gdbarch_software_single_step_p (gdbarch)))
1639 && sig == TARGET_SIGNAL_0
1640 && !current_inferior ()->waiting_for_vfork_done)
1641 {
1642 struct displaced_step_inferior_state *displaced;
1643
1644 if (!displaced_step_prepare (inferior_ptid))
1645 {
1646 /* Got placed in displaced stepping queue. Will be resumed
1647 later when all the currently queued displaced stepping
1648 requests finish. The thread is not executing at this point,
1649 and the call to set_executing will be made later. But we
1650 need to call set_running here, since from frontend point of view,
1651 the thread is running. */
1652 set_running (inferior_ptid, 1);
1653 discard_cleanups (old_cleanups);
1654 return;
1655 }
1656
1657 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1658 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1659 displaced->step_closure);
1660 }
1661
1662 /* Do we need to do it the hard way, w/temp breakpoints? */
1663 else if (step)
1664 step = maybe_software_singlestep (gdbarch, pc);
1665
1666 if (should_resume)
1667 {
1668 ptid_t resume_ptid;
1669
1670 /* If STEP is set, it's a request to use hardware stepping
1671 facilities. But in that case, we should never
1672 use singlestep breakpoint. */
1673 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1674
1675 /* Decide the set of threads to ask the target to resume. Start
1676 by assuming everything will be resumed, than narrow the set
1677 by applying increasingly restricting conditions. */
1678
1679 /* By default, resume all threads of all processes. */
1680 resume_ptid = RESUME_ALL;
1681
1682 /* Maybe resume only all threads of the current process. */
1683 if (!sched_multi && target_supports_multi_process ())
1684 {
1685 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1686 }
1687
1688 /* Maybe resume a single thread after all. */
1689 if (singlestep_breakpoints_inserted_p
1690 && stepping_past_singlestep_breakpoint)
1691 {
1692 /* The situation here is as follows. In thread T1 we wanted to
1693 single-step. Lacking hardware single-stepping we've
1694 set breakpoint at the PC of the next instruction -- call it
1695 P. After resuming, we've hit that breakpoint in thread T2.
1696 Now we've removed original breakpoint, inserted breakpoint
1697 at P+1, and try to step to advance T2 past breakpoint.
1698 We need to step only T2, as if T1 is allowed to freely run,
1699 it can run past P, and if other threads are allowed to run,
1700 they can hit breakpoint at P+1, and nested hits of single-step
1701 breakpoints is not something we'd want -- that's complicated
1702 to support, and has no value. */
1703 resume_ptid = inferior_ptid;
1704 }
1705 else if ((step || singlestep_breakpoints_inserted_p)
1706 && tp->control.trap_expected)
1707 {
1708 /* We're allowing a thread to run past a breakpoint it has
1709 hit, by single-stepping the thread with the breakpoint
1710 removed. In which case, we need to single-step only this
1711 thread, and keep others stopped, as they can miss this
1712 breakpoint if allowed to run.
1713
1714 The current code actually removes all breakpoints when
1715 doing this, not just the one being stepped over, so if we
1716 let other threads run, we can actually miss any
1717 breakpoint, not just the one at PC. */
1718 resume_ptid = inferior_ptid;
1719 }
1720 else if (non_stop)
1721 {
1722 /* With non-stop mode on, threads are always handled
1723 individually. */
1724 resume_ptid = inferior_ptid;
1725 }
1726 else if ((scheduler_mode == schedlock_on)
1727 || (scheduler_mode == schedlock_step
1728 && (step || singlestep_breakpoints_inserted_p)))
1729 {
1730 /* User-settable 'scheduler' mode requires solo thread resume. */
1731 resume_ptid = inferior_ptid;
1732 }
1733
1734 if (gdbarch_cannot_step_breakpoint (gdbarch))
1735 {
1736 /* Most targets can step a breakpoint instruction, thus
1737 executing it normally. But if this one cannot, just
1738 continue and we will hit it anyway. */
1739 if (step && breakpoint_inserted_here_p (aspace, pc))
1740 step = 0;
1741 }
1742
1743 if (debug_displaced
1744 && use_displaced_stepping (gdbarch)
1745 && tp->control.trap_expected)
1746 {
1747 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1748 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1749 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1750 gdb_byte buf[4];
1751
1752 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1753 paddress (resume_gdbarch, actual_pc));
1754 read_memory (actual_pc, buf, sizeof (buf));
1755 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1756 }
1757
1758 /* Install inferior's terminal modes. */
1759 target_terminal_inferior ();
1760
1761 /* Avoid confusing the next resume, if the next stop/resume
1762 happens to apply to another thread. */
1763 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1764
1765 target_resume (resume_ptid, step, sig);
1766 }
1767
1768 discard_cleanups (old_cleanups);
1769 }
1770 \f
1771 /* Proceeding. */
1772
1773 /* Clear out all variables saying what to do when inferior is continued.
1774 First do this, then set the ones you want, then call `proceed'. */
1775
1776 static void
1777 clear_proceed_status_thread (struct thread_info *tp)
1778 {
1779 if (debug_infrun)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "infrun: clear_proceed_status_thread (%s)\n",
1782 target_pid_to_str (tp->ptid));
1783
1784 tp->control.trap_expected = 0;
1785 tp->control.step_range_start = 0;
1786 tp->control.step_range_end = 0;
1787 tp->control.step_frame_id = null_frame_id;
1788 tp->control.step_stack_frame_id = null_frame_id;
1789 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1790 tp->stop_requested = 0;
1791
1792 tp->control.stop_step = 0;
1793
1794 tp->control.proceed_to_finish = 0;
1795
1796 /* Discard any remaining commands or status from previous stop. */
1797 bpstat_clear (&tp->control.stop_bpstat);
1798 }
1799
1800 static int
1801 clear_proceed_status_callback (struct thread_info *tp, void *data)
1802 {
1803 if (is_exited (tp->ptid))
1804 return 0;
1805
1806 clear_proceed_status_thread (tp);
1807 return 0;
1808 }
1809
1810 void
1811 clear_proceed_status (void)
1812 {
1813 if (!non_stop)
1814 {
1815 /* In all-stop mode, delete the per-thread status of all
1816 threads, even if inferior_ptid is null_ptid, there may be
1817 threads on the list. E.g., we may be launching a new
1818 process, while selecting the executable. */
1819 iterate_over_threads (clear_proceed_status_callback, NULL);
1820 }
1821
1822 if (!ptid_equal (inferior_ptid, null_ptid))
1823 {
1824 struct inferior *inferior;
1825
1826 if (non_stop)
1827 {
1828 /* If in non-stop mode, only delete the per-thread status of
1829 the current thread. */
1830 clear_proceed_status_thread (inferior_thread ());
1831 }
1832
1833 inferior = current_inferior ();
1834 inferior->control.stop_soon = NO_STOP_QUIETLY;
1835 }
1836
1837 stop_after_trap = 0;
1838
1839 observer_notify_about_to_proceed ();
1840
1841 if (stop_registers)
1842 {
1843 regcache_xfree (stop_registers);
1844 stop_registers = NULL;
1845 }
1846 }
1847
1848 /* Check the current thread against the thread that reported the most recent
1849 event. If a step-over is required return TRUE and set the current thread
1850 to the old thread. Otherwise return FALSE.
1851
1852 This should be suitable for any targets that support threads. */
1853
1854 static int
1855 prepare_to_proceed (int step)
1856 {
1857 ptid_t wait_ptid;
1858 struct target_waitstatus wait_status;
1859 int schedlock_enabled;
1860
1861 /* With non-stop mode on, threads are always handled individually. */
1862 gdb_assert (! non_stop);
1863
1864 /* Get the last target status returned by target_wait(). */
1865 get_last_target_status (&wait_ptid, &wait_status);
1866
1867 /* Make sure we were stopped at a breakpoint. */
1868 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1869 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1870 && wait_status.value.sig != TARGET_SIGNAL_ILL
1871 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1872 && wait_status.value.sig != TARGET_SIGNAL_EMT))
1873 {
1874 return 0;
1875 }
1876
1877 schedlock_enabled = (scheduler_mode == schedlock_on
1878 || (scheduler_mode == schedlock_step
1879 && step));
1880
1881 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1882 if (schedlock_enabled)
1883 return 0;
1884
1885 /* Don't switch over if we're about to resume some other process
1886 other than WAIT_PTID's, and schedule-multiple is off. */
1887 if (!sched_multi
1888 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1889 return 0;
1890
1891 /* Switched over from WAIT_PID. */
1892 if (!ptid_equal (wait_ptid, minus_one_ptid)
1893 && !ptid_equal (inferior_ptid, wait_ptid))
1894 {
1895 struct regcache *regcache = get_thread_regcache (wait_ptid);
1896
1897 if (breakpoint_here_p (get_regcache_aspace (regcache),
1898 regcache_read_pc (regcache)))
1899 {
1900 /* If stepping, remember current thread to switch back to. */
1901 if (step)
1902 deferred_step_ptid = inferior_ptid;
1903
1904 /* Switch back to WAIT_PID thread. */
1905 switch_to_thread (wait_ptid);
1906
1907 /* We return 1 to indicate that there is a breakpoint here,
1908 so we need to step over it before continuing to avoid
1909 hitting it straight away. */
1910 return 1;
1911 }
1912 }
1913
1914 return 0;
1915 }
1916
1917 /* Basic routine for continuing the program in various fashions.
1918
1919 ADDR is the address to resume at, or -1 for resume where stopped.
1920 SIGGNAL is the signal to give it, or 0 for none,
1921 or -1 for act according to how it stopped.
1922 STEP is nonzero if should trap after one instruction.
1923 -1 means return after that and print nothing.
1924 You should probably set various step_... variables
1925 before calling here, if you are stepping.
1926
1927 You should call clear_proceed_status before calling proceed. */
1928
1929 void
1930 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1931 {
1932 struct regcache *regcache;
1933 struct gdbarch *gdbarch;
1934 struct thread_info *tp;
1935 CORE_ADDR pc;
1936 struct address_space *aspace;
1937 int oneproc = 0;
1938
1939 /* If we're stopped at a fork/vfork, follow the branch set by the
1940 "set follow-fork-mode" command; otherwise, we'll just proceed
1941 resuming the current thread. */
1942 if (!follow_fork ())
1943 {
1944 /* The target for some reason decided not to resume. */
1945 normal_stop ();
1946 return;
1947 }
1948
1949 regcache = get_current_regcache ();
1950 gdbarch = get_regcache_arch (regcache);
1951 aspace = get_regcache_aspace (regcache);
1952 pc = regcache_read_pc (regcache);
1953
1954 if (step > 0)
1955 step_start_function = find_pc_function (pc);
1956 if (step < 0)
1957 stop_after_trap = 1;
1958
1959 if (addr == (CORE_ADDR) -1)
1960 {
1961 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
1962 && execution_direction != EXEC_REVERSE)
1963 /* There is a breakpoint at the address we will resume at,
1964 step one instruction before inserting breakpoints so that
1965 we do not stop right away (and report a second hit at this
1966 breakpoint).
1967
1968 Note, we don't do this in reverse, because we won't
1969 actually be executing the breakpoint insn anyway.
1970 We'll be (un-)executing the previous instruction. */
1971
1972 oneproc = 1;
1973 else if (gdbarch_single_step_through_delay_p (gdbarch)
1974 && gdbarch_single_step_through_delay (gdbarch,
1975 get_current_frame ()))
1976 /* We stepped onto an instruction that needs to be stepped
1977 again before re-inserting the breakpoint, do so. */
1978 oneproc = 1;
1979 }
1980 else
1981 {
1982 regcache_write_pc (regcache, addr);
1983 }
1984
1985 if (debug_infrun)
1986 fprintf_unfiltered (gdb_stdlog,
1987 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1988 paddress (gdbarch, addr), siggnal, step);
1989
1990 /* We're handling a live event, so make sure we're doing live
1991 debugging. If we're looking at traceframes while the target is
1992 running, we're going to need to get back to that mode after
1993 handling the event. */
1994 if (non_stop)
1995 {
1996 make_cleanup_restore_current_traceframe ();
1997 set_traceframe_number (-1);
1998 }
1999
2000 if (non_stop)
2001 /* In non-stop, each thread is handled individually. The context
2002 must already be set to the right thread here. */
2003 ;
2004 else
2005 {
2006 /* In a multi-threaded task we may select another thread and
2007 then continue or step.
2008
2009 But if the old thread was stopped at a breakpoint, it will
2010 immediately cause another breakpoint stop without any
2011 execution (i.e. it will report a breakpoint hit incorrectly).
2012 So we must step over it first.
2013
2014 prepare_to_proceed checks the current thread against the
2015 thread that reported the most recent event. If a step-over
2016 is required it returns TRUE and sets the current thread to
2017 the old thread. */
2018 if (prepare_to_proceed (step))
2019 oneproc = 1;
2020 }
2021
2022 /* prepare_to_proceed may change the current thread. */
2023 tp = inferior_thread ();
2024
2025 if (oneproc)
2026 {
2027 tp->control.trap_expected = 1;
2028 /* If displaced stepping is enabled, we can step over the
2029 breakpoint without hitting it, so leave all breakpoints
2030 inserted. Otherwise we need to disable all breakpoints, step
2031 one instruction, and then re-add them when that step is
2032 finished. */
2033 if (!use_displaced_stepping (gdbarch))
2034 remove_breakpoints ();
2035 }
2036
2037 /* We can insert breakpoints if we're not trying to step over one,
2038 or if we are stepping over one but we're using displaced stepping
2039 to do so. */
2040 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2041 insert_breakpoints ();
2042
2043 if (!non_stop)
2044 {
2045 /* Pass the last stop signal to the thread we're resuming,
2046 irrespective of whether the current thread is the thread that
2047 got the last event or not. This was historically GDB's
2048 behaviour before keeping a stop_signal per thread. */
2049
2050 struct thread_info *last_thread;
2051 ptid_t last_ptid;
2052 struct target_waitstatus last_status;
2053
2054 get_last_target_status (&last_ptid, &last_status);
2055 if (!ptid_equal (inferior_ptid, last_ptid)
2056 && !ptid_equal (last_ptid, null_ptid)
2057 && !ptid_equal (last_ptid, minus_one_ptid))
2058 {
2059 last_thread = find_thread_ptid (last_ptid);
2060 if (last_thread)
2061 {
2062 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2063 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2064 }
2065 }
2066 }
2067
2068 if (siggnal != TARGET_SIGNAL_DEFAULT)
2069 tp->suspend.stop_signal = siggnal;
2070 /* If this signal should not be seen by program,
2071 give it zero. Used for debugging signals. */
2072 else if (!signal_program[tp->suspend.stop_signal])
2073 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2074
2075 annotate_starting ();
2076
2077 /* Make sure that output from GDB appears before output from the
2078 inferior. */
2079 gdb_flush (gdb_stdout);
2080
2081 /* Refresh prev_pc value just prior to resuming. This used to be
2082 done in stop_stepping, however, setting prev_pc there did not handle
2083 scenarios such as inferior function calls or returning from
2084 a function via the return command. In those cases, the prev_pc
2085 value was not set properly for subsequent commands. The prev_pc value
2086 is used to initialize the starting line number in the ecs. With an
2087 invalid value, the gdb next command ends up stopping at the position
2088 represented by the next line table entry past our start position.
2089 On platforms that generate one line table entry per line, this
2090 is not a problem. However, on the ia64, the compiler generates
2091 extraneous line table entries that do not increase the line number.
2092 When we issue the gdb next command on the ia64 after an inferior call
2093 or a return command, we often end up a few instructions forward, still
2094 within the original line we started.
2095
2096 An attempt was made to refresh the prev_pc at the same time the
2097 execution_control_state is initialized (for instance, just before
2098 waiting for an inferior event). But this approach did not work
2099 because of platforms that use ptrace, where the pc register cannot
2100 be read unless the inferior is stopped. At that point, we are not
2101 guaranteed the inferior is stopped and so the regcache_read_pc() call
2102 can fail. Setting the prev_pc value here ensures the value is updated
2103 correctly when the inferior is stopped. */
2104 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2105
2106 /* Fill in with reasonable starting values. */
2107 init_thread_stepping_state (tp);
2108
2109 /* Reset to normal state. */
2110 init_infwait_state ();
2111
2112 /* Resume inferior. */
2113 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2114
2115 /* Wait for it to stop (if not standalone)
2116 and in any case decode why it stopped, and act accordingly. */
2117 /* Do this only if we are not using the event loop, or if the target
2118 does not support asynchronous execution. */
2119 if (!target_can_async_p ())
2120 {
2121 wait_for_inferior (0);
2122 normal_stop ();
2123 }
2124 }
2125 \f
2126
2127 /* Start remote-debugging of a machine over a serial link. */
2128
2129 void
2130 start_remote (int from_tty)
2131 {
2132 struct inferior *inferior;
2133
2134 init_wait_for_inferior ();
2135 inferior = current_inferior ();
2136 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2137
2138 /* Always go on waiting for the target, regardless of the mode. */
2139 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2140 indicate to wait_for_inferior that a target should timeout if
2141 nothing is returned (instead of just blocking). Because of this,
2142 targets expecting an immediate response need to, internally, set
2143 things up so that the target_wait() is forced to eventually
2144 timeout. */
2145 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2146 differentiate to its caller what the state of the target is after
2147 the initial open has been performed. Here we're assuming that
2148 the target has stopped. It should be possible to eventually have
2149 target_open() return to the caller an indication that the target
2150 is currently running and GDB state should be set to the same as
2151 for an async run. */
2152 wait_for_inferior (0);
2153
2154 /* Now that the inferior has stopped, do any bookkeeping like
2155 loading shared libraries. We want to do this before normal_stop,
2156 so that the displayed frame is up to date. */
2157 post_create_inferior (&current_target, from_tty);
2158
2159 normal_stop ();
2160 }
2161
2162 /* Initialize static vars when a new inferior begins. */
2163
2164 void
2165 init_wait_for_inferior (void)
2166 {
2167 /* These are meaningless until the first time through wait_for_inferior. */
2168
2169 breakpoint_init_inferior (inf_starting);
2170
2171 clear_proceed_status ();
2172
2173 stepping_past_singlestep_breakpoint = 0;
2174 deferred_step_ptid = null_ptid;
2175
2176 target_last_wait_ptid = minus_one_ptid;
2177
2178 previous_inferior_ptid = null_ptid;
2179 init_infwait_state ();
2180
2181 /* Discard any skipped inlined frames. */
2182 clear_inline_frame_state (minus_one_ptid);
2183 }
2184
2185 \f
2186 /* This enum encodes possible reasons for doing a target_wait, so that
2187 wfi can call target_wait in one place. (Ultimately the call will be
2188 moved out of the infinite loop entirely.) */
2189
2190 enum infwait_states
2191 {
2192 infwait_normal_state,
2193 infwait_thread_hop_state,
2194 infwait_step_watch_state,
2195 infwait_nonstep_watch_state
2196 };
2197
2198 /* The PTID we'll do a target_wait on.*/
2199 ptid_t waiton_ptid;
2200
2201 /* Current inferior wait state. */
2202 enum infwait_states infwait_state;
2203
2204 /* Data to be passed around while handling an event. This data is
2205 discarded between events. */
2206 struct execution_control_state
2207 {
2208 ptid_t ptid;
2209 /* The thread that got the event, if this was a thread event; NULL
2210 otherwise. */
2211 struct thread_info *event_thread;
2212
2213 struct target_waitstatus ws;
2214 int random_signal;
2215 CORE_ADDR stop_func_start;
2216 CORE_ADDR stop_func_end;
2217 char *stop_func_name;
2218 int new_thread_event;
2219 int wait_some_more;
2220 };
2221
2222 static void handle_inferior_event (struct execution_control_state *ecs);
2223
2224 static void handle_step_into_function (struct gdbarch *gdbarch,
2225 struct execution_control_state *ecs);
2226 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2227 struct execution_control_state *ecs);
2228 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
2229 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
2230 static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
2231 struct symtab_and_line sr_sal,
2232 struct frame_id sr_id);
2233 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
2234 static void check_exception_resume (struct execution_control_state *,
2235 struct frame_info *, struct symbol *);
2236
2237 static void stop_stepping (struct execution_control_state *ecs);
2238 static void prepare_to_wait (struct execution_control_state *ecs);
2239 static void keep_going (struct execution_control_state *ecs);
2240
2241 /* Callback for iterate over threads. If the thread is stopped, but
2242 the user/frontend doesn't know about that yet, go through
2243 normal_stop, as if the thread had just stopped now. ARG points at
2244 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2245 ptid_is_pid(PTID) is true, applies to all threads of the process
2246 pointed at by PTID. Otherwise, apply only to the thread pointed by
2247 PTID. */
2248
2249 static int
2250 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2251 {
2252 ptid_t ptid = * (ptid_t *) arg;
2253
2254 if ((ptid_equal (info->ptid, ptid)
2255 || ptid_equal (minus_one_ptid, ptid)
2256 || (ptid_is_pid (ptid)
2257 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2258 && is_running (info->ptid)
2259 && !is_executing (info->ptid))
2260 {
2261 struct cleanup *old_chain;
2262 struct execution_control_state ecss;
2263 struct execution_control_state *ecs = &ecss;
2264
2265 memset (ecs, 0, sizeof (*ecs));
2266
2267 old_chain = make_cleanup_restore_current_thread ();
2268
2269 switch_to_thread (info->ptid);
2270
2271 /* Go through handle_inferior_event/normal_stop, so we always
2272 have consistent output as if the stop event had been
2273 reported. */
2274 ecs->ptid = info->ptid;
2275 ecs->event_thread = find_thread_ptid (info->ptid);
2276 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2277 ecs->ws.value.sig = TARGET_SIGNAL_0;
2278
2279 handle_inferior_event (ecs);
2280
2281 if (!ecs->wait_some_more)
2282 {
2283 struct thread_info *tp;
2284
2285 normal_stop ();
2286
2287 /* Finish off the continuations. The continations
2288 themselves are responsible for realising the thread
2289 didn't finish what it was supposed to do. */
2290 tp = inferior_thread ();
2291 do_all_intermediate_continuations_thread (tp);
2292 do_all_continuations_thread (tp);
2293 }
2294
2295 do_cleanups (old_chain);
2296 }
2297
2298 return 0;
2299 }
2300
2301 /* This function is attached as a "thread_stop_requested" observer.
2302 Cleanup local state that assumed the PTID was to be resumed, and
2303 report the stop to the frontend. */
2304
2305 static void
2306 infrun_thread_stop_requested (ptid_t ptid)
2307 {
2308 struct displaced_step_inferior_state *displaced;
2309
2310 /* PTID was requested to stop. Remove it from the displaced
2311 stepping queue, so we don't try to resume it automatically. */
2312
2313 for (displaced = displaced_step_inferior_states;
2314 displaced;
2315 displaced = displaced->next)
2316 {
2317 struct displaced_step_request *it, **prev_next_p;
2318
2319 it = displaced->step_request_queue;
2320 prev_next_p = &displaced->step_request_queue;
2321 while (it)
2322 {
2323 if (ptid_match (it->ptid, ptid))
2324 {
2325 *prev_next_p = it->next;
2326 it->next = NULL;
2327 xfree (it);
2328 }
2329 else
2330 {
2331 prev_next_p = &it->next;
2332 }
2333
2334 it = *prev_next_p;
2335 }
2336 }
2337
2338 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2339 }
2340
2341 static void
2342 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2343 {
2344 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2345 nullify_last_target_wait_ptid ();
2346 }
2347
2348 /* Callback for iterate_over_threads. */
2349
2350 static int
2351 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2352 {
2353 if (is_exited (info->ptid))
2354 return 0;
2355
2356 delete_step_resume_breakpoint (info);
2357 delete_exception_resume_breakpoint (info);
2358 return 0;
2359 }
2360
2361 /* In all-stop, delete the step resume breakpoint of any thread that
2362 had one. In non-stop, delete the step resume breakpoint of the
2363 thread that just stopped. */
2364
2365 static void
2366 delete_step_thread_step_resume_breakpoint (void)
2367 {
2368 if (!target_has_execution
2369 || ptid_equal (inferior_ptid, null_ptid))
2370 /* If the inferior has exited, we have already deleted the step
2371 resume breakpoints out of GDB's lists. */
2372 return;
2373
2374 if (non_stop)
2375 {
2376 /* If in non-stop mode, only delete the step-resume or
2377 longjmp-resume breakpoint of the thread that just stopped
2378 stepping. */
2379 struct thread_info *tp = inferior_thread ();
2380
2381 delete_step_resume_breakpoint (tp);
2382 delete_exception_resume_breakpoint (tp);
2383 }
2384 else
2385 /* In all-stop mode, delete all step-resume and longjmp-resume
2386 breakpoints of any thread that had them. */
2387 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2388 }
2389
2390 /* A cleanup wrapper. */
2391
2392 static void
2393 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2394 {
2395 delete_step_thread_step_resume_breakpoint ();
2396 }
2397
2398 /* Pretty print the results of target_wait, for debugging purposes. */
2399
2400 static void
2401 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2402 const struct target_waitstatus *ws)
2403 {
2404 char *status_string = target_waitstatus_to_string (ws);
2405 struct ui_file *tmp_stream = mem_fileopen ();
2406 char *text;
2407
2408 /* The text is split over several lines because it was getting too long.
2409 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2410 output as a unit; we want only one timestamp printed if debug_timestamp
2411 is set. */
2412
2413 fprintf_unfiltered (tmp_stream,
2414 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2415 if (PIDGET (waiton_ptid) != -1)
2416 fprintf_unfiltered (tmp_stream,
2417 " [%s]", target_pid_to_str (waiton_ptid));
2418 fprintf_unfiltered (tmp_stream, ", status) =\n");
2419 fprintf_unfiltered (tmp_stream,
2420 "infrun: %d [%s],\n",
2421 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2422 fprintf_unfiltered (tmp_stream,
2423 "infrun: %s\n",
2424 status_string);
2425
2426 text = ui_file_xstrdup (tmp_stream, NULL);
2427
2428 /* This uses %s in part to handle %'s in the text, but also to avoid
2429 a gcc error: the format attribute requires a string literal. */
2430 fprintf_unfiltered (gdb_stdlog, "%s", text);
2431
2432 xfree (status_string);
2433 xfree (text);
2434 ui_file_delete (tmp_stream);
2435 }
2436
2437 /* Prepare and stabilize the inferior for detaching it. E.g.,
2438 detaching while a thread is displaced stepping is a recipe for
2439 crashing it, as nothing would readjust the PC out of the scratch
2440 pad. */
2441
2442 void
2443 prepare_for_detach (void)
2444 {
2445 struct inferior *inf = current_inferior ();
2446 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2447 struct cleanup *old_chain_1;
2448 struct displaced_step_inferior_state *displaced;
2449
2450 displaced = get_displaced_stepping_state (inf->pid);
2451
2452 /* Is any thread of this process displaced stepping? If not,
2453 there's nothing else to do. */
2454 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2455 return;
2456
2457 if (debug_infrun)
2458 fprintf_unfiltered (gdb_stdlog,
2459 "displaced-stepping in-process while detaching");
2460
2461 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2462 inf->detaching = 1;
2463
2464 while (!ptid_equal (displaced->step_ptid, null_ptid))
2465 {
2466 struct cleanup *old_chain_2;
2467 struct execution_control_state ecss;
2468 struct execution_control_state *ecs;
2469
2470 ecs = &ecss;
2471 memset (ecs, 0, sizeof (*ecs));
2472
2473 overlay_cache_invalid = 1;
2474
2475 /* We have to invalidate the registers BEFORE calling
2476 target_wait because they can be loaded from the target while
2477 in target_wait. This makes remote debugging a bit more
2478 efficient for those targets that provide critical registers
2479 as part of their normal status mechanism. */
2480
2481 registers_changed ();
2482
2483 if (deprecated_target_wait_hook)
2484 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2485 else
2486 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2487
2488 if (debug_infrun)
2489 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2490
2491 /* If an error happens while handling the event, propagate GDB's
2492 knowledge of the executing state to the frontend/user running
2493 state. */
2494 old_chain_2 = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2495
2496 /* In non-stop mode, each thread is handled individually.
2497 Switch early, so the global state is set correctly for this
2498 thread. */
2499 if (non_stop
2500 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2501 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2502 context_switch (ecs->ptid);
2503
2504 /* Now figure out what to do with the result of the result. */
2505 handle_inferior_event (ecs);
2506
2507 /* No error, don't finish the state yet. */
2508 discard_cleanups (old_chain_2);
2509
2510 /* Breakpoints and watchpoints are not installed on the target
2511 at this point, and signals are passed directly to the
2512 inferior, so this must mean the process is gone. */
2513 if (!ecs->wait_some_more)
2514 {
2515 discard_cleanups (old_chain_1);
2516 error (_("Program exited while detaching"));
2517 }
2518 }
2519
2520 discard_cleanups (old_chain_1);
2521 }
2522
2523 /* Wait for control to return from inferior to debugger.
2524
2525 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2526 as if they were SIGTRAP signals. This can be useful during
2527 the startup sequence on some targets such as HP/UX, where
2528 we receive an EXEC event instead of the expected SIGTRAP.
2529
2530 If inferior gets a signal, we may decide to start it up again
2531 instead of returning. That is why there is a loop in this function.
2532 When this function actually returns it means the inferior
2533 should be left stopped and GDB should read more commands. */
2534
2535 void
2536 wait_for_inferior (int treat_exec_as_sigtrap)
2537 {
2538 struct cleanup *old_cleanups;
2539 struct execution_control_state ecss;
2540 struct execution_control_state *ecs;
2541
2542 if (debug_infrun)
2543 fprintf_unfiltered
2544 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2545 treat_exec_as_sigtrap);
2546
2547 old_cleanups =
2548 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2549
2550 ecs = &ecss;
2551 memset (ecs, 0, sizeof (*ecs));
2552
2553 /* We'll update this if & when we switch to a new thread. */
2554 previous_inferior_ptid = inferior_ptid;
2555
2556 while (1)
2557 {
2558 struct cleanup *old_chain;
2559
2560 /* We have to invalidate the registers BEFORE calling target_wait
2561 because they can be loaded from the target while in target_wait.
2562 This makes remote debugging a bit more efficient for those
2563 targets that provide critical registers as part of their normal
2564 status mechanism. */
2565
2566 overlay_cache_invalid = 1;
2567 registers_changed ();
2568
2569 if (deprecated_target_wait_hook)
2570 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2571 else
2572 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2573
2574 if (debug_infrun)
2575 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2576
2577 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2578 {
2579 xfree (ecs->ws.value.execd_pathname);
2580 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2581 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2582 }
2583
2584 /* If an error happens while handling the event, propagate GDB's
2585 knowledge of the executing state to the frontend/user running
2586 state. */
2587 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2588
2589 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2590 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2591 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2592
2593 /* Now figure out what to do with the result of the result. */
2594 handle_inferior_event (ecs);
2595
2596 /* No error, don't finish the state yet. */
2597 discard_cleanups (old_chain);
2598
2599 if (!ecs->wait_some_more)
2600 break;
2601 }
2602
2603 do_cleanups (old_cleanups);
2604 }
2605
2606 /* Asynchronous version of wait_for_inferior. It is called by the
2607 event loop whenever a change of state is detected on the file
2608 descriptor corresponding to the target. It can be called more than
2609 once to complete a single execution command. In such cases we need
2610 to keep the state in a global variable ECSS. If it is the last time
2611 that this function is called for a single execution command, then
2612 report to the user that the inferior has stopped, and do the
2613 necessary cleanups. */
2614
2615 void
2616 fetch_inferior_event (void *client_data)
2617 {
2618 struct execution_control_state ecss;
2619 struct execution_control_state *ecs = &ecss;
2620 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2621 struct cleanup *ts_old_chain;
2622 int was_sync = sync_execution;
2623
2624 memset (ecs, 0, sizeof (*ecs));
2625
2626 /* We'll update this if & when we switch to a new thread. */
2627 previous_inferior_ptid = inferior_ptid;
2628
2629 if (non_stop)
2630 /* In non-stop mode, the user/frontend should not notice a thread
2631 switch due to internal events. Make sure we reverse to the
2632 user selected thread and frame after handling the event and
2633 running any breakpoint commands. */
2634 make_cleanup_restore_current_thread ();
2635
2636 /* We have to invalidate the registers BEFORE calling target_wait
2637 because they can be loaded from the target while in target_wait.
2638 This makes remote debugging a bit more efficient for those
2639 targets that provide critical registers as part of their normal
2640 status mechanism. */
2641
2642 overlay_cache_invalid = 1;
2643 registers_changed ();
2644
2645 if (deprecated_target_wait_hook)
2646 ecs->ptid =
2647 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2648 else
2649 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2650
2651 if (debug_infrun)
2652 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2653
2654 if (non_stop
2655 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2656 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2657 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2658 /* In non-stop mode, each thread is handled individually. Switch
2659 early, so the global state is set correctly for this
2660 thread. */
2661 context_switch (ecs->ptid);
2662
2663 /* If an error happens while handling the event, propagate GDB's
2664 knowledge of the executing state to the frontend/user running
2665 state. */
2666 if (!non_stop)
2667 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2668 else
2669 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2670
2671 /* Now figure out what to do with the result of the result. */
2672 handle_inferior_event (ecs);
2673
2674 if (!ecs->wait_some_more)
2675 {
2676 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2677
2678 delete_step_thread_step_resume_breakpoint ();
2679
2680 /* We may not find an inferior if this was a process exit. */
2681 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2682 normal_stop ();
2683
2684 if (target_has_execution
2685 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2686 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2687 && ecs->event_thread->step_multi
2688 && ecs->event_thread->control.stop_step)
2689 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2690 else
2691 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2692 }
2693
2694 /* No error, don't finish the thread states yet. */
2695 discard_cleanups (ts_old_chain);
2696
2697 /* Revert thread and frame. */
2698 do_cleanups (old_chain);
2699
2700 /* If the inferior was in sync execution mode, and now isn't,
2701 restore the prompt. */
2702 if (was_sync && !sync_execution)
2703 display_gdb_prompt (0);
2704 }
2705
2706 /* Record the frame and location we're currently stepping through. */
2707 void
2708 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2709 {
2710 struct thread_info *tp = inferior_thread ();
2711
2712 tp->control.step_frame_id = get_frame_id (frame);
2713 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2714
2715 tp->current_symtab = sal.symtab;
2716 tp->current_line = sal.line;
2717 }
2718
2719 /* Clear context switchable stepping state. */
2720
2721 void
2722 init_thread_stepping_state (struct thread_info *tss)
2723 {
2724 tss->stepping_over_breakpoint = 0;
2725 tss->step_after_step_resume_breakpoint = 0;
2726 tss->stepping_through_solib_after_catch = 0;
2727 tss->stepping_through_solib_catchpoints = NULL;
2728 }
2729
2730 /* Return the cached copy of the last pid/waitstatus returned by
2731 target_wait()/deprecated_target_wait_hook(). The data is actually
2732 cached by handle_inferior_event(), which gets called immediately
2733 after target_wait()/deprecated_target_wait_hook(). */
2734
2735 void
2736 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2737 {
2738 *ptidp = target_last_wait_ptid;
2739 *status = target_last_waitstatus;
2740 }
2741
2742 void
2743 nullify_last_target_wait_ptid (void)
2744 {
2745 target_last_wait_ptid = minus_one_ptid;
2746 }
2747
2748 /* Switch thread contexts. */
2749
2750 static void
2751 context_switch (ptid_t ptid)
2752 {
2753 if (debug_infrun)
2754 {
2755 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2756 target_pid_to_str (inferior_ptid));
2757 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2758 target_pid_to_str (ptid));
2759 }
2760
2761 switch_to_thread (ptid);
2762 }
2763
2764 static void
2765 adjust_pc_after_break (struct execution_control_state *ecs)
2766 {
2767 struct regcache *regcache;
2768 struct gdbarch *gdbarch;
2769 struct address_space *aspace;
2770 CORE_ADDR breakpoint_pc;
2771
2772 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2773 we aren't, just return.
2774
2775 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2776 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2777 implemented by software breakpoints should be handled through the normal
2778 breakpoint layer.
2779
2780 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2781 different signals (SIGILL or SIGEMT for instance), but it is less
2782 clear where the PC is pointing afterwards. It may not match
2783 gdbarch_decr_pc_after_break. I don't know any specific target that
2784 generates these signals at breakpoints (the code has been in GDB since at
2785 least 1992) so I can not guess how to handle them here.
2786
2787 In earlier versions of GDB, a target with
2788 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2789 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2790 target with both of these set in GDB history, and it seems unlikely to be
2791 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2792
2793 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2794 return;
2795
2796 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2797 return;
2798
2799 /* In reverse execution, when a breakpoint is hit, the instruction
2800 under it has already been de-executed. The reported PC always
2801 points at the breakpoint address, so adjusting it further would
2802 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2803 architecture:
2804
2805 B1 0x08000000 : INSN1
2806 B2 0x08000001 : INSN2
2807 0x08000002 : INSN3
2808 PC -> 0x08000003 : INSN4
2809
2810 Say you're stopped at 0x08000003 as above. Reverse continuing
2811 from that point should hit B2 as below. Reading the PC when the
2812 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2813 been de-executed already.
2814
2815 B1 0x08000000 : INSN1
2816 B2 PC -> 0x08000001 : INSN2
2817 0x08000002 : INSN3
2818 0x08000003 : INSN4
2819
2820 We can't apply the same logic as for forward execution, because
2821 we would wrongly adjust the PC to 0x08000000, since there's a
2822 breakpoint at PC - 1. We'd then report a hit on B1, although
2823 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2824 behaviour. */
2825 if (execution_direction == EXEC_REVERSE)
2826 return;
2827
2828 /* If this target does not decrement the PC after breakpoints, then
2829 we have nothing to do. */
2830 regcache = get_thread_regcache (ecs->ptid);
2831 gdbarch = get_regcache_arch (regcache);
2832 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2833 return;
2834
2835 aspace = get_regcache_aspace (regcache);
2836
2837 /* Find the location where (if we've hit a breakpoint) the
2838 breakpoint would be. */
2839 breakpoint_pc = regcache_read_pc (regcache)
2840 - gdbarch_decr_pc_after_break (gdbarch);
2841
2842 /* Check whether there actually is a software breakpoint inserted at
2843 that location.
2844
2845 If in non-stop mode, a race condition is possible where we've
2846 removed a breakpoint, but stop events for that breakpoint were
2847 already queued and arrive later. To suppress those spurious
2848 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2849 and retire them after a number of stop events are reported. */
2850 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2851 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2852 {
2853 struct cleanup *old_cleanups = NULL;
2854
2855 if (RECORD_IS_USED)
2856 old_cleanups = record_gdb_operation_disable_set ();
2857
2858 /* When using hardware single-step, a SIGTRAP is reported for both
2859 a completed single-step and a software breakpoint. Need to
2860 differentiate between the two, as the latter needs adjusting
2861 but the former does not.
2862
2863 The SIGTRAP can be due to a completed hardware single-step only if
2864 - we didn't insert software single-step breakpoints
2865 - the thread to be examined is still the current thread
2866 - this thread is currently being stepped
2867
2868 If any of these events did not occur, we must have stopped due
2869 to hitting a software breakpoint, and have to back up to the
2870 breakpoint address.
2871
2872 As a special case, we could have hardware single-stepped a
2873 software breakpoint. In this case (prev_pc == breakpoint_pc),
2874 we also need to back up to the breakpoint address. */
2875
2876 if (singlestep_breakpoints_inserted_p
2877 || !ptid_equal (ecs->ptid, inferior_ptid)
2878 || !currently_stepping (ecs->event_thread)
2879 || ecs->event_thread->prev_pc == breakpoint_pc)
2880 regcache_write_pc (regcache, breakpoint_pc);
2881
2882 if (RECORD_IS_USED)
2883 do_cleanups (old_cleanups);
2884 }
2885 }
2886
2887 void
2888 init_infwait_state (void)
2889 {
2890 waiton_ptid = pid_to_ptid (-1);
2891 infwait_state = infwait_normal_state;
2892 }
2893
2894 void
2895 error_is_running (void)
2896 {
2897 error (_("\
2898 Cannot execute this command while the selected thread is running."));
2899 }
2900
2901 void
2902 ensure_not_running (void)
2903 {
2904 if (is_running (inferior_ptid))
2905 error_is_running ();
2906 }
2907
2908 static int
2909 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2910 {
2911 for (frame = get_prev_frame (frame);
2912 frame != NULL;
2913 frame = get_prev_frame (frame))
2914 {
2915 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2916 return 1;
2917 if (get_frame_type (frame) != INLINE_FRAME)
2918 break;
2919 }
2920
2921 return 0;
2922 }
2923
2924 /* Auxiliary function that handles syscall entry/return events.
2925 It returns 1 if the inferior should keep going (and GDB
2926 should ignore the event), or 0 if the event deserves to be
2927 processed. */
2928
2929 static int
2930 handle_syscall_event (struct execution_control_state *ecs)
2931 {
2932 struct regcache *regcache;
2933 struct gdbarch *gdbarch;
2934 int syscall_number;
2935
2936 if (!ptid_equal (ecs->ptid, inferior_ptid))
2937 context_switch (ecs->ptid);
2938
2939 regcache = get_thread_regcache (ecs->ptid);
2940 gdbarch = get_regcache_arch (regcache);
2941 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2942 stop_pc = regcache_read_pc (regcache);
2943
2944 target_last_waitstatus.value.syscall_number = syscall_number;
2945
2946 if (catch_syscall_enabled () > 0
2947 && catching_syscall_number (syscall_number) > 0)
2948 {
2949 if (debug_infrun)
2950 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2951 syscall_number);
2952
2953 ecs->event_thread->control.stop_bpstat
2954 = bpstat_stop_status (get_regcache_aspace (regcache),
2955 stop_pc, ecs->ptid);
2956 ecs->random_signal
2957 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
2958
2959 if (!ecs->random_signal)
2960 {
2961 /* Catchpoint hit. */
2962 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
2963 return 0;
2964 }
2965 }
2966
2967 /* If no catchpoint triggered for this, then keep going. */
2968 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2969 keep_going (ecs);
2970 return 1;
2971 }
2972
2973 /* Given an execution control state that has been freshly filled in
2974 by an event from the inferior, figure out what it means and take
2975 appropriate action. */
2976
2977 static void
2978 handle_inferior_event (struct execution_control_state *ecs)
2979 {
2980 struct frame_info *frame;
2981 struct gdbarch *gdbarch;
2982 int sw_single_step_trap_p = 0;
2983 int stopped_by_watchpoint;
2984 int stepped_after_stopped_by_watchpoint = 0;
2985 struct symtab_and_line stop_pc_sal;
2986 enum stop_kind stop_soon;
2987
2988 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
2989 {
2990 /* We had an event in the inferior, but we are not interested in
2991 handling it at this level. The lower layers have already
2992 done what needs to be done, if anything.
2993
2994 One of the possible circumstances for this is when the
2995 inferior produces output for the console. The inferior has
2996 not stopped, and we are ignoring the event. Another possible
2997 circumstance is any event which the lower level knows will be
2998 reported multiple times without an intervening resume. */
2999 if (debug_infrun)
3000 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3001 prepare_to_wait (ecs);
3002 return;
3003 }
3004
3005 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3006 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3007 {
3008 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3009
3010 gdb_assert (inf);
3011 stop_soon = inf->control.stop_soon;
3012 }
3013 else
3014 stop_soon = NO_STOP_QUIETLY;
3015
3016 /* Cache the last pid/waitstatus. */
3017 target_last_wait_ptid = ecs->ptid;
3018 target_last_waitstatus = ecs->ws;
3019
3020 /* Always clear state belonging to the previous time we stopped. */
3021 stop_stack_dummy = STOP_NONE;
3022
3023 /* If it's a new process, add it to the thread database */
3024
3025 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3026 && !ptid_equal (ecs->ptid, minus_one_ptid)
3027 && !in_thread_list (ecs->ptid));
3028
3029 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3030 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3031 add_thread (ecs->ptid);
3032
3033 ecs->event_thread = find_thread_ptid (ecs->ptid);
3034
3035 /* Dependent on valid ECS->EVENT_THREAD. */
3036 adjust_pc_after_break (ecs);
3037
3038 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3039 reinit_frame_cache ();
3040
3041 breakpoint_retire_moribund ();
3042
3043 /* First, distinguish signals caused by the debugger from signals
3044 that have to do with the program's own actions. Note that
3045 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3046 on the operating system version. Here we detect when a SIGILL or
3047 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3048 something similar for SIGSEGV, since a SIGSEGV will be generated
3049 when we're trying to execute a breakpoint instruction on a
3050 non-executable stack. This happens for call dummy breakpoints
3051 for architectures like SPARC that place call dummies on the
3052 stack. */
3053 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3054 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3055 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3056 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3057 {
3058 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3059
3060 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3061 regcache_read_pc (regcache)))
3062 {
3063 if (debug_infrun)
3064 fprintf_unfiltered (gdb_stdlog,
3065 "infrun: Treating signal as SIGTRAP\n");
3066 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3067 }
3068 }
3069
3070 /* Mark the non-executing threads accordingly. In all-stop, all
3071 threads of all processes are stopped when we get any event
3072 reported. In non-stop mode, only the event thread stops. If
3073 we're handling a process exit in non-stop mode, there's nothing
3074 to do, as threads of the dead process are gone, and threads of
3075 any other process were left running. */
3076 if (!non_stop)
3077 set_executing (minus_one_ptid, 0);
3078 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3079 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3080 set_executing (inferior_ptid, 0);
3081
3082 switch (infwait_state)
3083 {
3084 case infwait_thread_hop_state:
3085 if (debug_infrun)
3086 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3087 break;
3088
3089 case infwait_normal_state:
3090 if (debug_infrun)
3091 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3092 break;
3093
3094 case infwait_step_watch_state:
3095 if (debug_infrun)
3096 fprintf_unfiltered (gdb_stdlog,
3097 "infrun: infwait_step_watch_state\n");
3098
3099 stepped_after_stopped_by_watchpoint = 1;
3100 break;
3101
3102 case infwait_nonstep_watch_state:
3103 if (debug_infrun)
3104 fprintf_unfiltered (gdb_stdlog,
3105 "infrun: infwait_nonstep_watch_state\n");
3106 insert_breakpoints ();
3107
3108 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3109 handle things like signals arriving and other things happening
3110 in combination correctly? */
3111 stepped_after_stopped_by_watchpoint = 1;
3112 break;
3113
3114 default:
3115 internal_error (__FILE__, __LINE__, _("bad switch"));
3116 }
3117
3118 infwait_state = infwait_normal_state;
3119 waiton_ptid = pid_to_ptid (-1);
3120
3121 switch (ecs->ws.kind)
3122 {
3123 case TARGET_WAITKIND_LOADED:
3124 if (debug_infrun)
3125 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3126 /* Ignore gracefully during startup of the inferior, as it might
3127 be the shell which has just loaded some objects, otherwise
3128 add the symbols for the newly loaded objects. Also ignore at
3129 the beginning of an attach or remote session; we will query
3130 the full list of libraries once the connection is
3131 established. */
3132 if (stop_soon == NO_STOP_QUIETLY)
3133 {
3134 /* Check for any newly added shared libraries if we're
3135 supposed to be adding them automatically. Switch
3136 terminal for any messages produced by
3137 breakpoint_re_set. */
3138 target_terminal_ours_for_output ();
3139 /* NOTE: cagney/2003-11-25: Make certain that the target
3140 stack's section table is kept up-to-date. Architectures,
3141 (e.g., PPC64), use the section table to perform
3142 operations such as address => section name and hence
3143 require the table to contain all sections (including
3144 those found in shared libraries). */
3145 #ifdef SOLIB_ADD
3146 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3147 #else
3148 solib_add (NULL, 0, &current_target, auto_solib_add);
3149 #endif
3150 target_terminal_inferior ();
3151
3152 /* If requested, stop when the dynamic linker notifies
3153 gdb of events. This allows the user to get control
3154 and place breakpoints in initializer routines for
3155 dynamically loaded objects (among other things). */
3156 if (stop_on_solib_events)
3157 {
3158 /* Make sure we print "Stopped due to solib-event" in
3159 normal_stop. */
3160 stop_print_frame = 1;
3161
3162 stop_stepping (ecs);
3163 return;
3164 }
3165
3166 /* NOTE drow/2007-05-11: This might be a good place to check
3167 for "catch load". */
3168 }
3169
3170 /* If we are skipping through a shell, or through shared library
3171 loading that we aren't interested in, resume the program. If
3172 we're running the program normally, also resume. But stop if
3173 we're attaching or setting up a remote connection. */
3174 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3175 {
3176 /* Loading of shared libraries might have changed breakpoint
3177 addresses. Make sure new breakpoints are inserted. */
3178 if (stop_soon == NO_STOP_QUIETLY
3179 && !breakpoints_always_inserted_mode ())
3180 insert_breakpoints ();
3181 resume (0, TARGET_SIGNAL_0);
3182 prepare_to_wait (ecs);
3183 return;
3184 }
3185
3186 break;
3187
3188 case TARGET_WAITKIND_SPURIOUS:
3189 if (debug_infrun)
3190 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3191 resume (0, TARGET_SIGNAL_0);
3192 prepare_to_wait (ecs);
3193 return;
3194
3195 case TARGET_WAITKIND_EXITED:
3196 if (debug_infrun)
3197 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3198 inferior_ptid = ecs->ptid;
3199 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3200 set_current_program_space (current_inferior ()->pspace);
3201 handle_vfork_child_exec_or_exit (0);
3202 target_terminal_ours (); /* Must do this before mourn anyway */
3203 print_exited_reason (ecs->ws.value.integer);
3204
3205 /* Record the exit code in the convenience variable $_exitcode, so
3206 that the user can inspect this again later. */
3207 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3208 (LONGEST) ecs->ws.value.integer);
3209 gdb_flush (gdb_stdout);
3210 target_mourn_inferior ();
3211 singlestep_breakpoints_inserted_p = 0;
3212 cancel_single_step_breakpoints ();
3213 stop_print_frame = 0;
3214 stop_stepping (ecs);
3215 return;
3216
3217 case TARGET_WAITKIND_SIGNALLED:
3218 if (debug_infrun)
3219 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3220 inferior_ptid = ecs->ptid;
3221 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3222 set_current_program_space (current_inferior ()->pspace);
3223 handle_vfork_child_exec_or_exit (0);
3224 stop_print_frame = 0;
3225 target_terminal_ours (); /* Must do this before mourn anyway */
3226
3227 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3228 reach here unless the inferior is dead. However, for years
3229 target_kill() was called here, which hints that fatal signals aren't
3230 really fatal on some systems. If that's true, then some changes
3231 may be needed. */
3232 target_mourn_inferior ();
3233
3234 print_signal_exited_reason (ecs->ws.value.sig);
3235 singlestep_breakpoints_inserted_p = 0;
3236 cancel_single_step_breakpoints ();
3237 stop_stepping (ecs);
3238 return;
3239
3240 /* The following are the only cases in which we keep going;
3241 the above cases end in a continue or goto. */
3242 case TARGET_WAITKIND_FORKED:
3243 case TARGET_WAITKIND_VFORKED:
3244 if (debug_infrun)
3245 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3246
3247 if (!ptid_equal (ecs->ptid, inferior_ptid))
3248 {
3249 context_switch (ecs->ptid);
3250 reinit_frame_cache ();
3251 }
3252
3253 /* Immediately detach breakpoints from the child before there's
3254 any chance of letting the user delete breakpoints from the
3255 breakpoint lists. If we don't do this early, it's easy to
3256 leave left over traps in the child, vis: "break foo; catch
3257 fork; c; <fork>; del; c; <child calls foo>". We only follow
3258 the fork on the last `continue', and by that time the
3259 breakpoint at "foo" is long gone from the breakpoint table.
3260 If we vforked, then we don't need to unpatch here, since both
3261 parent and child are sharing the same memory pages; we'll
3262 need to unpatch at follow/detach time instead to be certain
3263 that new breakpoints added between catchpoint hit time and
3264 vfork follow are detached. */
3265 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3266 {
3267 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3268
3269 /* This won't actually modify the breakpoint list, but will
3270 physically remove the breakpoints from the child. */
3271 detach_breakpoints (child_pid);
3272 }
3273
3274 if (singlestep_breakpoints_inserted_p)
3275 {
3276 /* Pull the single step breakpoints out of the target. */
3277 remove_single_step_breakpoints ();
3278 singlestep_breakpoints_inserted_p = 0;
3279 }
3280
3281 /* In case the event is caught by a catchpoint, remember that
3282 the event is to be followed at the next resume of the thread,
3283 and not immediately. */
3284 ecs->event_thread->pending_follow = ecs->ws;
3285
3286 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3287
3288 ecs->event_thread->control.stop_bpstat
3289 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3290 stop_pc, ecs->ptid);
3291
3292 /* Note that we're interested in knowing the bpstat actually
3293 causes a stop, not just if it may explain the signal.
3294 Software watchpoints, for example, always appear in the
3295 bpstat. */
3296 ecs->random_signal
3297 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3298
3299 /* If no catchpoint triggered for this, then keep going. */
3300 if (ecs->random_signal)
3301 {
3302 ptid_t parent;
3303 ptid_t child;
3304 int should_resume;
3305 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
3306
3307 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3308
3309 should_resume = follow_fork ();
3310
3311 parent = ecs->ptid;
3312 child = ecs->ws.value.related_pid;
3313
3314 /* In non-stop mode, also resume the other branch. */
3315 if (non_stop && !detach_fork)
3316 {
3317 if (follow_child)
3318 switch_to_thread (parent);
3319 else
3320 switch_to_thread (child);
3321
3322 ecs->event_thread = inferior_thread ();
3323 ecs->ptid = inferior_ptid;
3324 keep_going (ecs);
3325 }
3326
3327 if (follow_child)
3328 switch_to_thread (child);
3329 else
3330 switch_to_thread (parent);
3331
3332 ecs->event_thread = inferior_thread ();
3333 ecs->ptid = inferior_ptid;
3334
3335 if (should_resume)
3336 keep_going (ecs);
3337 else
3338 stop_stepping (ecs);
3339 return;
3340 }
3341 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3342 goto process_event_stop_test;
3343
3344 case TARGET_WAITKIND_VFORK_DONE:
3345 /* Done with the shared memory region. Re-insert breakpoints in
3346 the parent, and keep going. */
3347
3348 if (debug_infrun)
3349 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3350
3351 if (!ptid_equal (ecs->ptid, inferior_ptid))
3352 context_switch (ecs->ptid);
3353
3354 current_inferior ()->waiting_for_vfork_done = 0;
3355 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3356 /* This also takes care of reinserting breakpoints in the
3357 previously locked inferior. */
3358 keep_going (ecs);
3359 return;
3360
3361 case TARGET_WAITKIND_EXECD:
3362 if (debug_infrun)
3363 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3364
3365 if (!ptid_equal (ecs->ptid, inferior_ptid))
3366 {
3367 context_switch (ecs->ptid);
3368 reinit_frame_cache ();
3369 }
3370
3371 singlestep_breakpoints_inserted_p = 0;
3372 cancel_single_step_breakpoints ();
3373
3374 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3375
3376 /* Do whatever is necessary to the parent branch of the vfork. */
3377 handle_vfork_child_exec_or_exit (1);
3378
3379 /* This causes the eventpoints and symbol table to be reset.
3380 Must do this now, before trying to determine whether to
3381 stop. */
3382 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3383
3384 ecs->event_thread->control.stop_bpstat
3385 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3386 stop_pc, ecs->ptid);
3387 ecs->random_signal
3388 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3389
3390 /* Note that this may be referenced from inside
3391 bpstat_stop_status above, through inferior_has_execd. */
3392 xfree (ecs->ws.value.execd_pathname);
3393 ecs->ws.value.execd_pathname = NULL;
3394
3395 /* If no catchpoint triggered for this, then keep going. */
3396 if (ecs->random_signal)
3397 {
3398 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3399 keep_going (ecs);
3400 return;
3401 }
3402 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3403 goto process_event_stop_test;
3404
3405 /* Be careful not to try to gather much state about a thread
3406 that's in a syscall. It's frequently a losing proposition. */
3407 case TARGET_WAITKIND_SYSCALL_ENTRY:
3408 if (debug_infrun)
3409 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3410 /* Getting the current syscall number */
3411 if (handle_syscall_event (ecs) != 0)
3412 return;
3413 goto process_event_stop_test;
3414
3415 /* Before examining the threads further, step this thread to
3416 get it entirely out of the syscall. (We get notice of the
3417 event when the thread is just on the verge of exiting a
3418 syscall. Stepping one instruction seems to get it back
3419 into user code.) */
3420 case TARGET_WAITKIND_SYSCALL_RETURN:
3421 if (debug_infrun)
3422 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3423 if (handle_syscall_event (ecs) != 0)
3424 return;
3425 goto process_event_stop_test;
3426
3427 case TARGET_WAITKIND_STOPPED:
3428 if (debug_infrun)
3429 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3430 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3431 break;
3432
3433 case TARGET_WAITKIND_NO_HISTORY:
3434 /* Reverse execution: target ran out of history info. */
3435 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3436 print_no_history_reason ();
3437 stop_stepping (ecs);
3438 return;
3439 }
3440
3441 if (ecs->new_thread_event)
3442 {
3443 if (non_stop)
3444 /* Non-stop assumes that the target handles adding new threads
3445 to the thread list. */
3446 internal_error (__FILE__, __LINE__, "\
3447 targets should add new threads to the thread list themselves in non-stop mode.");
3448
3449 /* We may want to consider not doing a resume here in order to
3450 give the user a chance to play with the new thread. It might
3451 be good to make that a user-settable option. */
3452
3453 /* At this point, all threads are stopped (happens automatically
3454 in either the OS or the native code). Therefore we need to
3455 continue all threads in order to make progress. */
3456
3457 if (!ptid_equal (ecs->ptid, inferior_ptid))
3458 context_switch (ecs->ptid);
3459 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3460 prepare_to_wait (ecs);
3461 return;
3462 }
3463
3464 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3465 {
3466 /* Do we need to clean up the state of a thread that has
3467 completed a displaced single-step? (Doing so usually affects
3468 the PC, so do it here, before we set stop_pc.) */
3469 displaced_step_fixup (ecs->ptid,
3470 ecs->event_thread->suspend.stop_signal);
3471
3472 /* If we either finished a single-step or hit a breakpoint, but
3473 the user wanted this thread to be stopped, pretend we got a
3474 SIG0 (generic unsignaled stop). */
3475
3476 if (ecs->event_thread->stop_requested
3477 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3478 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3479 }
3480
3481 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3482
3483 if (debug_infrun)
3484 {
3485 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3486 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3487 struct cleanup *old_chain = save_inferior_ptid ();
3488
3489 inferior_ptid = ecs->ptid;
3490
3491 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3492 paddress (gdbarch, stop_pc));
3493 if (target_stopped_by_watchpoint ())
3494 {
3495 CORE_ADDR addr;
3496
3497 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3498
3499 if (target_stopped_data_address (&current_target, &addr))
3500 fprintf_unfiltered (gdb_stdlog,
3501 "infrun: stopped data address = %s\n",
3502 paddress (gdbarch, addr));
3503 else
3504 fprintf_unfiltered (gdb_stdlog,
3505 "infrun: (no data address available)\n");
3506 }
3507
3508 do_cleanups (old_chain);
3509 }
3510
3511 if (stepping_past_singlestep_breakpoint)
3512 {
3513 gdb_assert (singlestep_breakpoints_inserted_p);
3514 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3515 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3516
3517 stepping_past_singlestep_breakpoint = 0;
3518
3519 /* We've either finished single-stepping past the single-step
3520 breakpoint, or stopped for some other reason. It would be nice if
3521 we could tell, but we can't reliably. */
3522 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3523 {
3524 if (debug_infrun)
3525 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
3526 /* Pull the single step breakpoints out of the target. */
3527 remove_single_step_breakpoints ();
3528 singlestep_breakpoints_inserted_p = 0;
3529
3530 ecs->random_signal = 0;
3531 ecs->event_thread->control.trap_expected = 0;
3532
3533 context_switch (saved_singlestep_ptid);
3534 if (deprecated_context_hook)
3535 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3536
3537 resume (1, TARGET_SIGNAL_0);
3538 prepare_to_wait (ecs);
3539 return;
3540 }
3541 }
3542
3543 if (!ptid_equal (deferred_step_ptid, null_ptid))
3544 {
3545 /* In non-stop mode, there's never a deferred_step_ptid set. */
3546 gdb_assert (!non_stop);
3547
3548 /* If we stopped for some other reason than single-stepping, ignore
3549 the fact that we were supposed to switch back. */
3550 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3551 {
3552 if (debug_infrun)
3553 fprintf_unfiltered (gdb_stdlog,
3554 "infrun: handling deferred step\n");
3555
3556 /* Pull the single step breakpoints out of the target. */
3557 if (singlestep_breakpoints_inserted_p)
3558 {
3559 remove_single_step_breakpoints ();
3560 singlestep_breakpoints_inserted_p = 0;
3561 }
3562
3563 /* Note: We do not call context_switch at this point, as the
3564 context is already set up for stepping the original thread. */
3565 switch_to_thread (deferred_step_ptid);
3566 deferred_step_ptid = null_ptid;
3567 /* Suppress spurious "Switching to ..." message. */
3568 previous_inferior_ptid = inferior_ptid;
3569
3570 resume (1, TARGET_SIGNAL_0);
3571 prepare_to_wait (ecs);
3572 return;
3573 }
3574
3575 deferred_step_ptid = null_ptid;
3576 }
3577
3578 /* See if a thread hit a thread-specific breakpoint that was meant for
3579 another thread. If so, then step that thread past the breakpoint,
3580 and continue it. */
3581
3582 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3583 {
3584 int thread_hop_needed = 0;
3585 struct address_space *aspace =
3586 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3587
3588 /* Check if a regular breakpoint has been hit before checking
3589 for a potential single step breakpoint. Otherwise, GDB will
3590 not see this breakpoint hit when stepping onto breakpoints. */
3591 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3592 {
3593 ecs->random_signal = 0;
3594 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3595 thread_hop_needed = 1;
3596 }
3597 else if (singlestep_breakpoints_inserted_p)
3598 {
3599 /* We have not context switched yet, so this should be true
3600 no matter which thread hit the singlestep breakpoint. */
3601 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3602 if (debug_infrun)
3603 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3604 "trap for %s\n",
3605 target_pid_to_str (ecs->ptid));
3606
3607 ecs->random_signal = 0;
3608 /* The call to in_thread_list is necessary because PTIDs sometimes
3609 change when we go from single-threaded to multi-threaded. If
3610 the singlestep_ptid is still in the list, assume that it is
3611 really different from ecs->ptid. */
3612 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3613 && in_thread_list (singlestep_ptid))
3614 {
3615 /* If the PC of the thread we were trying to single-step
3616 has changed, discard this event (which we were going
3617 to ignore anyway), and pretend we saw that thread
3618 trap. This prevents us continuously moving the
3619 single-step breakpoint forward, one instruction at a
3620 time. If the PC has changed, then the thread we were
3621 trying to single-step has trapped or been signalled,
3622 but the event has not been reported to GDB yet.
3623
3624 There might be some cases where this loses signal
3625 information, if a signal has arrived at exactly the
3626 same time that the PC changed, but this is the best
3627 we can do with the information available. Perhaps we
3628 should arrange to report all events for all threads
3629 when they stop, or to re-poll the remote looking for
3630 this particular thread (i.e. temporarily enable
3631 schedlock). */
3632
3633 CORE_ADDR new_singlestep_pc
3634 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3635
3636 if (new_singlestep_pc != singlestep_pc)
3637 {
3638 enum target_signal stop_signal;
3639
3640 if (debug_infrun)
3641 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3642 " but expected thread advanced also\n");
3643
3644 /* The current context still belongs to
3645 singlestep_ptid. Don't swap here, since that's
3646 the context we want to use. Just fudge our
3647 state and continue. */
3648 stop_signal = ecs->event_thread->suspend.stop_signal;
3649 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3650 ecs->ptid = singlestep_ptid;
3651 ecs->event_thread = find_thread_ptid (ecs->ptid);
3652 ecs->event_thread->suspend.stop_signal = stop_signal;
3653 stop_pc = new_singlestep_pc;
3654 }
3655 else
3656 {
3657 if (debug_infrun)
3658 fprintf_unfiltered (gdb_stdlog,
3659 "infrun: unexpected thread\n");
3660
3661 thread_hop_needed = 1;
3662 stepping_past_singlestep_breakpoint = 1;
3663 saved_singlestep_ptid = singlestep_ptid;
3664 }
3665 }
3666 }
3667
3668 if (thread_hop_needed)
3669 {
3670 struct regcache *thread_regcache;
3671 int remove_status = 0;
3672
3673 if (debug_infrun)
3674 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3675
3676 /* Switch context before touching inferior memory, the
3677 previous thread may have exited. */
3678 if (!ptid_equal (inferior_ptid, ecs->ptid))
3679 context_switch (ecs->ptid);
3680
3681 /* Saw a breakpoint, but it was hit by the wrong thread.
3682 Just continue. */
3683
3684 if (singlestep_breakpoints_inserted_p)
3685 {
3686 /* Pull the single step breakpoints out of the target. */
3687 remove_single_step_breakpoints ();
3688 singlestep_breakpoints_inserted_p = 0;
3689 }
3690
3691 /* If the arch can displace step, don't remove the
3692 breakpoints. */
3693 thread_regcache = get_thread_regcache (ecs->ptid);
3694 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3695 remove_status = remove_breakpoints ();
3696
3697 /* Did we fail to remove breakpoints? If so, try
3698 to set the PC past the bp. (There's at least
3699 one situation in which we can fail to remove
3700 the bp's: On HP-UX's that use ttrace, we can't
3701 change the address space of a vforking child
3702 process until the child exits (well, okay, not
3703 then either :-) or execs. */
3704 if (remove_status != 0)
3705 error (_("Cannot step over breakpoint hit in wrong thread"));
3706 else
3707 { /* Single step */
3708 if (!non_stop)
3709 {
3710 /* Only need to require the next event from this
3711 thread in all-stop mode. */
3712 waiton_ptid = ecs->ptid;
3713 infwait_state = infwait_thread_hop_state;
3714 }
3715
3716 ecs->event_thread->stepping_over_breakpoint = 1;
3717 keep_going (ecs);
3718 return;
3719 }
3720 }
3721 else if (singlestep_breakpoints_inserted_p)
3722 {
3723 sw_single_step_trap_p = 1;
3724 ecs->random_signal = 0;
3725 }
3726 }
3727 else
3728 ecs->random_signal = 1;
3729
3730 /* See if something interesting happened to the non-current thread. If
3731 so, then switch to that thread. */
3732 if (!ptid_equal (ecs->ptid, inferior_ptid))
3733 {
3734 if (debug_infrun)
3735 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3736
3737 context_switch (ecs->ptid);
3738
3739 if (deprecated_context_hook)
3740 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3741 }
3742
3743 /* At this point, get hold of the now-current thread's frame. */
3744 frame = get_current_frame ();
3745 gdbarch = get_frame_arch (frame);
3746
3747 if (singlestep_breakpoints_inserted_p)
3748 {
3749 /* Pull the single step breakpoints out of the target. */
3750 remove_single_step_breakpoints ();
3751 singlestep_breakpoints_inserted_p = 0;
3752 }
3753
3754 if (stepped_after_stopped_by_watchpoint)
3755 stopped_by_watchpoint = 0;
3756 else
3757 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3758
3759 /* If necessary, step over this watchpoint. We'll be back to display
3760 it in a moment. */
3761 if (stopped_by_watchpoint
3762 && (target_have_steppable_watchpoint
3763 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3764 {
3765 /* At this point, we are stopped at an instruction which has
3766 attempted to write to a piece of memory under control of
3767 a watchpoint. The instruction hasn't actually executed
3768 yet. If we were to evaluate the watchpoint expression
3769 now, we would get the old value, and therefore no change
3770 would seem to have occurred.
3771
3772 In order to make watchpoints work `right', we really need
3773 to complete the memory write, and then evaluate the
3774 watchpoint expression. We do this by single-stepping the
3775 target.
3776
3777 It may not be necessary to disable the watchpoint to stop over
3778 it. For example, the PA can (with some kernel cooperation)
3779 single step over a watchpoint without disabling the watchpoint.
3780
3781 It is far more common to need to disable a watchpoint to step
3782 the inferior over it. If we have non-steppable watchpoints,
3783 we must disable the current watchpoint; it's simplest to
3784 disable all watchpoints and breakpoints. */
3785 int hw_step = 1;
3786
3787 if (!target_have_steppable_watchpoint)
3788 remove_breakpoints ();
3789 /* Single step */
3790 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3791 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3792 waiton_ptid = ecs->ptid;
3793 if (target_have_steppable_watchpoint)
3794 infwait_state = infwait_step_watch_state;
3795 else
3796 infwait_state = infwait_nonstep_watch_state;
3797 prepare_to_wait (ecs);
3798 return;
3799 }
3800
3801 ecs->stop_func_start = 0;
3802 ecs->stop_func_end = 0;
3803 ecs->stop_func_name = 0;
3804 /* Don't care about return value; stop_func_start and stop_func_name
3805 will both be 0 if it doesn't work. */
3806 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3807 &ecs->stop_func_start, &ecs->stop_func_end);
3808 ecs->stop_func_start
3809 += gdbarch_deprecated_function_start_offset (gdbarch);
3810 ecs->event_thread->stepping_over_breakpoint = 0;
3811 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3812 ecs->event_thread->control.stop_step = 0;
3813 stop_print_frame = 1;
3814 ecs->random_signal = 0;
3815 stopped_by_random_signal = 0;
3816
3817 /* Hide inlined functions starting here, unless we just performed stepi or
3818 nexti. After stepi and nexti, always show the innermost frame (not any
3819 inline function call sites). */
3820 if (ecs->event_thread->control.step_range_end != 1)
3821 skip_inline_frames (ecs->ptid);
3822
3823 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3824 && ecs->event_thread->control.trap_expected
3825 && gdbarch_single_step_through_delay_p (gdbarch)
3826 && currently_stepping (ecs->event_thread))
3827 {
3828 /* We're trying to step off a breakpoint. Turns out that we're
3829 also on an instruction that needs to be stepped multiple
3830 times before it's been fully executing. E.g., architectures
3831 with a delay slot. It needs to be stepped twice, once for
3832 the instruction and once for the delay slot. */
3833 int step_through_delay
3834 = gdbarch_single_step_through_delay (gdbarch, frame);
3835
3836 if (debug_infrun && step_through_delay)
3837 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3838 if (ecs->event_thread->control.step_range_end == 0
3839 && step_through_delay)
3840 {
3841 /* The user issued a continue when stopped at a breakpoint.
3842 Set up for another trap and get out of here. */
3843 ecs->event_thread->stepping_over_breakpoint = 1;
3844 keep_going (ecs);
3845 return;
3846 }
3847 else if (step_through_delay)
3848 {
3849 /* The user issued a step when stopped at a breakpoint.
3850 Maybe we should stop, maybe we should not - the delay
3851 slot *might* correspond to a line of source. In any
3852 case, don't decide that here, just set
3853 ecs->stepping_over_breakpoint, making sure we
3854 single-step again before breakpoints are re-inserted. */
3855 ecs->event_thread->stepping_over_breakpoint = 1;
3856 }
3857 }
3858
3859 /* Look at the cause of the stop, and decide what to do.
3860 The alternatives are:
3861 1) stop_stepping and return; to really stop and return to the debugger,
3862 2) keep_going and return to start up again
3863 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3864 3) set ecs->random_signal to 1, and the decision between 1 and 2
3865 will be made according to the signal handling tables. */
3866
3867 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3868 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3869 || stop_soon == STOP_QUIETLY_REMOTE)
3870 {
3871 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3872 && stop_after_trap)
3873 {
3874 if (debug_infrun)
3875 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3876 stop_print_frame = 0;
3877 stop_stepping (ecs);
3878 return;
3879 }
3880
3881 /* This is originated from start_remote(), start_inferior() and
3882 shared libraries hook functions. */
3883 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3884 {
3885 if (debug_infrun)
3886 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3887 stop_stepping (ecs);
3888 return;
3889 }
3890
3891 /* This originates from attach_command(). We need to overwrite
3892 the stop_signal here, because some kernels don't ignore a
3893 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3894 See more comments in inferior.h. On the other hand, if we
3895 get a non-SIGSTOP, report it to the user - assume the backend
3896 will handle the SIGSTOP if it should show up later.
3897
3898 Also consider that the attach is complete when we see a
3899 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3900 target extended-remote report it instead of a SIGSTOP
3901 (e.g. gdbserver). We already rely on SIGTRAP being our
3902 signal, so this is no exception.
3903
3904 Also consider that the attach is complete when we see a
3905 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3906 the target to stop all threads of the inferior, in case the
3907 low level attach operation doesn't stop them implicitly. If
3908 they weren't stopped implicitly, then the stub will report a
3909 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3910 other than GDB's request. */
3911 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3912 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
3913 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3914 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
3915 {
3916 stop_stepping (ecs);
3917 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3918 return;
3919 }
3920
3921 /* See if there is a breakpoint at the current PC. */
3922 ecs->event_thread->control.stop_bpstat
3923 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3924 stop_pc, ecs->ptid);
3925
3926 /* Following in case break condition called a
3927 function. */
3928 stop_print_frame = 1;
3929
3930 /* This is where we handle "moribund" watchpoints. Unlike
3931 software breakpoints traps, hardware watchpoint traps are
3932 always distinguishable from random traps. If no high-level
3933 watchpoint is associated with the reported stop data address
3934 anymore, then the bpstat does not explain the signal ---
3935 simply make sure to ignore it if `stopped_by_watchpoint' is
3936 set. */
3937
3938 if (debug_infrun
3939 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3940 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
3941 && stopped_by_watchpoint)
3942 fprintf_unfiltered (gdb_stdlog, "\
3943 infrun: no user watchpoint explains watchpoint SIGTRAP, ignoring\n");
3944
3945 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3946 at one stage in the past included checks for an inferior
3947 function call's call dummy's return breakpoint. The original
3948 comment, that went with the test, read:
3949
3950 ``End of a stack dummy. Some systems (e.g. Sony news) give
3951 another signal besides SIGTRAP, so check here as well as
3952 above.''
3953
3954 If someone ever tries to get call dummys on a
3955 non-executable stack to work (where the target would stop
3956 with something like a SIGSEGV), then those tests might need
3957 to be re-instated. Given, however, that the tests were only
3958 enabled when momentary breakpoints were not being used, I
3959 suspect that it won't be the case.
3960
3961 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3962 be necessary for call dummies on a non-executable stack on
3963 SPARC. */
3964
3965 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3966 ecs->random_signal
3967 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
3968 || stopped_by_watchpoint
3969 || ecs->event_thread->control.trap_expected
3970 || (ecs->event_thread->control.step_range_end
3971 && (ecs->event_thread->control.step_resume_breakpoint
3972 == NULL)));
3973 else
3974 {
3975 ecs->random_signal = !bpstat_explains_signal
3976 (ecs->event_thread->control.stop_bpstat);
3977 if (!ecs->random_signal)
3978 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3979 }
3980 }
3981
3982 /* When we reach this point, we've pretty much decided
3983 that the reason for stopping must've been a random
3984 (unexpected) signal. */
3985
3986 else
3987 ecs->random_signal = 1;
3988
3989 process_event_stop_test:
3990
3991 /* Re-fetch current thread's frame in case we did a
3992 "goto process_event_stop_test" above. */
3993 frame = get_current_frame ();
3994 gdbarch = get_frame_arch (frame);
3995
3996 /* For the program's own signals, act according to
3997 the signal handling tables. */
3998
3999 if (ecs->random_signal)
4000 {
4001 /* Signal not for debugging purposes. */
4002 int printed = 0;
4003 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4004
4005 if (debug_infrun)
4006 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4007 ecs->event_thread->suspend.stop_signal);
4008
4009 stopped_by_random_signal = 1;
4010
4011 if (signal_print[ecs->event_thread->suspend.stop_signal])
4012 {
4013 printed = 1;
4014 target_terminal_ours_for_output ();
4015 print_signal_received_reason
4016 (ecs->event_thread->suspend.stop_signal);
4017 }
4018 /* Always stop on signals if we're either just gaining control
4019 of the program, or the user explicitly requested this thread
4020 to remain stopped. */
4021 if (stop_soon != NO_STOP_QUIETLY
4022 || ecs->event_thread->stop_requested
4023 || (!inf->detaching
4024 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4025 {
4026 stop_stepping (ecs);
4027 return;
4028 }
4029 /* If not going to stop, give terminal back
4030 if we took it away. */
4031 else if (printed)
4032 target_terminal_inferior ();
4033
4034 /* Clear the signal if it should not be passed. */
4035 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4036 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4037
4038 if (ecs->event_thread->prev_pc == stop_pc
4039 && ecs->event_thread->control.trap_expected
4040 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4041 {
4042 /* We were just starting a new sequence, attempting to
4043 single-step off of a breakpoint and expecting a SIGTRAP.
4044 Instead this signal arrives. This signal will take us out
4045 of the stepping range so GDB needs to remember to, when
4046 the signal handler returns, resume stepping off that
4047 breakpoint. */
4048 /* To simplify things, "continue" is forced to use the same
4049 code paths as single-step - set a breakpoint at the
4050 signal return address and then, once hit, step off that
4051 breakpoint. */
4052 if (debug_infrun)
4053 fprintf_unfiltered (gdb_stdlog,
4054 "infrun: signal arrived while stepping over "
4055 "breakpoint\n");
4056
4057 insert_step_resume_breakpoint_at_frame (frame);
4058 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4059 keep_going (ecs);
4060 return;
4061 }
4062
4063 if (ecs->event_thread->control.step_range_end != 0
4064 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4065 && (ecs->event_thread->control.step_range_start <= stop_pc
4066 && stop_pc < ecs->event_thread->control.step_range_end)
4067 && frame_id_eq (get_stack_frame_id (frame),
4068 ecs->event_thread->control.step_stack_frame_id)
4069 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4070 {
4071 /* The inferior is about to take a signal that will take it
4072 out of the single step range. Set a breakpoint at the
4073 current PC (which is presumably where the signal handler
4074 will eventually return) and then allow the inferior to
4075 run free.
4076
4077 Note that this is only needed for a signal delivered
4078 while in the single-step range. Nested signals aren't a
4079 problem as they eventually all return. */
4080 if (debug_infrun)
4081 fprintf_unfiltered (gdb_stdlog,
4082 "infrun: signal may take us out of "
4083 "single-step range\n");
4084
4085 insert_step_resume_breakpoint_at_frame (frame);
4086 keep_going (ecs);
4087 return;
4088 }
4089
4090 /* Note: step_resume_breakpoint may be non-NULL. This occures
4091 when either there's a nested signal, or when there's a
4092 pending signal enabled just as the signal handler returns
4093 (leaving the inferior at the step-resume-breakpoint without
4094 actually executing it). Either way continue until the
4095 breakpoint is really hit. */
4096 keep_going (ecs);
4097 return;
4098 }
4099
4100 /* Handle cases caused by hitting a breakpoint. */
4101 {
4102 CORE_ADDR jmp_buf_pc;
4103 struct bpstat_what what;
4104
4105 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4106
4107 if (what.call_dummy)
4108 {
4109 stop_stack_dummy = what.call_dummy;
4110 }
4111
4112 /* If we hit an internal event that triggers symbol changes, the
4113 current frame will be invalidated within bpstat_what (e.g., if
4114 we hit an internal solib event). Re-fetch it. */
4115 frame = get_current_frame ();
4116 gdbarch = get_frame_arch (frame);
4117
4118 switch (what.main_action)
4119 {
4120 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4121 /* If we hit the breakpoint at longjmp while stepping, we
4122 install a momentary breakpoint at the target of the
4123 jmp_buf. */
4124
4125 if (debug_infrun)
4126 fprintf_unfiltered (gdb_stdlog,
4127 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4128
4129 ecs->event_thread->stepping_over_breakpoint = 1;
4130
4131 if (what.is_longjmp)
4132 {
4133 if (!gdbarch_get_longjmp_target_p (gdbarch)
4134 || !gdbarch_get_longjmp_target (gdbarch,
4135 frame, &jmp_buf_pc))
4136 {
4137 if (debug_infrun)
4138 fprintf_unfiltered (gdb_stdlog, "\
4139 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
4140 keep_going (ecs);
4141 return;
4142 }
4143
4144 /* We're going to replace the current step-resume breakpoint
4145 with a longjmp-resume breakpoint. */
4146 delete_step_resume_breakpoint (ecs->event_thread);
4147
4148 /* Insert a breakpoint at resume address. */
4149 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4150 }
4151 else
4152 {
4153 struct symbol *func = get_frame_function (frame);
4154
4155 if (func)
4156 check_exception_resume (ecs, frame, func);
4157 }
4158 keep_going (ecs);
4159 return;
4160
4161 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4162 if (debug_infrun)
4163 fprintf_unfiltered (gdb_stdlog,
4164 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4165
4166 if (what.is_longjmp)
4167 {
4168 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4169 != NULL);
4170 delete_step_resume_breakpoint (ecs->event_thread);
4171 }
4172 else
4173 {
4174 /* There are several cases to consider.
4175
4176 1. The initiating frame no longer exists. In this case
4177 we must stop, because the exception has gone too far.
4178
4179 2. The initiating frame exists, and is the same as the
4180 current frame. We stop, because the exception has been
4181 caught.
4182
4183 3. The initiating frame exists and is different from
4184 the current frame. This means the exception has been
4185 caught beneath the initiating frame, so keep going. */
4186 struct frame_info *init_frame
4187 = frame_find_by_id (ecs->event_thread->initiating_frame);
4188
4189 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4190 != NULL);
4191 delete_exception_resume_breakpoint (ecs->event_thread);
4192
4193 if (init_frame)
4194 {
4195 struct frame_id current_id
4196 = get_frame_id (get_current_frame ());
4197 if (frame_id_eq (current_id,
4198 ecs->event_thread->initiating_frame))
4199 {
4200 /* Case 2. Fall through. */
4201 }
4202 else
4203 {
4204 /* Case 3. */
4205 keep_going (ecs);
4206 return;
4207 }
4208 }
4209
4210 /* For Cases 1 and 2, remove the step-resume breakpoint,
4211 if it exists. */
4212 delete_step_resume_breakpoint (ecs->event_thread);
4213 }
4214
4215 ecs->event_thread->control.stop_step = 1;
4216 print_end_stepping_range_reason ();
4217 stop_stepping (ecs);
4218 return;
4219
4220 case BPSTAT_WHAT_SINGLE:
4221 if (debug_infrun)
4222 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4223 ecs->event_thread->stepping_over_breakpoint = 1;
4224 /* Still need to check other stuff, at least the case
4225 where we are stepping and step out of the right range. */
4226 break;
4227
4228 case BPSTAT_WHAT_STOP_NOISY:
4229 if (debug_infrun)
4230 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4231 stop_print_frame = 1;
4232
4233 /* We are about to nuke the step_resume_breakpointt via the
4234 cleanup chain, so no need to worry about it here. */
4235
4236 stop_stepping (ecs);
4237 return;
4238
4239 case BPSTAT_WHAT_STOP_SILENT:
4240 if (debug_infrun)
4241 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4242 stop_print_frame = 0;
4243
4244 /* We are about to nuke the step_resume_breakpoin via the
4245 cleanup chain, so no need to worry about it here. */
4246
4247 stop_stepping (ecs);
4248 return;
4249
4250 case BPSTAT_WHAT_STEP_RESUME:
4251 if (debug_infrun)
4252 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4253
4254 delete_step_resume_breakpoint (ecs->event_thread);
4255 if (ecs->event_thread->step_after_step_resume_breakpoint)
4256 {
4257 /* Back when the step-resume breakpoint was inserted, we
4258 were trying to single-step off a breakpoint. Go back
4259 to doing that. */
4260 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4261 ecs->event_thread->stepping_over_breakpoint = 1;
4262 keep_going (ecs);
4263 return;
4264 }
4265 if (stop_pc == ecs->stop_func_start
4266 && execution_direction == EXEC_REVERSE)
4267 {
4268 /* We are stepping over a function call in reverse, and
4269 just hit the step-resume breakpoint at the start
4270 address of the function. Go back to single-stepping,
4271 which should take us back to the function call. */
4272 ecs->event_thread->stepping_over_breakpoint = 1;
4273 keep_going (ecs);
4274 return;
4275 }
4276 break;
4277
4278 case BPSTAT_WHAT_KEEP_CHECKING:
4279 break;
4280 }
4281 }
4282
4283 /* We come here if we hit a breakpoint but should not
4284 stop for it. Possibly we also were stepping
4285 and should stop for that. So fall through and
4286 test for stepping. But, if not stepping,
4287 do not stop. */
4288
4289 /* In all-stop mode, if we're currently stepping but have stopped in
4290 some other thread, we need to switch back to the stepped thread. */
4291 if (!non_stop)
4292 {
4293 struct thread_info *tp;
4294
4295 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4296 ecs->event_thread);
4297 if (tp)
4298 {
4299 /* However, if the current thread is blocked on some internal
4300 breakpoint, and we simply need to step over that breakpoint
4301 to get it going again, do that first. */
4302 if ((ecs->event_thread->control.trap_expected
4303 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4304 || ecs->event_thread->stepping_over_breakpoint)
4305 {
4306 keep_going (ecs);
4307 return;
4308 }
4309
4310 /* If the stepping thread exited, then don't try to switch
4311 back and resume it, which could fail in several different
4312 ways depending on the target. Instead, just keep going.
4313
4314 We can find a stepping dead thread in the thread list in
4315 two cases:
4316
4317 - The target supports thread exit events, and when the
4318 target tries to delete the thread from the thread list,
4319 inferior_ptid pointed at the exiting thread. In such
4320 case, calling delete_thread does not really remove the
4321 thread from the list; instead, the thread is left listed,
4322 with 'exited' state.
4323
4324 - The target's debug interface does not support thread
4325 exit events, and so we have no idea whatsoever if the
4326 previously stepping thread is still alive. For that
4327 reason, we need to synchronously query the target
4328 now. */
4329 if (is_exited (tp->ptid)
4330 || !target_thread_alive (tp->ptid))
4331 {
4332 if (debug_infrun)
4333 fprintf_unfiltered (gdb_stdlog, "\
4334 infrun: not switching back to stepped thread, it has vanished\n");
4335
4336 delete_thread (tp->ptid);
4337 keep_going (ecs);
4338 return;
4339 }
4340
4341 /* Otherwise, we no longer expect a trap in the current thread.
4342 Clear the trap_expected flag before switching back -- this is
4343 what keep_going would do as well, if we called it. */
4344 ecs->event_thread->control.trap_expected = 0;
4345
4346 if (debug_infrun)
4347 fprintf_unfiltered (gdb_stdlog,
4348 "infrun: switching back to stepped thread\n");
4349
4350 ecs->event_thread = tp;
4351 ecs->ptid = tp->ptid;
4352 context_switch (ecs->ptid);
4353 keep_going (ecs);
4354 return;
4355 }
4356 }
4357
4358 /* Are we stepping to get the inferior out of the dynamic linker's
4359 hook (and possibly the dld itself) after catching a shlib
4360 event? */
4361 if (ecs->event_thread->stepping_through_solib_after_catch)
4362 {
4363 #if defined(SOLIB_ADD)
4364 /* Have we reached our destination? If not, keep going. */
4365 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4366 {
4367 if (debug_infrun)
4368 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4369 ecs->event_thread->stepping_over_breakpoint = 1;
4370 keep_going (ecs);
4371 return;
4372 }
4373 #endif
4374 if (debug_infrun)
4375 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4376 /* Else, stop and report the catchpoint(s) whose triggering
4377 caused us to begin stepping. */
4378 ecs->event_thread->stepping_through_solib_after_catch = 0;
4379 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4380 ecs->event_thread->control.stop_bpstat
4381 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4382 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4383 stop_print_frame = 1;
4384 stop_stepping (ecs);
4385 return;
4386 }
4387
4388 if (ecs->event_thread->control.step_resume_breakpoint)
4389 {
4390 if (debug_infrun)
4391 fprintf_unfiltered (gdb_stdlog,
4392 "infrun: step-resume breakpoint is inserted\n");
4393
4394 /* Having a step-resume breakpoint overrides anything
4395 else having to do with stepping commands until
4396 that breakpoint is reached. */
4397 keep_going (ecs);
4398 return;
4399 }
4400
4401 if (ecs->event_thread->control.step_range_end == 0)
4402 {
4403 if (debug_infrun)
4404 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4405 /* Likewise if we aren't even stepping. */
4406 keep_going (ecs);
4407 return;
4408 }
4409
4410 /* Re-fetch current thread's frame in case the code above caused
4411 the frame cache to be re-initialized, making our FRAME variable
4412 a dangling pointer. */
4413 frame = get_current_frame ();
4414 gdbarch = get_frame_arch (frame);
4415
4416 /* If stepping through a line, keep going if still within it.
4417
4418 Note that step_range_end is the address of the first instruction
4419 beyond the step range, and NOT the address of the last instruction
4420 within it!
4421
4422 Note also that during reverse execution, we may be stepping
4423 through a function epilogue and therefore must detect when
4424 the current-frame changes in the middle of a line. */
4425
4426 if (stop_pc >= ecs->event_thread->control.step_range_start
4427 && stop_pc < ecs->event_thread->control.step_range_end
4428 && (execution_direction != EXEC_REVERSE
4429 || frame_id_eq (get_frame_id (frame),
4430 ecs->event_thread->control.step_frame_id)))
4431 {
4432 if (debug_infrun)
4433 fprintf_unfiltered
4434 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4435 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4436 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4437
4438 /* When stepping backward, stop at beginning of line range
4439 (unless it's the function entry point, in which case
4440 keep going back to the call point). */
4441 if (stop_pc == ecs->event_thread->control.step_range_start
4442 && stop_pc != ecs->stop_func_start
4443 && execution_direction == EXEC_REVERSE)
4444 {
4445 ecs->event_thread->control.stop_step = 1;
4446 print_end_stepping_range_reason ();
4447 stop_stepping (ecs);
4448 }
4449 else
4450 keep_going (ecs);
4451
4452 return;
4453 }
4454
4455 /* We stepped out of the stepping range. */
4456
4457 /* If we are stepping at the source level and entered the runtime
4458 loader dynamic symbol resolution code...
4459
4460 EXEC_FORWARD: we keep on single stepping until we exit the run
4461 time loader code and reach the callee's address.
4462
4463 EXEC_REVERSE: we've already executed the callee (backward), and
4464 the runtime loader code is handled just like any other
4465 undebuggable function call. Now we need only keep stepping
4466 backward through the trampoline code, and that's handled further
4467 down, so there is nothing for us to do here. */
4468
4469 if (execution_direction != EXEC_REVERSE
4470 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4471 && in_solib_dynsym_resolve_code (stop_pc))
4472 {
4473 CORE_ADDR pc_after_resolver =
4474 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4475
4476 if (debug_infrun)
4477 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
4478
4479 if (pc_after_resolver)
4480 {
4481 /* Set up a step-resume breakpoint at the address
4482 indicated by SKIP_SOLIB_RESOLVER. */
4483 struct symtab_and_line sr_sal;
4484
4485 init_sal (&sr_sal);
4486 sr_sal.pc = pc_after_resolver;
4487 sr_sal.pspace = get_frame_program_space (frame);
4488
4489 insert_step_resume_breakpoint_at_sal (gdbarch,
4490 sr_sal, null_frame_id);
4491 }
4492
4493 keep_going (ecs);
4494 return;
4495 }
4496
4497 if (ecs->event_thread->control.step_range_end != 1
4498 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4499 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4500 && get_frame_type (frame) == SIGTRAMP_FRAME)
4501 {
4502 if (debug_infrun)
4503 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
4504 /* The inferior, while doing a "step" or "next", has ended up in
4505 a signal trampoline (either by a signal being delivered or by
4506 the signal handler returning). Just single-step until the
4507 inferior leaves the trampoline (either by calling the handler
4508 or returning). */
4509 keep_going (ecs);
4510 return;
4511 }
4512
4513 /* Check for subroutine calls. The check for the current frame
4514 equalling the step ID is not necessary - the check of the
4515 previous frame's ID is sufficient - but it is a common case and
4516 cheaper than checking the previous frame's ID.
4517
4518 NOTE: frame_id_eq will never report two invalid frame IDs as
4519 being equal, so to get into this block, both the current and
4520 previous frame must have valid frame IDs. */
4521 /* The outer_frame_id check is a heuristic to detect stepping
4522 through startup code. If we step over an instruction which
4523 sets the stack pointer from an invalid value to a valid value,
4524 we may detect that as a subroutine call from the mythical
4525 "outermost" function. This could be fixed by marking
4526 outermost frames as !stack_p,code_p,special_p. Then the
4527 initial outermost frame, before sp was valid, would
4528 have code_addr == &_start. See the comment in frame_id_eq
4529 for more. */
4530 if (!frame_id_eq (get_stack_frame_id (frame),
4531 ecs->event_thread->control.step_stack_frame_id)
4532 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4533 ecs->event_thread->control.step_stack_frame_id)
4534 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4535 outer_frame_id)
4536 || step_start_function != find_pc_function (stop_pc))))
4537 {
4538 CORE_ADDR real_stop_pc;
4539
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4542
4543 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4544 || ((ecs->event_thread->control.step_range_end == 1)
4545 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4546 ecs->stop_func_start)))
4547 {
4548 /* I presume that step_over_calls is only 0 when we're
4549 supposed to be stepping at the assembly language level
4550 ("stepi"). Just stop. */
4551 /* Also, maybe we just did a "nexti" inside a prolog, so we
4552 thought it was a subroutine call but it was not. Stop as
4553 well. FENN */
4554 /* And this works the same backward as frontward. MVS */
4555 ecs->event_thread->control.stop_step = 1;
4556 print_end_stepping_range_reason ();
4557 stop_stepping (ecs);
4558 return;
4559 }
4560
4561 /* Reverse stepping through solib trampolines. */
4562
4563 if (execution_direction == EXEC_REVERSE
4564 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4565 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4566 || (ecs->stop_func_start == 0
4567 && in_solib_dynsym_resolve_code (stop_pc))))
4568 {
4569 /* Any solib trampoline code can be handled in reverse
4570 by simply continuing to single-step. We have already
4571 executed the solib function (backwards), and a few
4572 steps will take us back through the trampoline to the
4573 caller. */
4574 keep_going (ecs);
4575 return;
4576 }
4577
4578 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4579 {
4580 /* We're doing a "next".
4581
4582 Normal (forward) execution: set a breakpoint at the
4583 callee's return address (the address at which the caller
4584 will resume).
4585
4586 Reverse (backward) execution. set the step-resume
4587 breakpoint at the start of the function that we just
4588 stepped into (backwards), and continue to there. When we
4589 get there, we'll need to single-step back to the caller. */
4590
4591 if (execution_direction == EXEC_REVERSE)
4592 {
4593 struct symtab_and_line sr_sal;
4594
4595 /* Normal function call return (static or dynamic). */
4596 init_sal (&sr_sal);
4597 sr_sal.pc = ecs->stop_func_start;
4598 sr_sal.pspace = get_frame_program_space (frame);
4599 insert_step_resume_breakpoint_at_sal (gdbarch,
4600 sr_sal, null_frame_id);
4601 }
4602 else
4603 insert_step_resume_breakpoint_at_caller (frame);
4604
4605 keep_going (ecs);
4606 return;
4607 }
4608
4609 /* If we are in a function call trampoline (a stub between the
4610 calling routine and the real function), locate the real
4611 function. That's what tells us (a) whether we want to step
4612 into it at all, and (b) what prologue we want to run to the
4613 end of, if we do step into it. */
4614 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4615 if (real_stop_pc == 0)
4616 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4617 if (real_stop_pc != 0)
4618 ecs->stop_func_start = real_stop_pc;
4619
4620 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4621 {
4622 struct symtab_and_line sr_sal;
4623
4624 init_sal (&sr_sal);
4625 sr_sal.pc = ecs->stop_func_start;
4626 sr_sal.pspace = get_frame_program_space (frame);
4627
4628 insert_step_resume_breakpoint_at_sal (gdbarch,
4629 sr_sal, null_frame_id);
4630 keep_going (ecs);
4631 return;
4632 }
4633
4634 /* If we have line number information for the function we are
4635 thinking of stepping into, step into it.
4636
4637 If there are several symtabs at that PC (e.g. with include
4638 files), just want to know whether *any* of them have line
4639 numbers. find_pc_line handles this. */
4640 {
4641 struct symtab_and_line tmp_sal;
4642
4643 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4644 tmp_sal.pspace = get_frame_program_space (frame);
4645 if (tmp_sal.line != 0)
4646 {
4647 if (execution_direction == EXEC_REVERSE)
4648 handle_step_into_function_backward (gdbarch, ecs);
4649 else
4650 handle_step_into_function (gdbarch, ecs);
4651 return;
4652 }
4653 }
4654
4655 /* If we have no line number and the step-stop-if-no-debug is
4656 set, we stop the step so that the user has a chance to switch
4657 in assembly mode. */
4658 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4659 && step_stop_if_no_debug)
4660 {
4661 ecs->event_thread->control.stop_step = 1;
4662 print_end_stepping_range_reason ();
4663 stop_stepping (ecs);
4664 return;
4665 }
4666
4667 if (execution_direction == EXEC_REVERSE)
4668 {
4669 /* Set a breakpoint at callee's start address.
4670 From there we can step once and be back in the caller. */
4671 struct symtab_and_line sr_sal;
4672
4673 init_sal (&sr_sal);
4674 sr_sal.pc = ecs->stop_func_start;
4675 sr_sal.pspace = get_frame_program_space (frame);
4676 insert_step_resume_breakpoint_at_sal (gdbarch,
4677 sr_sal, null_frame_id);
4678 }
4679 else
4680 /* Set a breakpoint at callee's return address (the address
4681 at which the caller will resume). */
4682 insert_step_resume_breakpoint_at_caller (frame);
4683
4684 keep_going (ecs);
4685 return;
4686 }
4687
4688 /* Reverse stepping through solib trampolines. */
4689
4690 if (execution_direction == EXEC_REVERSE
4691 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4692 {
4693 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4694 || (ecs->stop_func_start == 0
4695 && in_solib_dynsym_resolve_code (stop_pc)))
4696 {
4697 /* Any solib trampoline code can be handled in reverse
4698 by simply continuing to single-step. We have already
4699 executed the solib function (backwards), and a few
4700 steps will take us back through the trampoline to the
4701 caller. */
4702 keep_going (ecs);
4703 return;
4704 }
4705 else if (in_solib_dynsym_resolve_code (stop_pc))
4706 {
4707 /* Stepped backward into the solib dynsym resolver.
4708 Set a breakpoint at its start and continue, then
4709 one more step will take us out. */
4710 struct symtab_and_line sr_sal;
4711
4712 init_sal (&sr_sal);
4713 sr_sal.pc = ecs->stop_func_start;
4714 sr_sal.pspace = get_frame_program_space (frame);
4715 insert_step_resume_breakpoint_at_sal (gdbarch,
4716 sr_sal, null_frame_id);
4717 keep_going (ecs);
4718 return;
4719 }
4720 }
4721
4722 /* If we're in the return path from a shared library trampoline,
4723 we want to proceed through the trampoline when stepping. */
4724 if (gdbarch_in_solib_return_trampoline (gdbarch,
4725 stop_pc, ecs->stop_func_name))
4726 {
4727 /* Determine where this trampoline returns. */
4728 CORE_ADDR real_stop_pc;
4729
4730 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4731
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
4734
4735 /* Only proceed through if we know where it's going. */
4736 if (real_stop_pc)
4737 {
4738 /* And put the step-breakpoint there and go until there. */
4739 struct symtab_and_line sr_sal;
4740
4741 init_sal (&sr_sal); /* initialize to zeroes */
4742 sr_sal.pc = real_stop_pc;
4743 sr_sal.section = find_pc_overlay (sr_sal.pc);
4744 sr_sal.pspace = get_frame_program_space (frame);
4745
4746 /* Do not specify what the fp should be when we stop since
4747 on some machines the prologue is where the new fp value
4748 is established. */
4749 insert_step_resume_breakpoint_at_sal (gdbarch,
4750 sr_sal, null_frame_id);
4751
4752 /* Restart without fiddling with the step ranges or
4753 other state. */
4754 keep_going (ecs);
4755 return;
4756 }
4757 }
4758
4759 stop_pc_sal = find_pc_line (stop_pc, 0);
4760
4761 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4762 the trampoline processing logic, however, there are some trampolines
4763 that have no names, so we should do trampoline handling first. */
4764 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4765 && ecs->stop_func_name == NULL
4766 && stop_pc_sal.line == 0)
4767 {
4768 if (debug_infrun)
4769 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
4770
4771 /* The inferior just stepped into, or returned to, an
4772 undebuggable function (where there is no debugging information
4773 and no line number corresponding to the address where the
4774 inferior stopped). Since we want to skip this kind of code,
4775 we keep going until the inferior returns from this
4776 function - unless the user has asked us not to (via
4777 set step-mode) or we no longer know how to get back
4778 to the call site. */
4779 if (step_stop_if_no_debug
4780 || !frame_id_p (frame_unwind_caller_id (frame)))
4781 {
4782 /* If we have no line number and the step-stop-if-no-debug
4783 is set, we stop the step so that the user has a chance to
4784 switch in assembly mode. */
4785 ecs->event_thread->control.stop_step = 1;
4786 print_end_stepping_range_reason ();
4787 stop_stepping (ecs);
4788 return;
4789 }
4790 else
4791 {
4792 /* Set a breakpoint at callee's return address (the address
4793 at which the caller will resume). */
4794 insert_step_resume_breakpoint_at_caller (frame);
4795 keep_going (ecs);
4796 return;
4797 }
4798 }
4799
4800 if (ecs->event_thread->control.step_range_end == 1)
4801 {
4802 /* It is stepi or nexti. We always want to stop stepping after
4803 one instruction. */
4804 if (debug_infrun)
4805 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4806 ecs->event_thread->control.stop_step = 1;
4807 print_end_stepping_range_reason ();
4808 stop_stepping (ecs);
4809 return;
4810 }
4811
4812 if (stop_pc_sal.line == 0)
4813 {
4814 /* We have no line number information. That means to stop
4815 stepping (does this always happen right after one instruction,
4816 when we do "s" in a function with no line numbers,
4817 or can this happen as a result of a return or longjmp?). */
4818 if (debug_infrun)
4819 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4820 ecs->event_thread->control.stop_step = 1;
4821 print_end_stepping_range_reason ();
4822 stop_stepping (ecs);
4823 return;
4824 }
4825
4826 /* Look for "calls" to inlined functions, part one. If the inline
4827 frame machinery detected some skipped call sites, we have entered
4828 a new inline function. */
4829
4830 if (frame_id_eq (get_frame_id (get_current_frame ()),
4831 ecs->event_thread->control.step_frame_id)
4832 && inline_skipped_frames (ecs->ptid))
4833 {
4834 struct symtab_and_line call_sal;
4835
4836 if (debug_infrun)
4837 fprintf_unfiltered (gdb_stdlog,
4838 "infrun: stepped into inlined function\n");
4839
4840 find_frame_sal (get_current_frame (), &call_sal);
4841
4842 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
4843 {
4844 /* For "step", we're going to stop. But if the call site
4845 for this inlined function is on the same source line as
4846 we were previously stepping, go down into the function
4847 first. Otherwise stop at the call site. */
4848
4849 if (call_sal.line == ecs->event_thread->current_line
4850 && call_sal.symtab == ecs->event_thread->current_symtab)
4851 step_into_inline_frame (ecs->ptid);
4852
4853 ecs->event_thread->control.stop_step = 1;
4854 print_end_stepping_range_reason ();
4855 stop_stepping (ecs);
4856 return;
4857 }
4858 else
4859 {
4860 /* For "next", we should stop at the call site if it is on a
4861 different source line. Otherwise continue through the
4862 inlined function. */
4863 if (call_sal.line == ecs->event_thread->current_line
4864 && call_sal.symtab == ecs->event_thread->current_symtab)
4865 keep_going (ecs);
4866 else
4867 {
4868 ecs->event_thread->control.stop_step = 1;
4869 print_end_stepping_range_reason ();
4870 stop_stepping (ecs);
4871 }
4872 return;
4873 }
4874 }
4875
4876 /* Look for "calls" to inlined functions, part two. If we are still
4877 in the same real function we were stepping through, but we have
4878 to go further up to find the exact frame ID, we are stepping
4879 through a more inlined call beyond its call site. */
4880
4881 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4882 && !frame_id_eq (get_frame_id (get_current_frame ()),
4883 ecs->event_thread->control.step_frame_id)
4884 && stepped_in_from (get_current_frame (),
4885 ecs->event_thread->control.step_frame_id))
4886 {
4887 if (debug_infrun)
4888 fprintf_unfiltered (gdb_stdlog,
4889 "infrun: stepping through inlined function\n");
4890
4891 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4892 keep_going (ecs);
4893 else
4894 {
4895 ecs->event_thread->control.stop_step = 1;
4896 print_end_stepping_range_reason ();
4897 stop_stepping (ecs);
4898 }
4899 return;
4900 }
4901
4902 if ((stop_pc == stop_pc_sal.pc)
4903 && (ecs->event_thread->current_line != stop_pc_sal.line
4904 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
4905 {
4906 /* We are at the start of a different line. So stop. Note that
4907 we don't stop if we step into the middle of a different line.
4908 That is said to make things like for (;;) statements work
4909 better. */
4910 if (debug_infrun)
4911 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
4912 ecs->event_thread->control.stop_step = 1;
4913 print_end_stepping_range_reason ();
4914 stop_stepping (ecs);
4915 return;
4916 }
4917
4918 /* We aren't done stepping.
4919
4920 Optimize by setting the stepping range to the line.
4921 (We might not be in the original line, but if we entered a
4922 new line in mid-statement, we continue stepping. This makes
4923 things like for(;;) statements work better.) */
4924
4925 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
4926 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
4927 set_step_info (frame, stop_pc_sal);
4928
4929 if (debug_infrun)
4930 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
4931 keep_going (ecs);
4932 }
4933
4934 /* Is thread TP in the middle of single-stepping? */
4935
4936 static int
4937 currently_stepping (struct thread_info *tp)
4938 {
4939 return ((tp->control.step_range_end
4940 && tp->control.step_resume_breakpoint == NULL)
4941 || tp->control.trap_expected
4942 || tp->stepping_through_solib_after_catch
4943 || bpstat_should_step ());
4944 }
4945
4946 /* Returns true if any thread *but* the one passed in "data" is in the
4947 middle of stepping or of handling a "next". */
4948
4949 static int
4950 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
4951 {
4952 if (tp == data)
4953 return 0;
4954
4955 return (tp->control.step_range_end
4956 || tp->control.trap_expected
4957 || tp->stepping_through_solib_after_catch);
4958 }
4959
4960 /* Inferior has stepped into a subroutine call with source code that
4961 we should not step over. Do step to the first line of code in
4962 it. */
4963
4964 static void
4965 handle_step_into_function (struct gdbarch *gdbarch,
4966 struct execution_control_state *ecs)
4967 {
4968 struct symtab *s;
4969 struct symtab_and_line stop_func_sal, sr_sal;
4970
4971 s = find_pc_symtab (stop_pc);
4972 if (s && s->language != language_asm)
4973 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
4974 ecs->stop_func_start);
4975
4976 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
4977 /* Use the step_resume_break to step until the end of the prologue,
4978 even if that involves jumps (as it seems to on the vax under
4979 4.2). */
4980 /* If the prologue ends in the middle of a source line, continue to
4981 the end of that source line (if it is still within the function).
4982 Otherwise, just go to end of prologue. */
4983 if (stop_func_sal.end
4984 && stop_func_sal.pc != ecs->stop_func_start
4985 && stop_func_sal.end < ecs->stop_func_end)
4986 ecs->stop_func_start = stop_func_sal.end;
4987
4988 /* Architectures which require breakpoint adjustment might not be able
4989 to place a breakpoint at the computed address. If so, the test
4990 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4991 ecs->stop_func_start to an address at which a breakpoint may be
4992 legitimately placed.
4993
4994 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4995 made, GDB will enter an infinite loop when stepping through
4996 optimized code consisting of VLIW instructions which contain
4997 subinstructions corresponding to different source lines. On
4998 FR-V, it's not permitted to place a breakpoint on any but the
4999 first subinstruction of a VLIW instruction. When a breakpoint is
5000 set, GDB will adjust the breakpoint address to the beginning of
5001 the VLIW instruction. Thus, we need to make the corresponding
5002 adjustment here when computing the stop address. */
5003
5004 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5005 {
5006 ecs->stop_func_start
5007 = gdbarch_adjust_breakpoint_address (gdbarch,
5008 ecs->stop_func_start);
5009 }
5010
5011 if (ecs->stop_func_start == stop_pc)
5012 {
5013 /* We are already there: stop now. */
5014 ecs->event_thread->control.stop_step = 1;
5015 print_end_stepping_range_reason ();
5016 stop_stepping (ecs);
5017 return;
5018 }
5019 else
5020 {
5021 /* Put the step-breakpoint there and go until there. */
5022 init_sal (&sr_sal); /* initialize to zeroes */
5023 sr_sal.pc = ecs->stop_func_start;
5024 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5025 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5026
5027 /* Do not specify what the fp should be when we stop since on
5028 some machines the prologue is where the new fp value is
5029 established. */
5030 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5031
5032 /* And make sure stepping stops right away then. */
5033 ecs->event_thread->control.step_range_end
5034 = ecs->event_thread->control.step_range_start;
5035 }
5036 keep_going (ecs);
5037 }
5038
5039 /* Inferior has stepped backward into a subroutine call with source
5040 code that we should not step over. Do step to the beginning of the
5041 last line of code in it. */
5042
5043 static void
5044 handle_step_into_function_backward (struct gdbarch *gdbarch,
5045 struct execution_control_state *ecs)
5046 {
5047 struct symtab *s;
5048 struct symtab_and_line stop_func_sal;
5049
5050 s = find_pc_symtab (stop_pc);
5051 if (s && s->language != language_asm)
5052 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5053 ecs->stop_func_start);
5054
5055 stop_func_sal = find_pc_line (stop_pc, 0);
5056
5057 /* OK, we're just going to keep stepping here. */
5058 if (stop_func_sal.pc == stop_pc)
5059 {
5060 /* We're there already. Just stop stepping now. */
5061 ecs->event_thread->control.stop_step = 1;
5062 print_end_stepping_range_reason ();
5063 stop_stepping (ecs);
5064 }
5065 else
5066 {
5067 /* Else just reset the step range and keep going.
5068 No step-resume breakpoint, they don't work for
5069 epilogues, which can have multiple entry paths. */
5070 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5071 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5072 keep_going (ecs);
5073 }
5074 return;
5075 }
5076
5077 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5078 This is used to both functions and to skip over code. */
5079
5080 static void
5081 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5082 struct symtab_and_line sr_sal,
5083 struct frame_id sr_id)
5084 {
5085 /* There should never be more than one step-resume or longjmp-resume
5086 breakpoint per thread, so we should never be setting a new
5087 step_resume_breakpoint when one is already active. */
5088 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5089
5090 if (debug_infrun)
5091 fprintf_unfiltered (gdb_stdlog,
5092 "infrun: inserting step-resume breakpoint at %s\n",
5093 paddress (gdbarch, sr_sal.pc));
5094
5095 inferior_thread ()->control.step_resume_breakpoint
5096 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
5097 }
5098
5099 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
5100 to skip a potential signal handler.
5101
5102 This is called with the interrupted function's frame. The signal
5103 handler, when it returns, will resume the interrupted function at
5104 RETURN_FRAME.pc. */
5105
5106 static void
5107 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5108 {
5109 struct symtab_and_line sr_sal;
5110 struct gdbarch *gdbarch;
5111
5112 gdb_assert (return_frame != NULL);
5113 init_sal (&sr_sal); /* initialize to zeros */
5114
5115 gdbarch = get_frame_arch (return_frame);
5116 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5117 sr_sal.section = find_pc_overlay (sr_sal.pc);
5118 sr_sal.pspace = get_frame_program_space (return_frame);
5119
5120 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5121 get_stack_frame_id (return_frame));
5122 }
5123
5124 /* Similar to insert_step_resume_breakpoint_at_frame, except
5125 but a breakpoint at the previous frame's PC. This is used to
5126 skip a function after stepping into it (for "next" or if the called
5127 function has no debugging information).
5128
5129 The current function has almost always been reached by single
5130 stepping a call or return instruction. NEXT_FRAME belongs to the
5131 current function, and the breakpoint will be set at the caller's
5132 resume address.
5133
5134 This is a separate function rather than reusing
5135 insert_step_resume_breakpoint_at_frame in order to avoid
5136 get_prev_frame, which may stop prematurely (see the implementation
5137 of frame_unwind_caller_id for an example). */
5138
5139 static void
5140 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5141 {
5142 struct symtab_and_line sr_sal;
5143 struct gdbarch *gdbarch;
5144
5145 /* We shouldn't have gotten here if we don't know where the call site
5146 is. */
5147 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5148
5149 init_sal (&sr_sal); /* initialize to zeros */
5150
5151 gdbarch = frame_unwind_caller_arch (next_frame);
5152 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5153 frame_unwind_caller_pc (next_frame));
5154 sr_sal.section = find_pc_overlay (sr_sal.pc);
5155 sr_sal.pspace = frame_unwind_program_space (next_frame);
5156
5157 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5158 frame_unwind_caller_id (next_frame));
5159 }
5160
5161 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5162 new breakpoint at the target of a jmp_buf. The handling of
5163 longjmp-resume uses the same mechanisms used for handling
5164 "step-resume" breakpoints. */
5165
5166 static void
5167 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5168 {
5169 /* There should never be more than one step-resume or longjmp-resume
5170 breakpoint per thread, so we should never be setting a new
5171 longjmp_resume_breakpoint when one is already active. */
5172 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5173
5174 if (debug_infrun)
5175 fprintf_unfiltered (gdb_stdlog,
5176 "infrun: inserting longjmp-resume breakpoint at %s\n",
5177 paddress (gdbarch, pc));
5178
5179 inferior_thread ()->control.step_resume_breakpoint =
5180 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5181 }
5182
5183 /* Insert an exception resume breakpoint. TP is the thread throwing
5184 the exception. The block B is the block of the unwinder debug hook
5185 function. FRAME is the frame corresponding to the call to this
5186 function. SYM is the symbol of the function argument holding the
5187 target PC of the exception. */
5188
5189 static void
5190 insert_exception_resume_breakpoint (struct thread_info *tp,
5191 struct block *b,
5192 struct frame_info *frame,
5193 struct symbol *sym)
5194 {
5195 struct gdb_exception e;
5196
5197 /* We want to ignore errors here. */
5198 TRY_CATCH (e, RETURN_MASK_ERROR)
5199 {
5200 struct symbol *vsym;
5201 struct value *value;
5202 CORE_ADDR handler;
5203 struct breakpoint *bp;
5204
5205 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5206 value = read_var_value (vsym, frame);
5207 /* If the value was optimized out, revert to the old behavior. */
5208 if (! value_optimized_out (value))
5209 {
5210 handler = value_as_address (value);
5211
5212 if (debug_infrun)
5213 fprintf_unfiltered (gdb_stdlog,
5214 "infrun: exception resume at %lx\n",
5215 (unsigned long) handler);
5216
5217 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5218 handler, bp_exception_resume);
5219 bp->thread = tp->num;
5220 inferior_thread ()->control.exception_resume_breakpoint = bp;
5221 }
5222 }
5223 }
5224
5225 /* This is called when an exception has been intercepted. Check to
5226 see whether the exception's destination is of interest, and if so,
5227 set an exception resume breakpoint there. */
5228
5229 static void
5230 check_exception_resume (struct execution_control_state *ecs,
5231 struct frame_info *frame, struct symbol *func)
5232 {
5233 struct gdb_exception e;
5234
5235 TRY_CATCH (e, RETURN_MASK_ERROR)
5236 {
5237 struct block *b;
5238 struct dict_iterator iter;
5239 struct symbol *sym;
5240 int argno = 0;
5241
5242 /* The exception breakpoint is a thread-specific breakpoint on
5243 the unwinder's debug hook, declared as:
5244
5245 void _Unwind_DebugHook (void *cfa, void *handler);
5246
5247 The CFA argument indicates the frame to which control is
5248 about to be transferred. HANDLER is the destination PC.
5249
5250 We ignore the CFA and set a temporary breakpoint at HANDLER.
5251 This is not extremely efficient but it avoids issues in gdb
5252 with computing the DWARF CFA, and it also works even in weird
5253 cases such as throwing an exception from inside a signal
5254 handler. */
5255
5256 b = SYMBOL_BLOCK_VALUE (func);
5257 ALL_BLOCK_SYMBOLS (b, iter, sym)
5258 {
5259 if (!SYMBOL_IS_ARGUMENT (sym))
5260 continue;
5261
5262 if (argno == 0)
5263 ++argno;
5264 else
5265 {
5266 insert_exception_resume_breakpoint (ecs->event_thread,
5267 b, frame, sym);
5268 break;
5269 }
5270 }
5271 }
5272 }
5273
5274 static void
5275 stop_stepping (struct execution_control_state *ecs)
5276 {
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5279
5280 /* Let callers know we don't want to wait for the inferior anymore. */
5281 ecs->wait_some_more = 0;
5282 }
5283
5284 /* This function handles various cases where we need to continue
5285 waiting for the inferior. */
5286 /* (Used to be the keep_going: label in the old wait_for_inferior) */
5287
5288 static void
5289 keep_going (struct execution_control_state *ecs)
5290 {
5291 /* Make sure normal_stop is called if we get a QUIT handled before
5292 reaching resume. */
5293 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5294
5295 /* Save the pc before execution, to compare with pc after stop. */
5296 ecs->event_thread->prev_pc
5297 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5298
5299 /* If we did not do break;, it means we should keep running the
5300 inferior and not return to debugger. */
5301
5302 if (ecs->event_thread->control.trap_expected
5303 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5304 {
5305 /* We took a signal (which we are supposed to pass through to
5306 the inferior, else we'd not get here) and we haven't yet
5307 gotten our trap. Simply continue. */
5308
5309 discard_cleanups (old_cleanups);
5310 resume (currently_stepping (ecs->event_thread),
5311 ecs->event_thread->suspend.stop_signal);
5312 }
5313 else
5314 {
5315 /* Either the trap was not expected, but we are continuing
5316 anyway (the user asked that this signal be passed to the
5317 child)
5318 -- or --
5319 The signal was SIGTRAP, e.g. it was our signal, but we
5320 decided we should resume from it.
5321
5322 We're going to run this baby now!
5323
5324 Note that insert_breakpoints won't try to re-insert
5325 already inserted breakpoints. Therefore, we don't
5326 care if breakpoints were already inserted, or not. */
5327
5328 if (ecs->event_thread->stepping_over_breakpoint)
5329 {
5330 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5331
5332 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5333 /* Since we can't do a displaced step, we have to remove
5334 the breakpoint while we step it. To keep things
5335 simple, we remove them all. */
5336 remove_breakpoints ();
5337 }
5338 else
5339 {
5340 struct gdb_exception e;
5341
5342 /* Stop stepping when inserting breakpoints
5343 has failed. */
5344 TRY_CATCH (e, RETURN_MASK_ERROR)
5345 {
5346 insert_breakpoints ();
5347 }
5348 if (e.reason < 0)
5349 {
5350 exception_print (gdb_stderr, e);
5351 stop_stepping (ecs);
5352 return;
5353 }
5354 }
5355
5356 ecs->event_thread->control.trap_expected
5357 = ecs->event_thread->stepping_over_breakpoint;
5358
5359 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5360 specifies that such a signal should be delivered to the
5361 target program).
5362
5363 Typically, this would occure when a user is debugging a
5364 target monitor on a simulator: the target monitor sets a
5365 breakpoint; the simulator encounters this break-point and
5366 halts the simulation handing control to GDB; GDB, noteing
5367 that the break-point isn't valid, returns control back to the
5368 simulator; the simulator then delivers the hardware
5369 equivalent of a SIGNAL_TRAP to the program being debugged. */
5370
5371 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5372 && !signal_program[ecs->event_thread->suspend.stop_signal])
5373 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5374
5375 discard_cleanups (old_cleanups);
5376 resume (currently_stepping (ecs->event_thread),
5377 ecs->event_thread->suspend.stop_signal);
5378 }
5379
5380 prepare_to_wait (ecs);
5381 }
5382
5383 /* This function normally comes after a resume, before
5384 handle_inferior_event exits. It takes care of any last bits of
5385 housekeeping, and sets the all-important wait_some_more flag. */
5386
5387 static void
5388 prepare_to_wait (struct execution_control_state *ecs)
5389 {
5390 if (debug_infrun)
5391 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5392
5393 /* This is the old end of the while loop. Let everybody know we
5394 want to wait for the inferior some more and get called again
5395 soon. */
5396 ecs->wait_some_more = 1;
5397 }
5398
5399 /* Several print_*_reason functions to print why the inferior has stopped.
5400 We always print something when the inferior exits, or receives a signal.
5401 The rest of the cases are dealt with later on in normal_stop and
5402 print_it_typical. Ideally there should be a call to one of these
5403 print_*_reason functions functions from handle_inferior_event each time
5404 stop_stepping is called. */
5405
5406 /* Print why the inferior has stopped.
5407 We are done with a step/next/si/ni command, print why the inferior has
5408 stopped. For now print nothing. Print a message only if not in the middle
5409 of doing a "step n" operation for n > 1. */
5410
5411 static void
5412 print_end_stepping_range_reason (void)
5413 {
5414 if ((!inferior_thread ()->step_multi
5415 || !inferior_thread ()->control.stop_step)
5416 && ui_out_is_mi_like_p (uiout))
5417 ui_out_field_string (uiout, "reason",
5418 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5419 }
5420
5421 /* The inferior was terminated by a signal, print why it stopped. */
5422
5423 static void
5424 print_signal_exited_reason (enum target_signal siggnal)
5425 {
5426 annotate_signalled ();
5427 if (ui_out_is_mi_like_p (uiout))
5428 ui_out_field_string
5429 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5430 ui_out_text (uiout, "\nProgram terminated with signal ");
5431 annotate_signal_name ();
5432 ui_out_field_string (uiout, "signal-name",
5433 target_signal_to_name (siggnal));
5434 annotate_signal_name_end ();
5435 ui_out_text (uiout, ", ");
5436 annotate_signal_string ();
5437 ui_out_field_string (uiout, "signal-meaning",
5438 target_signal_to_string (siggnal));
5439 annotate_signal_string_end ();
5440 ui_out_text (uiout, ".\n");
5441 ui_out_text (uiout, "The program no longer exists.\n");
5442 }
5443
5444 /* The inferior program is finished, print why it stopped. */
5445
5446 static void
5447 print_exited_reason (int exitstatus)
5448 {
5449 annotate_exited (exitstatus);
5450 if (exitstatus)
5451 {
5452 if (ui_out_is_mi_like_p (uiout))
5453 ui_out_field_string (uiout, "reason",
5454 async_reason_lookup (EXEC_ASYNC_EXITED));
5455 ui_out_text (uiout, "\nProgram exited with code ");
5456 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5457 ui_out_text (uiout, ".\n");
5458 }
5459 else
5460 {
5461 if (ui_out_is_mi_like_p (uiout))
5462 ui_out_field_string
5463 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5464 ui_out_text (uiout, "\nProgram exited normally.\n");
5465 }
5466 /* Support the --return-child-result option. */
5467 return_child_result_value = exitstatus;
5468 }
5469
5470 /* Signal received, print why the inferior has stopped. The signal table
5471 tells us to print about it. */
5472
5473 static void
5474 print_signal_received_reason (enum target_signal siggnal)
5475 {
5476 annotate_signal ();
5477
5478 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5479 {
5480 struct thread_info *t = inferior_thread ();
5481
5482 ui_out_text (uiout, "\n[");
5483 ui_out_field_string (uiout, "thread-name",
5484 target_pid_to_str (t->ptid));
5485 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5486 ui_out_text (uiout, " stopped");
5487 }
5488 else
5489 {
5490 ui_out_text (uiout, "\nProgram received signal ");
5491 annotate_signal_name ();
5492 if (ui_out_is_mi_like_p (uiout))
5493 ui_out_field_string
5494 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5495 ui_out_field_string (uiout, "signal-name",
5496 target_signal_to_name (siggnal));
5497 annotate_signal_name_end ();
5498 ui_out_text (uiout, ", ");
5499 annotate_signal_string ();
5500 ui_out_field_string (uiout, "signal-meaning",
5501 target_signal_to_string (siggnal));
5502 annotate_signal_string_end ();
5503 }
5504 ui_out_text (uiout, ".\n");
5505 }
5506
5507 /* Reverse execution: target ran out of history info, print why the inferior
5508 has stopped. */
5509
5510 static void
5511 print_no_history_reason (void)
5512 {
5513 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5514 }
5515
5516 /* Here to return control to GDB when the inferior stops for real.
5517 Print appropriate messages, remove breakpoints, give terminal our modes.
5518
5519 STOP_PRINT_FRAME nonzero means print the executing frame
5520 (pc, function, args, file, line number and line text).
5521 BREAKPOINTS_FAILED nonzero means stop was due to error
5522 attempting to insert breakpoints. */
5523
5524 void
5525 normal_stop (void)
5526 {
5527 struct target_waitstatus last;
5528 ptid_t last_ptid;
5529 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5530
5531 get_last_target_status (&last_ptid, &last);
5532
5533 /* If an exception is thrown from this point on, make sure to
5534 propagate GDB's knowledge of the executing state to the
5535 frontend/user running state. A QUIT is an easy exception to see
5536 here, so do this before any filtered output. */
5537 if (!non_stop)
5538 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5539 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5540 && last.kind != TARGET_WAITKIND_EXITED)
5541 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5542
5543 /* In non-stop mode, we don't want GDB to switch threads behind the
5544 user's back, to avoid races where the user is typing a command to
5545 apply to thread x, but GDB switches to thread y before the user
5546 finishes entering the command. */
5547
5548 /* As with the notification of thread events, we want to delay
5549 notifying the user that we've switched thread context until
5550 the inferior actually stops.
5551
5552 There's no point in saying anything if the inferior has exited.
5553 Note that SIGNALLED here means "exited with a signal", not
5554 "received a signal". */
5555 if (!non_stop
5556 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5557 && target_has_execution
5558 && last.kind != TARGET_WAITKIND_SIGNALLED
5559 && last.kind != TARGET_WAITKIND_EXITED)
5560 {
5561 target_terminal_ours_for_output ();
5562 printf_filtered (_("[Switching to %s]\n"),
5563 target_pid_to_str (inferior_ptid));
5564 annotate_thread_changed ();
5565 previous_inferior_ptid = inferior_ptid;
5566 }
5567
5568 if (!breakpoints_always_inserted_mode () && target_has_execution)
5569 {
5570 if (remove_breakpoints ())
5571 {
5572 target_terminal_ours_for_output ();
5573 printf_filtered (_("\
5574 Cannot remove breakpoints because program is no longer writable.\n\
5575 Further execution is probably impossible.\n"));
5576 }
5577 }
5578
5579 /* If an auto-display called a function and that got a signal,
5580 delete that auto-display to avoid an infinite recursion. */
5581
5582 if (stopped_by_random_signal)
5583 disable_current_display ();
5584
5585 /* Don't print a message if in the middle of doing a "step n"
5586 operation for n > 1 */
5587 if (target_has_execution
5588 && last.kind != TARGET_WAITKIND_SIGNALLED
5589 && last.kind != TARGET_WAITKIND_EXITED
5590 && inferior_thread ()->step_multi
5591 && inferior_thread ()->control.stop_step)
5592 goto done;
5593
5594 target_terminal_ours ();
5595
5596 /* Set the current source location. This will also happen if we
5597 display the frame below, but the current SAL will be incorrect
5598 during a user hook-stop function. */
5599 if (has_stack_frames () && !stop_stack_dummy)
5600 set_current_sal_from_frame (get_current_frame (), 1);
5601
5602 /* Let the user/frontend see the threads as stopped. */
5603 do_cleanups (old_chain);
5604
5605 /* Look up the hook_stop and run it (CLI internally handles problem
5606 of stop_command's pre-hook not existing). */
5607 if (stop_command)
5608 catch_errors (hook_stop_stub, stop_command,
5609 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5610
5611 if (!has_stack_frames ())
5612 goto done;
5613
5614 if (last.kind == TARGET_WAITKIND_SIGNALLED
5615 || last.kind == TARGET_WAITKIND_EXITED)
5616 goto done;
5617
5618 /* Select innermost stack frame - i.e., current frame is frame 0,
5619 and current location is based on that.
5620 Don't do this on return from a stack dummy routine,
5621 or if the program has exited. */
5622
5623 if (!stop_stack_dummy)
5624 {
5625 select_frame (get_current_frame ());
5626
5627 /* Print current location without a level number, if
5628 we have changed functions or hit a breakpoint.
5629 Print source line if we have one.
5630 bpstat_print() contains the logic deciding in detail
5631 what to print, based on the event(s) that just occurred. */
5632
5633 /* If --batch-silent is enabled then there's no need to print the current
5634 source location, and to try risks causing an error message about
5635 missing source files. */
5636 if (stop_print_frame && !batch_silent)
5637 {
5638 int bpstat_ret;
5639 int source_flag;
5640 int do_frame_printing = 1;
5641 struct thread_info *tp = inferior_thread ();
5642
5643 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5644 switch (bpstat_ret)
5645 {
5646 case PRINT_UNKNOWN:
5647 /* If we had hit a shared library event breakpoint,
5648 bpstat_print would print out this message. If we hit
5649 an OS-level shared library event, do the same
5650 thing. */
5651 if (last.kind == TARGET_WAITKIND_LOADED)
5652 {
5653 printf_filtered (_("Stopped due to shared library event\n"));
5654 source_flag = SRC_LINE; /* something bogus */
5655 do_frame_printing = 0;
5656 break;
5657 }
5658
5659 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5660 (or should) carry around the function and does (or
5661 should) use that when doing a frame comparison. */
5662 if (tp->control.stop_step
5663 && frame_id_eq (tp->control.step_frame_id,
5664 get_frame_id (get_current_frame ()))
5665 && step_start_function == find_pc_function (stop_pc))
5666 source_flag = SRC_LINE; /* finished step, just print source line */
5667 else
5668 source_flag = SRC_AND_LOC; /* print location and source line */
5669 break;
5670 case PRINT_SRC_AND_LOC:
5671 source_flag = SRC_AND_LOC; /* print location and source line */
5672 break;
5673 case PRINT_SRC_ONLY:
5674 source_flag = SRC_LINE;
5675 break;
5676 case PRINT_NOTHING:
5677 source_flag = SRC_LINE; /* something bogus */
5678 do_frame_printing = 0;
5679 break;
5680 default:
5681 internal_error (__FILE__, __LINE__, _("Unknown value."));
5682 }
5683
5684 /* The behavior of this routine with respect to the source
5685 flag is:
5686 SRC_LINE: Print only source line
5687 LOCATION: Print only location
5688 SRC_AND_LOC: Print location and source line */
5689 if (do_frame_printing)
5690 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5691
5692 /* Display the auto-display expressions. */
5693 do_displays ();
5694 }
5695 }
5696
5697 /* Save the function value return registers, if we care.
5698 We might be about to restore their previous contents. */
5699 if (inferior_thread ()->control.proceed_to_finish)
5700 {
5701 /* This should not be necessary. */
5702 if (stop_registers)
5703 regcache_xfree (stop_registers);
5704
5705 /* NB: The copy goes through to the target picking up the value of
5706 all the registers. */
5707 stop_registers = regcache_dup (get_current_regcache ());
5708 }
5709
5710 if (stop_stack_dummy == STOP_STACK_DUMMY)
5711 {
5712 /* Pop the empty frame that contains the stack dummy.
5713 This also restores inferior state prior to the call
5714 (struct infcall_suspend_state). */
5715 struct frame_info *frame = get_current_frame ();
5716
5717 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5718 frame_pop (frame);
5719 /* frame_pop() calls reinit_frame_cache as the last thing it does
5720 which means there's currently no selected frame. We don't need
5721 to re-establish a selected frame if the dummy call returns normally,
5722 that will be done by restore_infcall_control_state. However, we do have
5723 to handle the case where the dummy call is returning after being
5724 stopped (e.g. the dummy call previously hit a breakpoint). We
5725 can't know which case we have so just always re-establish a
5726 selected frame here. */
5727 select_frame (get_current_frame ());
5728 }
5729
5730 done:
5731 annotate_stopped ();
5732
5733 /* Suppress the stop observer if we're in the middle of:
5734
5735 - a step n (n > 1), as there still more steps to be done.
5736
5737 - a "finish" command, as the observer will be called in
5738 finish_command_continuation, so it can include the inferior
5739 function's return value.
5740
5741 - calling an inferior function, as we pretend we inferior didn't
5742 run at all. The return value of the call is handled by the
5743 expression evaluator, through call_function_by_hand. */
5744
5745 if (!target_has_execution
5746 || last.kind == TARGET_WAITKIND_SIGNALLED
5747 || last.kind == TARGET_WAITKIND_EXITED
5748 || (!inferior_thread ()->step_multi
5749 && !(inferior_thread ()->control.stop_bpstat
5750 && inferior_thread ()->control.proceed_to_finish)
5751 && !inferior_thread ()->control.in_infcall))
5752 {
5753 if (!ptid_equal (inferior_ptid, null_ptid))
5754 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
5755 stop_print_frame);
5756 else
5757 observer_notify_normal_stop (NULL, stop_print_frame);
5758 }
5759
5760 if (target_has_execution)
5761 {
5762 if (last.kind != TARGET_WAITKIND_SIGNALLED
5763 && last.kind != TARGET_WAITKIND_EXITED)
5764 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5765 Delete any breakpoint that is to be deleted at the next stop. */
5766 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
5767 }
5768
5769 /* Try to get rid of automatically added inferiors that are no
5770 longer needed. Keeping those around slows down things linearly.
5771 Note that this never removes the current inferior. */
5772 prune_inferiors ();
5773 }
5774
5775 static int
5776 hook_stop_stub (void *cmd)
5777 {
5778 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5779 return (0);
5780 }
5781 \f
5782 int
5783 signal_stop_state (int signo)
5784 {
5785 return signal_stop[signo];
5786 }
5787
5788 int
5789 signal_print_state (int signo)
5790 {
5791 return signal_print[signo];
5792 }
5793
5794 int
5795 signal_pass_state (int signo)
5796 {
5797 return signal_program[signo];
5798 }
5799
5800 int
5801 signal_stop_update (int signo, int state)
5802 {
5803 int ret = signal_stop[signo];
5804
5805 signal_stop[signo] = state;
5806 return ret;
5807 }
5808
5809 int
5810 signal_print_update (int signo, int state)
5811 {
5812 int ret = signal_print[signo];
5813
5814 signal_print[signo] = state;
5815 return ret;
5816 }
5817
5818 int
5819 signal_pass_update (int signo, int state)
5820 {
5821 int ret = signal_program[signo];
5822
5823 signal_program[signo] = state;
5824 return ret;
5825 }
5826
5827 static void
5828 sig_print_header (void)
5829 {
5830 printf_filtered (_("\
5831 Signal Stop\tPrint\tPass to program\tDescription\n"));
5832 }
5833
5834 static void
5835 sig_print_info (enum target_signal oursig)
5836 {
5837 const char *name = target_signal_to_name (oursig);
5838 int name_padding = 13 - strlen (name);
5839
5840 if (name_padding <= 0)
5841 name_padding = 0;
5842
5843 printf_filtered ("%s", name);
5844 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
5845 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5846 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5847 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5848 printf_filtered ("%s\n", target_signal_to_string (oursig));
5849 }
5850
5851 /* Specify how various signals in the inferior should be handled. */
5852
5853 static void
5854 handle_command (char *args, int from_tty)
5855 {
5856 char **argv;
5857 int digits, wordlen;
5858 int sigfirst, signum, siglast;
5859 enum target_signal oursig;
5860 int allsigs;
5861 int nsigs;
5862 unsigned char *sigs;
5863 struct cleanup *old_chain;
5864
5865 if (args == NULL)
5866 {
5867 error_no_arg (_("signal to handle"));
5868 }
5869
5870 /* Allocate and zero an array of flags for which signals to handle. */
5871
5872 nsigs = (int) TARGET_SIGNAL_LAST;
5873 sigs = (unsigned char *) alloca (nsigs);
5874 memset (sigs, 0, nsigs);
5875
5876 /* Break the command line up into args. */
5877
5878 argv = gdb_buildargv (args);
5879 old_chain = make_cleanup_freeargv (argv);
5880
5881 /* Walk through the args, looking for signal oursigs, signal names, and
5882 actions. Signal numbers and signal names may be interspersed with
5883 actions, with the actions being performed for all signals cumulatively
5884 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5885
5886 while (*argv != NULL)
5887 {
5888 wordlen = strlen (*argv);
5889 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5890 {;
5891 }
5892 allsigs = 0;
5893 sigfirst = siglast = -1;
5894
5895 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5896 {
5897 /* Apply action to all signals except those used by the
5898 debugger. Silently skip those. */
5899 allsigs = 1;
5900 sigfirst = 0;
5901 siglast = nsigs - 1;
5902 }
5903 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5904 {
5905 SET_SIGS (nsigs, sigs, signal_stop);
5906 SET_SIGS (nsigs, sigs, signal_print);
5907 }
5908 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5909 {
5910 UNSET_SIGS (nsigs, sigs, signal_program);
5911 }
5912 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5913 {
5914 SET_SIGS (nsigs, sigs, signal_print);
5915 }
5916 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5917 {
5918 SET_SIGS (nsigs, sigs, signal_program);
5919 }
5920 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5921 {
5922 UNSET_SIGS (nsigs, sigs, signal_stop);
5923 }
5924 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5925 {
5926 SET_SIGS (nsigs, sigs, signal_program);
5927 }
5928 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5929 {
5930 UNSET_SIGS (nsigs, sigs, signal_print);
5931 UNSET_SIGS (nsigs, sigs, signal_stop);
5932 }
5933 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5934 {
5935 UNSET_SIGS (nsigs, sigs, signal_program);
5936 }
5937 else if (digits > 0)
5938 {
5939 /* It is numeric. The numeric signal refers to our own
5940 internal signal numbering from target.h, not to host/target
5941 signal number. This is a feature; users really should be
5942 using symbolic names anyway, and the common ones like
5943 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5944
5945 sigfirst = siglast = (int)
5946 target_signal_from_command (atoi (*argv));
5947 if ((*argv)[digits] == '-')
5948 {
5949 siglast = (int)
5950 target_signal_from_command (atoi ((*argv) + digits + 1));
5951 }
5952 if (sigfirst > siglast)
5953 {
5954 /* Bet he didn't figure we'd think of this case... */
5955 signum = sigfirst;
5956 sigfirst = siglast;
5957 siglast = signum;
5958 }
5959 }
5960 else
5961 {
5962 oursig = target_signal_from_name (*argv);
5963 if (oursig != TARGET_SIGNAL_UNKNOWN)
5964 {
5965 sigfirst = siglast = (int) oursig;
5966 }
5967 else
5968 {
5969 /* Not a number and not a recognized flag word => complain. */
5970 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
5971 }
5972 }
5973
5974 /* If any signal numbers or symbol names were found, set flags for
5975 which signals to apply actions to. */
5976
5977 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5978 {
5979 switch ((enum target_signal) signum)
5980 {
5981 case TARGET_SIGNAL_TRAP:
5982 case TARGET_SIGNAL_INT:
5983 if (!allsigs && !sigs[signum])
5984 {
5985 if (query (_("%s is used by the debugger.\n\
5986 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
5987 {
5988 sigs[signum] = 1;
5989 }
5990 else
5991 {
5992 printf_unfiltered (_("Not confirmed, unchanged.\n"));
5993 gdb_flush (gdb_stdout);
5994 }
5995 }
5996 break;
5997 case TARGET_SIGNAL_0:
5998 case TARGET_SIGNAL_DEFAULT:
5999 case TARGET_SIGNAL_UNKNOWN:
6000 /* Make sure that "all" doesn't print these. */
6001 break;
6002 default:
6003 sigs[signum] = 1;
6004 break;
6005 }
6006 }
6007
6008 argv++;
6009 }
6010
6011 for (signum = 0; signum < nsigs; signum++)
6012 if (sigs[signum])
6013 {
6014 target_notice_signals (inferior_ptid);
6015
6016 if (from_tty)
6017 {
6018 /* Show the results. */
6019 sig_print_header ();
6020 for (; signum < nsigs; signum++)
6021 if (sigs[signum])
6022 sig_print_info (signum);
6023 }
6024
6025 break;
6026 }
6027
6028 do_cleanups (old_chain);
6029 }
6030
6031 static void
6032 xdb_handle_command (char *args, int from_tty)
6033 {
6034 char **argv;
6035 struct cleanup *old_chain;
6036
6037 if (args == NULL)
6038 error_no_arg (_("xdb command"));
6039
6040 /* Break the command line up into args. */
6041
6042 argv = gdb_buildargv (args);
6043 old_chain = make_cleanup_freeargv (argv);
6044 if (argv[1] != (char *) NULL)
6045 {
6046 char *argBuf;
6047 int bufLen;
6048
6049 bufLen = strlen (argv[0]) + 20;
6050 argBuf = (char *) xmalloc (bufLen);
6051 if (argBuf)
6052 {
6053 int validFlag = 1;
6054 enum target_signal oursig;
6055
6056 oursig = target_signal_from_name (argv[0]);
6057 memset (argBuf, 0, bufLen);
6058 if (strcmp (argv[1], "Q") == 0)
6059 sprintf (argBuf, "%s %s", argv[0], "noprint");
6060 else
6061 {
6062 if (strcmp (argv[1], "s") == 0)
6063 {
6064 if (!signal_stop[oursig])
6065 sprintf (argBuf, "%s %s", argv[0], "stop");
6066 else
6067 sprintf (argBuf, "%s %s", argv[0], "nostop");
6068 }
6069 else if (strcmp (argv[1], "i") == 0)
6070 {
6071 if (!signal_program[oursig])
6072 sprintf (argBuf, "%s %s", argv[0], "pass");
6073 else
6074 sprintf (argBuf, "%s %s", argv[0], "nopass");
6075 }
6076 else if (strcmp (argv[1], "r") == 0)
6077 {
6078 if (!signal_print[oursig])
6079 sprintf (argBuf, "%s %s", argv[0], "print");
6080 else
6081 sprintf (argBuf, "%s %s", argv[0], "noprint");
6082 }
6083 else
6084 validFlag = 0;
6085 }
6086 if (validFlag)
6087 handle_command (argBuf, from_tty);
6088 else
6089 printf_filtered (_("Invalid signal handling flag.\n"));
6090 if (argBuf)
6091 xfree (argBuf);
6092 }
6093 }
6094 do_cleanups (old_chain);
6095 }
6096
6097 /* Print current contents of the tables set by the handle command.
6098 It is possible we should just be printing signals actually used
6099 by the current target (but for things to work right when switching
6100 targets, all signals should be in the signal tables). */
6101
6102 static void
6103 signals_info (char *signum_exp, int from_tty)
6104 {
6105 enum target_signal oursig;
6106
6107 sig_print_header ();
6108
6109 if (signum_exp)
6110 {
6111 /* First see if this is a symbol name. */
6112 oursig = target_signal_from_name (signum_exp);
6113 if (oursig == TARGET_SIGNAL_UNKNOWN)
6114 {
6115 /* No, try numeric. */
6116 oursig =
6117 target_signal_from_command (parse_and_eval_long (signum_exp));
6118 }
6119 sig_print_info (oursig);
6120 return;
6121 }
6122
6123 printf_filtered ("\n");
6124 /* These ugly casts brought to you by the native VAX compiler. */
6125 for (oursig = TARGET_SIGNAL_FIRST;
6126 (int) oursig < (int) TARGET_SIGNAL_LAST;
6127 oursig = (enum target_signal) ((int) oursig + 1))
6128 {
6129 QUIT;
6130
6131 if (oursig != TARGET_SIGNAL_UNKNOWN
6132 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6133 sig_print_info (oursig);
6134 }
6135
6136 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
6137 }
6138
6139 /* The $_siginfo convenience variable is a bit special. We don't know
6140 for sure the type of the value until we actually have a chance to
6141 fetch the data. The type can change depending on gdbarch, so it it
6142 also dependent on which thread you have selected.
6143
6144 1. making $_siginfo be an internalvar that creates a new value on
6145 access.
6146
6147 2. making the value of $_siginfo be an lval_computed value. */
6148
6149 /* This function implements the lval_computed support for reading a
6150 $_siginfo value. */
6151
6152 static void
6153 siginfo_value_read (struct value *v)
6154 {
6155 LONGEST transferred;
6156
6157 transferred =
6158 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6159 NULL,
6160 value_contents_all_raw (v),
6161 value_offset (v),
6162 TYPE_LENGTH (value_type (v)));
6163
6164 if (transferred != TYPE_LENGTH (value_type (v)))
6165 error (_("Unable to read siginfo"));
6166 }
6167
6168 /* This function implements the lval_computed support for writing a
6169 $_siginfo value. */
6170
6171 static void
6172 siginfo_value_write (struct value *v, struct value *fromval)
6173 {
6174 LONGEST transferred;
6175
6176 transferred = target_write (&current_target,
6177 TARGET_OBJECT_SIGNAL_INFO,
6178 NULL,
6179 value_contents_all_raw (fromval),
6180 value_offset (v),
6181 TYPE_LENGTH (value_type (fromval)));
6182
6183 if (transferred != TYPE_LENGTH (value_type (fromval)))
6184 error (_("Unable to write siginfo"));
6185 }
6186
6187 static struct lval_funcs siginfo_value_funcs =
6188 {
6189 siginfo_value_read,
6190 siginfo_value_write
6191 };
6192
6193 /* Return a new value with the correct type for the siginfo object of
6194 the current thread using architecture GDBARCH. Return a void value
6195 if there's no object available. */
6196
6197 static struct value *
6198 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6199 {
6200 if (target_has_stack
6201 && !ptid_equal (inferior_ptid, null_ptid)
6202 && gdbarch_get_siginfo_type_p (gdbarch))
6203 {
6204 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6205
6206 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6207 }
6208
6209 return allocate_value (builtin_type (gdbarch)->builtin_void);
6210 }
6211
6212 \f
6213 /* infcall_suspend_state contains state about the program itself like its
6214 registers and any signal it received when it last stopped.
6215 This state must be restored regardless of how the inferior function call
6216 ends (either successfully, or after it hits a breakpoint or signal)
6217 if the program is to properly continue where it left off. */
6218
6219 struct infcall_suspend_state
6220 {
6221 struct thread_suspend_state thread_suspend;
6222 struct inferior_suspend_state inferior_suspend;
6223
6224 /* Other fields: */
6225 CORE_ADDR stop_pc;
6226 struct regcache *registers;
6227
6228 /* Format of SIGINFO_DATA or NULL if it is not present. */
6229 struct gdbarch *siginfo_gdbarch;
6230
6231 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6232 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6233 content would be invalid. */
6234 gdb_byte *siginfo_data;
6235 };
6236
6237 struct infcall_suspend_state *
6238 save_infcall_suspend_state (void)
6239 {
6240 struct infcall_suspend_state *inf_state;
6241 struct thread_info *tp = inferior_thread ();
6242 struct inferior *inf = current_inferior ();
6243 struct regcache *regcache = get_current_regcache ();
6244 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6245 gdb_byte *siginfo_data = NULL;
6246
6247 if (gdbarch_get_siginfo_type_p (gdbarch))
6248 {
6249 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6250 size_t len = TYPE_LENGTH (type);
6251 struct cleanup *back_to;
6252
6253 siginfo_data = xmalloc (len);
6254 back_to = make_cleanup (xfree, siginfo_data);
6255
6256 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6257 siginfo_data, 0, len) == len)
6258 discard_cleanups (back_to);
6259 else
6260 {
6261 /* Errors ignored. */
6262 do_cleanups (back_to);
6263 siginfo_data = NULL;
6264 }
6265 }
6266
6267 inf_state = XZALLOC (struct infcall_suspend_state);
6268
6269 if (siginfo_data)
6270 {
6271 inf_state->siginfo_gdbarch = gdbarch;
6272 inf_state->siginfo_data = siginfo_data;
6273 }
6274
6275 inf_state->thread_suspend = tp->suspend;
6276 inf_state->inferior_suspend = inf->suspend;
6277
6278 /* run_inferior_call will not use the signal due to its `proceed' call with
6279 TARGET_SIGNAL_0 anyway. */
6280 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6281
6282 inf_state->stop_pc = stop_pc;
6283
6284 inf_state->registers = regcache_dup (regcache);
6285
6286 return inf_state;
6287 }
6288
6289 /* Restore inferior session state to INF_STATE. */
6290
6291 void
6292 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6293 {
6294 struct thread_info *tp = inferior_thread ();
6295 struct inferior *inf = current_inferior ();
6296 struct regcache *regcache = get_current_regcache ();
6297 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6298
6299 tp->suspend = inf_state->thread_suspend;
6300 inf->suspend = inf_state->inferior_suspend;
6301
6302 stop_pc = inf_state->stop_pc;
6303
6304 if (inf_state->siginfo_gdbarch == gdbarch)
6305 {
6306 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6307 size_t len = TYPE_LENGTH (type);
6308
6309 /* Errors ignored. */
6310 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6311 inf_state->siginfo_data, 0, len);
6312 }
6313
6314 /* The inferior can be gone if the user types "print exit(0)"
6315 (and perhaps other times). */
6316 if (target_has_execution)
6317 /* NB: The register write goes through to the target. */
6318 regcache_cpy (regcache, inf_state->registers);
6319
6320 discard_infcall_suspend_state (inf_state);
6321 }
6322
6323 static void
6324 do_restore_infcall_suspend_state_cleanup (void *state)
6325 {
6326 restore_infcall_suspend_state (state);
6327 }
6328
6329 struct cleanup *
6330 make_cleanup_restore_infcall_suspend_state
6331 (struct infcall_suspend_state *inf_state)
6332 {
6333 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6334 }
6335
6336 void
6337 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6338 {
6339 regcache_xfree (inf_state->registers);
6340 xfree (inf_state->siginfo_data);
6341 xfree (inf_state);
6342 }
6343
6344 struct regcache *
6345 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6346 {
6347 return inf_state->registers;
6348 }
6349
6350 /* infcall_control_state contains state regarding gdb's control of the
6351 inferior itself like stepping control. It also contains session state like
6352 the user's currently selected frame. */
6353
6354 struct infcall_control_state
6355 {
6356 struct thread_control_state thread_control;
6357 struct inferior_control_state inferior_control;
6358
6359 /* Other fields: */
6360 enum stop_stack_kind stop_stack_dummy;
6361 int stopped_by_random_signal;
6362 int stop_after_trap;
6363
6364 /* ID if the selected frame when the inferior function call was made. */
6365 struct frame_id selected_frame_id;
6366 };
6367
6368 /* Save all of the information associated with the inferior<==>gdb
6369 connection. */
6370
6371 struct infcall_control_state *
6372 save_infcall_control_state (void)
6373 {
6374 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6375 struct thread_info *tp = inferior_thread ();
6376 struct inferior *inf = current_inferior ();
6377
6378 inf_status->thread_control = tp->control;
6379 inf_status->inferior_control = inf->control;
6380
6381 tp->control.step_resume_breakpoint = NULL;
6382 tp->control.exception_resume_breakpoint = NULL;
6383
6384 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6385 chain. If caller's caller is walking the chain, they'll be happier if we
6386 hand them back the original chain when restore_infcall_control_state is
6387 called. */
6388 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6389
6390 /* Other fields: */
6391 inf_status->stop_stack_dummy = stop_stack_dummy;
6392 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6393 inf_status->stop_after_trap = stop_after_trap;
6394
6395 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6396
6397 return inf_status;
6398 }
6399
6400 static int
6401 restore_selected_frame (void *args)
6402 {
6403 struct frame_id *fid = (struct frame_id *) args;
6404 struct frame_info *frame;
6405
6406 frame = frame_find_by_id (*fid);
6407
6408 /* If inf_status->selected_frame_id is NULL, there was no previously
6409 selected frame. */
6410 if (frame == NULL)
6411 {
6412 warning (_("Unable to restore previously selected frame."));
6413 return 0;
6414 }
6415
6416 select_frame (frame);
6417
6418 return (1);
6419 }
6420
6421 /* Restore inferior session state to INF_STATUS. */
6422
6423 void
6424 restore_infcall_control_state (struct infcall_control_state *inf_status)
6425 {
6426 struct thread_info *tp = inferior_thread ();
6427 struct inferior *inf = current_inferior ();
6428
6429 if (tp->control.step_resume_breakpoint)
6430 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6431
6432 if (tp->control.exception_resume_breakpoint)
6433 tp->control.exception_resume_breakpoint->disposition
6434 = disp_del_at_next_stop;
6435
6436 /* Handle the bpstat_copy of the chain. */
6437 bpstat_clear (&tp->control.stop_bpstat);
6438
6439 tp->control = inf_status->thread_control;
6440 inf->control = inf_status->inferior_control;
6441
6442 /* Other fields: */
6443 stop_stack_dummy = inf_status->stop_stack_dummy;
6444 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6445 stop_after_trap = inf_status->stop_after_trap;
6446
6447 if (target_has_stack)
6448 {
6449 /* The point of catch_errors is that if the stack is clobbered,
6450 walking the stack might encounter a garbage pointer and
6451 error() trying to dereference it. */
6452 if (catch_errors
6453 (restore_selected_frame, &inf_status->selected_frame_id,
6454 "Unable to restore previously selected frame:\n",
6455 RETURN_MASK_ERROR) == 0)
6456 /* Error in restoring the selected frame. Select the innermost
6457 frame. */
6458 select_frame (get_current_frame ());
6459 }
6460
6461 xfree (inf_status);
6462 }
6463
6464 static void
6465 do_restore_infcall_control_state_cleanup (void *sts)
6466 {
6467 restore_infcall_control_state (sts);
6468 }
6469
6470 struct cleanup *
6471 make_cleanup_restore_infcall_control_state
6472 (struct infcall_control_state *inf_status)
6473 {
6474 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6475 }
6476
6477 void
6478 discard_infcall_control_state (struct infcall_control_state *inf_status)
6479 {
6480 if (inf_status->thread_control.step_resume_breakpoint)
6481 inf_status->thread_control.step_resume_breakpoint->disposition
6482 = disp_del_at_next_stop;
6483
6484 if (inf_status->thread_control.exception_resume_breakpoint)
6485 inf_status->thread_control.exception_resume_breakpoint->disposition
6486 = disp_del_at_next_stop;
6487
6488 /* See save_infcall_control_state for info on stop_bpstat. */
6489 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6490
6491 xfree (inf_status);
6492 }
6493 \f
6494 int
6495 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6496 {
6497 struct target_waitstatus last;
6498 ptid_t last_ptid;
6499
6500 get_last_target_status (&last_ptid, &last);
6501
6502 if (last.kind != TARGET_WAITKIND_FORKED)
6503 return 0;
6504
6505 if (!ptid_equal (last_ptid, pid))
6506 return 0;
6507
6508 *child_pid = last.value.related_pid;
6509 return 1;
6510 }
6511
6512 int
6513 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6514 {
6515 struct target_waitstatus last;
6516 ptid_t last_ptid;
6517
6518 get_last_target_status (&last_ptid, &last);
6519
6520 if (last.kind != TARGET_WAITKIND_VFORKED)
6521 return 0;
6522
6523 if (!ptid_equal (last_ptid, pid))
6524 return 0;
6525
6526 *child_pid = last.value.related_pid;
6527 return 1;
6528 }
6529
6530 int
6531 inferior_has_execd (ptid_t pid, char **execd_pathname)
6532 {
6533 struct target_waitstatus last;
6534 ptid_t last_ptid;
6535
6536 get_last_target_status (&last_ptid, &last);
6537
6538 if (last.kind != TARGET_WAITKIND_EXECD)
6539 return 0;
6540
6541 if (!ptid_equal (last_ptid, pid))
6542 return 0;
6543
6544 *execd_pathname = xstrdup (last.value.execd_pathname);
6545 return 1;
6546 }
6547
6548 int
6549 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6550 {
6551 struct target_waitstatus last;
6552 ptid_t last_ptid;
6553
6554 get_last_target_status (&last_ptid, &last);
6555
6556 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6557 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6558 return 0;
6559
6560 if (!ptid_equal (last_ptid, pid))
6561 return 0;
6562
6563 *syscall_number = last.value.syscall_number;
6564 return 1;
6565 }
6566
6567 /* Oft used ptids */
6568 ptid_t null_ptid;
6569 ptid_t minus_one_ptid;
6570
6571 /* Create a ptid given the necessary PID, LWP, and TID components. */
6572
6573 ptid_t
6574 ptid_build (int pid, long lwp, long tid)
6575 {
6576 ptid_t ptid;
6577
6578 ptid.pid = pid;
6579 ptid.lwp = lwp;
6580 ptid.tid = tid;
6581 return ptid;
6582 }
6583
6584 /* Create a ptid from just a pid. */
6585
6586 ptid_t
6587 pid_to_ptid (int pid)
6588 {
6589 return ptid_build (pid, 0, 0);
6590 }
6591
6592 /* Fetch the pid (process id) component from a ptid. */
6593
6594 int
6595 ptid_get_pid (ptid_t ptid)
6596 {
6597 return ptid.pid;
6598 }
6599
6600 /* Fetch the lwp (lightweight process) component from a ptid. */
6601
6602 long
6603 ptid_get_lwp (ptid_t ptid)
6604 {
6605 return ptid.lwp;
6606 }
6607
6608 /* Fetch the tid (thread id) component from a ptid. */
6609
6610 long
6611 ptid_get_tid (ptid_t ptid)
6612 {
6613 return ptid.tid;
6614 }
6615
6616 /* ptid_equal() is used to test equality of two ptids. */
6617
6618 int
6619 ptid_equal (ptid_t ptid1, ptid_t ptid2)
6620 {
6621 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
6622 && ptid1.tid == ptid2.tid);
6623 }
6624
6625 /* Returns true if PTID represents a process. */
6626
6627 int
6628 ptid_is_pid (ptid_t ptid)
6629 {
6630 if (ptid_equal (minus_one_ptid, ptid))
6631 return 0;
6632 if (ptid_equal (null_ptid, ptid))
6633 return 0;
6634
6635 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6636 }
6637
6638 int
6639 ptid_match (ptid_t ptid, ptid_t filter)
6640 {
6641 /* Since both parameters have the same type, prevent easy mistakes
6642 from happening. */
6643 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
6644 && !ptid_equal (ptid, null_ptid));
6645
6646 if (ptid_equal (filter, minus_one_ptid))
6647 return 1;
6648 if (ptid_is_pid (filter)
6649 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6650 return 1;
6651 else if (ptid_equal (ptid, filter))
6652 return 1;
6653
6654 return 0;
6655 }
6656
6657 /* restore_inferior_ptid() will be used by the cleanup machinery
6658 to restore the inferior_ptid value saved in a call to
6659 save_inferior_ptid(). */
6660
6661 static void
6662 restore_inferior_ptid (void *arg)
6663 {
6664 ptid_t *saved_ptid_ptr = arg;
6665
6666 inferior_ptid = *saved_ptid_ptr;
6667 xfree (arg);
6668 }
6669
6670 /* Save the value of inferior_ptid so that it may be restored by a
6671 later call to do_cleanups(). Returns the struct cleanup pointer
6672 needed for later doing the cleanup. */
6673
6674 struct cleanup *
6675 save_inferior_ptid (void)
6676 {
6677 ptid_t *saved_ptid_ptr;
6678
6679 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6680 *saved_ptid_ptr = inferior_ptid;
6681 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6682 }
6683 \f
6684
6685 /* User interface for reverse debugging:
6686 Set exec-direction / show exec-direction commands
6687 (returns error unless target implements to_set_exec_direction method). */
6688
6689 enum exec_direction_kind execution_direction = EXEC_FORWARD;
6690 static const char exec_forward[] = "forward";
6691 static const char exec_reverse[] = "reverse";
6692 static const char *exec_direction = exec_forward;
6693 static const char *exec_direction_names[] = {
6694 exec_forward,
6695 exec_reverse,
6696 NULL
6697 };
6698
6699 static void
6700 set_exec_direction_func (char *args, int from_tty,
6701 struct cmd_list_element *cmd)
6702 {
6703 if (target_can_execute_reverse)
6704 {
6705 if (!strcmp (exec_direction, exec_forward))
6706 execution_direction = EXEC_FORWARD;
6707 else if (!strcmp (exec_direction, exec_reverse))
6708 execution_direction = EXEC_REVERSE;
6709 }
6710 else
6711 {
6712 exec_direction = exec_forward;
6713 error (_("Target does not support this operation."));
6714 }
6715 }
6716
6717 static void
6718 show_exec_direction_func (struct ui_file *out, int from_tty,
6719 struct cmd_list_element *cmd, const char *value)
6720 {
6721 switch (execution_direction) {
6722 case EXEC_FORWARD:
6723 fprintf_filtered (out, _("Forward.\n"));
6724 break;
6725 case EXEC_REVERSE:
6726 fprintf_filtered (out, _("Reverse.\n"));
6727 break;
6728 case EXEC_ERROR:
6729 default:
6730 fprintf_filtered (out,
6731 _("Forward (target `%s' does not support exec-direction).\n"),
6732 target_shortname);
6733 break;
6734 }
6735 }
6736
6737 /* User interface for non-stop mode. */
6738
6739 int non_stop = 0;
6740
6741 static void
6742 set_non_stop (char *args, int from_tty,
6743 struct cmd_list_element *c)
6744 {
6745 if (target_has_execution)
6746 {
6747 non_stop_1 = non_stop;
6748 error (_("Cannot change this setting while the inferior is running."));
6749 }
6750
6751 non_stop = non_stop_1;
6752 }
6753
6754 static void
6755 show_non_stop (struct ui_file *file, int from_tty,
6756 struct cmd_list_element *c, const char *value)
6757 {
6758 fprintf_filtered (file,
6759 _("Controlling the inferior in non-stop mode is %s.\n"),
6760 value);
6761 }
6762
6763 static void
6764 show_schedule_multiple (struct ui_file *file, int from_tty,
6765 struct cmd_list_element *c, const char *value)
6766 {
6767 fprintf_filtered (file, _("\
6768 Resuming the execution of threads of all processes is %s.\n"), value);
6769 }
6770
6771 void
6772 _initialize_infrun (void)
6773 {
6774 int i;
6775 int numsigs;
6776
6777 add_info ("signals", signals_info, _("\
6778 What debugger does when program gets various signals.\n\
6779 Specify a signal as argument to print info on that signal only."));
6780 add_info_alias ("handle", "signals", 0);
6781
6782 add_com ("handle", class_run, handle_command, _("\
6783 Specify how to handle a signal.\n\
6784 Args are signals and actions to apply to those signals.\n\
6785 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6786 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6787 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6788 The special arg \"all\" is recognized to mean all signals except those\n\
6789 used by the debugger, typically SIGTRAP and SIGINT.\n\
6790 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6791 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6792 Stop means reenter debugger if this signal happens (implies print).\n\
6793 Print means print a message if this signal happens.\n\
6794 Pass means let program see this signal; otherwise program doesn't know.\n\
6795 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6796 Pass and Stop may be combined."));
6797 if (xdb_commands)
6798 {
6799 add_com ("lz", class_info, signals_info, _("\
6800 What debugger does when program gets various signals.\n\
6801 Specify a signal as argument to print info on that signal only."));
6802 add_com ("z", class_run, xdb_handle_command, _("\
6803 Specify how to handle a signal.\n\
6804 Args are signals and actions to apply to those signals.\n\
6805 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6806 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6807 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6808 The special arg \"all\" is recognized to mean all signals except those\n\
6809 used by the debugger, typically SIGTRAP and SIGINT.\n\
6810 Recognized actions include \"s\" (toggles between stop and nostop),\n\
6811 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6812 nopass), \"Q\" (noprint)\n\
6813 Stop means reenter debugger if this signal happens (implies print).\n\
6814 Print means print a message if this signal happens.\n\
6815 Pass means let program see this signal; otherwise program doesn't know.\n\
6816 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6817 Pass and Stop may be combined."));
6818 }
6819
6820 if (!dbx_commands)
6821 stop_command = add_cmd ("stop", class_obscure,
6822 not_just_help_class_command, _("\
6823 There is no `stop' command, but you can set a hook on `stop'.\n\
6824 This allows you to set a list of commands to be run each time execution\n\
6825 of the program stops."), &cmdlist);
6826
6827 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6828 Set inferior debugging."), _("\
6829 Show inferior debugging."), _("\
6830 When non-zero, inferior specific debugging is enabled."),
6831 NULL,
6832 show_debug_infrun,
6833 &setdebuglist, &showdebuglist);
6834
6835 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
6836 Set displaced stepping debugging."), _("\
6837 Show displaced stepping debugging."), _("\
6838 When non-zero, displaced stepping specific debugging is enabled."),
6839 NULL,
6840 show_debug_displaced,
6841 &setdebuglist, &showdebuglist);
6842
6843 add_setshow_boolean_cmd ("non-stop", no_class,
6844 &non_stop_1, _("\
6845 Set whether gdb controls the inferior in non-stop mode."), _("\
6846 Show whether gdb controls the inferior in non-stop mode."), _("\
6847 When debugging a multi-threaded program and this setting is\n\
6848 off (the default, also called all-stop mode), when one thread stops\n\
6849 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6850 all other threads in the program while you interact with the thread of\n\
6851 interest. When you continue or step a thread, you can allow the other\n\
6852 threads to run, or have them remain stopped, but while you inspect any\n\
6853 thread's state, all threads stop.\n\
6854 \n\
6855 In non-stop mode, when one thread stops, other threads can continue\n\
6856 to run freely. You'll be able to step each thread independently,\n\
6857 leave it stopped or free to run as needed."),
6858 set_non_stop,
6859 show_non_stop,
6860 &setlist,
6861 &showlist);
6862
6863 numsigs = (int) TARGET_SIGNAL_LAST;
6864 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
6865 signal_print = (unsigned char *)
6866 xmalloc (sizeof (signal_print[0]) * numsigs);
6867 signal_program = (unsigned char *)
6868 xmalloc (sizeof (signal_program[0]) * numsigs);
6869 for (i = 0; i < numsigs; i++)
6870 {
6871 signal_stop[i] = 1;
6872 signal_print[i] = 1;
6873 signal_program[i] = 1;
6874 }
6875
6876 /* Signals caused by debugger's own actions
6877 should not be given to the program afterwards. */
6878 signal_program[TARGET_SIGNAL_TRAP] = 0;
6879 signal_program[TARGET_SIGNAL_INT] = 0;
6880
6881 /* Signals that are not errors should not normally enter the debugger. */
6882 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6883 signal_print[TARGET_SIGNAL_ALRM] = 0;
6884 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6885 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6886 signal_stop[TARGET_SIGNAL_PROF] = 0;
6887 signal_print[TARGET_SIGNAL_PROF] = 0;
6888 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6889 signal_print[TARGET_SIGNAL_CHLD] = 0;
6890 signal_stop[TARGET_SIGNAL_IO] = 0;
6891 signal_print[TARGET_SIGNAL_IO] = 0;
6892 signal_stop[TARGET_SIGNAL_POLL] = 0;
6893 signal_print[TARGET_SIGNAL_POLL] = 0;
6894 signal_stop[TARGET_SIGNAL_URG] = 0;
6895 signal_print[TARGET_SIGNAL_URG] = 0;
6896 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6897 signal_print[TARGET_SIGNAL_WINCH] = 0;
6898
6899 /* These signals are used internally by user-level thread
6900 implementations. (See signal(5) on Solaris.) Like the above
6901 signals, a healthy program receives and handles them as part of
6902 its normal operation. */
6903 signal_stop[TARGET_SIGNAL_LWP] = 0;
6904 signal_print[TARGET_SIGNAL_LWP] = 0;
6905 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6906 signal_print[TARGET_SIGNAL_WAITING] = 0;
6907 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6908 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6909
6910 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6911 &stop_on_solib_events, _("\
6912 Set stopping for shared library events."), _("\
6913 Show stopping for shared library events."), _("\
6914 If nonzero, gdb will give control to the user when the dynamic linker\n\
6915 notifies gdb of shared library events. The most common event of interest\n\
6916 to the user would be loading/unloading of a new library."),
6917 NULL,
6918 show_stop_on_solib_events,
6919 &setlist, &showlist);
6920
6921 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6922 follow_fork_mode_kind_names,
6923 &follow_fork_mode_string, _("\
6924 Set debugger response to a program call of fork or vfork."), _("\
6925 Show debugger response to a program call of fork or vfork."), _("\
6926 A fork or vfork creates a new process. follow-fork-mode can be:\n\
6927 parent - the original process is debugged after a fork\n\
6928 child - the new process is debugged after a fork\n\
6929 The unfollowed process will continue to run.\n\
6930 By default, the debugger will follow the parent process."),
6931 NULL,
6932 show_follow_fork_mode_string,
6933 &setlist, &showlist);
6934
6935 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6936 follow_exec_mode_names,
6937 &follow_exec_mode_string, _("\
6938 Set debugger response to a program call of exec."), _("\
6939 Show debugger response to a program call of exec."), _("\
6940 An exec call replaces the program image of a process.\n\
6941 \n\
6942 follow-exec-mode can be:\n\
6943 \n\
6944 new - the debugger creates a new inferior and rebinds the process\n\
6945 to this new inferior. The program the process was running before\n\
6946 the exec call can be restarted afterwards by restarting the original\n\
6947 inferior.\n\
6948 \n\
6949 same - the debugger keeps the process bound to the same inferior.\n\
6950 The new executable image replaces the previous executable loaded in\n\
6951 the inferior. Restarting the inferior after the exec call restarts\n\
6952 the executable the process was running after the exec call.\n\
6953 \n\
6954 By default, the debugger will use the same inferior."),
6955 NULL,
6956 show_follow_exec_mode_string,
6957 &setlist, &showlist);
6958
6959 add_setshow_enum_cmd ("scheduler-locking", class_run,
6960 scheduler_enums, &scheduler_mode, _("\
6961 Set mode for locking scheduler during execution."), _("\
6962 Show mode for locking scheduler during execution."), _("\
6963 off == no locking (threads may preempt at any time)\n\
6964 on == full locking (no thread except the current thread may run)\n\
6965 step == scheduler locked during every single-step operation.\n\
6966 In this mode, no other thread may run during a step command.\n\
6967 Other threads may run while stepping over a function call ('next')."),
6968 set_schedlock_func, /* traps on target vector */
6969 show_scheduler_mode,
6970 &setlist, &showlist);
6971
6972 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6973 Set mode for resuming threads of all processes."), _("\
6974 Show mode for resuming threads of all processes."), _("\
6975 When on, execution commands (such as 'continue' or 'next') resume all\n\
6976 threads of all processes. When off (which is the default), execution\n\
6977 commands only resume the threads of the current process. The set of\n\
6978 threads that are resumed is further refined by the scheduler-locking\n\
6979 mode (see help set scheduler-locking)."),
6980 NULL,
6981 show_schedule_multiple,
6982 &setlist, &showlist);
6983
6984 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6985 Set mode of the step operation."), _("\
6986 Show mode of the step operation."), _("\
6987 When set, doing a step over a function without debug line information\n\
6988 will stop at the first instruction of that function. Otherwise, the\n\
6989 function is skipped and the step command stops at a different source line."),
6990 NULL,
6991 show_step_stop_if_no_debug,
6992 &setlist, &showlist);
6993
6994 add_setshow_enum_cmd ("displaced-stepping", class_run,
6995 can_use_displaced_stepping_enum,
6996 &can_use_displaced_stepping, _("\
6997 Set debugger's willingness to use displaced stepping."), _("\
6998 Show debugger's willingness to use displaced stepping."), _("\
6999 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7000 supported by the target architecture. If off, gdb will not use displaced\n\
7001 stepping to step over breakpoints, even if such is supported by the target\n\
7002 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7003 if the target architecture supports it and non-stop mode is active, but will not\n\
7004 use it in all-stop mode (see help set non-stop)."),
7005 NULL,
7006 show_can_use_displaced_stepping,
7007 &setlist, &showlist);
7008
7009 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7010 &exec_direction, _("Set direction of execution.\n\
7011 Options are 'forward' or 'reverse'."),
7012 _("Show direction of execution (forward/reverse)."),
7013 _("Tells gdb whether to execute forward or backward."),
7014 set_exec_direction_func, show_exec_direction_func,
7015 &setlist, &showlist);
7016
7017 /* Set/show detach-on-fork: user-settable mode. */
7018
7019 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7020 Set whether gdb will detach the child of a fork."), _("\
7021 Show whether gdb will detach the child of a fork."), _("\
7022 Tells gdb whether to detach the child of a fork."),
7023 NULL, NULL, &setlist, &showlist);
7024
7025 /* ptid initializations */
7026 null_ptid = ptid_build (0, 0, 0);
7027 minus_one_ptid = ptid_build (-1, 0, 0);
7028 inferior_ptid = null_ptid;
7029 target_last_wait_ptid = minus_one_ptid;
7030
7031 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7032 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7033 observer_attach_thread_exit (infrun_thread_thread_exit);
7034 observer_attach_inferior_exit (infrun_inferior_exit);
7035
7036 /* Explicitly create without lookup, since that tries to create a
7037 value with a void typed value, and when we get here, gdbarch
7038 isn't initialized yet. At this point, we're quite sure there
7039 isn't another convenience variable of the same name. */
7040 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7041
7042 add_setshow_boolean_cmd ("observer", no_class,
7043 &observer_mode_1, _("\
7044 Set whether gdb controls the inferior in observer mode."), _("\
7045 Show whether gdb controls the inferior in observer mode."), _("\
7046 In observer mode, GDB can get data from the inferior, but not\n\
7047 affect its execution. Registers and memory may not be changed,\n\
7048 breakpoints may not be set, and the program cannot be interrupted\n\
7049 or signalled."),
7050 set_observer_mode,
7051 show_observer_mode,
7052 &setlist,
7053 &showlist);
7054 }
This page took 0.176579 seconds and 4 git commands to generate.