* gdb.base/a1-selftest.exp: Change initial stepping to know about
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "thread.h"
33 #include "annotate.h"
34
35 #include <signal.h>
36
37 /* unistd.h is needed to #define X_OK */
38 #ifdef USG
39 #include <unistd.h>
40 #else
41 #include <sys/file.h>
42 #endif
43
44 /* Prototypes for local functions */
45
46 static void
47 signals_info PARAMS ((char *, int));
48
49 static void
50 handle_command PARAMS ((char *, int));
51
52 static void sig_print_info PARAMS ((enum target_signal));
53
54 static void
55 sig_print_header PARAMS ((void));
56
57 static void
58 resume_cleanups PARAMS ((int));
59
60 static int
61 hook_stop_stub PARAMS ((char *));
62
63 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
64 program. It needs to examine the jmp_buf argument and extract the PC
65 from it. The return value is non-zero on success, zero otherwise. */
66 #ifndef GET_LONGJMP_TARGET
67 #define GET_LONGJMP_TARGET(PC_ADDR) 0
68 #endif
69
70
71 /* Some machines have trampoline code that sits between function callers
72 and the actual functions themselves. If this machine doesn't have
73 such things, disable their processing. */
74 #ifndef SKIP_TRAMPOLINE_CODE
75 #define SKIP_TRAMPOLINE_CODE(pc) 0
76 #endif
77
78 /* For SVR4 shared libraries, each call goes through a small piece of
79 trampoline code in the ".plt" section. IN_SOLIB_TRAMPOLINE evaluates
80 to nonzero if we are current stopped in one of these. */
81 #ifndef IN_SOLIB_TRAMPOLINE
82 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
83 #endif
84
85 /* On some systems, the PC may be left pointing at an instruction that won't
86 actually be executed. This is usually indicated by a bit in the PSW. If
87 we find ourselves in such a state, then we step the target beyond the
88 nullified instruction before returning control to the user so as to avoid
89 confusion. */
90
91 #ifndef INSTRUCTION_NULLIFIED
92 #define INSTRUCTION_NULLIFIED 0
93 #endif
94
95 /* Tables of how to react to signals; the user sets them. */
96
97 static unsigned char *signal_stop;
98 static unsigned char *signal_print;
99 static unsigned char *signal_program;
100
101 #define SET_SIGS(nsigs,sigs,flags) \
102 do { \
103 int signum = (nsigs); \
104 while (signum-- > 0) \
105 if ((sigs)[signum]) \
106 (flags)[signum] = 1; \
107 } while (0)
108
109 #define UNSET_SIGS(nsigs,sigs,flags) \
110 do { \
111 int signum = (nsigs); \
112 while (signum-- > 0) \
113 if ((sigs)[signum]) \
114 (flags)[signum] = 0; \
115 } while (0)
116
117
118 /* Command list pointer for the "stop" placeholder. */
119
120 static struct cmd_list_element *stop_command;
121
122 /* Nonzero if breakpoints are now inserted in the inferior. */
123
124 static int breakpoints_inserted;
125
126 /* Function inferior was in as of last step command. */
127
128 static struct symbol *step_start_function;
129
130 /* Nonzero if we are expecting a trace trap and should proceed from it. */
131
132 static int trap_expected;
133
134 /* Nonzero if the next time we try to continue the inferior, it will
135 step one instruction and generate a spurious trace trap.
136 This is used to compensate for a bug in HP-UX. */
137
138 static int trap_expected_after_continue;
139
140 /* Nonzero means expecting a trace trap
141 and should stop the inferior and return silently when it happens. */
142
143 int stop_after_trap;
144
145 /* Nonzero means expecting a trap and caller will handle it themselves.
146 It is used after attach, due to attaching to a process;
147 when running in the shell before the child program has been exec'd;
148 and when running some kinds of remote stuff (FIXME?). */
149
150 int stop_soon_quietly;
151
152 /* Nonzero if proceed is being used for a "finish" command or a similar
153 situation when stop_registers should be saved. */
154
155 int proceed_to_finish;
156
157 /* Save register contents here when about to pop a stack dummy frame,
158 if-and-only-if proceed_to_finish is set.
159 Thus this contains the return value from the called function (assuming
160 values are returned in a register). */
161
162 char stop_registers[REGISTER_BYTES];
163
164 /* Nonzero if program stopped due to error trying to insert breakpoints. */
165
166 static int breakpoints_failed;
167
168 /* Nonzero after stop if current stack frame should be printed. */
169
170 static int stop_print_frame;
171
172 #ifdef NO_SINGLE_STEP
173 extern int one_stepped; /* From machine dependent code */
174 extern void single_step (); /* Same. */
175 #endif /* NO_SINGLE_STEP */
176
177 \f
178 /* Things to clean up if we QUIT out of resume (). */
179 /* ARGSUSED */
180 static void
181 resume_cleanups (arg)
182 int arg;
183 {
184 normal_stop ();
185 }
186
187 /* Resume the inferior, but allow a QUIT. This is useful if the user
188 wants to interrupt some lengthy single-stepping operation
189 (for child processes, the SIGINT goes to the inferior, and so
190 we get a SIGINT random_signal, but for remote debugging and perhaps
191 other targets, that's not true).
192
193 STEP nonzero if we should step (zero to continue instead).
194 SIG is the signal to give the inferior (zero for none). */
195 void
196 resume (step, sig)
197 int step;
198 enum target_signal sig;
199 {
200 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
201 QUIT;
202
203 #ifdef CANNOT_STEP_BREAKPOINT
204 /* Most targets can step a breakpoint instruction, thus executing it
205 normally. But if this one cannot, just continue and we will hit
206 it anyway. */
207 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
208 step = 0;
209 #endif
210
211 #ifdef NO_SINGLE_STEP
212 if (step) {
213 single_step(sig); /* Do it the hard way, w/temp breakpoints */
214 step = 0; /* ...and don't ask hardware to do it. */
215 }
216 #endif
217
218 /* Handle any optimized stores to the inferior NOW... */
219 #ifdef DO_DEFERRED_STORES
220 DO_DEFERRED_STORES;
221 #endif
222
223 /* Install inferior's terminal modes. */
224 target_terminal_inferior ();
225
226 target_resume (-1, step, sig);
227 discard_cleanups (old_cleanups);
228 }
229
230 \f
231 /* Clear out all variables saying what to do when inferior is continued.
232 First do this, then set the ones you want, then call `proceed'. */
233
234 void
235 clear_proceed_status ()
236 {
237 trap_expected = 0;
238 step_range_start = 0;
239 step_range_end = 0;
240 step_frame_address = 0;
241 step_over_calls = -1;
242 stop_after_trap = 0;
243 stop_soon_quietly = 0;
244 proceed_to_finish = 0;
245 breakpoint_proceeded = 1; /* We're about to proceed... */
246
247 /* Discard any remaining commands or status from previous stop. */
248 bpstat_clear (&stop_bpstat);
249 }
250
251 /* Basic routine for continuing the program in various fashions.
252
253 ADDR is the address to resume at, or -1 for resume where stopped.
254 SIGGNAL is the signal to give it, or 0 for none,
255 or -1 for act according to how it stopped.
256 STEP is nonzero if should trap after one instruction.
257 -1 means return after that and print nothing.
258 You should probably set various step_... variables
259 before calling here, if you are stepping.
260
261 You should call clear_proceed_status before calling proceed. */
262
263 void
264 proceed (addr, siggnal, step)
265 CORE_ADDR addr;
266 enum target_signal siggnal;
267 int step;
268 {
269 int oneproc = 0;
270
271 if (step > 0)
272 step_start_function = find_pc_function (read_pc ());
273 if (step < 0)
274 stop_after_trap = 1;
275
276 if (addr == (CORE_ADDR)-1)
277 {
278 /* If there is a breakpoint at the address we will resume at,
279 step one instruction before inserting breakpoints
280 so that we do not stop right away. */
281
282 if (breakpoint_here_p (read_pc ()))
283 oneproc = 1;
284
285 #ifdef STEP_SKIPS_DELAY
286 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
287 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
288 is slow (it needs to read memory from the target). */
289 if (breakpoint_here_p (read_pc () + 4)
290 && STEP_SKIPS_DELAY (read_pc ()))
291 oneproc = 1;
292 #endif /* STEP_SKIPS_DELAY */
293 }
294 else
295 write_pc (addr);
296
297 #ifdef PREPARE_TO_PROCEED
298 /* In a multi-threaded task we may select another thread and then continue.
299
300 In this case the thread that stopped at a breakpoint will immediately
301 cause another stop, if it is not stepped over first. On the other hand,
302 if (ADDR != -1) we only want to single step over the breakpoint if we did
303 switch to another thread.
304
305 If we are single stepping, don't do any of the above.
306 (Note that in the current implementation single stepping another
307 thread after a breakpoint and then continuing will cause the original
308 breakpoint to be hit again, but you can always continue, so it's not
309 a big deal.) */
310
311 if (! step && PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
312 oneproc = 1;
313 #endif /* PREPARE_TO_PROCEED */
314
315 if (trap_expected_after_continue)
316 {
317 /* If (step == 0), a trap will be automatically generated after
318 the first instruction is executed. Force step one
319 instruction to clear this condition. This should not occur
320 if step is nonzero, but it is harmless in that case. */
321 oneproc = 1;
322 trap_expected_after_continue = 0;
323 }
324
325 if (oneproc)
326 /* We will get a trace trap after one instruction.
327 Continue it automatically and insert breakpoints then. */
328 trap_expected = 1;
329 else
330 {
331 int temp = insert_breakpoints ();
332 if (temp)
333 {
334 print_sys_errmsg ("ptrace", temp);
335 error ("Cannot insert breakpoints.\n\
336 The same program may be running in another process.");
337 }
338 breakpoints_inserted = 1;
339 }
340
341 if (siggnal != TARGET_SIGNAL_DEFAULT)
342 stop_signal = siggnal;
343 /* If this signal should not be seen by program,
344 give it zero. Used for debugging signals. */
345 else if (!signal_program[stop_signal])
346 stop_signal = TARGET_SIGNAL_0;
347
348 annotate_starting ();
349
350 /* Resume inferior. */
351 resume (oneproc || step || bpstat_should_step (), stop_signal);
352
353 /* Wait for it to stop (if not standalone)
354 and in any case decode why it stopped, and act accordingly. */
355
356 wait_for_inferior ();
357 normal_stop ();
358 }
359
360 /* Record the pc and sp of the program the last time it stopped.
361 These are just used internally by wait_for_inferior, but need
362 to be preserved over calls to it and cleared when the inferior
363 is started. */
364 static CORE_ADDR prev_pc;
365 static CORE_ADDR prev_func_start;
366 static char *prev_func_name;
367
368 \f
369 /* Start remote-debugging of a machine over a serial link. */
370
371 void
372 start_remote ()
373 {
374 init_wait_for_inferior ();
375 clear_proceed_status ();
376 stop_soon_quietly = 1;
377 trap_expected = 0;
378 wait_for_inferior ();
379 normal_stop ();
380 }
381
382 /* Initialize static vars when a new inferior begins. */
383
384 void
385 init_wait_for_inferior ()
386 {
387 /* These are meaningless until the first time through wait_for_inferior. */
388 prev_pc = 0;
389 prev_func_start = 0;
390 prev_func_name = NULL;
391
392 trap_expected_after_continue = 0;
393 breakpoints_inserted = 0;
394 breakpoint_init_inferior ();
395
396 /* Don't confuse first call to proceed(). */
397 stop_signal = TARGET_SIGNAL_0;
398 }
399
400 static void
401 delete_breakpoint_current_contents (arg)
402 PTR arg;
403 {
404 struct breakpoint **breakpointp = (struct breakpoint **)arg;
405 if (*breakpointp != NULL)
406 delete_breakpoint (*breakpointp);
407 }
408 \f
409 /* Wait for control to return from inferior to debugger.
410 If inferior gets a signal, we may decide to start it up again
411 instead of returning. That is why there is a loop in this function.
412 When this function actually returns it means the inferior
413 should be left stopped and GDB should read more commands. */
414
415 void
416 wait_for_inferior ()
417 {
418 struct cleanup *old_cleanups;
419 struct target_waitstatus w;
420 int another_trap;
421 int random_signal;
422 CORE_ADDR stop_func_start;
423 CORE_ADDR stop_func_end;
424 char *stop_func_name;
425 CORE_ADDR prologue_pc = 0, tmp;
426 struct symtab_and_line sal;
427 int remove_breakpoints_on_following_step = 0;
428 int current_line;
429 struct symtab *current_symtab;
430 int handling_longjmp = 0; /* FIXME */
431 struct breakpoint *step_resume_breakpoint = NULL;
432 struct breakpoint *through_sigtramp_breakpoint = NULL;
433 int pid;
434 int update_step_sp = 0;
435
436 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
437 &step_resume_breakpoint);
438 make_cleanup (delete_breakpoint_current_contents,
439 &through_sigtramp_breakpoint);
440 sal = find_pc_line(prev_pc, 0);
441 current_line = sal.line;
442 current_symtab = sal.symtab;
443
444 /* Are we stepping? */
445 #define CURRENTLY_STEPPING() \
446 ((through_sigtramp_breakpoint == NULL \
447 && !handling_longjmp \
448 && ((step_range_end && step_resume_breakpoint == NULL) \
449 || trap_expected)) \
450 || bpstat_should_step ())
451
452 while (1)
453 {
454 /* We have to invalidate the registers BEFORE calling target_wait because
455 they can be loaded from the target while in target_wait. This makes
456 remote debugging a bit more efficient for those targets that provide
457 critical registers as part of their normal status mechanism. */
458
459 registers_changed ();
460
461 if (target_wait_hook)
462 pid = target_wait_hook (-1, &w);
463 else
464 pid = target_wait (-1, &w);
465
466 flush_cached_frames ();
467
468 /* If it's a new process, add it to the thread database */
469
470 if (pid != inferior_pid
471 && !in_thread_list (pid))
472 {
473 fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid));
474 add_thread (pid);
475
476 /* We may want to consider not doing a resume here in order to give
477 the user a chance to play with the new thread. It might be good
478 to make that a user-settable option. */
479
480 /* At this point, all threads are stopped (happens automatically in
481 either the OS or the native code). Therefore we need to continue
482 all threads in order to make progress. */
483
484 target_resume (-1, 0, TARGET_SIGNAL_0);
485 continue;
486 }
487
488 switch (w.kind)
489 {
490 case TARGET_WAITKIND_LOADED:
491 /* Ignore it gracefully. */
492 if (breakpoints_inserted)
493 {
494 mark_breakpoints_out ();
495 insert_breakpoints ();
496 }
497 resume (0, TARGET_SIGNAL_0);
498 continue;
499
500 case TARGET_WAITKIND_SPURIOUS:
501 resume (0, TARGET_SIGNAL_0);
502 continue;
503
504 case TARGET_WAITKIND_EXITED:
505 target_terminal_ours (); /* Must do this before mourn anyway */
506 annotate_exited (w.value.integer);
507 if (w.value.integer)
508 printf_filtered ("\nProgram exited with code 0%o.\n",
509 (unsigned int)w.value.integer);
510 else
511 printf_filtered ("\nProgram exited normally.\n");
512 gdb_flush (gdb_stdout);
513 target_mourn_inferior ();
514 #ifdef NO_SINGLE_STEP
515 one_stepped = 0;
516 #endif
517 stop_print_frame = 0;
518 goto stop_stepping;
519
520 case TARGET_WAITKIND_SIGNALLED:
521 stop_print_frame = 0;
522 stop_signal = w.value.sig;
523 target_terminal_ours (); /* Must do this before mourn anyway */
524 annotate_signalled ();
525 target_kill (); /* kill mourns as well */
526 printf_filtered ("\nProgram terminated with signal ");
527 annotate_signal_name ();
528 printf_filtered ("%s", target_signal_to_name (stop_signal));
529 annotate_signal_name_end ();
530 printf_filtered (", ");
531 annotate_signal_string ();
532 printf_filtered ("%s", target_signal_to_string (stop_signal));
533 annotate_signal_string_end ();
534 printf_filtered (".\n");
535
536 printf_filtered ("The program no longer exists.\n");
537 gdb_flush (gdb_stdout);
538 #ifdef NO_SINGLE_STEP
539 one_stepped = 0;
540 #endif
541 goto stop_stepping;
542
543 case TARGET_WAITKIND_STOPPED:
544 /* This is the only case in which we keep going; the above cases
545 end in a continue or goto. */
546 break;
547 }
548
549 stop_signal = w.value.sig;
550
551 stop_pc = read_pc_pid (pid);
552
553 /* See if a thread hit a thread-specific breakpoint that was meant for
554 another thread. If so, then step that thread past the breakpoint,
555 and continue it. */
556
557 if (stop_signal == TARGET_SIGNAL_TRAP
558 && breakpoints_inserted
559 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
560 {
561 random_signal = 0;
562 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid))
563 {
564 /* Saw a breakpoint, but it was hit by the wrong thread. Just continue. */
565 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
566
567 remove_breakpoints ();
568 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
569 /* FIXME: What if a signal arrives instead of the single-step
570 happening? */
571
572 if (target_wait_hook)
573 target_wait_hook (pid, &w);
574 else
575 target_wait (pid, &w);
576 insert_breakpoints ();
577 target_resume (pid, 0, TARGET_SIGNAL_0);
578 continue;
579 }
580 }
581 else
582 random_signal = 1;
583
584 /* See if something interesting happened to the non-current thread. If
585 so, then switch to that thread, and eventually give control back to
586 the user. */
587
588 if (pid != inferior_pid)
589 {
590 int printed = 0;
591
592 /* If it's a random signal for a non-current thread, notify user
593 if he's expressed an interest. */
594
595 if (random_signal
596 && signal_print[stop_signal])
597 {
598 printed = 1;
599 target_terminal_ours_for_output ();
600 printf_filtered ("\nProgram received signal %s, %s.\n",
601 target_signal_to_name (stop_signal),
602 target_signal_to_string (stop_signal));
603 gdb_flush (gdb_stdout);
604 }
605
606 /* If it's not SIGTRAP and not a signal we want to stop for, then
607 continue the thread. */
608
609 if (stop_signal != TARGET_SIGNAL_TRAP
610 && !signal_stop[stop_signal])
611 {
612 if (printed)
613 target_terminal_inferior ();
614
615 /* Clear the signal if it should not be passed. */
616 if (signal_program[stop_signal] == 0)
617 stop_signal = TARGET_SIGNAL_0;
618
619 target_resume (pid, 0, stop_signal);
620 continue;
621 }
622
623 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
624 and fall into the rest of wait_for_inferior(). */
625
626 inferior_pid = pid;
627 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
628
629 flush_cached_frames ();
630 trap_expected = 0;
631 if (step_resume_breakpoint)
632 {
633 delete_breakpoint (step_resume_breakpoint);
634 step_resume_breakpoint = NULL;
635 }
636
637 /* Not sure whether we need to blow this away too,
638 but probably it is like the step-resume
639 breakpoint. */
640 if (through_sigtramp_breakpoint)
641 {
642 delete_breakpoint (through_sigtramp_breakpoint);
643 through_sigtramp_breakpoint = NULL;
644 }
645 prev_pc = 0;
646 prev_func_name = NULL;
647 step_range_start = 0;
648 step_range_end = 0;
649 step_frame_address = 0;
650 handling_longjmp = 0;
651 another_trap = 0;
652 }
653
654 #ifdef NO_SINGLE_STEP
655 if (one_stepped)
656 single_step (0); /* This actually cleans up the ss */
657 #endif /* NO_SINGLE_STEP */
658
659 /* If PC is pointing at a nullified instruction, then step beyond
660 it so that the user won't be confused when GDB appears to be ready
661 to execute it. */
662
663 if (INSTRUCTION_NULLIFIED)
664 {
665 resume (1, 0);
666 continue;
667 }
668
669 #ifdef HAVE_STEPPABLE_WATCHPOINT
670 /* It may not be necessary to disable the watchpoint to stop over
671 it. For example, the PA can (with some kernel cooperation)
672 single step over a watchpoint without disabling the watchpoint. */
673 if (STOPPED_BY_WATCHPOINT (w))
674 {
675 resume (1, 0);
676 continue;
677 }
678 #endif
679
680 #ifdef HAVE_NONSTEPPABLE_WATCHPOINT
681 /* It is far more common to need to disable a watchpoint
682 to step the inferior over it. FIXME. What else might
683 a debug register or page protection watchpoint scheme need
684 here? */
685 if (STOPPED_BY_WATCHPOINT (w))
686 {
687 remove_breakpoints ();
688 resume (1, 0);
689
690 /* FIXME: This is bogus. You can't interact with the
691 inferior except when it is stopped. It apparently
692 happens to work on Irix4, but it depends on /proc
693 allowing us to muck with the memory of a running process,
694 and the kernel deciding to run one instruction of the
695 inferior before it executes our insert_breakpoints code,
696 which seems like an awfully dubious assumption. */
697 insert_breakpoints ();
698
699 continue;
700 }
701 #endif
702
703 #ifdef HAVE_CONTINUABLE_WATCHPOINT
704 /* It may be possible to simply continue after a watchpoint. */
705 STOPPED_BY_WATCHPOINT (w);
706 #endif
707
708 stop_func_start = 0;
709 stop_func_name = 0;
710 /* Don't care about return value; stop_func_start and stop_func_name
711 will both be 0 if it doesn't work. */
712 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
713 &stop_func_end);
714 stop_func_start += FUNCTION_START_OFFSET;
715 another_trap = 0;
716 bpstat_clear (&stop_bpstat);
717 stop_step = 0;
718 stop_stack_dummy = 0;
719 stop_print_frame = 1;
720 random_signal = 0;
721 stopped_by_random_signal = 0;
722 breakpoints_failed = 0;
723
724 /* Look at the cause of the stop, and decide what to do.
725 The alternatives are:
726 1) break; to really stop and return to the debugger,
727 2) drop through to start up again
728 (set another_trap to 1 to single step once)
729 3) set random_signal to 1, and the decision between 1 and 2
730 will be made according to the signal handling tables. */
731
732 /* First, distinguish signals caused by the debugger from signals
733 that have to do with the program's own actions.
734 Note that breakpoint insns may cause SIGTRAP or SIGILL
735 or SIGEMT, depending on the operating system version.
736 Here we detect when a SIGILL or SIGEMT is really a breakpoint
737 and change it to SIGTRAP. */
738
739 if (stop_signal == TARGET_SIGNAL_TRAP
740 || (breakpoints_inserted &&
741 (stop_signal == TARGET_SIGNAL_ILL
742 || stop_signal == TARGET_SIGNAL_EMT
743 ))
744 || stop_soon_quietly)
745 {
746 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
747 {
748 stop_print_frame = 0;
749 break;
750 }
751 if (stop_soon_quietly)
752 break;
753
754 /* Don't even think about breakpoints
755 if just proceeded over a breakpoint.
756
757 However, if we are trying to proceed over a breakpoint
758 and end up in sigtramp, then through_sigtramp_breakpoint
759 will be set and we should check whether we've hit the
760 step breakpoint. */
761 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
762 && through_sigtramp_breakpoint == NULL)
763 bpstat_clear (&stop_bpstat);
764 else
765 {
766 /* See if there is a breakpoint at the current PC. */
767 stop_bpstat = bpstat_stop_status
768 (&stop_pc,
769 #if DECR_PC_AFTER_BREAK
770 /* Notice the case of stepping through a jump
771 that lands just after a breakpoint.
772 Don't confuse that with hitting the breakpoint.
773 What we check for is that 1) stepping is going on
774 and 2) the pc before the last insn does not match
775 the address of the breakpoint before the current pc. */
776 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
777 && CURRENTLY_STEPPING ())
778 #else /* DECR_PC_AFTER_BREAK zero */
779 0
780 #endif /* DECR_PC_AFTER_BREAK zero */
781 );
782 /* Following in case break condition called a
783 function. */
784 stop_print_frame = 1;
785 }
786
787 if (stop_signal == TARGET_SIGNAL_TRAP)
788 random_signal
789 = !(bpstat_explains_signal (stop_bpstat)
790 || trap_expected
791 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
792 || PC_IN_CALL_DUMMY (stop_pc, read_sp (),
793 FRAME_FP (get_current_frame ()))
794 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
795 || (step_range_end && step_resume_breakpoint == NULL));
796 else
797 {
798 random_signal
799 = !(bpstat_explains_signal (stop_bpstat)
800 /* End of a stack dummy. Some systems (e.g. Sony
801 news) give another signal besides SIGTRAP,
802 so check here as well as above. */
803 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
804 || PC_IN_CALL_DUMMY (stop_pc, read_sp (),
805 FRAME_FP (get_current_frame ()))
806 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
807 );
808 if (!random_signal)
809 stop_signal = TARGET_SIGNAL_TRAP;
810 }
811 }
812 else
813 random_signal = 1;
814
815 /* For the program's own signals, act according to
816 the signal handling tables. */
817
818 if (random_signal)
819 {
820 /* Signal not for debugging purposes. */
821 int printed = 0;
822
823 stopped_by_random_signal = 1;
824
825 if (signal_print[stop_signal])
826 {
827 printed = 1;
828 target_terminal_ours_for_output ();
829 annotate_signal ();
830 printf_filtered ("\nProgram received signal ");
831 annotate_signal_name ();
832 printf_filtered ("%s", target_signal_to_name (stop_signal));
833 annotate_signal_name_end ();
834 printf_filtered (", ");
835 annotate_signal_string ();
836 printf_filtered ("%s", target_signal_to_string (stop_signal));
837 annotate_signal_string_end ();
838 printf_filtered (".\n");
839 gdb_flush (gdb_stdout);
840 }
841 if (signal_stop[stop_signal])
842 break;
843 /* If not going to stop, give terminal back
844 if we took it away. */
845 else if (printed)
846 target_terminal_inferior ();
847
848 /* Clear the signal if it should not be passed. */
849 if (signal_program[stop_signal] == 0)
850 stop_signal = TARGET_SIGNAL_0;
851
852 /* I'm not sure whether this needs to be check_sigtramp2 or
853 whether it could/should be keep_going. */
854 goto check_sigtramp2;
855 }
856
857 /* Handle cases caused by hitting a breakpoint. */
858 {
859 CORE_ADDR jmp_buf_pc;
860 struct bpstat_what what;
861
862 what = bpstat_what (stop_bpstat);
863
864 if (what.call_dummy)
865 {
866 stop_stack_dummy = 1;
867 #ifdef HP_OS_BUG
868 trap_expected_after_continue = 1;
869 #endif
870 }
871
872 switch (what.main_action)
873 {
874 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
875 /* If we hit the breakpoint at longjmp, disable it for the
876 duration of this command. Then, install a temporary
877 breakpoint at the target of the jmp_buf. */
878 disable_longjmp_breakpoint();
879 remove_breakpoints ();
880 breakpoints_inserted = 0;
881 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
882
883 /* Need to blow away step-resume breakpoint, as it
884 interferes with us */
885 if (step_resume_breakpoint != NULL)
886 {
887 delete_breakpoint (step_resume_breakpoint);
888 step_resume_breakpoint = NULL;
889 }
890 /* Not sure whether we need to blow this away too, but probably
891 it is like the step-resume breakpoint. */
892 if (through_sigtramp_breakpoint != NULL)
893 {
894 delete_breakpoint (through_sigtramp_breakpoint);
895 through_sigtramp_breakpoint = NULL;
896 }
897
898 #if 0
899 /* FIXME - Need to implement nested temporary breakpoints */
900 if (step_over_calls > 0)
901 set_longjmp_resume_breakpoint(jmp_buf_pc,
902 get_current_frame());
903 else
904 #endif /* 0 */
905 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
906 handling_longjmp = 1; /* FIXME */
907 goto keep_going;
908
909 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
910 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
911 remove_breakpoints ();
912 breakpoints_inserted = 0;
913 #if 0
914 /* FIXME - Need to implement nested temporary breakpoints */
915 if (step_over_calls
916 && (FRAME_FP (get_current_frame ())
917 INNER_THAN step_frame_address))
918 {
919 another_trap = 1;
920 goto keep_going;
921 }
922 #endif /* 0 */
923 disable_longjmp_breakpoint();
924 handling_longjmp = 0; /* FIXME */
925 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
926 break;
927 /* else fallthrough */
928
929 case BPSTAT_WHAT_SINGLE:
930 if (breakpoints_inserted)
931 remove_breakpoints ();
932 breakpoints_inserted = 0;
933 another_trap = 1;
934 /* Still need to check other stuff, at least the case
935 where we are stepping and step out of the right range. */
936 break;
937
938 case BPSTAT_WHAT_STOP_NOISY:
939 stop_print_frame = 1;
940
941 /* We are about to nuke the step_resume_breakpoint and
942 through_sigtramp_breakpoint via the cleanup chain, so
943 no need to worry about it here. */
944
945 goto stop_stepping;
946
947 case BPSTAT_WHAT_STOP_SILENT:
948 stop_print_frame = 0;
949
950 /* We are about to nuke the step_resume_breakpoint and
951 through_sigtramp_breakpoint via the cleanup chain, so
952 no need to worry about it here. */
953
954 goto stop_stepping;
955
956 case BPSTAT_WHAT_STEP_RESUME:
957 delete_breakpoint (step_resume_breakpoint);
958 step_resume_breakpoint = NULL;
959 break;
960
961 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
962 if (through_sigtramp_breakpoint)
963 delete_breakpoint (through_sigtramp_breakpoint);
964 through_sigtramp_breakpoint = NULL;
965
966 /* If were waiting for a trap, hitting the step_resume_break
967 doesn't count as getting it. */
968 if (trap_expected)
969 another_trap = 1;
970 break;
971
972 case BPSTAT_WHAT_LAST:
973 /* Not a real code, but listed here to shut up gcc -Wall. */
974
975 case BPSTAT_WHAT_KEEP_CHECKING:
976 break;
977 }
978 }
979
980 /* We come here if we hit a breakpoint but should not
981 stop for it. Possibly we also were stepping
982 and should stop for that. So fall through and
983 test for stepping. But, if not stepping,
984 do not stop. */
985
986 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
987 /* This is the old way of detecting the end of the stack dummy.
988 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
989 handled above. As soon as we can test it on all of them, all
990 architectures should define it. */
991
992 /* If this is the breakpoint at the end of a stack dummy,
993 just stop silently, unless the user was doing an si/ni, in which
994 case she'd better know what she's doing. */
995
996 if (PC_IN_CALL_DUMMY (stop_pc, read_sp (), FRAME_FP (get_current_frame ()))
997 && !step_range_end)
998 {
999 stop_print_frame = 0;
1000 stop_stack_dummy = 1;
1001 #ifdef HP_OS_BUG
1002 trap_expected_after_continue = 1;
1003 #endif
1004 break;
1005 }
1006 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
1007
1008 if (step_resume_breakpoint)
1009 /* Having a step-resume breakpoint overrides anything
1010 else having to do with stepping commands until
1011 that breakpoint is reached. */
1012 /* I'm not sure whether this needs to be check_sigtramp2 or
1013 whether it could/should be keep_going. */
1014 goto check_sigtramp2;
1015
1016 if (step_range_end == 0)
1017 /* Likewise if we aren't even stepping. */
1018 /* I'm not sure whether this needs to be check_sigtramp2 or
1019 whether it could/should be keep_going. */
1020 goto check_sigtramp2;
1021
1022 /* If stepping through a line, keep going if still within it. */
1023 if (stop_pc >= step_range_start
1024 && stop_pc < step_range_end
1025 /* The step range might include the start of the
1026 function, so if we are at the start of the
1027 step range and either the stack or frame pointers
1028 just changed, we've stepped outside */
1029 && !(stop_pc == step_range_start
1030 && FRAME_FP (get_current_frame ())
1031 && (read_sp () INNER_THAN step_sp
1032 || FRAME_FP (get_current_frame ()) != step_frame_address)))
1033 {
1034 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
1035 So definately need to check for sigtramp here. */
1036 goto check_sigtramp2;
1037 }
1038
1039 /* We stepped out of the stepping range. */
1040
1041 /* We can't update step_sp every time through the loop, because
1042 reading the stack pointer would slow down stepping too much.
1043 But we can update it every time we leave the step range. */
1044 update_step_sp = 1;
1045
1046 /* Did we just take a signal? */
1047 if (IN_SIGTRAMP (stop_pc, stop_func_name)
1048 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1049 {
1050 /* We've just taken a signal; go until we are back to
1051 the point where we took it and one more. */
1052
1053 /* This code is needed at least in the following case:
1054 The user types "next" and then a signal arrives (before
1055 the "next" is done). */
1056
1057 /* Note that if we are stopped at a breakpoint, then we need
1058 the step_resume breakpoint to override any breakpoints at
1059 the same location, so that we will still step over the
1060 breakpoint even though the signal happened. */
1061
1062 {
1063 struct symtab_and_line sr_sal;
1064
1065 sr_sal.pc = prev_pc;
1066 sr_sal.symtab = NULL;
1067 sr_sal.line = 0;
1068 /* We could probably be setting the frame to
1069 step_frame_address; I don't think anyone thought to try it. */
1070 step_resume_breakpoint =
1071 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1072 if (breakpoints_inserted)
1073 insert_breakpoints ();
1074 }
1075
1076 /* If this is stepi or nexti, make sure that the stepping range
1077 gets us past that instruction. */
1078 if (step_range_end == 1)
1079 /* FIXME: Does this run afoul of the code below which, if
1080 we step into the middle of a line, resets the stepping
1081 range? */
1082 step_range_end = (step_range_start = prev_pc) + 1;
1083
1084 remove_breakpoints_on_following_step = 1;
1085 goto keep_going;
1086 }
1087
1088 #if 1
1089 /* See if we left the step range due to a subroutine call that
1090 we should proceed to the end of. */
1091
1092 if (stop_func_start)
1093 {
1094 struct symtab *s;
1095
1096 /* Do this after the IN_SIGTRAMP check; it might give
1097 an error. */
1098 prologue_pc = stop_func_start;
1099
1100 /* Don't skip the prologue if this is assembly source */
1101 s = find_pc_symtab (stop_pc);
1102 if (s && s->language != language_asm)
1103 SKIP_PROLOGUE (prologue_pc);
1104 }
1105
1106 if ((/* Might be a non-recursive call. If the symbols are missing
1107 enough that stop_func_start == prev_func_start even though
1108 they are really two functions, we will treat some calls as
1109 jumps. */
1110 stop_func_start != prev_func_start
1111
1112 /* Might be a recursive call if either we have a prologue
1113 or the call instruction itself saves the PC on the stack. */
1114 || prologue_pc != stop_func_start
1115 || read_sp () != step_sp)
1116 && (/* PC is completely out of bounds of any known objfiles. Treat
1117 like a subroutine call. */
1118 ! stop_func_start
1119
1120 /* If we do a call, we will be at the start of a function... */
1121 || stop_pc == stop_func_start
1122
1123 /* ...except on the Alpha with -O (and also Irix 5 and
1124 perhaps others), in which we might call the address
1125 after the load of gp. Since prologues don't contain
1126 calls, we can't return to within one, and we don't
1127 jump back into them, so this check is OK. */
1128
1129 || stop_pc < prologue_pc
1130
1131 /* ...and if it is a leaf function, the prologue might
1132 consist of gp loading only, so the call transfers to
1133 the first instruction after the prologue. */
1134 || (stop_pc == prologue_pc
1135
1136 /* Distinguish this from the case where we jump back
1137 to the first instruction after the prologue,
1138 within a function. */
1139 && stop_func_start != prev_func_start)
1140
1141 /* If we end up in certain places, it means we did a subroutine
1142 call. I'm not completely sure this is necessary now that we
1143 have the above checks with stop_func_start (and now that
1144 find_pc_partial_function is pickier). */
1145 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name)
1146
1147 /* If none of the above apply, it is a jump within a function,
1148 or a return from a subroutine. The other case is longjmp,
1149 which can no longer happen here as long as the
1150 handling_longjmp stuff is working. */
1151 ))
1152 #else
1153 /* This is experimental code which greatly simplifies the subroutine call
1154 test. I've actually tested on the Alpha, and it works great. -Stu */
1155
1156 if (in_prologue (stop_pc, NULL)
1157 || (prev_func_start != 0
1158 && stop_func_start == 0))
1159 #endif
1160 {
1161 /* It's a subroutine call. */
1162
1163 if (step_over_calls == 0)
1164 {
1165 /* I presume that step_over_calls is only 0 when we're
1166 supposed to be stepping at the assembly language level
1167 ("stepi"). Just stop. */
1168 stop_step = 1;
1169 break;
1170 }
1171
1172 if (step_over_calls > 0)
1173 /* We're doing a "next". */
1174 goto step_over_function;
1175
1176 /* If we are in a function call trampoline (a stub between
1177 the calling routine and the real function), locate the real
1178 function. That's what tells us (a) whether we want to step
1179 into it at all, and (b) what prologue we want to run to
1180 the end of, if we do step into it. */
1181 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1182 if (tmp != 0)
1183 stop_func_start = tmp;
1184
1185 /* If we have line number information for the function we
1186 are thinking of stepping into, step into it.
1187
1188 If there are several symtabs at that PC (e.g. with include
1189 files), just want to know whether *any* of them have line
1190 numbers. find_pc_line handles this. */
1191 {
1192 struct symtab_and_line tmp_sal;
1193
1194 tmp_sal = find_pc_line (stop_func_start, 0);
1195 if (tmp_sal.line != 0)
1196 goto step_into_function;
1197 }
1198
1199 step_over_function:
1200 /* A subroutine call has happened. */
1201 {
1202 /* Set a special breakpoint after the return */
1203 struct symtab_and_line sr_sal;
1204 sr_sal.pc =
1205 ADDR_BITS_REMOVE
1206 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1207 sr_sal.symtab = NULL;
1208 sr_sal.line = 0;
1209 step_resume_breakpoint =
1210 set_momentary_breakpoint (sr_sal, get_current_frame (),
1211 bp_step_resume);
1212 step_resume_breakpoint->frame = step_frame_address;
1213 if (breakpoints_inserted)
1214 insert_breakpoints ();
1215 }
1216 goto keep_going;
1217
1218 step_into_function:
1219 /* Subroutine call with source code we should not step over.
1220 Do step to the first line of code in it. */
1221 {
1222 struct symtab *s;
1223
1224 s = find_pc_symtab (stop_pc);
1225 if (s && s->language != language_asm)
1226 SKIP_PROLOGUE (stop_func_start);
1227 }
1228 sal = find_pc_line (stop_func_start, 0);
1229 /* Use the step_resume_break to step until
1230 the end of the prologue, even if that involves jumps
1231 (as it seems to on the vax under 4.2). */
1232 /* If the prologue ends in the middle of a source line,
1233 continue to the end of that source line (if it is still
1234 within the function). Otherwise, just go to end of prologue. */
1235 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1236 /* no, don't either. It skips any code that's
1237 legitimately on the first line. */
1238 #else
1239 if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end)
1240 stop_func_start = sal.end;
1241 #endif
1242
1243 if (stop_func_start == stop_pc)
1244 {
1245 /* We are already there: stop now. */
1246 stop_step = 1;
1247 break;
1248 }
1249 else
1250 /* Put the step-breakpoint there and go until there. */
1251 {
1252 struct symtab_and_line sr_sal;
1253
1254 sr_sal.pc = stop_func_start;
1255 sr_sal.symtab = NULL;
1256 sr_sal.line = 0;
1257 /* Do not specify what the fp should be when we stop
1258 since on some machines the prologue
1259 is where the new fp value is established. */
1260 step_resume_breakpoint =
1261 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1262 if (breakpoints_inserted)
1263 insert_breakpoints ();
1264
1265 /* And make sure stepping stops right away then. */
1266 step_range_end = step_range_start;
1267 }
1268 goto keep_going;
1269 }
1270
1271 /* We've wandered out of the step range. */
1272
1273 sal = find_pc_line(stop_pc, 0);
1274
1275 if (step_range_end == 1)
1276 {
1277 /* It is stepi or nexti. We always want to stop stepping after
1278 one instruction. */
1279 stop_step = 1;
1280 break;
1281 }
1282
1283 if (sal.line == 0)
1284 {
1285 /* We have no line number information. That means to stop
1286 stepping (does this always happen right after one instruction,
1287 when we do "s" in a function with no line numbers,
1288 or can this happen as a result of a return or longjmp?). */
1289 stop_step = 1;
1290 break;
1291 }
1292
1293 if (stop_pc == sal.pc
1294 && (current_line != sal.line || current_symtab != sal.symtab))
1295 {
1296 /* We are at the start of a different line. So stop. Note that
1297 we don't stop if we step into the middle of a different line.
1298 That is said to make things like for (;;) statements work
1299 better. */
1300 stop_step = 1;
1301 break;
1302 }
1303
1304 /* We aren't done stepping.
1305
1306 Optimize by setting the stepping range to the line.
1307 (We might not be in the original line, but if we entered a
1308 new line in mid-statement, we continue stepping. This makes
1309 things like for(;;) statements work better.) */
1310
1311 if (stop_func_end && sal.end >= stop_func_end)
1312 {
1313 /* If this is the last line of the function, don't keep stepping
1314 (it would probably step us out of the function).
1315 This is particularly necessary for a one-line function,
1316 in which after skipping the prologue we better stop even though
1317 we will be in mid-line. */
1318 stop_step = 1;
1319 break;
1320 }
1321 step_range_start = sal.pc;
1322 step_range_end = sal.end;
1323 goto keep_going;
1324
1325 check_sigtramp2:
1326 if (trap_expected
1327 && IN_SIGTRAMP (stop_pc, stop_func_name)
1328 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1329 {
1330 /* What has happened here is that we have just stepped the inferior
1331 with a signal (because it is a signal which shouldn't make
1332 us stop), thus stepping into sigtramp.
1333
1334 So we need to set a step_resume_break_address breakpoint
1335 and continue until we hit it, and then step. FIXME: This should
1336 be more enduring than a step_resume breakpoint; we should know
1337 that we will later need to keep going rather than re-hitting
1338 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1339 it says "exceedingly difficult"). */
1340 struct symtab_and_line sr_sal;
1341
1342 sr_sal.pc = prev_pc;
1343 sr_sal.symtab = NULL;
1344 sr_sal.line = 0;
1345 /* We perhaps could set the frame if we kept track of what
1346 the frame corresponding to prev_pc was. But we don't,
1347 so don't. */
1348 through_sigtramp_breakpoint =
1349 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
1350 if (breakpoints_inserted)
1351 insert_breakpoints ();
1352
1353 remove_breakpoints_on_following_step = 1;
1354 another_trap = 1;
1355 }
1356
1357 keep_going:
1358 /* Come to this label when you need to resume the inferior.
1359 It's really much cleaner to do a goto than a maze of if-else
1360 conditions. */
1361
1362 /* Save the pc before execution, to compare with pc after stop. */
1363 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1364 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1365 BREAK is defined, the
1366 original pc would not have
1367 been at the start of a
1368 function. */
1369 prev_func_name = stop_func_name;
1370
1371 if (update_step_sp)
1372 step_sp = read_sp ();
1373 update_step_sp = 0;
1374
1375 /* If we did not do break;, it means we should keep
1376 running the inferior and not return to debugger. */
1377
1378 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
1379 {
1380 /* We took a signal (which we are supposed to pass through to
1381 the inferior, else we'd have done a break above) and we
1382 haven't yet gotten our trap. Simply continue. */
1383 resume (CURRENTLY_STEPPING (), stop_signal);
1384 }
1385 else
1386 {
1387 /* Either the trap was not expected, but we are continuing
1388 anyway (the user asked that this signal be passed to the
1389 child)
1390 -- or --
1391 The signal was SIGTRAP, e.g. it was our signal, but we
1392 decided we should resume from it.
1393
1394 We're going to run this baby now!
1395
1396 Insert breakpoints now, unless we are trying
1397 to one-proceed past a breakpoint. */
1398 /* If we've just finished a special step resume and we don't
1399 want to hit a breakpoint, pull em out. */
1400 if (step_resume_breakpoint == NULL
1401 && through_sigtramp_breakpoint == NULL
1402 && remove_breakpoints_on_following_step)
1403 {
1404 remove_breakpoints_on_following_step = 0;
1405 remove_breakpoints ();
1406 breakpoints_inserted = 0;
1407 }
1408 else if (!breakpoints_inserted &&
1409 (through_sigtramp_breakpoint != NULL || !another_trap))
1410 {
1411 breakpoints_failed = insert_breakpoints ();
1412 if (breakpoints_failed)
1413 break;
1414 breakpoints_inserted = 1;
1415 }
1416
1417 trap_expected = another_trap;
1418
1419 if (stop_signal == TARGET_SIGNAL_TRAP)
1420 stop_signal = TARGET_SIGNAL_0;
1421
1422 #ifdef SHIFT_INST_REGS
1423 /* I'm not sure when this following segment applies. I do know, now,
1424 that we shouldn't rewrite the regs when we were stopped by a
1425 random signal from the inferior process. */
1426 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
1427 (this is only used on the 88k). */
1428
1429 if (!bpstat_explains_signal (stop_bpstat)
1430 && (stop_signal != TARGET_SIGNAL_CHLD)
1431 && !stopped_by_random_signal)
1432 SHIFT_INST_REGS();
1433 #endif /* SHIFT_INST_REGS */
1434
1435 resume (CURRENTLY_STEPPING (), stop_signal);
1436 }
1437 }
1438
1439 stop_stepping:
1440 if (target_has_execution)
1441 {
1442 /* Assuming the inferior still exists, set these up for next
1443 time, just like we did above if we didn't break out of the
1444 loop. */
1445 prev_pc = read_pc ();
1446 prev_func_start = stop_func_start;
1447 prev_func_name = stop_func_name;
1448 }
1449 do_cleanups (old_cleanups);
1450 }
1451 \f
1452 /* Here to return control to GDB when the inferior stops for real.
1453 Print appropriate messages, remove breakpoints, give terminal our modes.
1454
1455 STOP_PRINT_FRAME nonzero means print the executing frame
1456 (pc, function, args, file, line number and line text).
1457 BREAKPOINTS_FAILED nonzero means stop was due to error
1458 attempting to insert breakpoints. */
1459
1460 void
1461 normal_stop ()
1462 {
1463 /* Make sure that the current_frame's pc is correct. This
1464 is a correction for setting up the frame info before doing
1465 DECR_PC_AFTER_BREAK */
1466 if (target_has_execution && get_current_frame())
1467 (get_current_frame ())->pc = read_pc ();
1468
1469 if (breakpoints_failed)
1470 {
1471 target_terminal_ours_for_output ();
1472 print_sys_errmsg ("ptrace", breakpoints_failed);
1473 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1474 The same program may be running in another process.\n");
1475 }
1476
1477 if (target_has_execution && breakpoints_inserted)
1478 if (remove_breakpoints ())
1479 {
1480 target_terminal_ours_for_output ();
1481 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1482 It might be running in another process.\n\
1483 Further execution is probably impossible.\n");
1484 }
1485
1486 breakpoints_inserted = 0;
1487
1488 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1489 Delete any breakpoint that is to be deleted at the next stop. */
1490
1491 breakpoint_auto_delete (stop_bpstat);
1492
1493 /* If an auto-display called a function and that got a signal,
1494 delete that auto-display to avoid an infinite recursion. */
1495
1496 if (stopped_by_random_signal)
1497 disable_current_display ();
1498
1499 if (step_multi && stop_step)
1500 goto done;
1501
1502 target_terminal_ours ();
1503
1504 /* Look up the hook_stop and run it if it exists. */
1505
1506 if (stop_command->hook)
1507 {
1508 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1509 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1510 }
1511
1512 if (!target_has_stack)
1513 goto done;
1514
1515 /* Select innermost stack frame except on return from a stack dummy routine,
1516 or if the program has exited. Print it without a level number if
1517 we have changed functions or hit a breakpoint. Print source line
1518 if we have one. */
1519 if (!stop_stack_dummy)
1520 {
1521 select_frame (get_current_frame (), 0);
1522
1523 if (stop_print_frame)
1524 {
1525 int source_only;
1526
1527 source_only = bpstat_print (stop_bpstat);
1528 source_only = source_only ||
1529 ( stop_step
1530 && step_frame_address == FRAME_FP (get_current_frame ())
1531 && step_start_function == find_pc_function (stop_pc));
1532
1533 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1534
1535 /* Display the auto-display expressions. */
1536 do_displays ();
1537 }
1538 }
1539
1540 /* Save the function value return registers, if we care.
1541 We might be about to restore their previous contents. */
1542 if (proceed_to_finish)
1543 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1544
1545 if (stop_stack_dummy)
1546 {
1547 /* Pop the empty frame that contains the stack dummy.
1548 POP_FRAME ends with a setting of the current frame, so we
1549 can use that next. */
1550 POP_FRAME;
1551 /* Set stop_pc to what it was before we called the function. Can't rely
1552 on restore_inferior_status because that only gets called if we don't
1553 stop in the called function. */
1554 stop_pc = read_pc();
1555 select_frame (get_current_frame (), 0);
1556 }
1557 done:
1558 annotate_stopped ();
1559 }
1560
1561 static int
1562 hook_stop_stub (cmd)
1563 char *cmd;
1564 {
1565 execute_user_command ((struct cmd_list_element *)cmd, 0);
1566 return (0);
1567 }
1568 \f
1569 int signal_stop_state (signo)
1570 int signo;
1571 {
1572 return signal_stop[signo];
1573 }
1574
1575 int signal_print_state (signo)
1576 int signo;
1577 {
1578 return signal_print[signo];
1579 }
1580
1581 int signal_pass_state (signo)
1582 int signo;
1583 {
1584 return signal_program[signo];
1585 }
1586
1587 static void
1588 sig_print_header ()
1589 {
1590 printf_filtered ("\
1591 Signal Stop\tPrint\tPass to program\tDescription\n");
1592 }
1593
1594 static void
1595 sig_print_info (oursig)
1596 enum target_signal oursig;
1597 {
1598 char *name = target_signal_to_name (oursig);
1599 printf_filtered ("%s", name);
1600 printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name),
1601 " ");
1602 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
1603 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
1604 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
1605 printf_filtered ("%s\n", target_signal_to_string (oursig));
1606 }
1607
1608 /* Specify how various signals in the inferior should be handled. */
1609
1610 static void
1611 handle_command (args, from_tty)
1612 char *args;
1613 int from_tty;
1614 {
1615 char **argv;
1616 int digits, wordlen;
1617 int sigfirst, signum, siglast;
1618 enum target_signal oursig;
1619 int allsigs;
1620 int nsigs;
1621 unsigned char *sigs;
1622 struct cleanup *old_chain;
1623
1624 if (args == NULL)
1625 {
1626 error_no_arg ("signal to handle");
1627 }
1628
1629 /* Allocate and zero an array of flags for which signals to handle. */
1630
1631 nsigs = (int)TARGET_SIGNAL_LAST;
1632 sigs = (unsigned char *) alloca (nsigs);
1633 memset (sigs, 0, nsigs);
1634
1635 /* Break the command line up into args. */
1636
1637 argv = buildargv (args);
1638 if (argv == NULL)
1639 {
1640 nomem (0);
1641 }
1642 old_chain = make_cleanup (freeargv, (char *) argv);
1643
1644 /* Walk through the args, looking for signal oursigs, signal names, and
1645 actions. Signal numbers and signal names may be interspersed with
1646 actions, with the actions being performed for all signals cumulatively
1647 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1648
1649 while (*argv != NULL)
1650 {
1651 wordlen = strlen (*argv);
1652 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1653 allsigs = 0;
1654 sigfirst = siglast = -1;
1655
1656 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1657 {
1658 /* Apply action to all signals except those used by the
1659 debugger. Silently skip those. */
1660 allsigs = 1;
1661 sigfirst = 0;
1662 siglast = nsigs - 1;
1663 }
1664 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1665 {
1666 SET_SIGS (nsigs, sigs, signal_stop);
1667 SET_SIGS (nsigs, sigs, signal_print);
1668 }
1669 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1670 {
1671 UNSET_SIGS (nsigs, sigs, signal_program);
1672 }
1673 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1674 {
1675 SET_SIGS (nsigs, sigs, signal_print);
1676 }
1677 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1678 {
1679 SET_SIGS (nsigs, sigs, signal_program);
1680 }
1681 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1682 {
1683 UNSET_SIGS (nsigs, sigs, signal_stop);
1684 }
1685 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1686 {
1687 SET_SIGS (nsigs, sigs, signal_program);
1688 }
1689 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1690 {
1691 UNSET_SIGS (nsigs, sigs, signal_print);
1692 UNSET_SIGS (nsigs, sigs, signal_stop);
1693 }
1694 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1695 {
1696 UNSET_SIGS (nsigs, sigs, signal_program);
1697 }
1698 else if (digits > 0)
1699 {
1700 /* It is numeric. The numeric signal refers to our own internal
1701 signal numbering from target.h, not to host/target signal number.
1702 This is a feature; users really should be using symbolic names
1703 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1704 will work right anyway. */
1705
1706 sigfirst = siglast = atoi (*argv);
1707 if ((*argv)[digits] == '-')
1708 {
1709 siglast = atoi ((*argv) + digits + 1);
1710 }
1711 if (sigfirst > siglast)
1712 {
1713 /* Bet he didn't figure we'd think of this case... */
1714 signum = sigfirst;
1715 sigfirst = siglast;
1716 siglast = signum;
1717 }
1718 if (sigfirst < 0 || sigfirst >= nsigs)
1719 {
1720 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1721 }
1722 if (siglast < 0 || siglast >= nsigs)
1723 {
1724 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1725 }
1726 }
1727 else
1728 {
1729 oursig = target_signal_from_name (*argv);
1730 if (oursig != TARGET_SIGNAL_UNKNOWN)
1731 {
1732 sigfirst = siglast = (int)oursig;
1733 }
1734 else
1735 {
1736 /* Not a number and not a recognized flag word => complain. */
1737 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1738 }
1739 }
1740
1741 /* If any signal numbers or symbol names were found, set flags for
1742 which signals to apply actions to. */
1743
1744 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1745 {
1746 switch ((enum target_signal)signum)
1747 {
1748 case TARGET_SIGNAL_TRAP:
1749 case TARGET_SIGNAL_INT:
1750 if (!allsigs && !sigs[signum])
1751 {
1752 if (query ("%s is used by the debugger.\n\
1753 Are you sure you want to change it? ",
1754 target_signal_to_name
1755 ((enum target_signal)signum)))
1756 {
1757 sigs[signum] = 1;
1758 }
1759 else
1760 {
1761 printf_unfiltered ("Not confirmed, unchanged.\n");
1762 gdb_flush (gdb_stdout);
1763 }
1764 }
1765 break;
1766 default:
1767 sigs[signum] = 1;
1768 break;
1769 }
1770 }
1771
1772 argv++;
1773 }
1774
1775 target_notice_signals(inferior_pid);
1776
1777 if (from_tty)
1778 {
1779 /* Show the results. */
1780 sig_print_header ();
1781 for (signum = 0; signum < nsigs; signum++)
1782 {
1783 if (sigs[signum])
1784 {
1785 sig_print_info (signum);
1786 }
1787 }
1788 }
1789
1790 do_cleanups (old_chain);
1791 }
1792
1793 /* Print current contents of the tables set by the handle command.
1794 It is possible we should just be printing signals actually used
1795 by the current target (but for things to work right when switching
1796 targets, all signals should be in the signal tables). */
1797
1798 static void
1799 signals_info (signum_exp, from_tty)
1800 char *signum_exp;
1801 int from_tty;
1802 {
1803 enum target_signal oursig;
1804 sig_print_header ();
1805
1806 if (signum_exp)
1807 {
1808 /* First see if this is a symbol name. */
1809 oursig = target_signal_from_name (signum_exp);
1810 if (oursig == TARGET_SIGNAL_UNKNOWN)
1811 {
1812 /* Nope, maybe it's an address which evaluates to a signal
1813 number. */
1814 /* The numeric signal refers to our own internal
1815 signal numbering from target.h, not to host/target signal number.
1816 This is a feature; users really should be using symbolic names
1817 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1818 will work right anyway. */
1819 int i = parse_and_eval_address (signum_exp);
1820 if (i >= (int)TARGET_SIGNAL_LAST
1821 || i < 0
1822 || i == (int)TARGET_SIGNAL_UNKNOWN
1823 || i == (int)TARGET_SIGNAL_DEFAULT)
1824 error ("Signal number out of bounds.");
1825 oursig = (enum target_signal)i;
1826 }
1827 sig_print_info (oursig);
1828 return;
1829 }
1830
1831 printf_filtered ("\n");
1832 /* These ugly casts brought to you by the native VAX compiler. */
1833 for (oursig = TARGET_SIGNAL_FIRST;
1834 (int)oursig < (int)TARGET_SIGNAL_LAST;
1835 oursig = (enum target_signal)((int)oursig + 1))
1836 {
1837 QUIT;
1838
1839 if (oursig != TARGET_SIGNAL_UNKNOWN
1840 && oursig != TARGET_SIGNAL_DEFAULT
1841 && oursig != TARGET_SIGNAL_0)
1842 sig_print_info (oursig);
1843 }
1844
1845 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1846 }
1847 \f
1848 /* Save all of the information associated with the inferior<==>gdb
1849 connection. INF_STATUS is a pointer to a "struct inferior_status"
1850 (defined in inferior.h). */
1851
1852 void
1853 save_inferior_status (inf_status, restore_stack_info)
1854 struct inferior_status *inf_status;
1855 int restore_stack_info;
1856 {
1857 inf_status->stop_signal = stop_signal;
1858 inf_status->stop_pc = stop_pc;
1859 inf_status->stop_step = stop_step;
1860 inf_status->stop_stack_dummy = stop_stack_dummy;
1861 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1862 inf_status->trap_expected = trap_expected;
1863 inf_status->step_range_start = step_range_start;
1864 inf_status->step_range_end = step_range_end;
1865 inf_status->step_frame_address = step_frame_address;
1866 inf_status->step_over_calls = step_over_calls;
1867 inf_status->stop_after_trap = stop_after_trap;
1868 inf_status->stop_soon_quietly = stop_soon_quietly;
1869 /* Save original bpstat chain here; replace it with copy of chain.
1870 If caller's caller is walking the chain, they'll be happier if we
1871 hand them back the original chain when restore_i_s is called. */
1872 inf_status->stop_bpstat = stop_bpstat;
1873 stop_bpstat = bpstat_copy (stop_bpstat);
1874 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1875 inf_status->restore_stack_info = restore_stack_info;
1876 inf_status->proceed_to_finish = proceed_to_finish;
1877
1878 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1879
1880 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1881
1882 record_selected_frame (&(inf_status->selected_frame_address),
1883 &(inf_status->selected_level));
1884 return;
1885 }
1886
1887 struct restore_selected_frame_args {
1888 FRAME_ADDR frame_address;
1889 int level;
1890 };
1891
1892 static int restore_selected_frame PARAMS ((char *));
1893
1894 /* Restore the selected frame. args is really a struct
1895 restore_selected_frame_args * (declared as char * for catch_errors)
1896 telling us what frame to restore. Returns 1 for success, or 0 for
1897 failure. An error message will have been printed on error. */
1898 static int
1899 restore_selected_frame (args)
1900 char *args;
1901 {
1902 struct restore_selected_frame_args *fr =
1903 (struct restore_selected_frame_args *) args;
1904 FRAME fid;
1905 int level = fr->level;
1906
1907 fid = find_relative_frame (get_current_frame (), &level);
1908
1909 /* If inf_status->selected_frame_address is NULL, there was no
1910 previously selected frame. */
1911 if (fid == 0 ||
1912 FRAME_FP (fid) != fr->frame_address ||
1913 level != 0)
1914 {
1915 warning ("Unable to restore previously selected frame.\n");
1916 return 0;
1917 }
1918 select_frame (fid, fr->level);
1919 return(1);
1920 }
1921
1922 void
1923 restore_inferior_status (inf_status)
1924 struct inferior_status *inf_status;
1925 {
1926 stop_signal = inf_status->stop_signal;
1927 stop_pc = inf_status->stop_pc;
1928 stop_step = inf_status->stop_step;
1929 stop_stack_dummy = inf_status->stop_stack_dummy;
1930 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1931 trap_expected = inf_status->trap_expected;
1932 step_range_start = inf_status->step_range_start;
1933 step_range_end = inf_status->step_range_end;
1934 step_frame_address = inf_status->step_frame_address;
1935 step_over_calls = inf_status->step_over_calls;
1936 stop_after_trap = inf_status->stop_after_trap;
1937 stop_soon_quietly = inf_status->stop_soon_quietly;
1938 bpstat_clear (&stop_bpstat);
1939 stop_bpstat = inf_status->stop_bpstat;
1940 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1941 proceed_to_finish = inf_status->proceed_to_finish;
1942
1943 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1944
1945 /* The inferior can be gone if the user types "print exit(0)"
1946 (and perhaps other times). */
1947 if (target_has_execution)
1948 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1949
1950 /* The inferior can be gone if the user types "print exit(0)"
1951 (and perhaps other times). */
1952
1953 /* FIXME: If we are being called after stopping in a function which
1954 is called from gdb, we should not be trying to restore the
1955 selected frame; it just prints a spurious error message (The
1956 message is useful, however, in detecting bugs in gdb (like if gdb
1957 clobbers the stack)). In fact, should we be restoring the
1958 inferior status at all in that case? . */
1959
1960 if (target_has_stack && inf_status->restore_stack_info)
1961 {
1962 struct restore_selected_frame_args fr;
1963 fr.level = inf_status->selected_level;
1964 fr.frame_address = inf_status->selected_frame_address;
1965 /* The point of catch_errors is that if the stack is clobbered,
1966 walking the stack might encounter a garbage pointer and error()
1967 trying to dereference it. */
1968 if (catch_errors (restore_selected_frame, &fr,
1969 "Unable to restore previously selected frame:\n",
1970 RETURN_MASK_ERROR) == 0)
1971 /* Error in restoring the selected frame. Select the innermost
1972 frame. */
1973 select_frame (get_current_frame (), 0);
1974 }
1975 }
1976
1977 \f
1978 void
1979 _initialize_infrun ()
1980 {
1981 register int i;
1982 register int numsigs;
1983
1984 add_info ("signals", signals_info,
1985 "What debugger does when program gets various signals.\n\
1986 Specify a signal number as argument to print info on that signal only.");
1987 add_info_alias ("handle", "signals", 0);
1988
1989 add_com ("handle", class_run, handle_command,
1990 "Specify how to handle a signal.\n\
1991 Args are signal numbers and actions to apply to those signals.\n\
1992 Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1993 Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1994 The special arg \"all\" is recognized to mean all signals except those\n\
1995 used by the debugger, typically SIGTRAP and SIGINT.\n\
1996 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1997 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1998 Stop means reenter debugger if this signal happens (implies print).\n\
1999 Print means print a message if this signal happens.\n\
2000 Pass means let program see this signal; otherwise program doesn't know.\n\
2001 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
2002 Pass and Stop may be combined.");
2003
2004 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
2005 "There is no `stop' command, but you can set a hook on `stop'.\n\
2006 This allows you to set a list of commands to be run each time execution\n\
2007 of the program stops.", &cmdlist);
2008
2009 numsigs = (int)TARGET_SIGNAL_LAST;
2010 signal_stop = (unsigned char *)
2011 xmalloc (sizeof (signal_stop[0]) * numsigs);
2012 signal_print = (unsigned char *)
2013 xmalloc (sizeof (signal_print[0]) * numsigs);
2014 signal_program = (unsigned char *)
2015 xmalloc (sizeof (signal_program[0]) * numsigs);
2016 for (i = 0; i < numsigs; i++)
2017 {
2018 signal_stop[i] = 1;
2019 signal_print[i] = 1;
2020 signal_program[i] = 1;
2021 }
2022
2023 /* Signals caused by debugger's own actions
2024 should not be given to the program afterwards. */
2025 signal_program[TARGET_SIGNAL_TRAP] = 0;
2026 signal_program[TARGET_SIGNAL_INT] = 0;
2027
2028 /* Signals that are not errors should not normally enter the debugger. */
2029 signal_stop[TARGET_SIGNAL_ALRM] = 0;
2030 signal_print[TARGET_SIGNAL_ALRM] = 0;
2031 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
2032 signal_print[TARGET_SIGNAL_VTALRM] = 0;
2033 signal_stop[TARGET_SIGNAL_PROF] = 0;
2034 signal_print[TARGET_SIGNAL_PROF] = 0;
2035 signal_stop[TARGET_SIGNAL_CHLD] = 0;
2036 signal_print[TARGET_SIGNAL_CHLD] = 0;
2037 signal_stop[TARGET_SIGNAL_IO] = 0;
2038 signal_print[TARGET_SIGNAL_IO] = 0;
2039 signal_stop[TARGET_SIGNAL_POLL] = 0;
2040 signal_print[TARGET_SIGNAL_POLL] = 0;
2041 signal_stop[TARGET_SIGNAL_URG] = 0;
2042 signal_print[TARGET_SIGNAL_URG] = 0;
2043 }
This page took 0.074779 seconds and 4 git commands to generate.