gcc -Wall lint:
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "thread.h"
33 #include "annotate.h"
34
35 #include <signal.h>
36
37 /* unistd.h is needed to #define X_OK */
38 #ifdef USG
39 #include <unistd.h>
40 #else
41 #include <sys/file.h>
42 #endif
43
44 /* Prototypes for local functions */
45
46 static void
47 signals_info PARAMS ((char *, int));
48
49 static void
50 handle_command PARAMS ((char *, int));
51
52 static void sig_print_info PARAMS ((enum target_signal));
53
54 static void
55 sig_print_header PARAMS ((void));
56
57 static void
58 resume_cleanups PARAMS ((int));
59
60 static int
61 hook_stop_stub PARAMS ((char *));
62
63 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
64 program. It needs to examine the jmp_buf argument and extract the PC
65 from it. The return value is non-zero on success, zero otherwise. */
66 #ifndef GET_LONGJMP_TARGET
67 #define GET_LONGJMP_TARGET(PC_ADDR) 0
68 #endif
69
70
71 /* Some machines have trampoline code that sits between function callers
72 and the actual functions themselves. If this machine doesn't have
73 such things, disable their processing. */
74 #ifndef SKIP_TRAMPOLINE_CODE
75 #define SKIP_TRAMPOLINE_CODE(pc) 0
76 #endif
77
78 /* For SVR4 shared libraries, each call goes through a small piece of
79 trampoline code in the ".plt" section. IN_SOLIB_TRAMPOLINE evaluates
80 to nonzero if we are current stopped in one of these. */
81 #ifndef IN_SOLIB_TRAMPOLINE
82 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
83 #endif
84
85 /* On some systems, the PC may be left pointing at an instruction that won't
86 actually be executed. This is usually indicated by a bit in the PSW. If
87 we find ourselves in such a state, then we step the target beyond the
88 nullified instruction before returning control to the user so as to avoid
89 confusion. */
90
91 #ifndef INSTRUCTION_NULLIFIED
92 #define INSTRUCTION_NULLIFIED 0
93 #endif
94
95 /* Tables of how to react to signals; the user sets them. */
96
97 static unsigned char *signal_stop;
98 static unsigned char *signal_print;
99 static unsigned char *signal_program;
100
101 #define SET_SIGS(nsigs,sigs,flags) \
102 do { \
103 int signum = (nsigs); \
104 while (signum-- > 0) \
105 if ((sigs)[signum]) \
106 (flags)[signum] = 1; \
107 } while (0)
108
109 #define UNSET_SIGS(nsigs,sigs,flags) \
110 do { \
111 int signum = (nsigs); \
112 while (signum-- > 0) \
113 if ((sigs)[signum]) \
114 (flags)[signum] = 0; \
115 } while (0)
116
117
118 /* Command list pointer for the "stop" placeholder. */
119
120 static struct cmd_list_element *stop_command;
121
122 /* Nonzero if breakpoints are now inserted in the inferior. */
123
124 static int breakpoints_inserted;
125
126 /* Function inferior was in as of last step command. */
127
128 static struct symbol *step_start_function;
129
130 /* Nonzero if we are expecting a trace trap and should proceed from it. */
131
132 static int trap_expected;
133
134 /* Nonzero if the next time we try to continue the inferior, it will
135 step one instruction and generate a spurious trace trap.
136 This is used to compensate for a bug in HP-UX. */
137
138 static int trap_expected_after_continue;
139
140 /* Nonzero means expecting a trace trap
141 and should stop the inferior and return silently when it happens. */
142
143 int stop_after_trap;
144
145 /* Nonzero means expecting a trap and caller will handle it themselves.
146 It is used after attach, due to attaching to a process;
147 when running in the shell before the child program has been exec'd;
148 and when running some kinds of remote stuff (FIXME?). */
149
150 int stop_soon_quietly;
151
152 /* Nonzero if proceed is being used for a "finish" command or a similar
153 situation when stop_registers should be saved. */
154
155 int proceed_to_finish;
156
157 /* Save register contents here when about to pop a stack dummy frame,
158 if-and-only-if proceed_to_finish is set.
159 Thus this contains the return value from the called function (assuming
160 values are returned in a register). */
161
162 char stop_registers[REGISTER_BYTES];
163
164 /* Nonzero if program stopped due to error trying to insert breakpoints. */
165
166 static int breakpoints_failed;
167
168 /* Nonzero after stop if current stack frame should be printed. */
169
170 static int stop_print_frame;
171
172 #ifdef NO_SINGLE_STEP
173 extern int one_stepped; /* From machine dependent code */
174 extern void single_step (); /* Same. */
175 #endif /* NO_SINGLE_STEP */
176
177 \f
178 /* Things to clean up if we QUIT out of resume (). */
179 /* ARGSUSED */
180 static void
181 resume_cleanups (arg)
182 int arg;
183 {
184 normal_stop ();
185 }
186
187 /* Resume the inferior, but allow a QUIT. This is useful if the user
188 wants to interrupt some lengthy single-stepping operation
189 (for child processes, the SIGINT goes to the inferior, and so
190 we get a SIGINT random_signal, but for remote debugging and perhaps
191 other targets, that's not true).
192
193 STEP nonzero if we should step (zero to continue instead).
194 SIG is the signal to give the inferior (zero for none). */
195 void
196 resume (step, sig)
197 int step;
198 enum target_signal sig;
199 {
200 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
201 QUIT;
202
203 #ifdef CANNOT_STEP_BREAKPOINT
204 /* Most targets can step a breakpoint instruction, thus executing it
205 normally. But if this one cannot, just continue and we will hit
206 it anyway. */
207 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
208 step = 0;
209 #endif
210
211 #ifdef NO_SINGLE_STEP
212 if (step) {
213 single_step(sig); /* Do it the hard way, w/temp breakpoints */
214 step = 0; /* ...and don't ask hardware to do it. */
215 }
216 #endif
217
218 /* Handle any optimized stores to the inferior NOW... */
219 #ifdef DO_DEFERRED_STORES
220 DO_DEFERRED_STORES;
221 #endif
222
223 /* Install inferior's terminal modes. */
224 target_terminal_inferior ();
225
226 target_resume (-1, step, sig);
227 discard_cleanups (old_cleanups);
228 }
229
230 \f
231 /* Clear out all variables saying what to do when inferior is continued.
232 First do this, then set the ones you want, then call `proceed'. */
233
234 void
235 clear_proceed_status ()
236 {
237 trap_expected = 0;
238 step_range_start = 0;
239 step_range_end = 0;
240 step_frame_address = 0;
241 step_over_calls = -1;
242 stop_after_trap = 0;
243 stop_soon_quietly = 0;
244 proceed_to_finish = 0;
245 breakpoint_proceeded = 1; /* We're about to proceed... */
246
247 /* Discard any remaining commands or status from previous stop. */
248 bpstat_clear (&stop_bpstat);
249 }
250
251 /* Basic routine for continuing the program in various fashions.
252
253 ADDR is the address to resume at, or -1 for resume where stopped.
254 SIGGNAL is the signal to give it, or 0 for none,
255 or -1 for act according to how it stopped.
256 STEP is nonzero if should trap after one instruction.
257 -1 means return after that and print nothing.
258 You should probably set various step_... variables
259 before calling here, if you are stepping.
260
261 You should call clear_proceed_status before calling proceed. */
262
263 void
264 proceed (addr, siggnal, step)
265 CORE_ADDR addr;
266 enum target_signal siggnal;
267 int step;
268 {
269 int oneproc = 0;
270
271 if (step > 0)
272 step_start_function = find_pc_function (read_pc ());
273 if (step < 0)
274 stop_after_trap = 1;
275
276 if (addr == (CORE_ADDR)-1)
277 {
278 /* If there is a breakpoint at the address we will resume at,
279 step one instruction before inserting breakpoints
280 so that we do not stop right away. */
281
282 if (breakpoint_here_p (read_pc ()))
283 oneproc = 1;
284
285 #ifdef STEP_SKIPS_DELAY
286 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
287 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
288 is slow (it needs to read memory from the target). */
289 if (breakpoint_here_p (read_pc () + 4)
290 && STEP_SKIPS_DELAY (read_pc ()))
291 oneproc = 1;
292 #endif /* STEP_SKIPS_DELAY */
293 }
294 else
295 write_pc (addr);
296
297 if (trap_expected_after_continue)
298 {
299 /* If (step == 0), a trap will be automatically generated after
300 the first instruction is executed. Force step one
301 instruction to clear this condition. This should not occur
302 if step is nonzero, but it is harmless in that case. */
303 oneproc = 1;
304 trap_expected_after_continue = 0;
305 }
306
307 if (oneproc)
308 /* We will get a trace trap after one instruction.
309 Continue it automatically and insert breakpoints then. */
310 trap_expected = 1;
311 else
312 {
313 int temp = insert_breakpoints ();
314 if (temp)
315 {
316 print_sys_errmsg ("ptrace", temp);
317 error ("Cannot insert breakpoints.\n\
318 The same program may be running in another process.");
319 }
320 breakpoints_inserted = 1;
321 }
322
323 if (siggnal != TARGET_SIGNAL_DEFAULT)
324 stop_signal = siggnal;
325 /* If this signal should not be seen by program,
326 give it zero. Used for debugging signals. */
327 else if (!signal_program[stop_signal])
328 stop_signal = TARGET_SIGNAL_0;
329
330 annotate_starting ();
331
332 /* Resume inferior. */
333 resume (oneproc || step || bpstat_should_step (), stop_signal);
334
335 /* Wait for it to stop (if not standalone)
336 and in any case decode why it stopped, and act accordingly. */
337
338 wait_for_inferior ();
339 normal_stop ();
340 }
341
342 /* Record the pc and sp of the program the last time it stopped.
343 These are just used internally by wait_for_inferior, but need
344 to be preserved over calls to it and cleared when the inferior
345 is started. */
346 static CORE_ADDR prev_pc;
347 static CORE_ADDR prev_sp;
348 static CORE_ADDR prev_func_start;
349 static char *prev_func_name;
350 static CORE_ADDR prev_frame_address;
351
352 \f
353 /* Start remote-debugging of a machine over a serial link. */
354
355 void
356 start_remote ()
357 {
358 init_wait_for_inferior ();
359 clear_proceed_status ();
360 stop_soon_quietly = 1;
361 trap_expected = 0;
362 wait_for_inferior ();
363 normal_stop ();
364 }
365
366 /* Initialize static vars when a new inferior begins. */
367
368 void
369 init_wait_for_inferior ()
370 {
371 /* These are meaningless until the first time through wait_for_inferior. */
372 prev_pc = 0;
373 prev_sp = 0;
374 prev_func_start = 0;
375 prev_func_name = NULL;
376 prev_frame_address = 0;
377
378 trap_expected_after_continue = 0;
379 breakpoints_inserted = 0;
380 breakpoint_init_inferior ();
381
382 /* Don't confuse first call to proceed(). */
383 stop_signal = TARGET_SIGNAL_0;
384 }
385
386 static void
387 delete_breakpoint_current_contents (arg)
388 PTR arg;
389 {
390 struct breakpoint **breakpointp = (struct breakpoint **)arg;
391 if (*breakpointp != NULL)
392 delete_breakpoint (*breakpointp);
393 }
394 \f
395 /* Wait for control to return from inferior to debugger.
396 If inferior gets a signal, we may decide to start it up again
397 instead of returning. That is why there is a loop in this function.
398 When this function actually returns it means the inferior
399 should be left stopped and GDB should read more commands. */
400
401 void
402 wait_for_inferior ()
403 {
404 struct cleanup *old_cleanups;
405 struct target_waitstatus w;
406 int another_trap;
407 int random_signal;
408 CORE_ADDR stop_sp = 0;
409 CORE_ADDR stop_func_start;
410 CORE_ADDR stop_func_end;
411 char *stop_func_name;
412 CORE_ADDR prologue_pc = 0, tmp;
413 struct symtab_and_line sal;
414 int remove_breakpoints_on_following_step = 0;
415 int current_line;
416 struct symtab *current_symtab;
417 int handling_longjmp = 0; /* FIXME */
418 struct breakpoint *step_resume_breakpoint = NULL;
419 struct breakpoint *through_sigtramp_breakpoint = NULL;
420 int pid;
421
422 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
423 &step_resume_breakpoint);
424 make_cleanup (delete_breakpoint_current_contents,
425 &through_sigtramp_breakpoint);
426 sal = find_pc_line(prev_pc, 0);
427 current_line = sal.line;
428 current_symtab = sal.symtab;
429
430 /* Are we stepping? */
431 #define CURRENTLY_STEPPING() \
432 ((through_sigtramp_breakpoint == NULL \
433 && !handling_longjmp \
434 && ((step_range_end && step_resume_breakpoint == NULL) \
435 || trap_expected)) \
436 || bpstat_should_step ())
437
438 while (1)
439 {
440 pid = target_wait (-1, &w);
441
442 /* Clean up saved state that will become invalid. */
443 flush_cached_frames ();
444 registers_changed ();
445
446 switch (w.kind)
447 {
448 case TARGET_WAITKIND_LOADED:
449 /* Ignore it gracefully. */
450 if (breakpoints_inserted)
451 {
452 mark_breakpoints_out ();
453 insert_breakpoints ();
454 }
455 resume (0, TARGET_SIGNAL_0);
456 continue;
457
458 case TARGET_WAITKIND_SPURIOUS:
459 resume (0, TARGET_SIGNAL_0);
460 continue;
461
462 case TARGET_WAITKIND_EXITED:
463 target_terminal_ours (); /* Must do this before mourn anyway */
464 annotate_exited (w.value.integer);
465 if (w.value.integer)
466 printf_filtered ("\nProgram exited with code 0%o.\n",
467 (unsigned int)w.value.integer);
468 else
469 if (!batch_mode())
470 printf_filtered ("\nProgram exited normally.\n");
471 gdb_flush (gdb_stdout);
472 target_mourn_inferior ();
473 #ifdef NO_SINGLE_STEP
474 one_stepped = 0;
475 #endif
476 stop_print_frame = 0;
477 goto stop_stepping;
478
479 case TARGET_WAITKIND_SIGNALLED:
480 stop_print_frame = 0;
481 stop_signal = w.value.sig;
482 target_terminal_ours (); /* Must do this before mourn anyway */
483 annotate_signalled ();
484 target_kill (); /* kill mourns as well */
485 printf_filtered ("\nProgram terminated with signal ");
486 annotate_signal_name ();
487 printf_filtered ("%s", target_signal_to_name (stop_signal));
488 annotate_signal_name_end ();
489 printf_filtered (", ");
490 annotate_signal_string ();
491 printf_filtered ("%s", target_signal_to_string (stop_signal));
492 annotate_signal_string_end ();
493 printf_filtered (".\n");
494
495 printf_filtered ("The program no longer exists.\n");
496 gdb_flush (gdb_stdout);
497 #ifdef NO_SINGLE_STEP
498 one_stepped = 0;
499 #endif
500 goto stop_stepping;
501
502 case TARGET_WAITKIND_STOPPED:
503 /* This is the only case in which we keep going; the above cases
504 end in a continue or goto. */
505 break;
506 }
507
508 stop_signal = w.value.sig;
509
510 if (pid != inferior_pid)
511 {
512 int save_pid = inferior_pid;
513
514 inferior_pid = pid; /* Setup for target memory/regs */
515 registers_changed ();
516 stop_pc = read_pc ();
517 inferior_pid = save_pid;
518 registers_changed ();
519 }
520 else
521 stop_pc = read_pc ();
522
523 if (stop_signal == TARGET_SIGNAL_TRAP
524 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
525 {
526 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid))
527 {
528 /* Saw a breakpoint, but it was hit by the wrong thread. Just continue. */
529 if (breakpoints_inserted)
530 {
531 if (pid != inferior_pid)
532 {
533 int save_pid = inferior_pid;
534
535 inferior_pid = pid;
536 registers_changed ();
537 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
538 inferior_pid = save_pid;
539 registers_changed ();
540 }
541 else
542 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
543
544 remove_breakpoints ();
545 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
546 /* FIXME: What if a signal arrives instead of the single-step
547 happening? */
548 target_wait (pid, &w);
549 insert_breakpoints ();
550 }
551 target_resume (-1, 0, TARGET_SIGNAL_0);
552 continue;
553 }
554 else
555 if (pid != inferior_pid)
556 goto switch_thread;
557 }
558
559 if (pid != inferior_pid)
560 {
561 int printed = 0;
562
563 if (!in_thread_list (pid))
564 {
565 fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid));
566 add_thread (pid);
567
568 target_resume (-1, 0, TARGET_SIGNAL_0);
569 continue;
570 }
571 else
572 {
573 if (signal_print[stop_signal])
574 {
575 printed = 1;
576 target_terminal_ours_for_output ();
577 printf_filtered ("\nProgram received signal %s, %s.\n",
578 target_signal_to_name (stop_signal),
579 target_signal_to_string (stop_signal));
580 gdb_flush (gdb_stdout);
581 }
582
583 if (stop_signal == TARGET_SIGNAL_TRAP
584 || signal_stop[stop_signal])
585 {
586 switch_thread:
587 inferior_pid = pid;
588 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
589
590 flush_cached_frames ();
591 registers_changed ();
592 trap_expected = 0;
593 if (step_resume_breakpoint)
594 {
595 delete_breakpoint (step_resume_breakpoint);
596 step_resume_breakpoint = NULL;
597 }
598
599 /* Not sure whether we need to blow this away too,
600 but probably it is like the step-resume
601 breakpoint. */
602 if (through_sigtramp_breakpoint)
603 {
604 delete_breakpoint (through_sigtramp_breakpoint);
605 through_sigtramp_breakpoint = NULL;
606 }
607 prev_pc = 0;
608 prev_sp = 0;
609 prev_func_name = NULL;
610 step_range_start = 0;
611 step_range_end = 0;
612 step_frame_address = 0;
613 handling_longjmp = 0;
614 another_trap = 0;
615 }
616 else
617 {
618 if (printed)
619 target_terminal_inferior ();
620
621 /* Clear the signal if it should not be passed. */
622 if (signal_program[stop_signal] == 0)
623 stop_signal = TARGET_SIGNAL_0;
624
625 target_resume (pid, 0, stop_signal);
626 continue;
627 }
628 }
629 }
630
631 #ifdef NO_SINGLE_STEP
632 if (one_stepped)
633 single_step (0); /* This actually cleans up the ss */
634 #endif /* NO_SINGLE_STEP */
635
636 /* If PC is pointing at a nullified instruction, then step beyond
637 it so that the user won't be confused when GDB appears to be ready
638 to execute it. */
639
640 if (INSTRUCTION_NULLIFIED)
641 {
642 resume (1, 0);
643 continue;
644 }
645
646 set_current_frame (create_new_frame (read_fp (), stop_pc));
647 select_frame (get_current_frame (), 0);
648
649 #ifdef HAVE_STEPPABLE_WATCHPOINT
650 /* It may not be necessary to disable the watchpoint to stop over
651 it. For example, the PA can (with some kernel cooperation)
652 single step over a watchpoint without disabling the watchpoint. */
653 if (STOPPED_BY_WATCHPOINT (w))
654 {
655 resume (1, 0);
656 continue;
657 }
658 #endif
659
660 #ifdef HAVE_NONSTEPPABLE_WATCHPOINT
661 /* It is far more common to need to disable a watchpoint
662 to step the inferior over it. FIXME. What else might
663 a debug register or page protection watchpoint scheme need
664 here? */
665 if (STOPPED_BY_WATCHPOINT (w))
666 {
667 remove_breakpoints ();
668 resume (1, 0);
669
670 /* FIXME: This is bogus. You can't interact with the
671 inferior except when it is stopped. It apparently
672 happens to work on Irix4, but it depends on /proc
673 allowing us to muck with the memory of a running process,
674 and the kernel deciding to run one instruction of the
675 inferior before it executes our insert_breakpoints code,
676 which seems like an awfully dubious assumption. */
677 insert_breakpoints ();
678
679 continue;
680 }
681 #endif
682
683 stop_frame_address = FRAME_FP (get_current_frame ());
684 stop_sp = read_sp ();
685 stop_func_start = 0;
686 stop_func_name = 0;
687 /* Don't care about return value; stop_func_start and stop_func_name
688 will both be 0 if it doesn't work. */
689 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
690 &stop_func_end);
691 stop_func_start += FUNCTION_START_OFFSET;
692 another_trap = 0;
693 bpstat_clear (&stop_bpstat);
694 stop_step = 0;
695 stop_stack_dummy = 0;
696 stop_print_frame = 1;
697 random_signal = 0;
698 stopped_by_random_signal = 0;
699 breakpoints_failed = 0;
700
701 /* Look at the cause of the stop, and decide what to do.
702 The alternatives are:
703 1) break; to really stop and return to the debugger,
704 2) drop through to start up again
705 (set another_trap to 1 to single step once)
706 3) set random_signal to 1, and the decision between 1 and 2
707 will be made according to the signal handling tables. */
708
709 /* First, distinguish signals caused by the debugger from signals
710 that have to do with the program's own actions.
711 Note that breakpoint insns may cause SIGTRAP or SIGILL
712 or SIGEMT, depending on the operating system version.
713 Here we detect when a SIGILL or SIGEMT is really a breakpoint
714 and change it to SIGTRAP. */
715
716 if (stop_signal == TARGET_SIGNAL_TRAP
717 || (breakpoints_inserted &&
718 (stop_signal == TARGET_SIGNAL_ILL
719 || stop_signal == TARGET_SIGNAL_EMT
720 ))
721 || stop_soon_quietly)
722 {
723 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
724 {
725 stop_print_frame = 0;
726 break;
727 }
728 if (stop_soon_quietly)
729 break;
730
731 /* Don't even think about breakpoints
732 if just proceeded over a breakpoint.
733
734 However, if we are trying to proceed over a breakpoint
735 and end up in sigtramp, then through_sigtramp_breakpoint
736 will be set and we should check whether we've hit the
737 step breakpoint. */
738 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
739 && through_sigtramp_breakpoint == NULL)
740 bpstat_clear (&stop_bpstat);
741 else
742 {
743 /* See if there is a breakpoint at the current PC. */
744 stop_bpstat = bpstat_stop_status
745 (&stop_pc, stop_frame_address,
746 #if DECR_PC_AFTER_BREAK
747 /* Notice the case of stepping through a jump
748 that lands just after a breakpoint.
749 Don't confuse that with hitting the breakpoint.
750 What we check for is that 1) stepping is going on
751 and 2) the pc before the last insn does not match
752 the address of the breakpoint before the current pc. */
753 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
754 && CURRENTLY_STEPPING ())
755 #else /* DECR_PC_AFTER_BREAK zero */
756 0
757 #endif /* DECR_PC_AFTER_BREAK zero */
758 );
759 /* Following in case break condition called a
760 function. */
761 stop_print_frame = 1;
762 }
763
764 if (stop_signal == TARGET_SIGNAL_TRAP)
765 random_signal
766 = !(bpstat_explains_signal (stop_bpstat)
767 || trap_expected
768 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
769 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
770 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
771 || (step_range_end && step_resume_breakpoint == NULL));
772 else
773 {
774 random_signal
775 = !(bpstat_explains_signal (stop_bpstat)
776 /* End of a stack dummy. Some systems (e.g. Sony
777 news) give another signal besides SIGTRAP,
778 so check here as well as above. */
779 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
780 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
781 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
782 );
783 if (!random_signal)
784 stop_signal = TARGET_SIGNAL_TRAP;
785 }
786 }
787 else
788 random_signal = 1;
789
790 /* For the program's own signals, act according to
791 the signal handling tables. */
792
793 if (random_signal)
794 {
795 /* Signal not for debugging purposes. */
796 int printed = 0;
797
798 stopped_by_random_signal = 1;
799
800 if (signal_print[stop_signal])
801 {
802 printed = 1;
803 target_terminal_ours_for_output ();
804 annotate_signal ();
805 printf_filtered ("\nProgram received signal ");
806 annotate_signal_name ();
807 printf_filtered ("%s", target_signal_to_name (stop_signal));
808 annotate_signal_name_end ();
809 printf_filtered (", ");
810 annotate_signal_string ();
811 printf_filtered ("%s", target_signal_to_string (stop_signal));
812 annotate_signal_string_end ();
813 printf_filtered (".\n");
814 gdb_flush (gdb_stdout);
815 }
816 if (signal_stop[stop_signal])
817 break;
818 /* If not going to stop, give terminal back
819 if we took it away. */
820 else if (printed)
821 target_terminal_inferior ();
822
823 /* Clear the signal if it should not be passed. */
824 if (signal_program[stop_signal] == 0)
825 stop_signal = TARGET_SIGNAL_0;
826
827 /* I'm not sure whether this needs to be check_sigtramp2 or
828 whether it could/should be keep_going. */
829 goto check_sigtramp2;
830 }
831
832 /* Handle cases caused by hitting a breakpoint. */
833 {
834 CORE_ADDR jmp_buf_pc;
835 struct bpstat_what what;
836
837 what = bpstat_what (stop_bpstat);
838
839 if (what.call_dummy)
840 {
841 stop_stack_dummy = 1;
842 #ifdef HP_OS_BUG
843 trap_expected_after_continue = 1;
844 #endif
845 }
846
847 switch (what.main_action)
848 {
849 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
850 /* If we hit the breakpoint at longjmp, disable it for the
851 duration of this command. Then, install a temporary
852 breakpoint at the target of the jmp_buf. */
853 disable_longjmp_breakpoint();
854 remove_breakpoints ();
855 breakpoints_inserted = 0;
856 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
857
858 /* Need to blow away step-resume breakpoint, as it
859 interferes with us */
860 if (step_resume_breakpoint != NULL)
861 {
862 delete_breakpoint (step_resume_breakpoint);
863 step_resume_breakpoint = NULL;
864 }
865 /* Not sure whether we need to blow this away too, but probably
866 it is like the step-resume breakpoint. */
867 if (through_sigtramp_breakpoint != NULL)
868 {
869 delete_breakpoint (through_sigtramp_breakpoint);
870 through_sigtramp_breakpoint = NULL;
871 }
872
873 #if 0
874 /* FIXME - Need to implement nested temporary breakpoints */
875 if (step_over_calls > 0)
876 set_longjmp_resume_breakpoint(jmp_buf_pc,
877 get_current_frame());
878 else
879 #endif /* 0 */
880 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
881 handling_longjmp = 1; /* FIXME */
882 goto keep_going;
883
884 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
885 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
886 remove_breakpoints ();
887 breakpoints_inserted = 0;
888 #if 0
889 /* FIXME - Need to implement nested temporary breakpoints */
890 if (step_over_calls
891 && (stop_frame_address
892 INNER_THAN step_frame_address))
893 {
894 another_trap = 1;
895 goto keep_going;
896 }
897 #endif /* 0 */
898 disable_longjmp_breakpoint();
899 handling_longjmp = 0; /* FIXME */
900 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
901 break;
902 /* else fallthrough */
903
904 case BPSTAT_WHAT_SINGLE:
905 if (breakpoints_inserted)
906 remove_breakpoints ();
907 breakpoints_inserted = 0;
908 another_trap = 1;
909 /* Still need to check other stuff, at least the case
910 where we are stepping and step out of the right range. */
911 break;
912
913 case BPSTAT_WHAT_STOP_NOISY:
914 stop_print_frame = 1;
915
916 /* We are about to nuke the step_resume_breakpoint and
917 through_sigtramp_breakpoint via the cleanup chain, so
918 no need to worry about it here. */
919
920 goto stop_stepping;
921
922 case BPSTAT_WHAT_STOP_SILENT:
923 stop_print_frame = 0;
924
925 /* We are about to nuke the step_resume_breakpoint and
926 through_sigtramp_breakpoint via the cleanup chain, so
927 no need to worry about it here. */
928
929 goto stop_stepping;
930
931 case BPSTAT_WHAT_STEP_RESUME:
932 delete_breakpoint (step_resume_breakpoint);
933 step_resume_breakpoint = NULL;
934 break;
935
936 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
937 delete_breakpoint (through_sigtramp_breakpoint);
938 through_sigtramp_breakpoint = NULL;
939
940 /* If were waiting for a trap, hitting the step_resume_break
941 doesn't count as getting it. */
942 if (trap_expected)
943 another_trap = 1;
944 break;
945
946 case BPSTAT_WHAT_LAST:
947 /* Not a real code, but listed here to shut up gcc -Wall. */
948
949 case BPSTAT_WHAT_KEEP_CHECKING:
950 break;
951 }
952 }
953
954 /* We come here if we hit a breakpoint but should not
955 stop for it. Possibly we also were stepping
956 and should stop for that. So fall through and
957 test for stepping. But, if not stepping,
958 do not stop. */
959
960 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
961 /* This is the old way of detecting the end of the stack dummy.
962 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
963 handled above. As soon as we can test it on all of them, all
964 architectures should define it. */
965
966 /* If this is the breakpoint at the end of a stack dummy,
967 just stop silently, unless the user was doing an si/ni, in which
968 case she'd better know what she's doing. */
969
970 if (PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
971 && !step_range_end)
972 {
973 stop_print_frame = 0;
974 stop_stack_dummy = 1;
975 #ifdef HP_OS_BUG
976 trap_expected_after_continue = 1;
977 #endif
978 break;
979 }
980 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
981
982 if (step_resume_breakpoint)
983 /* Having a step-resume breakpoint overrides anything
984 else having to do with stepping commands until
985 that breakpoint is reached. */
986 /* I'm not sure whether this needs to be check_sigtramp2 or
987 whether it could/should be keep_going. */
988 goto check_sigtramp2;
989
990 if (step_range_end == 0)
991 /* Likewise if we aren't even stepping. */
992 /* I'm not sure whether this needs to be check_sigtramp2 or
993 whether it could/should be keep_going. */
994 goto check_sigtramp2;
995
996 /* If stepping through a line, keep going if still within it. */
997 if (stop_pc >= step_range_start
998 && stop_pc < step_range_end
999 /* The step range might include the start of the
1000 function, so if we are at the start of the
1001 step range and either the stack or frame pointers
1002 just changed, we've stepped outside */
1003 && !(stop_pc == step_range_start
1004 && stop_frame_address
1005 && (stop_sp INNER_THAN prev_sp
1006 || stop_frame_address != step_frame_address)))
1007 {
1008 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
1009 So definately need to check for sigtramp here. */
1010 goto check_sigtramp2;
1011 }
1012
1013 /* We stepped out of the stepping range. See if that was due
1014 to a subroutine call that we should proceed to the end of. */
1015
1016 /* Did we just take a signal? */
1017 if (IN_SIGTRAMP (stop_pc, stop_func_name)
1018 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1019 {
1020 /* We've just taken a signal; go until we are back to
1021 the point where we took it and one more. */
1022
1023 /* This code is needed at least in the following case:
1024 The user types "next" and then a signal arrives (before
1025 the "next" is done). */
1026
1027 /* Note that if we are stopped at a breakpoint, then we need
1028 the step_resume breakpoint to override any breakpoints at
1029 the same location, so that we will still step over the
1030 breakpoint even though the signal happened. */
1031
1032 {
1033 struct symtab_and_line sr_sal;
1034
1035 sr_sal.pc = prev_pc;
1036 sr_sal.symtab = NULL;
1037 sr_sal.line = 0;
1038 /* We could probably be setting the frame to
1039 prev_frame_address; the reason we don't is that it didn't used
1040 to exist. */
1041 step_resume_breakpoint =
1042 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1043 if (breakpoints_inserted)
1044 insert_breakpoints ();
1045 }
1046
1047 /* If this is stepi or nexti, make sure that the stepping range
1048 gets us past that instruction. */
1049 if (step_range_end == 1)
1050 /* FIXME: Does this run afoul of the code below which, if
1051 we step into the middle of a line, resets the stepping
1052 range? */
1053 step_range_end = (step_range_start = prev_pc) + 1;
1054
1055 remove_breakpoints_on_following_step = 1;
1056 goto keep_going;
1057 }
1058
1059 if (stop_func_start)
1060 {
1061 /* Do this after the IN_SIGTRAMP check; it might give
1062 an error. */
1063 prologue_pc = stop_func_start;
1064 SKIP_PROLOGUE (prologue_pc);
1065 }
1066
1067 if ((/* Might be a non-recursive call. If the symbols are missing
1068 enough that stop_func_start == prev_func_start even though
1069 they are really two functions, we will treat some calls as
1070 jumps. */
1071 stop_func_start != prev_func_start
1072
1073 /* Might be a recursive call if either we have a prologue
1074 or the call instruction itself saves the PC on the stack. */
1075 || prologue_pc != stop_func_start
1076 || stop_sp != prev_sp)
1077 && (/* PC is completely out of bounds of any known objfiles. Treat
1078 like a subroutine call. */
1079 ! stop_func_start
1080
1081 /* If we do a call, we will be at the start of a function... */
1082 || stop_pc == stop_func_start
1083
1084 /* ...except on the Alpha with -O (and also Irix 5 and
1085 perhaps others), in which we might call the address
1086 after the load of gp. Since prologues don't contain
1087 calls, we can't return to within one, and we don't
1088 jump back into them, so this check is OK. */
1089
1090 || stop_pc < prologue_pc
1091
1092 /* If we end up in certain places, it means we did a subroutine
1093 call. I'm not completely sure this is necessary now that we
1094 have the above checks with stop_func_start (and now that
1095 find_pc_partial_function is pickier). */
1096 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name)
1097
1098 /* If none of the above apply, it is a jump within a function,
1099 or a return from a subroutine. The other case is longjmp,
1100 which can no longer happen here as long as the
1101 handling_longjmp stuff is working. */
1102 ))
1103 {
1104 /* It's a subroutine call. */
1105
1106 if (step_over_calls == 0)
1107 {
1108 /* I presume that step_over_calls is only 0 when we're
1109 supposed to be stepping at the assembly language level
1110 ("stepi"). Just stop. */
1111 stop_step = 1;
1112 break;
1113 }
1114
1115 if (step_over_calls > 0)
1116 /* We're doing a "next". */
1117 goto step_over_function;
1118
1119 /* If we are in a function call trampoline (a stub between
1120 the calling routine and the real function), locate the real
1121 function. That's what tells us (a) whether we want to step
1122 into it at all, and (b) what prologue we want to run to
1123 the end of, if we do step into it. */
1124 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1125 if (tmp != 0)
1126 stop_func_start = tmp;
1127
1128 /* If we have line number information for the function we
1129 are thinking of stepping into, step into it.
1130
1131 If there are several symtabs at that PC (e.g. with include
1132 files), just want to know whether *any* of them have line
1133 numbers. find_pc_line handles this. */
1134 {
1135 struct symtab_and_line tmp_sal;
1136
1137 tmp_sal = find_pc_line (stop_func_start, 0);
1138 if (tmp_sal.line != 0)
1139 goto step_into_function;
1140 }
1141
1142 step_over_function:
1143 /* A subroutine call has happened. */
1144 {
1145 /* Set a special breakpoint after the return */
1146 struct symtab_and_line sr_sal;
1147 sr_sal.pc =
1148 ADDR_BITS_REMOVE
1149 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1150 sr_sal.symtab = NULL;
1151 sr_sal.line = 0;
1152 step_resume_breakpoint =
1153 set_momentary_breakpoint (sr_sal, get_current_frame (),
1154 bp_step_resume);
1155 step_resume_breakpoint->frame = prev_frame_address;
1156 if (breakpoints_inserted)
1157 insert_breakpoints ();
1158 }
1159 goto keep_going;
1160
1161 step_into_function:
1162 /* Subroutine call with source code we should not step over.
1163 Do step to the first line of code in it. */
1164 SKIP_PROLOGUE (stop_func_start);
1165 sal = find_pc_line (stop_func_start, 0);
1166 /* Use the step_resume_break to step until
1167 the end of the prologue, even if that involves jumps
1168 (as it seems to on the vax under 4.2). */
1169 /* If the prologue ends in the middle of a source line,
1170 continue to the end of that source line (if it is still
1171 within the function). Otherwise, just go to end of prologue. */
1172 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1173 /* no, don't either. It skips any code that's
1174 legitimately on the first line. */
1175 #else
1176 if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end)
1177 stop_func_start = sal.end;
1178 #endif
1179
1180 if (stop_func_start == stop_pc)
1181 {
1182 /* We are already there: stop now. */
1183 stop_step = 1;
1184 break;
1185 }
1186 else
1187 /* Put the step-breakpoint there and go until there. */
1188 {
1189 struct symtab_and_line sr_sal;
1190
1191 sr_sal.pc = stop_func_start;
1192 sr_sal.symtab = NULL;
1193 sr_sal.line = 0;
1194 /* Do not specify what the fp should be when we stop
1195 since on some machines the prologue
1196 is where the new fp value is established. */
1197 step_resume_breakpoint =
1198 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1199 if (breakpoints_inserted)
1200 insert_breakpoints ();
1201
1202 /* And make sure stepping stops right away then. */
1203 step_range_end = step_range_start;
1204 }
1205 goto keep_going;
1206 }
1207
1208 /* We've wandered out of the step range. */
1209
1210 sal = find_pc_line(stop_pc, 0);
1211
1212 if (step_range_end == 1)
1213 {
1214 /* It is stepi or nexti. We always want to stop stepping after
1215 one instruction. */
1216 stop_step = 1;
1217 break;
1218 }
1219
1220 if (sal.line == 0)
1221 {
1222 /* We have no line number information. That means to stop
1223 stepping (does this always happen right after one instruction,
1224 when we do "s" in a function with no line numbers,
1225 or can this happen as a result of a return or longjmp?). */
1226 stop_step = 1;
1227 break;
1228 }
1229
1230 if (stop_pc == sal.pc
1231 && (current_line != sal.line || current_symtab != sal.symtab))
1232 {
1233 /* We are at the start of a different line. So stop. Note that
1234 we don't stop if we step into the middle of a different line.
1235 That is said to make things like for (;;) statements work
1236 better. */
1237 stop_step = 1;
1238 break;
1239 }
1240
1241 /* We aren't done stepping.
1242
1243 Optimize by setting the stepping range to the line.
1244 (We might not be in the original line, but if we entered a
1245 new line in mid-statement, we continue stepping. This makes
1246 things like for(;;) statements work better.) */
1247
1248 if (stop_func_end && sal.end >= stop_func_end)
1249 {
1250 /* If this is the last line of the function, don't keep stepping
1251 (it would probably step us out of the function).
1252 This is particularly necessary for a one-line function,
1253 in which after skipping the prologue we better stop even though
1254 we will be in mid-line. */
1255 stop_step = 1;
1256 break;
1257 }
1258 step_range_start = sal.pc;
1259 step_range_end = sal.end;
1260 goto keep_going;
1261
1262 check_sigtramp2:
1263 if (trap_expected
1264 && IN_SIGTRAMP (stop_pc, stop_func_name)
1265 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1266 {
1267 /* What has happened here is that we have just stepped the inferior
1268 with a signal (because it is a signal which shouldn't make
1269 us stop), thus stepping into sigtramp.
1270
1271 So we need to set a step_resume_break_address breakpoint
1272 and continue until we hit it, and then step. FIXME: This should
1273 be more enduring than a step_resume breakpoint; we should know
1274 that we will later need to keep going rather than re-hitting
1275 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1276 it says "exceedingly difficult"). */
1277 struct symtab_and_line sr_sal;
1278
1279 sr_sal.pc = prev_pc;
1280 sr_sal.symtab = NULL;
1281 sr_sal.line = 0;
1282 /* We perhaps could set the frame if we kept track of what
1283 the frame corresponding to prev_pc was. But we don't,
1284 so don't. */
1285 through_sigtramp_breakpoint =
1286 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
1287 if (breakpoints_inserted)
1288 insert_breakpoints ();
1289
1290 remove_breakpoints_on_following_step = 1;
1291 another_trap = 1;
1292 }
1293
1294 keep_going:
1295 /* Come to this label when you need to resume the inferior.
1296 It's really much cleaner to do a goto than a maze of if-else
1297 conditions. */
1298
1299 /* Save the pc before execution, to compare with pc after stop. */
1300 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1301 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1302 BREAK is defined, the
1303 original pc would not have
1304 been at the start of a
1305 function. */
1306 prev_func_name = stop_func_name;
1307 prev_sp = stop_sp;
1308 prev_frame_address = stop_frame_address;
1309
1310 /* If we did not do break;, it means we should keep
1311 running the inferior and not return to debugger. */
1312
1313 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
1314 {
1315 /* We took a signal (which we are supposed to pass through to
1316 the inferior, else we'd have done a break above) and we
1317 haven't yet gotten our trap. Simply continue. */
1318 resume (CURRENTLY_STEPPING (), stop_signal);
1319 }
1320 else
1321 {
1322 /* Either the trap was not expected, but we are continuing
1323 anyway (the user asked that this signal be passed to the
1324 child)
1325 -- or --
1326 The signal was SIGTRAP, e.g. it was our signal, but we
1327 decided we should resume from it.
1328
1329 We're going to run this baby now!
1330
1331 Insert breakpoints now, unless we are trying
1332 to one-proceed past a breakpoint. */
1333 /* If we've just finished a special step resume and we don't
1334 want to hit a breakpoint, pull em out. */
1335 if (step_resume_breakpoint == NULL
1336 && through_sigtramp_breakpoint == NULL
1337 && remove_breakpoints_on_following_step)
1338 {
1339 remove_breakpoints_on_following_step = 0;
1340 remove_breakpoints ();
1341 breakpoints_inserted = 0;
1342 }
1343 else if (!breakpoints_inserted &&
1344 (through_sigtramp_breakpoint != NULL || !another_trap))
1345 {
1346 breakpoints_failed = insert_breakpoints ();
1347 if (breakpoints_failed)
1348 break;
1349 breakpoints_inserted = 1;
1350 }
1351
1352 trap_expected = another_trap;
1353
1354 if (stop_signal == TARGET_SIGNAL_TRAP)
1355 stop_signal = TARGET_SIGNAL_0;
1356
1357 #ifdef SHIFT_INST_REGS
1358 /* I'm not sure when this following segment applies. I do know, now,
1359 that we shouldn't rewrite the regs when we were stopped by a
1360 random signal from the inferior process. */
1361 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
1362 (this is only used on the 88k). */
1363
1364 if (!bpstat_explains_signal (stop_bpstat)
1365 && (stop_signal != TARGET_SIGNAL_CHLD)
1366 && !stopped_by_random_signal)
1367 SHIFT_INST_REGS();
1368 #endif /* SHIFT_INST_REGS */
1369
1370 resume (CURRENTLY_STEPPING (), stop_signal);
1371 }
1372 }
1373
1374 stop_stepping:
1375 if (target_has_execution)
1376 {
1377 /* Assuming the inferior still exists, set these up for next
1378 time, just like we did above if we didn't break out of the
1379 loop. */
1380 prev_pc = read_pc ();
1381 prev_func_start = stop_func_start;
1382 prev_func_name = stop_func_name;
1383 prev_sp = stop_sp;
1384 prev_frame_address = stop_frame_address;
1385 }
1386 do_cleanups (old_cleanups);
1387 }
1388 \f
1389 /* Here to return control to GDB when the inferior stops for real.
1390 Print appropriate messages, remove breakpoints, give terminal our modes.
1391
1392 STOP_PRINT_FRAME nonzero means print the executing frame
1393 (pc, function, args, file, line number and line text).
1394 BREAKPOINTS_FAILED nonzero means stop was due to error
1395 attempting to insert breakpoints. */
1396
1397 void
1398 normal_stop ()
1399 {
1400 /* Make sure that the current_frame's pc is correct. This
1401 is a correction for setting up the frame info before doing
1402 DECR_PC_AFTER_BREAK */
1403 if (target_has_execution && get_current_frame())
1404 (get_current_frame ())->pc = read_pc ();
1405
1406 if (breakpoints_failed)
1407 {
1408 target_terminal_ours_for_output ();
1409 print_sys_errmsg ("ptrace", breakpoints_failed);
1410 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1411 The same program may be running in another process.\n");
1412 }
1413
1414 if (target_has_execution && breakpoints_inserted)
1415 if (remove_breakpoints ())
1416 {
1417 target_terminal_ours_for_output ();
1418 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1419 It might be running in another process.\n\
1420 Further execution is probably impossible.\n");
1421 }
1422
1423 breakpoints_inserted = 0;
1424
1425 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1426 Delete any breakpoint that is to be deleted at the next stop. */
1427
1428 breakpoint_auto_delete (stop_bpstat);
1429
1430 /* If an auto-display called a function and that got a signal,
1431 delete that auto-display to avoid an infinite recursion. */
1432
1433 if (stopped_by_random_signal)
1434 disable_current_display ();
1435
1436 if (step_multi && stop_step)
1437 goto done;
1438
1439 target_terminal_ours ();
1440
1441 /* Look up the hook_stop and run it if it exists. */
1442
1443 if (stop_command->hook)
1444 {
1445 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1446 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1447 }
1448
1449 if (!target_has_stack)
1450 goto done;
1451
1452 /* Select innermost stack frame except on return from a stack dummy routine,
1453 or if the program has exited. Print it without a level number if
1454 we have changed functions or hit a breakpoint. Print source line
1455 if we have one. */
1456 if (!stop_stack_dummy)
1457 {
1458 if (stop_print_frame)
1459 {
1460 int source_only;
1461
1462 source_only = bpstat_print (stop_bpstat);
1463 source_only = source_only ||
1464 ( stop_step
1465 && step_frame_address == stop_frame_address
1466 && step_start_function == find_pc_function (stop_pc));
1467
1468 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1469
1470 /* Display the auto-display expressions. */
1471 do_displays ();
1472 }
1473 }
1474
1475 /* Save the function value return registers, if we care.
1476 We might be about to restore their previous contents. */
1477 if (proceed_to_finish)
1478 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1479
1480 if (stop_stack_dummy)
1481 {
1482 /* Pop the empty frame that contains the stack dummy.
1483 POP_FRAME ends with a setting of the current frame, so we
1484 can use that next. */
1485 POP_FRAME;
1486 /* Set stop_pc to what it was before we called the function. Can't rely
1487 on restore_inferior_status because that only gets called if we don't
1488 stop in the called function. */
1489 stop_pc = read_pc();
1490 select_frame (get_current_frame (), 0);
1491 }
1492 done:
1493 annotate_stopped ();
1494 }
1495
1496 static int
1497 hook_stop_stub (cmd)
1498 char *cmd;
1499 {
1500 execute_user_command ((struct cmd_list_element *)cmd, 0);
1501 return (0);
1502 }
1503 \f
1504 int signal_stop_state (signo)
1505 int signo;
1506 {
1507 return signal_stop[signo];
1508 }
1509
1510 int signal_print_state (signo)
1511 int signo;
1512 {
1513 return signal_print[signo];
1514 }
1515
1516 int signal_pass_state (signo)
1517 int signo;
1518 {
1519 return signal_program[signo];
1520 }
1521
1522 static void
1523 sig_print_header ()
1524 {
1525 printf_filtered ("\
1526 Signal Stop\tPrint\tPass to program\tDescription\n");
1527 }
1528
1529 static void
1530 sig_print_info (oursig)
1531 enum target_signal oursig;
1532 {
1533 char *name = target_signal_to_name (oursig);
1534 printf_filtered ("%s", name);
1535 printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name),
1536 " ");
1537 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
1538 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
1539 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
1540 printf_filtered ("%s\n", target_signal_to_string (oursig));
1541 }
1542
1543 /* Specify how various signals in the inferior should be handled. */
1544
1545 static void
1546 handle_command (args, from_tty)
1547 char *args;
1548 int from_tty;
1549 {
1550 char **argv;
1551 int digits, wordlen;
1552 int sigfirst, signum, siglast;
1553 enum target_signal oursig;
1554 int allsigs;
1555 int nsigs;
1556 unsigned char *sigs;
1557 struct cleanup *old_chain;
1558
1559 if (args == NULL)
1560 {
1561 error_no_arg ("signal to handle");
1562 }
1563
1564 /* Allocate and zero an array of flags for which signals to handle. */
1565
1566 nsigs = (int)TARGET_SIGNAL_LAST;
1567 sigs = (unsigned char *) alloca (nsigs);
1568 memset (sigs, 0, nsigs);
1569
1570 /* Break the command line up into args. */
1571
1572 argv = buildargv (args);
1573 if (argv == NULL)
1574 {
1575 nomem (0);
1576 }
1577 old_chain = make_cleanup (freeargv, (char *) argv);
1578
1579 /* Walk through the args, looking for signal oursigs, signal names, and
1580 actions. Signal numbers and signal names may be interspersed with
1581 actions, with the actions being performed for all signals cumulatively
1582 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1583
1584 while (*argv != NULL)
1585 {
1586 wordlen = strlen (*argv);
1587 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1588 allsigs = 0;
1589 sigfirst = siglast = -1;
1590
1591 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1592 {
1593 /* Apply action to all signals except those used by the
1594 debugger. Silently skip those. */
1595 allsigs = 1;
1596 sigfirst = 0;
1597 siglast = nsigs - 1;
1598 }
1599 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1600 {
1601 SET_SIGS (nsigs, sigs, signal_stop);
1602 SET_SIGS (nsigs, sigs, signal_print);
1603 }
1604 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1605 {
1606 UNSET_SIGS (nsigs, sigs, signal_program);
1607 }
1608 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1609 {
1610 SET_SIGS (nsigs, sigs, signal_print);
1611 }
1612 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1613 {
1614 SET_SIGS (nsigs, sigs, signal_program);
1615 }
1616 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1617 {
1618 UNSET_SIGS (nsigs, sigs, signal_stop);
1619 }
1620 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1621 {
1622 SET_SIGS (nsigs, sigs, signal_program);
1623 }
1624 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1625 {
1626 UNSET_SIGS (nsigs, sigs, signal_print);
1627 UNSET_SIGS (nsigs, sigs, signal_stop);
1628 }
1629 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1630 {
1631 UNSET_SIGS (nsigs, sigs, signal_program);
1632 }
1633 else if (digits > 0)
1634 {
1635 /* It is numeric. The numeric signal refers to our own internal
1636 signal numbering from target.h, not to host/target signal number.
1637 This is a feature; users really should be using symbolic names
1638 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1639 will work right anyway. */
1640
1641 sigfirst = siglast = atoi (*argv);
1642 if ((*argv)[digits] == '-')
1643 {
1644 siglast = atoi ((*argv) + digits + 1);
1645 }
1646 if (sigfirst > siglast)
1647 {
1648 /* Bet he didn't figure we'd think of this case... */
1649 signum = sigfirst;
1650 sigfirst = siglast;
1651 siglast = signum;
1652 }
1653 if (sigfirst < 0 || sigfirst >= nsigs)
1654 {
1655 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1656 }
1657 if (siglast < 0 || siglast >= nsigs)
1658 {
1659 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1660 }
1661 }
1662 else
1663 {
1664 oursig = target_signal_from_name (*argv);
1665 if (oursig != TARGET_SIGNAL_UNKNOWN)
1666 {
1667 sigfirst = siglast = (int)oursig;
1668 }
1669 else
1670 {
1671 /* Not a number and not a recognized flag word => complain. */
1672 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1673 }
1674 }
1675
1676 /* If any signal numbers or symbol names were found, set flags for
1677 which signals to apply actions to. */
1678
1679 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1680 {
1681 switch ((enum target_signal)signum)
1682 {
1683 case TARGET_SIGNAL_TRAP:
1684 case TARGET_SIGNAL_INT:
1685 if (!allsigs && !sigs[signum])
1686 {
1687 if (query ("%s is used by the debugger.\n\
1688 Are you sure you want to change it? ",
1689 target_signal_to_name
1690 ((enum target_signal)signum)))
1691 {
1692 sigs[signum] = 1;
1693 }
1694 else
1695 {
1696 printf_unfiltered ("Not confirmed, unchanged.\n");
1697 gdb_flush (gdb_stdout);
1698 }
1699 }
1700 break;
1701 default:
1702 sigs[signum] = 1;
1703 break;
1704 }
1705 }
1706
1707 argv++;
1708 }
1709
1710 target_notice_signals(inferior_pid);
1711
1712 if (from_tty)
1713 {
1714 /* Show the results. */
1715 sig_print_header ();
1716 for (signum = 0; signum < nsigs; signum++)
1717 {
1718 if (sigs[signum])
1719 {
1720 sig_print_info (signum);
1721 }
1722 }
1723 }
1724
1725 do_cleanups (old_chain);
1726 }
1727
1728 /* Print current contents of the tables set by the handle command.
1729 It is possible we should just be printing signals actually used
1730 by the current target (but for things to work right when switching
1731 targets, all signals should be in the signal tables). */
1732
1733 static void
1734 signals_info (signum_exp, from_tty)
1735 char *signum_exp;
1736 int from_tty;
1737 {
1738 enum target_signal oursig;
1739 sig_print_header ();
1740
1741 if (signum_exp)
1742 {
1743 /* First see if this is a symbol name. */
1744 oursig = target_signal_from_name (signum_exp);
1745 if (oursig == TARGET_SIGNAL_UNKNOWN)
1746 {
1747 /* Nope, maybe it's an address which evaluates to a signal
1748 number. */
1749 /* The numeric signal refers to our own internal
1750 signal numbering from target.h, not to host/target signal number.
1751 This is a feature; users really should be using symbolic names
1752 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1753 will work right anyway. */
1754 int i = parse_and_eval_address (signum_exp);
1755 if (i >= (int)TARGET_SIGNAL_LAST
1756 || i < 0
1757 || i == (int)TARGET_SIGNAL_UNKNOWN
1758 || i == (int)TARGET_SIGNAL_DEFAULT)
1759 error ("Signal number out of bounds.");
1760 oursig = (enum target_signal)i;
1761 }
1762 sig_print_info (oursig);
1763 return;
1764 }
1765
1766 printf_filtered ("\n");
1767 /* These ugly casts brought to you by the native VAX compiler. */
1768 for (oursig = TARGET_SIGNAL_FIRST;
1769 (int)oursig < (int)TARGET_SIGNAL_LAST;
1770 oursig = (enum target_signal)((int)oursig + 1))
1771 {
1772 QUIT;
1773
1774 if (oursig != TARGET_SIGNAL_UNKNOWN
1775 && oursig != TARGET_SIGNAL_DEFAULT
1776 && oursig != TARGET_SIGNAL_0)
1777 sig_print_info (oursig);
1778 }
1779
1780 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1781 }
1782 \f
1783 /* Save all of the information associated with the inferior<==>gdb
1784 connection. INF_STATUS is a pointer to a "struct inferior_status"
1785 (defined in inferior.h). */
1786
1787 void
1788 save_inferior_status (inf_status, restore_stack_info)
1789 struct inferior_status *inf_status;
1790 int restore_stack_info;
1791 {
1792 inf_status->stop_signal = stop_signal;
1793 inf_status->stop_pc = stop_pc;
1794 inf_status->stop_frame_address = stop_frame_address;
1795 inf_status->stop_step = stop_step;
1796 inf_status->stop_stack_dummy = stop_stack_dummy;
1797 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1798 inf_status->trap_expected = trap_expected;
1799 inf_status->step_range_start = step_range_start;
1800 inf_status->step_range_end = step_range_end;
1801 inf_status->step_frame_address = step_frame_address;
1802 inf_status->step_over_calls = step_over_calls;
1803 inf_status->stop_after_trap = stop_after_trap;
1804 inf_status->stop_soon_quietly = stop_soon_quietly;
1805 /* Save original bpstat chain here; replace it with copy of chain.
1806 If caller's caller is walking the chain, they'll be happier if we
1807 hand them back the original chain when restore_i_s is called. */
1808 inf_status->stop_bpstat = stop_bpstat;
1809 stop_bpstat = bpstat_copy (stop_bpstat);
1810 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1811 inf_status->restore_stack_info = restore_stack_info;
1812 inf_status->proceed_to_finish = proceed_to_finish;
1813
1814 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1815
1816 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1817
1818 record_selected_frame (&(inf_status->selected_frame_address),
1819 &(inf_status->selected_level));
1820 return;
1821 }
1822
1823 struct restore_selected_frame_args {
1824 FRAME_ADDR frame_address;
1825 int level;
1826 };
1827
1828 static int restore_selected_frame PARAMS ((char *));
1829
1830 /* Restore the selected frame. args is really a struct
1831 restore_selected_frame_args * (declared as char * for catch_errors)
1832 telling us what frame to restore. Returns 1 for success, or 0 for
1833 failure. An error message will have been printed on error. */
1834 static int
1835 restore_selected_frame (args)
1836 char *args;
1837 {
1838 struct restore_selected_frame_args *fr =
1839 (struct restore_selected_frame_args *) args;
1840 FRAME fid;
1841 int level = fr->level;
1842
1843 fid = find_relative_frame (get_current_frame (), &level);
1844
1845 /* If inf_status->selected_frame_address is NULL, there was no
1846 previously selected frame. */
1847 if (fid == 0 ||
1848 FRAME_FP (fid) != fr->frame_address ||
1849 level != 0)
1850 {
1851 warning ("Unable to restore previously selected frame.\n");
1852 return 0;
1853 }
1854 select_frame (fid, fr->level);
1855 return(1);
1856 }
1857
1858 void
1859 restore_inferior_status (inf_status)
1860 struct inferior_status *inf_status;
1861 {
1862 stop_signal = inf_status->stop_signal;
1863 stop_pc = inf_status->stop_pc;
1864 stop_frame_address = inf_status->stop_frame_address;
1865 stop_step = inf_status->stop_step;
1866 stop_stack_dummy = inf_status->stop_stack_dummy;
1867 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1868 trap_expected = inf_status->trap_expected;
1869 step_range_start = inf_status->step_range_start;
1870 step_range_end = inf_status->step_range_end;
1871 step_frame_address = inf_status->step_frame_address;
1872 step_over_calls = inf_status->step_over_calls;
1873 stop_after_trap = inf_status->stop_after_trap;
1874 stop_soon_quietly = inf_status->stop_soon_quietly;
1875 bpstat_clear (&stop_bpstat);
1876 stop_bpstat = inf_status->stop_bpstat;
1877 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1878 proceed_to_finish = inf_status->proceed_to_finish;
1879
1880 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1881
1882 /* The inferior can be gone if the user types "print exit(0)"
1883 (and perhaps other times). */
1884 if (target_has_execution)
1885 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1886
1887 /* The inferior can be gone if the user types "print exit(0)"
1888 (and perhaps other times). */
1889
1890 /* FIXME: If we are being called after stopping in a function which
1891 is called from gdb, we should not be trying to restore the
1892 selected frame; it just prints a spurious error message (The
1893 message is useful, however, in detecting bugs in gdb (like if gdb
1894 clobbers the stack)). In fact, should we be restoring the
1895 inferior status at all in that case? . */
1896
1897 if (target_has_stack && inf_status->restore_stack_info)
1898 {
1899 struct restore_selected_frame_args fr;
1900 fr.level = inf_status->selected_level;
1901 fr.frame_address = inf_status->selected_frame_address;
1902 /* The point of catch_errors is that if the stack is clobbered,
1903 walking the stack might encounter a garbage pointer and error()
1904 trying to dereference it. */
1905 if (catch_errors (restore_selected_frame, &fr,
1906 "Unable to restore previously selected frame:\n",
1907 RETURN_MASK_ERROR) == 0)
1908 /* Error in restoring the selected frame. Select the innermost
1909 frame. */
1910 select_frame (get_current_frame (), 0);
1911 }
1912 }
1913
1914 \f
1915 void
1916 _initialize_infrun ()
1917 {
1918 register int i;
1919 register int numsigs;
1920
1921 add_info ("signals", signals_info,
1922 "What debugger does when program gets various signals.\n\
1923 Specify a signal number as argument to print info on that signal only.");
1924 add_info_alias ("handle", "signals", 0);
1925
1926 add_com ("handle", class_run, handle_command,
1927 "Specify how to handle a signal.\n\
1928 Args are signal numbers and actions to apply to those signals.\n\
1929 Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1930 Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1931 The special arg \"all\" is recognized to mean all signals except those\n\
1932 used by the debugger, typically SIGTRAP and SIGINT.\n\
1933 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1934 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1935 Stop means reenter debugger if this signal happens (implies print).\n\
1936 Print means print a message if this signal happens.\n\
1937 Pass means let program see this signal; otherwise program doesn't know.\n\
1938 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1939 Pass and Stop may be combined.");
1940
1941 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
1942 "There is no `stop' command, but you can set a hook on `stop'.\n\
1943 This allows you to set a list of commands to be run each time execution\n\
1944 of the program stops.", &cmdlist);
1945
1946 numsigs = (int)TARGET_SIGNAL_LAST;
1947 signal_stop = (unsigned char *)
1948 xmalloc (sizeof (signal_stop[0]) * numsigs);
1949 signal_print = (unsigned char *)
1950 xmalloc (sizeof (signal_print[0]) * numsigs);
1951 signal_program = (unsigned char *)
1952 xmalloc (sizeof (signal_program[0]) * numsigs);
1953 for (i = 0; i < numsigs; i++)
1954 {
1955 signal_stop[i] = 1;
1956 signal_print[i] = 1;
1957 signal_program[i] = 1;
1958 }
1959
1960 /* Signals caused by debugger's own actions
1961 should not be given to the program afterwards. */
1962 signal_program[TARGET_SIGNAL_TRAP] = 0;
1963 signal_program[TARGET_SIGNAL_INT] = 0;
1964
1965 /* Signals that are not errors should not normally enter the debugger. */
1966 signal_stop[TARGET_SIGNAL_ALRM] = 0;
1967 signal_print[TARGET_SIGNAL_ALRM] = 0;
1968 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
1969 signal_print[TARGET_SIGNAL_VTALRM] = 0;
1970 signal_stop[TARGET_SIGNAL_PROF] = 0;
1971 signal_print[TARGET_SIGNAL_PROF] = 0;
1972 signal_stop[TARGET_SIGNAL_CHLD] = 0;
1973 signal_print[TARGET_SIGNAL_CHLD] = 0;
1974 signal_stop[TARGET_SIGNAL_IO] = 0;
1975 signal_print[TARGET_SIGNAL_IO] = 0;
1976 signal_stop[TARGET_SIGNAL_POLL] = 0;
1977 signal_print[TARGET_SIGNAL_POLL] = 0;
1978 signal_stop[TARGET_SIGNAL_URG] = 0;
1979 signal_print[TARGET_SIGNAL_URG] = 0;
1980 }
This page took 0.068464 seconds and 5 git commands to generate.