Merged in latest RS6000 diffs from Metin G. Ozisik.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Start (run) and stop the inferior process, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Notes on the algorithm used in wait_for_inferior to determine if we
21 just did a subroutine call when stepping. We have the following
22 information at that point:
23
24 Current and previous (just before this step) pc.
25 Current and previous sp.
26 Current and previous start of current function.
27
28 If the starts of the functions don't match, then
29
30 a) We did a subroutine call.
31
32 In this case, the pc will be at the beginning of a function.
33
34 b) We did a subroutine return.
35
36 Otherwise.
37
38 c) We did a longjmp.
39
40 If we did a longjump, we were doing "nexti", since a next would
41 have attempted to skip over the assembly language routine in which
42 the longjmp is coded and would have simply been the equivalent of a
43 continue. I consider this ok behaivior. We'd like one of two
44 things to happen if we are doing a nexti through the longjmp()
45 routine: 1) It behaves as a stepi, or 2) It acts like a continue as
46 above. Given that this is a special case, and that anybody who
47 thinks that the concept of sub calls is meaningful in the context
48 of a longjmp, I'll take either one. Let's see what happens.
49
50 Acts like a subroutine return. I can handle that with no problem
51 at all.
52
53 -->So: If the current and previous beginnings of the current
54 function don't match, *and* the pc is at the start of a function,
55 we've done a subroutine call. If the pc is not at the start of a
56 function, we *didn't* do a subroutine call.
57
58 -->If the beginnings of the current and previous function do match,
59 either:
60
61 a) We just did a recursive call.
62
63 In this case, we would be at the very beginning of a
64 function and 1) it will have a prologue (don't jump to
65 before prologue, or 2) (we assume here that it doesn't have
66 a prologue) there will have been a change in the stack
67 pointer over the last instruction. (Ie. it's got to put
68 the saved pc somewhere. The stack is the usual place. In
69 a recursive call a register is only an option if there's a
70 prologue to do something with it. This is even true on
71 register window machines; the prologue sets up the new
72 window. It might not be true on a register window machine
73 where the call instruction moved the register window
74 itself. Hmmm. One would hope that the stack pointer would
75 also change. If it doesn't, somebody send me a note, and
76 I'll work out a more general theory.
77 bug-gdb@prep.ai.mit.edu). This is true (albeit slipperly
78 so) on all machines I'm aware of:
79
80 m68k: Call changes stack pointer. Regular jumps don't.
81
82 sparc: Recursive calls must have frames and therefor,
83 prologues.
84
85 vax: All calls have frames and hence change the
86 stack pointer.
87
88 b) We did a return from a recursive call. I don't see that we
89 have either the ability or the need to distinguish this
90 from an ordinary jump. The stack frame will be printed
91 when and if the frame pointer changes; if we are in a
92 function without a frame pointer, it's the users own
93 lookout.
94
95 c) We did a jump within a function. We assume that this is
96 true if we didn't do a recursive call.
97
98 d) We are in no-man's land ("I see no symbols here"). We
99 don't worry about this; it will make calls look like simple
100 jumps (and the stack frames will be printed when the frame
101 pointer moves), which is a reasonably non-violent response.
102 */
103
104 #include "defs.h"
105 #include <string.h>
106 #include "symtab.h"
107 #include "frame.h"
108 #include "inferior.h"
109 #include "breakpoint.h"
110 #include "wait.h"
111 #include "gdbcore.h"
112 #include "signame.h"
113 #include "command.h"
114 #include "terminal.h" /* For #ifdef TIOCGPGRP and new_tty */
115 #include "target.h"
116
117 #include <signal.h>
118
119 /* unistd.h is needed to #define X_OK */
120 #ifdef USG
121 #include <unistd.h>
122 #else
123 #include <sys/file.h>
124 #endif
125
126 #ifdef SET_STACK_LIMIT_HUGE
127 #include <sys/time.h>
128 #include <sys/resource.h>
129
130 extern int original_stack_limit;
131 #endif /* SET_STACK_LIMIT_HUGE */
132
133 /* Prototypes for local functions */
134
135 static void
136 signals_info PARAMS ((char *));
137
138 static void
139 handle_command PARAMS ((char *, int));
140
141 static void
142 sig_print_info PARAMS ((int));
143
144 static void
145 sig_print_header PARAMS ((void));
146
147 static void
148 remove_step_breakpoint PARAMS ((void));
149
150 static void
151 insert_step_breakpoint PARAMS ((void));
152
153 static void
154 resume PARAMS ((int, int));
155
156 static void
157 resume_cleanups PARAMS ((int));
158
159 extern char **environ;
160
161 extern struct target_ops child_ops; /* In inftarg.c */
162
163 /* Sigtramp is a routine that the kernel calls (which then calls the
164 signal handler). On most machines it is a library routine that
165 is linked into the executable.
166
167 This macro, given a program counter value and the name of the
168 function in which that PC resides (which can be null if the
169 name is not known), returns nonzero if the PC and name show
170 that we are in sigtramp.
171
172 On most machines just see if the name is sigtramp (and if we have
173 no name, assume we are not in sigtramp). */
174 #if !defined (IN_SIGTRAMP)
175 #define IN_SIGTRAMP(pc, name) \
176 (name && !strcmp ("_sigtramp", name))
177 #endif
178
179 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
180 program. It needs to examine the jmp_buf argument and extract the PC
181 from it. The return value is non-zero on success, zero otherwise. */
182 #ifndef GET_LONGJMP_TARGET
183 #define GET_LONGJMP_TARGET(PC_ADDR) 0
184 #endif
185
186
187 /* Some machines have trampoline code that sits between function callers
188 and the actual functions themselves. If this machine doesn't have
189 such things, disable their processing. */
190 #ifndef SKIP_TRAMPOLINE_CODE
191 #define SKIP_TRAMPOLINE_CODE(pc) 0
192 #endif
193
194 /* For SVR4 shared libraries, each call goes through a small piece of
195 trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
196 to nonzero if we are current stopped in one of these. */
197 #ifndef IN_SOLIB_TRAMPOLINE
198 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
199 #endif
200
201 #ifdef TDESC
202 #include "tdesc.h"
203 int safe_to_init_tdesc_context = 0;
204 extern dc_dcontext_t current_context;
205 #endif
206
207 /* Tables of how to react to signals; the user sets them. */
208
209 static char signal_stop[NSIG];
210 static char signal_print[NSIG];
211 static char signal_program[NSIG];
212
213 /* Nonzero if breakpoints are now inserted in the inferior. */
214 /* Nonstatic for initialization during xxx_create_inferior. FIXME. */
215
216 /*static*/ int breakpoints_inserted;
217
218 /* Function inferior was in as of last step command. */
219
220 static struct symbol *step_start_function;
221
222 /* Nonzero => address for special breakpoint for resuming stepping. */
223
224 static CORE_ADDR step_resume_break_address;
225
226 /* Pointer to orig contents of the byte where the special breakpoint is. */
227
228 static char step_resume_break_shadow[BREAKPOINT_MAX];
229
230 /* Nonzero means the special breakpoint is a duplicate
231 so it has not itself been inserted. */
232
233 static int step_resume_break_duplicate;
234
235 /* Nonzero if we are expecting a trace trap and should proceed from it. */
236
237 static int trap_expected;
238
239 /* Nonzero if the next time we try to continue the inferior, it will
240 step one instruction and generate a spurious trace trap.
241 This is used to compensate for a bug in HP-UX. */
242
243 static int trap_expected_after_continue;
244
245 /* Nonzero means expecting a trace trap
246 and should stop the inferior and return silently when it happens. */
247
248 int stop_after_trap;
249
250 /* Nonzero means expecting a trap and caller will handle it themselves.
251 It is used after attach, due to attaching to a process;
252 when running in the shell before the child program has been exec'd;
253 and when running some kinds of remote stuff (FIXME?). */
254
255 int stop_soon_quietly;
256
257 /* Nonzero if pc has been changed by the debugger
258 since the inferior stopped. */
259
260 int pc_changed;
261
262 /* Nonzero if proceed is being used for a "finish" command or a similar
263 situation when stop_registers should be saved. */
264
265 int proceed_to_finish;
266
267 /* Save register contents here when about to pop a stack dummy frame,
268 if-and-only-if proceed_to_finish is set.
269 Thus this contains the return value from the called function (assuming
270 values are returned in a register). */
271
272 char stop_registers[REGISTER_BYTES];
273
274 /* Nonzero if program stopped due to error trying to insert breakpoints. */
275
276 static int breakpoints_failed;
277
278 /* Nonzero after stop if current stack frame should be printed. */
279
280 static int stop_print_frame;
281
282 #ifdef NO_SINGLE_STEP
283 extern int one_stepped; /* From machine dependent code */
284 extern void single_step (); /* Same. */
285 #endif /* NO_SINGLE_STEP */
286
287 \f
288 /* Things to clean up if we QUIT out of resume (). */
289 /* ARGSUSED */
290 static void
291 resume_cleanups (arg)
292 int arg;
293 {
294 normal_stop ();
295 }
296
297 /* Resume the inferior, but allow a QUIT. This is useful if the user
298 wants to interrupt some lengthy single-stepping operation
299 (for child processes, the SIGINT goes to the inferior, and so
300 we get a SIGINT random_signal, but for remote debugging and perhaps
301 other targets, that's not true).
302
303 STEP nonzero if we should step (zero to continue instead).
304 SIG is the signal to give the inferior (zero for none). */
305 static void
306 resume (step, sig)
307 int step;
308 int sig;
309 {
310 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
311 QUIT;
312
313 #ifdef NO_SINGLE_STEP
314 if (step) {
315 single_step(sig); /* Do it the hard way, w/temp breakpoints */
316 step = 0; /* ...and don't ask hardware to do it. */
317 }
318 #endif
319
320 /* Handle any optimized stores to the inferior NOW... */
321 #ifdef DO_DEFERRED_STORES
322 DO_DEFERRED_STORES;
323 #endif
324
325 target_resume (step, sig);
326 discard_cleanups (old_cleanups);
327 }
328
329 \f
330 /* Clear out all variables saying what to do when inferior is continued.
331 First do this, then set the ones you want, then call `proceed'. */
332
333 void
334 clear_proceed_status ()
335 {
336 trap_expected = 0;
337 step_range_start = 0;
338 step_range_end = 0;
339 step_frame_address = 0;
340 step_over_calls = -1;
341 step_resume_break_address = 0;
342 stop_after_trap = 0;
343 stop_soon_quietly = 0;
344 proceed_to_finish = 0;
345 breakpoint_proceeded = 1; /* We're about to proceed... */
346
347 /* Discard any remaining commands or status from previous stop. */
348 bpstat_clear (&stop_bpstat);
349 }
350
351 /* Basic routine for continuing the program in various fashions.
352
353 ADDR is the address to resume at, or -1 for resume where stopped.
354 SIGGNAL is the signal to give it, or 0 for none,
355 or -1 for act according to how it stopped.
356 STEP is nonzero if should trap after one instruction.
357 -1 means return after that and print nothing.
358 You should probably set various step_... variables
359 before calling here, if you are stepping.
360
361 You should call clear_proceed_status before calling proceed. */
362
363 void
364 proceed (addr, siggnal, step)
365 CORE_ADDR addr;
366 int siggnal;
367 int step;
368 {
369 int oneproc = 0;
370
371 if (step > 0)
372 step_start_function = find_pc_function (read_pc ());
373 if (step < 0)
374 stop_after_trap = 1;
375
376 if (addr == (CORE_ADDR)-1)
377 {
378 /* If there is a breakpoint at the address we will resume at,
379 step one instruction before inserting breakpoints
380 so that we do not stop right away. */
381
382 if (!pc_changed && breakpoint_here_p (read_pc ()))
383 oneproc = 1;
384 }
385 else
386 {
387 write_register (PC_REGNUM, addr);
388 #ifdef NPC_REGNUM
389 write_register (NPC_REGNUM, addr + 4);
390 #ifdef NNPC_REGNUM
391 write_register (NNPC_REGNUM, addr + 8);
392 #endif
393 #endif
394 }
395
396 if (trap_expected_after_continue)
397 {
398 /* If (step == 0), a trap will be automatically generated after
399 the first instruction is executed. Force step one
400 instruction to clear this condition. This should not occur
401 if step is nonzero, but it is harmless in that case. */
402 oneproc = 1;
403 trap_expected_after_continue = 0;
404 }
405
406 if (oneproc)
407 /* We will get a trace trap after one instruction.
408 Continue it automatically and insert breakpoints then. */
409 trap_expected = 1;
410 else
411 {
412 int temp = insert_breakpoints ();
413 if (temp)
414 {
415 print_sys_errmsg ("ptrace", temp);
416 error ("Cannot insert breakpoints.\n\
417 The same program may be running in another process.");
418 }
419 breakpoints_inserted = 1;
420 }
421
422 /* Install inferior's terminal modes. */
423 target_terminal_inferior ();
424
425 if (siggnal >= 0)
426 stop_signal = siggnal;
427 /* If this signal should not be seen by program,
428 give it zero. Used for debugging signals. */
429 else if (stop_signal < NSIG && !signal_program[stop_signal])
430 stop_signal= 0;
431
432 /* Resume inferior. */
433 resume (oneproc || step || bpstat_should_step (), stop_signal);
434
435 /* Wait for it to stop (if not standalone)
436 and in any case decode why it stopped, and act accordingly. */
437
438 wait_for_inferior ();
439 normal_stop ();
440 }
441
442 /* Record the pc and sp of the program the last time it stopped.
443 These are just used internally by wait_for_inferior, but need
444 to be preserved over calls to it and cleared when the inferior
445 is started. */
446 static CORE_ADDR prev_pc;
447 static CORE_ADDR prev_sp;
448 static CORE_ADDR prev_func_start;
449 static char *prev_func_name;
450
451 \f
452 /* Start an inferior Unix child process and sets inferior_pid to its pid.
453 EXEC_FILE is the file to run.
454 ALLARGS is a string containing the arguments to the program.
455 ENV is the environment vector to pass. Errors reported with error(). */
456
457 #ifndef SHELL_FILE
458 #define SHELL_FILE "/bin/sh"
459 #endif
460
461 void
462 child_create_inferior (exec_file, allargs, env)
463 char *exec_file;
464 char *allargs;
465 char **env;
466 {
467 int pid;
468 char *shell_command;
469 extern int sys_nerr;
470 extern char *sys_errlist[];
471 char *shell_file;
472 static char default_shell_file[] = SHELL_FILE;
473 int len;
474 int pending_execs;
475 /* Set debug_fork then attach to the child while it sleeps, to debug. */
476 static int debug_fork = 0;
477 /* This is set to the result of setpgrp, which if vforked, will be visible
478 to you in the parent process. It's only used by humans for debugging. */
479 static int debug_setpgrp = 657473;
480 char **save_our_env;
481
482 /* The user might want tilde-expansion, and in general probably wants
483 the program to behave the same way as if run from
484 his/her favorite shell. So we let the shell run it for us.
485 FIXME, this should probably search the local environment (as
486 modified by the setenv command), not the env gdb inherited. */
487 shell_file = getenv ("SHELL");
488 if (shell_file == NULL)
489 shell_file = default_shell_file;
490
491 len = 5 + strlen (exec_file) + 1 + strlen (allargs) + 1 + /*slop*/ 10;
492 /* If desired, concat something onto the front of ALLARGS.
493 SHELL_COMMAND is the result. */
494 #ifdef SHELL_COMMAND_CONCAT
495 shell_command = (char *) alloca (strlen (SHELL_COMMAND_CONCAT) + len);
496 strcpy (shell_command, SHELL_COMMAND_CONCAT);
497 #else
498 shell_command = (char *) alloca (len);
499 shell_command[0] = '\0';
500 #endif
501 strcat (shell_command, "exec ");
502 strcat (shell_command, exec_file);
503 strcat (shell_command, " ");
504 strcat (shell_command, allargs);
505
506 /* exec is said to fail if the executable is open. */
507 close_exec_file ();
508
509 /* Retain a copy of our environment variables, since the child will
510 replace the value of environ and if we're vforked, we have to
511 restore it. */
512 save_our_env = environ;
513
514 /* Tell the terminal handling subsystem what tty we plan to run on;
515 it will just record the information for later. */
516
517 new_tty_prefork (inferior_io_terminal);
518
519 /* It is generally good practice to flush any possible pending stdio
520 output prior to doing a fork, to avoid the possibility of both the
521 parent and child flushing the same data after the fork. */
522
523 fflush (stdout);
524 fflush (stderr);
525
526 #if defined(USG) && !defined(HAVE_VFORK)
527 pid = fork ();
528 #else
529 if (debug_fork)
530 pid = fork ();
531 else
532 pid = vfork ();
533 #endif
534
535 if (pid < 0)
536 perror_with_name ("vfork");
537
538 if (pid == 0)
539 {
540 if (debug_fork)
541 sleep (debug_fork);
542
543 #ifdef TIOCGPGRP
544 /* Run inferior in a separate process group. */
545 #ifdef NEED_POSIX_SETPGID
546 debug_setpgrp = setpgid (0, 0);
547 #else
548 #if defined(USG) && !defined(SETPGRP_ARGS)
549 debug_setpgrp = setpgrp ();
550 #else
551 debug_setpgrp = setpgrp (getpid (), getpid ());
552 #endif /* USG */
553 #endif /* NEED_POSIX_SETPGID */
554 if (debug_setpgrp == -1)
555 perror("setpgrp failed in child");
556 #endif /* TIOCGPGRP */
557
558 #ifdef SET_STACK_LIMIT_HUGE
559 /* Reset the stack limit back to what it was. */
560 {
561 struct rlimit rlim;
562
563 getrlimit (RLIMIT_STACK, &rlim);
564 rlim.rlim_cur = original_stack_limit;
565 setrlimit (RLIMIT_STACK, &rlim);
566 }
567 #endif /* SET_STACK_LIMIT_HUGE */
568
569 /* Ask the tty subsystem to switch to the one we specified earlier
570 (or to share the current terminal, if none was specified). */
571
572 new_tty ();
573
574 /* Changing the signal handlers for the inferior after
575 a vfork can also change them for the superior, so we don't mess
576 with signals here. See comments in
577 initialize_signals for how we get the right signal handlers
578 for the inferior. */
579
580 #ifdef USE_PROC_FS
581 proc_set_exec_trap (); /* Use SVR4 /proc interface */
582 #else
583 call_ptrace (0, 0, 0, 0); /* "Trace me, Dr. Memory!" */
584 #endif
585
586 /* There is no execlpe call, so we have to set the environment
587 for our child in the global variable. If we've vforked, this
588 clobbers the parent, but environ is restored a few lines down
589 in the parent. By the way, yes we do need to look down the
590 path to find $SHELL. Rich Pixley says so, and I agree. */
591 environ = env;
592 execlp (shell_file, shell_file, "-c", shell_command, (char *)0);
593
594 fprintf (stderr, "Cannot exec %s: %s.\n", shell_file,
595 errno < sys_nerr ? sys_errlist[errno] : "unknown error");
596 fflush (stderr);
597 _exit (0177);
598 }
599
600 /* Restore our environment in case a vforked child clob'd it. */
601 environ = save_our_env;
602
603 /* Now that we have a child process, make it our target. */
604 push_target (&child_ops);
605
606 #ifdef CREATE_INFERIOR_HOOK
607 CREATE_INFERIOR_HOOK (pid);
608 #endif
609
610 /* The process was started by the fork that created it,
611 but it will have stopped one instruction after execing the shell.
612 Here we must get it up to actual execution of the real program. */
613
614 inferior_pid = pid; /* Needed for wait_for_inferior stuff below */
615
616 clear_proceed_status ();
617
618 /* We will get a trace trap after one instruction.
619 Continue it automatically. Eventually (after shell does an exec)
620 it will get another trace trap. Then insert breakpoints and continue. */
621
622 #ifdef START_INFERIOR_TRAPS_EXPECTED
623 pending_execs = START_INFERIOR_TRAPS_EXPECTED;
624 #else
625 pending_execs = 2;
626 #endif
627
628 init_wait_for_inferior ();
629
630 /* Set up the "saved terminal modes" of the inferior
631 based on what modes we are starting it with. */
632 target_terminal_init ();
633
634 /* Install inferior's terminal modes. */
635 target_terminal_inferior ();
636
637 while (1)
638 {
639 stop_soon_quietly = 1; /* Make wait_for_inferior be quiet */
640 wait_for_inferior ();
641 if (stop_signal != SIGTRAP)
642 {
643 /* Let shell child handle its own signals in its own way */
644 /* FIXME, what if child has exit()ed? Must exit loop somehow */
645 resume (0, stop_signal);
646 }
647 else
648 {
649 /* We handle SIGTRAP, however; it means child did an exec. */
650 if (0 == --pending_execs)
651 break;
652 resume (0, 0); /* Just make it go on */
653 }
654 }
655 stop_soon_quietly = 0;
656
657 /* We are now in the child process of interest, having exec'd the
658 correct program, and are poised at the first instruction of the
659 new program. */
660 #ifdef SOLIB_CREATE_INFERIOR_HOOK
661 SOLIB_CREATE_INFERIOR_HOOK (pid);
662 #endif
663
664 /* Should this perhaps just be a "proceed" call? FIXME */
665 insert_step_breakpoint ();
666 breakpoints_failed = insert_breakpoints ();
667 if (!breakpoints_failed)
668 {
669 breakpoints_inserted = 1;
670 target_terminal_inferior();
671 /* Start the child program going on its first instruction, single-
672 stepping if we need to. */
673 resume (bpstat_should_step (), 0);
674 wait_for_inferior ();
675 normal_stop ();
676 }
677 }
678
679 /* Start remote-debugging of a machine over a serial link. */
680
681 void
682 start_remote ()
683 {
684 init_wait_for_inferior ();
685 clear_proceed_status ();
686 stop_soon_quietly = 1;
687 trap_expected = 0;
688 wait_for_inferior ();
689 normal_stop ();
690 }
691
692 /* Initialize static vars when a new inferior begins. */
693
694 void
695 init_wait_for_inferior ()
696 {
697 /* These are meaningless until the first time through wait_for_inferior. */
698 prev_pc = 0;
699 prev_sp = 0;
700 prev_func_start = 0;
701 prev_func_name = NULL;
702
703 trap_expected_after_continue = 0;
704 breakpoints_inserted = 0;
705 mark_breakpoints_out ();
706 stop_signal = 0; /* Don't confuse first call to proceed(). */
707 }
708
709
710 /* Attach to process PID, then initialize for debugging it
711 and wait for the trace-trap that results from attaching. */
712
713 void
714 child_attach (args, from_tty)
715 char *args;
716 int from_tty;
717 {
718 char *exec_file;
719 int pid;
720
721 dont_repeat();
722
723 if (!args)
724 error_no_arg ("process-id to attach");
725
726 #ifndef ATTACH_DETACH
727 error ("Can't attach to a process on this machine.");
728 #else
729 pid = atoi (args);
730
731 if (target_has_execution)
732 {
733 if (query ("A program is being debugged already. Kill it? "))
734 target_kill ();
735 else
736 error ("Inferior not killed.");
737 }
738
739 exec_file = (char *) get_exec_file (1);
740
741 if (from_tty)
742 {
743 printf ("Attaching program: %s pid %d\n",
744 exec_file, pid);
745 fflush (stdout);
746 }
747
748 attach (pid);
749 inferior_pid = pid;
750 push_target (&child_ops);
751
752 mark_breakpoints_out ();
753 target_terminal_init ();
754 clear_proceed_status ();
755 stop_soon_quietly = 1;
756 /*proceed (-1, 0, -2);*/
757 target_terminal_inferior ();
758 wait_for_inferior ();
759 #ifdef SOLIB_ADD
760 SOLIB_ADD ((char *)0, from_tty, (struct target_ops *)0);
761 #endif
762 normal_stop ();
763 #endif /* ATTACH_DETACH */
764 }
765 \f
766 /* Wait for control to return from inferior to debugger.
767 If inferior gets a signal, we may decide to start it up again
768 instead of returning. That is why there is a loop in this function.
769 When this function actually returns it means the inferior
770 should be left stopped and GDB should read more commands. */
771
772 void
773 wait_for_inferior ()
774 {
775 WAITTYPE w;
776 int another_trap;
777 int random_signal;
778 CORE_ADDR stop_sp;
779 CORE_ADDR stop_func_start;
780 char *stop_func_name;
781 CORE_ADDR prologue_pc, tmp;
782 int stop_step_resume_break;
783 struct symtab_and_line sal;
784 int remove_breakpoints_on_following_step = 0;
785 int current_line;
786 int handling_longjmp = 0; /* FIXME */
787
788 sal = find_pc_line(prev_pc, 0);
789 current_line = sal.line;
790
791 while (1)
792 {
793 /* Clean up saved state that will become invalid. */
794 pc_changed = 0;
795 flush_cached_frames ();
796 registers_changed ();
797
798 target_wait (&w);
799
800 #ifdef SIGTRAP_STOP_AFTER_LOAD
801
802 /* Somebody called load(2), and it gave us a "trap signal after load".
803 Ignore it gracefully. */
804
805 SIGTRAP_STOP_AFTER_LOAD (w);
806 #endif
807
808 /* See if the process still exists; clean up if it doesn't. */
809 if (WIFEXITED (w))
810 {
811 target_terminal_ours (); /* Must do this before mourn anyway */
812 if (WEXITSTATUS (w))
813 printf ("\nProgram exited with code 0%o.\n",
814 (unsigned int)WEXITSTATUS (w));
815 else
816 if (!batch_mode())
817 printf ("\nProgram exited normally.\n");
818 fflush (stdout);
819 target_mourn_inferior ();
820 #ifdef NO_SINGLE_STEP
821 one_stepped = 0;
822 #endif
823 stop_print_frame = 0;
824 break;
825 }
826 else if (!WIFSTOPPED (w))
827 {
828 stop_print_frame = 0;
829 stop_signal = WTERMSIG (w);
830 target_terminal_ours (); /* Must do this before mourn anyway */
831 target_kill (); /* kill mourns as well */
832 #ifdef PRINT_RANDOM_SIGNAL
833 printf ("\nProgram terminated: ");
834 PRINT_RANDOM_SIGNAL (stop_signal);
835 #else
836 printf ("\nProgram terminated with signal %d, %s\n",
837 stop_signal,
838 stop_signal < NSIG
839 ? sys_siglist[stop_signal]
840 : "(undocumented)");
841 #endif
842 printf ("The inferior process no longer exists.\n");
843 fflush (stdout);
844 #ifdef NO_SINGLE_STEP
845 one_stepped = 0;
846 #endif
847 break;
848 }
849
850 #ifdef NO_SINGLE_STEP
851 if (one_stepped)
852 single_step (0); /* This actually cleans up the ss */
853 #endif /* NO_SINGLE_STEP */
854
855 stop_pc = read_pc ();
856 set_current_frame ( create_new_frame (read_register (FP_REGNUM),
857 read_pc ()));
858
859 stop_frame_address = FRAME_FP (get_current_frame ());
860 stop_sp = read_register (SP_REGNUM);
861 stop_func_start = 0;
862 stop_func_name = 0;
863 /* Don't care about return value; stop_func_start and stop_func_name
864 will both be 0 if it doesn't work. */
865 (void) find_pc_partial_function (stop_pc, &stop_func_name,
866 &stop_func_start);
867 stop_func_start += FUNCTION_START_OFFSET;
868 another_trap = 0;
869 bpstat_clear (&stop_bpstat);
870 stop_step = 0;
871 stop_stack_dummy = 0;
872 stop_print_frame = 1;
873 stop_step_resume_break = 0;
874 random_signal = 0;
875 stopped_by_random_signal = 0;
876 breakpoints_failed = 0;
877
878 /* Look at the cause of the stop, and decide what to do.
879 The alternatives are:
880 1) break; to really stop and return to the debugger,
881 2) drop through to start up again
882 (set another_trap to 1 to single step once)
883 3) set random_signal to 1, and the decision between 1 and 2
884 will be made according to the signal handling tables. */
885
886 stop_signal = WSTOPSIG (w);
887
888 /* First, distinguish signals caused by the debugger from signals
889 that have to do with the program's own actions.
890 Note that breakpoint insns may cause SIGTRAP or SIGILL
891 or SIGEMT, depending on the operating system version.
892 Here we detect when a SIGILL or SIGEMT is really a breakpoint
893 and change it to SIGTRAP. */
894
895 if (stop_signal == SIGTRAP
896 || (breakpoints_inserted &&
897 (stop_signal == SIGILL
898 || stop_signal == SIGEMT))
899 || stop_soon_quietly)
900 {
901 if (stop_signal == SIGTRAP && stop_after_trap)
902 {
903 stop_print_frame = 0;
904 break;
905 }
906 if (stop_soon_quietly)
907 break;
908
909 /* Don't even think about breakpoints
910 if just proceeded over a breakpoint.
911
912 However, if we are trying to proceed over a breakpoint
913 and end up in sigtramp, then step_resume_break_address
914 will be set and we should check whether we've hit the
915 step breakpoint. */
916 if (stop_signal == SIGTRAP && trap_expected
917 && step_resume_break_address == 0)
918 bpstat_clear (&stop_bpstat);
919 else
920 {
921 /* See if there is a breakpoint at the current PC. */
922 #if DECR_PC_AFTER_BREAK
923 /* Notice the case of stepping through a jump
924 that lands just after a breakpoint.
925 Don't confuse that with hitting the breakpoint.
926 What we check for is that 1) stepping is going on
927 and 2) the pc before the last insn does not match
928 the address of the breakpoint before the current pc. */
929 if (prev_pc == stop_pc - DECR_PC_AFTER_BREAK
930 || !step_range_end
931 || step_resume_break_address
932 || handling_longjmp /* FIXME */)
933 #endif /* DECR_PC_AFTER_BREAK not zero */
934 {
935 /* See if we stopped at the special breakpoint for
936 stepping over a subroutine call. If both are zero,
937 this wasn't the reason for the stop. */
938 if (step_resume_break_address
939 && stop_pc - DECR_PC_AFTER_BREAK
940 == step_resume_break_address)
941 {
942 stop_step_resume_break = 1;
943 if (DECR_PC_AFTER_BREAK)
944 {
945 stop_pc -= DECR_PC_AFTER_BREAK;
946 write_register (PC_REGNUM, stop_pc);
947 pc_changed = 0;
948 }
949 }
950 else
951 {
952 stop_bpstat =
953 bpstat_stop_status (&stop_pc, stop_frame_address);
954 /* Following in case break condition called a
955 function. */
956 stop_print_frame = 1;
957 }
958 }
959 }
960
961 if (stop_signal == SIGTRAP)
962 random_signal
963 = !(bpstat_explains_signal (stop_bpstat)
964 || trap_expected
965 || stop_step_resume_break
966 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
967 || (step_range_end && !step_resume_break_address));
968 else
969 {
970 random_signal
971 = !(bpstat_explains_signal (stop_bpstat)
972 || stop_step_resume_break
973 /* End of a stack dummy. Some systems (e.g. Sony
974 news) give another signal besides SIGTRAP,
975 so check here as well as above. */
976 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
977 );
978 if (!random_signal)
979 stop_signal = SIGTRAP;
980 }
981 }
982 else
983 random_signal = 1;
984
985 /* For the program's own signals, act according to
986 the signal handling tables. */
987
988 if (random_signal)
989 {
990 /* Signal not for debugging purposes. */
991 int printed = 0;
992
993 stopped_by_random_signal = 1;
994
995 if (stop_signal >= NSIG
996 || signal_print[stop_signal])
997 {
998 printed = 1;
999 target_terminal_ours_for_output ();
1000 #ifdef PRINT_RANDOM_SIGNAL
1001 PRINT_RANDOM_SIGNAL (stop_signal);
1002 #else
1003 printf ("\nProgram received signal %d, %s\n",
1004 stop_signal,
1005 stop_signal < NSIG
1006 ? sys_siglist[stop_signal]
1007 : "(undocumented)");
1008 #endif /* PRINT_RANDOM_SIGNAL */
1009 fflush (stdout);
1010 }
1011 if (stop_signal >= NSIG
1012 || signal_stop[stop_signal])
1013 break;
1014 /* If not going to stop, give terminal back
1015 if we took it away. */
1016 else if (printed)
1017 target_terminal_inferior ();
1018
1019 /* Note that virtually all the code below does `if !random_signal'.
1020 Perhaps this code should end with a goto or continue. At least
1021 one (now fixed) bug was caused by this -- a !random_signal was
1022 missing in one of the tests below. */
1023 }
1024
1025 /* Handle cases caused by hitting a breakpoint. */
1026
1027 if (!random_signal)
1028 if (bpstat_explains_signal (stop_bpstat))
1029 {
1030 CORE_ADDR jmp_buf_pc;
1031
1032 switch (stop_bpstat->breakpoint_at->type) /* FIXME */
1033 {
1034 /* If we hit the breakpoint at longjmp, disable it for the
1035 duration of this command. Then, install a temporary
1036 breakpoint at the target of the jmp_buf. */
1037 case bp_longjmp:
1038 disable_longjmp_breakpoint();
1039 remove_breakpoints ();
1040 breakpoints_inserted = 0;
1041 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
1042
1043 /* Need to blow away step-resume breakpoint, as it
1044 interferes with us */
1045 remove_step_breakpoint ();
1046 step_resume_break_address = 0;
1047 stop_step_resume_break = 0;
1048
1049 #if 0 /* FIXME - Need to implement nested temporary breakpoints */
1050 if (step_over_calls > 0)
1051 set_longjmp_resume_breakpoint(jmp_buf_pc,
1052 get_current_frame());
1053 else
1054 #endif /* 0 */
1055 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
1056 handling_longjmp = 1; /* FIXME */
1057 goto keep_going;
1058
1059 case bp_longjmp_resume:
1060 remove_breakpoints ();
1061 breakpoints_inserted = 0;
1062 #if 0 /* FIXME - Need to implement nested temporary breakpoints */
1063 if (step_over_calls
1064 && (stop_frame_address
1065 INNER_THAN step_frame_address))
1066 {
1067 another_trap = 1;
1068 goto keep_going;
1069 }
1070 #endif /* 0 */
1071 disable_longjmp_breakpoint();
1072 handling_longjmp = 0; /* FIXME */
1073 break;
1074
1075 default:
1076 fprintf(stderr, "Unknown breakpoint type %d\n",
1077 stop_bpstat->breakpoint_at->type);
1078 case bp_watchpoint:
1079 case bp_breakpoint:
1080 case bp_until:
1081 case bp_finish:
1082 /* Does a breakpoint want us to stop? */
1083 if (bpstat_stop (stop_bpstat))
1084 {
1085 stop_print_frame = bpstat_should_print (stop_bpstat);
1086 goto stop_stepping;
1087 }
1088 /* Otherwise, must remove breakpoints and single-step
1089 to get us past the one we hit. */
1090 else
1091 {
1092 remove_breakpoints ();
1093 remove_step_breakpoint ();
1094 breakpoints_inserted = 0;
1095 another_trap = 1;
1096 }
1097 break;
1098 }
1099 }
1100 else if (stop_step_resume_break)
1101 {
1102 /* But if we have hit the step-resumption breakpoint,
1103 remove it. It has done its job getting us here.
1104 The sp test is to make sure that we don't get hung
1105 up in recursive calls in functions without frame
1106 pointers. If the stack pointer isn't outside of
1107 where the breakpoint was set (within a routine to be
1108 stepped over), we're in the middle of a recursive
1109 call. Not true for reg window machines (sparc)
1110 because the must change frames to call things and
1111 the stack pointer doesn't have to change if it
1112 the bp was set in a routine without a frame (pc can
1113 be stored in some other window).
1114
1115 The removal of the sp test is to allow calls to
1116 alloca. Nasty things were happening. Oh, well,
1117 gdb can only handle one level deep of lack of
1118 frame pointer. */
1119
1120 /*
1121 Disable test for step_frame_address match so that we always stop even if the
1122 frames don't match. Reason: if we hit the step_resume_breakpoint, there is
1123 no way to temporarily disable it so that we can step past it. If we leave
1124 the breakpoint in, then we loop forever repeatedly hitting, but never
1125 getting past the breakpoint. This change keeps nexting over recursive
1126 function calls from hanging gdb.
1127 */
1128 #if 0
1129 if (* step_frame_address == 0
1130 || (step_frame_address == stop_frame_address))
1131 #endif 0
1132 {
1133 remove_step_breakpoint ();
1134 step_resume_break_address = 0;
1135
1136 /* If were waiting for a trap, hitting the step_resume_break
1137 doesn't count as getting it. */
1138 if (trap_expected)
1139 another_trap = 1;
1140 }
1141 }
1142
1143 /* We come here if we hit a breakpoint but should not
1144 stop for it. Possibly we also were stepping
1145 and should stop for that. So fall through and
1146 test for stepping. But, if not stepping,
1147 do not stop. */
1148
1149 /* If this is the breakpoint at the end of a stack dummy,
1150 just stop silently. */
1151 if (!random_signal
1152 && PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address))
1153 {
1154 stop_print_frame = 0;
1155 stop_stack_dummy = 1;
1156 #ifdef HP_OS_BUG
1157 trap_expected_after_continue = 1;
1158 #endif
1159 break;
1160 }
1161
1162 if (step_resume_break_address)
1163 /* Having a step-resume breakpoint overrides anything
1164 else having to do with stepping commands until
1165 that breakpoint is reached. */
1166 ;
1167 /* If stepping through a line, keep going if still within it. */
1168 else if (!random_signal
1169 && step_range_end
1170 && stop_pc >= step_range_start
1171 && stop_pc < step_range_end
1172 /* The step range might include the start of the
1173 function, so if we are at the start of the
1174 step range and either the stack or frame pointers
1175 just changed, we've stepped outside */
1176 && !(stop_pc == step_range_start
1177 && stop_frame_address
1178 && (stop_sp INNER_THAN prev_sp
1179 || stop_frame_address != step_frame_address)))
1180 {
1181 ;
1182 }
1183
1184 /* We stepped out of the stepping range. See if that was due
1185 to a subroutine call that we should proceed to the end of. */
1186 else if (!random_signal && step_range_end)
1187 {
1188 if (stop_func_start)
1189 {
1190 prologue_pc = stop_func_start;
1191 SKIP_PROLOGUE (prologue_pc);
1192 }
1193
1194 /* Did we just take a signal? */
1195 if (IN_SIGTRAMP (stop_pc, stop_func_name)
1196 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1197 {
1198 /* This code is needed at least in the following case:
1199 The user types "next" and then a signal arrives (before
1200 the "next" is done). */
1201 /* We've just taken a signal; go until we are back to
1202 the point where we took it and one more. */
1203 step_resume_break_address = prev_pc;
1204 step_resume_break_duplicate =
1205 breakpoint_here_p (step_resume_break_address);
1206 if (breakpoints_inserted)
1207 insert_step_breakpoint ();
1208 /* Make sure that the stepping range gets us past
1209 that instruction. */
1210 if (step_range_end == 1)
1211 step_range_end = (step_range_start = prev_pc) + 1;
1212 remove_breakpoints_on_following_step = 1;
1213 goto save_pc;
1214 }
1215
1216 /* ==> See comments at top of file on this algorithm. <==*/
1217
1218 if ((stop_pc == stop_func_start
1219 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name))
1220 && (stop_func_start != prev_func_start
1221 || prologue_pc != stop_func_start
1222 || stop_sp != prev_sp))
1223 {
1224 /* It's a subroutine call.
1225 (0) If we are not stepping over any calls ("stepi"), we
1226 just stop.
1227 (1) If we're doing a "next", we want to continue through
1228 the call ("step over the call").
1229 (2) If we are in a function-call trampoline (a stub between
1230 the calling routine and the real function), locate
1231 the real function and change stop_func_start.
1232 (3) If we're doing a "step", and there are no debug symbols
1233 at the target of the call, we want to continue through
1234 it ("step over the call").
1235 (4) Otherwise, we want to stop soon, after the function
1236 prologue ("step into the call"). */
1237
1238 if (step_over_calls == 0)
1239 {
1240 /* I presume that step_over_calls is only 0 when we're
1241 supposed to be stepping at the assembly language level. */
1242 stop_step = 1;
1243 break;
1244 }
1245
1246 if (step_over_calls > 0)
1247 goto step_over_function;
1248
1249 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1250 if (tmp != 0)
1251 stop_func_start = tmp;
1252
1253 if (find_pc_function (stop_func_start) != 0)
1254 goto step_into_function;
1255
1256 step_over_function:
1257 /* A subroutine call has happened. */
1258 /* Set a special breakpoint after the return */
1259 step_resume_break_address =
1260 ADDR_BITS_REMOVE
1261 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1262 step_resume_break_duplicate
1263 = breakpoint_here_p (step_resume_break_address);
1264 if (breakpoints_inserted)
1265 insert_step_breakpoint ();
1266 goto save_pc;
1267
1268 step_into_function:
1269 /* Subroutine call with source code we should not step over.
1270 Do step to the first line of code in it. */
1271 SKIP_PROLOGUE (stop_func_start);
1272 sal = find_pc_line (stop_func_start, 0);
1273 /* Use the step_resume_break to step until
1274 the end of the prologue, even if that involves jumps
1275 (as it seems to on the vax under 4.2). */
1276 /* If the prologue ends in the middle of a source line,
1277 continue to the end of that source line.
1278 Otherwise, just go to end of prologue. */
1279 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1280 /* no, don't either. It skips any code that's
1281 legitimately on the first line. */
1282 #else
1283 if (sal.end && sal.pc != stop_func_start)
1284 stop_func_start = sal.end;
1285 #endif
1286
1287 if (stop_func_start == stop_pc)
1288 {
1289 /* We are already there: stop now. */
1290 stop_step = 1;
1291 break;
1292 }
1293 else
1294 /* Put the step-breakpoint there and go until there. */
1295 {
1296 step_resume_break_address = stop_func_start;
1297
1298 step_resume_break_duplicate
1299 = breakpoint_here_p (step_resume_break_address);
1300 if (breakpoints_inserted)
1301 insert_step_breakpoint ();
1302 /* Do not specify what the fp should be when we stop
1303 since on some machines the prologue
1304 is where the new fp value is established. */
1305 step_frame_address = 0;
1306 /* And make sure stepping stops right away then. */
1307 step_range_end = step_range_start;
1308 }
1309 goto save_pc;
1310 }
1311
1312 /* We've wandered out of the step range (but haven't done a
1313 subroutine call or return). */
1314
1315 sal = find_pc_line(stop_pc, 0);
1316
1317 if (step_range_end == 1 || /* stepi or nexti */
1318 sal.line == 0 || /* ...or no line # info */
1319 (stop_pc == sal.pc /* ...or we're at the start */
1320 && current_line != sal.line)) { /* of a different line */
1321 /* Stop because we're done stepping. */
1322 stop_step = 1;
1323 break;
1324 } else {
1325 /* We aren't done stepping, and we have line number info for $pc.
1326 Optimize by setting the step_range for the line.
1327 (We might not be in the original line, but if we entered a
1328 new line in mid-statement, we continue stepping. This makes
1329 things like for(;;) statements work better.) */
1330 step_range_start = sal.pc;
1331 step_range_end = sal.end;
1332 goto save_pc;
1333 }
1334 /* We never fall through here */
1335 }
1336
1337 if (trap_expected
1338 && IN_SIGTRAMP (stop_pc, stop_func_name)
1339 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1340 {
1341 /* What has happened here is that we have just stepped the inferior
1342 with a signal (because it is a signal which shouldn't make
1343 us stop), thus stepping into sigtramp.
1344
1345 So we need to set a step_resume_break_address breakpoint
1346 and continue until we hit it, and then step. */
1347 step_resume_break_address = prev_pc;
1348 /* Always 1, I think, but it's probably easier to have
1349 the step_resume_break as usual rather than trying to
1350 re-use the breakpoint which is already there. */
1351 step_resume_break_duplicate =
1352 breakpoint_here_p (step_resume_break_address);
1353 if (breakpoints_inserted)
1354 insert_step_breakpoint ();
1355 remove_breakpoints_on_following_step = 1;
1356 another_trap = 1;
1357 }
1358
1359 /* My apologies to the gods of structured programming. */
1360 /* Come to this label when you need to resume the inferior. It's really much
1361 cleaner at this time to do a goto than to try and figure out what the
1362 if-else chain ought to look like!! */
1363
1364 keep_going:
1365
1366 save_pc:
1367 /* Save the pc before execution, to compare with pc after stop. */
1368 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1369 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1370 BREAK is defined, the
1371 original pc would not have
1372 been at the start of a
1373 function. */
1374 prev_func_name = stop_func_name;
1375 prev_sp = stop_sp;
1376
1377 /* If we did not do break;, it means we should keep
1378 running the inferior and not return to debugger. */
1379
1380 if (trap_expected && stop_signal != SIGTRAP)
1381 {
1382 /* We took a signal (which we are supposed to pass through to
1383 the inferior, else we'd have done a break above) and we
1384 haven't yet gotten our trap. Simply continue. */
1385 resume ((step_range_end && !step_resume_break_address)
1386 || (trap_expected && !step_resume_break_address)
1387 || bpstat_should_step (),
1388 stop_signal);
1389 }
1390 else
1391 {
1392 /* Either the trap was not expected, but we are continuing
1393 anyway (the user asked that this signal be passed to the
1394 child)
1395 -- or --
1396 The signal was SIGTRAP, e.g. it was our signal, but we
1397 decided we should resume from it.
1398
1399 We're going to run this baby now!
1400
1401 Insert breakpoints now, unless we are trying
1402 to one-proceed past a breakpoint. */
1403 /* If we've just finished a special step resume and we don't
1404 want to hit a breakpoint, pull em out. */
1405 if (!step_resume_break_address &&
1406 remove_breakpoints_on_following_step)
1407 {
1408 remove_breakpoints_on_following_step = 0;
1409 remove_breakpoints ();
1410 breakpoints_inserted = 0;
1411 }
1412 else if (!breakpoints_inserted &&
1413 (step_resume_break_address != 0 || !another_trap))
1414 {
1415 insert_step_breakpoint ();
1416 breakpoints_failed = insert_breakpoints ();
1417 if (breakpoints_failed)
1418 break;
1419 breakpoints_inserted = 1;
1420 }
1421
1422 trap_expected = another_trap;
1423
1424 if (stop_signal == SIGTRAP)
1425 stop_signal = 0;
1426
1427 #ifdef SHIFT_INST_REGS
1428 /* I'm not sure when this following segment applies. I do know, now,
1429 that we shouldn't rewrite the regs when we were stopped by a
1430 random signal from the inferior process. */
1431
1432 if (!bpstat_explains_signal (stop_bpstat)
1433 && (stop_signal != SIGCLD)
1434 && !stopped_by_random_signal)
1435 {
1436 CORE_ADDR pc_contents = read_register (PC_REGNUM);
1437 CORE_ADDR npc_contents = read_register (NPC_REGNUM);
1438 if (pc_contents != npc_contents)
1439 {
1440 write_register (NNPC_REGNUM, npc_contents);
1441 write_register (NPC_REGNUM, pc_contents);
1442 }
1443 }
1444 #endif /* SHIFT_INST_REGS */
1445
1446 resume ((!step_resume_break_address
1447 && !handling_longjmp
1448 && (step_range_end
1449 || trap_expected))
1450 || bpstat_should_step (),
1451 stop_signal);
1452 }
1453 }
1454
1455 stop_stepping:
1456 if (target_has_execution)
1457 {
1458 /* Assuming the inferior still exists, set these up for next
1459 time, just like we did above if we didn't break out of the
1460 loop. */
1461 prev_pc = read_pc ();
1462 prev_func_start = stop_func_start;
1463 prev_func_name = stop_func_name;
1464 prev_sp = stop_sp;
1465 }
1466 }
1467 \f
1468 /* Here to return control to GDB when the inferior stops for real.
1469 Print appropriate messages, remove breakpoints, give terminal our modes.
1470
1471 STOP_PRINT_FRAME nonzero means print the executing frame
1472 (pc, function, args, file, line number and line text).
1473 BREAKPOINTS_FAILED nonzero means stop was due to error
1474 attempting to insert breakpoints. */
1475
1476 void
1477 normal_stop ()
1478 {
1479 /* Make sure that the current_frame's pc is correct. This
1480 is a correction for setting up the frame info before doing
1481 DECR_PC_AFTER_BREAK */
1482 if (target_has_execution)
1483 (get_current_frame ())->pc = read_pc ();
1484
1485 if (breakpoints_failed)
1486 {
1487 target_terminal_ours_for_output ();
1488 print_sys_errmsg ("ptrace", breakpoints_failed);
1489 printf ("Stopped; cannot insert breakpoints.\n\
1490 The same program may be running in another process.\n");
1491 }
1492
1493 if (target_has_execution)
1494 remove_step_breakpoint ();
1495
1496 if (target_has_execution && breakpoints_inserted)
1497 if (remove_breakpoints ())
1498 {
1499 target_terminal_ours_for_output ();
1500 printf ("Cannot remove breakpoints because program is no longer writable.\n\
1501 It might be running in another process.\n\
1502 Further execution is probably impossible.\n");
1503 }
1504
1505 breakpoints_inserted = 0;
1506
1507 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1508 Delete any breakpoint that is to be deleted at the next stop. */
1509
1510 breakpoint_auto_delete (stop_bpstat);
1511
1512 /* If an auto-display called a function and that got a signal,
1513 delete that auto-display to avoid an infinite recursion. */
1514
1515 if (stopped_by_random_signal)
1516 disable_current_display ();
1517
1518 if (step_multi && stop_step)
1519 return;
1520
1521 target_terminal_ours ();
1522
1523 if (!target_has_stack)
1524 return;
1525
1526 /* Select innermost stack frame except on return from a stack dummy routine,
1527 or if the program has exited. Print it without a level number if
1528 we have changed functions or hit a breakpoint. Print source line
1529 if we have one. */
1530 if (!stop_stack_dummy)
1531 {
1532 select_frame (get_current_frame (), 0);
1533
1534 if (stop_print_frame)
1535 {
1536 int source_only;
1537
1538 source_only = bpstat_print (stop_bpstat);
1539 source_only = source_only ||
1540 ( stop_step
1541 && step_frame_address == stop_frame_address
1542 && step_start_function == find_pc_function (stop_pc));
1543
1544 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1545
1546 /* Display the auto-display expressions. */
1547 do_displays ();
1548 }
1549 }
1550
1551 /* Save the function value return registers, if we care.
1552 We might be about to restore their previous contents. */
1553 if (proceed_to_finish)
1554 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1555
1556 if (stop_stack_dummy)
1557 {
1558 /* Pop the empty frame that contains the stack dummy.
1559 POP_FRAME ends with a setting of the current frame, so we
1560 can use that next. */
1561 POP_FRAME;
1562 select_frame (get_current_frame (), 0);
1563 }
1564 }
1565 \f
1566 static void
1567 insert_step_breakpoint ()
1568 {
1569 if (step_resume_break_address && !step_resume_break_duplicate)
1570 target_insert_breakpoint (step_resume_break_address,
1571 step_resume_break_shadow);
1572 }
1573
1574 static void
1575 remove_step_breakpoint ()
1576 {
1577 if (step_resume_break_address && !step_resume_break_duplicate)
1578 target_remove_breakpoint (step_resume_break_address,
1579 step_resume_break_shadow);
1580 }
1581 \f
1582 static void
1583 sig_print_header ()
1584 {
1585 printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
1586 }
1587
1588 static void
1589 sig_print_info (number)
1590 int number;
1591 {
1592 char *abbrev = sig_abbrev(number);
1593 if (abbrev == NULL)
1594 printf_filtered ("%d\t\t", number);
1595 else
1596 printf_filtered ("SIG%s (%d)\t", abbrev, number);
1597 printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
1598 printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
1599 printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
1600 printf_filtered ("%s\n", sys_siglist[number]);
1601 }
1602
1603 /* Specify how various signals in the inferior should be handled. */
1604
1605 static void
1606 handle_command (args, from_tty)
1607 char *args;
1608 int from_tty;
1609 {
1610 register char *p = args;
1611 int signum = 0;
1612 register int digits, wordlen;
1613 char *nextarg;
1614
1615 if (!args)
1616 error_no_arg ("signal to handle");
1617
1618 while (*p)
1619 {
1620 /* Find the end of the next word in the args. */
1621 for (wordlen = 0;
1622 p[wordlen] && p[wordlen] != ' ' && p[wordlen] != '\t';
1623 wordlen++);
1624 /* Set nextarg to the start of the word after the one we just
1625 found, and null-terminate this one. */
1626 if (p[wordlen] == '\0')
1627 nextarg = p + wordlen;
1628 else
1629 {
1630 p[wordlen] = '\0';
1631 nextarg = p + wordlen + 1;
1632 }
1633
1634
1635 for (digits = 0; p[digits] >= '0' && p[digits] <= '9'; digits++);
1636
1637 if (signum == 0)
1638 {
1639 /* It is the first argument--must be the signal to operate on. */
1640 if (digits == wordlen)
1641 {
1642 /* Numeric. */
1643 signum = atoi (p);
1644 if (signum <= 0 || signum >= NSIG)
1645 {
1646 p[wordlen] = '\0';
1647 error ("Invalid signal %s given as argument to \"handle\".", p);
1648 }
1649 }
1650 else
1651 {
1652 /* Symbolic. */
1653 signum = sig_number (p);
1654 if (signum == -1)
1655 error ("No such signal \"%s\"", p);
1656 }
1657
1658 if (signum == SIGTRAP || signum == SIGINT)
1659 {
1660 if (!query ("SIG%s is used by the debugger.\nAre you sure you want to change it? ", sig_abbrev (signum)))
1661 error ("Not confirmed.");
1662 }
1663 }
1664 /* Else, if already got a signal number, look for flag words
1665 saying what to do for it. */
1666 else if (!strncmp (p, "stop", wordlen))
1667 {
1668 signal_stop[signum] = 1;
1669 signal_print[signum] = 1;
1670 }
1671 else if (wordlen >= 2 && !strncmp (p, "print", wordlen))
1672 signal_print[signum] = 1;
1673 else if (wordlen >= 2 && !strncmp (p, "pass", wordlen))
1674 signal_program[signum] = 1;
1675 else if (!strncmp (p, "ignore", wordlen))
1676 signal_program[signum] = 0;
1677 else if (wordlen >= 3 && !strncmp (p, "nostop", wordlen))
1678 signal_stop[signum] = 0;
1679 else if (wordlen >= 4 && !strncmp (p, "noprint", wordlen))
1680 {
1681 signal_print[signum] = 0;
1682 signal_stop[signum] = 0;
1683 }
1684 else if (wordlen >= 4 && !strncmp (p, "nopass", wordlen))
1685 signal_program[signum] = 0;
1686 else if (wordlen >= 3 && !strncmp (p, "noignore", wordlen))
1687 signal_program[signum] = 1;
1688 /* Not a number and not a recognized flag word => complain. */
1689 else
1690 {
1691 error ("Unrecognized flag word: \"%s\".", p);
1692 }
1693
1694 /* Find start of next word. */
1695 p = nextarg;
1696 while (*p == ' ' || *p == '\t') p++;
1697 }
1698
1699 if (from_tty)
1700 {
1701 /* Show the results. */
1702 sig_print_header ();
1703 sig_print_info (signum);
1704 }
1705 }
1706
1707 /* Print current contents of the tables set by the handle command. */
1708
1709 static void
1710 signals_info (signum_exp)
1711 char *signum_exp;
1712 {
1713 register int i;
1714 sig_print_header ();
1715
1716 if (signum_exp)
1717 {
1718 /* First see if this is a symbol name. */
1719 i = sig_number (signum_exp);
1720 if (i == -1)
1721 {
1722 /* Nope, maybe it's an address which evaluates to a signal
1723 number. */
1724 i = parse_and_eval_address (signum_exp);
1725 if (i >= NSIG || i < 0)
1726 error ("Signal number out of bounds.");
1727 }
1728 sig_print_info (i);
1729 return;
1730 }
1731
1732 printf_filtered ("\n");
1733 for (i = 0; i < NSIG; i++)
1734 {
1735 QUIT;
1736
1737 sig_print_info (i);
1738 }
1739
1740 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1741 }
1742 \f
1743 /* Save all of the information associated with the inferior<==>gdb
1744 connection. INF_STATUS is a pointer to a "struct inferior_status"
1745 (defined in inferior.h). */
1746
1747 void
1748 save_inferior_status (inf_status, restore_stack_info)
1749 struct inferior_status *inf_status;
1750 int restore_stack_info;
1751 {
1752 inf_status->pc_changed = pc_changed;
1753 inf_status->stop_signal = stop_signal;
1754 inf_status->stop_pc = stop_pc;
1755 inf_status->stop_frame_address = stop_frame_address;
1756 inf_status->stop_step = stop_step;
1757 inf_status->stop_stack_dummy = stop_stack_dummy;
1758 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1759 inf_status->trap_expected = trap_expected;
1760 inf_status->step_range_start = step_range_start;
1761 inf_status->step_range_end = step_range_end;
1762 inf_status->step_frame_address = step_frame_address;
1763 inf_status->step_over_calls = step_over_calls;
1764 inf_status->step_resume_break_address = step_resume_break_address;
1765 inf_status->stop_after_trap = stop_after_trap;
1766 inf_status->stop_soon_quietly = stop_soon_quietly;
1767 /* Save original bpstat chain here; replace it with copy of chain.
1768 If caller's caller is walking the chain, they'll be happier if we
1769 hand them back the original chain when restore_i_s is called. */
1770 inf_status->stop_bpstat = stop_bpstat;
1771 stop_bpstat = bpstat_copy (stop_bpstat);
1772 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1773 inf_status->restore_stack_info = restore_stack_info;
1774 inf_status->proceed_to_finish = proceed_to_finish;
1775
1776 bcopy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1777
1778 record_selected_frame (&(inf_status->selected_frame_address),
1779 &(inf_status->selected_level));
1780 return;
1781 }
1782
1783 void
1784 restore_inferior_status (inf_status)
1785 struct inferior_status *inf_status;
1786 {
1787 FRAME fid;
1788 int level = inf_status->selected_level;
1789
1790 pc_changed = inf_status->pc_changed;
1791 stop_signal = inf_status->stop_signal;
1792 stop_pc = inf_status->stop_pc;
1793 stop_frame_address = inf_status->stop_frame_address;
1794 stop_step = inf_status->stop_step;
1795 stop_stack_dummy = inf_status->stop_stack_dummy;
1796 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1797 trap_expected = inf_status->trap_expected;
1798 step_range_start = inf_status->step_range_start;
1799 step_range_end = inf_status->step_range_end;
1800 step_frame_address = inf_status->step_frame_address;
1801 step_over_calls = inf_status->step_over_calls;
1802 step_resume_break_address = inf_status->step_resume_break_address;
1803 stop_after_trap = inf_status->stop_after_trap;
1804 stop_soon_quietly = inf_status->stop_soon_quietly;
1805 bpstat_clear (&stop_bpstat);
1806 stop_bpstat = inf_status->stop_bpstat;
1807 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1808 proceed_to_finish = inf_status->proceed_to_finish;
1809
1810 bcopy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1811
1812 /* The inferior can be gone if the user types "print exit(0)"
1813 (and perhaps other times). */
1814 if (target_has_stack && inf_status->restore_stack_info)
1815 {
1816 fid = find_relative_frame (get_current_frame (),
1817 &level);
1818
1819 /* If inf_status->selected_frame_address is NULL, there was no
1820 previously selected frame. */
1821 if (fid == 0 ||
1822 FRAME_FP (fid) != inf_status->selected_frame_address ||
1823 level != 0)
1824 {
1825 #if 1
1826 /* I'm not sure this error message is a good idea. I have
1827 only seen it occur after "Can't continue previously
1828 requested operation" (we get called from do_cleanups), in
1829 which case it just adds insult to injury (one confusing
1830 error message after another. Besides which, does the
1831 user really care if we can't restore the previously
1832 selected frame? */
1833 fprintf (stderr, "Unable to restore previously selected frame.\n");
1834 #endif
1835 select_frame (get_current_frame (), 0);
1836 return;
1837 }
1838
1839 select_frame (fid, inf_status->selected_level);
1840 }
1841 }
1842
1843 \f
1844 void
1845 _initialize_infrun ()
1846 {
1847 register int i;
1848
1849 add_info ("signals", signals_info,
1850 "What debugger does when program gets various signals.\n\
1851 Specify a signal number as argument to print info on that signal only.");
1852
1853 add_com ("handle", class_run, handle_command,
1854 "Specify how to handle a signal.\n\
1855 Args are signal number followed by flags.\n\
1856 Flags allowed are \"stop\", \"print\", \"pass\",\n\
1857 \"nostop\", \"noprint\" or \"nopass\".\n\
1858 Print means print a message if this signal happens.\n\
1859 Stop means reenter debugger if this signal happens (implies print).\n\
1860 Pass means let program see this signal; otherwise program doesn't know.\n\
1861 Pass and Stop may be combined.");
1862
1863 for (i = 0; i < NSIG; i++)
1864 {
1865 signal_stop[i] = 1;
1866 signal_print[i] = 1;
1867 signal_program[i] = 1;
1868 }
1869
1870 /* Signals caused by debugger's own actions
1871 should not be given to the program afterwards. */
1872 signal_program[SIGTRAP] = 0;
1873 signal_program[SIGINT] = 0;
1874
1875 /* Signals that are not errors should not normally enter the debugger. */
1876 #ifdef SIGALRM
1877 signal_stop[SIGALRM] = 0;
1878 signal_print[SIGALRM] = 0;
1879 #endif /* SIGALRM */
1880 #ifdef SIGVTALRM
1881 signal_stop[SIGVTALRM] = 0;
1882 signal_print[SIGVTALRM] = 0;
1883 #endif /* SIGVTALRM */
1884 #ifdef SIGPROF
1885 signal_stop[SIGPROF] = 0;
1886 signal_print[SIGPROF] = 0;
1887 #endif /* SIGPROF */
1888 #ifdef SIGCHLD
1889 signal_stop[SIGCHLD] = 0;
1890 signal_print[SIGCHLD] = 0;
1891 #endif /* SIGCHLD */
1892 #ifdef SIGCLD
1893 signal_stop[SIGCLD] = 0;
1894 signal_print[SIGCLD] = 0;
1895 #endif /* SIGCLD */
1896 #ifdef SIGIO
1897 signal_stop[SIGIO] = 0;
1898 signal_print[SIGIO] = 0;
1899 #endif /* SIGIO */
1900 #ifdef SIGURG
1901 signal_stop[SIGURG] = 0;
1902 signal_print[SIGURG] = 0;
1903 #endif /* SIGURG */
1904 }
This page took 0.100712 seconds and 5 git commands to generate.