gdb/infrun: extract out a code piece into 'mark_non_executing_threads' function
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70
71 /* Prototypes for local functions */
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static void follow_inferior_reset_breakpoints (void);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
82
83 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
85 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
87 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
89 static void resume (gdb_signal sig);
90
91 static void wait_for_inferior (inferior *inf);
92
93 /* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95 static struct async_event_handler *infrun_async_inferior_event_token;
96
97 /* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99 static int infrun_is_async = -1;
100
101 /* See infrun.h. */
102
103 void
104 infrun_async (int enable)
105 {
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120 }
121
122 /* See infrun.h. */
123
124 void
125 mark_infrun_async_event_handler (void)
126 {
127 mark_async_event_handler (infrun_async_inferior_event_token);
128 }
129
130 /* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
133 bool step_stop_if_no_debug = false;
134 static void
135 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139 }
140
141 /* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
144
145 static ptid_t previous_inferior_ptid;
146
147 /* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
152 static bool detach_fork = true;
153
154 bool debug_displaced = false;
155 static void
156 show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160 }
161
162 unsigned int debug_infrun = 0;
163 static void
164 show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168 }
169
170
171 /* Support for disabling address space randomization. */
172
173 bool disable_randomization = true;
174
175 static void
176 show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188 }
189
190 static void
191 set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193 {
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198 }
199
200 /* User interface for non-stop mode. */
201
202 bool non_stop = false;
203 static bool non_stop_1 = false;
204
205 static void
206 set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216 }
217
218 static void
219 show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225 }
226
227 /* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231 bool observer_mode = false;
232 static bool observer_mode_1 = false;
233
234 static void
235 set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237 {
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268 }
269
270 static void
271 show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275 }
276
277 /* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283 void
284 update_observer_mode (void)
285 {
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298 }
299
300 /* Tables of how to react to signals; the user sets them. */
301
302 static unsigned char signal_stop[GDB_SIGNAL_LAST];
303 static unsigned char signal_print[GDB_SIGNAL_LAST];
304 static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306 /* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309 static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311 /* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314 static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316 #define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324 #define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335 void
336 update_signals_program_target (void)
337 {
338 target_program_signals (signal_program);
339 }
340
341 /* Value to pass to target_resume() to cause all threads to resume. */
342
343 #define RESUME_ALL minus_one_ptid
344
345 /* Command list pointer for the "stop" placeholder. */
346
347 static struct cmd_list_element *stop_command;
348
349 /* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351 int stop_on_solib_events;
352
353 /* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356 static void
357 set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359 {
360 update_solib_breakpoints ();
361 }
362
363 static void
364 show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366 {
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369 }
370
371 /* Nonzero after stop if current stack frame should be printed. */
372
373 static int stop_print_frame;
374
375 /* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378 static process_stratum_target *target_last_proc_target;
379 static ptid_t target_last_wait_ptid;
380 static struct target_waitstatus target_last_waitstatus;
381
382 void init_thread_stepping_state (struct thread_info *tss);
383
384 static const char follow_fork_mode_child[] = "child";
385 static const char follow_fork_mode_parent[] = "parent";
386
387 static const char *const follow_fork_mode_kind_names[] = {
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
391 };
392
393 static const char *follow_fork_mode_string = follow_fork_mode_parent;
394 static void
395 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397 {
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
401 value);
402 }
403 \f
404
405 /* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411 static bool
412 follow_fork_inferior (bool follow_child, bool detach_fork)
413 {
414 int has_vforked;
415 ptid_t parent_ptid, child_ptid;
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped. Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 set_current_inferior (child_inf);
485 switch_to_no_thread ();
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487 push_target (parent_inf->process_target ());
488 add_thread_silent (child_inf->process_target (), child_ptid);
489 inferior_ptid = child_ptid;
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
498 exec_on_vfork ();
499
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
507 }
508 else
509 {
510 child_inf->aspace = new_address_space ();
511 child_inf->pspace = new program_space (child_inf->aspace);
512 child_inf->removable = 1;
513 set_current_program_space (child_inf->pspace);
514 clone_program_space (child_inf->pspace, parent_inf->pspace);
515
516 /* Let the shared library layer (e.g., solib-svr4) learn
517 about this new process, relocate the cloned exec, pull
518 in shared libraries, and install the solib event
519 breakpoint. If a "cloned-VM" event was propagated
520 better throughout the core, this wouldn't be
521 required. */
522 solib_create_inferior_hook (0);
523 }
524 }
525
526 if (has_vforked)
527 {
528 struct inferior *parent_inf;
529
530 parent_inf = current_inferior ();
531
532 /* If we detached from the child, then we have to be careful
533 to not insert breakpoints in the parent until the child
534 is done with the shared memory region. However, if we're
535 staying attached to the child, then we can and should
536 insert breakpoints, so that we can debug it. A
537 subsequent child exec or exit is enough to know when does
538 the child stops using the parent's address space. */
539 parent_inf->waiting_for_vfork_done = detach_fork;
540 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
541 }
542 }
543 else
544 {
545 /* Follow the child. */
546 struct inferior *parent_inf, *child_inf;
547 struct program_space *parent_pspace;
548
549 if (print_inferior_events)
550 {
551 std::string parent_pid = target_pid_to_str (parent_ptid);
552 std::string child_pid = target_pid_to_str (child_ptid);
553
554 target_terminal::ours_for_output ();
555 fprintf_filtered (gdb_stdlog,
556 _("[Attaching after %s %s to child %s]\n"),
557 parent_pid.c_str (),
558 has_vforked ? "vfork" : "fork",
559 child_pid.c_str ());
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
565 child_inf = add_inferior (child_ptid.pid ());
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
575 process_stratum_target *target = parent_inf->process_target ();
576
577 {
578 /* Hold a strong reference to the target while (maybe)
579 detaching the parent. Otherwise detaching could close the
580 target. */
581 auto target_ref = target_ops_ref::new_reference (target);
582
583 /* If we're vforking, we want to hold on to the parent until
584 the child exits or execs. At child exec or exit time we
585 can remove the old breakpoints from the parent and detach
586 or resume debugging it. Otherwise, detach the parent now;
587 we'll want to reuse it's program/address spaces, but we
588 can't set them to the child before removing breakpoints
589 from the parent, otherwise, the breakpoints module could
590 decide to remove breakpoints from the wrong process (since
591 they'd be assigned to the same address space). */
592
593 if (has_vforked)
594 {
595 gdb_assert (child_inf->vfork_parent == NULL);
596 gdb_assert (parent_inf->vfork_child == NULL);
597 child_inf->vfork_parent = parent_inf;
598 child_inf->pending_detach = 0;
599 parent_inf->vfork_child = child_inf;
600 parent_inf->pending_detach = detach_fork;
601 parent_inf->waiting_for_vfork_done = 0;
602 }
603 else if (detach_fork)
604 {
605 if (print_inferior_events)
606 {
607 /* Ensure that we have a process ptid. */
608 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
609
610 target_terminal::ours_for_output ();
611 fprintf_filtered (gdb_stdlog,
612 _("[Detaching after fork from "
613 "parent %s]\n"),
614 target_pid_to_str (process_ptid).c_str ());
615 }
616
617 target_detach (parent_inf, 0);
618 parent_inf = NULL;
619 }
620
621 /* Note that the detach above makes PARENT_INF dangling. */
622
623 /* Add the child thread to the appropriate lists, and switch
624 to this new thread, before cloning the program space, and
625 informing the solib layer about this new process. */
626
627 set_current_inferior (child_inf);
628 push_target (target);
629 }
630
631 add_thread_silent (target, child_ptid);
632 inferior_ptid = child_ptid;
633
634 /* If this is a vfork child, then the address-space is shared
635 with the parent. If we detached from the parent, then we can
636 reuse the parent's program/address spaces. */
637 if (has_vforked || detach_fork)
638 {
639 child_inf->pspace = parent_pspace;
640 child_inf->aspace = child_inf->pspace->aspace;
641
642 exec_on_vfork ();
643 }
644 else
645 {
646 child_inf->aspace = new_address_space ();
647 child_inf->pspace = new program_space (child_inf->aspace);
648 child_inf->removable = 1;
649 child_inf->symfile_flags = SYMFILE_NO_READ;
650 set_current_program_space (child_inf->pspace);
651 clone_program_space (child_inf->pspace, parent_pspace);
652
653 /* Let the shared library layer (e.g., solib-svr4) learn
654 about this new process, relocate the cloned exec, pull in
655 shared libraries, and install the solib event breakpoint.
656 If a "cloned-VM" event was propagated better throughout
657 the core, this wouldn't be required. */
658 solib_create_inferior_hook (0);
659 }
660 }
661
662 return target_follow_fork (follow_child, detach_fork);
663 }
664
665 /* Tell the target to follow the fork we're stopped at. Returns true
666 if the inferior should be resumed; false, if the target for some
667 reason decided it's best not to resume. */
668
669 static bool
670 follow_fork ()
671 {
672 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
673 bool should_resume = true;
674 struct thread_info *tp;
675
676 /* Copy user stepping state to the new inferior thread. FIXME: the
677 followed fork child thread should have a copy of most of the
678 parent thread structure's run control related fields, not just these.
679 Initialized to avoid "may be used uninitialized" warnings from gcc. */
680 struct breakpoint *step_resume_breakpoint = NULL;
681 struct breakpoint *exception_resume_breakpoint = NULL;
682 CORE_ADDR step_range_start = 0;
683 CORE_ADDR step_range_end = 0;
684 int current_line = 0;
685 symtab *current_symtab = NULL;
686 struct frame_id step_frame_id = { 0 };
687 struct thread_fsm *thread_fsm = NULL;
688
689 if (!non_stop)
690 {
691 process_stratum_target *wait_target;
692 ptid_t wait_ptid;
693 struct target_waitstatus wait_status;
694
695 /* Get the last target status returned by target_wait(). */
696 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
697
698 /* If not stopped at a fork event, then there's nothing else to
699 do. */
700 if (wait_status.kind != TARGET_WAITKIND_FORKED
701 && wait_status.kind != TARGET_WAITKIND_VFORKED)
702 return 1;
703
704 /* Check if we switched over from WAIT_PTID, since the event was
705 reported. */
706 if (wait_ptid != minus_one_ptid
707 && (current_inferior ()->process_target () != wait_target
708 || inferior_ptid != wait_ptid))
709 {
710 /* We did. Switch back to WAIT_PTID thread, to tell the
711 target to follow it (in either direction). We'll
712 afterwards refuse to resume, and inform the user what
713 happened. */
714 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
715 switch_to_thread (wait_thread);
716 should_resume = false;
717 }
718 }
719
720 tp = inferior_thread ();
721
722 /* If there were any forks/vforks that were caught and are now to be
723 followed, then do so now. */
724 switch (tp->pending_follow.kind)
725 {
726 case TARGET_WAITKIND_FORKED:
727 case TARGET_WAITKIND_VFORKED:
728 {
729 ptid_t parent, child;
730
731 /* If the user did a next/step, etc, over a fork call,
732 preserve the stepping state in the fork child. */
733 if (follow_child && should_resume)
734 {
735 step_resume_breakpoint = clone_momentary_breakpoint
736 (tp->control.step_resume_breakpoint);
737 step_range_start = tp->control.step_range_start;
738 step_range_end = tp->control.step_range_end;
739 current_line = tp->current_line;
740 current_symtab = tp->current_symtab;
741 step_frame_id = tp->control.step_frame_id;
742 exception_resume_breakpoint
743 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
744 thread_fsm = tp->thread_fsm;
745
746 /* For now, delete the parent's sr breakpoint, otherwise,
747 parent/child sr breakpoints are considered duplicates,
748 and the child version will not be installed. Remove
749 this when the breakpoints module becomes aware of
750 inferiors and address spaces. */
751 delete_step_resume_breakpoint (tp);
752 tp->control.step_range_start = 0;
753 tp->control.step_range_end = 0;
754 tp->control.step_frame_id = null_frame_id;
755 delete_exception_resume_breakpoint (tp);
756 tp->thread_fsm = NULL;
757 }
758
759 parent = inferior_ptid;
760 child = tp->pending_follow.value.related_pid;
761
762 process_stratum_target *parent_targ = tp->inf->process_target ();
763 /* Set up inferior(s) as specified by the caller, and tell the
764 target to do whatever is necessary to follow either parent
765 or child. */
766 if (follow_fork_inferior (follow_child, detach_fork))
767 {
768 /* Target refused to follow, or there's some other reason
769 we shouldn't resume. */
770 should_resume = 0;
771 }
772 else
773 {
774 /* This pending follow fork event is now handled, one way
775 or another. The previous selected thread may be gone
776 from the lists by now, but if it is still around, need
777 to clear the pending follow request. */
778 tp = find_thread_ptid (parent_targ, parent);
779 if (tp)
780 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
781
782 /* This makes sure we don't try to apply the "Switched
783 over from WAIT_PID" logic above. */
784 nullify_last_target_wait_ptid ();
785
786 /* If we followed the child, switch to it... */
787 if (follow_child)
788 {
789 thread_info *child_thr = find_thread_ptid (parent_targ, child);
790 switch_to_thread (child_thr);
791
792 /* ... and preserve the stepping state, in case the
793 user was stepping over the fork call. */
794 if (should_resume)
795 {
796 tp = inferior_thread ();
797 tp->control.step_resume_breakpoint
798 = step_resume_breakpoint;
799 tp->control.step_range_start = step_range_start;
800 tp->control.step_range_end = step_range_end;
801 tp->current_line = current_line;
802 tp->current_symtab = current_symtab;
803 tp->control.step_frame_id = step_frame_id;
804 tp->control.exception_resume_breakpoint
805 = exception_resume_breakpoint;
806 tp->thread_fsm = thread_fsm;
807 }
808 else
809 {
810 /* If we get here, it was because we're trying to
811 resume from a fork catchpoint, but, the user
812 has switched threads away from the thread that
813 forked. In that case, the resume command
814 issued is most likely not applicable to the
815 child, so just warn, and refuse to resume. */
816 warning (_("Not resuming: switched threads "
817 "before following fork child."));
818 }
819
820 /* Reset breakpoints in the child as appropriate. */
821 follow_inferior_reset_breakpoints ();
822 }
823 }
824 }
825 break;
826 case TARGET_WAITKIND_SPURIOUS:
827 /* Nothing to follow. */
828 break;
829 default:
830 internal_error (__FILE__, __LINE__,
831 "Unexpected pending_follow.kind %d\n",
832 tp->pending_follow.kind);
833 break;
834 }
835
836 return should_resume;
837 }
838
839 static void
840 follow_inferior_reset_breakpoints (void)
841 {
842 struct thread_info *tp = inferior_thread ();
843
844 /* Was there a step_resume breakpoint? (There was if the user
845 did a "next" at the fork() call.) If so, explicitly reset its
846 thread number. Cloned step_resume breakpoints are disabled on
847 creation, so enable it here now that it is associated with the
848 correct thread.
849
850 step_resumes are a form of bp that are made to be per-thread.
851 Since we created the step_resume bp when the parent process
852 was being debugged, and now are switching to the child process,
853 from the breakpoint package's viewpoint, that's a switch of
854 "threads". We must update the bp's notion of which thread
855 it is for, or it'll be ignored when it triggers. */
856
857 if (tp->control.step_resume_breakpoint)
858 {
859 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
860 tp->control.step_resume_breakpoint->loc->enabled = 1;
861 }
862
863 /* Treat exception_resume breakpoints like step_resume breakpoints. */
864 if (tp->control.exception_resume_breakpoint)
865 {
866 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
867 tp->control.exception_resume_breakpoint->loc->enabled = 1;
868 }
869
870 /* Reinsert all breakpoints in the child. The user may have set
871 breakpoints after catching the fork, in which case those
872 were never set in the child, but only in the parent. This makes
873 sure the inserted breakpoints match the breakpoint list. */
874
875 breakpoint_re_set ();
876 insert_breakpoints ();
877 }
878
879 /* The child has exited or execed: resume threads of the parent the
880 user wanted to be executing. */
881
882 static int
883 proceed_after_vfork_done (struct thread_info *thread,
884 void *arg)
885 {
886 int pid = * (int *) arg;
887
888 if (thread->ptid.pid () == pid
889 && thread->state == THREAD_RUNNING
890 && !thread->executing
891 && !thread->stop_requested
892 && thread->suspend.stop_signal == GDB_SIGNAL_0)
893 {
894 if (debug_infrun)
895 fprintf_unfiltered (gdb_stdlog,
896 "infrun: resuming vfork parent thread %s\n",
897 target_pid_to_str (thread->ptid).c_str ());
898
899 switch_to_thread (thread);
900 clear_proceed_status (0);
901 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
902 }
903
904 return 0;
905 }
906
907 /* Save/restore inferior_ptid, current program space and current
908 inferior. Only use this if the current context points at an exited
909 inferior (and therefore there's no current thread to save). */
910 class scoped_restore_exited_inferior
911 {
912 public:
913 scoped_restore_exited_inferior ()
914 : m_saved_ptid (&inferior_ptid)
915 {}
916
917 private:
918 scoped_restore_tmpl<ptid_t> m_saved_ptid;
919 scoped_restore_current_program_space m_pspace;
920 scoped_restore_current_inferior m_inferior;
921 };
922
923 /* Called whenever we notice an exec or exit event, to handle
924 detaching or resuming a vfork parent. */
925
926 static void
927 handle_vfork_child_exec_or_exit (int exec)
928 {
929 struct inferior *inf = current_inferior ();
930
931 if (inf->vfork_parent)
932 {
933 int resume_parent = -1;
934
935 /* This exec or exit marks the end of the shared memory region
936 between the parent and the child. Break the bonds. */
937 inferior *vfork_parent = inf->vfork_parent;
938 inf->vfork_parent->vfork_child = NULL;
939 inf->vfork_parent = NULL;
940
941 /* If the user wanted to detach from the parent, now is the
942 time. */
943 if (vfork_parent->pending_detach)
944 {
945 struct thread_info *tp;
946 struct program_space *pspace;
947 struct address_space *aspace;
948
949 /* follow-fork child, detach-on-fork on. */
950
951 vfork_parent->pending_detach = 0;
952
953 gdb::optional<scoped_restore_exited_inferior>
954 maybe_restore_inferior;
955 gdb::optional<scoped_restore_current_pspace_and_thread>
956 maybe_restore_thread;
957
958 /* If we're handling a child exit, then inferior_ptid points
959 at the inferior's pid, not to a thread. */
960 if (!exec)
961 maybe_restore_inferior.emplace ();
962 else
963 maybe_restore_thread.emplace ();
964
965 /* We're letting loose of the parent. */
966 tp = any_live_thread_of_inferior (vfork_parent);
967 switch_to_thread (tp);
968
969 /* We're about to detach from the parent, which implicitly
970 removes breakpoints from its address space. There's a
971 catch here: we want to reuse the spaces for the child,
972 but, parent/child are still sharing the pspace at this
973 point, although the exec in reality makes the kernel give
974 the child a fresh set of new pages. The problem here is
975 that the breakpoints module being unaware of this, would
976 likely chose the child process to write to the parent
977 address space. Swapping the child temporarily away from
978 the spaces has the desired effect. Yes, this is "sort
979 of" a hack. */
980
981 pspace = inf->pspace;
982 aspace = inf->aspace;
983 inf->aspace = NULL;
984 inf->pspace = NULL;
985
986 if (print_inferior_events)
987 {
988 std::string pidstr
989 = target_pid_to_str (ptid_t (vfork_parent->pid));
990
991 target_terminal::ours_for_output ();
992
993 if (exec)
994 {
995 fprintf_filtered (gdb_stdlog,
996 _("[Detaching vfork parent %s "
997 "after child exec]\n"), pidstr.c_str ());
998 }
999 else
1000 {
1001 fprintf_filtered (gdb_stdlog,
1002 _("[Detaching vfork parent %s "
1003 "after child exit]\n"), pidstr.c_str ());
1004 }
1005 }
1006
1007 target_detach (vfork_parent, 0);
1008
1009 /* Put it back. */
1010 inf->pspace = pspace;
1011 inf->aspace = aspace;
1012 }
1013 else if (exec)
1014 {
1015 /* We're staying attached to the parent, so, really give the
1016 child a new address space. */
1017 inf->pspace = new program_space (maybe_new_address_space ());
1018 inf->aspace = inf->pspace->aspace;
1019 inf->removable = 1;
1020 set_current_program_space (inf->pspace);
1021
1022 resume_parent = vfork_parent->pid;
1023 }
1024 else
1025 {
1026 /* If this is a vfork child exiting, then the pspace and
1027 aspaces were shared with the parent. Since we're
1028 reporting the process exit, we'll be mourning all that is
1029 found in the address space, and switching to null_ptid,
1030 preparing to start a new inferior. But, since we don't
1031 want to clobber the parent's address/program spaces, we
1032 go ahead and create a new one for this exiting
1033 inferior. */
1034
1035 /* Switch to null_ptid while running clone_program_space, so
1036 that clone_program_space doesn't want to read the
1037 selected frame of a dead process. */
1038 scoped_restore restore_ptid
1039 = make_scoped_restore (&inferior_ptid, null_ptid);
1040
1041 inf->pspace = new program_space (maybe_new_address_space ());
1042 inf->aspace = inf->pspace->aspace;
1043 set_current_program_space (inf->pspace);
1044 inf->removable = 1;
1045 inf->symfile_flags = SYMFILE_NO_READ;
1046 clone_program_space (inf->pspace, vfork_parent->pspace);
1047
1048 resume_parent = vfork_parent->pid;
1049 }
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 scoped_restore_current_thread restore_thread;
1058
1059 if (debug_infrun)
1060 fprintf_unfiltered (gdb_stdlog,
1061 "infrun: resuming vfork parent process %d\n",
1062 resume_parent);
1063
1064 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1065 }
1066 }
1067 }
1068
1069 /* Enum strings for "set|show follow-exec-mode". */
1070
1071 static const char follow_exec_mode_new[] = "new";
1072 static const char follow_exec_mode_same[] = "same";
1073 static const char *const follow_exec_mode_names[] =
1074 {
1075 follow_exec_mode_new,
1076 follow_exec_mode_same,
1077 NULL,
1078 };
1079
1080 static const char *follow_exec_mode_string = follow_exec_mode_same;
1081 static void
1082 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1083 struct cmd_list_element *c, const char *value)
1084 {
1085 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1086 }
1087
1088 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1089
1090 static void
1091 follow_exec (ptid_t ptid, const char *exec_file_target)
1092 {
1093 struct inferior *inf = current_inferior ();
1094 int pid = ptid.pid ();
1095 ptid_t process_ptid;
1096
1097 /* Switch terminal for any messages produced e.g. by
1098 breakpoint_re_set. */
1099 target_terminal::ours_for_output ();
1100
1101 /* This is an exec event that we actually wish to pay attention to.
1102 Refresh our symbol table to the newly exec'd program, remove any
1103 momentary bp's, etc.
1104
1105 If there are breakpoints, they aren't really inserted now,
1106 since the exec() transformed our inferior into a fresh set
1107 of instructions.
1108
1109 We want to preserve symbolic breakpoints on the list, since
1110 we have hopes that they can be reset after the new a.out's
1111 symbol table is read.
1112
1113 However, any "raw" breakpoints must be removed from the list
1114 (e.g., the solib bp's), since their address is probably invalid
1115 now.
1116
1117 And, we DON'T want to call delete_breakpoints() here, since
1118 that may write the bp's "shadow contents" (the instruction
1119 value that was overwritten with a TRAP instruction). Since
1120 we now have a new a.out, those shadow contents aren't valid. */
1121
1122 mark_breakpoints_out ();
1123
1124 /* The target reports the exec event to the main thread, even if
1125 some other thread does the exec, and even if the main thread was
1126 stopped or already gone. We may still have non-leader threads of
1127 the process on our list. E.g., on targets that don't have thread
1128 exit events (like remote); or on native Linux in non-stop mode if
1129 there were only two threads in the inferior and the non-leader
1130 one is the one that execs (and nothing forces an update of the
1131 thread list up to here). When debugging remotely, it's best to
1132 avoid extra traffic, when possible, so avoid syncing the thread
1133 list with the target, and instead go ahead and delete all threads
1134 of the process but one that reported the event. Note this must
1135 be done before calling update_breakpoints_after_exec, as
1136 otherwise clearing the threads' resources would reference stale
1137 thread breakpoints -- it may have been one of these threads that
1138 stepped across the exec. We could just clear their stepping
1139 states, but as long as we're iterating, might as well delete
1140 them. Deleting them now rather than at the next user-visible
1141 stop provides a nicer sequence of events for user and MI
1142 notifications. */
1143 for (thread_info *th : all_threads_safe ())
1144 if (th->ptid.pid () == pid && th->ptid != ptid)
1145 delete_thread (th);
1146
1147 /* We also need to clear any left over stale state for the
1148 leader/event thread. E.g., if there was any step-resume
1149 breakpoint or similar, it's gone now. We cannot truly
1150 step-to-next statement through an exec(). */
1151 thread_info *th = inferior_thread ();
1152 th->control.step_resume_breakpoint = NULL;
1153 th->control.exception_resume_breakpoint = NULL;
1154 th->control.single_step_breakpoints = NULL;
1155 th->control.step_range_start = 0;
1156 th->control.step_range_end = 0;
1157
1158 /* The user may have had the main thread held stopped in the
1159 previous image (e.g., schedlock on, or non-stop). Release
1160 it now. */
1161 th->stop_requested = 0;
1162
1163 update_breakpoints_after_exec ();
1164
1165 /* What is this a.out's name? */
1166 process_ptid = ptid_t (pid);
1167 printf_unfiltered (_("%s is executing new program: %s\n"),
1168 target_pid_to_str (process_ptid).c_str (),
1169 exec_file_target);
1170
1171 /* We've followed the inferior through an exec. Therefore, the
1172 inferior has essentially been killed & reborn. */
1173
1174 breakpoint_init_inferior (inf_execd);
1175
1176 gdb::unique_xmalloc_ptr<char> exec_file_host
1177 = exec_file_find (exec_file_target, NULL);
1178
1179 /* If we were unable to map the executable target pathname onto a host
1180 pathname, tell the user that. Otherwise GDB's subsequent behavior
1181 is confusing. Maybe it would even be better to stop at this point
1182 so that the user can specify a file manually before continuing. */
1183 if (exec_file_host == NULL)
1184 warning (_("Could not load symbols for executable %s.\n"
1185 "Do you need \"set sysroot\"?"),
1186 exec_file_target);
1187
1188 /* Reset the shared library package. This ensures that we get a
1189 shlib event when the child reaches "_start", at which point the
1190 dld will have had a chance to initialize the child. */
1191 /* Also, loading a symbol file below may trigger symbol lookups, and
1192 we don't want those to be satisfied by the libraries of the
1193 previous incarnation of this process. */
1194 no_shared_libraries (NULL, 0);
1195
1196 if (follow_exec_mode_string == follow_exec_mode_new)
1197 {
1198 /* The user wants to keep the old inferior and program spaces
1199 around. Create a new fresh one, and switch to it. */
1200
1201 /* Do exit processing for the original inferior before setting the new
1202 inferior's pid. Having two inferiors with the same pid would confuse
1203 find_inferior_p(t)id. Transfer the terminal state and info from the
1204 old to the new inferior. */
1205 inf = add_inferior_with_spaces ();
1206 swap_terminal_info (inf, current_inferior ());
1207 exit_inferior_silent (current_inferior ());
1208
1209 inf->pid = pid;
1210 target_follow_exec (inf, exec_file_target);
1211
1212 inferior *org_inferior = current_inferior ();
1213 switch_to_inferior_no_thread (inf);
1214 push_target (org_inferior->process_target ());
1215 thread_info *thr = add_thread (inf->process_target (), ptid);
1216 switch_to_thread (thr);
1217 }
1218 else
1219 {
1220 /* The old description may no longer be fit for the new image.
1221 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1222 old description; we'll read a new one below. No need to do
1223 this on "follow-exec-mode new", as the old inferior stays
1224 around (its description is later cleared/refetched on
1225 restart). */
1226 target_clear_description ();
1227 }
1228
1229 gdb_assert (current_program_space == inf->pspace);
1230
1231 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1232 because the proper displacement for a PIE (Position Independent
1233 Executable) main symbol file will only be computed by
1234 solib_create_inferior_hook below. breakpoint_re_set would fail
1235 to insert the breakpoints with the zero displacement. */
1236 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1237
1238 /* If the target can specify a description, read it. Must do this
1239 after flipping to the new executable (because the target supplied
1240 description must be compatible with the executable's
1241 architecture, and the old executable may e.g., be 32-bit, while
1242 the new one 64-bit), and before anything involving memory or
1243 registers. */
1244 target_find_description ();
1245
1246 solib_create_inferior_hook (0);
1247
1248 jit_inferior_created_hook ();
1249
1250 breakpoint_re_set ();
1251
1252 /* Reinsert all breakpoints. (Those which were symbolic have
1253 been reset to the proper address in the new a.out, thanks
1254 to symbol_file_command...). */
1255 insert_breakpoints ();
1256
1257 /* The next resume of this inferior should bring it to the shlib
1258 startup breakpoints. (If the user had also set bp's on
1259 "main" from the old (parent) process, then they'll auto-
1260 matically get reset there in the new process.). */
1261 }
1262
1263 /* The queue of threads that need to do a step-over operation to get
1264 past e.g., a breakpoint. What technique is used to step over the
1265 breakpoint/watchpoint does not matter -- all threads end up in the
1266 same queue, to maintain rough temporal order of execution, in order
1267 to avoid starvation, otherwise, we could e.g., find ourselves
1268 constantly stepping the same couple threads past their breakpoints
1269 over and over, if the single-step finish fast enough. */
1270 struct thread_info *step_over_queue_head;
1271
1272 /* Bit flags indicating what the thread needs to step over. */
1273
1274 enum step_over_what_flag
1275 {
1276 /* Step over a breakpoint. */
1277 STEP_OVER_BREAKPOINT = 1,
1278
1279 /* Step past a non-continuable watchpoint, in order to let the
1280 instruction execute so we can evaluate the watchpoint
1281 expression. */
1282 STEP_OVER_WATCHPOINT = 2
1283 };
1284 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1285
1286 /* Info about an instruction that is being stepped over. */
1287
1288 struct step_over_info
1289 {
1290 /* If we're stepping past a breakpoint, this is the address space
1291 and address of the instruction the breakpoint is set at. We'll
1292 skip inserting all breakpoints here. Valid iff ASPACE is
1293 non-NULL. */
1294 const address_space *aspace;
1295 CORE_ADDR address;
1296
1297 /* The instruction being stepped over triggers a nonsteppable
1298 watchpoint. If true, we'll skip inserting watchpoints. */
1299 int nonsteppable_watchpoint_p;
1300
1301 /* The thread's global number. */
1302 int thread;
1303 };
1304
1305 /* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329 static struct step_over_info step_over_info;
1330
1331 /* Record the address of the breakpoint/instruction we're currently
1332 stepping over.
1333 N.B. We record the aspace and address now, instead of say just the thread,
1334 because when we need the info later the thread may be running. */
1335
1336 static void
1337 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1338 int nonsteppable_watchpoint_p,
1339 int thread)
1340 {
1341 step_over_info.aspace = aspace;
1342 step_over_info.address = address;
1343 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1344 step_over_info.thread = thread;
1345 }
1346
1347 /* Called when we're not longer stepping over a breakpoint / an
1348 instruction, so all breakpoints are free to be (re)inserted. */
1349
1350 static void
1351 clear_step_over_info (void)
1352 {
1353 if (debug_infrun)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "infrun: clear_step_over_info\n");
1356 step_over_info.aspace = NULL;
1357 step_over_info.address = 0;
1358 step_over_info.nonsteppable_watchpoint_p = 0;
1359 step_over_info.thread = -1;
1360 }
1361
1362 /* See infrun.h. */
1363
1364 int
1365 stepping_past_instruction_at (struct address_space *aspace,
1366 CORE_ADDR address)
1367 {
1368 return (step_over_info.aspace != NULL
1369 && breakpoint_address_match (aspace, address,
1370 step_over_info.aspace,
1371 step_over_info.address));
1372 }
1373
1374 /* See infrun.h. */
1375
1376 int
1377 thread_is_stepping_over_breakpoint (int thread)
1378 {
1379 return (step_over_info.thread != -1
1380 && thread == step_over_info.thread);
1381 }
1382
1383 /* See infrun.h. */
1384
1385 int
1386 stepping_past_nonsteppable_watchpoint (void)
1387 {
1388 return step_over_info.nonsteppable_watchpoint_p;
1389 }
1390
1391 /* Returns true if step-over info is valid. */
1392
1393 static int
1394 step_over_info_valid_p (void)
1395 {
1396 return (step_over_info.aspace != NULL
1397 || stepping_past_nonsteppable_watchpoint ());
1398 }
1399
1400 \f
1401 /* Displaced stepping. */
1402
1403 /* In non-stop debugging mode, we must take special care to manage
1404 breakpoints properly; in particular, the traditional strategy for
1405 stepping a thread past a breakpoint it has hit is unsuitable.
1406 'Displaced stepping' is a tactic for stepping one thread past a
1407 breakpoint it has hit while ensuring that other threads running
1408 concurrently will hit the breakpoint as they should.
1409
1410 The traditional way to step a thread T off a breakpoint in a
1411 multi-threaded program in all-stop mode is as follows:
1412
1413 a0) Initially, all threads are stopped, and breakpoints are not
1414 inserted.
1415 a1) We single-step T, leaving breakpoints uninserted.
1416 a2) We insert breakpoints, and resume all threads.
1417
1418 In non-stop debugging, however, this strategy is unsuitable: we
1419 don't want to have to stop all threads in the system in order to
1420 continue or step T past a breakpoint. Instead, we use displaced
1421 stepping:
1422
1423 n0) Initially, T is stopped, other threads are running, and
1424 breakpoints are inserted.
1425 n1) We copy the instruction "under" the breakpoint to a separate
1426 location, outside the main code stream, making any adjustments
1427 to the instruction, register, and memory state as directed by
1428 T's architecture.
1429 n2) We single-step T over the instruction at its new location.
1430 n3) We adjust the resulting register and memory state as directed
1431 by T's architecture. This includes resetting T's PC to point
1432 back into the main instruction stream.
1433 n4) We resume T.
1434
1435 This approach depends on the following gdbarch methods:
1436
1437 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1438 indicate where to copy the instruction, and how much space must
1439 be reserved there. We use these in step n1.
1440
1441 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1442 address, and makes any necessary adjustments to the instruction,
1443 register contents, and memory. We use this in step n1.
1444
1445 - gdbarch_displaced_step_fixup adjusts registers and memory after
1446 we have successfully single-stepped the instruction, to yield the
1447 same effect the instruction would have had if we had executed it
1448 at its original address. We use this in step n3.
1449
1450 The gdbarch_displaced_step_copy_insn and
1451 gdbarch_displaced_step_fixup functions must be written so that
1452 copying an instruction with gdbarch_displaced_step_copy_insn,
1453 single-stepping across the copied instruction, and then applying
1454 gdbarch_displaced_insn_fixup should have the same effects on the
1455 thread's memory and registers as stepping the instruction in place
1456 would have. Exactly which responsibilities fall to the copy and
1457 which fall to the fixup is up to the author of those functions.
1458
1459 See the comments in gdbarch.sh for details.
1460
1461 Note that displaced stepping and software single-step cannot
1462 currently be used in combination, although with some care I think
1463 they could be made to. Software single-step works by placing
1464 breakpoints on all possible subsequent instructions; if the
1465 displaced instruction is a PC-relative jump, those breakpoints
1466 could fall in very strange places --- on pages that aren't
1467 executable, or at addresses that are not proper instruction
1468 boundaries. (We do generally let other threads run while we wait
1469 to hit the software single-step breakpoint, and they might
1470 encounter such a corrupted instruction.) One way to work around
1471 this would be to have gdbarch_displaced_step_copy_insn fully
1472 simulate the effect of PC-relative instructions (and return NULL)
1473 on architectures that use software single-stepping.
1474
1475 In non-stop mode, we can have independent and simultaneous step
1476 requests, so more than one thread may need to simultaneously step
1477 over a breakpoint. The current implementation assumes there is
1478 only one scratch space per process. In this case, we have to
1479 serialize access to the scratch space. If thread A wants to step
1480 over a breakpoint, but we are currently waiting for some other
1481 thread to complete a displaced step, we leave thread A stopped and
1482 place it in the displaced_step_request_queue. Whenever a displaced
1483 step finishes, we pick the next thread in the queue and start a new
1484 displaced step operation on it. See displaced_step_prepare and
1485 displaced_step_fixup for details. */
1486
1487 /* Default destructor for displaced_step_closure. */
1488
1489 displaced_step_closure::~displaced_step_closure () = default;
1490
1491 /* Get the displaced stepping state of process PID. */
1492
1493 static displaced_step_inferior_state *
1494 get_displaced_stepping_state (inferior *inf)
1495 {
1496 return &inf->displaced_step_state;
1497 }
1498
1499 /* Returns true if any inferior has a thread doing a displaced
1500 step. */
1501
1502 static bool
1503 displaced_step_in_progress_any_inferior ()
1504 {
1505 for (inferior *i : all_inferiors ())
1506 {
1507 if (i->displaced_step_state.step_thread != nullptr)
1508 return true;
1509 }
1510
1511 return false;
1512 }
1513
1514 /* Return true if thread represented by PTID is doing a displaced
1515 step. */
1516
1517 static int
1518 displaced_step_in_progress_thread (thread_info *thread)
1519 {
1520 gdb_assert (thread != NULL);
1521
1522 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1523 }
1524
1525 /* Return true if process PID has a thread doing a displaced step. */
1526
1527 static int
1528 displaced_step_in_progress (inferior *inf)
1529 {
1530 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1531 }
1532
1533 /* If inferior is in displaced stepping, and ADDR equals to starting address
1534 of copy area, return corresponding displaced_step_closure. Otherwise,
1535 return NULL. */
1536
1537 struct displaced_step_closure*
1538 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1539 {
1540 displaced_step_inferior_state *displaced
1541 = get_displaced_stepping_state (current_inferior ());
1542
1543 /* If checking the mode of displaced instruction in copy area. */
1544 if (displaced->step_thread != nullptr
1545 && displaced->step_copy == addr)
1546 return displaced->step_closure.get ();
1547
1548 return NULL;
1549 }
1550
1551 static void
1552 infrun_inferior_exit (struct inferior *inf)
1553 {
1554 inf->displaced_step_state.reset ();
1555 }
1556
1557 /* If ON, and the architecture supports it, GDB will use displaced
1558 stepping to step over breakpoints. If OFF, or if the architecture
1559 doesn't support it, GDB will instead use the traditional
1560 hold-and-step approach. If AUTO (which is the default), GDB will
1561 decide which technique to use to step over breakpoints depending on
1562 whether the target works in a non-stop way (see use_displaced_stepping). */
1563
1564 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1565
1566 static void
1567 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1568 struct cmd_list_element *c,
1569 const char *value)
1570 {
1571 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1572 fprintf_filtered (file,
1573 _("Debugger's willingness to use displaced stepping "
1574 "to step over breakpoints is %s (currently %s).\n"),
1575 value, target_is_non_stop_p () ? "on" : "off");
1576 else
1577 fprintf_filtered (file,
1578 _("Debugger's willingness to use displaced stepping "
1579 "to step over breakpoints is %s.\n"), value);
1580 }
1581
1582 /* Return true if the gdbarch implements the required methods to use
1583 displaced stepping. */
1584
1585 static bool
1586 gdbarch_supports_displaced_stepping (gdbarch *arch)
1587 {
1588 /* Only check for the presence of step_copy_insn. Other required methods
1589 are checked by the gdbarch validation. */
1590 return gdbarch_displaced_step_copy_insn_p (arch);
1591 }
1592
1593 /* Return non-zero if displaced stepping can/should be used to step
1594 over breakpoints of thread TP. */
1595
1596 static bool
1597 use_displaced_stepping (thread_info *tp)
1598 {
1599 /* If the user disabled it explicitly, don't use displaced stepping. */
1600 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1601 return false;
1602
1603 /* If "auto", only use displaced stepping if the target operates in a non-stop
1604 way. */
1605 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1606 && !target_is_non_stop_p ())
1607 return false;
1608
1609 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1610
1611 /* If the architecture doesn't implement displaced stepping, don't use
1612 it. */
1613 if (!gdbarch_supports_displaced_stepping (gdbarch))
1614 return false;
1615
1616 /* If recording, don't use displaced stepping. */
1617 if (find_record_target () != nullptr)
1618 return false;
1619
1620 displaced_step_inferior_state *displaced_state
1621 = get_displaced_stepping_state (tp->inf);
1622
1623 /* If displaced stepping failed before for this inferior, don't bother trying
1624 again. */
1625 if (displaced_state->failed_before)
1626 return false;
1627
1628 return true;
1629 }
1630
1631 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1632
1633 static void
1634 displaced_step_reset (displaced_step_inferior_state *displaced)
1635 {
1636 displaced->reset ();
1637 }
1638
1639 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1640 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1641
1642 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1643
1644 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1645 void
1646 displaced_step_dump_bytes (struct ui_file *file,
1647 const gdb_byte *buf,
1648 size_t len)
1649 {
1650 int i;
1651
1652 for (i = 0; i < len; i++)
1653 fprintf_unfiltered (file, "%02x ", buf[i]);
1654 fputs_unfiltered ("\n", file);
1655 }
1656
1657 /* Prepare to single-step, using displaced stepping.
1658
1659 Note that we cannot use displaced stepping when we have a signal to
1660 deliver. If we have a signal to deliver and an instruction to step
1661 over, then after the step, there will be no indication from the
1662 target whether the thread entered a signal handler or ignored the
1663 signal and stepped over the instruction successfully --- both cases
1664 result in a simple SIGTRAP. In the first case we mustn't do a
1665 fixup, and in the second case we must --- but we can't tell which.
1666 Comments in the code for 'random signals' in handle_inferior_event
1667 explain how we handle this case instead.
1668
1669 Returns 1 if preparing was successful -- this thread is going to be
1670 stepped now; 0 if displaced stepping this thread got queued; or -1
1671 if this instruction can't be displaced stepped. */
1672
1673 static int
1674 displaced_step_prepare_throw (thread_info *tp)
1675 {
1676 regcache *regcache = get_thread_regcache (tp);
1677 struct gdbarch *gdbarch = regcache->arch ();
1678 const address_space *aspace = regcache->aspace ();
1679 CORE_ADDR original, copy;
1680 ULONGEST len;
1681 int status;
1682
1683 /* We should never reach this function if the architecture does not
1684 support displaced stepping. */
1685 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1686
1687 /* Nor if the thread isn't meant to step over a breakpoint. */
1688 gdb_assert (tp->control.trap_expected);
1689
1690 /* Disable range stepping while executing in the scratch pad. We
1691 want a single-step even if executing the displaced instruction in
1692 the scratch buffer lands within the stepping range (e.g., a
1693 jump/branch). */
1694 tp->control.may_range_step = 0;
1695
1696 /* We have to displaced step one thread at a time, as we only have
1697 access to a single scratch space per inferior. */
1698
1699 displaced_step_inferior_state *displaced
1700 = get_displaced_stepping_state (tp->inf);
1701
1702 if (displaced->step_thread != nullptr)
1703 {
1704 /* Already waiting for a displaced step to finish. Defer this
1705 request and place in queue. */
1706
1707 if (debug_displaced)
1708 fprintf_unfiltered (gdb_stdlog,
1709 "displaced: deferring step of %s\n",
1710 target_pid_to_str (tp->ptid).c_str ());
1711
1712 thread_step_over_chain_enqueue (tp);
1713 return 0;
1714 }
1715 else
1716 {
1717 if (debug_displaced)
1718 fprintf_unfiltered (gdb_stdlog,
1719 "displaced: stepping %s now\n",
1720 target_pid_to_str (tp->ptid).c_str ());
1721 }
1722
1723 displaced_step_reset (displaced);
1724
1725 scoped_restore_current_thread restore_thread;
1726
1727 switch_to_thread (tp);
1728
1729 original = regcache_read_pc (regcache);
1730
1731 copy = gdbarch_displaced_step_location (gdbarch);
1732 len = gdbarch_max_insn_length (gdbarch);
1733
1734 if (breakpoint_in_range_p (aspace, copy, len))
1735 {
1736 /* There's a breakpoint set in the scratch pad location range
1737 (which is usually around the entry point). We'd either
1738 install it before resuming, which would overwrite/corrupt the
1739 scratch pad, or if it was already inserted, this displaced
1740 step would overwrite it. The latter is OK in the sense that
1741 we already assume that no thread is going to execute the code
1742 in the scratch pad range (after initial startup) anyway, but
1743 the former is unacceptable. Simply punt and fallback to
1744 stepping over this breakpoint in-line. */
1745 if (debug_displaced)
1746 {
1747 fprintf_unfiltered (gdb_stdlog,
1748 "displaced: breakpoint set in scratch pad. "
1749 "Stepping over breakpoint in-line instead.\n");
1750 }
1751
1752 return -1;
1753 }
1754
1755 /* Save the original contents of the copy area. */
1756 displaced->step_saved_copy.resize (len);
1757 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1758 if (status != 0)
1759 throw_error (MEMORY_ERROR,
1760 _("Error accessing memory address %s (%s) for "
1761 "displaced-stepping scratch space."),
1762 paddress (gdbarch, copy), safe_strerror (status));
1763 if (debug_displaced)
1764 {
1765 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1766 paddress (gdbarch, copy));
1767 displaced_step_dump_bytes (gdb_stdlog,
1768 displaced->step_saved_copy.data (),
1769 len);
1770 };
1771
1772 displaced->step_closure
1773 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1774 if (displaced->step_closure == NULL)
1775 {
1776 /* The architecture doesn't know how or want to displaced step
1777 this instruction or instruction sequence. Fallback to
1778 stepping over the breakpoint in-line. */
1779 return -1;
1780 }
1781
1782 /* Save the information we need to fix things up if the step
1783 succeeds. */
1784 displaced->step_thread = tp;
1785 displaced->step_gdbarch = gdbarch;
1786 displaced->step_original = original;
1787 displaced->step_copy = copy;
1788
1789 {
1790 displaced_step_reset_cleanup cleanup (displaced);
1791
1792 /* Resume execution at the copy. */
1793 regcache_write_pc (regcache, copy);
1794
1795 cleanup.release ();
1796 }
1797
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1800 paddress (gdbarch, copy));
1801
1802 return 1;
1803 }
1804
1805 /* Wrapper for displaced_step_prepare_throw that disabled further
1806 attempts at displaced stepping if we get a memory error. */
1807
1808 static int
1809 displaced_step_prepare (thread_info *thread)
1810 {
1811 int prepared = -1;
1812
1813 try
1814 {
1815 prepared = displaced_step_prepare_throw (thread);
1816 }
1817 catch (const gdb_exception_error &ex)
1818 {
1819 struct displaced_step_inferior_state *displaced_state;
1820
1821 if (ex.error != MEMORY_ERROR
1822 && ex.error != NOT_SUPPORTED_ERROR)
1823 throw;
1824
1825 if (debug_infrun)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "infrun: disabling displaced stepping: %s\n",
1829 ex.what ());
1830 }
1831
1832 /* Be verbose if "set displaced-stepping" is "on", silent if
1833 "auto". */
1834 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1835 {
1836 warning (_("disabling displaced stepping: %s"),
1837 ex.what ());
1838 }
1839
1840 /* Disable further displaced stepping attempts. */
1841 displaced_state
1842 = get_displaced_stepping_state (thread->inf);
1843 displaced_state->failed_before = 1;
1844 }
1845
1846 return prepared;
1847 }
1848
1849 static void
1850 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1851 const gdb_byte *myaddr, int len)
1852 {
1853 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1854
1855 inferior_ptid = ptid;
1856 write_memory (memaddr, myaddr, len);
1857 }
1858
1859 /* Restore the contents of the copy area for thread PTID. */
1860
1861 static void
1862 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1863 ptid_t ptid)
1864 {
1865 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1866
1867 write_memory_ptid (ptid, displaced->step_copy,
1868 displaced->step_saved_copy.data (), len);
1869 if (debug_displaced)
1870 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1871 target_pid_to_str (ptid).c_str (),
1872 paddress (displaced->step_gdbarch,
1873 displaced->step_copy));
1874 }
1875
1876 /* If we displaced stepped an instruction successfully, adjust
1877 registers and memory to yield the same effect the instruction would
1878 have had if we had executed it at its original address, and return
1879 1. If the instruction didn't complete, relocate the PC and return
1880 -1. If the thread wasn't displaced stepping, return 0. */
1881
1882 static int
1883 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1884 {
1885 struct displaced_step_inferior_state *displaced
1886 = get_displaced_stepping_state (event_thread->inf);
1887 int ret;
1888
1889 /* Was this event for the thread we displaced? */
1890 if (displaced->step_thread != event_thread)
1891 return 0;
1892
1893 /* Fixup may need to read memory/registers. Switch to the thread
1894 that we're fixing up. Also, target_stopped_by_watchpoint checks
1895 the current thread, and displaced_step_restore performs ptid-dependent
1896 memory accesses using current_inferior() and current_top_target(). */
1897 switch_to_thread (event_thread);
1898
1899 displaced_step_reset_cleanup cleanup (displaced);
1900
1901 displaced_step_restore (displaced, displaced->step_thread->ptid);
1902
1903 /* Did the instruction complete successfully? */
1904 if (signal == GDB_SIGNAL_TRAP
1905 && !(target_stopped_by_watchpoint ()
1906 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1907 || target_have_steppable_watchpoint)))
1908 {
1909 /* Fix up the resulting state. */
1910 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1911 displaced->step_closure.get (),
1912 displaced->step_original,
1913 displaced->step_copy,
1914 get_thread_regcache (displaced->step_thread));
1915 ret = 1;
1916 }
1917 else
1918 {
1919 /* Since the instruction didn't complete, all we can do is
1920 relocate the PC. */
1921 struct regcache *regcache = get_thread_regcache (event_thread);
1922 CORE_ADDR pc = regcache_read_pc (regcache);
1923
1924 pc = displaced->step_original + (pc - displaced->step_copy);
1925 regcache_write_pc (regcache, pc);
1926 ret = -1;
1927 }
1928
1929 return ret;
1930 }
1931
1932 /* Data to be passed around while handling an event. This data is
1933 discarded between events. */
1934 struct execution_control_state
1935 {
1936 process_stratum_target *target;
1937 ptid_t ptid;
1938 /* The thread that got the event, if this was a thread event; NULL
1939 otherwise. */
1940 struct thread_info *event_thread;
1941
1942 struct target_waitstatus ws;
1943 int stop_func_filled_in;
1944 CORE_ADDR stop_func_start;
1945 CORE_ADDR stop_func_end;
1946 const char *stop_func_name;
1947 int wait_some_more;
1948
1949 /* True if the event thread hit the single-step breakpoint of
1950 another thread. Thus the event doesn't cause a stop, the thread
1951 needs to be single-stepped past the single-step breakpoint before
1952 we can switch back to the original stepping thread. */
1953 int hit_singlestep_breakpoint;
1954 };
1955
1956 /* Clear ECS and set it to point at TP. */
1957
1958 static void
1959 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1960 {
1961 memset (ecs, 0, sizeof (*ecs));
1962 ecs->event_thread = tp;
1963 ecs->ptid = tp->ptid;
1964 }
1965
1966 static void keep_going_pass_signal (struct execution_control_state *ecs);
1967 static void prepare_to_wait (struct execution_control_state *ecs);
1968 static int keep_going_stepped_thread (struct thread_info *tp);
1969 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1970
1971 /* Are there any pending step-over requests? If so, run all we can
1972 now and return true. Otherwise, return false. */
1973
1974 static int
1975 start_step_over (void)
1976 {
1977 struct thread_info *tp, *next;
1978
1979 /* Don't start a new step-over if we already have an in-line
1980 step-over operation ongoing. */
1981 if (step_over_info_valid_p ())
1982 return 0;
1983
1984 for (tp = step_over_queue_head; tp != NULL; tp = next)
1985 {
1986 struct execution_control_state ecss;
1987 struct execution_control_state *ecs = &ecss;
1988 step_over_what step_what;
1989 int must_be_in_line;
1990
1991 gdb_assert (!tp->stop_requested);
1992
1993 next = thread_step_over_chain_next (tp);
1994
1995 /* If this inferior already has a displaced step in process,
1996 don't start a new one. */
1997 if (displaced_step_in_progress (tp->inf))
1998 continue;
1999
2000 step_what = thread_still_needs_step_over (tp);
2001 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2002 || ((step_what & STEP_OVER_BREAKPOINT)
2003 && !use_displaced_stepping (tp)));
2004
2005 /* We currently stop all threads of all processes to step-over
2006 in-line. If we need to start a new in-line step-over, let
2007 any pending displaced steps finish first. */
2008 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2009 return 0;
2010
2011 thread_step_over_chain_remove (tp);
2012
2013 if (step_over_queue_head == NULL)
2014 {
2015 if (debug_infrun)
2016 fprintf_unfiltered (gdb_stdlog,
2017 "infrun: step-over queue now empty\n");
2018 }
2019
2020 if (tp->control.trap_expected
2021 || tp->resumed
2022 || tp->executing)
2023 {
2024 internal_error (__FILE__, __LINE__,
2025 "[%s] has inconsistent state: "
2026 "trap_expected=%d, resumed=%d, executing=%d\n",
2027 target_pid_to_str (tp->ptid).c_str (),
2028 tp->control.trap_expected,
2029 tp->resumed,
2030 tp->executing);
2031 }
2032
2033 if (debug_infrun)
2034 fprintf_unfiltered (gdb_stdlog,
2035 "infrun: resuming [%s] for step-over\n",
2036 target_pid_to_str (tp->ptid).c_str ());
2037
2038 /* keep_going_pass_signal skips the step-over if the breakpoint
2039 is no longer inserted. In all-stop, we want to keep looking
2040 for a thread that needs a step-over instead of resuming TP,
2041 because we wouldn't be able to resume anything else until the
2042 target stops again. In non-stop, the resume always resumes
2043 only TP, so it's OK to let the thread resume freely. */
2044 if (!target_is_non_stop_p () && !step_what)
2045 continue;
2046
2047 switch_to_thread (tp);
2048 reset_ecs (ecs, tp);
2049 keep_going_pass_signal (ecs);
2050
2051 if (!ecs->wait_some_more)
2052 error (_("Command aborted."));
2053
2054 gdb_assert (tp->resumed);
2055
2056 /* If we started a new in-line step-over, we're done. */
2057 if (step_over_info_valid_p ())
2058 {
2059 gdb_assert (tp->control.trap_expected);
2060 return 1;
2061 }
2062
2063 if (!target_is_non_stop_p ())
2064 {
2065 /* On all-stop, shouldn't have resumed unless we needed a
2066 step over. */
2067 gdb_assert (tp->control.trap_expected
2068 || tp->step_after_step_resume_breakpoint);
2069
2070 /* With remote targets (at least), in all-stop, we can't
2071 issue any further remote commands until the program stops
2072 again. */
2073 return 1;
2074 }
2075
2076 /* Either the thread no longer needed a step-over, or a new
2077 displaced stepping sequence started. Even in the latter
2078 case, continue looking. Maybe we can also start another
2079 displaced step on a thread of other process. */
2080 }
2081
2082 return 0;
2083 }
2084
2085 /* Update global variables holding ptids to hold NEW_PTID if they were
2086 holding OLD_PTID. */
2087 static void
2088 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2089 {
2090 if (inferior_ptid == old_ptid)
2091 inferior_ptid = new_ptid;
2092 }
2093
2094 \f
2095
2096 static const char schedlock_off[] = "off";
2097 static const char schedlock_on[] = "on";
2098 static const char schedlock_step[] = "step";
2099 static const char schedlock_replay[] = "replay";
2100 static const char *const scheduler_enums[] = {
2101 schedlock_off,
2102 schedlock_on,
2103 schedlock_step,
2104 schedlock_replay,
2105 NULL
2106 };
2107 static const char *scheduler_mode = schedlock_replay;
2108 static void
2109 show_scheduler_mode (struct ui_file *file, int from_tty,
2110 struct cmd_list_element *c, const char *value)
2111 {
2112 fprintf_filtered (file,
2113 _("Mode for locking scheduler "
2114 "during execution is \"%s\".\n"),
2115 value);
2116 }
2117
2118 static void
2119 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2120 {
2121 if (!target_can_lock_scheduler)
2122 {
2123 scheduler_mode = schedlock_off;
2124 error (_("Target '%s' cannot support this command."), target_shortname);
2125 }
2126 }
2127
2128 /* True if execution commands resume all threads of all processes by
2129 default; otherwise, resume only threads of the current inferior
2130 process. */
2131 bool sched_multi = false;
2132
2133 /* Try to setup for software single stepping over the specified location.
2134 Return 1 if target_resume() should use hardware single step.
2135
2136 GDBARCH the current gdbarch.
2137 PC the location to step over. */
2138
2139 static int
2140 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2141 {
2142 int hw_step = 1;
2143
2144 if (execution_direction == EXEC_FORWARD
2145 && gdbarch_software_single_step_p (gdbarch))
2146 hw_step = !insert_single_step_breakpoints (gdbarch);
2147
2148 return hw_step;
2149 }
2150
2151 /* See infrun.h. */
2152
2153 ptid_t
2154 user_visible_resume_ptid (int step)
2155 {
2156 ptid_t resume_ptid;
2157
2158 if (non_stop)
2159 {
2160 /* With non-stop mode on, threads are always handled
2161 individually. */
2162 resume_ptid = inferior_ptid;
2163 }
2164 else if ((scheduler_mode == schedlock_on)
2165 || (scheduler_mode == schedlock_step && step))
2166 {
2167 /* User-settable 'scheduler' mode requires solo thread
2168 resume. */
2169 resume_ptid = inferior_ptid;
2170 }
2171 else if ((scheduler_mode == schedlock_replay)
2172 && target_record_will_replay (minus_one_ptid, execution_direction))
2173 {
2174 /* User-settable 'scheduler' mode requires solo thread resume in replay
2175 mode. */
2176 resume_ptid = inferior_ptid;
2177 }
2178 else if (!sched_multi && target_supports_multi_process ())
2179 {
2180 /* Resume all threads of the current process (and none of other
2181 processes). */
2182 resume_ptid = ptid_t (inferior_ptid.pid ());
2183 }
2184 else
2185 {
2186 /* Resume all threads of all processes. */
2187 resume_ptid = RESUME_ALL;
2188 }
2189
2190 return resume_ptid;
2191 }
2192
2193 /* See infrun.h. */
2194
2195 process_stratum_target *
2196 user_visible_resume_target (ptid_t resume_ptid)
2197 {
2198 return (resume_ptid == minus_one_ptid && sched_multi
2199 ? NULL
2200 : current_inferior ()->process_target ());
2201 }
2202
2203 /* Return a ptid representing the set of threads that we will resume,
2204 in the perspective of the target, assuming run control handling
2205 does not require leaving some threads stopped (e.g., stepping past
2206 breakpoint). USER_STEP indicates whether we're about to start the
2207 target for a stepping command. */
2208
2209 static ptid_t
2210 internal_resume_ptid (int user_step)
2211 {
2212 /* In non-stop, we always control threads individually. Note that
2213 the target may always work in non-stop mode even with "set
2214 non-stop off", in which case user_visible_resume_ptid could
2215 return a wildcard ptid. */
2216 if (target_is_non_stop_p ())
2217 return inferior_ptid;
2218 else
2219 return user_visible_resume_ptid (user_step);
2220 }
2221
2222 /* Wrapper for target_resume, that handles infrun-specific
2223 bookkeeping. */
2224
2225 static void
2226 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2227 {
2228 struct thread_info *tp = inferior_thread ();
2229
2230 gdb_assert (!tp->stop_requested);
2231
2232 /* Install inferior's terminal modes. */
2233 target_terminal::inferior ();
2234
2235 /* Avoid confusing the next resume, if the next stop/resume
2236 happens to apply to another thread. */
2237 tp->suspend.stop_signal = GDB_SIGNAL_0;
2238
2239 /* Advise target which signals may be handled silently.
2240
2241 If we have removed breakpoints because we are stepping over one
2242 in-line (in any thread), we need to receive all signals to avoid
2243 accidentally skipping a breakpoint during execution of a signal
2244 handler.
2245
2246 Likewise if we're displaced stepping, otherwise a trap for a
2247 breakpoint in a signal handler might be confused with the
2248 displaced step finishing. We don't make the displaced_step_fixup
2249 step distinguish the cases instead, because:
2250
2251 - a backtrace while stopped in the signal handler would show the
2252 scratch pad as frame older than the signal handler, instead of
2253 the real mainline code.
2254
2255 - when the thread is later resumed, the signal handler would
2256 return to the scratch pad area, which would no longer be
2257 valid. */
2258 if (step_over_info_valid_p ()
2259 || displaced_step_in_progress (tp->inf))
2260 target_pass_signals ({});
2261 else
2262 target_pass_signals (signal_pass);
2263
2264 target_resume (resume_ptid, step, sig);
2265
2266 target_commit_resume ();
2267
2268 if (target_can_async_p ())
2269 target_async (1);
2270 }
2271
2272 /* Resume the inferior. SIG is the signal to give the inferior
2273 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2274 call 'resume', which handles exceptions. */
2275
2276 static void
2277 resume_1 (enum gdb_signal sig)
2278 {
2279 struct regcache *regcache = get_current_regcache ();
2280 struct gdbarch *gdbarch = regcache->arch ();
2281 struct thread_info *tp = inferior_thread ();
2282 const address_space *aspace = regcache->aspace ();
2283 ptid_t resume_ptid;
2284 /* This represents the user's step vs continue request. When
2285 deciding whether "set scheduler-locking step" applies, it's the
2286 user's intention that counts. */
2287 const int user_step = tp->control.stepping_command;
2288 /* This represents what we'll actually request the target to do.
2289 This can decay from a step to a continue, if e.g., we need to
2290 implement single-stepping with breakpoints (software
2291 single-step). */
2292 int step;
2293
2294 gdb_assert (!tp->stop_requested);
2295 gdb_assert (!thread_is_in_step_over_chain (tp));
2296
2297 if (tp->suspend.waitstatus_pending_p)
2298 {
2299 if (debug_infrun)
2300 {
2301 std::string statstr
2302 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2303
2304 fprintf_unfiltered (gdb_stdlog,
2305 "infrun: resume: thread %s has pending wait "
2306 "status %s (currently_stepping=%d).\n",
2307 target_pid_to_str (tp->ptid).c_str (),
2308 statstr.c_str (),
2309 currently_stepping (tp));
2310 }
2311
2312 tp->inf->process_target ()->threads_executing = true;
2313 tp->resumed = true;
2314
2315 /* FIXME: What should we do if we are supposed to resume this
2316 thread with a signal? Maybe we should maintain a queue of
2317 pending signals to deliver. */
2318 if (sig != GDB_SIGNAL_0)
2319 {
2320 warning (_("Couldn't deliver signal %s to %s."),
2321 gdb_signal_to_name (sig),
2322 target_pid_to_str (tp->ptid).c_str ());
2323 }
2324
2325 tp->suspend.stop_signal = GDB_SIGNAL_0;
2326
2327 if (target_can_async_p ())
2328 {
2329 target_async (1);
2330 /* Tell the event loop we have an event to process. */
2331 mark_async_event_handler (infrun_async_inferior_event_token);
2332 }
2333 return;
2334 }
2335
2336 tp->stepped_breakpoint = 0;
2337
2338 /* Depends on stepped_breakpoint. */
2339 step = currently_stepping (tp);
2340
2341 if (current_inferior ()->waiting_for_vfork_done)
2342 {
2343 /* Don't try to single-step a vfork parent that is waiting for
2344 the child to get out of the shared memory region (by exec'ing
2345 or exiting). This is particularly important on software
2346 single-step archs, as the child process would trip on the
2347 software single step breakpoint inserted for the parent
2348 process. Since the parent will not actually execute any
2349 instruction until the child is out of the shared region (such
2350 are vfork's semantics), it is safe to simply continue it.
2351 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2352 the parent, and tell it to `keep_going', which automatically
2353 re-sets it stepping. */
2354 if (debug_infrun)
2355 fprintf_unfiltered (gdb_stdlog,
2356 "infrun: resume : clear step\n");
2357 step = 0;
2358 }
2359
2360 CORE_ADDR pc = regcache_read_pc (regcache);
2361
2362 if (debug_infrun)
2363 fprintf_unfiltered (gdb_stdlog,
2364 "infrun: resume (step=%d, signal=%s), "
2365 "trap_expected=%d, current thread [%s] at %s\n",
2366 step, gdb_signal_to_symbol_string (sig),
2367 tp->control.trap_expected,
2368 target_pid_to_str (inferior_ptid).c_str (),
2369 paddress (gdbarch, pc));
2370
2371 /* Normally, by the time we reach `resume', the breakpoints are either
2372 removed or inserted, as appropriate. The exception is if we're sitting
2373 at a permanent breakpoint; we need to step over it, but permanent
2374 breakpoints can't be removed. So we have to test for it here. */
2375 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2376 {
2377 if (sig != GDB_SIGNAL_0)
2378 {
2379 /* We have a signal to pass to the inferior. The resume
2380 may, or may not take us to the signal handler. If this
2381 is a step, we'll need to stop in the signal handler, if
2382 there's one, (if the target supports stepping into
2383 handlers), or in the next mainline instruction, if
2384 there's no handler. If this is a continue, we need to be
2385 sure to run the handler with all breakpoints inserted.
2386 In all cases, set a breakpoint at the current address
2387 (where the handler returns to), and once that breakpoint
2388 is hit, resume skipping the permanent breakpoint. If
2389 that breakpoint isn't hit, then we've stepped into the
2390 signal handler (or hit some other event). We'll delete
2391 the step-resume breakpoint then. */
2392
2393 if (debug_infrun)
2394 fprintf_unfiltered (gdb_stdlog,
2395 "infrun: resume: skipping permanent breakpoint, "
2396 "deliver signal first\n");
2397
2398 clear_step_over_info ();
2399 tp->control.trap_expected = 0;
2400
2401 if (tp->control.step_resume_breakpoint == NULL)
2402 {
2403 /* Set a "high-priority" step-resume, as we don't want
2404 user breakpoints at PC to trigger (again) when this
2405 hits. */
2406 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2407 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2408
2409 tp->step_after_step_resume_breakpoint = step;
2410 }
2411
2412 insert_breakpoints ();
2413 }
2414 else
2415 {
2416 /* There's no signal to pass, we can go ahead and skip the
2417 permanent breakpoint manually. */
2418 if (debug_infrun)
2419 fprintf_unfiltered (gdb_stdlog,
2420 "infrun: resume: skipping permanent breakpoint\n");
2421 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2422 /* Update pc to reflect the new address from which we will
2423 execute instructions. */
2424 pc = regcache_read_pc (regcache);
2425
2426 if (step)
2427 {
2428 /* We've already advanced the PC, so the stepping part
2429 is done. Now we need to arrange for a trap to be
2430 reported to handle_inferior_event. Set a breakpoint
2431 at the current PC, and run to it. Don't update
2432 prev_pc, because if we end in
2433 switch_back_to_stepped_thread, we want the "expected
2434 thread advanced also" branch to be taken. IOW, we
2435 don't want this thread to step further from PC
2436 (overstep). */
2437 gdb_assert (!step_over_info_valid_p ());
2438 insert_single_step_breakpoint (gdbarch, aspace, pc);
2439 insert_breakpoints ();
2440
2441 resume_ptid = internal_resume_ptid (user_step);
2442 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2443 tp->resumed = true;
2444 return;
2445 }
2446 }
2447 }
2448
2449 /* If we have a breakpoint to step over, make sure to do a single
2450 step only. Same if we have software watchpoints. */
2451 if (tp->control.trap_expected || bpstat_should_step ())
2452 tp->control.may_range_step = 0;
2453
2454 /* If displaced stepping is enabled, step over breakpoints by executing a
2455 copy of the instruction at a different address.
2456
2457 We can't use displaced stepping when we have a signal to deliver;
2458 the comments for displaced_step_prepare explain why. The
2459 comments in the handle_inferior event for dealing with 'random
2460 signals' explain what we do instead.
2461
2462 We can't use displaced stepping when we are waiting for vfork_done
2463 event, displaced stepping breaks the vfork child similarly as single
2464 step software breakpoint. */
2465 if (tp->control.trap_expected
2466 && use_displaced_stepping (tp)
2467 && !step_over_info_valid_p ()
2468 && sig == GDB_SIGNAL_0
2469 && !current_inferior ()->waiting_for_vfork_done)
2470 {
2471 int prepared = displaced_step_prepare (tp);
2472
2473 if (prepared == 0)
2474 {
2475 if (debug_infrun)
2476 fprintf_unfiltered (gdb_stdlog,
2477 "Got placed in step-over queue\n");
2478
2479 tp->control.trap_expected = 0;
2480 return;
2481 }
2482 else if (prepared < 0)
2483 {
2484 /* Fallback to stepping over the breakpoint in-line. */
2485
2486 if (target_is_non_stop_p ())
2487 stop_all_threads ();
2488
2489 set_step_over_info (regcache->aspace (),
2490 regcache_read_pc (regcache), 0, tp->global_num);
2491
2492 step = maybe_software_singlestep (gdbarch, pc);
2493
2494 insert_breakpoints ();
2495 }
2496 else if (prepared > 0)
2497 {
2498 struct displaced_step_inferior_state *displaced;
2499
2500 /* Update pc to reflect the new address from which we will
2501 execute instructions due to displaced stepping. */
2502 pc = regcache_read_pc (get_thread_regcache (tp));
2503
2504 displaced = get_displaced_stepping_state (tp->inf);
2505 step = gdbarch_displaced_step_hw_singlestep
2506 (gdbarch, displaced->step_closure.get ());
2507 }
2508 }
2509
2510 /* Do we need to do it the hard way, w/temp breakpoints? */
2511 else if (step)
2512 step = maybe_software_singlestep (gdbarch, pc);
2513
2514 /* Currently, our software single-step implementation leads to different
2515 results than hardware single-stepping in one situation: when stepping
2516 into delivering a signal which has an associated signal handler,
2517 hardware single-step will stop at the first instruction of the handler,
2518 while software single-step will simply skip execution of the handler.
2519
2520 For now, this difference in behavior is accepted since there is no
2521 easy way to actually implement single-stepping into a signal handler
2522 without kernel support.
2523
2524 However, there is one scenario where this difference leads to follow-on
2525 problems: if we're stepping off a breakpoint by removing all breakpoints
2526 and then single-stepping. In this case, the software single-step
2527 behavior means that even if there is a *breakpoint* in the signal
2528 handler, GDB still would not stop.
2529
2530 Fortunately, we can at least fix this particular issue. We detect
2531 here the case where we are about to deliver a signal while software
2532 single-stepping with breakpoints removed. In this situation, we
2533 revert the decisions to remove all breakpoints and insert single-
2534 step breakpoints, and instead we install a step-resume breakpoint
2535 at the current address, deliver the signal without stepping, and
2536 once we arrive back at the step-resume breakpoint, actually step
2537 over the breakpoint we originally wanted to step over. */
2538 if (thread_has_single_step_breakpoints_set (tp)
2539 && sig != GDB_SIGNAL_0
2540 && step_over_info_valid_p ())
2541 {
2542 /* If we have nested signals or a pending signal is delivered
2543 immediately after a handler returns, might already have
2544 a step-resume breakpoint set on the earlier handler. We cannot
2545 set another step-resume breakpoint; just continue on until the
2546 original breakpoint is hit. */
2547 if (tp->control.step_resume_breakpoint == NULL)
2548 {
2549 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2550 tp->step_after_step_resume_breakpoint = 1;
2551 }
2552
2553 delete_single_step_breakpoints (tp);
2554
2555 clear_step_over_info ();
2556 tp->control.trap_expected = 0;
2557
2558 insert_breakpoints ();
2559 }
2560
2561 /* If STEP is set, it's a request to use hardware stepping
2562 facilities. But in that case, we should never
2563 use singlestep breakpoint. */
2564 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2565
2566 /* Decide the set of threads to ask the target to resume. */
2567 if (tp->control.trap_expected)
2568 {
2569 /* We're allowing a thread to run past a breakpoint it has
2570 hit, either by single-stepping the thread with the breakpoint
2571 removed, or by displaced stepping, with the breakpoint inserted.
2572 In the former case, we need to single-step only this thread,
2573 and keep others stopped, as they can miss this breakpoint if
2574 allowed to run. That's not really a problem for displaced
2575 stepping, but, we still keep other threads stopped, in case
2576 another thread is also stopped for a breakpoint waiting for
2577 its turn in the displaced stepping queue. */
2578 resume_ptid = inferior_ptid;
2579 }
2580 else
2581 resume_ptid = internal_resume_ptid (user_step);
2582
2583 if (execution_direction != EXEC_REVERSE
2584 && step && breakpoint_inserted_here_p (aspace, pc))
2585 {
2586 /* There are two cases where we currently need to step a
2587 breakpoint instruction when we have a signal to deliver:
2588
2589 - See handle_signal_stop where we handle random signals that
2590 could take out us out of the stepping range. Normally, in
2591 that case we end up continuing (instead of stepping) over the
2592 signal handler with a breakpoint at PC, but there are cases
2593 where we should _always_ single-step, even if we have a
2594 step-resume breakpoint, like when a software watchpoint is
2595 set. Assuming single-stepping and delivering a signal at the
2596 same time would takes us to the signal handler, then we could
2597 have removed the breakpoint at PC to step over it. However,
2598 some hardware step targets (like e.g., Mac OS) can't step
2599 into signal handlers, and for those, we need to leave the
2600 breakpoint at PC inserted, as otherwise if the handler
2601 recurses and executes PC again, it'll miss the breakpoint.
2602 So we leave the breakpoint inserted anyway, but we need to
2603 record that we tried to step a breakpoint instruction, so
2604 that adjust_pc_after_break doesn't end up confused.
2605
2606 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2607 in one thread after another thread that was stepping had been
2608 momentarily paused for a step-over. When we re-resume the
2609 stepping thread, it may be resumed from that address with a
2610 breakpoint that hasn't trapped yet. Seen with
2611 gdb.threads/non-stop-fair-events.exp, on targets that don't
2612 do displaced stepping. */
2613
2614 if (debug_infrun)
2615 fprintf_unfiltered (gdb_stdlog,
2616 "infrun: resume: [%s] stepped breakpoint\n",
2617 target_pid_to_str (tp->ptid).c_str ());
2618
2619 tp->stepped_breakpoint = 1;
2620
2621 /* Most targets can step a breakpoint instruction, thus
2622 executing it normally. But if this one cannot, just
2623 continue and we will hit it anyway. */
2624 if (gdbarch_cannot_step_breakpoint (gdbarch))
2625 step = 0;
2626 }
2627
2628 if (debug_displaced
2629 && tp->control.trap_expected
2630 && use_displaced_stepping (tp)
2631 && !step_over_info_valid_p ())
2632 {
2633 struct regcache *resume_regcache = get_thread_regcache (tp);
2634 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2635 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2636 gdb_byte buf[4];
2637
2638 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2639 paddress (resume_gdbarch, actual_pc));
2640 read_memory (actual_pc, buf, sizeof (buf));
2641 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2642 }
2643
2644 if (tp->control.may_range_step)
2645 {
2646 /* If we're resuming a thread with the PC out of the step
2647 range, then we're doing some nested/finer run control
2648 operation, like stepping the thread out of the dynamic
2649 linker or the displaced stepping scratch pad. We
2650 shouldn't have allowed a range step then. */
2651 gdb_assert (pc_in_thread_step_range (pc, tp));
2652 }
2653
2654 do_target_resume (resume_ptid, step, sig);
2655 tp->resumed = true;
2656 }
2657
2658 /* Resume the inferior. SIG is the signal to give the inferior
2659 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2660 rolls back state on error. */
2661
2662 static void
2663 resume (gdb_signal sig)
2664 {
2665 try
2666 {
2667 resume_1 (sig);
2668 }
2669 catch (const gdb_exception &ex)
2670 {
2671 /* If resuming is being aborted for any reason, delete any
2672 single-step breakpoint resume_1 may have created, to avoid
2673 confusing the following resumption, and to avoid leaving
2674 single-step breakpoints perturbing other threads, in case
2675 we're running in non-stop mode. */
2676 if (inferior_ptid != null_ptid)
2677 delete_single_step_breakpoints (inferior_thread ());
2678 throw;
2679 }
2680 }
2681
2682 \f
2683 /* Proceeding. */
2684
2685 /* See infrun.h. */
2686
2687 /* Counter that tracks number of user visible stops. This can be used
2688 to tell whether a command has proceeded the inferior past the
2689 current location. This allows e.g., inferior function calls in
2690 breakpoint commands to not interrupt the command list. When the
2691 call finishes successfully, the inferior is standing at the same
2692 breakpoint as if nothing happened (and so we don't call
2693 normal_stop). */
2694 static ULONGEST current_stop_id;
2695
2696 /* See infrun.h. */
2697
2698 ULONGEST
2699 get_stop_id (void)
2700 {
2701 return current_stop_id;
2702 }
2703
2704 /* Called when we report a user visible stop. */
2705
2706 static void
2707 new_stop_id (void)
2708 {
2709 current_stop_id++;
2710 }
2711
2712 /* Clear out all variables saying what to do when inferior is continued.
2713 First do this, then set the ones you want, then call `proceed'. */
2714
2715 static void
2716 clear_proceed_status_thread (struct thread_info *tp)
2717 {
2718 if (debug_infrun)
2719 fprintf_unfiltered (gdb_stdlog,
2720 "infrun: clear_proceed_status_thread (%s)\n",
2721 target_pid_to_str (tp->ptid).c_str ());
2722
2723 /* If we're starting a new sequence, then the previous finished
2724 single-step is no longer relevant. */
2725 if (tp->suspend.waitstatus_pending_p)
2726 {
2727 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2728 {
2729 if (debug_infrun)
2730 fprintf_unfiltered (gdb_stdlog,
2731 "infrun: clear_proceed_status: pending "
2732 "event of %s was a finished step. "
2733 "Discarding.\n",
2734 target_pid_to_str (tp->ptid).c_str ());
2735
2736 tp->suspend.waitstatus_pending_p = 0;
2737 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2738 }
2739 else if (debug_infrun)
2740 {
2741 std::string statstr
2742 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2743
2744 fprintf_unfiltered (gdb_stdlog,
2745 "infrun: clear_proceed_status_thread: thread %s "
2746 "has pending wait status %s "
2747 "(currently_stepping=%d).\n",
2748 target_pid_to_str (tp->ptid).c_str (),
2749 statstr.c_str (),
2750 currently_stepping (tp));
2751 }
2752 }
2753
2754 /* If this signal should not be seen by program, give it zero.
2755 Used for debugging signals. */
2756 if (!signal_pass_state (tp->suspend.stop_signal))
2757 tp->suspend.stop_signal = GDB_SIGNAL_0;
2758
2759 delete tp->thread_fsm;
2760 tp->thread_fsm = NULL;
2761
2762 tp->control.trap_expected = 0;
2763 tp->control.step_range_start = 0;
2764 tp->control.step_range_end = 0;
2765 tp->control.may_range_step = 0;
2766 tp->control.step_frame_id = null_frame_id;
2767 tp->control.step_stack_frame_id = null_frame_id;
2768 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2769 tp->control.step_start_function = NULL;
2770 tp->stop_requested = 0;
2771
2772 tp->control.stop_step = 0;
2773
2774 tp->control.proceed_to_finish = 0;
2775
2776 tp->control.stepping_command = 0;
2777
2778 /* Discard any remaining commands or status from previous stop. */
2779 bpstat_clear (&tp->control.stop_bpstat);
2780 }
2781
2782 void
2783 clear_proceed_status (int step)
2784 {
2785 /* With scheduler-locking replay, stop replaying other threads if we're
2786 not replaying the user-visible resume ptid.
2787
2788 This is a convenience feature to not require the user to explicitly
2789 stop replaying the other threads. We're assuming that the user's
2790 intent is to resume tracing the recorded process. */
2791 if (!non_stop && scheduler_mode == schedlock_replay
2792 && target_record_is_replaying (minus_one_ptid)
2793 && !target_record_will_replay (user_visible_resume_ptid (step),
2794 execution_direction))
2795 target_record_stop_replaying ();
2796
2797 if (!non_stop && inferior_ptid != null_ptid)
2798 {
2799 ptid_t resume_ptid = user_visible_resume_ptid (step);
2800 process_stratum_target *resume_target
2801 = user_visible_resume_target (resume_ptid);
2802
2803 /* In all-stop mode, delete the per-thread status of all threads
2804 we're about to resume, implicitly and explicitly. */
2805 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2806 clear_proceed_status_thread (tp);
2807 }
2808
2809 if (inferior_ptid != null_ptid)
2810 {
2811 struct inferior *inferior;
2812
2813 if (non_stop)
2814 {
2815 /* If in non-stop mode, only delete the per-thread status of
2816 the current thread. */
2817 clear_proceed_status_thread (inferior_thread ());
2818 }
2819
2820 inferior = current_inferior ();
2821 inferior->control.stop_soon = NO_STOP_QUIETLY;
2822 }
2823
2824 gdb::observers::about_to_proceed.notify ();
2825 }
2826
2827 /* Returns true if TP is still stopped at a breakpoint that needs
2828 stepping-over in order to make progress. If the breakpoint is gone
2829 meanwhile, we can skip the whole step-over dance. */
2830
2831 static int
2832 thread_still_needs_step_over_bp (struct thread_info *tp)
2833 {
2834 if (tp->stepping_over_breakpoint)
2835 {
2836 struct regcache *regcache = get_thread_regcache (tp);
2837
2838 if (breakpoint_here_p (regcache->aspace (),
2839 regcache_read_pc (regcache))
2840 == ordinary_breakpoint_here)
2841 return 1;
2842
2843 tp->stepping_over_breakpoint = 0;
2844 }
2845
2846 return 0;
2847 }
2848
2849 /* Check whether thread TP still needs to start a step-over in order
2850 to make progress when resumed. Returns an bitwise or of enum
2851 step_over_what bits, indicating what needs to be stepped over. */
2852
2853 static step_over_what
2854 thread_still_needs_step_over (struct thread_info *tp)
2855 {
2856 step_over_what what = 0;
2857
2858 if (thread_still_needs_step_over_bp (tp))
2859 what |= STEP_OVER_BREAKPOINT;
2860
2861 if (tp->stepping_over_watchpoint
2862 && !target_have_steppable_watchpoint)
2863 what |= STEP_OVER_WATCHPOINT;
2864
2865 return what;
2866 }
2867
2868 /* Returns true if scheduler locking applies. STEP indicates whether
2869 we're about to do a step/next-like command to a thread. */
2870
2871 static int
2872 schedlock_applies (struct thread_info *tp)
2873 {
2874 return (scheduler_mode == schedlock_on
2875 || (scheduler_mode == schedlock_step
2876 && tp->control.stepping_command)
2877 || (scheduler_mode == schedlock_replay
2878 && target_record_will_replay (minus_one_ptid,
2879 execution_direction)));
2880 }
2881
2882 /* Calls target_commit_resume on all targets. */
2883
2884 static void
2885 commit_resume_all_targets ()
2886 {
2887 scoped_restore_current_thread restore_thread;
2888
2889 /* Map between process_target and a representative inferior. This
2890 is to avoid committing a resume in the same target more than
2891 once. Resumptions must be idempotent, so this is an
2892 optimization. */
2893 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2894
2895 for (inferior *inf : all_non_exited_inferiors ())
2896 if (inf->has_execution ())
2897 conn_inf[inf->process_target ()] = inf;
2898
2899 for (const auto &ci : conn_inf)
2900 {
2901 inferior *inf = ci.second;
2902 switch_to_inferior_no_thread (inf);
2903 target_commit_resume ();
2904 }
2905 }
2906
2907 /* Check that all the targets we're about to resume are in non-stop
2908 mode. Ideally, we'd only care whether all targets support
2909 target-async, but we're not there yet. E.g., stop_all_threads
2910 doesn't know how to handle all-stop targets. Also, the remote
2911 protocol in all-stop mode is synchronous, irrespective of
2912 target-async, which means that things like a breakpoint re-set
2913 triggered by one target would try to read memory from all targets
2914 and fail. */
2915
2916 static void
2917 check_multi_target_resumption (process_stratum_target *resume_target)
2918 {
2919 if (!non_stop && resume_target == nullptr)
2920 {
2921 scoped_restore_current_thread restore_thread;
2922
2923 /* This is used to track whether we're resuming more than one
2924 target. */
2925 process_stratum_target *first_connection = nullptr;
2926
2927 /* The first inferior we see with a target that does not work in
2928 always-non-stop mode. */
2929 inferior *first_not_non_stop = nullptr;
2930
2931 for (inferior *inf : all_non_exited_inferiors (resume_target))
2932 {
2933 switch_to_inferior_no_thread (inf);
2934
2935 if (!target_has_execution)
2936 continue;
2937
2938 process_stratum_target *proc_target
2939 = current_inferior ()->process_target();
2940
2941 if (!target_is_non_stop_p ())
2942 first_not_non_stop = inf;
2943
2944 if (first_connection == nullptr)
2945 first_connection = proc_target;
2946 else if (first_connection != proc_target
2947 && first_not_non_stop != nullptr)
2948 {
2949 switch_to_inferior_no_thread (first_not_non_stop);
2950
2951 proc_target = current_inferior ()->process_target();
2952
2953 error (_("Connection %d (%s) does not support "
2954 "multi-target resumption."),
2955 proc_target->connection_number,
2956 make_target_connection_string (proc_target).c_str ());
2957 }
2958 }
2959 }
2960 }
2961
2962 /* Basic routine for continuing the program in various fashions.
2963
2964 ADDR is the address to resume at, or -1 for resume where stopped.
2965 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2966 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2967
2968 You should call clear_proceed_status before calling proceed. */
2969
2970 void
2971 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2972 {
2973 struct regcache *regcache;
2974 struct gdbarch *gdbarch;
2975 CORE_ADDR pc;
2976 struct execution_control_state ecss;
2977 struct execution_control_state *ecs = &ecss;
2978 int started;
2979
2980 /* If we're stopped at a fork/vfork, follow the branch set by the
2981 "set follow-fork-mode" command; otherwise, we'll just proceed
2982 resuming the current thread. */
2983 if (!follow_fork ())
2984 {
2985 /* The target for some reason decided not to resume. */
2986 normal_stop ();
2987 if (target_can_async_p ())
2988 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2989 return;
2990 }
2991
2992 /* We'll update this if & when we switch to a new thread. */
2993 previous_inferior_ptid = inferior_ptid;
2994
2995 regcache = get_current_regcache ();
2996 gdbarch = regcache->arch ();
2997 const address_space *aspace = regcache->aspace ();
2998
2999 pc = regcache_read_pc_protected (regcache);
3000
3001 thread_info *cur_thr = inferior_thread ();
3002
3003 /* Fill in with reasonable starting values. */
3004 init_thread_stepping_state (cur_thr);
3005
3006 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
3007
3008 ptid_t resume_ptid
3009 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3010 process_stratum_target *resume_target
3011 = user_visible_resume_target (resume_ptid);
3012
3013 check_multi_target_resumption (resume_target);
3014
3015 if (addr == (CORE_ADDR) -1)
3016 {
3017 if (pc == cur_thr->suspend.stop_pc
3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3019 && execution_direction != EXEC_REVERSE)
3020 /* There is a breakpoint at the address we will resume at,
3021 step one instruction before inserting breakpoints so that
3022 we do not stop right away (and report a second hit at this
3023 breakpoint).
3024
3025 Note, we don't do this in reverse, because we won't
3026 actually be executing the breakpoint insn anyway.
3027 We'll be (un-)executing the previous instruction. */
3028 cur_thr->stepping_over_breakpoint = 1;
3029 else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 && gdbarch_single_step_through_delay (gdbarch,
3031 get_current_frame ()))
3032 /* We stepped onto an instruction that needs to be stepped
3033 again before re-inserting the breakpoint, do so. */
3034 cur_thr->stepping_over_breakpoint = 1;
3035 }
3036 else
3037 {
3038 regcache_write_pc (regcache, addr);
3039 }
3040
3041 if (siggnal != GDB_SIGNAL_DEFAULT)
3042 cur_thr->suspend.stop_signal = siggnal;
3043
3044 /* If an exception is thrown from this point on, make sure to
3045 propagate GDB's knowledge of the executing state to the
3046 frontend/user running state. */
3047 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3048
3049 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3050 threads (e.g., we might need to set threads stepping over
3051 breakpoints first), from the user/frontend's point of view, all
3052 threads in RESUME_PTID are now running. Unless we're calling an
3053 inferior function, as in that case we pretend the inferior
3054 doesn't run at all. */
3055 if (!cur_thr->control.in_infcall)
3056 set_running (resume_target, resume_ptid, true);
3057
3058 if (debug_infrun)
3059 fprintf_unfiltered (gdb_stdlog,
3060 "infrun: proceed (addr=%s, signal=%s)\n",
3061 paddress (gdbarch, addr),
3062 gdb_signal_to_symbol_string (siggnal));
3063
3064 annotate_starting ();
3065
3066 /* Make sure that output from GDB appears before output from the
3067 inferior. */
3068 gdb_flush (gdb_stdout);
3069
3070 /* Since we've marked the inferior running, give it the terminal. A
3071 QUIT/Ctrl-C from here on is forwarded to the target (which can
3072 still detect attempts to unblock a stuck connection with repeated
3073 Ctrl-C from within target_pass_ctrlc). */
3074 target_terminal::inferior ();
3075
3076 /* In a multi-threaded task we may select another thread and
3077 then continue or step.
3078
3079 But if a thread that we're resuming had stopped at a breakpoint,
3080 it will immediately cause another breakpoint stop without any
3081 execution (i.e. it will report a breakpoint hit incorrectly). So
3082 we must step over it first.
3083
3084 Look for threads other than the current (TP) that reported a
3085 breakpoint hit and haven't been resumed yet since. */
3086
3087 /* If scheduler locking applies, we can avoid iterating over all
3088 threads. */
3089 if (!non_stop && !schedlock_applies (cur_thr))
3090 {
3091 for (thread_info *tp : all_non_exited_threads (resume_target,
3092 resume_ptid))
3093 {
3094 switch_to_thread_no_regs (tp);
3095
3096 /* Ignore the current thread here. It's handled
3097 afterwards. */
3098 if (tp == cur_thr)
3099 continue;
3100
3101 if (!thread_still_needs_step_over (tp))
3102 continue;
3103
3104 gdb_assert (!thread_is_in_step_over_chain (tp));
3105
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "infrun: need to step-over [%s] first\n",
3109 target_pid_to_str (tp->ptid).c_str ());
3110
3111 thread_step_over_chain_enqueue (tp);
3112 }
3113
3114 switch_to_thread (cur_thr);
3115 }
3116
3117 /* Enqueue the current thread last, so that we move all other
3118 threads over their breakpoints first. */
3119 if (cur_thr->stepping_over_breakpoint)
3120 thread_step_over_chain_enqueue (cur_thr);
3121
3122 /* If the thread isn't started, we'll still need to set its prev_pc,
3123 so that switch_back_to_stepped_thread knows the thread hasn't
3124 advanced. Must do this before resuming any thread, as in
3125 all-stop/remote, once we resume we can't send any other packet
3126 until the target stops again. */
3127 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3128
3129 {
3130 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3131
3132 started = start_step_over ();
3133
3134 if (step_over_info_valid_p ())
3135 {
3136 /* Either this thread started a new in-line step over, or some
3137 other thread was already doing one. In either case, don't
3138 resume anything else until the step-over is finished. */
3139 }
3140 else if (started && !target_is_non_stop_p ())
3141 {
3142 /* A new displaced stepping sequence was started. In all-stop,
3143 we can't talk to the target anymore until it next stops. */
3144 }
3145 else if (!non_stop && target_is_non_stop_p ())
3146 {
3147 /* In all-stop, but the target is always in non-stop mode.
3148 Start all other threads that are implicitly resumed too. */
3149 for (thread_info *tp : all_non_exited_threads (resume_target,
3150 resume_ptid))
3151 {
3152 switch_to_thread_no_regs (tp);
3153
3154 if (!tp->inf->has_execution ())
3155 {
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "infrun: proceed: [%s] target has "
3159 "no execution\n",
3160 target_pid_to_str (tp->ptid).c_str ());
3161 continue;
3162 }
3163
3164 if (tp->resumed)
3165 {
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: [%s] resumed\n",
3169 target_pid_to_str (tp->ptid).c_str ());
3170 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3171 continue;
3172 }
3173
3174 if (thread_is_in_step_over_chain (tp))
3175 {
3176 if (debug_infrun)
3177 fprintf_unfiltered (gdb_stdlog,
3178 "infrun: proceed: [%s] needs step-over\n",
3179 target_pid_to_str (tp->ptid).c_str ());
3180 continue;
3181 }
3182
3183 if (debug_infrun)
3184 fprintf_unfiltered (gdb_stdlog,
3185 "infrun: proceed: resuming %s\n",
3186 target_pid_to_str (tp->ptid).c_str ());
3187
3188 reset_ecs (ecs, tp);
3189 switch_to_thread (tp);
3190 keep_going_pass_signal (ecs);
3191 if (!ecs->wait_some_more)
3192 error (_("Command aborted."));
3193 }
3194 }
3195 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3196 {
3197 /* The thread wasn't started, and isn't queued, run it now. */
3198 reset_ecs (ecs, cur_thr);
3199 switch_to_thread (cur_thr);
3200 keep_going_pass_signal (ecs);
3201 if (!ecs->wait_some_more)
3202 error (_("Command aborted."));
3203 }
3204 }
3205
3206 commit_resume_all_targets ();
3207
3208 finish_state.release ();
3209
3210 /* If we've switched threads above, switch back to the previously
3211 current thread. We don't want the user to see a different
3212 selected thread. */
3213 switch_to_thread (cur_thr);
3214
3215 /* Tell the event loop to wait for it to stop. If the target
3216 supports asynchronous execution, it'll do this from within
3217 target_resume. */
3218 if (!target_can_async_p ())
3219 mark_async_event_handler (infrun_async_inferior_event_token);
3220 }
3221 \f
3222
3223 /* Start remote-debugging of a machine over a serial link. */
3224
3225 void
3226 start_remote (int from_tty)
3227 {
3228 inferior *inf = current_inferior ();
3229 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3230
3231 /* Always go on waiting for the target, regardless of the mode. */
3232 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3233 indicate to wait_for_inferior that a target should timeout if
3234 nothing is returned (instead of just blocking). Because of this,
3235 targets expecting an immediate response need to, internally, set
3236 things up so that the target_wait() is forced to eventually
3237 timeout. */
3238 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3239 differentiate to its caller what the state of the target is after
3240 the initial open has been performed. Here we're assuming that
3241 the target has stopped. It should be possible to eventually have
3242 target_open() return to the caller an indication that the target
3243 is currently running and GDB state should be set to the same as
3244 for an async run. */
3245 wait_for_inferior (inf);
3246
3247 /* Now that the inferior has stopped, do any bookkeeping like
3248 loading shared libraries. We want to do this before normal_stop,
3249 so that the displayed frame is up to date. */
3250 post_create_inferior (current_top_target (), from_tty);
3251
3252 normal_stop ();
3253 }
3254
3255 /* Initialize static vars when a new inferior begins. */
3256
3257 void
3258 init_wait_for_inferior (void)
3259 {
3260 /* These are meaningless until the first time through wait_for_inferior. */
3261
3262 breakpoint_init_inferior (inf_starting);
3263
3264 clear_proceed_status (0);
3265
3266 nullify_last_target_wait_ptid ();
3267
3268 previous_inferior_ptid = inferior_ptid;
3269 }
3270
3271 \f
3272
3273 static void handle_inferior_event (struct execution_control_state *ecs);
3274
3275 static void handle_step_into_function (struct gdbarch *gdbarch,
3276 struct execution_control_state *ecs);
3277 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3278 struct execution_control_state *ecs);
3279 static void handle_signal_stop (struct execution_control_state *ecs);
3280 static void check_exception_resume (struct execution_control_state *,
3281 struct frame_info *);
3282
3283 static void end_stepping_range (struct execution_control_state *ecs);
3284 static void stop_waiting (struct execution_control_state *ecs);
3285 static void keep_going (struct execution_control_state *ecs);
3286 static void process_event_stop_test (struct execution_control_state *ecs);
3287 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3288
3289 /* This function is attached as a "thread_stop_requested" observer.
3290 Cleanup local state that assumed the PTID was to be resumed, and
3291 report the stop to the frontend. */
3292
3293 static void
3294 infrun_thread_stop_requested (ptid_t ptid)
3295 {
3296 process_stratum_target *curr_target = current_inferior ()->process_target ();
3297
3298 /* PTID was requested to stop. If the thread was already stopped,
3299 but the user/frontend doesn't know about that yet (e.g., the
3300 thread had been temporarily paused for some step-over), set up
3301 for reporting the stop now. */
3302 for (thread_info *tp : all_threads (curr_target, ptid))
3303 {
3304 if (tp->state != THREAD_RUNNING)
3305 continue;
3306 if (tp->executing)
3307 continue;
3308
3309 /* Remove matching threads from the step-over queue, so
3310 start_step_over doesn't try to resume them
3311 automatically. */
3312 if (thread_is_in_step_over_chain (tp))
3313 thread_step_over_chain_remove (tp);
3314
3315 /* If the thread is stopped, but the user/frontend doesn't
3316 know about that yet, queue a pending event, as if the
3317 thread had just stopped now. Unless the thread already had
3318 a pending event. */
3319 if (!tp->suspend.waitstatus_pending_p)
3320 {
3321 tp->suspend.waitstatus_pending_p = 1;
3322 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3323 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3324 }
3325
3326 /* Clear the inline-frame state, since we're re-processing the
3327 stop. */
3328 clear_inline_frame_state (tp);
3329
3330 /* If this thread was paused because some other thread was
3331 doing an inline-step over, let that finish first. Once
3332 that happens, we'll restart all threads and consume pending
3333 stop events then. */
3334 if (step_over_info_valid_p ())
3335 continue;
3336
3337 /* Otherwise we can process the (new) pending event now. Set
3338 it so this pending event is considered by
3339 do_target_wait. */
3340 tp->resumed = true;
3341 }
3342 }
3343
3344 static void
3345 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3346 {
3347 if (target_last_proc_target == tp->inf->process_target ()
3348 && target_last_wait_ptid == tp->ptid)
3349 nullify_last_target_wait_ptid ();
3350 }
3351
3352 /* Delete the step resume, single-step and longjmp/exception resume
3353 breakpoints of TP. */
3354
3355 static void
3356 delete_thread_infrun_breakpoints (struct thread_info *tp)
3357 {
3358 delete_step_resume_breakpoint (tp);
3359 delete_exception_resume_breakpoint (tp);
3360 delete_single_step_breakpoints (tp);
3361 }
3362
3363 /* If the target still has execution, call FUNC for each thread that
3364 just stopped. In all-stop, that's all the non-exited threads; in
3365 non-stop, that's the current thread, only. */
3366
3367 typedef void (*for_each_just_stopped_thread_callback_func)
3368 (struct thread_info *tp);
3369
3370 static void
3371 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3372 {
3373 if (!target_has_execution || inferior_ptid == null_ptid)
3374 return;
3375
3376 if (target_is_non_stop_p ())
3377 {
3378 /* If in non-stop mode, only the current thread stopped. */
3379 func (inferior_thread ());
3380 }
3381 else
3382 {
3383 /* In all-stop mode, all threads have stopped. */
3384 for (thread_info *tp : all_non_exited_threads ())
3385 func (tp);
3386 }
3387 }
3388
3389 /* Delete the step resume and longjmp/exception resume breakpoints of
3390 the threads that just stopped. */
3391
3392 static void
3393 delete_just_stopped_threads_infrun_breakpoints (void)
3394 {
3395 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3396 }
3397
3398 /* Delete the single-step breakpoints of the threads that just
3399 stopped. */
3400
3401 static void
3402 delete_just_stopped_threads_single_step_breakpoints (void)
3403 {
3404 for_each_just_stopped_thread (delete_single_step_breakpoints);
3405 }
3406
3407 /* See infrun.h. */
3408
3409 void
3410 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3411 const struct target_waitstatus *ws)
3412 {
3413 std::string status_string = target_waitstatus_to_string (ws);
3414 string_file stb;
3415
3416 /* The text is split over several lines because it was getting too long.
3417 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3418 output as a unit; we want only one timestamp printed if debug_timestamp
3419 is set. */
3420
3421 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3422 waiton_ptid.pid (),
3423 waiton_ptid.lwp (),
3424 waiton_ptid.tid ());
3425 if (waiton_ptid.pid () != -1)
3426 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3427 stb.printf (", status) =\n");
3428 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3429 result_ptid.pid (),
3430 result_ptid.lwp (),
3431 result_ptid.tid (),
3432 target_pid_to_str (result_ptid).c_str ());
3433 stb.printf ("infrun: %s\n", status_string.c_str ());
3434
3435 /* This uses %s in part to handle %'s in the text, but also to avoid
3436 a gcc error: the format attribute requires a string literal. */
3437 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3438 }
3439
3440 /* Select a thread at random, out of those which are resumed and have
3441 had events. */
3442
3443 static struct thread_info *
3444 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3445 {
3446 int num_events = 0;
3447
3448 auto has_event = [&] (thread_info *tp)
3449 {
3450 return (tp->ptid.matches (waiton_ptid)
3451 && tp->resumed
3452 && tp->suspend.waitstatus_pending_p);
3453 };
3454
3455 /* First see how many events we have. Count only resumed threads
3456 that have an event pending. */
3457 for (thread_info *tp : inf->non_exited_threads ())
3458 if (has_event (tp))
3459 num_events++;
3460
3461 if (num_events == 0)
3462 return NULL;
3463
3464 /* Now randomly pick a thread out of those that have had events. */
3465 int random_selector = (int) ((num_events * (double) rand ())
3466 / (RAND_MAX + 1.0));
3467
3468 if (debug_infrun && num_events > 1)
3469 fprintf_unfiltered (gdb_stdlog,
3470 "infrun: Found %d events, selecting #%d\n",
3471 num_events, random_selector);
3472
3473 /* Select the Nth thread that has had an event. */
3474 for (thread_info *tp : inf->non_exited_threads ())
3475 if (has_event (tp))
3476 if (random_selector-- == 0)
3477 return tp;
3478
3479 gdb_assert_not_reached ("event thread not found");
3480 }
3481
3482 /* Wrapper for target_wait that first checks whether threads have
3483 pending statuses to report before actually asking the target for
3484 more events. INF is the inferior we're using to call target_wait
3485 on. */
3486
3487 static ptid_t
3488 do_target_wait_1 (inferior *inf, ptid_t ptid,
3489 target_waitstatus *status, int options)
3490 {
3491 ptid_t event_ptid;
3492 struct thread_info *tp;
3493
3494 /* We know that we are looking for an event in the target of inferior
3495 INF, but we don't know which thread the event might come from. As
3496 such we want to make sure that INFERIOR_PTID is reset so that none of
3497 the wait code relies on it - doing so is always a mistake. */
3498 switch_to_inferior_no_thread (inf);
3499
3500 /* First check if there is a resumed thread with a wait status
3501 pending. */
3502 if (ptid == minus_one_ptid || ptid.is_pid ())
3503 {
3504 tp = random_pending_event_thread (inf, ptid);
3505 }
3506 else
3507 {
3508 if (debug_infrun)
3509 fprintf_unfiltered (gdb_stdlog,
3510 "infrun: Waiting for specific thread %s.\n",
3511 target_pid_to_str (ptid).c_str ());
3512
3513 /* We have a specific thread to check. */
3514 tp = find_thread_ptid (inf, ptid);
3515 gdb_assert (tp != NULL);
3516 if (!tp->suspend.waitstatus_pending_p)
3517 tp = NULL;
3518 }
3519
3520 if (tp != NULL
3521 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3522 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3523 {
3524 struct regcache *regcache = get_thread_regcache (tp);
3525 struct gdbarch *gdbarch = regcache->arch ();
3526 CORE_ADDR pc;
3527 int discard = 0;
3528
3529 pc = regcache_read_pc (regcache);
3530
3531 if (pc != tp->suspend.stop_pc)
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: PC of %s changed. was=%s, now=%s\n",
3536 target_pid_to_str (tp->ptid).c_str (),
3537 paddress (gdbarch, tp->suspend.stop_pc),
3538 paddress (gdbarch, pc));
3539 discard = 1;
3540 }
3541 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3542 {
3543 if (debug_infrun)
3544 fprintf_unfiltered (gdb_stdlog,
3545 "infrun: previous breakpoint of %s, at %s gone\n",
3546 target_pid_to_str (tp->ptid).c_str (),
3547 paddress (gdbarch, pc));
3548
3549 discard = 1;
3550 }
3551
3552 if (discard)
3553 {
3554 if (debug_infrun)
3555 fprintf_unfiltered (gdb_stdlog,
3556 "infrun: pending event of %s cancelled.\n",
3557 target_pid_to_str (tp->ptid).c_str ());
3558
3559 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3560 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3561 }
3562 }
3563
3564 if (tp != NULL)
3565 {
3566 if (debug_infrun)
3567 {
3568 std::string statstr
3569 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3570
3571 fprintf_unfiltered (gdb_stdlog,
3572 "infrun: Using pending wait status %s for %s.\n",
3573 statstr.c_str (),
3574 target_pid_to_str (tp->ptid).c_str ());
3575 }
3576
3577 /* Now that we've selected our final event LWP, un-adjust its PC
3578 if it was a software breakpoint (and the target doesn't
3579 always adjust the PC itself). */
3580 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3581 && !target_supports_stopped_by_sw_breakpoint ())
3582 {
3583 struct regcache *regcache;
3584 struct gdbarch *gdbarch;
3585 int decr_pc;
3586
3587 regcache = get_thread_regcache (tp);
3588 gdbarch = regcache->arch ();
3589
3590 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3591 if (decr_pc != 0)
3592 {
3593 CORE_ADDR pc;
3594
3595 pc = regcache_read_pc (regcache);
3596 regcache_write_pc (regcache, pc + decr_pc);
3597 }
3598 }
3599
3600 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3601 *status = tp->suspend.waitstatus;
3602 tp->suspend.waitstatus_pending_p = 0;
3603
3604 /* Wake up the event loop again, until all pending events are
3605 processed. */
3606 if (target_is_async_p ())
3607 mark_async_event_handler (infrun_async_inferior_event_token);
3608 return tp->ptid;
3609 }
3610
3611 /* But if we don't find one, we'll have to wait. */
3612
3613 if (deprecated_target_wait_hook)
3614 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3615 else
3616 event_ptid = target_wait (ptid, status, options);
3617
3618 return event_ptid;
3619 }
3620
3621 /* Returns true if INF has any resumed thread with a status
3622 pending. */
3623
3624 static bool
3625 threads_are_resumed_pending_p (inferior *inf)
3626 {
3627 for (thread_info *tp : inf->non_exited_threads ())
3628 if (tp->resumed
3629 && tp->suspend.waitstatus_pending_p)
3630 return true;
3631
3632 return false;
3633 }
3634
3635 /* Wrapper for target_wait that first checks whether threads have
3636 pending statuses to report before actually asking the target for
3637 more events. Polls for events from all inferiors/targets. */
3638
3639 static bool
3640 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3641 {
3642 int num_inferiors = 0;
3643 int random_selector;
3644
3645 /* For fairness, we pick the first inferior/target to poll at
3646 random, and then continue polling the rest of the inferior list
3647 starting from that one in a circular fashion until the whole list
3648 is polled once. */
3649
3650 auto inferior_matches = [&wait_ptid] (inferior *inf)
3651 {
3652 return (inf->process_target () != NULL
3653 && (threads_are_executing (inf->process_target ())
3654 || threads_are_resumed_pending_p (inf))
3655 && ptid_t (inf->pid).matches (wait_ptid));
3656 };
3657
3658 /* First see how many resumed inferiors we have. */
3659 for (inferior *inf : all_inferiors ())
3660 if (inferior_matches (inf))
3661 num_inferiors++;
3662
3663 if (num_inferiors == 0)
3664 {
3665 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3666 return false;
3667 }
3668
3669 /* Now randomly pick an inferior out of those that were resumed. */
3670 random_selector = (int)
3671 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3672
3673 if (debug_infrun && num_inferiors > 1)
3674 fprintf_unfiltered (gdb_stdlog,
3675 "infrun: Found %d inferiors, starting at #%d\n",
3676 num_inferiors, random_selector);
3677
3678 /* Select the Nth inferior that was resumed. */
3679
3680 inferior *selected = nullptr;
3681
3682 for (inferior *inf : all_inferiors ())
3683 if (inferior_matches (inf))
3684 if (random_selector-- == 0)
3685 {
3686 selected = inf;
3687 break;
3688 }
3689
3690 /* Now poll for events out of each of the resumed inferior's
3691 targets, starting from the selected one. */
3692
3693 auto do_wait = [&] (inferior *inf)
3694 {
3695 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3696 ecs->target = inf->process_target ();
3697 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3698 };
3699
3700 /* Needed in all-stop+target-non-stop mode, because we end up here
3701 spuriously after the target is all stopped and we've already
3702 reported the stop to the user, polling for events. */
3703 scoped_restore_current_thread restore_thread;
3704
3705 int inf_num = selected->num;
3706 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3707 if (inferior_matches (inf))
3708 if (do_wait (inf))
3709 return true;
3710
3711 for (inferior *inf = inferior_list;
3712 inf != NULL && inf->num < inf_num;
3713 inf = inf->next)
3714 if (inferior_matches (inf))
3715 if (do_wait (inf))
3716 return true;
3717
3718 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3719 return false;
3720 }
3721
3722 /* Prepare and stabilize the inferior for detaching it. E.g.,
3723 detaching while a thread is displaced stepping is a recipe for
3724 crashing it, as nothing would readjust the PC out of the scratch
3725 pad. */
3726
3727 void
3728 prepare_for_detach (void)
3729 {
3730 struct inferior *inf = current_inferior ();
3731 ptid_t pid_ptid = ptid_t (inf->pid);
3732
3733 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3734
3735 /* Is any thread of this process displaced stepping? If not,
3736 there's nothing else to do. */
3737 if (displaced->step_thread == nullptr)
3738 return;
3739
3740 if (debug_infrun)
3741 fprintf_unfiltered (gdb_stdlog,
3742 "displaced-stepping in-process while detaching");
3743
3744 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3745
3746 while (displaced->step_thread != nullptr)
3747 {
3748 struct execution_control_state ecss;
3749 struct execution_control_state *ecs;
3750
3751 ecs = &ecss;
3752 memset (ecs, 0, sizeof (*ecs));
3753
3754 overlay_cache_invalid = 1;
3755 /* Flush target cache before starting to handle each event.
3756 Target was running and cache could be stale. This is just a
3757 heuristic. Running threads may modify target memory, but we
3758 don't get any event. */
3759 target_dcache_invalidate ();
3760
3761 do_target_wait (pid_ptid, ecs, 0);
3762
3763 if (debug_infrun)
3764 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3765
3766 /* If an error happens while handling the event, propagate GDB's
3767 knowledge of the executing state to the frontend/user running
3768 state. */
3769 scoped_finish_thread_state finish_state (inf->process_target (),
3770 minus_one_ptid);
3771
3772 /* Now figure out what to do with the result of the result. */
3773 handle_inferior_event (ecs);
3774
3775 /* No error, don't finish the state yet. */
3776 finish_state.release ();
3777
3778 /* Breakpoints and watchpoints are not installed on the target
3779 at this point, and signals are passed directly to the
3780 inferior, so this must mean the process is gone. */
3781 if (!ecs->wait_some_more)
3782 {
3783 restore_detaching.release ();
3784 error (_("Program exited while detaching"));
3785 }
3786 }
3787
3788 restore_detaching.release ();
3789 }
3790
3791 /* Wait for control to return from inferior to debugger.
3792
3793 If inferior gets a signal, we may decide to start it up again
3794 instead of returning. That is why there is a loop in this function.
3795 When this function actually returns it means the inferior
3796 should be left stopped and GDB should read more commands. */
3797
3798 static void
3799 wait_for_inferior (inferior *inf)
3800 {
3801 if (debug_infrun)
3802 fprintf_unfiltered
3803 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3804
3805 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3806
3807 /* If an error happens while handling the event, propagate GDB's
3808 knowledge of the executing state to the frontend/user running
3809 state. */
3810 scoped_finish_thread_state finish_state
3811 (inf->process_target (), minus_one_ptid);
3812
3813 while (1)
3814 {
3815 struct execution_control_state ecss;
3816 struct execution_control_state *ecs = &ecss;
3817
3818 memset (ecs, 0, sizeof (*ecs));
3819
3820 overlay_cache_invalid = 1;
3821
3822 /* Flush target cache before starting to handle each event.
3823 Target was running and cache could be stale. This is just a
3824 heuristic. Running threads may modify target memory, but we
3825 don't get any event. */
3826 target_dcache_invalidate ();
3827
3828 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3829 ecs->target = inf->process_target ();
3830
3831 if (debug_infrun)
3832 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3833
3834 /* Now figure out what to do with the result of the result. */
3835 handle_inferior_event (ecs);
3836
3837 if (!ecs->wait_some_more)
3838 break;
3839 }
3840
3841 /* No error, don't finish the state yet. */
3842 finish_state.release ();
3843 }
3844
3845 /* Cleanup that reinstalls the readline callback handler, if the
3846 target is running in the background. If while handling the target
3847 event something triggered a secondary prompt, like e.g., a
3848 pagination prompt, we'll have removed the callback handler (see
3849 gdb_readline_wrapper_line). Need to do this as we go back to the
3850 event loop, ready to process further input. Note this has no
3851 effect if the handler hasn't actually been removed, because calling
3852 rl_callback_handler_install resets the line buffer, thus losing
3853 input. */
3854
3855 static void
3856 reinstall_readline_callback_handler_cleanup ()
3857 {
3858 struct ui *ui = current_ui;
3859
3860 if (!ui->async)
3861 {
3862 /* We're not going back to the top level event loop yet. Don't
3863 install the readline callback, as it'd prep the terminal,
3864 readline-style (raw, noecho) (e.g., --batch). We'll install
3865 it the next time the prompt is displayed, when we're ready
3866 for input. */
3867 return;
3868 }
3869
3870 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3871 gdb_rl_callback_handler_reinstall ();
3872 }
3873
3874 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3875 that's just the event thread. In all-stop, that's all threads. */
3876
3877 static void
3878 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3879 {
3880 if (ecs->event_thread != NULL
3881 && ecs->event_thread->thread_fsm != NULL)
3882 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3883
3884 if (!non_stop)
3885 {
3886 for (thread_info *thr : all_non_exited_threads ())
3887 {
3888 if (thr->thread_fsm == NULL)
3889 continue;
3890 if (thr == ecs->event_thread)
3891 continue;
3892
3893 switch_to_thread (thr);
3894 thr->thread_fsm->clean_up (thr);
3895 }
3896
3897 if (ecs->event_thread != NULL)
3898 switch_to_thread (ecs->event_thread);
3899 }
3900 }
3901
3902 /* Helper for all_uis_check_sync_execution_done that works on the
3903 current UI. */
3904
3905 static void
3906 check_curr_ui_sync_execution_done (void)
3907 {
3908 struct ui *ui = current_ui;
3909
3910 if (ui->prompt_state == PROMPT_NEEDED
3911 && ui->async
3912 && !gdb_in_secondary_prompt_p (ui))
3913 {
3914 target_terminal::ours ();
3915 gdb::observers::sync_execution_done.notify ();
3916 ui_register_input_event_handler (ui);
3917 }
3918 }
3919
3920 /* See infrun.h. */
3921
3922 void
3923 all_uis_check_sync_execution_done (void)
3924 {
3925 SWITCH_THRU_ALL_UIS ()
3926 {
3927 check_curr_ui_sync_execution_done ();
3928 }
3929 }
3930
3931 /* See infrun.h. */
3932
3933 void
3934 all_uis_on_sync_execution_starting (void)
3935 {
3936 SWITCH_THRU_ALL_UIS ()
3937 {
3938 if (current_ui->prompt_state == PROMPT_NEEDED)
3939 async_disable_stdin ();
3940 }
3941 }
3942
3943 /* Asynchronous version of wait_for_inferior. It is called by the
3944 event loop whenever a change of state is detected on the file
3945 descriptor corresponding to the target. It can be called more than
3946 once to complete a single execution command. In such cases we need
3947 to keep the state in a global variable ECSS. If it is the last time
3948 that this function is called for a single execution command, then
3949 report to the user that the inferior has stopped, and do the
3950 necessary cleanups. */
3951
3952 void
3953 fetch_inferior_event (void *client_data)
3954 {
3955 struct execution_control_state ecss;
3956 struct execution_control_state *ecs = &ecss;
3957 int cmd_done = 0;
3958
3959 memset (ecs, 0, sizeof (*ecs));
3960
3961 /* Events are always processed with the main UI as current UI. This
3962 way, warnings, debug output, etc. are always consistently sent to
3963 the main console. */
3964 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3965
3966 /* End up with readline processing input, if necessary. */
3967 {
3968 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3969
3970 /* We're handling a live event, so make sure we're doing live
3971 debugging. If we're looking at traceframes while the target is
3972 running, we're going to need to get back to that mode after
3973 handling the event. */
3974 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3975 if (non_stop)
3976 {
3977 maybe_restore_traceframe.emplace ();
3978 set_current_traceframe (-1);
3979 }
3980
3981 /* The user/frontend should not notice a thread switch due to
3982 internal events. Make sure we revert to the user selected
3983 thread and frame after handling the event and running any
3984 breakpoint commands. */
3985 scoped_restore_current_thread restore_thread;
3986
3987 overlay_cache_invalid = 1;
3988 /* Flush target cache before starting to handle each event. Target
3989 was running and cache could be stale. This is just a heuristic.
3990 Running threads may modify target memory, but we don't get any
3991 event. */
3992 target_dcache_invalidate ();
3993
3994 scoped_restore save_exec_dir
3995 = make_scoped_restore (&execution_direction,
3996 target_execution_direction ());
3997
3998 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3999 return;
4000
4001 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
4002
4003 /* Switch to the target that generated the event, so we can do
4004 target calls. Any inferior bound to the target will do, so we
4005 just switch to the first we find. */
4006 for (inferior *inf : all_inferiors (ecs->target))
4007 {
4008 switch_to_inferior_no_thread (inf);
4009 break;
4010 }
4011
4012 if (debug_infrun)
4013 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
4014
4015 /* If an error happens while handling the event, propagate GDB's
4016 knowledge of the executing state to the frontend/user running
4017 state. */
4018 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4019 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4020
4021 /* Get executed before scoped_restore_current_thread above to apply
4022 still for the thread which has thrown the exception. */
4023 auto defer_bpstat_clear
4024 = make_scope_exit (bpstat_clear_actions);
4025 auto defer_delete_threads
4026 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4027
4028 /* Now figure out what to do with the result of the result. */
4029 handle_inferior_event (ecs);
4030
4031 if (!ecs->wait_some_more)
4032 {
4033 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4034 int should_stop = 1;
4035 struct thread_info *thr = ecs->event_thread;
4036
4037 delete_just_stopped_threads_infrun_breakpoints ();
4038
4039 if (thr != NULL)
4040 {
4041 struct thread_fsm *thread_fsm = thr->thread_fsm;
4042
4043 if (thread_fsm != NULL)
4044 should_stop = thread_fsm->should_stop (thr);
4045 }
4046
4047 if (!should_stop)
4048 {
4049 keep_going (ecs);
4050 }
4051 else
4052 {
4053 bool should_notify_stop = true;
4054 int proceeded = 0;
4055
4056 clean_up_just_stopped_threads_fsms (ecs);
4057
4058 if (thr != NULL && thr->thread_fsm != NULL)
4059 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4060
4061 if (should_notify_stop)
4062 {
4063 /* We may not find an inferior if this was a process exit. */
4064 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4065 proceeded = normal_stop ();
4066 }
4067
4068 if (!proceeded)
4069 {
4070 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4071 cmd_done = 1;
4072 }
4073
4074 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4075 previously selected thread is gone. We have two
4076 choices - switch to no thread selected, or restore the
4077 previously selected thread (now exited). We chose the
4078 later, just because that's what GDB used to do. After
4079 this, "info threads" says "The current thread <Thread
4080 ID 2> has terminated." instead of "No thread
4081 selected.". */
4082 if (!non_stop
4083 && cmd_done
4084 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4085 restore_thread.dont_restore ();
4086 }
4087 }
4088
4089 defer_delete_threads.release ();
4090 defer_bpstat_clear.release ();
4091
4092 /* No error, don't finish the thread states yet. */
4093 finish_state.release ();
4094
4095 /* This scope is used to ensure that readline callbacks are
4096 reinstalled here. */
4097 }
4098
4099 /* If a UI was in sync execution mode, and now isn't, restore its
4100 prompt (a synchronous execution command has finished, and we're
4101 ready for input). */
4102 all_uis_check_sync_execution_done ();
4103
4104 if (cmd_done
4105 && exec_done_display_p
4106 && (inferior_ptid == null_ptid
4107 || inferior_thread ()->state != THREAD_RUNNING))
4108 printf_unfiltered (_("completed.\n"));
4109 }
4110
4111 /* See infrun.h. */
4112
4113 void
4114 set_step_info (thread_info *tp, struct frame_info *frame,
4115 struct symtab_and_line sal)
4116 {
4117 /* This can be removed once this function no longer implicitly relies on the
4118 inferior_ptid value. */
4119 gdb_assert (inferior_ptid == tp->ptid);
4120
4121 tp->control.step_frame_id = get_frame_id (frame);
4122 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4123
4124 tp->current_symtab = sal.symtab;
4125 tp->current_line = sal.line;
4126 }
4127
4128 /* Clear context switchable stepping state. */
4129
4130 void
4131 init_thread_stepping_state (struct thread_info *tss)
4132 {
4133 tss->stepped_breakpoint = 0;
4134 tss->stepping_over_breakpoint = 0;
4135 tss->stepping_over_watchpoint = 0;
4136 tss->step_after_step_resume_breakpoint = 0;
4137 }
4138
4139 /* See infrun.h. */
4140
4141 void
4142 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4143 target_waitstatus status)
4144 {
4145 target_last_proc_target = target;
4146 target_last_wait_ptid = ptid;
4147 target_last_waitstatus = status;
4148 }
4149
4150 /* See infrun.h. */
4151
4152 void
4153 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4154 target_waitstatus *status)
4155 {
4156 if (target != nullptr)
4157 *target = target_last_proc_target;
4158 if (ptid != nullptr)
4159 *ptid = target_last_wait_ptid;
4160 if (status != nullptr)
4161 *status = target_last_waitstatus;
4162 }
4163
4164 /* See infrun.h. */
4165
4166 void
4167 nullify_last_target_wait_ptid (void)
4168 {
4169 target_last_proc_target = nullptr;
4170 target_last_wait_ptid = minus_one_ptid;
4171 target_last_waitstatus = {};
4172 }
4173
4174 /* Switch thread contexts. */
4175
4176 static void
4177 context_switch (execution_control_state *ecs)
4178 {
4179 if (debug_infrun
4180 && ecs->ptid != inferior_ptid
4181 && (inferior_ptid == null_ptid
4182 || ecs->event_thread != inferior_thread ()))
4183 {
4184 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4185 target_pid_to_str (inferior_ptid).c_str ());
4186 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4187 target_pid_to_str (ecs->ptid).c_str ());
4188 }
4189
4190 switch_to_thread (ecs->event_thread);
4191 }
4192
4193 /* If the target can't tell whether we've hit breakpoints
4194 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4195 check whether that could have been caused by a breakpoint. If so,
4196 adjust the PC, per gdbarch_decr_pc_after_break. */
4197
4198 static void
4199 adjust_pc_after_break (struct thread_info *thread,
4200 struct target_waitstatus *ws)
4201 {
4202 struct regcache *regcache;
4203 struct gdbarch *gdbarch;
4204 CORE_ADDR breakpoint_pc, decr_pc;
4205
4206 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4207 we aren't, just return.
4208
4209 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4210 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4211 implemented by software breakpoints should be handled through the normal
4212 breakpoint layer.
4213
4214 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4215 different signals (SIGILL or SIGEMT for instance), but it is less
4216 clear where the PC is pointing afterwards. It may not match
4217 gdbarch_decr_pc_after_break. I don't know any specific target that
4218 generates these signals at breakpoints (the code has been in GDB since at
4219 least 1992) so I can not guess how to handle them here.
4220
4221 In earlier versions of GDB, a target with
4222 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4223 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4224 target with both of these set in GDB history, and it seems unlikely to be
4225 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4226
4227 if (ws->kind != TARGET_WAITKIND_STOPPED)
4228 return;
4229
4230 if (ws->value.sig != GDB_SIGNAL_TRAP)
4231 return;
4232
4233 /* In reverse execution, when a breakpoint is hit, the instruction
4234 under it has already been de-executed. The reported PC always
4235 points at the breakpoint address, so adjusting it further would
4236 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4237 architecture:
4238
4239 B1 0x08000000 : INSN1
4240 B2 0x08000001 : INSN2
4241 0x08000002 : INSN3
4242 PC -> 0x08000003 : INSN4
4243
4244 Say you're stopped at 0x08000003 as above. Reverse continuing
4245 from that point should hit B2 as below. Reading the PC when the
4246 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4247 been de-executed already.
4248
4249 B1 0x08000000 : INSN1
4250 B2 PC -> 0x08000001 : INSN2
4251 0x08000002 : INSN3
4252 0x08000003 : INSN4
4253
4254 We can't apply the same logic as for forward execution, because
4255 we would wrongly adjust the PC to 0x08000000, since there's a
4256 breakpoint at PC - 1. We'd then report a hit on B1, although
4257 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4258 behaviour. */
4259 if (execution_direction == EXEC_REVERSE)
4260 return;
4261
4262 /* If the target can tell whether the thread hit a SW breakpoint,
4263 trust it. Targets that can tell also adjust the PC
4264 themselves. */
4265 if (target_supports_stopped_by_sw_breakpoint ())
4266 return;
4267
4268 /* Note that relying on whether a breakpoint is planted in memory to
4269 determine this can fail. E.g,. the breakpoint could have been
4270 removed since. Or the thread could have been told to step an
4271 instruction the size of a breakpoint instruction, and only
4272 _after_ was a breakpoint inserted at its address. */
4273
4274 /* If this target does not decrement the PC after breakpoints, then
4275 we have nothing to do. */
4276 regcache = get_thread_regcache (thread);
4277 gdbarch = regcache->arch ();
4278
4279 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4280 if (decr_pc == 0)
4281 return;
4282
4283 const address_space *aspace = regcache->aspace ();
4284
4285 /* Find the location where (if we've hit a breakpoint) the
4286 breakpoint would be. */
4287 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4288
4289 /* If the target can't tell whether a software breakpoint triggered,
4290 fallback to figuring it out based on breakpoints we think were
4291 inserted in the target, and on whether the thread was stepped or
4292 continued. */
4293
4294 /* Check whether there actually is a software breakpoint inserted at
4295 that location.
4296
4297 If in non-stop mode, a race condition is possible where we've
4298 removed a breakpoint, but stop events for that breakpoint were
4299 already queued and arrive later. To suppress those spurious
4300 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4301 and retire them after a number of stop events are reported. Note
4302 this is an heuristic and can thus get confused. The real fix is
4303 to get the "stopped by SW BP and needs adjustment" info out of
4304 the target/kernel (and thus never reach here; see above). */
4305 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4306 || (target_is_non_stop_p ()
4307 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4308 {
4309 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4310
4311 if (record_full_is_used ())
4312 restore_operation_disable.emplace
4313 (record_full_gdb_operation_disable_set ());
4314
4315 /* When using hardware single-step, a SIGTRAP is reported for both
4316 a completed single-step and a software breakpoint. Need to
4317 differentiate between the two, as the latter needs adjusting
4318 but the former does not.
4319
4320 The SIGTRAP can be due to a completed hardware single-step only if
4321 - we didn't insert software single-step breakpoints
4322 - this thread is currently being stepped
4323
4324 If any of these events did not occur, we must have stopped due
4325 to hitting a software breakpoint, and have to back up to the
4326 breakpoint address.
4327
4328 As a special case, we could have hardware single-stepped a
4329 software breakpoint. In this case (prev_pc == breakpoint_pc),
4330 we also need to back up to the breakpoint address. */
4331
4332 if (thread_has_single_step_breakpoints_set (thread)
4333 || !currently_stepping (thread)
4334 || (thread->stepped_breakpoint
4335 && thread->prev_pc == breakpoint_pc))
4336 regcache_write_pc (regcache, breakpoint_pc);
4337 }
4338 }
4339
4340 static int
4341 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4342 {
4343 for (frame = get_prev_frame (frame);
4344 frame != NULL;
4345 frame = get_prev_frame (frame))
4346 {
4347 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4348 return 1;
4349 if (get_frame_type (frame) != INLINE_FRAME)
4350 break;
4351 }
4352
4353 return 0;
4354 }
4355
4356 /* Look for an inline frame that is marked for skip.
4357 If PREV_FRAME is TRUE start at the previous frame,
4358 otherwise start at the current frame. Stop at the
4359 first non-inline frame, or at the frame where the
4360 step started. */
4361
4362 static bool
4363 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4364 {
4365 struct frame_info *frame = get_current_frame ();
4366
4367 if (prev_frame)
4368 frame = get_prev_frame (frame);
4369
4370 for (; frame != NULL; frame = get_prev_frame (frame))
4371 {
4372 const char *fn = NULL;
4373 symtab_and_line sal;
4374 struct symbol *sym;
4375
4376 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4377 break;
4378 if (get_frame_type (frame) != INLINE_FRAME)
4379 break;
4380
4381 sal = find_frame_sal (frame);
4382 sym = get_frame_function (frame);
4383
4384 if (sym != NULL)
4385 fn = sym->print_name ();
4386
4387 if (sal.line != 0
4388 && function_name_is_marked_for_skip (fn, sal))
4389 return true;
4390 }
4391
4392 return false;
4393 }
4394
4395 /* If the event thread has the stop requested flag set, pretend it
4396 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4397 target_stop). */
4398
4399 static bool
4400 handle_stop_requested (struct execution_control_state *ecs)
4401 {
4402 if (ecs->event_thread->stop_requested)
4403 {
4404 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4405 ecs->ws.value.sig = GDB_SIGNAL_0;
4406 handle_signal_stop (ecs);
4407 return true;
4408 }
4409 return false;
4410 }
4411
4412 /* Auxiliary function that handles syscall entry/return events.
4413 It returns 1 if the inferior should keep going (and GDB
4414 should ignore the event), or 0 if the event deserves to be
4415 processed. */
4416
4417 static int
4418 handle_syscall_event (struct execution_control_state *ecs)
4419 {
4420 struct regcache *regcache;
4421 int syscall_number;
4422
4423 context_switch (ecs);
4424
4425 regcache = get_thread_regcache (ecs->event_thread);
4426 syscall_number = ecs->ws.value.syscall_number;
4427 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4428
4429 if (catch_syscall_enabled () > 0
4430 && catching_syscall_number (syscall_number) > 0)
4431 {
4432 if (debug_infrun)
4433 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4434 syscall_number);
4435
4436 ecs->event_thread->control.stop_bpstat
4437 = bpstat_stop_status (regcache->aspace (),
4438 ecs->event_thread->suspend.stop_pc,
4439 ecs->event_thread, &ecs->ws);
4440
4441 if (handle_stop_requested (ecs))
4442 return 0;
4443
4444 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4445 {
4446 /* Catchpoint hit. */
4447 return 0;
4448 }
4449 }
4450
4451 if (handle_stop_requested (ecs))
4452 return 0;
4453
4454 /* If no catchpoint triggered for this, then keep going. */
4455 keep_going (ecs);
4456 return 1;
4457 }
4458
4459 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4460
4461 static void
4462 fill_in_stop_func (struct gdbarch *gdbarch,
4463 struct execution_control_state *ecs)
4464 {
4465 if (!ecs->stop_func_filled_in)
4466 {
4467 const block *block;
4468
4469 /* Don't care about return value; stop_func_start and stop_func_name
4470 will both be 0 if it doesn't work. */
4471 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4472 &ecs->stop_func_name,
4473 &ecs->stop_func_start,
4474 &ecs->stop_func_end,
4475 &block);
4476
4477 /* The call to find_pc_partial_function, above, will set
4478 stop_func_start and stop_func_end to the start and end
4479 of the range containing the stop pc. If this range
4480 contains the entry pc for the block (which is always the
4481 case for contiguous blocks), advance stop_func_start past
4482 the function's start offset and entrypoint. Note that
4483 stop_func_start is NOT advanced when in a range of a
4484 non-contiguous block that does not contain the entry pc. */
4485 if (block != nullptr
4486 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4487 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4488 {
4489 ecs->stop_func_start
4490 += gdbarch_deprecated_function_start_offset (gdbarch);
4491
4492 if (gdbarch_skip_entrypoint_p (gdbarch))
4493 ecs->stop_func_start
4494 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4495 }
4496
4497 ecs->stop_func_filled_in = 1;
4498 }
4499 }
4500
4501
4502 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4503
4504 static enum stop_kind
4505 get_inferior_stop_soon (execution_control_state *ecs)
4506 {
4507 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4508
4509 gdb_assert (inf != NULL);
4510 return inf->control.stop_soon;
4511 }
4512
4513 /* Poll for one event out of the current target. Store the resulting
4514 waitstatus in WS, and return the event ptid. Does not block. */
4515
4516 static ptid_t
4517 poll_one_curr_target (struct target_waitstatus *ws)
4518 {
4519 ptid_t event_ptid;
4520
4521 overlay_cache_invalid = 1;
4522
4523 /* Flush target cache before starting to handle each event.
4524 Target was running and cache could be stale. This is just a
4525 heuristic. Running threads may modify target memory, but we
4526 don't get any event. */
4527 target_dcache_invalidate ();
4528
4529 if (deprecated_target_wait_hook)
4530 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4531 else
4532 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4533
4534 if (debug_infrun)
4535 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4536
4537 return event_ptid;
4538 }
4539
4540 /* An event reported by wait_one. */
4541
4542 struct wait_one_event
4543 {
4544 /* The target the event came out of. */
4545 process_stratum_target *target;
4546
4547 /* The PTID the event was for. */
4548 ptid_t ptid;
4549
4550 /* The waitstatus. */
4551 target_waitstatus ws;
4552 };
4553
4554 /* Wait for one event out of any target. */
4555
4556 static wait_one_event
4557 wait_one ()
4558 {
4559 while (1)
4560 {
4561 for (inferior *inf : all_inferiors ())
4562 {
4563 process_stratum_target *target = inf->process_target ();
4564 if (target == NULL
4565 || !target->is_async_p ()
4566 || !target->threads_executing)
4567 continue;
4568
4569 switch_to_inferior_no_thread (inf);
4570
4571 wait_one_event event;
4572 event.target = target;
4573 event.ptid = poll_one_curr_target (&event.ws);
4574
4575 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4576 {
4577 /* If nothing is resumed, remove the target from the
4578 event loop. */
4579 target_async (0);
4580 }
4581 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4582 return event;
4583 }
4584
4585 /* Block waiting for some event. */
4586
4587 fd_set readfds;
4588 int nfds = 0;
4589
4590 FD_ZERO (&readfds);
4591
4592 for (inferior *inf : all_inferiors ())
4593 {
4594 process_stratum_target *target = inf->process_target ();
4595 if (target == NULL
4596 || !target->is_async_p ()
4597 || !target->threads_executing)
4598 continue;
4599
4600 int fd = target->async_wait_fd ();
4601 FD_SET (fd, &readfds);
4602 if (nfds <= fd)
4603 nfds = fd + 1;
4604 }
4605
4606 if (nfds == 0)
4607 {
4608 /* No waitable targets left. All must be stopped. */
4609 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4610 }
4611
4612 QUIT;
4613
4614 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4615 if (numfds < 0)
4616 {
4617 if (errno == EINTR)
4618 continue;
4619 else
4620 perror_with_name ("interruptible_select");
4621 }
4622 }
4623 }
4624
4625 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4626 instead of the current thread. */
4627 #define THREAD_STOPPED_BY(REASON) \
4628 static int \
4629 thread_stopped_by_ ## REASON (ptid_t ptid) \
4630 { \
4631 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4632 inferior_ptid = ptid; \
4633 \
4634 return target_stopped_by_ ## REASON (); \
4635 }
4636
4637 /* Generate thread_stopped_by_watchpoint. */
4638 THREAD_STOPPED_BY (watchpoint)
4639 /* Generate thread_stopped_by_sw_breakpoint. */
4640 THREAD_STOPPED_BY (sw_breakpoint)
4641 /* Generate thread_stopped_by_hw_breakpoint. */
4642 THREAD_STOPPED_BY (hw_breakpoint)
4643
4644 /* Save the thread's event and stop reason to process it later. */
4645
4646 static void
4647 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4648 {
4649 if (debug_infrun)
4650 {
4651 std::string statstr = target_waitstatus_to_string (ws);
4652
4653 fprintf_unfiltered (gdb_stdlog,
4654 "infrun: saving status %s for %d.%ld.%ld\n",
4655 statstr.c_str (),
4656 tp->ptid.pid (),
4657 tp->ptid.lwp (),
4658 tp->ptid.tid ());
4659 }
4660
4661 /* Record for later. */
4662 tp->suspend.waitstatus = *ws;
4663 tp->suspend.waitstatus_pending_p = 1;
4664
4665 struct regcache *regcache = get_thread_regcache (tp);
4666 const address_space *aspace = regcache->aspace ();
4667
4668 if (ws->kind == TARGET_WAITKIND_STOPPED
4669 && ws->value.sig == GDB_SIGNAL_TRAP)
4670 {
4671 CORE_ADDR pc = regcache_read_pc (regcache);
4672
4673 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4674
4675 if (thread_stopped_by_watchpoint (tp->ptid))
4676 {
4677 tp->suspend.stop_reason
4678 = TARGET_STOPPED_BY_WATCHPOINT;
4679 }
4680 else if (target_supports_stopped_by_sw_breakpoint ()
4681 && thread_stopped_by_sw_breakpoint (tp->ptid))
4682 {
4683 tp->suspend.stop_reason
4684 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4685 }
4686 else if (target_supports_stopped_by_hw_breakpoint ()
4687 && thread_stopped_by_hw_breakpoint (tp->ptid))
4688 {
4689 tp->suspend.stop_reason
4690 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4691 }
4692 else if (!target_supports_stopped_by_hw_breakpoint ()
4693 && hardware_breakpoint_inserted_here_p (aspace,
4694 pc))
4695 {
4696 tp->suspend.stop_reason
4697 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4698 }
4699 else if (!target_supports_stopped_by_sw_breakpoint ()
4700 && software_breakpoint_inserted_here_p (aspace,
4701 pc))
4702 {
4703 tp->suspend.stop_reason
4704 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4705 }
4706 else if (!thread_has_single_step_breakpoints_set (tp)
4707 && currently_stepping (tp))
4708 {
4709 tp->suspend.stop_reason
4710 = TARGET_STOPPED_BY_SINGLE_STEP;
4711 }
4712 }
4713 }
4714
4715 /* Mark the non-executing threads accordingly. In all-stop, all
4716 threads of all processes are stopped when we get any event
4717 reported. In non-stop mode, only the event thread stops. */
4718
4719 static void
4720 mark_non_executing_threads (process_stratum_target *target,
4721 ptid_t event_ptid,
4722 struct target_waitstatus ws)
4723 {
4724 ptid_t mark_ptid;
4725
4726 if (!target_is_non_stop_p ())
4727 mark_ptid = minus_one_ptid;
4728 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4729 || ws.kind == TARGET_WAITKIND_EXITED)
4730 {
4731 /* If we're handling a process exit in non-stop mode, even
4732 though threads haven't been deleted yet, one would think
4733 that there is nothing to do, as threads of the dead process
4734 will be soon deleted, and threads of any other process were
4735 left running. However, on some targets, threads survive a
4736 process exit event. E.g., for the "checkpoint" command,
4737 when the current checkpoint/fork exits, linux-fork.c
4738 automatically switches to another fork from within
4739 target_mourn_inferior, by associating the same
4740 inferior/thread to another fork. We haven't mourned yet at
4741 this point, but we must mark any threads left in the
4742 process as not-executing so that finish_thread_state marks
4743 them stopped (in the user's perspective) if/when we present
4744 the stop to the user. */
4745 mark_ptid = ptid_t (event_ptid.pid ());
4746 }
4747 else
4748 mark_ptid = event_ptid;
4749
4750 set_executing (target, mark_ptid, false);
4751
4752 /* Likewise the resumed flag. */
4753 set_resumed (target, mark_ptid, false);
4754 }
4755
4756 /* See infrun.h. */
4757
4758 void
4759 stop_all_threads (void)
4760 {
4761 /* We may need multiple passes to discover all threads. */
4762 int pass;
4763 int iterations = 0;
4764
4765 gdb_assert (exists_non_stop_target ());
4766
4767 if (debug_infrun)
4768 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4769
4770 scoped_restore_current_thread restore_thread;
4771
4772 target_thread_events (1);
4773 SCOPE_EXIT { target_thread_events (0); };
4774
4775 /* Request threads to stop, and then wait for the stops. Because
4776 threads we already know about can spawn more threads while we're
4777 trying to stop them, and we only learn about new threads when we
4778 update the thread list, do this in a loop, and keep iterating
4779 until two passes find no threads that need to be stopped. */
4780 for (pass = 0; pass < 2; pass++, iterations++)
4781 {
4782 if (debug_infrun)
4783 fprintf_unfiltered (gdb_stdlog,
4784 "infrun: stop_all_threads, pass=%d, "
4785 "iterations=%d\n", pass, iterations);
4786 while (1)
4787 {
4788 int need_wait = 0;
4789
4790 update_thread_list ();
4791
4792 /* Go through all threads looking for threads that we need
4793 to tell the target to stop. */
4794 for (thread_info *t : all_non_exited_threads ())
4795 {
4796 /* For a single-target setting with an all-stop target,
4797 we would not even arrive here. For a multi-target
4798 setting, until GDB is able to handle a mixture of
4799 all-stop and non-stop targets, simply skip all-stop
4800 targets' threads. This should be fine due to the
4801 protection of 'check_multi_target_resumption'. */
4802
4803 switch_to_thread_no_regs (t);
4804 if (!target_is_non_stop_p ())
4805 continue;
4806
4807 if (t->executing)
4808 {
4809 /* If already stopping, don't request a stop again.
4810 We just haven't seen the notification yet. */
4811 if (!t->stop_requested)
4812 {
4813 if (debug_infrun)
4814 fprintf_unfiltered (gdb_stdlog,
4815 "infrun: %s executing, "
4816 "need stop\n",
4817 target_pid_to_str (t->ptid).c_str ());
4818 target_stop (t->ptid);
4819 t->stop_requested = 1;
4820 }
4821 else
4822 {
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog,
4825 "infrun: %s executing, "
4826 "already stopping\n",
4827 target_pid_to_str (t->ptid).c_str ());
4828 }
4829
4830 if (t->stop_requested)
4831 need_wait = 1;
4832 }
4833 else
4834 {
4835 if (debug_infrun)
4836 fprintf_unfiltered (gdb_stdlog,
4837 "infrun: %s not executing\n",
4838 target_pid_to_str (t->ptid).c_str ());
4839
4840 /* The thread may be not executing, but still be
4841 resumed with a pending status to process. */
4842 t->resumed = false;
4843 }
4844 }
4845
4846 if (!need_wait)
4847 break;
4848
4849 /* If we find new threads on the second iteration, restart
4850 over. We want to see two iterations in a row with all
4851 threads stopped. */
4852 if (pass > 0)
4853 pass = -1;
4854
4855 wait_one_event event = wait_one ();
4856
4857 if (debug_infrun)
4858 {
4859 fprintf_unfiltered (gdb_stdlog,
4860 "infrun: stop_all_threads %s %s\n",
4861 target_waitstatus_to_string (&event.ws).c_str (),
4862 target_pid_to_str (event.ptid).c_str ());
4863 }
4864
4865 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4866 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4867 || event.ws.kind == TARGET_WAITKIND_EXITED
4868 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4869 {
4870 /* All resumed threads exited
4871 or one thread/process exited/signalled. */
4872 }
4873 else
4874 {
4875 thread_info *t = find_thread_ptid (event.target, event.ptid);
4876 if (t == NULL)
4877 t = add_thread (event.target, event.ptid);
4878
4879 t->stop_requested = 0;
4880 t->executing = 0;
4881 t->resumed = false;
4882 t->control.may_range_step = 0;
4883
4884 /* This may be the first time we see the inferior report
4885 a stop. */
4886 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4887 if (inf->needs_setup)
4888 {
4889 switch_to_thread_no_regs (t);
4890 setup_inferior (0);
4891 }
4892
4893 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4894 && event.ws.value.sig == GDB_SIGNAL_0)
4895 {
4896 /* We caught the event that we intended to catch, so
4897 there's no event pending. */
4898 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4899 t->suspend.waitstatus_pending_p = 0;
4900
4901 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4902 {
4903 /* Add it back to the step-over queue. */
4904 if (debug_infrun)
4905 {
4906 fprintf_unfiltered (gdb_stdlog,
4907 "infrun: displaced-step of %s "
4908 "canceled: adding back to the "
4909 "step-over queue\n",
4910 target_pid_to_str (t->ptid).c_str ());
4911 }
4912 t->control.trap_expected = 0;
4913 thread_step_over_chain_enqueue (t);
4914 }
4915 }
4916 else
4917 {
4918 enum gdb_signal sig;
4919 struct regcache *regcache;
4920
4921 if (debug_infrun)
4922 {
4923 std::string statstr = target_waitstatus_to_string (&event.ws);
4924
4925 fprintf_unfiltered (gdb_stdlog,
4926 "infrun: target_wait %s, saving "
4927 "status for %d.%ld.%ld\n",
4928 statstr.c_str (),
4929 t->ptid.pid (),
4930 t->ptid.lwp (),
4931 t->ptid.tid ());
4932 }
4933
4934 /* Record for later. */
4935 save_waitstatus (t, &event.ws);
4936
4937 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4938 ? event.ws.value.sig : GDB_SIGNAL_0);
4939
4940 if (displaced_step_fixup (t, sig) < 0)
4941 {
4942 /* Add it back to the step-over queue. */
4943 t->control.trap_expected = 0;
4944 thread_step_over_chain_enqueue (t);
4945 }
4946
4947 regcache = get_thread_regcache (t);
4948 t->suspend.stop_pc = regcache_read_pc (regcache);
4949
4950 if (debug_infrun)
4951 {
4952 fprintf_unfiltered (gdb_stdlog,
4953 "infrun: saved stop_pc=%s for %s "
4954 "(currently_stepping=%d)\n",
4955 paddress (target_gdbarch (),
4956 t->suspend.stop_pc),
4957 target_pid_to_str (t->ptid).c_str (),
4958 currently_stepping (t));
4959 }
4960 }
4961 }
4962 }
4963 }
4964
4965 if (debug_infrun)
4966 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4967 }
4968
4969 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4970
4971 static int
4972 handle_no_resumed (struct execution_control_state *ecs)
4973 {
4974 if (target_can_async_p ())
4975 {
4976 struct ui *ui;
4977 int any_sync = 0;
4978
4979 ALL_UIS (ui)
4980 {
4981 if (ui->prompt_state == PROMPT_BLOCKED)
4982 {
4983 any_sync = 1;
4984 break;
4985 }
4986 }
4987 if (!any_sync)
4988 {
4989 /* There were no unwaited-for children left in the target, but,
4990 we're not synchronously waiting for events either. Just
4991 ignore. */
4992
4993 if (debug_infrun)
4994 fprintf_unfiltered (gdb_stdlog,
4995 "infrun: TARGET_WAITKIND_NO_RESUMED "
4996 "(ignoring: bg)\n");
4997 prepare_to_wait (ecs);
4998 return 1;
4999 }
5000 }
5001
5002 /* Otherwise, if we were running a synchronous execution command, we
5003 may need to cancel it and give the user back the terminal.
5004
5005 In non-stop mode, the target can't tell whether we've already
5006 consumed previous stop events, so it can end up sending us a
5007 no-resumed event like so:
5008
5009 #0 - thread 1 is left stopped
5010
5011 #1 - thread 2 is resumed and hits breakpoint
5012 -> TARGET_WAITKIND_STOPPED
5013
5014 #2 - thread 3 is resumed and exits
5015 this is the last resumed thread, so
5016 -> TARGET_WAITKIND_NO_RESUMED
5017
5018 #3 - gdb processes stop for thread 2 and decides to re-resume
5019 it.
5020
5021 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5022 thread 2 is now resumed, so the event should be ignored.
5023
5024 IOW, if the stop for thread 2 doesn't end a foreground command,
5025 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5026 event. But it could be that the event meant that thread 2 itself
5027 (or whatever other thread was the last resumed thread) exited.
5028
5029 To address this we refresh the thread list and check whether we
5030 have resumed threads _now_. In the example above, this removes
5031 thread 3 from the thread list. If thread 2 was re-resumed, we
5032 ignore this event. If we find no thread resumed, then we cancel
5033 the synchronous command show "no unwaited-for " to the user. */
5034 update_thread_list ();
5035
5036 for (thread_info *thread : all_non_exited_threads (ecs->target))
5037 {
5038 if (thread->executing
5039 || thread->suspend.waitstatus_pending_p)
5040 {
5041 /* There were no unwaited-for children left in the target at
5042 some point, but there are now. Just ignore. */
5043 if (debug_infrun)
5044 fprintf_unfiltered (gdb_stdlog,
5045 "infrun: TARGET_WAITKIND_NO_RESUMED "
5046 "(ignoring: found resumed)\n");
5047 prepare_to_wait (ecs);
5048 return 1;
5049 }
5050 }
5051
5052 /* Note however that we may find no resumed thread because the whole
5053 process exited meanwhile (thus updating the thread list results
5054 in an empty thread list). In this case we know we'll be getting
5055 a process exit event shortly. */
5056 for (inferior *inf : all_non_exited_inferiors (ecs->target))
5057 {
5058 thread_info *thread = any_live_thread_of_inferior (inf);
5059 if (thread == NULL)
5060 {
5061 if (debug_infrun)
5062 fprintf_unfiltered (gdb_stdlog,
5063 "infrun: TARGET_WAITKIND_NO_RESUMED "
5064 "(expect process exit)\n");
5065 prepare_to_wait (ecs);
5066 return 1;
5067 }
5068 }
5069
5070 /* Go ahead and report the event. */
5071 return 0;
5072 }
5073
5074 /* Given an execution control state that has been freshly filled in by
5075 an event from the inferior, figure out what it means and take
5076 appropriate action.
5077
5078 The alternatives are:
5079
5080 1) stop_waiting and return; to really stop and return to the
5081 debugger.
5082
5083 2) keep_going and return; to wait for the next event (set
5084 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5085 once). */
5086
5087 static void
5088 handle_inferior_event (struct execution_control_state *ecs)
5089 {
5090 /* Make sure that all temporary struct value objects that were
5091 created during the handling of the event get deleted at the
5092 end. */
5093 scoped_value_mark free_values;
5094
5095 enum stop_kind stop_soon;
5096
5097 if (debug_infrun)
5098 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5099 target_waitstatus_to_string (&ecs->ws).c_str ());
5100
5101 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5102 {
5103 /* We had an event in the inferior, but we are not interested in
5104 handling it at this level. The lower layers have already
5105 done what needs to be done, if anything.
5106
5107 One of the possible circumstances for this is when the
5108 inferior produces output for the console. The inferior has
5109 not stopped, and we are ignoring the event. Another possible
5110 circumstance is any event which the lower level knows will be
5111 reported multiple times without an intervening resume. */
5112 prepare_to_wait (ecs);
5113 return;
5114 }
5115
5116 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5117 {
5118 prepare_to_wait (ecs);
5119 return;
5120 }
5121
5122 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5123 && handle_no_resumed (ecs))
5124 return;
5125
5126 /* Cache the last target/ptid/waitstatus. */
5127 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5128
5129 /* Always clear state belonging to the previous time we stopped. */
5130 stop_stack_dummy = STOP_NONE;
5131
5132 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5133 {
5134 /* No unwaited-for children left. IOW, all resumed children
5135 have exited. */
5136 stop_print_frame = 0;
5137 stop_waiting (ecs);
5138 return;
5139 }
5140
5141 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5142 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5143 {
5144 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5145 /* If it's a new thread, add it to the thread database. */
5146 if (ecs->event_thread == NULL)
5147 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5148
5149 /* Disable range stepping. If the next step request could use a
5150 range, this will be end up re-enabled then. */
5151 ecs->event_thread->control.may_range_step = 0;
5152 }
5153
5154 /* Dependent on valid ECS->EVENT_THREAD. */
5155 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5156
5157 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5158 reinit_frame_cache ();
5159
5160 breakpoint_retire_moribund ();
5161
5162 /* First, distinguish signals caused by the debugger from signals
5163 that have to do with the program's own actions. Note that
5164 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5165 on the operating system version. Here we detect when a SIGILL or
5166 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5167 something similar for SIGSEGV, since a SIGSEGV will be generated
5168 when we're trying to execute a breakpoint instruction on a
5169 non-executable stack. This happens for call dummy breakpoints
5170 for architectures like SPARC that place call dummies on the
5171 stack. */
5172 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5173 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5174 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5175 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5176 {
5177 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5178
5179 if (breakpoint_inserted_here_p (regcache->aspace (),
5180 regcache_read_pc (regcache)))
5181 {
5182 if (debug_infrun)
5183 fprintf_unfiltered (gdb_stdlog,
5184 "infrun: Treating signal as SIGTRAP\n");
5185 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5186 }
5187 }
5188
5189 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5190
5191 switch (ecs->ws.kind)
5192 {
5193 case TARGET_WAITKIND_LOADED:
5194 context_switch (ecs);
5195 /* Ignore gracefully during startup of the inferior, as it might
5196 be the shell which has just loaded some objects, otherwise
5197 add the symbols for the newly loaded objects. Also ignore at
5198 the beginning of an attach or remote session; we will query
5199 the full list of libraries once the connection is
5200 established. */
5201
5202 stop_soon = get_inferior_stop_soon (ecs);
5203 if (stop_soon == NO_STOP_QUIETLY)
5204 {
5205 struct regcache *regcache;
5206
5207 regcache = get_thread_regcache (ecs->event_thread);
5208
5209 handle_solib_event ();
5210
5211 ecs->event_thread->control.stop_bpstat
5212 = bpstat_stop_status (regcache->aspace (),
5213 ecs->event_thread->suspend.stop_pc,
5214 ecs->event_thread, &ecs->ws);
5215
5216 if (handle_stop_requested (ecs))
5217 return;
5218
5219 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5220 {
5221 /* A catchpoint triggered. */
5222 process_event_stop_test (ecs);
5223 return;
5224 }
5225
5226 /* If requested, stop when the dynamic linker notifies
5227 gdb of events. This allows the user to get control
5228 and place breakpoints in initializer routines for
5229 dynamically loaded objects (among other things). */
5230 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5231 if (stop_on_solib_events)
5232 {
5233 /* Make sure we print "Stopped due to solib-event" in
5234 normal_stop. */
5235 stop_print_frame = 1;
5236
5237 stop_waiting (ecs);
5238 return;
5239 }
5240 }
5241
5242 /* If we are skipping through a shell, or through shared library
5243 loading that we aren't interested in, resume the program. If
5244 we're running the program normally, also resume. */
5245 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5246 {
5247 /* Loading of shared libraries might have changed breakpoint
5248 addresses. Make sure new breakpoints are inserted. */
5249 if (stop_soon == NO_STOP_QUIETLY)
5250 insert_breakpoints ();
5251 resume (GDB_SIGNAL_0);
5252 prepare_to_wait (ecs);
5253 return;
5254 }
5255
5256 /* But stop if we're attaching or setting up a remote
5257 connection. */
5258 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5259 || stop_soon == STOP_QUIETLY_REMOTE)
5260 {
5261 if (debug_infrun)
5262 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5263 stop_waiting (ecs);
5264 return;
5265 }
5266
5267 internal_error (__FILE__, __LINE__,
5268 _("unhandled stop_soon: %d"), (int) stop_soon);
5269
5270 case TARGET_WAITKIND_SPURIOUS:
5271 if (handle_stop_requested (ecs))
5272 return;
5273 context_switch (ecs);
5274 resume (GDB_SIGNAL_0);
5275 prepare_to_wait (ecs);
5276 return;
5277
5278 case TARGET_WAITKIND_THREAD_CREATED:
5279 if (handle_stop_requested (ecs))
5280 return;
5281 context_switch (ecs);
5282 if (!switch_back_to_stepped_thread (ecs))
5283 keep_going (ecs);
5284 return;
5285
5286 case TARGET_WAITKIND_EXITED:
5287 case TARGET_WAITKIND_SIGNALLED:
5288 inferior_ptid = ecs->ptid;
5289 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
5290 set_current_program_space (current_inferior ()->pspace);
5291 handle_vfork_child_exec_or_exit (0);
5292 target_terminal::ours (); /* Must do this before mourn anyway. */
5293
5294 /* Clearing any previous state of convenience variables. */
5295 clear_exit_convenience_vars ();
5296
5297 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5298 {
5299 /* Record the exit code in the convenience variable $_exitcode, so
5300 that the user can inspect this again later. */
5301 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5302 (LONGEST) ecs->ws.value.integer);
5303
5304 /* Also record this in the inferior itself. */
5305 current_inferior ()->has_exit_code = 1;
5306 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5307
5308 /* Support the --return-child-result option. */
5309 return_child_result_value = ecs->ws.value.integer;
5310
5311 gdb::observers::exited.notify (ecs->ws.value.integer);
5312 }
5313 else
5314 {
5315 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5316
5317 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5318 {
5319 /* Set the value of the internal variable $_exitsignal,
5320 which holds the signal uncaught by the inferior. */
5321 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5322 gdbarch_gdb_signal_to_target (gdbarch,
5323 ecs->ws.value.sig));
5324 }
5325 else
5326 {
5327 /* We don't have access to the target's method used for
5328 converting between signal numbers (GDB's internal
5329 representation <-> target's representation).
5330 Therefore, we cannot do a good job at displaying this
5331 information to the user. It's better to just warn
5332 her about it (if infrun debugging is enabled), and
5333 give up. */
5334 if (debug_infrun)
5335 fprintf_filtered (gdb_stdlog, _("\
5336 Cannot fill $_exitsignal with the correct signal number.\n"));
5337 }
5338
5339 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5340 }
5341
5342 gdb_flush (gdb_stdout);
5343 target_mourn_inferior (inferior_ptid);
5344 stop_print_frame = 0;
5345 stop_waiting (ecs);
5346 return;
5347
5348 case TARGET_WAITKIND_FORKED:
5349 case TARGET_WAITKIND_VFORKED:
5350 /* Check whether the inferior is displaced stepping. */
5351 {
5352 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5353 struct gdbarch *gdbarch = regcache->arch ();
5354
5355 /* If checking displaced stepping is supported, and thread
5356 ecs->ptid is displaced stepping. */
5357 if (displaced_step_in_progress_thread (ecs->event_thread))
5358 {
5359 struct inferior *parent_inf
5360 = find_inferior_ptid (ecs->target, ecs->ptid);
5361 struct regcache *child_regcache;
5362 CORE_ADDR parent_pc;
5363
5364 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5365 {
5366 struct displaced_step_inferior_state *displaced
5367 = get_displaced_stepping_state (parent_inf);
5368
5369 /* Restore scratch pad for child process. */
5370 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5371 }
5372
5373 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5374 indicating that the displaced stepping of syscall instruction
5375 has been done. Perform cleanup for parent process here. Note
5376 that this operation also cleans up the child process for vfork,
5377 because their pages are shared. */
5378 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5379 /* Start a new step-over in another thread if there's one
5380 that needs it. */
5381 start_step_over ();
5382
5383 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5384 the child's PC is also within the scratchpad. Set the child's PC
5385 to the parent's PC value, which has already been fixed up.
5386 FIXME: we use the parent's aspace here, although we're touching
5387 the child, because the child hasn't been added to the inferior
5388 list yet at this point. */
5389
5390 child_regcache
5391 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5392 ecs->ws.value.related_pid,
5393 gdbarch,
5394 parent_inf->aspace);
5395 /* Read PC value of parent process. */
5396 parent_pc = regcache_read_pc (regcache);
5397
5398 if (debug_displaced)
5399 fprintf_unfiltered (gdb_stdlog,
5400 "displaced: write child pc from %s to %s\n",
5401 paddress (gdbarch,
5402 regcache_read_pc (child_regcache)),
5403 paddress (gdbarch, parent_pc));
5404
5405 regcache_write_pc (child_regcache, parent_pc);
5406 }
5407 }
5408
5409 context_switch (ecs);
5410
5411 /* Immediately detach breakpoints from the child before there's
5412 any chance of letting the user delete breakpoints from the
5413 breakpoint lists. If we don't do this early, it's easy to
5414 leave left over traps in the child, vis: "break foo; catch
5415 fork; c; <fork>; del; c; <child calls foo>". We only follow
5416 the fork on the last `continue', and by that time the
5417 breakpoint at "foo" is long gone from the breakpoint table.
5418 If we vforked, then we don't need to unpatch here, since both
5419 parent and child are sharing the same memory pages; we'll
5420 need to unpatch at follow/detach time instead to be certain
5421 that new breakpoints added between catchpoint hit time and
5422 vfork follow are detached. */
5423 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5424 {
5425 /* This won't actually modify the breakpoint list, but will
5426 physically remove the breakpoints from the child. */
5427 detach_breakpoints (ecs->ws.value.related_pid);
5428 }
5429
5430 delete_just_stopped_threads_single_step_breakpoints ();
5431
5432 /* In case the event is caught by a catchpoint, remember that
5433 the event is to be followed at the next resume of the thread,
5434 and not immediately. */
5435 ecs->event_thread->pending_follow = ecs->ws;
5436
5437 ecs->event_thread->suspend.stop_pc
5438 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5439
5440 ecs->event_thread->control.stop_bpstat
5441 = bpstat_stop_status (get_current_regcache ()->aspace (),
5442 ecs->event_thread->suspend.stop_pc,
5443 ecs->event_thread, &ecs->ws);
5444
5445 if (handle_stop_requested (ecs))
5446 return;
5447
5448 /* If no catchpoint triggered for this, then keep going. Note
5449 that we're interested in knowing the bpstat actually causes a
5450 stop, not just if it may explain the signal. Software
5451 watchpoints, for example, always appear in the bpstat. */
5452 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5453 {
5454 bool follow_child
5455 = (follow_fork_mode_string == follow_fork_mode_child);
5456
5457 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5458
5459 process_stratum_target *targ
5460 = ecs->event_thread->inf->process_target ();
5461
5462 bool should_resume = follow_fork ();
5463
5464 /* Note that one of these may be an invalid pointer,
5465 depending on detach_fork. */
5466 thread_info *parent = ecs->event_thread;
5467 thread_info *child
5468 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5469
5470 /* At this point, the parent is marked running, and the
5471 child is marked stopped. */
5472
5473 /* If not resuming the parent, mark it stopped. */
5474 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5475 parent->set_running (false);
5476
5477 /* If resuming the child, mark it running. */
5478 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5479 child->set_running (true);
5480
5481 /* In non-stop mode, also resume the other branch. */
5482 if (!detach_fork && (non_stop
5483 || (sched_multi && target_is_non_stop_p ())))
5484 {
5485 if (follow_child)
5486 switch_to_thread (parent);
5487 else
5488 switch_to_thread (child);
5489
5490 ecs->event_thread = inferior_thread ();
5491 ecs->ptid = inferior_ptid;
5492 keep_going (ecs);
5493 }
5494
5495 if (follow_child)
5496 switch_to_thread (child);
5497 else
5498 switch_to_thread (parent);
5499
5500 ecs->event_thread = inferior_thread ();
5501 ecs->ptid = inferior_ptid;
5502
5503 if (should_resume)
5504 keep_going (ecs);
5505 else
5506 stop_waiting (ecs);
5507 return;
5508 }
5509 process_event_stop_test (ecs);
5510 return;
5511
5512 case TARGET_WAITKIND_VFORK_DONE:
5513 /* Done with the shared memory region. Re-insert breakpoints in
5514 the parent, and keep going. */
5515
5516 context_switch (ecs);
5517
5518 current_inferior ()->waiting_for_vfork_done = 0;
5519 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5520
5521 if (handle_stop_requested (ecs))
5522 return;
5523
5524 /* This also takes care of reinserting breakpoints in the
5525 previously locked inferior. */
5526 keep_going (ecs);
5527 return;
5528
5529 case TARGET_WAITKIND_EXECD:
5530
5531 /* Note we can't read registers yet (the stop_pc), because we
5532 don't yet know the inferior's post-exec architecture.
5533 'stop_pc' is explicitly read below instead. */
5534 switch_to_thread_no_regs (ecs->event_thread);
5535
5536 /* Do whatever is necessary to the parent branch of the vfork. */
5537 handle_vfork_child_exec_or_exit (1);
5538
5539 /* This causes the eventpoints and symbol table to be reset.
5540 Must do this now, before trying to determine whether to
5541 stop. */
5542 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5543
5544 /* In follow_exec we may have deleted the original thread and
5545 created a new one. Make sure that the event thread is the
5546 execd thread for that case (this is a nop otherwise). */
5547 ecs->event_thread = inferior_thread ();
5548
5549 ecs->event_thread->suspend.stop_pc
5550 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5551
5552 ecs->event_thread->control.stop_bpstat
5553 = bpstat_stop_status (get_current_regcache ()->aspace (),
5554 ecs->event_thread->suspend.stop_pc,
5555 ecs->event_thread, &ecs->ws);
5556
5557 /* Note that this may be referenced from inside
5558 bpstat_stop_status above, through inferior_has_execd. */
5559 xfree (ecs->ws.value.execd_pathname);
5560 ecs->ws.value.execd_pathname = NULL;
5561
5562 if (handle_stop_requested (ecs))
5563 return;
5564
5565 /* If no catchpoint triggered for this, then keep going. */
5566 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5567 {
5568 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5569 keep_going (ecs);
5570 return;
5571 }
5572 process_event_stop_test (ecs);
5573 return;
5574
5575 /* Be careful not to try to gather much state about a thread
5576 that's in a syscall. It's frequently a losing proposition. */
5577 case TARGET_WAITKIND_SYSCALL_ENTRY:
5578 /* Getting the current syscall number. */
5579 if (handle_syscall_event (ecs) == 0)
5580 process_event_stop_test (ecs);
5581 return;
5582
5583 /* Before examining the threads further, step this thread to
5584 get it entirely out of the syscall. (We get notice of the
5585 event when the thread is just on the verge of exiting a
5586 syscall. Stepping one instruction seems to get it back
5587 into user code.) */
5588 case TARGET_WAITKIND_SYSCALL_RETURN:
5589 if (handle_syscall_event (ecs) == 0)
5590 process_event_stop_test (ecs);
5591 return;
5592
5593 case TARGET_WAITKIND_STOPPED:
5594 handle_signal_stop (ecs);
5595 return;
5596
5597 case TARGET_WAITKIND_NO_HISTORY:
5598 /* Reverse execution: target ran out of history info. */
5599
5600 /* Switch to the stopped thread. */
5601 context_switch (ecs);
5602 if (debug_infrun)
5603 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5604
5605 delete_just_stopped_threads_single_step_breakpoints ();
5606 ecs->event_thread->suspend.stop_pc
5607 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5608
5609 if (handle_stop_requested (ecs))
5610 return;
5611
5612 gdb::observers::no_history.notify ();
5613 stop_waiting (ecs);
5614 return;
5615 }
5616 }
5617
5618 /* Restart threads back to what they were trying to do back when we
5619 paused them for an in-line step-over. The EVENT_THREAD thread is
5620 ignored. */
5621
5622 static void
5623 restart_threads (struct thread_info *event_thread)
5624 {
5625 /* In case the instruction just stepped spawned a new thread. */
5626 update_thread_list ();
5627
5628 for (thread_info *tp : all_non_exited_threads ())
5629 {
5630 switch_to_thread_no_regs (tp);
5631
5632 if (tp == event_thread)
5633 {
5634 if (debug_infrun)
5635 fprintf_unfiltered (gdb_stdlog,
5636 "infrun: restart threads: "
5637 "[%s] is event thread\n",
5638 target_pid_to_str (tp->ptid).c_str ());
5639 continue;
5640 }
5641
5642 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5643 {
5644 if (debug_infrun)
5645 fprintf_unfiltered (gdb_stdlog,
5646 "infrun: restart threads: "
5647 "[%s] not meant to be running\n",
5648 target_pid_to_str (tp->ptid).c_str ());
5649 continue;
5650 }
5651
5652 if (tp->resumed)
5653 {
5654 if (debug_infrun)
5655 fprintf_unfiltered (gdb_stdlog,
5656 "infrun: restart threads: [%s] resumed\n",
5657 target_pid_to_str (tp->ptid).c_str ());
5658 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5659 continue;
5660 }
5661
5662 if (thread_is_in_step_over_chain (tp))
5663 {
5664 if (debug_infrun)
5665 fprintf_unfiltered (gdb_stdlog,
5666 "infrun: restart threads: "
5667 "[%s] needs step-over\n",
5668 target_pid_to_str (tp->ptid).c_str ());
5669 gdb_assert (!tp->resumed);
5670 continue;
5671 }
5672
5673
5674 if (tp->suspend.waitstatus_pending_p)
5675 {
5676 if (debug_infrun)
5677 fprintf_unfiltered (gdb_stdlog,
5678 "infrun: restart threads: "
5679 "[%s] has pending status\n",
5680 target_pid_to_str (tp->ptid).c_str ());
5681 tp->resumed = true;
5682 continue;
5683 }
5684
5685 gdb_assert (!tp->stop_requested);
5686
5687 /* If some thread needs to start a step-over at this point, it
5688 should still be in the step-over queue, and thus skipped
5689 above. */
5690 if (thread_still_needs_step_over (tp))
5691 {
5692 internal_error (__FILE__, __LINE__,
5693 "thread [%s] needs a step-over, but not in "
5694 "step-over queue\n",
5695 target_pid_to_str (tp->ptid).c_str ());
5696 }
5697
5698 if (currently_stepping (tp))
5699 {
5700 if (debug_infrun)
5701 fprintf_unfiltered (gdb_stdlog,
5702 "infrun: restart threads: [%s] was stepping\n",
5703 target_pid_to_str (tp->ptid).c_str ());
5704 keep_going_stepped_thread (tp);
5705 }
5706 else
5707 {
5708 struct execution_control_state ecss;
5709 struct execution_control_state *ecs = &ecss;
5710
5711 if (debug_infrun)
5712 fprintf_unfiltered (gdb_stdlog,
5713 "infrun: restart threads: [%s] continuing\n",
5714 target_pid_to_str (tp->ptid).c_str ());
5715 reset_ecs (ecs, tp);
5716 switch_to_thread (tp);
5717 keep_going_pass_signal (ecs);
5718 }
5719 }
5720 }
5721
5722 /* Callback for iterate_over_threads. Find a resumed thread that has
5723 a pending waitstatus. */
5724
5725 static int
5726 resumed_thread_with_pending_status (struct thread_info *tp,
5727 void *arg)
5728 {
5729 return (tp->resumed
5730 && tp->suspend.waitstatus_pending_p);
5731 }
5732
5733 /* Called when we get an event that may finish an in-line or
5734 out-of-line (displaced stepping) step-over started previously.
5735 Return true if the event is processed and we should go back to the
5736 event loop; false if the caller should continue processing the
5737 event. */
5738
5739 static int
5740 finish_step_over (struct execution_control_state *ecs)
5741 {
5742 int had_step_over_info;
5743
5744 displaced_step_fixup (ecs->event_thread,
5745 ecs->event_thread->suspend.stop_signal);
5746
5747 had_step_over_info = step_over_info_valid_p ();
5748
5749 if (had_step_over_info)
5750 {
5751 /* If we're stepping over a breakpoint with all threads locked,
5752 then only the thread that was stepped should be reporting
5753 back an event. */
5754 gdb_assert (ecs->event_thread->control.trap_expected);
5755
5756 clear_step_over_info ();
5757 }
5758
5759 if (!target_is_non_stop_p ())
5760 return 0;
5761
5762 /* Start a new step-over in another thread if there's one that
5763 needs it. */
5764 start_step_over ();
5765
5766 /* If we were stepping over a breakpoint before, and haven't started
5767 a new in-line step-over sequence, then restart all other threads
5768 (except the event thread). We can't do this in all-stop, as then
5769 e.g., we wouldn't be able to issue any other remote packet until
5770 these other threads stop. */
5771 if (had_step_over_info && !step_over_info_valid_p ())
5772 {
5773 struct thread_info *pending;
5774
5775 /* If we only have threads with pending statuses, the restart
5776 below won't restart any thread and so nothing re-inserts the
5777 breakpoint we just stepped over. But we need it inserted
5778 when we later process the pending events, otherwise if
5779 another thread has a pending event for this breakpoint too,
5780 we'd discard its event (because the breakpoint that
5781 originally caused the event was no longer inserted). */
5782 context_switch (ecs);
5783 insert_breakpoints ();
5784
5785 restart_threads (ecs->event_thread);
5786
5787 /* If we have events pending, go through handle_inferior_event
5788 again, picking up a pending event at random. This avoids
5789 thread starvation. */
5790
5791 /* But not if we just stepped over a watchpoint in order to let
5792 the instruction execute so we can evaluate its expression.
5793 The set of watchpoints that triggered is recorded in the
5794 breakpoint objects themselves (see bp->watchpoint_triggered).
5795 If we processed another event first, that other event could
5796 clobber this info. */
5797 if (ecs->event_thread->stepping_over_watchpoint)
5798 return 0;
5799
5800 pending = iterate_over_threads (resumed_thread_with_pending_status,
5801 NULL);
5802 if (pending != NULL)
5803 {
5804 struct thread_info *tp = ecs->event_thread;
5805 struct regcache *regcache;
5806
5807 if (debug_infrun)
5808 {
5809 fprintf_unfiltered (gdb_stdlog,
5810 "infrun: found resumed threads with "
5811 "pending events, saving status\n");
5812 }
5813
5814 gdb_assert (pending != tp);
5815
5816 /* Record the event thread's event for later. */
5817 save_waitstatus (tp, &ecs->ws);
5818 /* This was cleared early, by handle_inferior_event. Set it
5819 so this pending event is considered by
5820 do_target_wait. */
5821 tp->resumed = true;
5822
5823 gdb_assert (!tp->executing);
5824
5825 regcache = get_thread_regcache (tp);
5826 tp->suspend.stop_pc = regcache_read_pc (regcache);
5827
5828 if (debug_infrun)
5829 {
5830 fprintf_unfiltered (gdb_stdlog,
5831 "infrun: saved stop_pc=%s for %s "
5832 "(currently_stepping=%d)\n",
5833 paddress (target_gdbarch (),
5834 tp->suspend.stop_pc),
5835 target_pid_to_str (tp->ptid).c_str (),
5836 currently_stepping (tp));
5837 }
5838
5839 /* This in-line step-over finished; clear this so we won't
5840 start a new one. This is what handle_signal_stop would
5841 do, if we returned false. */
5842 tp->stepping_over_breakpoint = 0;
5843
5844 /* Wake up the event loop again. */
5845 mark_async_event_handler (infrun_async_inferior_event_token);
5846
5847 prepare_to_wait (ecs);
5848 return 1;
5849 }
5850 }
5851
5852 return 0;
5853 }
5854
5855 /* Come here when the program has stopped with a signal. */
5856
5857 static void
5858 handle_signal_stop (struct execution_control_state *ecs)
5859 {
5860 struct frame_info *frame;
5861 struct gdbarch *gdbarch;
5862 int stopped_by_watchpoint;
5863 enum stop_kind stop_soon;
5864 int random_signal;
5865
5866 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5867
5868 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5869
5870 /* Do we need to clean up the state of a thread that has
5871 completed a displaced single-step? (Doing so usually affects
5872 the PC, so do it here, before we set stop_pc.) */
5873 if (finish_step_over (ecs))
5874 return;
5875
5876 /* If we either finished a single-step or hit a breakpoint, but
5877 the user wanted this thread to be stopped, pretend we got a
5878 SIG0 (generic unsignaled stop). */
5879 if (ecs->event_thread->stop_requested
5880 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5881 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5882
5883 ecs->event_thread->suspend.stop_pc
5884 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5885
5886 if (debug_infrun)
5887 {
5888 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5889 struct gdbarch *reg_gdbarch = regcache->arch ();
5890
5891 switch_to_thread (ecs->event_thread);
5892
5893 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5894 paddress (reg_gdbarch,
5895 ecs->event_thread->suspend.stop_pc));
5896 if (target_stopped_by_watchpoint ())
5897 {
5898 CORE_ADDR addr;
5899
5900 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5901
5902 if (target_stopped_data_address (current_top_target (), &addr))
5903 fprintf_unfiltered (gdb_stdlog,
5904 "infrun: stopped data address = %s\n",
5905 paddress (reg_gdbarch, addr));
5906 else
5907 fprintf_unfiltered (gdb_stdlog,
5908 "infrun: (no data address available)\n");
5909 }
5910 }
5911
5912 /* This is originated from start_remote(), start_inferior() and
5913 shared libraries hook functions. */
5914 stop_soon = get_inferior_stop_soon (ecs);
5915 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5916 {
5917 context_switch (ecs);
5918 if (debug_infrun)
5919 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5920 stop_print_frame = 1;
5921 stop_waiting (ecs);
5922 return;
5923 }
5924
5925 /* This originates from attach_command(). We need to overwrite
5926 the stop_signal here, because some kernels don't ignore a
5927 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5928 See more comments in inferior.h. On the other hand, if we
5929 get a non-SIGSTOP, report it to the user - assume the backend
5930 will handle the SIGSTOP if it should show up later.
5931
5932 Also consider that the attach is complete when we see a
5933 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5934 target extended-remote report it instead of a SIGSTOP
5935 (e.g. gdbserver). We already rely on SIGTRAP being our
5936 signal, so this is no exception.
5937
5938 Also consider that the attach is complete when we see a
5939 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5940 the target to stop all threads of the inferior, in case the
5941 low level attach operation doesn't stop them implicitly. If
5942 they weren't stopped implicitly, then the stub will report a
5943 GDB_SIGNAL_0, meaning: stopped for no particular reason
5944 other than GDB's request. */
5945 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5946 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5947 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5948 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5949 {
5950 stop_print_frame = 1;
5951 stop_waiting (ecs);
5952 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5953 return;
5954 }
5955
5956 /* See if something interesting happened to the non-current thread. If
5957 so, then switch to that thread. */
5958 if (ecs->ptid != inferior_ptid)
5959 {
5960 if (debug_infrun)
5961 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5962
5963 context_switch (ecs);
5964
5965 if (deprecated_context_hook)
5966 deprecated_context_hook (ecs->event_thread->global_num);
5967 }
5968
5969 /* At this point, get hold of the now-current thread's frame. */
5970 frame = get_current_frame ();
5971 gdbarch = get_frame_arch (frame);
5972
5973 /* Pull the single step breakpoints out of the target. */
5974 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5975 {
5976 struct regcache *regcache;
5977 CORE_ADDR pc;
5978
5979 regcache = get_thread_regcache (ecs->event_thread);
5980 const address_space *aspace = regcache->aspace ();
5981
5982 pc = regcache_read_pc (regcache);
5983
5984 /* However, before doing so, if this single-step breakpoint was
5985 actually for another thread, set this thread up for moving
5986 past it. */
5987 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5988 aspace, pc))
5989 {
5990 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5991 {
5992 if (debug_infrun)
5993 {
5994 fprintf_unfiltered (gdb_stdlog,
5995 "infrun: [%s] hit another thread's "
5996 "single-step breakpoint\n",
5997 target_pid_to_str (ecs->ptid).c_str ());
5998 }
5999 ecs->hit_singlestep_breakpoint = 1;
6000 }
6001 }
6002 else
6003 {
6004 if (debug_infrun)
6005 {
6006 fprintf_unfiltered (gdb_stdlog,
6007 "infrun: [%s] hit its "
6008 "single-step breakpoint\n",
6009 target_pid_to_str (ecs->ptid).c_str ());
6010 }
6011 }
6012 }
6013 delete_just_stopped_threads_single_step_breakpoints ();
6014
6015 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6016 && ecs->event_thread->control.trap_expected
6017 && ecs->event_thread->stepping_over_watchpoint)
6018 stopped_by_watchpoint = 0;
6019 else
6020 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6021
6022 /* If necessary, step over this watchpoint. We'll be back to display
6023 it in a moment. */
6024 if (stopped_by_watchpoint
6025 && (target_have_steppable_watchpoint
6026 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6027 {
6028 /* At this point, we are stopped at an instruction which has
6029 attempted to write to a piece of memory under control of
6030 a watchpoint. The instruction hasn't actually executed
6031 yet. If we were to evaluate the watchpoint expression
6032 now, we would get the old value, and therefore no change
6033 would seem to have occurred.
6034
6035 In order to make watchpoints work `right', we really need
6036 to complete the memory write, and then evaluate the
6037 watchpoint expression. We do this by single-stepping the
6038 target.
6039
6040 It may not be necessary to disable the watchpoint to step over
6041 it. For example, the PA can (with some kernel cooperation)
6042 single step over a watchpoint without disabling the watchpoint.
6043
6044 It is far more common to need to disable a watchpoint to step
6045 the inferior over it. If we have non-steppable watchpoints,
6046 we must disable the current watchpoint; it's simplest to
6047 disable all watchpoints.
6048
6049 Any breakpoint at PC must also be stepped over -- if there's
6050 one, it will have already triggered before the watchpoint
6051 triggered, and we either already reported it to the user, or
6052 it didn't cause a stop and we called keep_going. In either
6053 case, if there was a breakpoint at PC, we must be trying to
6054 step past it. */
6055 ecs->event_thread->stepping_over_watchpoint = 1;
6056 keep_going (ecs);
6057 return;
6058 }
6059
6060 ecs->event_thread->stepping_over_breakpoint = 0;
6061 ecs->event_thread->stepping_over_watchpoint = 0;
6062 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6063 ecs->event_thread->control.stop_step = 0;
6064 stop_print_frame = 1;
6065 stopped_by_random_signal = 0;
6066 bpstat stop_chain = NULL;
6067
6068 /* Hide inlined functions starting here, unless we just performed stepi or
6069 nexti. After stepi and nexti, always show the innermost frame (not any
6070 inline function call sites). */
6071 if (ecs->event_thread->control.step_range_end != 1)
6072 {
6073 const address_space *aspace
6074 = get_thread_regcache (ecs->event_thread)->aspace ();
6075
6076 /* skip_inline_frames is expensive, so we avoid it if we can
6077 determine that the address is one where functions cannot have
6078 been inlined. This improves performance with inferiors that
6079 load a lot of shared libraries, because the solib event
6080 breakpoint is defined as the address of a function (i.e. not
6081 inline). Note that we have to check the previous PC as well
6082 as the current one to catch cases when we have just
6083 single-stepped off a breakpoint prior to reinstating it.
6084 Note that we're assuming that the code we single-step to is
6085 not inline, but that's not definitive: there's nothing
6086 preventing the event breakpoint function from containing
6087 inlined code, and the single-step ending up there. If the
6088 user had set a breakpoint on that inlined code, the missing
6089 skip_inline_frames call would break things. Fortunately
6090 that's an extremely unlikely scenario. */
6091 if (!pc_at_non_inline_function (aspace,
6092 ecs->event_thread->suspend.stop_pc,
6093 &ecs->ws)
6094 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6095 && ecs->event_thread->control.trap_expected
6096 && pc_at_non_inline_function (aspace,
6097 ecs->event_thread->prev_pc,
6098 &ecs->ws)))
6099 {
6100 stop_chain = build_bpstat_chain (aspace,
6101 ecs->event_thread->suspend.stop_pc,
6102 &ecs->ws);
6103 skip_inline_frames (ecs->event_thread, stop_chain);
6104
6105 /* Re-fetch current thread's frame in case that invalidated
6106 the frame cache. */
6107 frame = get_current_frame ();
6108 gdbarch = get_frame_arch (frame);
6109 }
6110 }
6111
6112 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6113 && ecs->event_thread->control.trap_expected
6114 && gdbarch_single_step_through_delay_p (gdbarch)
6115 && currently_stepping (ecs->event_thread))
6116 {
6117 /* We're trying to step off a breakpoint. Turns out that we're
6118 also on an instruction that needs to be stepped multiple
6119 times before it's been fully executing. E.g., architectures
6120 with a delay slot. It needs to be stepped twice, once for
6121 the instruction and once for the delay slot. */
6122 int step_through_delay
6123 = gdbarch_single_step_through_delay (gdbarch, frame);
6124
6125 if (debug_infrun && step_through_delay)
6126 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
6127 if (ecs->event_thread->control.step_range_end == 0
6128 && step_through_delay)
6129 {
6130 /* The user issued a continue when stopped at a breakpoint.
6131 Set up for another trap and get out of here. */
6132 ecs->event_thread->stepping_over_breakpoint = 1;
6133 keep_going (ecs);
6134 return;
6135 }
6136 else if (step_through_delay)
6137 {
6138 /* The user issued a step when stopped at a breakpoint.
6139 Maybe we should stop, maybe we should not - the delay
6140 slot *might* correspond to a line of source. In any
6141 case, don't decide that here, just set
6142 ecs->stepping_over_breakpoint, making sure we
6143 single-step again before breakpoints are re-inserted. */
6144 ecs->event_thread->stepping_over_breakpoint = 1;
6145 }
6146 }
6147
6148 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6149 handles this event. */
6150 ecs->event_thread->control.stop_bpstat
6151 = bpstat_stop_status (get_current_regcache ()->aspace (),
6152 ecs->event_thread->suspend.stop_pc,
6153 ecs->event_thread, &ecs->ws, stop_chain);
6154
6155 /* Following in case break condition called a
6156 function. */
6157 stop_print_frame = 1;
6158
6159 /* This is where we handle "moribund" watchpoints. Unlike
6160 software breakpoints traps, hardware watchpoint traps are
6161 always distinguishable from random traps. If no high-level
6162 watchpoint is associated with the reported stop data address
6163 anymore, then the bpstat does not explain the signal ---
6164 simply make sure to ignore it if `stopped_by_watchpoint' is
6165 set. */
6166
6167 if (debug_infrun
6168 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6169 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6170 GDB_SIGNAL_TRAP)
6171 && stopped_by_watchpoint)
6172 fprintf_unfiltered (gdb_stdlog,
6173 "infrun: no user watchpoint explains "
6174 "watchpoint SIGTRAP, ignoring\n");
6175
6176 /* NOTE: cagney/2003-03-29: These checks for a random signal
6177 at one stage in the past included checks for an inferior
6178 function call's call dummy's return breakpoint. The original
6179 comment, that went with the test, read:
6180
6181 ``End of a stack dummy. Some systems (e.g. Sony news) give
6182 another signal besides SIGTRAP, so check here as well as
6183 above.''
6184
6185 If someone ever tries to get call dummys on a
6186 non-executable stack to work (where the target would stop
6187 with something like a SIGSEGV), then those tests might need
6188 to be re-instated. Given, however, that the tests were only
6189 enabled when momentary breakpoints were not being used, I
6190 suspect that it won't be the case.
6191
6192 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6193 be necessary for call dummies on a non-executable stack on
6194 SPARC. */
6195
6196 /* See if the breakpoints module can explain the signal. */
6197 random_signal
6198 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6199 ecs->event_thread->suspend.stop_signal);
6200
6201 /* Maybe this was a trap for a software breakpoint that has since
6202 been removed. */
6203 if (random_signal && target_stopped_by_sw_breakpoint ())
6204 {
6205 if (gdbarch_program_breakpoint_here_p (gdbarch,
6206 ecs->event_thread->suspend.stop_pc))
6207 {
6208 struct regcache *regcache;
6209 int decr_pc;
6210
6211 /* Re-adjust PC to what the program would see if GDB was not
6212 debugging it. */
6213 regcache = get_thread_regcache (ecs->event_thread);
6214 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6215 if (decr_pc != 0)
6216 {
6217 gdb::optional<scoped_restore_tmpl<int>>
6218 restore_operation_disable;
6219
6220 if (record_full_is_used ())
6221 restore_operation_disable.emplace
6222 (record_full_gdb_operation_disable_set ());
6223
6224 regcache_write_pc (regcache,
6225 ecs->event_thread->suspend.stop_pc + decr_pc);
6226 }
6227 }
6228 else
6229 {
6230 /* A delayed software breakpoint event. Ignore the trap. */
6231 if (debug_infrun)
6232 fprintf_unfiltered (gdb_stdlog,
6233 "infrun: delayed software breakpoint "
6234 "trap, ignoring\n");
6235 random_signal = 0;
6236 }
6237 }
6238
6239 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6240 has since been removed. */
6241 if (random_signal && target_stopped_by_hw_breakpoint ())
6242 {
6243 /* A delayed hardware breakpoint event. Ignore the trap. */
6244 if (debug_infrun)
6245 fprintf_unfiltered (gdb_stdlog,
6246 "infrun: delayed hardware breakpoint/watchpoint "
6247 "trap, ignoring\n");
6248 random_signal = 0;
6249 }
6250
6251 /* If not, perhaps stepping/nexting can. */
6252 if (random_signal)
6253 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6254 && currently_stepping (ecs->event_thread));
6255
6256 /* Perhaps the thread hit a single-step breakpoint of _another_
6257 thread. Single-step breakpoints are transparent to the
6258 breakpoints module. */
6259 if (random_signal)
6260 random_signal = !ecs->hit_singlestep_breakpoint;
6261
6262 /* No? Perhaps we got a moribund watchpoint. */
6263 if (random_signal)
6264 random_signal = !stopped_by_watchpoint;
6265
6266 /* Always stop if the user explicitly requested this thread to
6267 remain stopped. */
6268 if (ecs->event_thread->stop_requested)
6269 {
6270 random_signal = 1;
6271 if (debug_infrun)
6272 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6273 }
6274
6275 /* For the program's own signals, act according to
6276 the signal handling tables. */
6277
6278 if (random_signal)
6279 {
6280 /* Signal not for debugging purposes. */
6281 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6282 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6283
6284 if (debug_infrun)
6285 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6286 gdb_signal_to_symbol_string (stop_signal));
6287
6288 stopped_by_random_signal = 1;
6289
6290 /* Always stop on signals if we're either just gaining control
6291 of the program, or the user explicitly requested this thread
6292 to remain stopped. */
6293 if (stop_soon != NO_STOP_QUIETLY
6294 || ecs->event_thread->stop_requested
6295 || (!inf->detaching
6296 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6297 {
6298 stop_waiting (ecs);
6299 return;
6300 }
6301
6302 /* Notify observers the signal has "handle print" set. Note we
6303 returned early above if stopping; normal_stop handles the
6304 printing in that case. */
6305 if (signal_print[ecs->event_thread->suspend.stop_signal])
6306 {
6307 /* The signal table tells us to print about this signal. */
6308 target_terminal::ours_for_output ();
6309 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6310 target_terminal::inferior ();
6311 }
6312
6313 /* Clear the signal if it should not be passed. */
6314 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6315 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6316
6317 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6318 && ecs->event_thread->control.trap_expected
6319 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6320 {
6321 /* We were just starting a new sequence, attempting to
6322 single-step off of a breakpoint and expecting a SIGTRAP.
6323 Instead this signal arrives. This signal will take us out
6324 of the stepping range so GDB needs to remember to, when
6325 the signal handler returns, resume stepping off that
6326 breakpoint. */
6327 /* To simplify things, "continue" is forced to use the same
6328 code paths as single-step - set a breakpoint at the
6329 signal return address and then, once hit, step off that
6330 breakpoint. */
6331 if (debug_infrun)
6332 fprintf_unfiltered (gdb_stdlog,
6333 "infrun: signal arrived while stepping over "
6334 "breakpoint\n");
6335
6336 insert_hp_step_resume_breakpoint_at_frame (frame);
6337 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6338 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6339 ecs->event_thread->control.trap_expected = 0;
6340
6341 /* If we were nexting/stepping some other thread, switch to
6342 it, so that we don't continue it, losing control. */
6343 if (!switch_back_to_stepped_thread (ecs))
6344 keep_going (ecs);
6345 return;
6346 }
6347
6348 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6349 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6350 ecs->event_thread)
6351 || ecs->event_thread->control.step_range_end == 1)
6352 && frame_id_eq (get_stack_frame_id (frame),
6353 ecs->event_thread->control.step_stack_frame_id)
6354 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6355 {
6356 /* The inferior is about to take a signal that will take it
6357 out of the single step range. Set a breakpoint at the
6358 current PC (which is presumably where the signal handler
6359 will eventually return) and then allow the inferior to
6360 run free.
6361
6362 Note that this is only needed for a signal delivered
6363 while in the single-step range. Nested signals aren't a
6364 problem as they eventually all return. */
6365 if (debug_infrun)
6366 fprintf_unfiltered (gdb_stdlog,
6367 "infrun: signal may take us out of "
6368 "single-step range\n");
6369
6370 clear_step_over_info ();
6371 insert_hp_step_resume_breakpoint_at_frame (frame);
6372 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6373 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6374 ecs->event_thread->control.trap_expected = 0;
6375 keep_going (ecs);
6376 return;
6377 }
6378
6379 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6380 when either there's a nested signal, or when there's a
6381 pending signal enabled just as the signal handler returns
6382 (leaving the inferior at the step-resume-breakpoint without
6383 actually executing it). Either way continue until the
6384 breakpoint is really hit. */
6385
6386 if (!switch_back_to_stepped_thread (ecs))
6387 {
6388 if (debug_infrun)
6389 fprintf_unfiltered (gdb_stdlog,
6390 "infrun: random signal, keep going\n");
6391
6392 keep_going (ecs);
6393 }
6394 return;
6395 }
6396
6397 process_event_stop_test (ecs);
6398 }
6399
6400 /* Come here when we've got some debug event / signal we can explain
6401 (IOW, not a random signal), and test whether it should cause a
6402 stop, or whether we should resume the inferior (transparently).
6403 E.g., could be a breakpoint whose condition evaluates false; we
6404 could be still stepping within the line; etc. */
6405
6406 static void
6407 process_event_stop_test (struct execution_control_state *ecs)
6408 {
6409 struct symtab_and_line stop_pc_sal;
6410 struct frame_info *frame;
6411 struct gdbarch *gdbarch;
6412 CORE_ADDR jmp_buf_pc;
6413 struct bpstat_what what;
6414
6415 /* Handle cases caused by hitting a breakpoint. */
6416
6417 frame = get_current_frame ();
6418 gdbarch = get_frame_arch (frame);
6419
6420 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6421
6422 if (what.call_dummy)
6423 {
6424 stop_stack_dummy = what.call_dummy;
6425 }
6426
6427 /* A few breakpoint types have callbacks associated (e.g.,
6428 bp_jit_event). Run them now. */
6429 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6430
6431 /* If we hit an internal event that triggers symbol changes, the
6432 current frame will be invalidated within bpstat_what (e.g., if we
6433 hit an internal solib event). Re-fetch it. */
6434 frame = get_current_frame ();
6435 gdbarch = get_frame_arch (frame);
6436
6437 switch (what.main_action)
6438 {
6439 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6440 /* If we hit the breakpoint at longjmp while stepping, we
6441 install a momentary breakpoint at the target of the
6442 jmp_buf. */
6443
6444 if (debug_infrun)
6445 fprintf_unfiltered (gdb_stdlog,
6446 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6447
6448 ecs->event_thread->stepping_over_breakpoint = 1;
6449
6450 if (what.is_longjmp)
6451 {
6452 struct value *arg_value;
6453
6454 /* If we set the longjmp breakpoint via a SystemTap probe,
6455 then use it to extract the arguments. The destination PC
6456 is the third argument to the probe. */
6457 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6458 if (arg_value)
6459 {
6460 jmp_buf_pc = value_as_address (arg_value);
6461 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6462 }
6463 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6464 || !gdbarch_get_longjmp_target (gdbarch,
6465 frame, &jmp_buf_pc))
6466 {
6467 if (debug_infrun)
6468 fprintf_unfiltered (gdb_stdlog,
6469 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6470 "(!gdbarch_get_longjmp_target)\n");
6471 keep_going (ecs);
6472 return;
6473 }
6474
6475 /* Insert a breakpoint at resume address. */
6476 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6477 }
6478 else
6479 check_exception_resume (ecs, frame);
6480 keep_going (ecs);
6481 return;
6482
6483 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6484 {
6485 struct frame_info *init_frame;
6486
6487 /* There are several cases to consider.
6488
6489 1. The initiating frame no longer exists. In this case we
6490 must stop, because the exception or longjmp has gone too
6491 far.
6492
6493 2. The initiating frame exists, and is the same as the
6494 current frame. We stop, because the exception or longjmp
6495 has been caught.
6496
6497 3. The initiating frame exists and is different from the
6498 current frame. This means the exception or longjmp has
6499 been caught beneath the initiating frame, so keep going.
6500
6501 4. longjmp breakpoint has been placed just to protect
6502 against stale dummy frames and user is not interested in
6503 stopping around longjmps. */
6504
6505 if (debug_infrun)
6506 fprintf_unfiltered (gdb_stdlog,
6507 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6508
6509 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6510 != NULL);
6511 delete_exception_resume_breakpoint (ecs->event_thread);
6512
6513 if (what.is_longjmp)
6514 {
6515 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6516
6517 if (!frame_id_p (ecs->event_thread->initiating_frame))
6518 {
6519 /* Case 4. */
6520 keep_going (ecs);
6521 return;
6522 }
6523 }
6524
6525 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6526
6527 if (init_frame)
6528 {
6529 struct frame_id current_id
6530 = get_frame_id (get_current_frame ());
6531 if (frame_id_eq (current_id,
6532 ecs->event_thread->initiating_frame))
6533 {
6534 /* Case 2. Fall through. */
6535 }
6536 else
6537 {
6538 /* Case 3. */
6539 keep_going (ecs);
6540 return;
6541 }
6542 }
6543
6544 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6545 exists. */
6546 delete_step_resume_breakpoint (ecs->event_thread);
6547
6548 end_stepping_range (ecs);
6549 }
6550 return;
6551
6552 case BPSTAT_WHAT_SINGLE:
6553 if (debug_infrun)
6554 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6555 ecs->event_thread->stepping_over_breakpoint = 1;
6556 /* Still need to check other stuff, at least the case where we
6557 are stepping and step out of the right range. */
6558 break;
6559
6560 case BPSTAT_WHAT_STEP_RESUME:
6561 if (debug_infrun)
6562 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6563
6564 delete_step_resume_breakpoint (ecs->event_thread);
6565 if (ecs->event_thread->control.proceed_to_finish
6566 && execution_direction == EXEC_REVERSE)
6567 {
6568 struct thread_info *tp = ecs->event_thread;
6569
6570 /* We are finishing a function in reverse, and just hit the
6571 step-resume breakpoint at the start address of the
6572 function, and we're almost there -- just need to back up
6573 by one more single-step, which should take us back to the
6574 function call. */
6575 tp->control.step_range_start = tp->control.step_range_end = 1;
6576 keep_going (ecs);
6577 return;
6578 }
6579 fill_in_stop_func (gdbarch, ecs);
6580 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6581 && execution_direction == EXEC_REVERSE)
6582 {
6583 /* We are stepping over a function call in reverse, and just
6584 hit the step-resume breakpoint at the start address of
6585 the function. Go back to single-stepping, which should
6586 take us back to the function call. */
6587 ecs->event_thread->stepping_over_breakpoint = 1;
6588 keep_going (ecs);
6589 return;
6590 }
6591 break;
6592
6593 case BPSTAT_WHAT_STOP_NOISY:
6594 if (debug_infrun)
6595 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6596 stop_print_frame = 1;
6597
6598 /* Assume the thread stopped for a breapoint. We'll still check
6599 whether a/the breakpoint is there when the thread is next
6600 resumed. */
6601 ecs->event_thread->stepping_over_breakpoint = 1;
6602
6603 stop_waiting (ecs);
6604 return;
6605
6606 case BPSTAT_WHAT_STOP_SILENT:
6607 if (debug_infrun)
6608 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6609 stop_print_frame = 0;
6610
6611 /* Assume the thread stopped for a breapoint. We'll still check
6612 whether a/the breakpoint is there when the thread is next
6613 resumed. */
6614 ecs->event_thread->stepping_over_breakpoint = 1;
6615 stop_waiting (ecs);
6616 return;
6617
6618 case BPSTAT_WHAT_HP_STEP_RESUME:
6619 if (debug_infrun)
6620 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6621
6622 delete_step_resume_breakpoint (ecs->event_thread);
6623 if (ecs->event_thread->step_after_step_resume_breakpoint)
6624 {
6625 /* Back when the step-resume breakpoint was inserted, we
6626 were trying to single-step off a breakpoint. Go back to
6627 doing that. */
6628 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6629 ecs->event_thread->stepping_over_breakpoint = 1;
6630 keep_going (ecs);
6631 return;
6632 }
6633 break;
6634
6635 case BPSTAT_WHAT_KEEP_CHECKING:
6636 break;
6637 }
6638
6639 /* If we stepped a permanent breakpoint and we had a high priority
6640 step-resume breakpoint for the address we stepped, but we didn't
6641 hit it, then we must have stepped into the signal handler. The
6642 step-resume was only necessary to catch the case of _not_
6643 stepping into the handler, so delete it, and fall through to
6644 checking whether the step finished. */
6645 if (ecs->event_thread->stepped_breakpoint)
6646 {
6647 struct breakpoint *sr_bp
6648 = ecs->event_thread->control.step_resume_breakpoint;
6649
6650 if (sr_bp != NULL
6651 && sr_bp->loc->permanent
6652 && sr_bp->type == bp_hp_step_resume
6653 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6654 {
6655 if (debug_infrun)
6656 fprintf_unfiltered (gdb_stdlog,
6657 "infrun: stepped permanent breakpoint, stopped in "
6658 "handler\n");
6659 delete_step_resume_breakpoint (ecs->event_thread);
6660 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6661 }
6662 }
6663
6664 /* We come here if we hit a breakpoint but should not stop for it.
6665 Possibly we also were stepping and should stop for that. So fall
6666 through and test for stepping. But, if not stepping, do not
6667 stop. */
6668
6669 /* In all-stop mode, if we're currently stepping but have stopped in
6670 some other thread, we need to switch back to the stepped thread. */
6671 if (switch_back_to_stepped_thread (ecs))
6672 return;
6673
6674 if (ecs->event_thread->control.step_resume_breakpoint)
6675 {
6676 if (debug_infrun)
6677 fprintf_unfiltered (gdb_stdlog,
6678 "infrun: step-resume breakpoint is inserted\n");
6679
6680 /* Having a step-resume breakpoint overrides anything
6681 else having to do with stepping commands until
6682 that breakpoint is reached. */
6683 keep_going (ecs);
6684 return;
6685 }
6686
6687 if (ecs->event_thread->control.step_range_end == 0)
6688 {
6689 if (debug_infrun)
6690 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6691 /* Likewise if we aren't even stepping. */
6692 keep_going (ecs);
6693 return;
6694 }
6695
6696 /* Re-fetch current thread's frame in case the code above caused
6697 the frame cache to be re-initialized, making our FRAME variable
6698 a dangling pointer. */
6699 frame = get_current_frame ();
6700 gdbarch = get_frame_arch (frame);
6701 fill_in_stop_func (gdbarch, ecs);
6702
6703 /* If stepping through a line, keep going if still within it.
6704
6705 Note that step_range_end is the address of the first instruction
6706 beyond the step range, and NOT the address of the last instruction
6707 within it!
6708
6709 Note also that during reverse execution, we may be stepping
6710 through a function epilogue and therefore must detect when
6711 the current-frame changes in the middle of a line. */
6712
6713 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6714 ecs->event_thread)
6715 && (execution_direction != EXEC_REVERSE
6716 || frame_id_eq (get_frame_id (frame),
6717 ecs->event_thread->control.step_frame_id)))
6718 {
6719 if (debug_infrun)
6720 fprintf_unfiltered
6721 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6722 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6723 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6724
6725 /* Tentatively re-enable range stepping; `resume' disables it if
6726 necessary (e.g., if we're stepping over a breakpoint or we
6727 have software watchpoints). */
6728 ecs->event_thread->control.may_range_step = 1;
6729
6730 /* When stepping backward, stop at beginning of line range
6731 (unless it's the function entry point, in which case
6732 keep going back to the call point). */
6733 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6734 if (stop_pc == ecs->event_thread->control.step_range_start
6735 && stop_pc != ecs->stop_func_start
6736 && execution_direction == EXEC_REVERSE)
6737 end_stepping_range (ecs);
6738 else
6739 keep_going (ecs);
6740
6741 return;
6742 }
6743
6744 /* We stepped out of the stepping range. */
6745
6746 /* If we are stepping at the source level and entered the runtime
6747 loader dynamic symbol resolution code...
6748
6749 EXEC_FORWARD: we keep on single stepping until we exit the run
6750 time loader code and reach the callee's address.
6751
6752 EXEC_REVERSE: we've already executed the callee (backward), and
6753 the runtime loader code is handled just like any other
6754 undebuggable function call. Now we need only keep stepping
6755 backward through the trampoline code, and that's handled further
6756 down, so there is nothing for us to do here. */
6757
6758 if (execution_direction != EXEC_REVERSE
6759 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6760 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6761 {
6762 CORE_ADDR pc_after_resolver =
6763 gdbarch_skip_solib_resolver (gdbarch,
6764 ecs->event_thread->suspend.stop_pc);
6765
6766 if (debug_infrun)
6767 fprintf_unfiltered (gdb_stdlog,
6768 "infrun: stepped into dynsym resolve code\n");
6769
6770 if (pc_after_resolver)
6771 {
6772 /* Set up a step-resume breakpoint at the address
6773 indicated by SKIP_SOLIB_RESOLVER. */
6774 symtab_and_line sr_sal;
6775 sr_sal.pc = pc_after_resolver;
6776 sr_sal.pspace = get_frame_program_space (frame);
6777
6778 insert_step_resume_breakpoint_at_sal (gdbarch,
6779 sr_sal, null_frame_id);
6780 }
6781
6782 keep_going (ecs);
6783 return;
6784 }
6785
6786 /* Step through an indirect branch thunk. */
6787 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6788 && gdbarch_in_indirect_branch_thunk (gdbarch,
6789 ecs->event_thread->suspend.stop_pc))
6790 {
6791 if (debug_infrun)
6792 fprintf_unfiltered (gdb_stdlog,
6793 "infrun: stepped into indirect branch thunk\n");
6794 keep_going (ecs);
6795 return;
6796 }
6797
6798 if (ecs->event_thread->control.step_range_end != 1
6799 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6800 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6801 && get_frame_type (frame) == SIGTRAMP_FRAME)
6802 {
6803 if (debug_infrun)
6804 fprintf_unfiltered (gdb_stdlog,
6805 "infrun: stepped into signal trampoline\n");
6806 /* The inferior, while doing a "step" or "next", has ended up in
6807 a signal trampoline (either by a signal being delivered or by
6808 the signal handler returning). Just single-step until the
6809 inferior leaves the trampoline (either by calling the handler
6810 or returning). */
6811 keep_going (ecs);
6812 return;
6813 }
6814
6815 /* If we're in the return path from a shared library trampoline,
6816 we want to proceed through the trampoline when stepping. */
6817 /* macro/2012-04-25: This needs to come before the subroutine
6818 call check below as on some targets return trampolines look
6819 like subroutine calls (MIPS16 return thunks). */
6820 if (gdbarch_in_solib_return_trampoline (gdbarch,
6821 ecs->event_thread->suspend.stop_pc,
6822 ecs->stop_func_name)
6823 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6824 {
6825 /* Determine where this trampoline returns. */
6826 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6827 CORE_ADDR real_stop_pc
6828 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6829
6830 if (debug_infrun)
6831 fprintf_unfiltered (gdb_stdlog,
6832 "infrun: stepped into solib return tramp\n");
6833
6834 /* Only proceed through if we know where it's going. */
6835 if (real_stop_pc)
6836 {
6837 /* And put the step-breakpoint there and go until there. */
6838 symtab_and_line sr_sal;
6839 sr_sal.pc = real_stop_pc;
6840 sr_sal.section = find_pc_overlay (sr_sal.pc);
6841 sr_sal.pspace = get_frame_program_space (frame);
6842
6843 /* Do not specify what the fp should be when we stop since
6844 on some machines the prologue is where the new fp value
6845 is established. */
6846 insert_step_resume_breakpoint_at_sal (gdbarch,
6847 sr_sal, null_frame_id);
6848
6849 /* Restart without fiddling with the step ranges or
6850 other state. */
6851 keep_going (ecs);
6852 return;
6853 }
6854 }
6855
6856 /* Check for subroutine calls. The check for the current frame
6857 equalling the step ID is not necessary - the check of the
6858 previous frame's ID is sufficient - but it is a common case and
6859 cheaper than checking the previous frame's ID.
6860
6861 NOTE: frame_id_eq will never report two invalid frame IDs as
6862 being equal, so to get into this block, both the current and
6863 previous frame must have valid frame IDs. */
6864 /* The outer_frame_id check is a heuristic to detect stepping
6865 through startup code. If we step over an instruction which
6866 sets the stack pointer from an invalid value to a valid value,
6867 we may detect that as a subroutine call from the mythical
6868 "outermost" function. This could be fixed by marking
6869 outermost frames as !stack_p,code_p,special_p. Then the
6870 initial outermost frame, before sp was valid, would
6871 have code_addr == &_start. See the comment in frame_id_eq
6872 for more. */
6873 if (!frame_id_eq (get_stack_frame_id (frame),
6874 ecs->event_thread->control.step_stack_frame_id)
6875 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6876 ecs->event_thread->control.step_stack_frame_id)
6877 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6878 outer_frame_id)
6879 || (ecs->event_thread->control.step_start_function
6880 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6881 {
6882 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6883 CORE_ADDR real_stop_pc;
6884
6885 if (debug_infrun)
6886 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6887
6888 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6889 {
6890 /* I presume that step_over_calls is only 0 when we're
6891 supposed to be stepping at the assembly language level
6892 ("stepi"). Just stop. */
6893 /* And this works the same backward as frontward. MVS */
6894 end_stepping_range (ecs);
6895 return;
6896 }
6897
6898 /* Reverse stepping through solib trampolines. */
6899
6900 if (execution_direction == EXEC_REVERSE
6901 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6902 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6903 || (ecs->stop_func_start == 0
6904 && in_solib_dynsym_resolve_code (stop_pc))))
6905 {
6906 /* Any solib trampoline code can be handled in reverse
6907 by simply continuing to single-step. We have already
6908 executed the solib function (backwards), and a few
6909 steps will take us back through the trampoline to the
6910 caller. */
6911 keep_going (ecs);
6912 return;
6913 }
6914
6915 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6916 {
6917 /* We're doing a "next".
6918
6919 Normal (forward) execution: set a breakpoint at the
6920 callee's return address (the address at which the caller
6921 will resume).
6922
6923 Reverse (backward) execution. set the step-resume
6924 breakpoint at the start of the function that we just
6925 stepped into (backwards), and continue to there. When we
6926 get there, we'll need to single-step back to the caller. */
6927
6928 if (execution_direction == EXEC_REVERSE)
6929 {
6930 /* If we're already at the start of the function, we've either
6931 just stepped backward into a single instruction function,
6932 or stepped back out of a signal handler to the first instruction
6933 of the function. Just keep going, which will single-step back
6934 to the caller. */
6935 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6936 {
6937 /* Normal function call return (static or dynamic). */
6938 symtab_and_line sr_sal;
6939 sr_sal.pc = ecs->stop_func_start;
6940 sr_sal.pspace = get_frame_program_space (frame);
6941 insert_step_resume_breakpoint_at_sal (gdbarch,
6942 sr_sal, null_frame_id);
6943 }
6944 }
6945 else
6946 insert_step_resume_breakpoint_at_caller (frame);
6947
6948 keep_going (ecs);
6949 return;
6950 }
6951
6952 /* If we are in a function call trampoline (a stub between the
6953 calling routine and the real function), locate the real
6954 function. That's what tells us (a) whether we want to step
6955 into it at all, and (b) what prologue we want to run to the
6956 end of, if we do step into it. */
6957 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6958 if (real_stop_pc == 0)
6959 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6960 if (real_stop_pc != 0)
6961 ecs->stop_func_start = real_stop_pc;
6962
6963 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6964 {
6965 symtab_and_line sr_sal;
6966 sr_sal.pc = ecs->stop_func_start;
6967 sr_sal.pspace = get_frame_program_space (frame);
6968
6969 insert_step_resume_breakpoint_at_sal (gdbarch,
6970 sr_sal, null_frame_id);
6971 keep_going (ecs);
6972 return;
6973 }
6974
6975 /* If we have line number information for the function we are
6976 thinking of stepping into and the function isn't on the skip
6977 list, step into it.
6978
6979 If there are several symtabs at that PC (e.g. with include
6980 files), just want to know whether *any* of them have line
6981 numbers. find_pc_line handles this. */
6982 {
6983 struct symtab_and_line tmp_sal;
6984
6985 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6986 if (tmp_sal.line != 0
6987 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6988 tmp_sal)
6989 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6990 {
6991 if (execution_direction == EXEC_REVERSE)
6992 handle_step_into_function_backward (gdbarch, ecs);
6993 else
6994 handle_step_into_function (gdbarch, ecs);
6995 return;
6996 }
6997 }
6998
6999 /* If we have no line number and the step-stop-if-no-debug is
7000 set, we stop the step so that the user has a chance to switch
7001 in assembly mode. */
7002 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7003 && step_stop_if_no_debug)
7004 {
7005 end_stepping_range (ecs);
7006 return;
7007 }
7008
7009 if (execution_direction == EXEC_REVERSE)
7010 {
7011 /* If we're already at the start of the function, we've either just
7012 stepped backward into a single instruction function without line
7013 number info, or stepped back out of a signal handler to the first
7014 instruction of the function without line number info. Just keep
7015 going, which will single-step back to the caller. */
7016 if (ecs->stop_func_start != stop_pc)
7017 {
7018 /* Set a breakpoint at callee's start address.
7019 From there we can step once and be back in the caller. */
7020 symtab_and_line sr_sal;
7021 sr_sal.pc = ecs->stop_func_start;
7022 sr_sal.pspace = get_frame_program_space (frame);
7023 insert_step_resume_breakpoint_at_sal (gdbarch,
7024 sr_sal, null_frame_id);
7025 }
7026 }
7027 else
7028 /* Set a breakpoint at callee's return address (the address
7029 at which the caller will resume). */
7030 insert_step_resume_breakpoint_at_caller (frame);
7031
7032 keep_going (ecs);
7033 return;
7034 }
7035
7036 /* Reverse stepping through solib trampolines. */
7037
7038 if (execution_direction == EXEC_REVERSE
7039 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7040 {
7041 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7042
7043 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7044 || (ecs->stop_func_start == 0
7045 && in_solib_dynsym_resolve_code (stop_pc)))
7046 {
7047 /* Any solib trampoline code can be handled in reverse
7048 by simply continuing to single-step. We have already
7049 executed the solib function (backwards), and a few
7050 steps will take us back through the trampoline to the
7051 caller. */
7052 keep_going (ecs);
7053 return;
7054 }
7055 else if (in_solib_dynsym_resolve_code (stop_pc))
7056 {
7057 /* Stepped backward into the solib dynsym resolver.
7058 Set a breakpoint at its start and continue, then
7059 one more step will take us out. */
7060 symtab_and_line sr_sal;
7061 sr_sal.pc = ecs->stop_func_start;
7062 sr_sal.pspace = get_frame_program_space (frame);
7063 insert_step_resume_breakpoint_at_sal (gdbarch,
7064 sr_sal, null_frame_id);
7065 keep_going (ecs);
7066 return;
7067 }
7068 }
7069
7070 /* This always returns the sal for the inner-most frame when we are in a
7071 stack of inlined frames, even if GDB actually believes that it is in a
7072 more outer frame. This is checked for below by calls to
7073 inline_skipped_frames. */
7074 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7075
7076 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7077 the trampoline processing logic, however, there are some trampolines
7078 that have no names, so we should do trampoline handling first. */
7079 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7080 && ecs->stop_func_name == NULL
7081 && stop_pc_sal.line == 0)
7082 {
7083 if (debug_infrun)
7084 fprintf_unfiltered (gdb_stdlog,
7085 "infrun: stepped into undebuggable function\n");
7086
7087 /* The inferior just stepped into, or returned to, an
7088 undebuggable function (where there is no debugging information
7089 and no line number corresponding to the address where the
7090 inferior stopped). Since we want to skip this kind of code,
7091 we keep going until the inferior returns from this
7092 function - unless the user has asked us not to (via
7093 set step-mode) or we no longer know how to get back
7094 to the call site. */
7095 if (step_stop_if_no_debug
7096 || !frame_id_p (frame_unwind_caller_id (frame)))
7097 {
7098 /* If we have no line number and the step-stop-if-no-debug
7099 is set, we stop the step so that the user has a chance to
7100 switch in assembly mode. */
7101 end_stepping_range (ecs);
7102 return;
7103 }
7104 else
7105 {
7106 /* Set a breakpoint at callee's return address (the address
7107 at which the caller will resume). */
7108 insert_step_resume_breakpoint_at_caller (frame);
7109 keep_going (ecs);
7110 return;
7111 }
7112 }
7113
7114 if (ecs->event_thread->control.step_range_end == 1)
7115 {
7116 /* It is stepi or nexti. We always want to stop stepping after
7117 one instruction. */
7118 if (debug_infrun)
7119 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
7120 end_stepping_range (ecs);
7121 return;
7122 }
7123
7124 if (stop_pc_sal.line == 0)
7125 {
7126 /* We have no line number information. That means to stop
7127 stepping (does this always happen right after one instruction,
7128 when we do "s" in a function with no line numbers,
7129 or can this happen as a result of a return or longjmp?). */
7130 if (debug_infrun)
7131 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
7132 end_stepping_range (ecs);
7133 return;
7134 }
7135
7136 /* Look for "calls" to inlined functions, part one. If the inline
7137 frame machinery detected some skipped call sites, we have entered
7138 a new inline function. */
7139
7140 if (frame_id_eq (get_frame_id (get_current_frame ()),
7141 ecs->event_thread->control.step_frame_id)
7142 && inline_skipped_frames (ecs->event_thread))
7143 {
7144 if (debug_infrun)
7145 fprintf_unfiltered (gdb_stdlog,
7146 "infrun: stepped into inlined function\n");
7147
7148 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7149
7150 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7151 {
7152 /* For "step", we're going to stop. But if the call site
7153 for this inlined function is on the same source line as
7154 we were previously stepping, go down into the function
7155 first. Otherwise stop at the call site. */
7156
7157 if (call_sal.line == ecs->event_thread->current_line
7158 && call_sal.symtab == ecs->event_thread->current_symtab)
7159 {
7160 step_into_inline_frame (ecs->event_thread);
7161 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7162 {
7163 keep_going (ecs);
7164 return;
7165 }
7166 }
7167
7168 end_stepping_range (ecs);
7169 return;
7170 }
7171 else
7172 {
7173 /* For "next", we should stop at the call site if it is on a
7174 different source line. Otherwise continue through the
7175 inlined function. */
7176 if (call_sal.line == ecs->event_thread->current_line
7177 && call_sal.symtab == ecs->event_thread->current_symtab)
7178 keep_going (ecs);
7179 else
7180 end_stepping_range (ecs);
7181 return;
7182 }
7183 }
7184
7185 /* Look for "calls" to inlined functions, part two. If we are still
7186 in the same real function we were stepping through, but we have
7187 to go further up to find the exact frame ID, we are stepping
7188 through a more inlined call beyond its call site. */
7189
7190 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7191 && !frame_id_eq (get_frame_id (get_current_frame ()),
7192 ecs->event_thread->control.step_frame_id)
7193 && stepped_in_from (get_current_frame (),
7194 ecs->event_thread->control.step_frame_id))
7195 {
7196 if (debug_infrun)
7197 fprintf_unfiltered (gdb_stdlog,
7198 "infrun: stepping through inlined function\n");
7199
7200 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7201 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7202 keep_going (ecs);
7203 else
7204 end_stepping_range (ecs);
7205 return;
7206 }
7207
7208 bool refresh_step_info = true;
7209 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7210 && (ecs->event_thread->current_line != stop_pc_sal.line
7211 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7212 {
7213 if (stop_pc_sal.is_stmt)
7214 {
7215 /* We are at the start of a different line. So stop. Note that
7216 we don't stop if we step into the middle of a different line.
7217 That is said to make things like for (;;) statements work
7218 better. */
7219 if (debug_infrun)
7220 fprintf_unfiltered (gdb_stdlog,
7221 "infrun: stepped to a different line\n");
7222 end_stepping_range (ecs);
7223 return;
7224 }
7225 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7226 ecs->event_thread->control.step_frame_id))
7227 {
7228 /* We are at the start of a different line, however, this line is
7229 not marked as a statement, and we have not changed frame. We
7230 ignore this line table entry, and continue stepping forward,
7231 looking for a better place to stop. */
7232 refresh_step_info = false;
7233 if (debug_infrun)
7234 fprintf_unfiltered (gdb_stdlog,
7235 "infrun: stepped to a different line, but "
7236 "it's not the start of a statement\n");
7237 }
7238 }
7239
7240 /* We aren't done stepping.
7241
7242 Optimize by setting the stepping range to the line.
7243 (We might not be in the original line, but if we entered a
7244 new line in mid-statement, we continue stepping. This makes
7245 things like for(;;) statements work better.)
7246
7247 If we entered a SAL that indicates a non-statement line table entry,
7248 then we update the stepping range, but we don't update the step info,
7249 which includes things like the line number we are stepping away from.
7250 This means we will stop when we find a line table entry that is marked
7251 as is-statement, even if it matches the non-statement one we just
7252 stepped into. */
7253
7254 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7255 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7256 ecs->event_thread->control.may_range_step = 1;
7257 if (refresh_step_info)
7258 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7259
7260 if (debug_infrun)
7261 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7262 keep_going (ecs);
7263 }
7264
7265 /* In all-stop mode, if we're currently stepping but have stopped in
7266 some other thread, we may need to switch back to the stepped
7267 thread. Returns true we set the inferior running, false if we left
7268 it stopped (and the event needs further processing). */
7269
7270 static int
7271 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7272 {
7273 if (!target_is_non_stop_p ())
7274 {
7275 struct thread_info *stepping_thread;
7276
7277 /* If any thread is blocked on some internal breakpoint, and we
7278 simply need to step over that breakpoint to get it going
7279 again, do that first. */
7280
7281 /* However, if we see an event for the stepping thread, then we
7282 know all other threads have been moved past their breakpoints
7283 already. Let the caller check whether the step is finished,
7284 etc., before deciding to move it past a breakpoint. */
7285 if (ecs->event_thread->control.step_range_end != 0)
7286 return 0;
7287
7288 /* Check if the current thread is blocked on an incomplete
7289 step-over, interrupted by a random signal. */
7290 if (ecs->event_thread->control.trap_expected
7291 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7292 {
7293 if (debug_infrun)
7294 {
7295 fprintf_unfiltered (gdb_stdlog,
7296 "infrun: need to finish step-over of [%s]\n",
7297 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7298 }
7299 keep_going (ecs);
7300 return 1;
7301 }
7302
7303 /* Check if the current thread is blocked by a single-step
7304 breakpoint of another thread. */
7305 if (ecs->hit_singlestep_breakpoint)
7306 {
7307 if (debug_infrun)
7308 {
7309 fprintf_unfiltered (gdb_stdlog,
7310 "infrun: need to step [%s] over single-step "
7311 "breakpoint\n",
7312 target_pid_to_str (ecs->ptid).c_str ());
7313 }
7314 keep_going (ecs);
7315 return 1;
7316 }
7317
7318 /* If this thread needs yet another step-over (e.g., stepping
7319 through a delay slot), do it first before moving on to
7320 another thread. */
7321 if (thread_still_needs_step_over (ecs->event_thread))
7322 {
7323 if (debug_infrun)
7324 {
7325 fprintf_unfiltered (gdb_stdlog,
7326 "infrun: thread [%s] still needs step-over\n",
7327 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7328 }
7329 keep_going (ecs);
7330 return 1;
7331 }
7332
7333 /* If scheduler locking applies even if not stepping, there's no
7334 need to walk over threads. Above we've checked whether the
7335 current thread is stepping. If some other thread not the
7336 event thread is stepping, then it must be that scheduler
7337 locking is not in effect. */
7338 if (schedlock_applies (ecs->event_thread))
7339 return 0;
7340
7341 /* Otherwise, we no longer expect a trap in the current thread.
7342 Clear the trap_expected flag before switching back -- this is
7343 what keep_going does as well, if we call it. */
7344 ecs->event_thread->control.trap_expected = 0;
7345
7346 /* Likewise, clear the signal if it should not be passed. */
7347 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7348 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7349
7350 /* Do all pending step-overs before actually proceeding with
7351 step/next/etc. */
7352 if (start_step_over ())
7353 {
7354 prepare_to_wait (ecs);
7355 return 1;
7356 }
7357
7358 /* Look for the stepping/nexting thread. */
7359 stepping_thread = NULL;
7360
7361 for (thread_info *tp : all_non_exited_threads ())
7362 {
7363 switch_to_thread_no_regs (tp);
7364
7365 /* Ignore threads of processes the caller is not
7366 resuming. */
7367 if (!sched_multi
7368 && (tp->inf->process_target () != ecs->target
7369 || tp->inf->pid != ecs->ptid.pid ()))
7370 continue;
7371
7372 /* When stepping over a breakpoint, we lock all threads
7373 except the one that needs to move past the breakpoint.
7374 If a non-event thread has this set, the "incomplete
7375 step-over" check above should have caught it earlier. */
7376 if (tp->control.trap_expected)
7377 {
7378 internal_error (__FILE__, __LINE__,
7379 "[%s] has inconsistent state: "
7380 "trap_expected=%d\n",
7381 target_pid_to_str (tp->ptid).c_str (),
7382 tp->control.trap_expected);
7383 }
7384
7385 /* Did we find the stepping thread? */
7386 if (tp->control.step_range_end)
7387 {
7388 /* Yep. There should only one though. */
7389 gdb_assert (stepping_thread == NULL);
7390
7391 /* The event thread is handled at the top, before we
7392 enter this loop. */
7393 gdb_assert (tp != ecs->event_thread);
7394
7395 /* If some thread other than the event thread is
7396 stepping, then scheduler locking can't be in effect,
7397 otherwise we wouldn't have resumed the current event
7398 thread in the first place. */
7399 gdb_assert (!schedlock_applies (tp));
7400
7401 stepping_thread = tp;
7402 }
7403 }
7404
7405 if (stepping_thread != NULL)
7406 {
7407 if (debug_infrun)
7408 fprintf_unfiltered (gdb_stdlog,
7409 "infrun: switching back to stepped thread\n");
7410
7411 if (keep_going_stepped_thread (stepping_thread))
7412 {
7413 prepare_to_wait (ecs);
7414 return 1;
7415 }
7416 }
7417
7418 switch_to_thread (ecs->event_thread);
7419 }
7420
7421 return 0;
7422 }
7423
7424 /* Set a previously stepped thread back to stepping. Returns true on
7425 success, false if the resume is not possible (e.g., the thread
7426 vanished). */
7427
7428 static int
7429 keep_going_stepped_thread (struct thread_info *tp)
7430 {
7431 struct frame_info *frame;
7432 struct execution_control_state ecss;
7433 struct execution_control_state *ecs = &ecss;
7434
7435 /* If the stepping thread exited, then don't try to switch back and
7436 resume it, which could fail in several different ways depending
7437 on the target. Instead, just keep going.
7438
7439 We can find a stepping dead thread in the thread list in two
7440 cases:
7441
7442 - The target supports thread exit events, and when the target
7443 tries to delete the thread from the thread list, inferior_ptid
7444 pointed at the exiting thread. In such case, calling
7445 delete_thread does not really remove the thread from the list;
7446 instead, the thread is left listed, with 'exited' state.
7447
7448 - The target's debug interface does not support thread exit
7449 events, and so we have no idea whatsoever if the previously
7450 stepping thread is still alive. For that reason, we need to
7451 synchronously query the target now. */
7452
7453 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7454 {
7455 if (debug_infrun)
7456 fprintf_unfiltered (gdb_stdlog,
7457 "infrun: not resuming previously "
7458 "stepped thread, it has vanished\n");
7459
7460 delete_thread (tp);
7461 return 0;
7462 }
7463
7464 if (debug_infrun)
7465 fprintf_unfiltered (gdb_stdlog,
7466 "infrun: resuming previously stepped thread\n");
7467
7468 reset_ecs (ecs, tp);
7469 switch_to_thread (tp);
7470
7471 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7472 frame = get_current_frame ();
7473
7474 /* If the PC of the thread we were trying to single-step has
7475 changed, then that thread has trapped or been signaled, but the
7476 event has not been reported to GDB yet. Re-poll the target
7477 looking for this particular thread's event (i.e. temporarily
7478 enable schedlock) by:
7479
7480 - setting a break at the current PC
7481 - resuming that particular thread, only (by setting trap
7482 expected)
7483
7484 This prevents us continuously moving the single-step breakpoint
7485 forward, one instruction at a time, overstepping. */
7486
7487 if (tp->suspend.stop_pc != tp->prev_pc)
7488 {
7489 ptid_t resume_ptid;
7490
7491 if (debug_infrun)
7492 fprintf_unfiltered (gdb_stdlog,
7493 "infrun: expected thread advanced also (%s -> %s)\n",
7494 paddress (target_gdbarch (), tp->prev_pc),
7495 paddress (target_gdbarch (), tp->suspend.stop_pc));
7496
7497 /* Clear the info of the previous step-over, as it's no longer
7498 valid (if the thread was trying to step over a breakpoint, it
7499 has already succeeded). It's what keep_going would do too,
7500 if we called it. Do this before trying to insert the sss
7501 breakpoint, otherwise if we were previously trying to step
7502 over this exact address in another thread, the breakpoint is
7503 skipped. */
7504 clear_step_over_info ();
7505 tp->control.trap_expected = 0;
7506
7507 insert_single_step_breakpoint (get_frame_arch (frame),
7508 get_frame_address_space (frame),
7509 tp->suspend.stop_pc);
7510
7511 tp->resumed = true;
7512 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7513 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7514 }
7515 else
7516 {
7517 if (debug_infrun)
7518 fprintf_unfiltered (gdb_stdlog,
7519 "infrun: expected thread still hasn't advanced\n");
7520
7521 keep_going_pass_signal (ecs);
7522 }
7523 return 1;
7524 }
7525
7526 /* Is thread TP in the middle of (software or hardware)
7527 single-stepping? (Note the result of this function must never be
7528 passed directly as target_resume's STEP parameter.) */
7529
7530 static int
7531 currently_stepping (struct thread_info *tp)
7532 {
7533 return ((tp->control.step_range_end
7534 && tp->control.step_resume_breakpoint == NULL)
7535 || tp->control.trap_expected
7536 || tp->stepped_breakpoint
7537 || bpstat_should_step ());
7538 }
7539
7540 /* Inferior has stepped into a subroutine call with source code that
7541 we should not step over. Do step to the first line of code in
7542 it. */
7543
7544 static void
7545 handle_step_into_function (struct gdbarch *gdbarch,
7546 struct execution_control_state *ecs)
7547 {
7548 fill_in_stop_func (gdbarch, ecs);
7549
7550 compunit_symtab *cust
7551 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7552 if (cust != NULL && compunit_language (cust) != language_asm)
7553 ecs->stop_func_start
7554 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7555
7556 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7557 /* Use the step_resume_break to step until the end of the prologue,
7558 even if that involves jumps (as it seems to on the vax under
7559 4.2). */
7560 /* If the prologue ends in the middle of a source line, continue to
7561 the end of that source line (if it is still within the function).
7562 Otherwise, just go to end of prologue. */
7563 if (stop_func_sal.end
7564 && stop_func_sal.pc != ecs->stop_func_start
7565 && stop_func_sal.end < ecs->stop_func_end)
7566 ecs->stop_func_start = stop_func_sal.end;
7567
7568 /* Architectures which require breakpoint adjustment might not be able
7569 to place a breakpoint at the computed address. If so, the test
7570 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7571 ecs->stop_func_start to an address at which a breakpoint may be
7572 legitimately placed.
7573
7574 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7575 made, GDB will enter an infinite loop when stepping through
7576 optimized code consisting of VLIW instructions which contain
7577 subinstructions corresponding to different source lines. On
7578 FR-V, it's not permitted to place a breakpoint on any but the
7579 first subinstruction of a VLIW instruction. When a breakpoint is
7580 set, GDB will adjust the breakpoint address to the beginning of
7581 the VLIW instruction. Thus, we need to make the corresponding
7582 adjustment here when computing the stop address. */
7583
7584 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7585 {
7586 ecs->stop_func_start
7587 = gdbarch_adjust_breakpoint_address (gdbarch,
7588 ecs->stop_func_start);
7589 }
7590
7591 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7592 {
7593 /* We are already there: stop now. */
7594 end_stepping_range (ecs);
7595 return;
7596 }
7597 else
7598 {
7599 /* Put the step-breakpoint there and go until there. */
7600 symtab_and_line sr_sal;
7601 sr_sal.pc = ecs->stop_func_start;
7602 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7603 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7604
7605 /* Do not specify what the fp should be when we stop since on
7606 some machines the prologue is where the new fp value is
7607 established. */
7608 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7609
7610 /* And make sure stepping stops right away then. */
7611 ecs->event_thread->control.step_range_end
7612 = ecs->event_thread->control.step_range_start;
7613 }
7614 keep_going (ecs);
7615 }
7616
7617 /* Inferior has stepped backward into a subroutine call with source
7618 code that we should not step over. Do step to the beginning of the
7619 last line of code in it. */
7620
7621 static void
7622 handle_step_into_function_backward (struct gdbarch *gdbarch,
7623 struct execution_control_state *ecs)
7624 {
7625 struct compunit_symtab *cust;
7626 struct symtab_and_line stop_func_sal;
7627
7628 fill_in_stop_func (gdbarch, ecs);
7629
7630 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7631 if (cust != NULL && compunit_language (cust) != language_asm)
7632 ecs->stop_func_start
7633 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7634
7635 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7636
7637 /* OK, we're just going to keep stepping here. */
7638 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7639 {
7640 /* We're there already. Just stop stepping now. */
7641 end_stepping_range (ecs);
7642 }
7643 else
7644 {
7645 /* Else just reset the step range and keep going.
7646 No step-resume breakpoint, they don't work for
7647 epilogues, which can have multiple entry paths. */
7648 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7649 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7650 keep_going (ecs);
7651 }
7652 return;
7653 }
7654
7655 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7656 This is used to both functions and to skip over code. */
7657
7658 static void
7659 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7660 struct symtab_and_line sr_sal,
7661 struct frame_id sr_id,
7662 enum bptype sr_type)
7663 {
7664 /* There should never be more than one step-resume or longjmp-resume
7665 breakpoint per thread, so we should never be setting a new
7666 step_resume_breakpoint when one is already active. */
7667 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7668 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7669
7670 if (debug_infrun)
7671 fprintf_unfiltered (gdb_stdlog,
7672 "infrun: inserting step-resume breakpoint at %s\n",
7673 paddress (gdbarch, sr_sal.pc));
7674
7675 inferior_thread ()->control.step_resume_breakpoint
7676 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7677 }
7678
7679 void
7680 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7681 struct symtab_and_line sr_sal,
7682 struct frame_id sr_id)
7683 {
7684 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7685 sr_sal, sr_id,
7686 bp_step_resume);
7687 }
7688
7689 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7690 This is used to skip a potential signal handler.
7691
7692 This is called with the interrupted function's frame. The signal
7693 handler, when it returns, will resume the interrupted function at
7694 RETURN_FRAME.pc. */
7695
7696 static void
7697 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7698 {
7699 gdb_assert (return_frame != NULL);
7700
7701 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7702
7703 symtab_and_line sr_sal;
7704 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7705 sr_sal.section = find_pc_overlay (sr_sal.pc);
7706 sr_sal.pspace = get_frame_program_space (return_frame);
7707
7708 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7709 get_stack_frame_id (return_frame),
7710 bp_hp_step_resume);
7711 }
7712
7713 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7714 is used to skip a function after stepping into it (for "next" or if
7715 the called function has no debugging information).
7716
7717 The current function has almost always been reached by single
7718 stepping a call or return instruction. NEXT_FRAME belongs to the
7719 current function, and the breakpoint will be set at the caller's
7720 resume address.
7721
7722 This is a separate function rather than reusing
7723 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7724 get_prev_frame, which may stop prematurely (see the implementation
7725 of frame_unwind_caller_id for an example). */
7726
7727 static void
7728 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7729 {
7730 /* We shouldn't have gotten here if we don't know where the call site
7731 is. */
7732 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7733
7734 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7735
7736 symtab_and_line sr_sal;
7737 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7738 frame_unwind_caller_pc (next_frame));
7739 sr_sal.section = find_pc_overlay (sr_sal.pc);
7740 sr_sal.pspace = frame_unwind_program_space (next_frame);
7741
7742 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7743 frame_unwind_caller_id (next_frame));
7744 }
7745
7746 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7747 new breakpoint at the target of a jmp_buf. The handling of
7748 longjmp-resume uses the same mechanisms used for handling
7749 "step-resume" breakpoints. */
7750
7751 static void
7752 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7753 {
7754 /* There should never be more than one longjmp-resume breakpoint per
7755 thread, so we should never be setting a new
7756 longjmp_resume_breakpoint when one is already active. */
7757 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7758
7759 if (debug_infrun)
7760 fprintf_unfiltered (gdb_stdlog,
7761 "infrun: inserting longjmp-resume breakpoint at %s\n",
7762 paddress (gdbarch, pc));
7763
7764 inferior_thread ()->control.exception_resume_breakpoint =
7765 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7766 }
7767
7768 /* Insert an exception resume breakpoint. TP is the thread throwing
7769 the exception. The block B is the block of the unwinder debug hook
7770 function. FRAME is the frame corresponding to the call to this
7771 function. SYM is the symbol of the function argument holding the
7772 target PC of the exception. */
7773
7774 static void
7775 insert_exception_resume_breakpoint (struct thread_info *tp,
7776 const struct block *b,
7777 struct frame_info *frame,
7778 struct symbol *sym)
7779 {
7780 try
7781 {
7782 struct block_symbol vsym;
7783 struct value *value;
7784 CORE_ADDR handler;
7785 struct breakpoint *bp;
7786
7787 vsym = lookup_symbol_search_name (sym->search_name (),
7788 b, VAR_DOMAIN);
7789 value = read_var_value (vsym.symbol, vsym.block, frame);
7790 /* If the value was optimized out, revert to the old behavior. */
7791 if (! value_optimized_out (value))
7792 {
7793 handler = value_as_address (value);
7794
7795 if (debug_infrun)
7796 fprintf_unfiltered (gdb_stdlog,
7797 "infrun: exception resume at %lx\n",
7798 (unsigned long) handler);
7799
7800 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7801 handler,
7802 bp_exception_resume).release ();
7803
7804 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7805 frame = NULL;
7806
7807 bp->thread = tp->global_num;
7808 inferior_thread ()->control.exception_resume_breakpoint = bp;
7809 }
7810 }
7811 catch (const gdb_exception_error &e)
7812 {
7813 /* We want to ignore errors here. */
7814 }
7815 }
7816
7817 /* A helper for check_exception_resume that sets an
7818 exception-breakpoint based on a SystemTap probe. */
7819
7820 static void
7821 insert_exception_resume_from_probe (struct thread_info *tp,
7822 const struct bound_probe *probe,
7823 struct frame_info *frame)
7824 {
7825 struct value *arg_value;
7826 CORE_ADDR handler;
7827 struct breakpoint *bp;
7828
7829 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7830 if (!arg_value)
7831 return;
7832
7833 handler = value_as_address (arg_value);
7834
7835 if (debug_infrun)
7836 fprintf_unfiltered (gdb_stdlog,
7837 "infrun: exception resume at %s\n",
7838 paddress (probe->objfile->arch (),
7839 handler));
7840
7841 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7842 handler, bp_exception_resume).release ();
7843 bp->thread = tp->global_num;
7844 inferior_thread ()->control.exception_resume_breakpoint = bp;
7845 }
7846
7847 /* This is called when an exception has been intercepted. Check to
7848 see whether the exception's destination is of interest, and if so,
7849 set an exception resume breakpoint there. */
7850
7851 static void
7852 check_exception_resume (struct execution_control_state *ecs,
7853 struct frame_info *frame)
7854 {
7855 struct bound_probe probe;
7856 struct symbol *func;
7857
7858 /* First see if this exception unwinding breakpoint was set via a
7859 SystemTap probe point. If so, the probe has two arguments: the
7860 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7861 set a breakpoint there. */
7862 probe = find_probe_by_pc (get_frame_pc (frame));
7863 if (probe.prob)
7864 {
7865 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7866 return;
7867 }
7868
7869 func = get_frame_function (frame);
7870 if (!func)
7871 return;
7872
7873 try
7874 {
7875 const struct block *b;
7876 struct block_iterator iter;
7877 struct symbol *sym;
7878 int argno = 0;
7879
7880 /* The exception breakpoint is a thread-specific breakpoint on
7881 the unwinder's debug hook, declared as:
7882
7883 void _Unwind_DebugHook (void *cfa, void *handler);
7884
7885 The CFA argument indicates the frame to which control is
7886 about to be transferred. HANDLER is the destination PC.
7887
7888 We ignore the CFA and set a temporary breakpoint at HANDLER.
7889 This is not extremely efficient but it avoids issues in gdb
7890 with computing the DWARF CFA, and it also works even in weird
7891 cases such as throwing an exception from inside a signal
7892 handler. */
7893
7894 b = SYMBOL_BLOCK_VALUE (func);
7895 ALL_BLOCK_SYMBOLS (b, iter, sym)
7896 {
7897 if (!SYMBOL_IS_ARGUMENT (sym))
7898 continue;
7899
7900 if (argno == 0)
7901 ++argno;
7902 else
7903 {
7904 insert_exception_resume_breakpoint (ecs->event_thread,
7905 b, frame, sym);
7906 break;
7907 }
7908 }
7909 }
7910 catch (const gdb_exception_error &e)
7911 {
7912 }
7913 }
7914
7915 static void
7916 stop_waiting (struct execution_control_state *ecs)
7917 {
7918 if (debug_infrun)
7919 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7920
7921 /* Let callers know we don't want to wait for the inferior anymore. */
7922 ecs->wait_some_more = 0;
7923
7924 /* If all-stop, but there exists a non-stop target, stop all
7925 threads now that we're presenting the stop to the user. */
7926 if (!non_stop && exists_non_stop_target ())
7927 stop_all_threads ();
7928 }
7929
7930 /* Like keep_going, but passes the signal to the inferior, even if the
7931 signal is set to nopass. */
7932
7933 static void
7934 keep_going_pass_signal (struct execution_control_state *ecs)
7935 {
7936 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7937 gdb_assert (!ecs->event_thread->resumed);
7938
7939 /* Save the pc before execution, to compare with pc after stop. */
7940 ecs->event_thread->prev_pc
7941 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7942
7943 if (ecs->event_thread->control.trap_expected)
7944 {
7945 struct thread_info *tp = ecs->event_thread;
7946
7947 if (debug_infrun)
7948 fprintf_unfiltered (gdb_stdlog,
7949 "infrun: %s has trap_expected set, "
7950 "resuming to collect trap\n",
7951 target_pid_to_str (tp->ptid).c_str ());
7952
7953 /* We haven't yet gotten our trap, and either: intercepted a
7954 non-signal event (e.g., a fork); or took a signal which we
7955 are supposed to pass through to the inferior. Simply
7956 continue. */
7957 resume (ecs->event_thread->suspend.stop_signal);
7958 }
7959 else if (step_over_info_valid_p ())
7960 {
7961 /* Another thread is stepping over a breakpoint in-line. If
7962 this thread needs a step-over too, queue the request. In
7963 either case, this resume must be deferred for later. */
7964 struct thread_info *tp = ecs->event_thread;
7965
7966 if (ecs->hit_singlestep_breakpoint
7967 || thread_still_needs_step_over (tp))
7968 {
7969 if (debug_infrun)
7970 fprintf_unfiltered (gdb_stdlog,
7971 "infrun: step-over already in progress: "
7972 "step-over for %s deferred\n",
7973 target_pid_to_str (tp->ptid).c_str ());
7974 thread_step_over_chain_enqueue (tp);
7975 }
7976 else
7977 {
7978 if (debug_infrun)
7979 fprintf_unfiltered (gdb_stdlog,
7980 "infrun: step-over in progress: "
7981 "resume of %s deferred\n",
7982 target_pid_to_str (tp->ptid).c_str ());
7983 }
7984 }
7985 else
7986 {
7987 struct regcache *regcache = get_current_regcache ();
7988 int remove_bp;
7989 int remove_wps;
7990 step_over_what step_what;
7991
7992 /* Either the trap was not expected, but we are continuing
7993 anyway (if we got a signal, the user asked it be passed to
7994 the child)
7995 -- or --
7996 We got our expected trap, but decided we should resume from
7997 it.
7998
7999 We're going to run this baby now!
8000
8001 Note that insert_breakpoints won't try to re-insert
8002 already inserted breakpoints. Therefore, we don't
8003 care if breakpoints were already inserted, or not. */
8004
8005 /* If we need to step over a breakpoint, and we're not using
8006 displaced stepping to do so, insert all breakpoints
8007 (watchpoints, etc.) but the one we're stepping over, step one
8008 instruction, and then re-insert the breakpoint when that step
8009 is finished. */
8010
8011 step_what = thread_still_needs_step_over (ecs->event_thread);
8012
8013 remove_bp = (ecs->hit_singlestep_breakpoint
8014 || (step_what & STEP_OVER_BREAKPOINT));
8015 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8016
8017 /* We can't use displaced stepping if we need to step past a
8018 watchpoint. The instruction copied to the scratch pad would
8019 still trigger the watchpoint. */
8020 if (remove_bp
8021 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8022 {
8023 set_step_over_info (regcache->aspace (),
8024 regcache_read_pc (regcache), remove_wps,
8025 ecs->event_thread->global_num);
8026 }
8027 else if (remove_wps)
8028 set_step_over_info (NULL, 0, remove_wps, -1);
8029
8030 /* If we now need to do an in-line step-over, we need to stop
8031 all other threads. Note this must be done before
8032 insert_breakpoints below, because that removes the breakpoint
8033 we're about to step over, otherwise other threads could miss
8034 it. */
8035 if (step_over_info_valid_p () && target_is_non_stop_p ())
8036 stop_all_threads ();
8037
8038 /* Stop stepping if inserting breakpoints fails. */
8039 try
8040 {
8041 insert_breakpoints ();
8042 }
8043 catch (const gdb_exception_error &e)
8044 {
8045 exception_print (gdb_stderr, e);
8046 stop_waiting (ecs);
8047 clear_step_over_info ();
8048 return;
8049 }
8050
8051 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8052
8053 resume (ecs->event_thread->suspend.stop_signal);
8054 }
8055
8056 prepare_to_wait (ecs);
8057 }
8058
8059 /* Called when we should continue running the inferior, because the
8060 current event doesn't cause a user visible stop. This does the
8061 resuming part; waiting for the next event is done elsewhere. */
8062
8063 static void
8064 keep_going (struct execution_control_state *ecs)
8065 {
8066 if (ecs->event_thread->control.trap_expected
8067 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8068 ecs->event_thread->control.trap_expected = 0;
8069
8070 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8071 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8072 keep_going_pass_signal (ecs);
8073 }
8074
8075 /* This function normally comes after a resume, before
8076 handle_inferior_event exits. It takes care of any last bits of
8077 housekeeping, and sets the all-important wait_some_more flag. */
8078
8079 static void
8080 prepare_to_wait (struct execution_control_state *ecs)
8081 {
8082 if (debug_infrun)
8083 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
8084
8085 ecs->wait_some_more = 1;
8086
8087 if (!target_is_async_p ())
8088 mark_infrun_async_event_handler ();
8089 }
8090
8091 /* We are done with the step range of a step/next/si/ni command.
8092 Called once for each n of a "step n" operation. */
8093
8094 static void
8095 end_stepping_range (struct execution_control_state *ecs)
8096 {
8097 ecs->event_thread->control.stop_step = 1;
8098 stop_waiting (ecs);
8099 }
8100
8101 /* Several print_*_reason functions to print why the inferior has stopped.
8102 We always print something when the inferior exits, or receives a signal.
8103 The rest of the cases are dealt with later on in normal_stop and
8104 print_it_typical. Ideally there should be a call to one of these
8105 print_*_reason functions functions from handle_inferior_event each time
8106 stop_waiting is called.
8107
8108 Note that we don't call these directly, instead we delegate that to
8109 the interpreters, through observers. Interpreters then call these
8110 with whatever uiout is right. */
8111
8112 void
8113 print_end_stepping_range_reason (struct ui_out *uiout)
8114 {
8115 /* For CLI-like interpreters, print nothing. */
8116
8117 if (uiout->is_mi_like_p ())
8118 {
8119 uiout->field_string ("reason",
8120 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8121 }
8122 }
8123
8124 void
8125 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8126 {
8127 annotate_signalled ();
8128 if (uiout->is_mi_like_p ())
8129 uiout->field_string
8130 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8131 uiout->text ("\nProgram terminated with signal ");
8132 annotate_signal_name ();
8133 uiout->field_string ("signal-name",
8134 gdb_signal_to_name (siggnal));
8135 annotate_signal_name_end ();
8136 uiout->text (", ");
8137 annotate_signal_string ();
8138 uiout->field_string ("signal-meaning",
8139 gdb_signal_to_string (siggnal));
8140 annotate_signal_string_end ();
8141 uiout->text (".\n");
8142 uiout->text ("The program no longer exists.\n");
8143 }
8144
8145 void
8146 print_exited_reason (struct ui_out *uiout, int exitstatus)
8147 {
8148 struct inferior *inf = current_inferior ();
8149 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8150
8151 annotate_exited (exitstatus);
8152 if (exitstatus)
8153 {
8154 if (uiout->is_mi_like_p ())
8155 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8156 std::string exit_code_str
8157 = string_printf ("0%o", (unsigned int) exitstatus);
8158 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8159 plongest (inf->num), pidstr.c_str (),
8160 string_field ("exit-code", exit_code_str.c_str ()));
8161 }
8162 else
8163 {
8164 if (uiout->is_mi_like_p ())
8165 uiout->field_string
8166 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8167 uiout->message ("[Inferior %s (%s) exited normally]\n",
8168 plongest (inf->num), pidstr.c_str ());
8169 }
8170 }
8171
8172 /* Some targets/architectures can do extra processing/display of
8173 segmentation faults. E.g., Intel MPX boundary faults.
8174 Call the architecture dependent function to handle the fault. */
8175
8176 static void
8177 handle_segmentation_fault (struct ui_out *uiout)
8178 {
8179 struct regcache *regcache = get_current_regcache ();
8180 struct gdbarch *gdbarch = regcache->arch ();
8181
8182 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8183 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8184 }
8185
8186 void
8187 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8188 {
8189 struct thread_info *thr = inferior_thread ();
8190
8191 annotate_signal ();
8192
8193 if (uiout->is_mi_like_p ())
8194 ;
8195 else if (show_thread_that_caused_stop ())
8196 {
8197 const char *name;
8198
8199 uiout->text ("\nThread ");
8200 uiout->field_string ("thread-id", print_thread_id (thr));
8201
8202 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8203 if (name != NULL)
8204 {
8205 uiout->text (" \"");
8206 uiout->field_string ("name", name);
8207 uiout->text ("\"");
8208 }
8209 }
8210 else
8211 uiout->text ("\nProgram");
8212
8213 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8214 uiout->text (" stopped");
8215 else
8216 {
8217 uiout->text (" received signal ");
8218 annotate_signal_name ();
8219 if (uiout->is_mi_like_p ())
8220 uiout->field_string
8221 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8222 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8223 annotate_signal_name_end ();
8224 uiout->text (", ");
8225 annotate_signal_string ();
8226 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8227
8228 if (siggnal == GDB_SIGNAL_SEGV)
8229 handle_segmentation_fault (uiout);
8230
8231 annotate_signal_string_end ();
8232 }
8233 uiout->text (".\n");
8234 }
8235
8236 void
8237 print_no_history_reason (struct ui_out *uiout)
8238 {
8239 uiout->text ("\nNo more reverse-execution history.\n");
8240 }
8241
8242 /* Print current location without a level number, if we have changed
8243 functions or hit a breakpoint. Print source line if we have one.
8244 bpstat_print contains the logic deciding in detail what to print,
8245 based on the event(s) that just occurred. */
8246
8247 static void
8248 print_stop_location (struct target_waitstatus *ws)
8249 {
8250 int bpstat_ret;
8251 enum print_what source_flag;
8252 int do_frame_printing = 1;
8253 struct thread_info *tp = inferior_thread ();
8254
8255 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8256 switch (bpstat_ret)
8257 {
8258 case PRINT_UNKNOWN:
8259 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8260 should) carry around the function and does (or should) use
8261 that when doing a frame comparison. */
8262 if (tp->control.stop_step
8263 && frame_id_eq (tp->control.step_frame_id,
8264 get_frame_id (get_current_frame ()))
8265 && (tp->control.step_start_function
8266 == find_pc_function (tp->suspend.stop_pc)))
8267 {
8268 /* Finished step, just print source line. */
8269 source_flag = SRC_LINE;
8270 }
8271 else
8272 {
8273 /* Print location and source line. */
8274 source_flag = SRC_AND_LOC;
8275 }
8276 break;
8277 case PRINT_SRC_AND_LOC:
8278 /* Print location and source line. */
8279 source_flag = SRC_AND_LOC;
8280 break;
8281 case PRINT_SRC_ONLY:
8282 source_flag = SRC_LINE;
8283 break;
8284 case PRINT_NOTHING:
8285 /* Something bogus. */
8286 source_flag = SRC_LINE;
8287 do_frame_printing = 0;
8288 break;
8289 default:
8290 internal_error (__FILE__, __LINE__, _("Unknown value."));
8291 }
8292
8293 /* The behavior of this routine with respect to the source
8294 flag is:
8295 SRC_LINE: Print only source line
8296 LOCATION: Print only location
8297 SRC_AND_LOC: Print location and source line. */
8298 if (do_frame_printing)
8299 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8300 }
8301
8302 /* See infrun.h. */
8303
8304 void
8305 print_stop_event (struct ui_out *uiout, bool displays)
8306 {
8307 struct target_waitstatus last;
8308 struct thread_info *tp;
8309
8310 get_last_target_status (nullptr, nullptr, &last);
8311
8312 {
8313 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8314
8315 print_stop_location (&last);
8316
8317 /* Display the auto-display expressions. */
8318 if (displays)
8319 do_displays ();
8320 }
8321
8322 tp = inferior_thread ();
8323 if (tp->thread_fsm != NULL
8324 && tp->thread_fsm->finished_p ())
8325 {
8326 struct return_value_info *rv;
8327
8328 rv = tp->thread_fsm->return_value ();
8329 if (rv != NULL)
8330 print_return_value (uiout, rv);
8331 }
8332 }
8333
8334 /* See infrun.h. */
8335
8336 void
8337 maybe_remove_breakpoints (void)
8338 {
8339 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8340 {
8341 if (remove_breakpoints ())
8342 {
8343 target_terminal::ours_for_output ();
8344 printf_filtered (_("Cannot remove breakpoints because "
8345 "program is no longer writable.\nFurther "
8346 "execution is probably impossible.\n"));
8347 }
8348 }
8349 }
8350
8351 /* The execution context that just caused a normal stop. */
8352
8353 struct stop_context
8354 {
8355 stop_context ();
8356 ~stop_context ();
8357
8358 DISABLE_COPY_AND_ASSIGN (stop_context);
8359
8360 bool changed () const;
8361
8362 /* The stop ID. */
8363 ULONGEST stop_id;
8364
8365 /* The event PTID. */
8366
8367 ptid_t ptid;
8368
8369 /* If stopp for a thread event, this is the thread that caused the
8370 stop. */
8371 struct thread_info *thread;
8372
8373 /* The inferior that caused the stop. */
8374 int inf_num;
8375 };
8376
8377 /* Initializes a new stop context. If stopped for a thread event, this
8378 takes a strong reference to the thread. */
8379
8380 stop_context::stop_context ()
8381 {
8382 stop_id = get_stop_id ();
8383 ptid = inferior_ptid;
8384 inf_num = current_inferior ()->num;
8385
8386 if (inferior_ptid != null_ptid)
8387 {
8388 /* Take a strong reference so that the thread can't be deleted
8389 yet. */
8390 thread = inferior_thread ();
8391 thread->incref ();
8392 }
8393 else
8394 thread = NULL;
8395 }
8396
8397 /* Release a stop context previously created with save_stop_context.
8398 Releases the strong reference to the thread as well. */
8399
8400 stop_context::~stop_context ()
8401 {
8402 if (thread != NULL)
8403 thread->decref ();
8404 }
8405
8406 /* Return true if the current context no longer matches the saved stop
8407 context. */
8408
8409 bool
8410 stop_context::changed () const
8411 {
8412 if (ptid != inferior_ptid)
8413 return true;
8414 if (inf_num != current_inferior ()->num)
8415 return true;
8416 if (thread != NULL && thread->state != THREAD_STOPPED)
8417 return true;
8418 if (get_stop_id () != stop_id)
8419 return true;
8420 return false;
8421 }
8422
8423 /* See infrun.h. */
8424
8425 int
8426 normal_stop (void)
8427 {
8428 struct target_waitstatus last;
8429
8430 get_last_target_status (nullptr, nullptr, &last);
8431
8432 new_stop_id ();
8433
8434 /* If an exception is thrown from this point on, make sure to
8435 propagate GDB's knowledge of the executing state to the
8436 frontend/user running state. A QUIT is an easy exception to see
8437 here, so do this before any filtered output. */
8438
8439 ptid_t finish_ptid = null_ptid;
8440
8441 if (!non_stop)
8442 finish_ptid = minus_one_ptid;
8443 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8444 || last.kind == TARGET_WAITKIND_EXITED)
8445 {
8446 /* On some targets, we may still have live threads in the
8447 inferior when we get a process exit event. E.g., for
8448 "checkpoint", when the current checkpoint/fork exits,
8449 linux-fork.c automatically switches to another fork from
8450 within target_mourn_inferior. */
8451 if (inferior_ptid != null_ptid)
8452 finish_ptid = ptid_t (inferior_ptid.pid ());
8453 }
8454 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8455 finish_ptid = inferior_ptid;
8456
8457 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8458 if (finish_ptid != null_ptid)
8459 {
8460 maybe_finish_thread_state.emplace
8461 (user_visible_resume_target (finish_ptid), finish_ptid);
8462 }
8463
8464 /* As we're presenting a stop, and potentially removing breakpoints,
8465 update the thread list so we can tell whether there are threads
8466 running on the target. With target remote, for example, we can
8467 only learn about new threads when we explicitly update the thread
8468 list. Do this before notifying the interpreters about signal
8469 stops, end of stepping ranges, etc., so that the "new thread"
8470 output is emitted before e.g., "Program received signal FOO",
8471 instead of after. */
8472 update_thread_list ();
8473
8474 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8475 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8476
8477 /* As with the notification of thread events, we want to delay
8478 notifying the user that we've switched thread context until
8479 the inferior actually stops.
8480
8481 There's no point in saying anything if the inferior has exited.
8482 Note that SIGNALLED here means "exited with a signal", not
8483 "received a signal".
8484
8485 Also skip saying anything in non-stop mode. In that mode, as we
8486 don't want GDB to switch threads behind the user's back, to avoid
8487 races where the user is typing a command to apply to thread x,
8488 but GDB switches to thread y before the user finishes entering
8489 the command, fetch_inferior_event installs a cleanup to restore
8490 the current thread back to the thread the user had selected right
8491 after this event is handled, so we're not really switching, only
8492 informing of a stop. */
8493 if (!non_stop
8494 && previous_inferior_ptid != inferior_ptid
8495 && target_has_execution
8496 && last.kind != TARGET_WAITKIND_SIGNALLED
8497 && last.kind != TARGET_WAITKIND_EXITED
8498 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8499 {
8500 SWITCH_THRU_ALL_UIS ()
8501 {
8502 target_terminal::ours_for_output ();
8503 printf_filtered (_("[Switching to %s]\n"),
8504 target_pid_to_str (inferior_ptid).c_str ());
8505 annotate_thread_changed ();
8506 }
8507 previous_inferior_ptid = inferior_ptid;
8508 }
8509
8510 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8511 {
8512 SWITCH_THRU_ALL_UIS ()
8513 if (current_ui->prompt_state == PROMPT_BLOCKED)
8514 {
8515 target_terminal::ours_for_output ();
8516 printf_filtered (_("No unwaited-for children left.\n"));
8517 }
8518 }
8519
8520 /* Note: this depends on the update_thread_list call above. */
8521 maybe_remove_breakpoints ();
8522
8523 /* If an auto-display called a function and that got a signal,
8524 delete that auto-display to avoid an infinite recursion. */
8525
8526 if (stopped_by_random_signal)
8527 disable_current_display ();
8528
8529 SWITCH_THRU_ALL_UIS ()
8530 {
8531 async_enable_stdin ();
8532 }
8533
8534 /* Let the user/frontend see the threads as stopped. */
8535 maybe_finish_thread_state.reset ();
8536
8537 /* Select innermost stack frame - i.e., current frame is frame 0,
8538 and current location is based on that. Handle the case where the
8539 dummy call is returning after being stopped. E.g. the dummy call
8540 previously hit a breakpoint. (If the dummy call returns
8541 normally, we won't reach here.) Do this before the stop hook is
8542 run, so that it doesn't get to see the temporary dummy frame,
8543 which is not where we'll present the stop. */
8544 if (has_stack_frames ())
8545 {
8546 if (stop_stack_dummy == STOP_STACK_DUMMY)
8547 {
8548 /* Pop the empty frame that contains the stack dummy. This
8549 also restores inferior state prior to the call (struct
8550 infcall_suspend_state). */
8551 struct frame_info *frame = get_current_frame ();
8552
8553 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8554 frame_pop (frame);
8555 /* frame_pop calls reinit_frame_cache as the last thing it
8556 does which means there's now no selected frame. */
8557 }
8558
8559 select_frame (get_current_frame ());
8560
8561 /* Set the current source location. */
8562 set_current_sal_from_frame (get_current_frame ());
8563 }
8564
8565 /* Look up the hook_stop and run it (CLI internally handles problem
8566 of stop_command's pre-hook not existing). */
8567 if (stop_command != NULL)
8568 {
8569 stop_context saved_context;
8570
8571 try
8572 {
8573 execute_cmd_pre_hook (stop_command);
8574 }
8575 catch (const gdb_exception &ex)
8576 {
8577 exception_fprintf (gdb_stderr, ex,
8578 "Error while running hook_stop:\n");
8579 }
8580
8581 /* If the stop hook resumes the target, then there's no point in
8582 trying to notify about the previous stop; its context is
8583 gone. Likewise if the command switches thread or inferior --
8584 the observers would print a stop for the wrong
8585 thread/inferior. */
8586 if (saved_context.changed ())
8587 return 1;
8588 }
8589
8590 /* Notify observers about the stop. This is where the interpreters
8591 print the stop event. */
8592 if (inferior_ptid != null_ptid)
8593 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8594 stop_print_frame);
8595 else
8596 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8597
8598 annotate_stopped ();
8599
8600 if (target_has_execution)
8601 {
8602 if (last.kind != TARGET_WAITKIND_SIGNALLED
8603 && last.kind != TARGET_WAITKIND_EXITED
8604 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8605 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8606 Delete any breakpoint that is to be deleted at the next stop. */
8607 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8608 }
8609
8610 /* Try to get rid of automatically added inferiors that are no
8611 longer needed. Keeping those around slows down things linearly.
8612 Note that this never removes the current inferior. */
8613 prune_inferiors ();
8614
8615 return 0;
8616 }
8617 \f
8618 int
8619 signal_stop_state (int signo)
8620 {
8621 return signal_stop[signo];
8622 }
8623
8624 int
8625 signal_print_state (int signo)
8626 {
8627 return signal_print[signo];
8628 }
8629
8630 int
8631 signal_pass_state (int signo)
8632 {
8633 return signal_program[signo];
8634 }
8635
8636 static void
8637 signal_cache_update (int signo)
8638 {
8639 if (signo == -1)
8640 {
8641 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8642 signal_cache_update (signo);
8643
8644 return;
8645 }
8646
8647 signal_pass[signo] = (signal_stop[signo] == 0
8648 && signal_print[signo] == 0
8649 && signal_program[signo] == 1
8650 && signal_catch[signo] == 0);
8651 }
8652
8653 int
8654 signal_stop_update (int signo, int state)
8655 {
8656 int ret = signal_stop[signo];
8657
8658 signal_stop[signo] = state;
8659 signal_cache_update (signo);
8660 return ret;
8661 }
8662
8663 int
8664 signal_print_update (int signo, int state)
8665 {
8666 int ret = signal_print[signo];
8667
8668 signal_print[signo] = state;
8669 signal_cache_update (signo);
8670 return ret;
8671 }
8672
8673 int
8674 signal_pass_update (int signo, int state)
8675 {
8676 int ret = signal_program[signo];
8677
8678 signal_program[signo] = state;
8679 signal_cache_update (signo);
8680 return ret;
8681 }
8682
8683 /* Update the global 'signal_catch' from INFO and notify the
8684 target. */
8685
8686 void
8687 signal_catch_update (const unsigned int *info)
8688 {
8689 int i;
8690
8691 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8692 signal_catch[i] = info[i] > 0;
8693 signal_cache_update (-1);
8694 target_pass_signals (signal_pass);
8695 }
8696
8697 static void
8698 sig_print_header (void)
8699 {
8700 printf_filtered (_("Signal Stop\tPrint\tPass "
8701 "to program\tDescription\n"));
8702 }
8703
8704 static void
8705 sig_print_info (enum gdb_signal oursig)
8706 {
8707 const char *name = gdb_signal_to_name (oursig);
8708 int name_padding = 13 - strlen (name);
8709
8710 if (name_padding <= 0)
8711 name_padding = 0;
8712
8713 printf_filtered ("%s", name);
8714 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8715 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8716 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8717 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8718 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8719 }
8720
8721 /* Specify how various signals in the inferior should be handled. */
8722
8723 static void
8724 handle_command (const char *args, int from_tty)
8725 {
8726 int digits, wordlen;
8727 int sigfirst, siglast;
8728 enum gdb_signal oursig;
8729 int allsigs;
8730
8731 if (args == NULL)
8732 {
8733 error_no_arg (_("signal to handle"));
8734 }
8735
8736 /* Allocate and zero an array of flags for which signals to handle. */
8737
8738 const size_t nsigs = GDB_SIGNAL_LAST;
8739 unsigned char sigs[nsigs] {};
8740
8741 /* Break the command line up into args. */
8742
8743 gdb_argv built_argv (args);
8744
8745 /* Walk through the args, looking for signal oursigs, signal names, and
8746 actions. Signal numbers and signal names may be interspersed with
8747 actions, with the actions being performed for all signals cumulatively
8748 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8749
8750 for (char *arg : built_argv)
8751 {
8752 wordlen = strlen (arg);
8753 for (digits = 0; isdigit (arg[digits]); digits++)
8754 {;
8755 }
8756 allsigs = 0;
8757 sigfirst = siglast = -1;
8758
8759 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8760 {
8761 /* Apply action to all signals except those used by the
8762 debugger. Silently skip those. */
8763 allsigs = 1;
8764 sigfirst = 0;
8765 siglast = nsigs - 1;
8766 }
8767 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8768 {
8769 SET_SIGS (nsigs, sigs, signal_stop);
8770 SET_SIGS (nsigs, sigs, signal_print);
8771 }
8772 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8773 {
8774 UNSET_SIGS (nsigs, sigs, signal_program);
8775 }
8776 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8777 {
8778 SET_SIGS (nsigs, sigs, signal_print);
8779 }
8780 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8781 {
8782 SET_SIGS (nsigs, sigs, signal_program);
8783 }
8784 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8785 {
8786 UNSET_SIGS (nsigs, sigs, signal_stop);
8787 }
8788 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8789 {
8790 SET_SIGS (nsigs, sigs, signal_program);
8791 }
8792 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8793 {
8794 UNSET_SIGS (nsigs, sigs, signal_print);
8795 UNSET_SIGS (nsigs, sigs, signal_stop);
8796 }
8797 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8798 {
8799 UNSET_SIGS (nsigs, sigs, signal_program);
8800 }
8801 else if (digits > 0)
8802 {
8803 /* It is numeric. The numeric signal refers to our own
8804 internal signal numbering from target.h, not to host/target
8805 signal number. This is a feature; users really should be
8806 using symbolic names anyway, and the common ones like
8807 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8808
8809 sigfirst = siglast = (int)
8810 gdb_signal_from_command (atoi (arg));
8811 if (arg[digits] == '-')
8812 {
8813 siglast = (int)
8814 gdb_signal_from_command (atoi (arg + digits + 1));
8815 }
8816 if (sigfirst > siglast)
8817 {
8818 /* Bet he didn't figure we'd think of this case... */
8819 std::swap (sigfirst, siglast);
8820 }
8821 }
8822 else
8823 {
8824 oursig = gdb_signal_from_name (arg);
8825 if (oursig != GDB_SIGNAL_UNKNOWN)
8826 {
8827 sigfirst = siglast = (int) oursig;
8828 }
8829 else
8830 {
8831 /* Not a number and not a recognized flag word => complain. */
8832 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8833 }
8834 }
8835
8836 /* If any signal numbers or symbol names were found, set flags for
8837 which signals to apply actions to. */
8838
8839 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8840 {
8841 switch ((enum gdb_signal) signum)
8842 {
8843 case GDB_SIGNAL_TRAP:
8844 case GDB_SIGNAL_INT:
8845 if (!allsigs && !sigs[signum])
8846 {
8847 if (query (_("%s is used by the debugger.\n\
8848 Are you sure you want to change it? "),
8849 gdb_signal_to_name ((enum gdb_signal) signum)))
8850 {
8851 sigs[signum] = 1;
8852 }
8853 else
8854 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8855 }
8856 break;
8857 case GDB_SIGNAL_0:
8858 case GDB_SIGNAL_DEFAULT:
8859 case GDB_SIGNAL_UNKNOWN:
8860 /* Make sure that "all" doesn't print these. */
8861 break;
8862 default:
8863 sigs[signum] = 1;
8864 break;
8865 }
8866 }
8867 }
8868
8869 for (int signum = 0; signum < nsigs; signum++)
8870 if (sigs[signum])
8871 {
8872 signal_cache_update (-1);
8873 target_pass_signals (signal_pass);
8874 target_program_signals (signal_program);
8875
8876 if (from_tty)
8877 {
8878 /* Show the results. */
8879 sig_print_header ();
8880 for (; signum < nsigs; signum++)
8881 if (sigs[signum])
8882 sig_print_info ((enum gdb_signal) signum);
8883 }
8884
8885 break;
8886 }
8887 }
8888
8889 /* Complete the "handle" command. */
8890
8891 static void
8892 handle_completer (struct cmd_list_element *ignore,
8893 completion_tracker &tracker,
8894 const char *text, const char *word)
8895 {
8896 static const char * const keywords[] =
8897 {
8898 "all",
8899 "stop",
8900 "ignore",
8901 "print",
8902 "pass",
8903 "nostop",
8904 "noignore",
8905 "noprint",
8906 "nopass",
8907 NULL,
8908 };
8909
8910 signal_completer (ignore, tracker, text, word);
8911 complete_on_enum (tracker, keywords, word, word);
8912 }
8913
8914 enum gdb_signal
8915 gdb_signal_from_command (int num)
8916 {
8917 if (num >= 1 && num <= 15)
8918 return (enum gdb_signal) num;
8919 error (_("Only signals 1-15 are valid as numeric signals.\n\
8920 Use \"info signals\" for a list of symbolic signals."));
8921 }
8922
8923 /* Print current contents of the tables set by the handle command.
8924 It is possible we should just be printing signals actually used
8925 by the current target (but for things to work right when switching
8926 targets, all signals should be in the signal tables). */
8927
8928 static void
8929 info_signals_command (const char *signum_exp, int from_tty)
8930 {
8931 enum gdb_signal oursig;
8932
8933 sig_print_header ();
8934
8935 if (signum_exp)
8936 {
8937 /* First see if this is a symbol name. */
8938 oursig = gdb_signal_from_name (signum_exp);
8939 if (oursig == GDB_SIGNAL_UNKNOWN)
8940 {
8941 /* No, try numeric. */
8942 oursig =
8943 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8944 }
8945 sig_print_info (oursig);
8946 return;
8947 }
8948
8949 printf_filtered ("\n");
8950 /* These ugly casts brought to you by the native VAX compiler. */
8951 for (oursig = GDB_SIGNAL_FIRST;
8952 (int) oursig < (int) GDB_SIGNAL_LAST;
8953 oursig = (enum gdb_signal) ((int) oursig + 1))
8954 {
8955 QUIT;
8956
8957 if (oursig != GDB_SIGNAL_UNKNOWN
8958 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8959 sig_print_info (oursig);
8960 }
8961
8962 printf_filtered (_("\nUse the \"handle\" command "
8963 "to change these tables.\n"));
8964 }
8965
8966 /* The $_siginfo convenience variable is a bit special. We don't know
8967 for sure the type of the value until we actually have a chance to
8968 fetch the data. The type can change depending on gdbarch, so it is
8969 also dependent on which thread you have selected.
8970
8971 1. making $_siginfo be an internalvar that creates a new value on
8972 access.
8973
8974 2. making the value of $_siginfo be an lval_computed value. */
8975
8976 /* This function implements the lval_computed support for reading a
8977 $_siginfo value. */
8978
8979 static void
8980 siginfo_value_read (struct value *v)
8981 {
8982 LONGEST transferred;
8983
8984 /* If we can access registers, so can we access $_siginfo. Likewise
8985 vice versa. */
8986 validate_registers_access ();
8987
8988 transferred =
8989 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8990 NULL,
8991 value_contents_all_raw (v),
8992 value_offset (v),
8993 TYPE_LENGTH (value_type (v)));
8994
8995 if (transferred != TYPE_LENGTH (value_type (v)))
8996 error (_("Unable to read siginfo"));
8997 }
8998
8999 /* This function implements the lval_computed support for writing a
9000 $_siginfo value. */
9001
9002 static void
9003 siginfo_value_write (struct value *v, struct value *fromval)
9004 {
9005 LONGEST transferred;
9006
9007 /* If we can access registers, so can we access $_siginfo. Likewise
9008 vice versa. */
9009 validate_registers_access ();
9010
9011 transferred = target_write (current_top_target (),
9012 TARGET_OBJECT_SIGNAL_INFO,
9013 NULL,
9014 value_contents_all_raw (fromval),
9015 value_offset (v),
9016 TYPE_LENGTH (value_type (fromval)));
9017
9018 if (transferred != TYPE_LENGTH (value_type (fromval)))
9019 error (_("Unable to write siginfo"));
9020 }
9021
9022 static const struct lval_funcs siginfo_value_funcs =
9023 {
9024 siginfo_value_read,
9025 siginfo_value_write
9026 };
9027
9028 /* Return a new value with the correct type for the siginfo object of
9029 the current thread using architecture GDBARCH. Return a void value
9030 if there's no object available. */
9031
9032 static struct value *
9033 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9034 void *ignore)
9035 {
9036 if (target_has_stack
9037 && inferior_ptid != null_ptid
9038 && gdbarch_get_siginfo_type_p (gdbarch))
9039 {
9040 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9041
9042 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9043 }
9044
9045 return allocate_value (builtin_type (gdbarch)->builtin_void);
9046 }
9047
9048 \f
9049 /* infcall_suspend_state contains state about the program itself like its
9050 registers and any signal it received when it last stopped.
9051 This state must be restored regardless of how the inferior function call
9052 ends (either successfully, or after it hits a breakpoint or signal)
9053 if the program is to properly continue where it left off. */
9054
9055 class infcall_suspend_state
9056 {
9057 public:
9058 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9059 once the inferior function call has finished. */
9060 infcall_suspend_state (struct gdbarch *gdbarch,
9061 const struct thread_info *tp,
9062 struct regcache *regcache)
9063 : m_thread_suspend (tp->suspend),
9064 m_registers (new readonly_detached_regcache (*regcache))
9065 {
9066 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9067
9068 if (gdbarch_get_siginfo_type_p (gdbarch))
9069 {
9070 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9071 size_t len = TYPE_LENGTH (type);
9072
9073 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9074
9075 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9076 siginfo_data.get (), 0, len) != len)
9077 {
9078 /* Errors ignored. */
9079 siginfo_data.reset (nullptr);
9080 }
9081 }
9082
9083 if (siginfo_data)
9084 {
9085 m_siginfo_gdbarch = gdbarch;
9086 m_siginfo_data = std::move (siginfo_data);
9087 }
9088 }
9089
9090 /* Return a pointer to the stored register state. */
9091
9092 readonly_detached_regcache *registers () const
9093 {
9094 return m_registers.get ();
9095 }
9096
9097 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9098
9099 void restore (struct gdbarch *gdbarch,
9100 struct thread_info *tp,
9101 struct regcache *regcache) const
9102 {
9103 tp->suspend = m_thread_suspend;
9104
9105 if (m_siginfo_gdbarch == gdbarch)
9106 {
9107 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9108
9109 /* Errors ignored. */
9110 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9111 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9112 }
9113
9114 /* The inferior can be gone if the user types "print exit(0)"
9115 (and perhaps other times). */
9116 if (target_has_execution)
9117 /* NB: The register write goes through to the target. */
9118 regcache->restore (registers ());
9119 }
9120
9121 private:
9122 /* How the current thread stopped before the inferior function call was
9123 executed. */
9124 struct thread_suspend_state m_thread_suspend;
9125
9126 /* The registers before the inferior function call was executed. */
9127 std::unique_ptr<readonly_detached_regcache> m_registers;
9128
9129 /* Format of SIGINFO_DATA or NULL if it is not present. */
9130 struct gdbarch *m_siginfo_gdbarch = nullptr;
9131
9132 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9133 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9134 content would be invalid. */
9135 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9136 };
9137
9138 infcall_suspend_state_up
9139 save_infcall_suspend_state ()
9140 {
9141 struct thread_info *tp = inferior_thread ();
9142 struct regcache *regcache = get_current_regcache ();
9143 struct gdbarch *gdbarch = regcache->arch ();
9144
9145 infcall_suspend_state_up inf_state
9146 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9147
9148 /* Having saved the current state, adjust the thread state, discarding
9149 any stop signal information. The stop signal is not useful when
9150 starting an inferior function call, and run_inferior_call will not use
9151 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9152 tp->suspend.stop_signal = GDB_SIGNAL_0;
9153
9154 return inf_state;
9155 }
9156
9157 /* Restore inferior session state to INF_STATE. */
9158
9159 void
9160 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9161 {
9162 struct thread_info *tp = inferior_thread ();
9163 struct regcache *regcache = get_current_regcache ();
9164 struct gdbarch *gdbarch = regcache->arch ();
9165
9166 inf_state->restore (gdbarch, tp, regcache);
9167 discard_infcall_suspend_state (inf_state);
9168 }
9169
9170 void
9171 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9172 {
9173 delete inf_state;
9174 }
9175
9176 readonly_detached_regcache *
9177 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9178 {
9179 return inf_state->registers ();
9180 }
9181
9182 /* infcall_control_state contains state regarding gdb's control of the
9183 inferior itself like stepping control. It also contains session state like
9184 the user's currently selected frame. */
9185
9186 struct infcall_control_state
9187 {
9188 struct thread_control_state thread_control;
9189 struct inferior_control_state inferior_control;
9190
9191 /* Other fields: */
9192 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9193 int stopped_by_random_signal = 0;
9194
9195 /* ID if the selected frame when the inferior function call was made. */
9196 struct frame_id selected_frame_id {};
9197 };
9198
9199 /* Save all of the information associated with the inferior<==>gdb
9200 connection. */
9201
9202 infcall_control_state_up
9203 save_infcall_control_state ()
9204 {
9205 infcall_control_state_up inf_status (new struct infcall_control_state);
9206 struct thread_info *tp = inferior_thread ();
9207 struct inferior *inf = current_inferior ();
9208
9209 inf_status->thread_control = tp->control;
9210 inf_status->inferior_control = inf->control;
9211
9212 tp->control.step_resume_breakpoint = NULL;
9213 tp->control.exception_resume_breakpoint = NULL;
9214
9215 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9216 chain. If caller's caller is walking the chain, they'll be happier if we
9217 hand them back the original chain when restore_infcall_control_state is
9218 called. */
9219 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9220
9221 /* Other fields: */
9222 inf_status->stop_stack_dummy = stop_stack_dummy;
9223 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9224
9225 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9226
9227 return inf_status;
9228 }
9229
9230 static void
9231 restore_selected_frame (const frame_id &fid)
9232 {
9233 frame_info *frame = frame_find_by_id (fid);
9234
9235 /* If inf_status->selected_frame_id is NULL, there was no previously
9236 selected frame. */
9237 if (frame == NULL)
9238 {
9239 warning (_("Unable to restore previously selected frame."));
9240 return;
9241 }
9242
9243 select_frame (frame);
9244 }
9245
9246 /* Restore inferior session state to INF_STATUS. */
9247
9248 void
9249 restore_infcall_control_state (struct infcall_control_state *inf_status)
9250 {
9251 struct thread_info *tp = inferior_thread ();
9252 struct inferior *inf = current_inferior ();
9253
9254 if (tp->control.step_resume_breakpoint)
9255 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9256
9257 if (tp->control.exception_resume_breakpoint)
9258 tp->control.exception_resume_breakpoint->disposition
9259 = disp_del_at_next_stop;
9260
9261 /* Handle the bpstat_copy of the chain. */
9262 bpstat_clear (&tp->control.stop_bpstat);
9263
9264 tp->control = inf_status->thread_control;
9265 inf->control = inf_status->inferior_control;
9266
9267 /* Other fields: */
9268 stop_stack_dummy = inf_status->stop_stack_dummy;
9269 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9270
9271 if (target_has_stack)
9272 {
9273 /* The point of the try/catch is that if the stack is clobbered,
9274 walking the stack might encounter a garbage pointer and
9275 error() trying to dereference it. */
9276 try
9277 {
9278 restore_selected_frame (inf_status->selected_frame_id);
9279 }
9280 catch (const gdb_exception_error &ex)
9281 {
9282 exception_fprintf (gdb_stderr, ex,
9283 "Unable to restore previously selected frame:\n");
9284 /* Error in restoring the selected frame. Select the
9285 innermost frame. */
9286 select_frame (get_current_frame ());
9287 }
9288 }
9289
9290 delete inf_status;
9291 }
9292
9293 void
9294 discard_infcall_control_state (struct infcall_control_state *inf_status)
9295 {
9296 if (inf_status->thread_control.step_resume_breakpoint)
9297 inf_status->thread_control.step_resume_breakpoint->disposition
9298 = disp_del_at_next_stop;
9299
9300 if (inf_status->thread_control.exception_resume_breakpoint)
9301 inf_status->thread_control.exception_resume_breakpoint->disposition
9302 = disp_del_at_next_stop;
9303
9304 /* See save_infcall_control_state for info on stop_bpstat. */
9305 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9306
9307 delete inf_status;
9308 }
9309 \f
9310 /* See infrun.h. */
9311
9312 void
9313 clear_exit_convenience_vars (void)
9314 {
9315 clear_internalvar (lookup_internalvar ("_exitsignal"));
9316 clear_internalvar (lookup_internalvar ("_exitcode"));
9317 }
9318 \f
9319
9320 /* User interface for reverse debugging:
9321 Set exec-direction / show exec-direction commands
9322 (returns error unless target implements to_set_exec_direction method). */
9323
9324 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9325 static const char exec_forward[] = "forward";
9326 static const char exec_reverse[] = "reverse";
9327 static const char *exec_direction = exec_forward;
9328 static const char *const exec_direction_names[] = {
9329 exec_forward,
9330 exec_reverse,
9331 NULL
9332 };
9333
9334 static void
9335 set_exec_direction_func (const char *args, int from_tty,
9336 struct cmd_list_element *cmd)
9337 {
9338 if (target_can_execute_reverse)
9339 {
9340 if (!strcmp (exec_direction, exec_forward))
9341 execution_direction = EXEC_FORWARD;
9342 else if (!strcmp (exec_direction, exec_reverse))
9343 execution_direction = EXEC_REVERSE;
9344 }
9345 else
9346 {
9347 exec_direction = exec_forward;
9348 error (_("Target does not support this operation."));
9349 }
9350 }
9351
9352 static void
9353 show_exec_direction_func (struct ui_file *out, int from_tty,
9354 struct cmd_list_element *cmd, const char *value)
9355 {
9356 switch (execution_direction) {
9357 case EXEC_FORWARD:
9358 fprintf_filtered (out, _("Forward.\n"));
9359 break;
9360 case EXEC_REVERSE:
9361 fprintf_filtered (out, _("Reverse.\n"));
9362 break;
9363 default:
9364 internal_error (__FILE__, __LINE__,
9365 _("bogus execution_direction value: %d"),
9366 (int) execution_direction);
9367 }
9368 }
9369
9370 static void
9371 show_schedule_multiple (struct ui_file *file, int from_tty,
9372 struct cmd_list_element *c, const char *value)
9373 {
9374 fprintf_filtered (file, _("Resuming the execution of threads "
9375 "of all processes is %s.\n"), value);
9376 }
9377
9378 /* Implementation of `siginfo' variable. */
9379
9380 static const struct internalvar_funcs siginfo_funcs =
9381 {
9382 siginfo_make_value,
9383 NULL,
9384 NULL
9385 };
9386
9387 /* Callback for infrun's target events source. This is marked when a
9388 thread has a pending status to process. */
9389
9390 static void
9391 infrun_async_inferior_event_handler (gdb_client_data data)
9392 {
9393 inferior_event_handler (INF_REG_EVENT, NULL);
9394 }
9395
9396 void _initialize_infrun ();
9397 void
9398 _initialize_infrun ()
9399 {
9400 struct cmd_list_element *c;
9401
9402 /* Register extra event sources in the event loop. */
9403 infrun_async_inferior_event_token
9404 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9405
9406 add_info ("signals", info_signals_command, _("\
9407 What debugger does when program gets various signals.\n\
9408 Specify a signal as argument to print info on that signal only."));
9409 add_info_alias ("handle", "signals", 0);
9410
9411 c = add_com ("handle", class_run, handle_command, _("\
9412 Specify how to handle signals.\n\
9413 Usage: handle SIGNAL [ACTIONS]\n\
9414 Args are signals and actions to apply to those signals.\n\
9415 If no actions are specified, the current settings for the specified signals\n\
9416 will be displayed instead.\n\
9417 \n\
9418 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9419 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9420 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9421 The special arg \"all\" is recognized to mean all signals except those\n\
9422 used by the debugger, typically SIGTRAP and SIGINT.\n\
9423 \n\
9424 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9425 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9426 Stop means reenter debugger if this signal happens (implies print).\n\
9427 Print means print a message if this signal happens.\n\
9428 Pass means let program see this signal; otherwise program doesn't know.\n\
9429 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9430 Pass and Stop may be combined.\n\
9431 \n\
9432 Multiple signals may be specified. Signal numbers and signal names\n\
9433 may be interspersed with actions, with the actions being performed for\n\
9434 all signals cumulatively specified."));
9435 set_cmd_completer (c, handle_completer);
9436
9437 if (!dbx_commands)
9438 stop_command = add_cmd ("stop", class_obscure,
9439 not_just_help_class_command, _("\
9440 There is no `stop' command, but you can set a hook on `stop'.\n\
9441 This allows you to set a list of commands to be run each time execution\n\
9442 of the program stops."), &cmdlist);
9443
9444 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9445 Set inferior debugging."), _("\
9446 Show inferior debugging."), _("\
9447 When non-zero, inferior specific debugging is enabled."),
9448 NULL,
9449 show_debug_infrun,
9450 &setdebuglist, &showdebuglist);
9451
9452 add_setshow_boolean_cmd ("displaced", class_maintenance,
9453 &debug_displaced, _("\
9454 Set displaced stepping debugging."), _("\
9455 Show displaced stepping debugging."), _("\
9456 When non-zero, displaced stepping specific debugging is enabled."),
9457 NULL,
9458 show_debug_displaced,
9459 &setdebuglist, &showdebuglist);
9460
9461 add_setshow_boolean_cmd ("non-stop", no_class,
9462 &non_stop_1, _("\
9463 Set whether gdb controls the inferior in non-stop mode."), _("\
9464 Show whether gdb controls the inferior in non-stop mode."), _("\
9465 When debugging a multi-threaded program and this setting is\n\
9466 off (the default, also called all-stop mode), when one thread stops\n\
9467 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9468 all other threads in the program while you interact with the thread of\n\
9469 interest. When you continue or step a thread, you can allow the other\n\
9470 threads to run, or have them remain stopped, but while you inspect any\n\
9471 thread's state, all threads stop.\n\
9472 \n\
9473 In non-stop mode, when one thread stops, other threads can continue\n\
9474 to run freely. You'll be able to step each thread independently,\n\
9475 leave it stopped or free to run as needed."),
9476 set_non_stop,
9477 show_non_stop,
9478 &setlist,
9479 &showlist);
9480
9481 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9482 {
9483 signal_stop[i] = 1;
9484 signal_print[i] = 1;
9485 signal_program[i] = 1;
9486 signal_catch[i] = 0;
9487 }
9488
9489 /* Signals caused by debugger's own actions should not be given to
9490 the program afterwards.
9491
9492 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9493 explicitly specifies that it should be delivered to the target
9494 program. Typically, that would occur when a user is debugging a
9495 target monitor on a simulator: the target monitor sets a
9496 breakpoint; the simulator encounters this breakpoint and halts
9497 the simulation handing control to GDB; GDB, noting that the stop
9498 address doesn't map to any known breakpoint, returns control back
9499 to the simulator; the simulator then delivers the hardware
9500 equivalent of a GDB_SIGNAL_TRAP to the program being
9501 debugged. */
9502 signal_program[GDB_SIGNAL_TRAP] = 0;
9503 signal_program[GDB_SIGNAL_INT] = 0;
9504
9505 /* Signals that are not errors should not normally enter the debugger. */
9506 signal_stop[GDB_SIGNAL_ALRM] = 0;
9507 signal_print[GDB_SIGNAL_ALRM] = 0;
9508 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9509 signal_print[GDB_SIGNAL_VTALRM] = 0;
9510 signal_stop[GDB_SIGNAL_PROF] = 0;
9511 signal_print[GDB_SIGNAL_PROF] = 0;
9512 signal_stop[GDB_SIGNAL_CHLD] = 0;
9513 signal_print[GDB_SIGNAL_CHLD] = 0;
9514 signal_stop[GDB_SIGNAL_IO] = 0;
9515 signal_print[GDB_SIGNAL_IO] = 0;
9516 signal_stop[GDB_SIGNAL_POLL] = 0;
9517 signal_print[GDB_SIGNAL_POLL] = 0;
9518 signal_stop[GDB_SIGNAL_URG] = 0;
9519 signal_print[GDB_SIGNAL_URG] = 0;
9520 signal_stop[GDB_SIGNAL_WINCH] = 0;
9521 signal_print[GDB_SIGNAL_WINCH] = 0;
9522 signal_stop[GDB_SIGNAL_PRIO] = 0;
9523 signal_print[GDB_SIGNAL_PRIO] = 0;
9524
9525 /* These signals are used internally by user-level thread
9526 implementations. (See signal(5) on Solaris.) Like the above
9527 signals, a healthy program receives and handles them as part of
9528 its normal operation. */
9529 signal_stop[GDB_SIGNAL_LWP] = 0;
9530 signal_print[GDB_SIGNAL_LWP] = 0;
9531 signal_stop[GDB_SIGNAL_WAITING] = 0;
9532 signal_print[GDB_SIGNAL_WAITING] = 0;
9533 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9534 signal_print[GDB_SIGNAL_CANCEL] = 0;
9535 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9536 signal_print[GDB_SIGNAL_LIBRT] = 0;
9537
9538 /* Update cached state. */
9539 signal_cache_update (-1);
9540
9541 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9542 &stop_on_solib_events, _("\
9543 Set stopping for shared library events."), _("\
9544 Show stopping for shared library events."), _("\
9545 If nonzero, gdb will give control to the user when the dynamic linker\n\
9546 notifies gdb of shared library events. The most common event of interest\n\
9547 to the user would be loading/unloading of a new library."),
9548 set_stop_on_solib_events,
9549 show_stop_on_solib_events,
9550 &setlist, &showlist);
9551
9552 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9553 follow_fork_mode_kind_names,
9554 &follow_fork_mode_string, _("\
9555 Set debugger response to a program call of fork or vfork."), _("\
9556 Show debugger response to a program call of fork or vfork."), _("\
9557 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9558 parent - the original process is debugged after a fork\n\
9559 child - the new process is debugged after a fork\n\
9560 The unfollowed process will continue to run.\n\
9561 By default, the debugger will follow the parent process."),
9562 NULL,
9563 show_follow_fork_mode_string,
9564 &setlist, &showlist);
9565
9566 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9567 follow_exec_mode_names,
9568 &follow_exec_mode_string, _("\
9569 Set debugger response to a program call of exec."), _("\
9570 Show debugger response to a program call of exec."), _("\
9571 An exec call replaces the program image of a process.\n\
9572 \n\
9573 follow-exec-mode can be:\n\
9574 \n\
9575 new - the debugger creates a new inferior and rebinds the process\n\
9576 to this new inferior. The program the process was running before\n\
9577 the exec call can be restarted afterwards by restarting the original\n\
9578 inferior.\n\
9579 \n\
9580 same - the debugger keeps the process bound to the same inferior.\n\
9581 The new executable image replaces the previous executable loaded in\n\
9582 the inferior. Restarting the inferior after the exec call restarts\n\
9583 the executable the process was running after the exec call.\n\
9584 \n\
9585 By default, the debugger will use the same inferior."),
9586 NULL,
9587 show_follow_exec_mode_string,
9588 &setlist, &showlist);
9589
9590 add_setshow_enum_cmd ("scheduler-locking", class_run,
9591 scheduler_enums, &scheduler_mode, _("\
9592 Set mode for locking scheduler during execution."), _("\
9593 Show mode for locking scheduler during execution."), _("\
9594 off == no locking (threads may preempt at any time)\n\
9595 on == full locking (no thread except the current thread may run)\n\
9596 This applies to both normal execution and replay mode.\n\
9597 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9598 In this mode, other threads may run during other commands.\n\
9599 This applies to both normal execution and replay mode.\n\
9600 replay == scheduler locked in replay mode and unlocked during normal execution."),
9601 set_schedlock_func, /* traps on target vector */
9602 show_scheduler_mode,
9603 &setlist, &showlist);
9604
9605 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9606 Set mode for resuming threads of all processes."), _("\
9607 Show mode for resuming threads of all processes."), _("\
9608 When on, execution commands (such as 'continue' or 'next') resume all\n\
9609 threads of all processes. When off (which is the default), execution\n\
9610 commands only resume the threads of the current process. The set of\n\
9611 threads that are resumed is further refined by the scheduler-locking\n\
9612 mode (see help set scheduler-locking)."),
9613 NULL,
9614 show_schedule_multiple,
9615 &setlist, &showlist);
9616
9617 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9618 Set mode of the step operation."), _("\
9619 Show mode of the step operation."), _("\
9620 When set, doing a step over a function without debug line information\n\
9621 will stop at the first instruction of that function. Otherwise, the\n\
9622 function is skipped and the step command stops at a different source line."),
9623 NULL,
9624 show_step_stop_if_no_debug,
9625 &setlist, &showlist);
9626
9627 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9628 &can_use_displaced_stepping, _("\
9629 Set debugger's willingness to use displaced stepping."), _("\
9630 Show debugger's willingness to use displaced stepping."), _("\
9631 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9632 supported by the target architecture. If off, gdb will not use displaced\n\
9633 stepping to step over breakpoints, even if such is supported by the target\n\
9634 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9635 if the target architecture supports it and non-stop mode is active, but will not\n\
9636 use it in all-stop mode (see help set non-stop)."),
9637 NULL,
9638 show_can_use_displaced_stepping,
9639 &setlist, &showlist);
9640
9641 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9642 &exec_direction, _("Set direction of execution.\n\
9643 Options are 'forward' or 'reverse'."),
9644 _("Show direction of execution (forward/reverse)."),
9645 _("Tells gdb whether to execute forward or backward."),
9646 set_exec_direction_func, show_exec_direction_func,
9647 &setlist, &showlist);
9648
9649 /* Set/show detach-on-fork: user-settable mode. */
9650
9651 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9652 Set whether gdb will detach the child of a fork."), _("\
9653 Show whether gdb will detach the child of a fork."), _("\
9654 Tells gdb whether to detach the child of a fork."),
9655 NULL, NULL, &setlist, &showlist);
9656
9657 /* Set/show disable address space randomization mode. */
9658
9659 add_setshow_boolean_cmd ("disable-randomization", class_support,
9660 &disable_randomization, _("\
9661 Set disabling of debuggee's virtual address space randomization."), _("\
9662 Show disabling of debuggee's virtual address space randomization."), _("\
9663 When this mode is on (which is the default), randomization of the virtual\n\
9664 address space is disabled. Standalone programs run with the randomization\n\
9665 enabled by default on some platforms."),
9666 &set_disable_randomization,
9667 &show_disable_randomization,
9668 &setlist, &showlist);
9669
9670 /* ptid initializations */
9671 inferior_ptid = null_ptid;
9672 target_last_wait_ptid = minus_one_ptid;
9673
9674 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9675 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9676 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9677 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9678
9679 /* Explicitly create without lookup, since that tries to create a
9680 value with a void typed value, and when we get here, gdbarch
9681 isn't initialized yet. At this point, we're quite sure there
9682 isn't another convenience variable of the same name. */
9683 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9684
9685 add_setshow_boolean_cmd ("observer", no_class,
9686 &observer_mode_1, _("\
9687 Set whether gdb controls the inferior in observer mode."), _("\
9688 Show whether gdb controls the inferior in observer mode."), _("\
9689 In observer mode, GDB can get data from the inferior, but not\n\
9690 affect its execution. Registers and memory may not be changed,\n\
9691 breakpoints may not be set, and the program cannot be interrupted\n\
9692 or signalled."),
9693 set_observer_mode,
9694 show_observer_mode,
9695 &setlist,
9696 &showlist);
9697 }
This page took 0.249712 seconds and 5 git commands to generate.