Fix PR gdb/20418 - Problems with synchronous commands and new-ui
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
158
159 static ptid_t previous_inferior_ptid;
160
161 /* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166 static int detach_fork = 1;
167
168 int debug_displaced = 0;
169 static void
170 show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174 }
175
176 unsigned int debug_infrun = 0;
177 static void
178 show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182 }
183
184
185 /* Support for disabling address space randomization. */
186
187 int disable_randomization = 1;
188
189 static void
190 show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202 }
203
204 static void
205 set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207 {
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212 }
213
214 /* User interface for non-stop mode. */
215
216 int non_stop = 0;
217 static int non_stop_1 = 0;
218
219 static void
220 set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230 }
231
232 static void
233 show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239 }
240
241 /* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
245 int observer_mode = 0;
246 static int observer_mode_1 = 0;
247
248 static void
249 set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251 {
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282 }
283
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290
291 /* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297 void
298 update_observer_mode (void)
299 {
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314 }
315
316 /* Tables of how to react to signals; the user sets them. */
317
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321
322 /* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326 static unsigned char *signal_catch;
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char *signal_pass;
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368 int stop_on_solib_events;
369
370 /* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373 static void
374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375 {
376 update_solib_breakpoints ();
377 }
378
379 static void
380 show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382 {
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385 }
386
387 /* Nonzero after stop if current stack frame should be printed. */
388
389 static int stop_print_frame;
390
391 /* This is a cached copy of the pid/waitstatus of the last event
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396
397 static void context_switch (ptid_t ptid);
398
399 void init_thread_stepping_state (struct thread_info *tss);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428 static int
429 follow_fork_inferior (int follow_child, int detach_fork)
430 {
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped. Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
480 target_terminal_ours_for_output ();
481 fprintf_filtered (gdb_stdlog,
482 _("Detaching after %s from child %s.\n"),
483 has_vforked ? "vfork" : "fork",
484 target_pid_to_str (process_ptid));
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
504 inferior_ptid = child_ptid;
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662 }
663
664 /* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
668 static int
669 follow_fork (void)
670 {
671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
680 struct breakpoint *exception_resume_breakpoint = NULL;
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
684 struct thread_fsm *thread_fsm = NULL;
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
736 thread_fsm = tp->thread_fsm;
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
747 delete_exception_resume_breakpoint (tp);
748 tp->thread_fsm = NULL;
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
769 tp = find_thread_ptid (parent);
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
777 /* If we followed the child, switch to it... */
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
794 tp->thread_fsm = thread_fsm;
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
804 warning (_("Not resuming: switched threads "
805 "before following fork child."));
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
825
826 return should_resume;
827 }
828
829 static void
830 follow_inferior_reset_breakpoints (void)
831 {
832 struct thread_info *tp = inferior_thread ();
833
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
847 if (tp->control.step_resume_breakpoint)
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
852
853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
854 if (tp->control.exception_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
867 }
868
869 /* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872 static int
873 proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875 {
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
890 clear_proceed_status (0);
891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
892 }
893
894 return 0;
895 }
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
920 /* follow-fork child, detach-on-fork on. */
921
922 inf->vfork_parent->pending_detach = 0;
923
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
958 target_terminal_ours_for_output ();
959
960 if (exec)
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
967 else
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1031 inferior. */
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059 }
1060
1061 /* Enum strings for "set|show follow-exec-mode". */
1062
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070 };
1071
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078 }
1079
1080 /* EXECD_PATHNAME is assumed to be non-NULL. */
1081
1082 static void
1083 follow_exec (ptid_t ptid, char *execd_pathname)
1084 {
1085 struct thread_info *th, *tmp;
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid_get_pid (ptid);
1088 ptid_t process_ptid;
1089
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1109 we now have a new a.out, those shadow contents aren't valid. */
1110
1111 mark_breakpoints_out ();
1112
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
1132 ALL_THREADS_SAFE (th, tmp)
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
1141 th->control.step_resume_breakpoint = NULL;
1142 th->control.exception_resume_breakpoint = NULL;
1143 th->control.single_step_breakpoints = NULL;
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
1146
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
1150 th->stop_requested = 0;
1151
1152 update_breakpoints_after_exec ();
1153
1154 /* What is this a.out's name? */
1155 process_ptid = pid_to_ptid (pid);
1156 printf_unfiltered (_("%s is executing new program: %s\n"),
1157 target_pid_to_str (process_ptid),
1158 execd_pathname);
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1161 inferior has essentially been killed & reborn. */
1162
1163 gdb_flush (gdb_stdout);
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 if (*gdb_sysroot != '\0')
1168 {
1169 char *name = exec_file_find (execd_pathname, NULL);
1170
1171 execd_pathname = (char *) alloca (strlen (name) + 1);
1172 strcpy (execd_pathname, name);
1173 xfree (name);
1174 }
1175
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, execd_pathname);
1197
1198 set_current_inferior (inf);
1199 set_current_program_space (inf->pspace);
1200 add_thread (ptid);
1201 }
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1215 /* That a.out is now the one to use. */
1216 exec_file_attach (execd_pathname, 0);
1217
1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219 (Position Independent Executable) main symbol file will get applied by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1221 the breakpoints with the zero displacement. */
1222
1223 symbol_file_add (execd_pathname,
1224 (inf->symfile_flags
1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1226 NULL, 0);
1227
1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229 set_initial_language ();
1230
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
1239 solib_create_inferior_hook (0);
1240
1241 jit_inferior_created_hook ();
1242
1243 breakpoint_re_set ();
1244
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1247 to symbol_file_command...). */
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1253 matically get reset there in the new process.). */
1254 }
1255
1256 /* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263 struct thread_info *step_over_queue_head;
1264
1265 /* Bit flags indicating what the thread needs to step over. */
1266
1267 enum step_over_what_flag
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
1277 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1278
1279 /* Info about an instruction that is being stepped over. */
1280
1281 struct step_over_info
1282 {
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
1287 struct address_space *aspace;
1288 CORE_ADDR address;
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
1293
1294 /* The thread's global number. */
1295 int thread;
1296 };
1297
1298 /* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322 static struct step_over_info step_over_info;
1323
1324 /* Record the address of the breakpoint/instruction we're currently
1325 stepping over. */
1326
1327 static void
1328 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
1349 step_over_info.nonsteppable_watchpoint_p = 0;
1350 step_over_info.thread = -1;
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358 {
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363 }
1364
1365 /* See infrun.h. */
1366
1367 int
1368 thread_is_stepping_over_breakpoint (int thread)
1369 {
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372 }
1373
1374 /* See infrun.h. */
1375
1376 int
1377 stepping_past_nonsteppable_watchpoint (void)
1378 {
1379 return step_over_info.nonsteppable_watchpoint_p;
1380 }
1381
1382 /* Returns true if step-over info is valid. */
1383
1384 static int
1385 step_over_info_valid_p (void)
1386 {
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
1389 }
1390
1391 \f
1392 /* Displaced stepping. */
1393
1394 /* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
1480 /* Per-inferior displaced stepping state. */
1481 struct displaced_step_inferior_state
1482 {
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511 };
1512
1513 /* The list of states of processes involved in displaced stepping
1514 presently. */
1515 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517 /* Get the displaced stepping state of process PID. */
1518
1519 static struct displaced_step_inferior_state *
1520 get_displaced_stepping_state (int pid)
1521 {
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531 }
1532
1533 /* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536 static int
1537 displaced_step_in_progress_any_inferior (void)
1538 {
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548 }
1549
1550 /* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553 static int
1554 displaced_step_in_progress_thread (ptid_t ptid)
1555 {
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563 }
1564
1565 /* Return true if process PID has a thread doing a displaced step. */
1566
1567 static int
1568 displaced_step_in_progress (int pid)
1569 {
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577 }
1578
1579 /* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583 static struct displaced_step_inferior_state *
1584 add_displaced_stepping_state (int pid)
1585 {
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
1593
1594 state = XCNEW (struct displaced_step_inferior_state);
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
1598
1599 return state;
1600 }
1601
1602 /* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606 struct displaced_step_closure*
1607 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608 {
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618 }
1619
1620 /* Remove the displaced stepping state of process PID. */
1621
1622 static void
1623 remove_displaced_stepping_state (int pid)
1624 {
1625 struct displaced_step_inferior_state *it, **prev_next_p;
1626
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643 }
1644
1645 static void
1646 infrun_inferior_exit (struct inferior *inf)
1647 {
1648 remove_displaced_stepping_state (inf->pid);
1649 }
1650
1651 /* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
1659 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1660
1661 static void
1662 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665 {
1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
1670 value, target_is_non_stop_p () ? "on" : "off");
1671 else
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
1675 }
1676
1677 /* Return non-zero if displaced stepping can/should be used to step
1678 over breakpoints of thread TP. */
1679
1680 static int
1681 use_displaced_stepping (struct thread_info *tp)
1682 {
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
1696 }
1697
1698 /* Clean out any stray displaced stepping state. */
1699 static void
1700 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1701 {
1702 /* Indicate that there is no cleanup pending. */
1703 displaced->step_ptid = null_ptid;
1704
1705 if (displaced->step_closure)
1706 {
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
1710 }
1711 }
1712
1713 static void
1714 displaced_step_clear_cleanup (void *arg)
1715 {
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
1718
1719 displaced_step_clear (state);
1720 }
1721
1722 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723 void
1724 displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727 {
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733 }
1734
1735 /* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
1751 static int
1752 displaced_step_prepare_throw (ptid_t ptid)
1753 {
1754 struct cleanup *old_cleanups, *ignore_cleanups;
1755 struct thread_info *tp = find_thread_ptid (ptid);
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1758 struct address_space *aspace = get_regcache_aspace (regcache);
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
1762 struct displaced_step_inferior_state *displaced;
1763 int status;
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
1780
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "displaced: deferring step of %s\n",
1791 target_pid_to_str (ptid));
1792
1793 thread_step_over_chain_enqueue (tp);
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
1804 displaced_step_clear (displaced);
1805
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
1809 original = regcache_read_pc (regcache);
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
1836 /* Save the original contents of the copy area. */
1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1838 ignore_cleanups = make_cleanup (free_current_contents,
1839 &displaced->step_saved_copy);
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
1846 if (debug_displaced)
1847 {
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1856 original, copy, regcache);
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
1865
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
1873
1874 make_cleanup (displaced_step_clear_cleanup, displaced);
1875
1876 /* Resume execution at the copy. */
1877 regcache_write_pc (regcache, copy);
1878
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
1882
1883 if (debug_displaced)
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
1886
1887 return 1;
1888 }
1889
1890 /* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893 static int
1894 displaced_step_prepare (ptid_t ptid)
1895 {
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
1921 warning (_("disabling displaced stepping: %s"),
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933 }
1934
1935 static void
1936 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
1938 {
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1940
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944 }
1945
1946 /* Restore the contents of the copy area for thread PTID. */
1947
1948 static void
1949 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951 {
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961 }
1962
1963 /* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969 static int
1970 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1971 {
1972 struct cleanup *old_cleanups;
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1975 int ret;
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
1979 return 0;
1980
1981 /* Was this event for the pid we displaced? */
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
1984 return 0;
1985
1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1987
1988 displaced_step_restore (displaced, displaced->step_ptid);
1989
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
1995 /* Did the instruction complete successfully? */
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
2000 {
2001 /* Fix up the resulting state. */
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
2007 ret = 1;
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
2015
2016 pc = displaced->step_original + (pc - displaced->step_copy);
2017 regcache_write_pc (regcache, pc);
2018 ret = -1;
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
2023 displaced->step_ptid = null_ptid;
2024
2025 return ret;
2026 }
2027
2028 /* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030 struct execution_control_state
2031 {
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049 };
2050
2051 /* Clear ECS and set it to point at TP. */
2052
2053 static void
2054 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055 {
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059 }
2060
2061 static void keep_going_pass_signal (struct execution_control_state *ecs);
2062 static void prepare_to_wait (struct execution_control_state *ecs);
2063 static int keep_going_stepped_thread (struct thread_info *tp);
2064 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2065
2066 /* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069 static int
2070 start_step_over (void)
2071 {
2072 struct thread_info *tp, *next;
2073
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
2080 {
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
2083 step_over_what step_what;
2084 int must_be_in_line;
2085
2086 next = thread_step_over_chain_next (tp);
2087
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2091 continue;
2092
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
2096 && !use_displaced_stepping (tp)));
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
2116 {
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
2119 "trap_expected=%d, resumed=%d, executing=%d\n",
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
2122 tp->resumed,
2123 tp->executing);
2124 }
2125
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
2137 if (!target_is_non_stop_p () && !step_what)
2138 continue;
2139
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
2143
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
2146
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
2156 if (!target_is_non_stop_p ())
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
2167 }
2168
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
2173 }
2174
2175 return 0;
2176 }
2177
2178 /* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180 static void
2181 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182 {
2183 struct displaced_step_inferior_state *displaced;
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
2194 }
2195 }
2196
2197 \f
2198 /* Resuming. */
2199
2200 /* Things to clean up if we QUIT out of resume (). */
2201 static void
2202 resume_cleanups (void *ignore)
2203 {
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
2206
2207 normal_stop ();
2208 }
2209
2210 static const char schedlock_off[] = "off";
2211 static const char schedlock_on[] = "on";
2212 static const char schedlock_step[] = "step";
2213 static const char schedlock_replay[] = "replay";
2214 static const char *const scheduler_enums[] = {
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
2218 schedlock_replay,
2219 NULL
2220 };
2221 static const char *scheduler_mode = schedlock_replay;
2222 static void
2223 show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225 {
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
2229 value);
2230 }
2231
2232 static void
2233 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2234 {
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
2240 }
2241
2242 /* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245 int sched_multi = 0;
2246
2247 /* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253 static int
2254 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255 {
2256 int hw_step = 1;
2257
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch)
2260 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2261 {
2262 hw_step = 0;
2263 }
2264 return hw_step;
2265 }
2266
2267 /* See infrun.h. */
2268
2269 ptid_t
2270 user_visible_resume_ptid (int step)
2271 {
2272 ptid_t resume_ptid;
2273
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
2281 || (scheduler_mode == schedlock_step && step))
2282 {
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
2285 resume_ptid = inferior_ptid;
2286 }
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
2305
2306 return resume_ptid;
2307 }
2308
2309 /* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315 static ptid_t
2316 internal_resume_ptid (int user_step)
2317 {
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326 }
2327
2328 /* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331 static void
2332 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333 {
2334 struct thread_info *tp = inferior_thread ();
2335
2336 /* Install inferior's terminal modes. */
2337 target_terminal_inferior ();
2338
2339 /* Avoid confusing the next resume, if the next stop/resume
2340 happens to apply to another thread. */
2341 tp->suspend.stop_signal = GDB_SIGNAL_0;
2342
2343 /* Advise target which signals may be handled silently.
2344
2345 If we have removed breakpoints because we are stepping over one
2346 in-line (in any thread), we need to receive all signals to avoid
2347 accidentally skipping a breakpoint during execution of a signal
2348 handler.
2349
2350 Likewise if we're displaced stepping, otherwise a trap for a
2351 breakpoint in a signal handler might be confused with the
2352 displaced step finishing. We don't make the displaced_step_fixup
2353 step distinguish the cases instead, because:
2354
2355 - a backtrace while stopped in the signal handler would show the
2356 scratch pad as frame older than the signal handler, instead of
2357 the real mainline code.
2358
2359 - when the thread is later resumed, the signal handler would
2360 return to the scratch pad area, which would no longer be
2361 valid. */
2362 if (step_over_info_valid_p ()
2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2364 target_pass_signals (0, NULL);
2365 else
2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367
2368 target_resume (resume_ptid, step, sig);
2369 }
2370
2371 /* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
2377 SIG is the signal to give the inferior (zero for none). */
2378 void
2379 resume (enum gdb_signal sig)
2380 {
2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2384 struct thread_info *tp = inferior_thread ();
2385 CORE_ADDR pc = regcache_read_pc (regcache);
2386 struct address_space *aspace = get_regcache_aspace (regcache);
2387 ptid_t resume_ptid;
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
2396 int step;
2397
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
2400 QUIT;
2401
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
2424 warning (_("Couldn't deliver signal %s to %s."),
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
2457 step = 0;
2458 }
2459
2460 if (debug_infrun)
2461 fprintf_unfiltered (gdb_stdlog,
2462 "infrun: resume (step=%d, signal=%s), "
2463 "trap_expected=%d, current thread [%s] at %s\n",
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
2468
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2474 {
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
2534 (overstep). */
2535 gdb_assert (!step_over_info_valid_p ());
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
2539 resume_ptid = internal_resume_ptid (user_step);
2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2541 discard_cleanups (old_cleanups);
2542 tp->resumed = 1;
2543 return;
2544 }
2545 }
2546 }
2547
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
2566 && !step_over_info_valid_p ()
2567 && sig == GDB_SIGNAL_0
2568 && !current_inferior ()->waiting_for_vfork_done)
2569 {
2570 int prepared = displaced_step_prepare (inferior_ptid);
2571
2572 if (prepared == 0)
2573 {
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
2590 regcache_read_pc (regcache), 0, tp->global_num);
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
2599
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2603
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
2608 }
2609
2610 /* Do we need to do it the hard way, w/temp breakpoints? */
2611 else if (step)
2612 step = maybe_software_singlestep (gdbarch, pc);
2613
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
2638 if (thread_has_single_step_breakpoints_set (tp)
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
2653 delete_single_step_breakpoints (tp);
2654
2655 clear_step_over_info ();
2656 tp->control.trap_expected = 0;
2657
2658 insert_breakpoints ();
2659 }
2660
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2665
2666 /* Decide the set of threads to ask the target to resume. */
2667 if (tp->control.trap_expected)
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
2678 resume_ptid = inferior_ptid;
2679 }
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
2682
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
2685 {
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
2718
2719 tp->stepped_breakpoint = 1;
2720
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
2725 step = 0;
2726 }
2727
2728 if (debug_displaced
2729 && tp->control.trap_expected
2730 && use_displaced_stepping (tp)
2731 && !step_over_info_valid_p ())
2732 {
2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
2743
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
2753
2754 do_target_resume (resume_ptid, step, sig);
2755 tp->resumed = 1;
2756 discard_cleanups (old_cleanups);
2757 }
2758 \f
2759 /* Proceeding. */
2760
2761 /* See infrun.h. */
2762
2763 /* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770 static ULONGEST current_stop_id;
2771
2772 /* See infrun.h. */
2773
2774 ULONGEST
2775 get_stop_id (void)
2776 {
2777 return current_stop_id;
2778 }
2779
2780 /* Called when we report a user visible stop. */
2781
2782 static void
2783 new_stop_id (void)
2784 {
2785 current_stop_id++;
2786 }
2787
2788 /* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
2791 static void
2792 clear_proceed_status_thread (struct thread_info *tp)
2793 {
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
2798
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
2841 tp->control.may_range_step = 0;
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2845 tp->control.step_start_function = NULL;
2846 tp->stop_requested = 0;
2847
2848 tp->control.stop_step = 0;
2849
2850 tp->control.proceed_to_finish = 0;
2851
2852 tp->control.stepping_command = 0;
2853
2854 /* Discard any remaining commands or status from previous stop. */
2855 bpstat_clear (&tp->control.stop_bpstat);
2856 }
2857
2858 void
2859 clear_proceed_status (int step)
2860 {
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
2873 if (!non_stop)
2874 {
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
2888 }
2889
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
2900
2901 inferior = current_inferior ();
2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
2903 }
2904
2905 observer_notify_about_to_proceed ();
2906 }
2907
2908 /* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
2911
2912 static int
2913 thread_still_needs_step_over_bp (struct thread_info *tp)
2914 {
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928 }
2929
2930 /* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
2934 static step_over_what
2935 thread_still_needs_step_over (struct thread_info *tp)
2936 {
2937 step_over_what what = 0;
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947 }
2948
2949 /* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952 static int
2953 schedlock_applies (struct thread_info *tp)
2954 {
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
2961 }
2962
2963 /* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
2967 or -1 for act according to how it stopped.
2968 STEP is nonzero if should trap after one instruction.
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975 void
2976 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2977 {
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
2980 struct thread_info *tp;
2981 CORE_ADDR pc;
2982 struct address_space *aspace;
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
2987 int started;
2988
2989 /* If we're stopped at a fork/vfork, follow the branch set by the
2990 "set follow-fork-mode" command; otherwise, we'll just proceed
2991 resuming the current thread. */
2992 if (!follow_fork ())
2993 {
2994 /* The target for some reason decided not to resume. */
2995 normal_stop ();
2996 if (target_can_async_p ())
2997 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2998 return;
2999 }
3000
3001 /* We'll update this if & when we switch to a new thread. */
3002 previous_inferior_ptid = inferior_ptid;
3003
3004 regcache = get_current_regcache ();
3005 gdbarch = get_regcache_arch (regcache);
3006 aspace = get_regcache_aspace (regcache);
3007 pc = regcache_read_pc (regcache);
3008 tp = inferior_thread ();
3009
3010 /* Fill in with reasonable starting values. */
3011 init_thread_stepping_state (tp);
3012
3013 gdb_assert (!thread_is_in_step_over_chain (tp));
3014
3015 if (addr == (CORE_ADDR) -1)
3016 {
3017 if (pc == stop_pc
3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3019 && execution_direction != EXEC_REVERSE)
3020 /* There is a breakpoint at the address we will resume at,
3021 step one instruction before inserting breakpoints so that
3022 we do not stop right away (and report a second hit at this
3023 breakpoint).
3024
3025 Note, we don't do this in reverse, because we won't
3026 actually be executing the breakpoint insn anyway.
3027 We'll be (un-)executing the previous instruction. */
3028 tp->stepping_over_breakpoint = 1;
3029 else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 && gdbarch_single_step_through_delay (gdbarch,
3031 get_current_frame ()))
3032 /* We stepped onto an instruction that needs to be stepped
3033 again before re-inserting the breakpoint, do so. */
3034 tp->stepping_over_breakpoint = 1;
3035 }
3036 else
3037 {
3038 regcache_write_pc (regcache, addr);
3039 }
3040
3041 if (siggnal != GDB_SIGNAL_DEFAULT)
3042 tp->suspend.stop_signal = siggnal;
3043
3044 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3045
3046 /* If an exception is thrown from this point on, make sure to
3047 propagate GDB's knowledge of the executing state to the
3048 frontend/user running state. */
3049 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3050
3051 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3052 threads (e.g., we might need to set threads stepping over
3053 breakpoints first), from the user/frontend's point of view, all
3054 threads in RESUME_PTID are now running. Unless we're calling an
3055 inferior function, as in that case we pretend the inferior
3056 doesn't run at all. */
3057 if (!tp->control.in_infcall)
3058 set_running (resume_ptid, 1);
3059
3060 if (debug_infrun)
3061 fprintf_unfiltered (gdb_stdlog,
3062 "infrun: proceed (addr=%s, signal=%s)\n",
3063 paddress (gdbarch, addr),
3064 gdb_signal_to_symbol_string (siggnal));
3065
3066 annotate_starting ();
3067
3068 /* Make sure that output from GDB appears before output from the
3069 inferior. */
3070 gdb_flush (gdb_stdout);
3071
3072 /* In a multi-threaded task we may select another thread and
3073 then continue or step.
3074
3075 But if a thread that we're resuming had stopped at a breakpoint,
3076 it will immediately cause another breakpoint stop without any
3077 execution (i.e. it will report a breakpoint hit incorrectly). So
3078 we must step over it first.
3079
3080 Look for threads other than the current (TP) that reported a
3081 breakpoint hit and haven't been resumed yet since. */
3082
3083 /* If scheduler locking applies, we can avoid iterating over all
3084 threads. */
3085 if (!non_stop && !schedlock_applies (tp))
3086 {
3087 struct thread_info *current = tp;
3088
3089 ALL_NON_EXITED_THREADS (tp)
3090 {
3091 /* Ignore the current thread here. It's handled
3092 afterwards. */
3093 if (tp == current)
3094 continue;
3095
3096 /* Ignore threads of processes we're not resuming. */
3097 if (!ptid_match (tp->ptid, resume_ptid))
3098 continue;
3099
3100 if (!thread_still_needs_step_over (tp))
3101 continue;
3102
3103 gdb_assert (!thread_is_in_step_over_chain (tp));
3104
3105 if (debug_infrun)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "infrun: need to step-over [%s] first\n",
3108 target_pid_to_str (tp->ptid));
3109
3110 thread_step_over_chain_enqueue (tp);
3111 }
3112
3113 tp = current;
3114 }
3115
3116 /* Enqueue the current thread last, so that we move all other
3117 threads over their breakpoints first. */
3118 if (tp->stepping_over_breakpoint)
3119 thread_step_over_chain_enqueue (tp);
3120
3121 /* If the thread isn't started, we'll still need to set its prev_pc,
3122 so that switch_back_to_stepped_thread knows the thread hasn't
3123 advanced. Must do this before resuming any thread, as in
3124 all-stop/remote, once we resume we can't send any other packet
3125 until the target stops again. */
3126 tp->prev_pc = regcache_read_pc (regcache);
3127
3128 started = start_step_over ();
3129
3130 if (step_over_info_valid_p ())
3131 {
3132 /* Either this thread started a new in-line step over, or some
3133 other thread was already doing one. In either case, don't
3134 resume anything else until the step-over is finished. */
3135 }
3136 else if (started && !target_is_non_stop_p ())
3137 {
3138 /* A new displaced stepping sequence was started. In all-stop,
3139 we can't talk to the target anymore until it next stops. */
3140 }
3141 else if (!non_stop && target_is_non_stop_p ())
3142 {
3143 /* In all-stop, but the target is always in non-stop mode.
3144 Start all other threads that are implicitly resumed too. */
3145 ALL_NON_EXITED_THREADS (tp)
3146 {
3147 /* Ignore threads of processes we're not resuming. */
3148 if (!ptid_match (tp->ptid, resume_ptid))
3149 continue;
3150
3151 if (tp->resumed)
3152 {
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: [%s] resumed\n",
3156 target_pid_to_str (tp->ptid));
3157 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3158 continue;
3159 }
3160
3161 if (thread_is_in_step_over_chain (tp))
3162 {
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "infrun: proceed: [%s] needs step-over\n",
3166 target_pid_to_str (tp->ptid));
3167 continue;
3168 }
3169
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: resuming %s\n",
3173 target_pid_to_str (tp->ptid));
3174
3175 reset_ecs (ecs, tp);
3176 switch_to_thread (tp->ptid);
3177 keep_going_pass_signal (ecs);
3178 if (!ecs->wait_some_more)
3179 error (_("Command aborted."));
3180 }
3181 }
3182 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3183 {
3184 /* The thread wasn't started, and isn't queued, run it now. */
3185 reset_ecs (ecs, tp);
3186 switch_to_thread (tp->ptid);
3187 keep_going_pass_signal (ecs);
3188 if (!ecs->wait_some_more)
3189 error (_("Command aborted."));
3190 }
3191
3192 discard_cleanups (old_chain);
3193
3194 /* Tell the event loop to wait for it to stop. If the target
3195 supports asynchronous execution, it'll do this from within
3196 target_resume. */
3197 if (!target_can_async_p ())
3198 mark_async_event_handler (infrun_async_inferior_event_token);
3199 }
3200 \f
3201
3202 /* Start remote-debugging of a machine over a serial link. */
3203
3204 void
3205 start_remote (int from_tty)
3206 {
3207 struct inferior *inferior;
3208
3209 inferior = current_inferior ();
3210 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3211
3212 /* Always go on waiting for the target, regardless of the mode. */
3213 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3214 indicate to wait_for_inferior that a target should timeout if
3215 nothing is returned (instead of just blocking). Because of this,
3216 targets expecting an immediate response need to, internally, set
3217 things up so that the target_wait() is forced to eventually
3218 timeout. */
3219 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3220 differentiate to its caller what the state of the target is after
3221 the initial open has been performed. Here we're assuming that
3222 the target has stopped. It should be possible to eventually have
3223 target_open() return to the caller an indication that the target
3224 is currently running and GDB state should be set to the same as
3225 for an async run. */
3226 wait_for_inferior ();
3227
3228 /* Now that the inferior has stopped, do any bookkeeping like
3229 loading shared libraries. We want to do this before normal_stop,
3230 so that the displayed frame is up to date. */
3231 post_create_inferior (&current_target, from_tty);
3232
3233 normal_stop ();
3234 }
3235
3236 /* Initialize static vars when a new inferior begins. */
3237
3238 void
3239 init_wait_for_inferior (void)
3240 {
3241 /* These are meaningless until the first time through wait_for_inferior. */
3242
3243 breakpoint_init_inferior (inf_starting);
3244
3245 clear_proceed_status (0);
3246
3247 target_last_wait_ptid = minus_one_ptid;
3248
3249 previous_inferior_ptid = inferior_ptid;
3250
3251 /* Discard any skipped inlined frames. */
3252 clear_inline_frame_state (minus_one_ptid);
3253 }
3254
3255 \f
3256
3257 static void handle_inferior_event (struct execution_control_state *ecs);
3258
3259 static void handle_step_into_function (struct gdbarch *gdbarch,
3260 struct execution_control_state *ecs);
3261 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3262 struct execution_control_state *ecs);
3263 static void handle_signal_stop (struct execution_control_state *ecs);
3264 static void check_exception_resume (struct execution_control_state *,
3265 struct frame_info *);
3266
3267 static void end_stepping_range (struct execution_control_state *ecs);
3268 static void stop_waiting (struct execution_control_state *ecs);
3269 static void keep_going (struct execution_control_state *ecs);
3270 static void process_event_stop_test (struct execution_control_state *ecs);
3271 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3272
3273 /* Callback for iterate over threads. If the thread is stopped, but
3274 the user/frontend doesn't know about that yet, go through
3275 normal_stop, as if the thread had just stopped now. ARG points at
3276 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3277 ptid_is_pid(PTID) is true, applies to all threads of the process
3278 pointed at by PTID. Otherwise, apply only to the thread pointed by
3279 PTID. */
3280
3281 static int
3282 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3283 {
3284 ptid_t ptid = * (ptid_t *) arg;
3285
3286 if ((ptid_equal (info->ptid, ptid)
3287 || ptid_equal (minus_one_ptid, ptid)
3288 || (ptid_is_pid (ptid)
3289 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3290 && is_running (info->ptid)
3291 && !is_executing (info->ptid))
3292 {
3293 struct cleanup *old_chain;
3294 struct execution_control_state ecss;
3295 struct execution_control_state *ecs = &ecss;
3296
3297 memset (ecs, 0, sizeof (*ecs));
3298
3299 old_chain = make_cleanup_restore_current_thread ();
3300
3301 overlay_cache_invalid = 1;
3302 /* Flush target cache before starting to handle each event.
3303 Target was running and cache could be stale. This is just a
3304 heuristic. Running threads may modify target memory, but we
3305 don't get any event. */
3306 target_dcache_invalidate ();
3307
3308 /* Go through handle_inferior_event/normal_stop, so we always
3309 have consistent output as if the stop event had been
3310 reported. */
3311 ecs->ptid = info->ptid;
3312 ecs->event_thread = info;
3313 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3314 ecs->ws.value.sig = GDB_SIGNAL_0;
3315
3316 handle_inferior_event (ecs);
3317
3318 if (!ecs->wait_some_more)
3319 {
3320 /* Cancel any running execution command. */
3321 thread_cancel_execution_command (info);
3322
3323 normal_stop ();
3324 }
3325
3326 do_cleanups (old_chain);
3327 }
3328
3329 return 0;
3330 }
3331
3332 /* This function is attached as a "thread_stop_requested" observer.
3333 Cleanup local state that assumed the PTID was to be resumed, and
3334 report the stop to the frontend. */
3335
3336 static void
3337 infrun_thread_stop_requested (ptid_t ptid)
3338 {
3339 struct thread_info *tp;
3340
3341 /* PTID was requested to stop. Remove matching threads from the
3342 step-over queue, so we don't try to resume them
3343 automatically. */
3344 ALL_NON_EXITED_THREADS (tp)
3345 if (ptid_match (tp->ptid, ptid))
3346 {
3347 if (thread_is_in_step_over_chain (tp))
3348 thread_step_over_chain_remove (tp);
3349 }
3350
3351 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3352 }
3353
3354 static void
3355 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3356 {
3357 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3358 nullify_last_target_wait_ptid ();
3359 }
3360
3361 /* Delete the step resume, single-step and longjmp/exception resume
3362 breakpoints of TP. */
3363
3364 static void
3365 delete_thread_infrun_breakpoints (struct thread_info *tp)
3366 {
3367 delete_step_resume_breakpoint (tp);
3368 delete_exception_resume_breakpoint (tp);
3369 delete_single_step_breakpoints (tp);
3370 }
3371
3372 /* If the target still has execution, call FUNC for each thread that
3373 just stopped. In all-stop, that's all the non-exited threads; in
3374 non-stop, that's the current thread, only. */
3375
3376 typedef void (*for_each_just_stopped_thread_callback_func)
3377 (struct thread_info *tp);
3378
3379 static void
3380 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3381 {
3382 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3383 return;
3384
3385 if (target_is_non_stop_p ())
3386 {
3387 /* If in non-stop mode, only the current thread stopped. */
3388 func (inferior_thread ());
3389 }
3390 else
3391 {
3392 struct thread_info *tp;
3393
3394 /* In all-stop mode, all threads have stopped. */
3395 ALL_NON_EXITED_THREADS (tp)
3396 {
3397 func (tp);
3398 }
3399 }
3400 }
3401
3402 /* Delete the step resume and longjmp/exception resume breakpoints of
3403 the threads that just stopped. */
3404
3405 static void
3406 delete_just_stopped_threads_infrun_breakpoints (void)
3407 {
3408 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3409 }
3410
3411 /* Delete the single-step breakpoints of the threads that just
3412 stopped. */
3413
3414 static void
3415 delete_just_stopped_threads_single_step_breakpoints (void)
3416 {
3417 for_each_just_stopped_thread (delete_single_step_breakpoints);
3418 }
3419
3420 /* A cleanup wrapper. */
3421
3422 static void
3423 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3424 {
3425 delete_just_stopped_threads_infrun_breakpoints ();
3426 }
3427
3428 /* See infrun.h. */
3429
3430 void
3431 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3432 const struct target_waitstatus *ws)
3433 {
3434 char *status_string = target_waitstatus_to_string (ws);
3435 struct ui_file *tmp_stream = mem_fileopen ();
3436 char *text;
3437
3438 /* The text is split over several lines because it was getting too long.
3439 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3440 output as a unit; we want only one timestamp printed if debug_timestamp
3441 is set. */
3442
3443 fprintf_unfiltered (tmp_stream,
3444 "infrun: target_wait (%d.%ld.%ld",
3445 ptid_get_pid (waiton_ptid),
3446 ptid_get_lwp (waiton_ptid),
3447 ptid_get_tid (waiton_ptid));
3448 if (ptid_get_pid (waiton_ptid) != -1)
3449 fprintf_unfiltered (tmp_stream,
3450 " [%s]", target_pid_to_str (waiton_ptid));
3451 fprintf_unfiltered (tmp_stream, ", status) =\n");
3452 fprintf_unfiltered (tmp_stream,
3453 "infrun: %d.%ld.%ld [%s],\n",
3454 ptid_get_pid (result_ptid),
3455 ptid_get_lwp (result_ptid),
3456 ptid_get_tid (result_ptid),
3457 target_pid_to_str (result_ptid));
3458 fprintf_unfiltered (tmp_stream,
3459 "infrun: %s\n",
3460 status_string);
3461
3462 text = ui_file_xstrdup (tmp_stream, NULL);
3463
3464 /* This uses %s in part to handle %'s in the text, but also to avoid
3465 a gcc error: the format attribute requires a string literal. */
3466 fprintf_unfiltered (gdb_stdlog, "%s", text);
3467
3468 xfree (status_string);
3469 xfree (text);
3470 ui_file_delete (tmp_stream);
3471 }
3472
3473 /* Select a thread at random, out of those which are resumed and have
3474 had events. */
3475
3476 static struct thread_info *
3477 random_pending_event_thread (ptid_t waiton_ptid)
3478 {
3479 struct thread_info *event_tp;
3480 int num_events = 0;
3481 int random_selector;
3482
3483 /* First see how many events we have. Count only resumed threads
3484 that have an event pending. */
3485 ALL_NON_EXITED_THREADS (event_tp)
3486 if (ptid_match (event_tp->ptid, waiton_ptid)
3487 && event_tp->resumed
3488 && event_tp->suspend.waitstatus_pending_p)
3489 num_events++;
3490
3491 if (num_events == 0)
3492 return NULL;
3493
3494 /* Now randomly pick a thread out of those that have had events. */
3495 random_selector = (int)
3496 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3497
3498 if (debug_infrun && num_events > 1)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Found %d events, selecting #%d\n",
3501 num_events, random_selector);
3502
3503 /* Select the Nth thread that has had an event. */
3504 ALL_NON_EXITED_THREADS (event_tp)
3505 if (ptid_match (event_tp->ptid, waiton_ptid)
3506 && event_tp->resumed
3507 && event_tp->suspend.waitstatus_pending_p)
3508 if (random_selector-- == 0)
3509 break;
3510
3511 return event_tp;
3512 }
3513
3514 /* Wrapper for target_wait that first checks whether threads have
3515 pending statuses to report before actually asking the target for
3516 more events. */
3517
3518 static ptid_t
3519 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3520 {
3521 ptid_t event_ptid;
3522 struct thread_info *tp;
3523
3524 /* First check if there is a resumed thread with a wait status
3525 pending. */
3526 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3527 {
3528 tp = random_pending_event_thread (ptid);
3529 }
3530 else
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: Waiting for specific thread %s.\n",
3535 target_pid_to_str (ptid));
3536
3537 /* We have a specific thread to check. */
3538 tp = find_thread_ptid (ptid);
3539 gdb_assert (tp != NULL);
3540 if (!tp->suspend.waitstatus_pending_p)
3541 tp = NULL;
3542 }
3543
3544 if (tp != NULL
3545 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3546 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3547 {
3548 struct regcache *regcache = get_thread_regcache (tp->ptid);
3549 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3550 CORE_ADDR pc;
3551 int discard = 0;
3552
3553 pc = regcache_read_pc (regcache);
3554
3555 if (pc != tp->suspend.stop_pc)
3556 {
3557 if (debug_infrun)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "infrun: PC of %s changed. was=%s, now=%s\n",
3560 target_pid_to_str (tp->ptid),
3561 paddress (gdbarch, tp->prev_pc),
3562 paddress (gdbarch, pc));
3563 discard = 1;
3564 }
3565 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3566 {
3567 if (debug_infrun)
3568 fprintf_unfiltered (gdb_stdlog,
3569 "infrun: previous breakpoint of %s, at %s gone\n",
3570 target_pid_to_str (tp->ptid),
3571 paddress (gdbarch, pc));
3572
3573 discard = 1;
3574 }
3575
3576 if (discard)
3577 {
3578 if (debug_infrun)
3579 fprintf_unfiltered (gdb_stdlog,
3580 "infrun: pending event of %s cancelled.\n",
3581 target_pid_to_str (tp->ptid));
3582
3583 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3584 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3585 }
3586 }
3587
3588 if (tp != NULL)
3589 {
3590 if (debug_infrun)
3591 {
3592 char *statstr;
3593
3594 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3595 fprintf_unfiltered (gdb_stdlog,
3596 "infrun: Using pending wait status %s for %s.\n",
3597 statstr,
3598 target_pid_to_str (tp->ptid));
3599 xfree (statstr);
3600 }
3601
3602 /* Now that we've selected our final event LWP, un-adjust its PC
3603 if it was a software breakpoint (and the target doesn't
3604 always adjust the PC itself). */
3605 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3606 && !target_supports_stopped_by_sw_breakpoint ())
3607 {
3608 struct regcache *regcache;
3609 struct gdbarch *gdbarch;
3610 int decr_pc;
3611
3612 regcache = get_thread_regcache (tp->ptid);
3613 gdbarch = get_regcache_arch (regcache);
3614
3615 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3616 if (decr_pc != 0)
3617 {
3618 CORE_ADDR pc;
3619
3620 pc = regcache_read_pc (regcache);
3621 regcache_write_pc (regcache, pc + decr_pc);
3622 }
3623 }
3624
3625 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3626 *status = tp->suspend.waitstatus;
3627 tp->suspend.waitstatus_pending_p = 0;
3628
3629 /* Wake up the event loop again, until all pending events are
3630 processed. */
3631 if (target_is_async_p ())
3632 mark_async_event_handler (infrun_async_inferior_event_token);
3633 return tp->ptid;
3634 }
3635
3636 /* But if we don't find one, we'll have to wait. */
3637
3638 if (deprecated_target_wait_hook)
3639 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3640 else
3641 event_ptid = target_wait (ptid, status, options);
3642
3643 return event_ptid;
3644 }
3645
3646 /* Prepare and stabilize the inferior for detaching it. E.g.,
3647 detaching while a thread is displaced stepping is a recipe for
3648 crashing it, as nothing would readjust the PC out of the scratch
3649 pad. */
3650
3651 void
3652 prepare_for_detach (void)
3653 {
3654 struct inferior *inf = current_inferior ();
3655 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3656 struct cleanup *old_chain_1;
3657 struct displaced_step_inferior_state *displaced;
3658
3659 displaced = get_displaced_stepping_state (inf->pid);
3660
3661 /* Is any thread of this process displaced stepping? If not,
3662 there's nothing else to do. */
3663 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3664 return;
3665
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog,
3668 "displaced-stepping in-process while detaching");
3669
3670 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3671 inf->detaching = 1;
3672
3673 while (!ptid_equal (displaced->step_ptid, null_ptid))
3674 {
3675 struct cleanup *old_chain_2;
3676 struct execution_control_state ecss;
3677 struct execution_control_state *ecs;
3678
3679 ecs = &ecss;
3680 memset (ecs, 0, sizeof (*ecs));
3681
3682 overlay_cache_invalid = 1;
3683 /* Flush target cache before starting to handle each event.
3684 Target was running and cache could be stale. This is just a
3685 heuristic. Running threads may modify target memory, but we
3686 don't get any event. */
3687 target_dcache_invalidate ();
3688
3689 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3690
3691 if (debug_infrun)
3692 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3693
3694 /* If an error happens while handling the event, propagate GDB's
3695 knowledge of the executing state to the frontend/user running
3696 state. */
3697 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3698 &minus_one_ptid);
3699
3700 /* Now figure out what to do with the result of the result. */
3701 handle_inferior_event (ecs);
3702
3703 /* No error, don't finish the state yet. */
3704 discard_cleanups (old_chain_2);
3705
3706 /* Breakpoints and watchpoints are not installed on the target
3707 at this point, and signals are passed directly to the
3708 inferior, so this must mean the process is gone. */
3709 if (!ecs->wait_some_more)
3710 {
3711 discard_cleanups (old_chain_1);
3712 error (_("Program exited while detaching"));
3713 }
3714 }
3715
3716 discard_cleanups (old_chain_1);
3717 }
3718
3719 /* Wait for control to return from inferior to debugger.
3720
3721 If inferior gets a signal, we may decide to start it up again
3722 instead of returning. That is why there is a loop in this function.
3723 When this function actually returns it means the inferior
3724 should be left stopped and GDB should read more commands. */
3725
3726 void
3727 wait_for_inferior (void)
3728 {
3729 struct cleanup *old_cleanups;
3730 struct cleanup *thread_state_chain;
3731
3732 if (debug_infrun)
3733 fprintf_unfiltered
3734 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3735
3736 old_cleanups
3737 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3738 NULL);
3739
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
3743 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3744
3745 while (1)
3746 {
3747 struct execution_control_state ecss;
3748 struct execution_control_state *ecs = &ecss;
3749 ptid_t waiton_ptid = minus_one_ptid;
3750
3751 memset (ecs, 0, sizeof (*ecs));
3752
3753 overlay_cache_invalid = 1;
3754
3755 /* Flush target cache before starting to handle each event.
3756 Target was running and cache could be stale. This is just a
3757 heuristic. Running threads may modify target memory, but we
3758 don't get any event. */
3759 target_dcache_invalidate ();
3760
3761 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3762
3763 if (debug_infrun)
3764 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3765
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
3768
3769 if (!ecs->wait_some_more)
3770 break;
3771 }
3772
3773 /* No error, don't finish the state yet. */
3774 discard_cleanups (thread_state_chain);
3775
3776 do_cleanups (old_cleanups);
3777 }
3778
3779 /* Cleanup that reinstalls the readline callback handler, if the
3780 target is running in the background. If while handling the target
3781 event something triggered a secondary prompt, like e.g., a
3782 pagination prompt, we'll have removed the callback handler (see
3783 gdb_readline_wrapper_line). Need to do this as we go back to the
3784 event loop, ready to process further input. Note this has no
3785 effect if the handler hasn't actually been removed, because calling
3786 rl_callback_handler_install resets the line buffer, thus losing
3787 input. */
3788
3789 static void
3790 reinstall_readline_callback_handler_cleanup (void *arg)
3791 {
3792 struct ui *ui = current_ui;
3793
3794 if (!ui->async)
3795 {
3796 /* We're not going back to the top level event loop yet. Don't
3797 install the readline callback, as it'd prep the terminal,
3798 readline-style (raw, noecho) (e.g., --batch). We'll install
3799 it the next time the prompt is displayed, when we're ready
3800 for input. */
3801 return;
3802 }
3803
3804 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3805 gdb_rl_callback_handler_reinstall ();
3806 }
3807
3808 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3809 that's just the event thread. In all-stop, that's all threads. */
3810
3811 static void
3812 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3813 {
3814 struct thread_info *thr = ecs->event_thread;
3815
3816 if (thr != NULL && thr->thread_fsm != NULL)
3817 thread_fsm_clean_up (thr->thread_fsm, thr);
3818
3819 if (!non_stop)
3820 {
3821 ALL_NON_EXITED_THREADS (thr)
3822 {
3823 if (thr->thread_fsm == NULL)
3824 continue;
3825 if (thr == ecs->event_thread)
3826 continue;
3827
3828 switch_to_thread (thr->ptid);
3829 thread_fsm_clean_up (thr->thread_fsm, thr);
3830 }
3831
3832 if (ecs->event_thread != NULL)
3833 switch_to_thread (ecs->event_thread->ptid);
3834 }
3835 }
3836
3837 /* Helper for all_uis_check_sync_execution_done that works on the
3838 current UI. */
3839
3840 static void
3841 check_curr_ui_sync_execution_done (void)
3842 {
3843 struct ui *ui = current_ui;
3844
3845 if (ui->prompt_state == PROMPT_NEEDED
3846 && ui->async
3847 && !gdb_in_secondary_prompt_p (ui))
3848 {
3849 target_terminal_ours ();
3850 observer_notify_sync_execution_done ();
3851 ui_register_input_event_handler (ui);
3852 }
3853 }
3854
3855 /* See infrun.h. */
3856
3857 void
3858 all_uis_check_sync_execution_done (void)
3859 {
3860 struct switch_thru_all_uis state;
3861
3862 SWITCH_THRU_ALL_UIS (state)
3863 {
3864 check_curr_ui_sync_execution_done ();
3865 }
3866 }
3867
3868 /* See infrun.h. */
3869
3870 void
3871 all_uis_on_sync_execution_starting (void)
3872 {
3873 struct switch_thru_all_uis state;
3874
3875 SWITCH_THRU_ALL_UIS (state)
3876 {
3877 if (current_ui->prompt_state == PROMPT_NEEDED)
3878 async_disable_stdin ();
3879 }
3880 }
3881
3882 /* A cleanup that restores the execution direction to the value saved
3883 in *ARG. */
3884
3885 static void
3886 restore_execution_direction (void *arg)
3887 {
3888 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3889
3890 execution_direction = *save_exec_dir;
3891 }
3892
3893 /* Asynchronous version of wait_for_inferior. It is called by the
3894 event loop whenever a change of state is detected on the file
3895 descriptor corresponding to the target. It can be called more than
3896 once to complete a single execution command. In such cases we need
3897 to keep the state in a global variable ECSS. If it is the last time
3898 that this function is called for a single execution command, then
3899 report to the user that the inferior has stopped, and do the
3900 necessary cleanups. */
3901
3902 void
3903 fetch_inferior_event (void *client_data)
3904 {
3905 struct execution_control_state ecss;
3906 struct execution_control_state *ecs = &ecss;
3907 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3908 struct cleanup *ts_old_chain;
3909 enum exec_direction_kind save_exec_dir = execution_direction;
3910 int cmd_done = 0;
3911 ptid_t waiton_ptid = minus_one_ptid;
3912
3913 memset (ecs, 0, sizeof (*ecs));
3914
3915 /* Events are always processed with the main UI as current UI. This
3916 way, warnings, debug output, etc. are always consistently sent to
3917 the main console. */
3918 make_cleanup (restore_ui_cleanup, current_ui);
3919 current_ui = main_ui;
3920
3921 /* End up with readline processing input, if necessary. */
3922 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3923
3924 /* We're handling a live event, so make sure we're doing live
3925 debugging. If we're looking at traceframes while the target is
3926 running, we're going to need to get back to that mode after
3927 handling the event. */
3928 if (non_stop)
3929 {
3930 make_cleanup_restore_current_traceframe ();
3931 set_current_traceframe (-1);
3932 }
3933
3934 if (non_stop)
3935 /* In non-stop mode, the user/frontend should not notice a thread
3936 switch due to internal events. Make sure we reverse to the
3937 user selected thread and frame after handling the event and
3938 running any breakpoint commands. */
3939 make_cleanup_restore_current_thread ();
3940
3941 overlay_cache_invalid = 1;
3942 /* Flush target cache before starting to handle each event. Target
3943 was running and cache could be stale. This is just a heuristic.
3944 Running threads may modify target memory, but we don't get any
3945 event. */
3946 target_dcache_invalidate ();
3947
3948 make_cleanup (restore_execution_direction, &save_exec_dir);
3949 execution_direction = target_execution_direction ();
3950
3951 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3952 target_can_async_p () ? TARGET_WNOHANG : 0);
3953
3954 if (debug_infrun)
3955 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3956
3957 /* If an error happens while handling the event, propagate GDB's
3958 knowledge of the executing state to the frontend/user running
3959 state. */
3960 if (!target_is_non_stop_p ())
3961 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3962 else
3963 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3964
3965 /* Get executed before make_cleanup_restore_current_thread above to apply
3966 still for the thread which has thrown the exception. */
3967 make_bpstat_clear_actions_cleanup ();
3968
3969 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3970
3971 /* Now figure out what to do with the result of the result. */
3972 handle_inferior_event (ecs);
3973
3974 if (!ecs->wait_some_more)
3975 {
3976 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3977 int should_stop = 1;
3978 struct thread_info *thr = ecs->event_thread;
3979 int should_notify_stop = 1;
3980
3981 delete_just_stopped_threads_infrun_breakpoints ();
3982
3983 if (thr != NULL)
3984 {
3985 struct thread_fsm *thread_fsm = thr->thread_fsm;
3986
3987 if (thread_fsm != NULL)
3988 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3989 }
3990
3991 if (!should_stop)
3992 {
3993 keep_going (ecs);
3994 }
3995 else
3996 {
3997 clean_up_just_stopped_threads_fsms (ecs);
3998
3999 if (thr != NULL && thr->thread_fsm != NULL)
4000 {
4001 should_notify_stop
4002 = thread_fsm_should_notify_stop (thr->thread_fsm);
4003 }
4004
4005 if (should_notify_stop)
4006 {
4007 int proceeded = 0;
4008
4009 /* We may not find an inferior if this was a process exit. */
4010 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4011 proceeded = normal_stop ();
4012
4013 if (!proceeded)
4014 {
4015 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4016 cmd_done = 1;
4017 }
4018 }
4019 }
4020 }
4021
4022 /* No error, don't finish the thread states yet. */
4023 discard_cleanups (ts_old_chain);
4024
4025 /* Revert thread and frame. */
4026 do_cleanups (old_chain);
4027
4028 /* If a UI was in sync execution mode, and now isn't, restore its
4029 prompt (a synchronous execution command has finished, and we're
4030 ready for input). */
4031 all_uis_check_sync_execution_done ();
4032
4033 if (cmd_done
4034 && exec_done_display_p
4035 && (ptid_equal (inferior_ptid, null_ptid)
4036 || !is_running (inferior_ptid)))
4037 printf_unfiltered (_("completed.\n"));
4038 }
4039
4040 /* Record the frame and location we're currently stepping through. */
4041 void
4042 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4043 {
4044 struct thread_info *tp = inferior_thread ();
4045
4046 tp->control.step_frame_id = get_frame_id (frame);
4047 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4048
4049 tp->current_symtab = sal.symtab;
4050 tp->current_line = sal.line;
4051 }
4052
4053 /* Clear context switchable stepping state. */
4054
4055 void
4056 init_thread_stepping_state (struct thread_info *tss)
4057 {
4058 tss->stepped_breakpoint = 0;
4059 tss->stepping_over_breakpoint = 0;
4060 tss->stepping_over_watchpoint = 0;
4061 tss->step_after_step_resume_breakpoint = 0;
4062 }
4063
4064 /* Set the cached copy of the last ptid/waitstatus. */
4065
4066 void
4067 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4068 {
4069 target_last_wait_ptid = ptid;
4070 target_last_waitstatus = status;
4071 }
4072
4073 /* Return the cached copy of the last pid/waitstatus returned by
4074 target_wait()/deprecated_target_wait_hook(). The data is actually
4075 cached by handle_inferior_event(), which gets called immediately
4076 after target_wait()/deprecated_target_wait_hook(). */
4077
4078 void
4079 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4080 {
4081 *ptidp = target_last_wait_ptid;
4082 *status = target_last_waitstatus;
4083 }
4084
4085 void
4086 nullify_last_target_wait_ptid (void)
4087 {
4088 target_last_wait_ptid = minus_one_ptid;
4089 }
4090
4091 /* Switch thread contexts. */
4092
4093 static void
4094 context_switch (ptid_t ptid)
4095 {
4096 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4097 {
4098 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4099 target_pid_to_str (inferior_ptid));
4100 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4101 target_pid_to_str (ptid));
4102 }
4103
4104 switch_to_thread (ptid);
4105 }
4106
4107 /* If the target can't tell whether we've hit breakpoints
4108 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4109 check whether that could have been caused by a breakpoint. If so,
4110 adjust the PC, per gdbarch_decr_pc_after_break. */
4111
4112 static void
4113 adjust_pc_after_break (struct thread_info *thread,
4114 struct target_waitstatus *ws)
4115 {
4116 struct regcache *regcache;
4117 struct gdbarch *gdbarch;
4118 struct address_space *aspace;
4119 CORE_ADDR breakpoint_pc, decr_pc;
4120
4121 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4122 we aren't, just return.
4123
4124 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4125 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4126 implemented by software breakpoints should be handled through the normal
4127 breakpoint layer.
4128
4129 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4130 different signals (SIGILL or SIGEMT for instance), but it is less
4131 clear where the PC is pointing afterwards. It may not match
4132 gdbarch_decr_pc_after_break. I don't know any specific target that
4133 generates these signals at breakpoints (the code has been in GDB since at
4134 least 1992) so I can not guess how to handle them here.
4135
4136 In earlier versions of GDB, a target with
4137 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4138 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4139 target with both of these set in GDB history, and it seems unlikely to be
4140 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4141
4142 if (ws->kind != TARGET_WAITKIND_STOPPED)
4143 return;
4144
4145 if (ws->value.sig != GDB_SIGNAL_TRAP)
4146 return;
4147
4148 /* In reverse execution, when a breakpoint is hit, the instruction
4149 under it has already been de-executed. The reported PC always
4150 points at the breakpoint address, so adjusting it further would
4151 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4152 architecture:
4153
4154 B1 0x08000000 : INSN1
4155 B2 0x08000001 : INSN2
4156 0x08000002 : INSN3
4157 PC -> 0x08000003 : INSN4
4158
4159 Say you're stopped at 0x08000003 as above. Reverse continuing
4160 from that point should hit B2 as below. Reading the PC when the
4161 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4162 been de-executed already.
4163
4164 B1 0x08000000 : INSN1
4165 B2 PC -> 0x08000001 : INSN2
4166 0x08000002 : INSN3
4167 0x08000003 : INSN4
4168
4169 We can't apply the same logic as for forward execution, because
4170 we would wrongly adjust the PC to 0x08000000, since there's a
4171 breakpoint at PC - 1. We'd then report a hit on B1, although
4172 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4173 behaviour. */
4174 if (execution_direction == EXEC_REVERSE)
4175 return;
4176
4177 /* If the target can tell whether the thread hit a SW breakpoint,
4178 trust it. Targets that can tell also adjust the PC
4179 themselves. */
4180 if (target_supports_stopped_by_sw_breakpoint ())
4181 return;
4182
4183 /* Note that relying on whether a breakpoint is planted in memory to
4184 determine this can fail. E.g,. the breakpoint could have been
4185 removed since. Or the thread could have been told to step an
4186 instruction the size of a breakpoint instruction, and only
4187 _after_ was a breakpoint inserted at its address. */
4188
4189 /* If this target does not decrement the PC after breakpoints, then
4190 we have nothing to do. */
4191 regcache = get_thread_regcache (thread->ptid);
4192 gdbarch = get_regcache_arch (regcache);
4193
4194 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4195 if (decr_pc == 0)
4196 return;
4197
4198 aspace = get_regcache_aspace (regcache);
4199
4200 /* Find the location where (if we've hit a breakpoint) the
4201 breakpoint would be. */
4202 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4203
4204 /* If the target can't tell whether a software breakpoint triggered,
4205 fallback to figuring it out based on breakpoints we think were
4206 inserted in the target, and on whether the thread was stepped or
4207 continued. */
4208
4209 /* Check whether there actually is a software breakpoint inserted at
4210 that location.
4211
4212 If in non-stop mode, a race condition is possible where we've
4213 removed a breakpoint, but stop events for that breakpoint were
4214 already queued and arrive later. To suppress those spurious
4215 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4216 and retire them after a number of stop events are reported. Note
4217 this is an heuristic and can thus get confused. The real fix is
4218 to get the "stopped by SW BP and needs adjustment" info out of
4219 the target/kernel (and thus never reach here; see above). */
4220 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4221 || (target_is_non_stop_p ()
4222 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4223 {
4224 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4225
4226 if (record_full_is_used ())
4227 record_full_gdb_operation_disable_set ();
4228
4229 /* When using hardware single-step, a SIGTRAP is reported for both
4230 a completed single-step and a software breakpoint. Need to
4231 differentiate between the two, as the latter needs adjusting
4232 but the former does not.
4233
4234 The SIGTRAP can be due to a completed hardware single-step only if
4235 - we didn't insert software single-step breakpoints
4236 - this thread is currently being stepped
4237
4238 If any of these events did not occur, we must have stopped due
4239 to hitting a software breakpoint, and have to back up to the
4240 breakpoint address.
4241
4242 As a special case, we could have hardware single-stepped a
4243 software breakpoint. In this case (prev_pc == breakpoint_pc),
4244 we also need to back up to the breakpoint address. */
4245
4246 if (thread_has_single_step_breakpoints_set (thread)
4247 || !currently_stepping (thread)
4248 || (thread->stepped_breakpoint
4249 && thread->prev_pc == breakpoint_pc))
4250 regcache_write_pc (regcache, breakpoint_pc);
4251
4252 do_cleanups (old_cleanups);
4253 }
4254 }
4255
4256 static int
4257 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4258 {
4259 for (frame = get_prev_frame (frame);
4260 frame != NULL;
4261 frame = get_prev_frame (frame))
4262 {
4263 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4264 return 1;
4265 if (get_frame_type (frame) != INLINE_FRAME)
4266 break;
4267 }
4268
4269 return 0;
4270 }
4271
4272 /* Auxiliary function that handles syscall entry/return events.
4273 It returns 1 if the inferior should keep going (and GDB
4274 should ignore the event), or 0 if the event deserves to be
4275 processed. */
4276
4277 static int
4278 handle_syscall_event (struct execution_control_state *ecs)
4279 {
4280 struct regcache *regcache;
4281 int syscall_number;
4282
4283 if (!ptid_equal (ecs->ptid, inferior_ptid))
4284 context_switch (ecs->ptid);
4285
4286 regcache = get_thread_regcache (ecs->ptid);
4287 syscall_number = ecs->ws.value.syscall_number;
4288 stop_pc = regcache_read_pc (regcache);
4289
4290 if (catch_syscall_enabled () > 0
4291 && catching_syscall_number (syscall_number) > 0)
4292 {
4293 if (debug_infrun)
4294 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4295 syscall_number);
4296
4297 ecs->event_thread->control.stop_bpstat
4298 = bpstat_stop_status (get_regcache_aspace (regcache),
4299 stop_pc, ecs->ptid, &ecs->ws);
4300
4301 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4302 {
4303 /* Catchpoint hit. */
4304 return 0;
4305 }
4306 }
4307
4308 /* If no catchpoint triggered for this, then keep going. */
4309 keep_going (ecs);
4310 return 1;
4311 }
4312
4313 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4314
4315 static void
4316 fill_in_stop_func (struct gdbarch *gdbarch,
4317 struct execution_control_state *ecs)
4318 {
4319 if (!ecs->stop_func_filled_in)
4320 {
4321 /* Don't care about return value; stop_func_start and stop_func_name
4322 will both be 0 if it doesn't work. */
4323 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4324 &ecs->stop_func_start, &ecs->stop_func_end);
4325 ecs->stop_func_start
4326 += gdbarch_deprecated_function_start_offset (gdbarch);
4327
4328 if (gdbarch_skip_entrypoint_p (gdbarch))
4329 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4330 ecs->stop_func_start);
4331
4332 ecs->stop_func_filled_in = 1;
4333 }
4334 }
4335
4336
4337 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4338
4339 static enum stop_kind
4340 get_inferior_stop_soon (ptid_t ptid)
4341 {
4342 struct inferior *inf = find_inferior_ptid (ptid);
4343
4344 gdb_assert (inf != NULL);
4345 return inf->control.stop_soon;
4346 }
4347
4348 /* Wait for one event. Store the resulting waitstatus in WS, and
4349 return the event ptid. */
4350
4351 static ptid_t
4352 wait_one (struct target_waitstatus *ws)
4353 {
4354 ptid_t event_ptid;
4355 ptid_t wait_ptid = minus_one_ptid;
4356
4357 overlay_cache_invalid = 1;
4358
4359 /* Flush target cache before starting to handle each event.
4360 Target was running and cache could be stale. This is just a
4361 heuristic. Running threads may modify target memory, but we
4362 don't get any event. */
4363 target_dcache_invalidate ();
4364
4365 if (deprecated_target_wait_hook)
4366 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4367 else
4368 event_ptid = target_wait (wait_ptid, ws, 0);
4369
4370 if (debug_infrun)
4371 print_target_wait_results (wait_ptid, event_ptid, ws);
4372
4373 return event_ptid;
4374 }
4375
4376 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4377 instead of the current thread. */
4378 #define THREAD_STOPPED_BY(REASON) \
4379 static int \
4380 thread_stopped_by_ ## REASON (ptid_t ptid) \
4381 { \
4382 struct cleanup *old_chain; \
4383 int res; \
4384 \
4385 old_chain = save_inferior_ptid (); \
4386 inferior_ptid = ptid; \
4387 \
4388 res = target_stopped_by_ ## REASON (); \
4389 \
4390 do_cleanups (old_chain); \
4391 \
4392 return res; \
4393 }
4394
4395 /* Generate thread_stopped_by_watchpoint. */
4396 THREAD_STOPPED_BY (watchpoint)
4397 /* Generate thread_stopped_by_sw_breakpoint. */
4398 THREAD_STOPPED_BY (sw_breakpoint)
4399 /* Generate thread_stopped_by_hw_breakpoint. */
4400 THREAD_STOPPED_BY (hw_breakpoint)
4401
4402 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4403
4404 static void
4405 switch_to_thread_cleanup (void *ptid_p)
4406 {
4407 ptid_t ptid = *(ptid_t *) ptid_p;
4408
4409 switch_to_thread (ptid);
4410 }
4411
4412 /* Save the thread's event and stop reason to process it later. */
4413
4414 static void
4415 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4416 {
4417 struct regcache *regcache;
4418 struct address_space *aspace;
4419
4420 if (debug_infrun)
4421 {
4422 char *statstr;
4423
4424 statstr = target_waitstatus_to_string (ws);
4425 fprintf_unfiltered (gdb_stdlog,
4426 "infrun: saving status %s for %d.%ld.%ld\n",
4427 statstr,
4428 ptid_get_pid (tp->ptid),
4429 ptid_get_lwp (tp->ptid),
4430 ptid_get_tid (tp->ptid));
4431 xfree (statstr);
4432 }
4433
4434 /* Record for later. */
4435 tp->suspend.waitstatus = *ws;
4436 tp->suspend.waitstatus_pending_p = 1;
4437
4438 regcache = get_thread_regcache (tp->ptid);
4439 aspace = get_regcache_aspace (regcache);
4440
4441 if (ws->kind == TARGET_WAITKIND_STOPPED
4442 && ws->value.sig == GDB_SIGNAL_TRAP)
4443 {
4444 CORE_ADDR pc = regcache_read_pc (regcache);
4445
4446 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4447
4448 if (thread_stopped_by_watchpoint (tp->ptid))
4449 {
4450 tp->suspend.stop_reason
4451 = TARGET_STOPPED_BY_WATCHPOINT;
4452 }
4453 else if (target_supports_stopped_by_sw_breakpoint ()
4454 && thread_stopped_by_sw_breakpoint (tp->ptid))
4455 {
4456 tp->suspend.stop_reason
4457 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4458 }
4459 else if (target_supports_stopped_by_hw_breakpoint ()
4460 && thread_stopped_by_hw_breakpoint (tp->ptid))
4461 {
4462 tp->suspend.stop_reason
4463 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4464 }
4465 else if (!target_supports_stopped_by_hw_breakpoint ()
4466 && hardware_breakpoint_inserted_here_p (aspace,
4467 pc))
4468 {
4469 tp->suspend.stop_reason
4470 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4471 }
4472 else if (!target_supports_stopped_by_sw_breakpoint ()
4473 && software_breakpoint_inserted_here_p (aspace,
4474 pc))
4475 {
4476 tp->suspend.stop_reason
4477 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4478 }
4479 else if (!thread_has_single_step_breakpoints_set (tp)
4480 && currently_stepping (tp))
4481 {
4482 tp->suspend.stop_reason
4483 = TARGET_STOPPED_BY_SINGLE_STEP;
4484 }
4485 }
4486 }
4487
4488 /* A cleanup that disables thread create/exit events. */
4489
4490 static void
4491 disable_thread_events (void *arg)
4492 {
4493 target_thread_events (0);
4494 }
4495
4496 /* See infrun.h. */
4497
4498 void
4499 stop_all_threads (void)
4500 {
4501 /* We may need multiple passes to discover all threads. */
4502 int pass;
4503 int iterations = 0;
4504 ptid_t entry_ptid;
4505 struct cleanup *old_chain;
4506
4507 gdb_assert (target_is_non_stop_p ());
4508
4509 if (debug_infrun)
4510 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4511
4512 entry_ptid = inferior_ptid;
4513 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4514
4515 target_thread_events (1);
4516 make_cleanup (disable_thread_events, NULL);
4517
4518 /* Request threads to stop, and then wait for the stops. Because
4519 threads we already know about can spawn more threads while we're
4520 trying to stop them, and we only learn about new threads when we
4521 update the thread list, do this in a loop, and keep iterating
4522 until two passes find no threads that need to be stopped. */
4523 for (pass = 0; pass < 2; pass++, iterations++)
4524 {
4525 if (debug_infrun)
4526 fprintf_unfiltered (gdb_stdlog,
4527 "infrun: stop_all_threads, pass=%d, "
4528 "iterations=%d\n", pass, iterations);
4529 while (1)
4530 {
4531 ptid_t event_ptid;
4532 struct target_waitstatus ws;
4533 int need_wait = 0;
4534 struct thread_info *t;
4535
4536 update_thread_list ();
4537
4538 /* Go through all threads looking for threads that we need
4539 to tell the target to stop. */
4540 ALL_NON_EXITED_THREADS (t)
4541 {
4542 if (t->executing)
4543 {
4544 /* If already stopping, don't request a stop again.
4545 We just haven't seen the notification yet. */
4546 if (!t->stop_requested)
4547 {
4548 if (debug_infrun)
4549 fprintf_unfiltered (gdb_stdlog,
4550 "infrun: %s executing, "
4551 "need stop\n",
4552 target_pid_to_str (t->ptid));
4553 target_stop (t->ptid);
4554 t->stop_requested = 1;
4555 }
4556 else
4557 {
4558 if (debug_infrun)
4559 fprintf_unfiltered (gdb_stdlog,
4560 "infrun: %s executing, "
4561 "already stopping\n",
4562 target_pid_to_str (t->ptid));
4563 }
4564
4565 if (t->stop_requested)
4566 need_wait = 1;
4567 }
4568 else
4569 {
4570 if (debug_infrun)
4571 fprintf_unfiltered (gdb_stdlog,
4572 "infrun: %s not executing\n",
4573 target_pid_to_str (t->ptid));
4574
4575 /* The thread may be not executing, but still be
4576 resumed with a pending status to process. */
4577 t->resumed = 0;
4578 }
4579 }
4580
4581 if (!need_wait)
4582 break;
4583
4584 /* If we find new threads on the second iteration, restart
4585 over. We want to see two iterations in a row with all
4586 threads stopped. */
4587 if (pass > 0)
4588 pass = -1;
4589
4590 event_ptid = wait_one (&ws);
4591 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4592 {
4593 /* All resumed threads exited. */
4594 }
4595 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4596 || ws.kind == TARGET_WAITKIND_EXITED
4597 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4598 {
4599 if (debug_infrun)
4600 {
4601 ptid_t ptid = pid_to_ptid (ws.value.integer);
4602
4603 fprintf_unfiltered (gdb_stdlog,
4604 "infrun: %s exited while "
4605 "stopping threads\n",
4606 target_pid_to_str (ptid));
4607 }
4608 }
4609 else
4610 {
4611 struct inferior *inf;
4612
4613 t = find_thread_ptid (event_ptid);
4614 if (t == NULL)
4615 t = add_thread (event_ptid);
4616
4617 t->stop_requested = 0;
4618 t->executing = 0;
4619 t->resumed = 0;
4620 t->control.may_range_step = 0;
4621
4622 /* This may be the first time we see the inferior report
4623 a stop. */
4624 inf = find_inferior_ptid (event_ptid);
4625 if (inf->needs_setup)
4626 {
4627 switch_to_thread_no_regs (t);
4628 setup_inferior (0);
4629 }
4630
4631 if (ws.kind == TARGET_WAITKIND_STOPPED
4632 && ws.value.sig == GDB_SIGNAL_0)
4633 {
4634 /* We caught the event that we intended to catch, so
4635 there's no event pending. */
4636 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4637 t->suspend.waitstatus_pending_p = 0;
4638
4639 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4640 {
4641 /* Add it back to the step-over queue. */
4642 if (debug_infrun)
4643 {
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: displaced-step of %s "
4646 "canceled: adding back to the "
4647 "step-over queue\n",
4648 target_pid_to_str (t->ptid));
4649 }
4650 t->control.trap_expected = 0;
4651 thread_step_over_chain_enqueue (t);
4652 }
4653 }
4654 else
4655 {
4656 enum gdb_signal sig;
4657 struct regcache *regcache;
4658
4659 if (debug_infrun)
4660 {
4661 char *statstr;
4662
4663 statstr = target_waitstatus_to_string (&ws);
4664 fprintf_unfiltered (gdb_stdlog,
4665 "infrun: target_wait %s, saving "
4666 "status for %d.%ld.%ld\n",
4667 statstr,
4668 ptid_get_pid (t->ptid),
4669 ptid_get_lwp (t->ptid),
4670 ptid_get_tid (t->ptid));
4671 xfree (statstr);
4672 }
4673
4674 /* Record for later. */
4675 save_waitstatus (t, &ws);
4676
4677 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4678 ? ws.value.sig : GDB_SIGNAL_0);
4679
4680 if (displaced_step_fixup (t->ptid, sig) < 0)
4681 {
4682 /* Add it back to the step-over queue. */
4683 t->control.trap_expected = 0;
4684 thread_step_over_chain_enqueue (t);
4685 }
4686
4687 regcache = get_thread_regcache (t->ptid);
4688 t->suspend.stop_pc = regcache_read_pc (regcache);
4689
4690 if (debug_infrun)
4691 {
4692 fprintf_unfiltered (gdb_stdlog,
4693 "infrun: saved stop_pc=%s for %s "
4694 "(currently_stepping=%d)\n",
4695 paddress (target_gdbarch (),
4696 t->suspend.stop_pc),
4697 target_pid_to_str (t->ptid),
4698 currently_stepping (t));
4699 }
4700 }
4701 }
4702 }
4703 }
4704
4705 do_cleanups (old_chain);
4706
4707 if (debug_infrun)
4708 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4709 }
4710
4711 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4712
4713 static int
4714 handle_no_resumed (struct execution_control_state *ecs)
4715 {
4716 struct inferior *inf;
4717 struct thread_info *thread;
4718
4719 if (target_can_async_p ())
4720 {
4721 struct ui *ui;
4722 int any_sync = 0;
4723
4724 ALL_UIS (ui)
4725 {
4726 if (ui->prompt_state == PROMPT_BLOCKED)
4727 {
4728 any_sync = 1;
4729 break;
4730 }
4731 }
4732 if (!any_sync)
4733 {
4734 /* There were no unwaited-for children left in the target, but,
4735 we're not synchronously waiting for events either. Just
4736 ignore. */
4737
4738 if (debug_infrun)
4739 fprintf_unfiltered (gdb_stdlog,
4740 "infrun: TARGET_WAITKIND_NO_RESUMED "
4741 "(ignoring: bg)\n");
4742 prepare_to_wait (ecs);
4743 return 1;
4744 }
4745 }
4746
4747 /* Otherwise, if we were running a synchronous execution command, we
4748 may need to cancel it and give the user back the terminal.
4749
4750 In non-stop mode, the target can't tell whether we've already
4751 consumed previous stop events, so it can end up sending us a
4752 no-resumed event like so:
4753
4754 #0 - thread 1 is left stopped
4755
4756 #1 - thread 2 is resumed and hits breakpoint
4757 -> TARGET_WAITKIND_STOPPED
4758
4759 #2 - thread 3 is resumed and exits
4760 this is the last resumed thread, so
4761 -> TARGET_WAITKIND_NO_RESUMED
4762
4763 #3 - gdb processes stop for thread 2 and decides to re-resume
4764 it.
4765
4766 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4767 thread 2 is now resumed, so the event should be ignored.
4768
4769 IOW, if the stop for thread 2 doesn't end a foreground command,
4770 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4771 event. But it could be that the event meant that thread 2 itself
4772 (or whatever other thread was the last resumed thread) exited.
4773
4774 To address this we refresh the thread list and check whether we
4775 have resumed threads _now_. In the example above, this removes
4776 thread 3 from the thread list. If thread 2 was re-resumed, we
4777 ignore this event. If we find no thread resumed, then we cancel
4778 the synchronous command show "no unwaited-for " to the user. */
4779 update_thread_list ();
4780
4781 ALL_NON_EXITED_THREADS (thread)
4782 {
4783 if (thread->executing
4784 || thread->suspend.waitstatus_pending_p)
4785 {
4786 /* There were no unwaited-for children left in the target at
4787 some point, but there are now. Just ignore. */
4788 if (debug_infrun)
4789 fprintf_unfiltered (gdb_stdlog,
4790 "infrun: TARGET_WAITKIND_NO_RESUMED "
4791 "(ignoring: found resumed)\n");
4792 prepare_to_wait (ecs);
4793 return 1;
4794 }
4795 }
4796
4797 /* Note however that we may find no resumed thread because the whole
4798 process exited meanwhile (thus updating the thread list results
4799 in an empty thread list). In this case we know we'll be getting
4800 a process exit event shortly. */
4801 ALL_INFERIORS (inf)
4802 {
4803 if (inf->pid == 0)
4804 continue;
4805
4806 thread = any_live_thread_of_process (inf->pid);
4807 if (thread == NULL)
4808 {
4809 if (debug_infrun)
4810 fprintf_unfiltered (gdb_stdlog,
4811 "infrun: TARGET_WAITKIND_NO_RESUMED "
4812 "(expect process exit)\n");
4813 prepare_to_wait (ecs);
4814 return 1;
4815 }
4816 }
4817
4818 /* Go ahead and report the event. */
4819 return 0;
4820 }
4821
4822 /* Given an execution control state that has been freshly filled in by
4823 an event from the inferior, figure out what it means and take
4824 appropriate action.
4825
4826 The alternatives are:
4827
4828 1) stop_waiting and return; to really stop and return to the
4829 debugger.
4830
4831 2) keep_going and return; to wait for the next event (set
4832 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4833 once). */
4834
4835 static void
4836 handle_inferior_event_1 (struct execution_control_state *ecs)
4837 {
4838 enum stop_kind stop_soon;
4839
4840 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4841 {
4842 /* We had an event in the inferior, but we are not interested in
4843 handling it at this level. The lower layers have already
4844 done what needs to be done, if anything.
4845
4846 One of the possible circumstances for this is when the
4847 inferior produces output for the console. The inferior has
4848 not stopped, and we are ignoring the event. Another possible
4849 circumstance is any event which the lower level knows will be
4850 reported multiple times without an intervening resume. */
4851 if (debug_infrun)
4852 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4853 prepare_to_wait (ecs);
4854 return;
4855 }
4856
4857 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4858 {
4859 if (debug_infrun)
4860 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4861 prepare_to_wait (ecs);
4862 return;
4863 }
4864
4865 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4866 && handle_no_resumed (ecs))
4867 return;
4868
4869 /* Cache the last pid/waitstatus. */
4870 set_last_target_status (ecs->ptid, ecs->ws);
4871
4872 /* Always clear state belonging to the previous time we stopped. */
4873 stop_stack_dummy = STOP_NONE;
4874
4875 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4876 {
4877 /* No unwaited-for children left. IOW, all resumed children
4878 have exited. */
4879 if (debug_infrun)
4880 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4881
4882 stop_print_frame = 0;
4883 stop_waiting (ecs);
4884 return;
4885 }
4886
4887 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4888 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4889 {
4890 ecs->event_thread = find_thread_ptid (ecs->ptid);
4891 /* If it's a new thread, add it to the thread database. */
4892 if (ecs->event_thread == NULL)
4893 ecs->event_thread = add_thread (ecs->ptid);
4894
4895 /* Disable range stepping. If the next step request could use a
4896 range, this will be end up re-enabled then. */
4897 ecs->event_thread->control.may_range_step = 0;
4898 }
4899
4900 /* Dependent on valid ECS->EVENT_THREAD. */
4901 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4902
4903 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4904 reinit_frame_cache ();
4905
4906 breakpoint_retire_moribund ();
4907
4908 /* First, distinguish signals caused by the debugger from signals
4909 that have to do with the program's own actions. Note that
4910 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4911 on the operating system version. Here we detect when a SIGILL or
4912 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4913 something similar for SIGSEGV, since a SIGSEGV will be generated
4914 when we're trying to execute a breakpoint instruction on a
4915 non-executable stack. This happens for call dummy breakpoints
4916 for architectures like SPARC that place call dummies on the
4917 stack. */
4918 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4919 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4920 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4921 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4922 {
4923 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4924
4925 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4926 regcache_read_pc (regcache)))
4927 {
4928 if (debug_infrun)
4929 fprintf_unfiltered (gdb_stdlog,
4930 "infrun: Treating signal as SIGTRAP\n");
4931 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4932 }
4933 }
4934
4935 /* Mark the non-executing threads accordingly. In all-stop, all
4936 threads of all processes are stopped when we get any event
4937 reported. In non-stop mode, only the event thread stops. */
4938 {
4939 ptid_t mark_ptid;
4940
4941 if (!target_is_non_stop_p ())
4942 mark_ptid = minus_one_ptid;
4943 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4944 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4945 {
4946 /* If we're handling a process exit in non-stop mode, even
4947 though threads haven't been deleted yet, one would think
4948 that there is nothing to do, as threads of the dead process
4949 will be soon deleted, and threads of any other process were
4950 left running. However, on some targets, threads survive a
4951 process exit event. E.g., for the "checkpoint" command,
4952 when the current checkpoint/fork exits, linux-fork.c
4953 automatically switches to another fork from within
4954 target_mourn_inferior, by associating the same
4955 inferior/thread to another fork. We haven't mourned yet at
4956 this point, but we must mark any threads left in the
4957 process as not-executing so that finish_thread_state marks
4958 them stopped (in the user's perspective) if/when we present
4959 the stop to the user. */
4960 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4961 }
4962 else
4963 mark_ptid = ecs->ptid;
4964
4965 set_executing (mark_ptid, 0);
4966
4967 /* Likewise the resumed flag. */
4968 set_resumed (mark_ptid, 0);
4969 }
4970
4971 switch (ecs->ws.kind)
4972 {
4973 case TARGET_WAITKIND_LOADED:
4974 if (debug_infrun)
4975 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4976 if (!ptid_equal (ecs->ptid, inferior_ptid))
4977 context_switch (ecs->ptid);
4978 /* Ignore gracefully during startup of the inferior, as it might
4979 be the shell which has just loaded some objects, otherwise
4980 add the symbols for the newly loaded objects. Also ignore at
4981 the beginning of an attach or remote session; we will query
4982 the full list of libraries once the connection is
4983 established. */
4984
4985 stop_soon = get_inferior_stop_soon (ecs->ptid);
4986 if (stop_soon == NO_STOP_QUIETLY)
4987 {
4988 struct regcache *regcache;
4989
4990 regcache = get_thread_regcache (ecs->ptid);
4991
4992 handle_solib_event ();
4993
4994 ecs->event_thread->control.stop_bpstat
4995 = bpstat_stop_status (get_regcache_aspace (regcache),
4996 stop_pc, ecs->ptid, &ecs->ws);
4997
4998 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4999 {
5000 /* A catchpoint triggered. */
5001 process_event_stop_test (ecs);
5002 return;
5003 }
5004
5005 /* If requested, stop when the dynamic linker notifies
5006 gdb of events. This allows the user to get control
5007 and place breakpoints in initializer routines for
5008 dynamically loaded objects (among other things). */
5009 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5010 if (stop_on_solib_events)
5011 {
5012 /* Make sure we print "Stopped due to solib-event" in
5013 normal_stop. */
5014 stop_print_frame = 1;
5015
5016 stop_waiting (ecs);
5017 return;
5018 }
5019 }
5020
5021 /* If we are skipping through a shell, or through shared library
5022 loading that we aren't interested in, resume the program. If
5023 we're running the program normally, also resume. */
5024 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5025 {
5026 /* Loading of shared libraries might have changed breakpoint
5027 addresses. Make sure new breakpoints are inserted. */
5028 if (stop_soon == NO_STOP_QUIETLY)
5029 insert_breakpoints ();
5030 resume (GDB_SIGNAL_0);
5031 prepare_to_wait (ecs);
5032 return;
5033 }
5034
5035 /* But stop if we're attaching or setting up a remote
5036 connection. */
5037 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5038 || stop_soon == STOP_QUIETLY_REMOTE)
5039 {
5040 if (debug_infrun)
5041 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5042 stop_waiting (ecs);
5043 return;
5044 }
5045
5046 internal_error (__FILE__, __LINE__,
5047 _("unhandled stop_soon: %d"), (int) stop_soon);
5048
5049 case TARGET_WAITKIND_SPURIOUS:
5050 if (debug_infrun)
5051 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5052 if (!ptid_equal (ecs->ptid, inferior_ptid))
5053 context_switch (ecs->ptid);
5054 resume (GDB_SIGNAL_0);
5055 prepare_to_wait (ecs);
5056 return;
5057
5058 case TARGET_WAITKIND_THREAD_CREATED:
5059 if (debug_infrun)
5060 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5061 if (!ptid_equal (ecs->ptid, inferior_ptid))
5062 context_switch (ecs->ptid);
5063 if (!switch_back_to_stepped_thread (ecs))
5064 keep_going (ecs);
5065 return;
5066
5067 case TARGET_WAITKIND_EXITED:
5068 case TARGET_WAITKIND_SIGNALLED:
5069 if (debug_infrun)
5070 {
5071 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5072 fprintf_unfiltered (gdb_stdlog,
5073 "infrun: TARGET_WAITKIND_EXITED\n");
5074 else
5075 fprintf_unfiltered (gdb_stdlog,
5076 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5077 }
5078
5079 inferior_ptid = ecs->ptid;
5080 set_current_inferior (find_inferior_ptid (ecs->ptid));
5081 set_current_program_space (current_inferior ()->pspace);
5082 handle_vfork_child_exec_or_exit (0);
5083 target_terminal_ours (); /* Must do this before mourn anyway. */
5084
5085 /* Clearing any previous state of convenience variables. */
5086 clear_exit_convenience_vars ();
5087
5088 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5089 {
5090 /* Record the exit code in the convenience variable $_exitcode, so
5091 that the user can inspect this again later. */
5092 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5093 (LONGEST) ecs->ws.value.integer);
5094
5095 /* Also record this in the inferior itself. */
5096 current_inferior ()->has_exit_code = 1;
5097 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5098
5099 /* Support the --return-child-result option. */
5100 return_child_result_value = ecs->ws.value.integer;
5101
5102 observer_notify_exited (ecs->ws.value.integer);
5103 }
5104 else
5105 {
5106 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5107 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5108
5109 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5110 {
5111 /* Set the value of the internal variable $_exitsignal,
5112 which holds the signal uncaught by the inferior. */
5113 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5114 gdbarch_gdb_signal_to_target (gdbarch,
5115 ecs->ws.value.sig));
5116 }
5117 else
5118 {
5119 /* We don't have access to the target's method used for
5120 converting between signal numbers (GDB's internal
5121 representation <-> target's representation).
5122 Therefore, we cannot do a good job at displaying this
5123 information to the user. It's better to just warn
5124 her about it (if infrun debugging is enabled), and
5125 give up. */
5126 if (debug_infrun)
5127 fprintf_filtered (gdb_stdlog, _("\
5128 Cannot fill $_exitsignal with the correct signal number.\n"));
5129 }
5130
5131 observer_notify_signal_exited (ecs->ws.value.sig);
5132 }
5133
5134 gdb_flush (gdb_stdout);
5135 target_mourn_inferior ();
5136 stop_print_frame = 0;
5137 stop_waiting (ecs);
5138 return;
5139
5140 /* The following are the only cases in which we keep going;
5141 the above cases end in a continue or goto. */
5142 case TARGET_WAITKIND_FORKED:
5143 case TARGET_WAITKIND_VFORKED:
5144 if (debug_infrun)
5145 {
5146 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5147 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5148 else
5149 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5150 }
5151
5152 /* Check whether the inferior is displaced stepping. */
5153 {
5154 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5155 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5156
5157 /* If checking displaced stepping is supported, and thread
5158 ecs->ptid is displaced stepping. */
5159 if (displaced_step_in_progress_thread (ecs->ptid))
5160 {
5161 struct inferior *parent_inf
5162 = find_inferior_ptid (ecs->ptid);
5163 struct regcache *child_regcache;
5164 CORE_ADDR parent_pc;
5165
5166 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5167 indicating that the displaced stepping of syscall instruction
5168 has been done. Perform cleanup for parent process here. Note
5169 that this operation also cleans up the child process for vfork,
5170 because their pages are shared. */
5171 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5172 /* Start a new step-over in another thread if there's one
5173 that needs it. */
5174 start_step_over ();
5175
5176 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5177 {
5178 struct displaced_step_inferior_state *displaced
5179 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5180
5181 /* Restore scratch pad for child process. */
5182 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5183 }
5184
5185 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5186 the child's PC is also within the scratchpad. Set the child's PC
5187 to the parent's PC value, which has already been fixed up.
5188 FIXME: we use the parent's aspace here, although we're touching
5189 the child, because the child hasn't been added to the inferior
5190 list yet at this point. */
5191
5192 child_regcache
5193 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5194 gdbarch,
5195 parent_inf->aspace);
5196 /* Read PC value of parent process. */
5197 parent_pc = regcache_read_pc (regcache);
5198
5199 if (debug_displaced)
5200 fprintf_unfiltered (gdb_stdlog,
5201 "displaced: write child pc from %s to %s\n",
5202 paddress (gdbarch,
5203 regcache_read_pc (child_regcache)),
5204 paddress (gdbarch, parent_pc));
5205
5206 regcache_write_pc (child_regcache, parent_pc);
5207 }
5208 }
5209
5210 if (!ptid_equal (ecs->ptid, inferior_ptid))
5211 context_switch (ecs->ptid);
5212
5213 /* Immediately detach breakpoints from the child before there's
5214 any chance of letting the user delete breakpoints from the
5215 breakpoint lists. If we don't do this early, it's easy to
5216 leave left over traps in the child, vis: "break foo; catch
5217 fork; c; <fork>; del; c; <child calls foo>". We only follow
5218 the fork on the last `continue', and by that time the
5219 breakpoint at "foo" is long gone from the breakpoint table.
5220 If we vforked, then we don't need to unpatch here, since both
5221 parent and child are sharing the same memory pages; we'll
5222 need to unpatch at follow/detach time instead to be certain
5223 that new breakpoints added between catchpoint hit time and
5224 vfork follow are detached. */
5225 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5226 {
5227 /* This won't actually modify the breakpoint list, but will
5228 physically remove the breakpoints from the child. */
5229 detach_breakpoints (ecs->ws.value.related_pid);
5230 }
5231
5232 delete_just_stopped_threads_single_step_breakpoints ();
5233
5234 /* In case the event is caught by a catchpoint, remember that
5235 the event is to be followed at the next resume of the thread,
5236 and not immediately. */
5237 ecs->event_thread->pending_follow = ecs->ws;
5238
5239 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5240
5241 ecs->event_thread->control.stop_bpstat
5242 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5243 stop_pc, ecs->ptid, &ecs->ws);
5244
5245 /* If no catchpoint triggered for this, then keep going. Note
5246 that we're interested in knowing the bpstat actually causes a
5247 stop, not just if it may explain the signal. Software
5248 watchpoints, for example, always appear in the bpstat. */
5249 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5250 {
5251 ptid_t parent;
5252 ptid_t child;
5253 int should_resume;
5254 int follow_child
5255 = (follow_fork_mode_string == follow_fork_mode_child);
5256
5257 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5258
5259 should_resume = follow_fork ();
5260
5261 parent = ecs->ptid;
5262 child = ecs->ws.value.related_pid;
5263
5264 /* At this point, the parent is marked running, and the
5265 child is marked stopped. */
5266
5267 /* If not resuming the parent, mark it stopped. */
5268 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5269 set_running (parent, 0);
5270
5271 /* If resuming the child, mark it running. */
5272 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5273 set_running (child, 1);
5274
5275 /* In non-stop mode, also resume the other branch. */
5276 if (!detach_fork && (non_stop
5277 || (sched_multi && target_is_non_stop_p ())))
5278 {
5279 if (follow_child)
5280 switch_to_thread (parent);
5281 else
5282 switch_to_thread (child);
5283
5284 ecs->event_thread = inferior_thread ();
5285 ecs->ptid = inferior_ptid;
5286 keep_going (ecs);
5287 }
5288
5289 if (follow_child)
5290 switch_to_thread (child);
5291 else
5292 switch_to_thread (parent);
5293
5294 ecs->event_thread = inferior_thread ();
5295 ecs->ptid = inferior_ptid;
5296
5297 if (should_resume)
5298 keep_going (ecs);
5299 else
5300 stop_waiting (ecs);
5301 return;
5302 }
5303 process_event_stop_test (ecs);
5304 return;
5305
5306 case TARGET_WAITKIND_VFORK_DONE:
5307 /* Done with the shared memory region. Re-insert breakpoints in
5308 the parent, and keep going. */
5309
5310 if (debug_infrun)
5311 fprintf_unfiltered (gdb_stdlog,
5312 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5313
5314 if (!ptid_equal (ecs->ptid, inferior_ptid))
5315 context_switch (ecs->ptid);
5316
5317 current_inferior ()->waiting_for_vfork_done = 0;
5318 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5319 /* This also takes care of reinserting breakpoints in the
5320 previously locked inferior. */
5321 keep_going (ecs);
5322 return;
5323
5324 case TARGET_WAITKIND_EXECD:
5325 if (debug_infrun)
5326 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5327
5328 if (!ptid_equal (ecs->ptid, inferior_ptid))
5329 context_switch (ecs->ptid);
5330
5331 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5332
5333 /* Do whatever is necessary to the parent branch of the vfork. */
5334 handle_vfork_child_exec_or_exit (1);
5335
5336 /* This causes the eventpoints and symbol table to be reset.
5337 Must do this now, before trying to determine whether to
5338 stop. */
5339 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5340
5341 /* In follow_exec we may have deleted the original thread and
5342 created a new one. Make sure that the event thread is the
5343 execd thread for that case (this is a nop otherwise). */
5344 ecs->event_thread = inferior_thread ();
5345
5346 ecs->event_thread->control.stop_bpstat
5347 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5348 stop_pc, ecs->ptid, &ecs->ws);
5349
5350 /* Note that this may be referenced from inside
5351 bpstat_stop_status above, through inferior_has_execd. */
5352 xfree (ecs->ws.value.execd_pathname);
5353 ecs->ws.value.execd_pathname = NULL;
5354
5355 /* If no catchpoint triggered for this, then keep going. */
5356 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5357 {
5358 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5359 keep_going (ecs);
5360 return;
5361 }
5362 process_event_stop_test (ecs);
5363 return;
5364
5365 /* Be careful not to try to gather much state about a thread
5366 that's in a syscall. It's frequently a losing proposition. */
5367 case TARGET_WAITKIND_SYSCALL_ENTRY:
5368 if (debug_infrun)
5369 fprintf_unfiltered (gdb_stdlog,
5370 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5371 /* Getting the current syscall number. */
5372 if (handle_syscall_event (ecs) == 0)
5373 process_event_stop_test (ecs);
5374 return;
5375
5376 /* Before examining the threads further, step this thread to
5377 get it entirely out of the syscall. (We get notice of the
5378 event when the thread is just on the verge of exiting a
5379 syscall. Stepping one instruction seems to get it back
5380 into user code.) */
5381 case TARGET_WAITKIND_SYSCALL_RETURN:
5382 if (debug_infrun)
5383 fprintf_unfiltered (gdb_stdlog,
5384 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5385 if (handle_syscall_event (ecs) == 0)
5386 process_event_stop_test (ecs);
5387 return;
5388
5389 case TARGET_WAITKIND_STOPPED:
5390 if (debug_infrun)
5391 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5392 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5393 handle_signal_stop (ecs);
5394 return;
5395
5396 case TARGET_WAITKIND_NO_HISTORY:
5397 if (debug_infrun)
5398 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5399 /* Reverse execution: target ran out of history info. */
5400
5401 /* Switch to the stopped thread. */
5402 if (!ptid_equal (ecs->ptid, inferior_ptid))
5403 context_switch (ecs->ptid);
5404 if (debug_infrun)
5405 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5406
5407 delete_just_stopped_threads_single_step_breakpoints ();
5408 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5409 observer_notify_no_history ();
5410 stop_waiting (ecs);
5411 return;
5412 }
5413 }
5414
5415 /* A wrapper around handle_inferior_event_1, which also makes sure
5416 that all temporary struct value objects that were created during
5417 the handling of the event get deleted at the end. */
5418
5419 static void
5420 handle_inferior_event (struct execution_control_state *ecs)
5421 {
5422 struct value *mark = value_mark ();
5423
5424 handle_inferior_event_1 (ecs);
5425 /* Purge all temporary values created during the event handling,
5426 as it could be a long time before we return to the command level
5427 where such values would otherwise be purged. */
5428 value_free_to_mark (mark);
5429 }
5430
5431 /* Restart threads back to what they were trying to do back when we
5432 paused them for an in-line step-over. The EVENT_THREAD thread is
5433 ignored. */
5434
5435 static void
5436 restart_threads (struct thread_info *event_thread)
5437 {
5438 struct thread_info *tp;
5439
5440 /* In case the instruction just stepped spawned a new thread. */
5441 update_thread_list ();
5442
5443 ALL_NON_EXITED_THREADS (tp)
5444 {
5445 if (tp == event_thread)
5446 {
5447 if (debug_infrun)
5448 fprintf_unfiltered (gdb_stdlog,
5449 "infrun: restart threads: "
5450 "[%s] is event thread\n",
5451 target_pid_to_str (tp->ptid));
5452 continue;
5453 }
5454
5455 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5456 {
5457 if (debug_infrun)
5458 fprintf_unfiltered (gdb_stdlog,
5459 "infrun: restart threads: "
5460 "[%s] not meant to be running\n",
5461 target_pid_to_str (tp->ptid));
5462 continue;
5463 }
5464
5465 if (tp->resumed)
5466 {
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog,
5469 "infrun: restart threads: [%s] resumed\n",
5470 target_pid_to_str (tp->ptid));
5471 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5472 continue;
5473 }
5474
5475 if (thread_is_in_step_over_chain (tp))
5476 {
5477 if (debug_infrun)
5478 fprintf_unfiltered (gdb_stdlog,
5479 "infrun: restart threads: "
5480 "[%s] needs step-over\n",
5481 target_pid_to_str (tp->ptid));
5482 gdb_assert (!tp->resumed);
5483 continue;
5484 }
5485
5486
5487 if (tp->suspend.waitstatus_pending_p)
5488 {
5489 if (debug_infrun)
5490 fprintf_unfiltered (gdb_stdlog,
5491 "infrun: restart threads: "
5492 "[%s] has pending status\n",
5493 target_pid_to_str (tp->ptid));
5494 tp->resumed = 1;
5495 continue;
5496 }
5497
5498 /* If some thread needs to start a step-over at this point, it
5499 should still be in the step-over queue, and thus skipped
5500 above. */
5501 if (thread_still_needs_step_over (tp))
5502 {
5503 internal_error (__FILE__, __LINE__,
5504 "thread [%s] needs a step-over, but not in "
5505 "step-over queue\n",
5506 target_pid_to_str (tp->ptid));
5507 }
5508
5509 if (currently_stepping (tp))
5510 {
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: restart threads: [%s] was stepping\n",
5514 target_pid_to_str (tp->ptid));
5515 keep_going_stepped_thread (tp);
5516 }
5517 else
5518 {
5519 struct execution_control_state ecss;
5520 struct execution_control_state *ecs = &ecss;
5521
5522 if (debug_infrun)
5523 fprintf_unfiltered (gdb_stdlog,
5524 "infrun: restart threads: [%s] continuing\n",
5525 target_pid_to_str (tp->ptid));
5526 reset_ecs (ecs, tp);
5527 switch_to_thread (tp->ptid);
5528 keep_going_pass_signal (ecs);
5529 }
5530 }
5531 }
5532
5533 /* Callback for iterate_over_threads. Find a resumed thread that has
5534 a pending waitstatus. */
5535
5536 static int
5537 resumed_thread_with_pending_status (struct thread_info *tp,
5538 void *arg)
5539 {
5540 return (tp->resumed
5541 && tp->suspend.waitstatus_pending_p);
5542 }
5543
5544 /* Called when we get an event that may finish an in-line or
5545 out-of-line (displaced stepping) step-over started previously.
5546 Return true if the event is processed and we should go back to the
5547 event loop; false if the caller should continue processing the
5548 event. */
5549
5550 static int
5551 finish_step_over (struct execution_control_state *ecs)
5552 {
5553 int had_step_over_info;
5554
5555 displaced_step_fixup (ecs->ptid,
5556 ecs->event_thread->suspend.stop_signal);
5557
5558 had_step_over_info = step_over_info_valid_p ();
5559
5560 if (had_step_over_info)
5561 {
5562 /* If we're stepping over a breakpoint with all threads locked,
5563 then only the thread that was stepped should be reporting
5564 back an event. */
5565 gdb_assert (ecs->event_thread->control.trap_expected);
5566
5567 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5568 clear_step_over_info ();
5569 }
5570
5571 if (!target_is_non_stop_p ())
5572 return 0;
5573
5574 /* Start a new step-over in another thread if there's one that
5575 needs it. */
5576 start_step_over ();
5577
5578 /* If we were stepping over a breakpoint before, and haven't started
5579 a new in-line step-over sequence, then restart all other threads
5580 (except the event thread). We can't do this in all-stop, as then
5581 e.g., we wouldn't be able to issue any other remote packet until
5582 these other threads stop. */
5583 if (had_step_over_info && !step_over_info_valid_p ())
5584 {
5585 struct thread_info *pending;
5586
5587 /* If we only have threads with pending statuses, the restart
5588 below won't restart any thread and so nothing re-inserts the
5589 breakpoint we just stepped over. But we need it inserted
5590 when we later process the pending events, otherwise if
5591 another thread has a pending event for this breakpoint too,
5592 we'd discard its event (because the breakpoint that
5593 originally caused the event was no longer inserted). */
5594 context_switch (ecs->ptid);
5595 insert_breakpoints ();
5596
5597 restart_threads (ecs->event_thread);
5598
5599 /* If we have events pending, go through handle_inferior_event
5600 again, picking up a pending event at random. This avoids
5601 thread starvation. */
5602
5603 /* But not if we just stepped over a watchpoint in order to let
5604 the instruction execute so we can evaluate its expression.
5605 The set of watchpoints that triggered is recorded in the
5606 breakpoint objects themselves (see bp->watchpoint_triggered).
5607 If we processed another event first, that other event could
5608 clobber this info. */
5609 if (ecs->event_thread->stepping_over_watchpoint)
5610 return 0;
5611
5612 pending = iterate_over_threads (resumed_thread_with_pending_status,
5613 NULL);
5614 if (pending != NULL)
5615 {
5616 struct thread_info *tp = ecs->event_thread;
5617 struct regcache *regcache;
5618
5619 if (debug_infrun)
5620 {
5621 fprintf_unfiltered (gdb_stdlog,
5622 "infrun: found resumed threads with "
5623 "pending events, saving status\n");
5624 }
5625
5626 gdb_assert (pending != tp);
5627
5628 /* Record the event thread's event for later. */
5629 save_waitstatus (tp, &ecs->ws);
5630 /* This was cleared early, by handle_inferior_event. Set it
5631 so this pending event is considered by
5632 do_target_wait. */
5633 tp->resumed = 1;
5634
5635 gdb_assert (!tp->executing);
5636
5637 regcache = get_thread_regcache (tp->ptid);
5638 tp->suspend.stop_pc = regcache_read_pc (regcache);
5639
5640 if (debug_infrun)
5641 {
5642 fprintf_unfiltered (gdb_stdlog,
5643 "infrun: saved stop_pc=%s for %s "
5644 "(currently_stepping=%d)\n",
5645 paddress (target_gdbarch (),
5646 tp->suspend.stop_pc),
5647 target_pid_to_str (tp->ptid),
5648 currently_stepping (tp));
5649 }
5650
5651 /* This in-line step-over finished; clear this so we won't
5652 start a new one. This is what handle_signal_stop would
5653 do, if we returned false. */
5654 tp->stepping_over_breakpoint = 0;
5655
5656 /* Wake up the event loop again. */
5657 mark_async_event_handler (infrun_async_inferior_event_token);
5658
5659 prepare_to_wait (ecs);
5660 return 1;
5661 }
5662 }
5663
5664 return 0;
5665 }
5666
5667 /* Come here when the program has stopped with a signal. */
5668
5669 static void
5670 handle_signal_stop (struct execution_control_state *ecs)
5671 {
5672 struct frame_info *frame;
5673 struct gdbarch *gdbarch;
5674 int stopped_by_watchpoint;
5675 enum stop_kind stop_soon;
5676 int random_signal;
5677
5678 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5679
5680 /* Do we need to clean up the state of a thread that has
5681 completed a displaced single-step? (Doing so usually affects
5682 the PC, so do it here, before we set stop_pc.) */
5683 if (finish_step_over (ecs))
5684 return;
5685
5686 /* If we either finished a single-step or hit a breakpoint, but
5687 the user wanted this thread to be stopped, pretend we got a
5688 SIG0 (generic unsignaled stop). */
5689 if (ecs->event_thread->stop_requested
5690 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5691 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5692
5693 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5694
5695 if (debug_infrun)
5696 {
5697 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5699 struct cleanup *old_chain = save_inferior_ptid ();
5700
5701 inferior_ptid = ecs->ptid;
5702
5703 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5704 paddress (gdbarch, stop_pc));
5705 if (target_stopped_by_watchpoint ())
5706 {
5707 CORE_ADDR addr;
5708
5709 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5710
5711 if (target_stopped_data_address (&current_target, &addr))
5712 fprintf_unfiltered (gdb_stdlog,
5713 "infrun: stopped data address = %s\n",
5714 paddress (gdbarch, addr));
5715 else
5716 fprintf_unfiltered (gdb_stdlog,
5717 "infrun: (no data address available)\n");
5718 }
5719
5720 do_cleanups (old_chain);
5721 }
5722
5723 /* This is originated from start_remote(), start_inferior() and
5724 shared libraries hook functions. */
5725 stop_soon = get_inferior_stop_soon (ecs->ptid);
5726 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5727 {
5728 if (!ptid_equal (ecs->ptid, inferior_ptid))
5729 context_switch (ecs->ptid);
5730 if (debug_infrun)
5731 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5732 stop_print_frame = 1;
5733 stop_waiting (ecs);
5734 return;
5735 }
5736
5737 /* This originates from attach_command(). We need to overwrite
5738 the stop_signal here, because some kernels don't ignore a
5739 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5740 See more comments in inferior.h. On the other hand, if we
5741 get a non-SIGSTOP, report it to the user - assume the backend
5742 will handle the SIGSTOP if it should show up later.
5743
5744 Also consider that the attach is complete when we see a
5745 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5746 target extended-remote report it instead of a SIGSTOP
5747 (e.g. gdbserver). We already rely on SIGTRAP being our
5748 signal, so this is no exception.
5749
5750 Also consider that the attach is complete when we see a
5751 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5752 the target to stop all threads of the inferior, in case the
5753 low level attach operation doesn't stop them implicitly. If
5754 they weren't stopped implicitly, then the stub will report a
5755 GDB_SIGNAL_0, meaning: stopped for no particular reason
5756 other than GDB's request. */
5757 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5758 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5759 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5760 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5761 {
5762 stop_print_frame = 1;
5763 stop_waiting (ecs);
5764 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5765 return;
5766 }
5767
5768 /* See if something interesting happened to the non-current thread. If
5769 so, then switch to that thread. */
5770 if (!ptid_equal (ecs->ptid, inferior_ptid))
5771 {
5772 if (debug_infrun)
5773 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5774
5775 context_switch (ecs->ptid);
5776
5777 if (deprecated_context_hook)
5778 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5779 }
5780
5781 /* At this point, get hold of the now-current thread's frame. */
5782 frame = get_current_frame ();
5783 gdbarch = get_frame_arch (frame);
5784
5785 /* Pull the single step breakpoints out of the target. */
5786 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5787 {
5788 struct regcache *regcache;
5789 struct address_space *aspace;
5790 CORE_ADDR pc;
5791
5792 regcache = get_thread_regcache (ecs->ptid);
5793 aspace = get_regcache_aspace (regcache);
5794 pc = regcache_read_pc (regcache);
5795
5796 /* However, before doing so, if this single-step breakpoint was
5797 actually for another thread, set this thread up for moving
5798 past it. */
5799 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5800 aspace, pc))
5801 {
5802 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5803 {
5804 if (debug_infrun)
5805 {
5806 fprintf_unfiltered (gdb_stdlog,
5807 "infrun: [%s] hit another thread's "
5808 "single-step breakpoint\n",
5809 target_pid_to_str (ecs->ptid));
5810 }
5811 ecs->hit_singlestep_breakpoint = 1;
5812 }
5813 }
5814 else
5815 {
5816 if (debug_infrun)
5817 {
5818 fprintf_unfiltered (gdb_stdlog,
5819 "infrun: [%s] hit its "
5820 "single-step breakpoint\n",
5821 target_pid_to_str (ecs->ptid));
5822 }
5823 }
5824 }
5825 delete_just_stopped_threads_single_step_breakpoints ();
5826
5827 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5828 && ecs->event_thread->control.trap_expected
5829 && ecs->event_thread->stepping_over_watchpoint)
5830 stopped_by_watchpoint = 0;
5831 else
5832 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5833
5834 /* If necessary, step over this watchpoint. We'll be back to display
5835 it in a moment. */
5836 if (stopped_by_watchpoint
5837 && (target_have_steppable_watchpoint
5838 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5839 {
5840 /* At this point, we are stopped at an instruction which has
5841 attempted to write to a piece of memory under control of
5842 a watchpoint. The instruction hasn't actually executed
5843 yet. If we were to evaluate the watchpoint expression
5844 now, we would get the old value, and therefore no change
5845 would seem to have occurred.
5846
5847 In order to make watchpoints work `right', we really need
5848 to complete the memory write, and then evaluate the
5849 watchpoint expression. We do this by single-stepping the
5850 target.
5851
5852 It may not be necessary to disable the watchpoint to step over
5853 it. For example, the PA can (with some kernel cooperation)
5854 single step over a watchpoint without disabling the watchpoint.
5855
5856 It is far more common to need to disable a watchpoint to step
5857 the inferior over it. If we have non-steppable watchpoints,
5858 we must disable the current watchpoint; it's simplest to
5859 disable all watchpoints.
5860
5861 Any breakpoint at PC must also be stepped over -- if there's
5862 one, it will have already triggered before the watchpoint
5863 triggered, and we either already reported it to the user, or
5864 it didn't cause a stop and we called keep_going. In either
5865 case, if there was a breakpoint at PC, we must be trying to
5866 step past it. */
5867 ecs->event_thread->stepping_over_watchpoint = 1;
5868 keep_going (ecs);
5869 return;
5870 }
5871
5872 ecs->event_thread->stepping_over_breakpoint = 0;
5873 ecs->event_thread->stepping_over_watchpoint = 0;
5874 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5875 ecs->event_thread->control.stop_step = 0;
5876 stop_print_frame = 1;
5877 stopped_by_random_signal = 0;
5878
5879 /* Hide inlined functions starting here, unless we just performed stepi or
5880 nexti. After stepi and nexti, always show the innermost frame (not any
5881 inline function call sites). */
5882 if (ecs->event_thread->control.step_range_end != 1)
5883 {
5884 struct address_space *aspace =
5885 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5886
5887 /* skip_inline_frames is expensive, so we avoid it if we can
5888 determine that the address is one where functions cannot have
5889 been inlined. This improves performance with inferiors that
5890 load a lot of shared libraries, because the solib event
5891 breakpoint is defined as the address of a function (i.e. not
5892 inline). Note that we have to check the previous PC as well
5893 as the current one to catch cases when we have just
5894 single-stepped off a breakpoint prior to reinstating it.
5895 Note that we're assuming that the code we single-step to is
5896 not inline, but that's not definitive: there's nothing
5897 preventing the event breakpoint function from containing
5898 inlined code, and the single-step ending up there. If the
5899 user had set a breakpoint on that inlined code, the missing
5900 skip_inline_frames call would break things. Fortunately
5901 that's an extremely unlikely scenario. */
5902 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5903 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5904 && ecs->event_thread->control.trap_expected
5905 && pc_at_non_inline_function (aspace,
5906 ecs->event_thread->prev_pc,
5907 &ecs->ws)))
5908 {
5909 skip_inline_frames (ecs->ptid);
5910
5911 /* Re-fetch current thread's frame in case that invalidated
5912 the frame cache. */
5913 frame = get_current_frame ();
5914 gdbarch = get_frame_arch (frame);
5915 }
5916 }
5917
5918 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5919 && ecs->event_thread->control.trap_expected
5920 && gdbarch_single_step_through_delay_p (gdbarch)
5921 && currently_stepping (ecs->event_thread))
5922 {
5923 /* We're trying to step off a breakpoint. Turns out that we're
5924 also on an instruction that needs to be stepped multiple
5925 times before it's been fully executing. E.g., architectures
5926 with a delay slot. It needs to be stepped twice, once for
5927 the instruction and once for the delay slot. */
5928 int step_through_delay
5929 = gdbarch_single_step_through_delay (gdbarch, frame);
5930
5931 if (debug_infrun && step_through_delay)
5932 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5933 if (ecs->event_thread->control.step_range_end == 0
5934 && step_through_delay)
5935 {
5936 /* The user issued a continue when stopped at a breakpoint.
5937 Set up for another trap and get out of here. */
5938 ecs->event_thread->stepping_over_breakpoint = 1;
5939 keep_going (ecs);
5940 return;
5941 }
5942 else if (step_through_delay)
5943 {
5944 /* The user issued a step when stopped at a breakpoint.
5945 Maybe we should stop, maybe we should not - the delay
5946 slot *might* correspond to a line of source. In any
5947 case, don't decide that here, just set
5948 ecs->stepping_over_breakpoint, making sure we
5949 single-step again before breakpoints are re-inserted. */
5950 ecs->event_thread->stepping_over_breakpoint = 1;
5951 }
5952 }
5953
5954 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5955 handles this event. */
5956 ecs->event_thread->control.stop_bpstat
5957 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5958 stop_pc, ecs->ptid, &ecs->ws);
5959
5960 /* Following in case break condition called a
5961 function. */
5962 stop_print_frame = 1;
5963
5964 /* This is where we handle "moribund" watchpoints. Unlike
5965 software breakpoints traps, hardware watchpoint traps are
5966 always distinguishable from random traps. If no high-level
5967 watchpoint is associated with the reported stop data address
5968 anymore, then the bpstat does not explain the signal ---
5969 simply make sure to ignore it if `stopped_by_watchpoint' is
5970 set. */
5971
5972 if (debug_infrun
5973 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5974 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5975 GDB_SIGNAL_TRAP)
5976 && stopped_by_watchpoint)
5977 fprintf_unfiltered (gdb_stdlog,
5978 "infrun: no user watchpoint explains "
5979 "watchpoint SIGTRAP, ignoring\n");
5980
5981 /* NOTE: cagney/2003-03-29: These checks for a random signal
5982 at one stage in the past included checks for an inferior
5983 function call's call dummy's return breakpoint. The original
5984 comment, that went with the test, read:
5985
5986 ``End of a stack dummy. Some systems (e.g. Sony news) give
5987 another signal besides SIGTRAP, so check here as well as
5988 above.''
5989
5990 If someone ever tries to get call dummys on a
5991 non-executable stack to work (where the target would stop
5992 with something like a SIGSEGV), then those tests might need
5993 to be re-instated. Given, however, that the tests were only
5994 enabled when momentary breakpoints were not being used, I
5995 suspect that it won't be the case.
5996
5997 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5998 be necessary for call dummies on a non-executable stack on
5999 SPARC. */
6000
6001 /* See if the breakpoints module can explain the signal. */
6002 random_signal
6003 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6004 ecs->event_thread->suspend.stop_signal);
6005
6006 /* Maybe this was a trap for a software breakpoint that has since
6007 been removed. */
6008 if (random_signal && target_stopped_by_sw_breakpoint ())
6009 {
6010 if (program_breakpoint_here_p (gdbarch, stop_pc))
6011 {
6012 struct regcache *regcache;
6013 int decr_pc;
6014
6015 /* Re-adjust PC to what the program would see if GDB was not
6016 debugging it. */
6017 regcache = get_thread_regcache (ecs->event_thread->ptid);
6018 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6019 if (decr_pc != 0)
6020 {
6021 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6022
6023 if (record_full_is_used ())
6024 record_full_gdb_operation_disable_set ();
6025
6026 regcache_write_pc (regcache, stop_pc + decr_pc);
6027
6028 do_cleanups (old_cleanups);
6029 }
6030 }
6031 else
6032 {
6033 /* A delayed software breakpoint event. Ignore the trap. */
6034 if (debug_infrun)
6035 fprintf_unfiltered (gdb_stdlog,
6036 "infrun: delayed software breakpoint "
6037 "trap, ignoring\n");
6038 random_signal = 0;
6039 }
6040 }
6041
6042 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6043 has since been removed. */
6044 if (random_signal && target_stopped_by_hw_breakpoint ())
6045 {
6046 /* A delayed hardware breakpoint event. Ignore the trap. */
6047 if (debug_infrun)
6048 fprintf_unfiltered (gdb_stdlog,
6049 "infrun: delayed hardware breakpoint/watchpoint "
6050 "trap, ignoring\n");
6051 random_signal = 0;
6052 }
6053
6054 /* If not, perhaps stepping/nexting can. */
6055 if (random_signal)
6056 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6057 && currently_stepping (ecs->event_thread));
6058
6059 /* Perhaps the thread hit a single-step breakpoint of _another_
6060 thread. Single-step breakpoints are transparent to the
6061 breakpoints module. */
6062 if (random_signal)
6063 random_signal = !ecs->hit_singlestep_breakpoint;
6064
6065 /* No? Perhaps we got a moribund watchpoint. */
6066 if (random_signal)
6067 random_signal = !stopped_by_watchpoint;
6068
6069 /* For the program's own signals, act according to
6070 the signal handling tables. */
6071
6072 if (random_signal)
6073 {
6074 /* Signal not for debugging purposes. */
6075 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6076 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6077
6078 if (debug_infrun)
6079 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6080 gdb_signal_to_symbol_string (stop_signal));
6081
6082 stopped_by_random_signal = 1;
6083
6084 /* Always stop on signals if we're either just gaining control
6085 of the program, or the user explicitly requested this thread
6086 to remain stopped. */
6087 if (stop_soon != NO_STOP_QUIETLY
6088 || ecs->event_thread->stop_requested
6089 || (!inf->detaching
6090 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6091 {
6092 stop_waiting (ecs);
6093 return;
6094 }
6095
6096 /* Notify observers the signal has "handle print" set. Note we
6097 returned early above if stopping; normal_stop handles the
6098 printing in that case. */
6099 if (signal_print[ecs->event_thread->suspend.stop_signal])
6100 {
6101 /* The signal table tells us to print about this signal. */
6102 target_terminal_ours_for_output ();
6103 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6104 target_terminal_inferior ();
6105 }
6106
6107 /* Clear the signal if it should not be passed. */
6108 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6109 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6110
6111 if (ecs->event_thread->prev_pc == stop_pc
6112 && ecs->event_thread->control.trap_expected
6113 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6114 {
6115 int was_in_line;
6116
6117 /* We were just starting a new sequence, attempting to
6118 single-step off of a breakpoint and expecting a SIGTRAP.
6119 Instead this signal arrives. This signal will take us out
6120 of the stepping range so GDB needs to remember to, when
6121 the signal handler returns, resume stepping off that
6122 breakpoint. */
6123 /* To simplify things, "continue" is forced to use the same
6124 code paths as single-step - set a breakpoint at the
6125 signal return address and then, once hit, step off that
6126 breakpoint. */
6127 if (debug_infrun)
6128 fprintf_unfiltered (gdb_stdlog,
6129 "infrun: signal arrived while stepping over "
6130 "breakpoint\n");
6131
6132 was_in_line = step_over_info_valid_p ();
6133 clear_step_over_info ();
6134 insert_hp_step_resume_breakpoint_at_frame (frame);
6135 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6136 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6137 ecs->event_thread->control.trap_expected = 0;
6138
6139 if (target_is_non_stop_p ())
6140 {
6141 /* Either "set non-stop" is "on", or the target is
6142 always in non-stop mode. In this case, we have a bit
6143 more work to do. Resume the current thread, and if
6144 we had paused all threads, restart them while the
6145 signal handler runs. */
6146 keep_going (ecs);
6147
6148 if (was_in_line)
6149 {
6150 restart_threads (ecs->event_thread);
6151 }
6152 else if (debug_infrun)
6153 {
6154 fprintf_unfiltered (gdb_stdlog,
6155 "infrun: no need to restart threads\n");
6156 }
6157 return;
6158 }
6159
6160 /* If we were nexting/stepping some other thread, switch to
6161 it, so that we don't continue it, losing control. */
6162 if (!switch_back_to_stepped_thread (ecs))
6163 keep_going (ecs);
6164 return;
6165 }
6166
6167 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6168 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6169 || ecs->event_thread->control.step_range_end == 1)
6170 && frame_id_eq (get_stack_frame_id (frame),
6171 ecs->event_thread->control.step_stack_frame_id)
6172 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6173 {
6174 /* The inferior is about to take a signal that will take it
6175 out of the single step range. Set a breakpoint at the
6176 current PC (which is presumably where the signal handler
6177 will eventually return) and then allow the inferior to
6178 run free.
6179
6180 Note that this is only needed for a signal delivered
6181 while in the single-step range. Nested signals aren't a
6182 problem as they eventually all return. */
6183 if (debug_infrun)
6184 fprintf_unfiltered (gdb_stdlog,
6185 "infrun: signal may take us out of "
6186 "single-step range\n");
6187
6188 clear_step_over_info ();
6189 insert_hp_step_resume_breakpoint_at_frame (frame);
6190 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6191 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6192 ecs->event_thread->control.trap_expected = 0;
6193 keep_going (ecs);
6194 return;
6195 }
6196
6197 /* Note: step_resume_breakpoint may be non-NULL. This occures
6198 when either there's a nested signal, or when there's a
6199 pending signal enabled just as the signal handler returns
6200 (leaving the inferior at the step-resume-breakpoint without
6201 actually executing it). Either way continue until the
6202 breakpoint is really hit. */
6203
6204 if (!switch_back_to_stepped_thread (ecs))
6205 {
6206 if (debug_infrun)
6207 fprintf_unfiltered (gdb_stdlog,
6208 "infrun: random signal, keep going\n");
6209
6210 keep_going (ecs);
6211 }
6212 return;
6213 }
6214
6215 process_event_stop_test (ecs);
6216 }
6217
6218 /* Come here when we've got some debug event / signal we can explain
6219 (IOW, not a random signal), and test whether it should cause a
6220 stop, or whether we should resume the inferior (transparently).
6221 E.g., could be a breakpoint whose condition evaluates false; we
6222 could be still stepping within the line; etc. */
6223
6224 static void
6225 process_event_stop_test (struct execution_control_state *ecs)
6226 {
6227 struct symtab_and_line stop_pc_sal;
6228 struct frame_info *frame;
6229 struct gdbarch *gdbarch;
6230 CORE_ADDR jmp_buf_pc;
6231 struct bpstat_what what;
6232
6233 /* Handle cases caused by hitting a breakpoint. */
6234
6235 frame = get_current_frame ();
6236 gdbarch = get_frame_arch (frame);
6237
6238 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6239
6240 if (what.call_dummy)
6241 {
6242 stop_stack_dummy = what.call_dummy;
6243 }
6244
6245 /* A few breakpoint types have callbacks associated (e.g.,
6246 bp_jit_event). Run them now. */
6247 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6248
6249 /* If we hit an internal event that triggers symbol changes, the
6250 current frame will be invalidated within bpstat_what (e.g., if we
6251 hit an internal solib event). Re-fetch it. */
6252 frame = get_current_frame ();
6253 gdbarch = get_frame_arch (frame);
6254
6255 switch (what.main_action)
6256 {
6257 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6258 /* If we hit the breakpoint at longjmp while stepping, we
6259 install a momentary breakpoint at the target of the
6260 jmp_buf. */
6261
6262 if (debug_infrun)
6263 fprintf_unfiltered (gdb_stdlog,
6264 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6265
6266 ecs->event_thread->stepping_over_breakpoint = 1;
6267
6268 if (what.is_longjmp)
6269 {
6270 struct value *arg_value;
6271
6272 /* If we set the longjmp breakpoint via a SystemTap probe,
6273 then use it to extract the arguments. The destination PC
6274 is the third argument to the probe. */
6275 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6276 if (arg_value)
6277 {
6278 jmp_buf_pc = value_as_address (arg_value);
6279 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6280 }
6281 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6282 || !gdbarch_get_longjmp_target (gdbarch,
6283 frame, &jmp_buf_pc))
6284 {
6285 if (debug_infrun)
6286 fprintf_unfiltered (gdb_stdlog,
6287 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6288 "(!gdbarch_get_longjmp_target)\n");
6289 keep_going (ecs);
6290 return;
6291 }
6292
6293 /* Insert a breakpoint at resume address. */
6294 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6295 }
6296 else
6297 check_exception_resume (ecs, frame);
6298 keep_going (ecs);
6299 return;
6300
6301 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6302 {
6303 struct frame_info *init_frame;
6304
6305 /* There are several cases to consider.
6306
6307 1. The initiating frame no longer exists. In this case we
6308 must stop, because the exception or longjmp has gone too
6309 far.
6310
6311 2. The initiating frame exists, and is the same as the
6312 current frame. We stop, because the exception or longjmp
6313 has been caught.
6314
6315 3. The initiating frame exists and is different from the
6316 current frame. This means the exception or longjmp has
6317 been caught beneath the initiating frame, so keep going.
6318
6319 4. longjmp breakpoint has been placed just to protect
6320 against stale dummy frames and user is not interested in
6321 stopping around longjmps. */
6322
6323 if (debug_infrun)
6324 fprintf_unfiltered (gdb_stdlog,
6325 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6326
6327 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6328 != NULL);
6329 delete_exception_resume_breakpoint (ecs->event_thread);
6330
6331 if (what.is_longjmp)
6332 {
6333 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6334
6335 if (!frame_id_p (ecs->event_thread->initiating_frame))
6336 {
6337 /* Case 4. */
6338 keep_going (ecs);
6339 return;
6340 }
6341 }
6342
6343 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6344
6345 if (init_frame)
6346 {
6347 struct frame_id current_id
6348 = get_frame_id (get_current_frame ());
6349 if (frame_id_eq (current_id,
6350 ecs->event_thread->initiating_frame))
6351 {
6352 /* Case 2. Fall through. */
6353 }
6354 else
6355 {
6356 /* Case 3. */
6357 keep_going (ecs);
6358 return;
6359 }
6360 }
6361
6362 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6363 exists. */
6364 delete_step_resume_breakpoint (ecs->event_thread);
6365
6366 end_stepping_range (ecs);
6367 }
6368 return;
6369
6370 case BPSTAT_WHAT_SINGLE:
6371 if (debug_infrun)
6372 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6373 ecs->event_thread->stepping_over_breakpoint = 1;
6374 /* Still need to check other stuff, at least the case where we
6375 are stepping and step out of the right range. */
6376 break;
6377
6378 case BPSTAT_WHAT_STEP_RESUME:
6379 if (debug_infrun)
6380 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6381
6382 delete_step_resume_breakpoint (ecs->event_thread);
6383 if (ecs->event_thread->control.proceed_to_finish
6384 && execution_direction == EXEC_REVERSE)
6385 {
6386 struct thread_info *tp = ecs->event_thread;
6387
6388 /* We are finishing a function in reverse, and just hit the
6389 step-resume breakpoint at the start address of the
6390 function, and we're almost there -- just need to back up
6391 by one more single-step, which should take us back to the
6392 function call. */
6393 tp->control.step_range_start = tp->control.step_range_end = 1;
6394 keep_going (ecs);
6395 return;
6396 }
6397 fill_in_stop_func (gdbarch, ecs);
6398 if (stop_pc == ecs->stop_func_start
6399 && execution_direction == EXEC_REVERSE)
6400 {
6401 /* We are stepping over a function call in reverse, and just
6402 hit the step-resume breakpoint at the start address of
6403 the function. Go back to single-stepping, which should
6404 take us back to the function call. */
6405 ecs->event_thread->stepping_over_breakpoint = 1;
6406 keep_going (ecs);
6407 return;
6408 }
6409 break;
6410
6411 case BPSTAT_WHAT_STOP_NOISY:
6412 if (debug_infrun)
6413 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6414 stop_print_frame = 1;
6415
6416 /* Assume the thread stopped for a breapoint. We'll still check
6417 whether a/the breakpoint is there when the thread is next
6418 resumed. */
6419 ecs->event_thread->stepping_over_breakpoint = 1;
6420
6421 stop_waiting (ecs);
6422 return;
6423
6424 case BPSTAT_WHAT_STOP_SILENT:
6425 if (debug_infrun)
6426 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6427 stop_print_frame = 0;
6428
6429 /* Assume the thread stopped for a breapoint. We'll still check
6430 whether a/the breakpoint is there when the thread is next
6431 resumed. */
6432 ecs->event_thread->stepping_over_breakpoint = 1;
6433 stop_waiting (ecs);
6434 return;
6435
6436 case BPSTAT_WHAT_HP_STEP_RESUME:
6437 if (debug_infrun)
6438 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6439
6440 delete_step_resume_breakpoint (ecs->event_thread);
6441 if (ecs->event_thread->step_after_step_resume_breakpoint)
6442 {
6443 /* Back when the step-resume breakpoint was inserted, we
6444 were trying to single-step off a breakpoint. Go back to
6445 doing that. */
6446 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6447 ecs->event_thread->stepping_over_breakpoint = 1;
6448 keep_going (ecs);
6449 return;
6450 }
6451 break;
6452
6453 case BPSTAT_WHAT_KEEP_CHECKING:
6454 break;
6455 }
6456
6457 /* If we stepped a permanent breakpoint and we had a high priority
6458 step-resume breakpoint for the address we stepped, but we didn't
6459 hit it, then we must have stepped into the signal handler. The
6460 step-resume was only necessary to catch the case of _not_
6461 stepping into the handler, so delete it, and fall through to
6462 checking whether the step finished. */
6463 if (ecs->event_thread->stepped_breakpoint)
6464 {
6465 struct breakpoint *sr_bp
6466 = ecs->event_thread->control.step_resume_breakpoint;
6467
6468 if (sr_bp != NULL
6469 && sr_bp->loc->permanent
6470 && sr_bp->type == bp_hp_step_resume
6471 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6472 {
6473 if (debug_infrun)
6474 fprintf_unfiltered (gdb_stdlog,
6475 "infrun: stepped permanent breakpoint, stopped in "
6476 "handler\n");
6477 delete_step_resume_breakpoint (ecs->event_thread);
6478 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6479 }
6480 }
6481
6482 /* We come here if we hit a breakpoint but should not stop for it.
6483 Possibly we also were stepping and should stop for that. So fall
6484 through and test for stepping. But, if not stepping, do not
6485 stop. */
6486
6487 /* In all-stop mode, if we're currently stepping but have stopped in
6488 some other thread, we need to switch back to the stepped thread. */
6489 if (switch_back_to_stepped_thread (ecs))
6490 return;
6491
6492 if (ecs->event_thread->control.step_resume_breakpoint)
6493 {
6494 if (debug_infrun)
6495 fprintf_unfiltered (gdb_stdlog,
6496 "infrun: step-resume breakpoint is inserted\n");
6497
6498 /* Having a step-resume breakpoint overrides anything
6499 else having to do with stepping commands until
6500 that breakpoint is reached. */
6501 keep_going (ecs);
6502 return;
6503 }
6504
6505 if (ecs->event_thread->control.step_range_end == 0)
6506 {
6507 if (debug_infrun)
6508 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6509 /* Likewise if we aren't even stepping. */
6510 keep_going (ecs);
6511 return;
6512 }
6513
6514 /* Re-fetch current thread's frame in case the code above caused
6515 the frame cache to be re-initialized, making our FRAME variable
6516 a dangling pointer. */
6517 frame = get_current_frame ();
6518 gdbarch = get_frame_arch (frame);
6519 fill_in_stop_func (gdbarch, ecs);
6520
6521 /* If stepping through a line, keep going if still within it.
6522
6523 Note that step_range_end is the address of the first instruction
6524 beyond the step range, and NOT the address of the last instruction
6525 within it!
6526
6527 Note also that during reverse execution, we may be stepping
6528 through a function epilogue and therefore must detect when
6529 the current-frame changes in the middle of a line. */
6530
6531 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6532 && (execution_direction != EXEC_REVERSE
6533 || frame_id_eq (get_frame_id (frame),
6534 ecs->event_thread->control.step_frame_id)))
6535 {
6536 if (debug_infrun)
6537 fprintf_unfiltered
6538 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6539 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6540 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6541
6542 /* Tentatively re-enable range stepping; `resume' disables it if
6543 necessary (e.g., if we're stepping over a breakpoint or we
6544 have software watchpoints). */
6545 ecs->event_thread->control.may_range_step = 1;
6546
6547 /* When stepping backward, stop at beginning of line range
6548 (unless it's the function entry point, in which case
6549 keep going back to the call point). */
6550 if (stop_pc == ecs->event_thread->control.step_range_start
6551 && stop_pc != ecs->stop_func_start
6552 && execution_direction == EXEC_REVERSE)
6553 end_stepping_range (ecs);
6554 else
6555 keep_going (ecs);
6556
6557 return;
6558 }
6559
6560 /* We stepped out of the stepping range. */
6561
6562 /* If we are stepping at the source level and entered the runtime
6563 loader dynamic symbol resolution code...
6564
6565 EXEC_FORWARD: we keep on single stepping until we exit the run
6566 time loader code and reach the callee's address.
6567
6568 EXEC_REVERSE: we've already executed the callee (backward), and
6569 the runtime loader code is handled just like any other
6570 undebuggable function call. Now we need only keep stepping
6571 backward through the trampoline code, and that's handled further
6572 down, so there is nothing for us to do here. */
6573
6574 if (execution_direction != EXEC_REVERSE
6575 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6576 && in_solib_dynsym_resolve_code (stop_pc))
6577 {
6578 CORE_ADDR pc_after_resolver =
6579 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6580
6581 if (debug_infrun)
6582 fprintf_unfiltered (gdb_stdlog,
6583 "infrun: stepped into dynsym resolve code\n");
6584
6585 if (pc_after_resolver)
6586 {
6587 /* Set up a step-resume breakpoint at the address
6588 indicated by SKIP_SOLIB_RESOLVER. */
6589 struct symtab_and_line sr_sal;
6590
6591 init_sal (&sr_sal);
6592 sr_sal.pc = pc_after_resolver;
6593 sr_sal.pspace = get_frame_program_space (frame);
6594
6595 insert_step_resume_breakpoint_at_sal (gdbarch,
6596 sr_sal, null_frame_id);
6597 }
6598
6599 keep_going (ecs);
6600 return;
6601 }
6602
6603 if (ecs->event_thread->control.step_range_end != 1
6604 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6605 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6606 && get_frame_type (frame) == SIGTRAMP_FRAME)
6607 {
6608 if (debug_infrun)
6609 fprintf_unfiltered (gdb_stdlog,
6610 "infrun: stepped into signal trampoline\n");
6611 /* The inferior, while doing a "step" or "next", has ended up in
6612 a signal trampoline (either by a signal being delivered or by
6613 the signal handler returning). Just single-step until the
6614 inferior leaves the trampoline (either by calling the handler
6615 or returning). */
6616 keep_going (ecs);
6617 return;
6618 }
6619
6620 /* If we're in the return path from a shared library trampoline,
6621 we want to proceed through the trampoline when stepping. */
6622 /* macro/2012-04-25: This needs to come before the subroutine
6623 call check below as on some targets return trampolines look
6624 like subroutine calls (MIPS16 return thunks). */
6625 if (gdbarch_in_solib_return_trampoline (gdbarch,
6626 stop_pc, ecs->stop_func_name)
6627 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6628 {
6629 /* Determine where this trampoline returns. */
6630 CORE_ADDR real_stop_pc;
6631
6632 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6633
6634 if (debug_infrun)
6635 fprintf_unfiltered (gdb_stdlog,
6636 "infrun: stepped into solib return tramp\n");
6637
6638 /* Only proceed through if we know where it's going. */
6639 if (real_stop_pc)
6640 {
6641 /* And put the step-breakpoint there and go until there. */
6642 struct symtab_and_line sr_sal;
6643
6644 init_sal (&sr_sal); /* initialize to zeroes */
6645 sr_sal.pc = real_stop_pc;
6646 sr_sal.section = find_pc_overlay (sr_sal.pc);
6647 sr_sal.pspace = get_frame_program_space (frame);
6648
6649 /* Do not specify what the fp should be when we stop since
6650 on some machines the prologue is where the new fp value
6651 is established. */
6652 insert_step_resume_breakpoint_at_sal (gdbarch,
6653 sr_sal, null_frame_id);
6654
6655 /* Restart without fiddling with the step ranges or
6656 other state. */
6657 keep_going (ecs);
6658 return;
6659 }
6660 }
6661
6662 /* Check for subroutine calls. The check for the current frame
6663 equalling the step ID is not necessary - the check of the
6664 previous frame's ID is sufficient - but it is a common case and
6665 cheaper than checking the previous frame's ID.
6666
6667 NOTE: frame_id_eq will never report two invalid frame IDs as
6668 being equal, so to get into this block, both the current and
6669 previous frame must have valid frame IDs. */
6670 /* The outer_frame_id check is a heuristic to detect stepping
6671 through startup code. If we step over an instruction which
6672 sets the stack pointer from an invalid value to a valid value,
6673 we may detect that as a subroutine call from the mythical
6674 "outermost" function. This could be fixed by marking
6675 outermost frames as !stack_p,code_p,special_p. Then the
6676 initial outermost frame, before sp was valid, would
6677 have code_addr == &_start. See the comment in frame_id_eq
6678 for more. */
6679 if (!frame_id_eq (get_stack_frame_id (frame),
6680 ecs->event_thread->control.step_stack_frame_id)
6681 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6682 ecs->event_thread->control.step_stack_frame_id)
6683 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6684 outer_frame_id)
6685 || (ecs->event_thread->control.step_start_function
6686 != find_pc_function (stop_pc)))))
6687 {
6688 CORE_ADDR real_stop_pc;
6689
6690 if (debug_infrun)
6691 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6692
6693 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6694 {
6695 /* I presume that step_over_calls is only 0 when we're
6696 supposed to be stepping at the assembly language level
6697 ("stepi"). Just stop. */
6698 /* And this works the same backward as frontward. MVS */
6699 end_stepping_range (ecs);
6700 return;
6701 }
6702
6703 /* Reverse stepping through solib trampolines. */
6704
6705 if (execution_direction == EXEC_REVERSE
6706 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6707 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6708 || (ecs->stop_func_start == 0
6709 && in_solib_dynsym_resolve_code (stop_pc))))
6710 {
6711 /* Any solib trampoline code can be handled in reverse
6712 by simply continuing to single-step. We have already
6713 executed the solib function (backwards), and a few
6714 steps will take us back through the trampoline to the
6715 caller. */
6716 keep_going (ecs);
6717 return;
6718 }
6719
6720 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6721 {
6722 /* We're doing a "next".
6723
6724 Normal (forward) execution: set a breakpoint at the
6725 callee's return address (the address at which the caller
6726 will resume).
6727
6728 Reverse (backward) execution. set the step-resume
6729 breakpoint at the start of the function that we just
6730 stepped into (backwards), and continue to there. When we
6731 get there, we'll need to single-step back to the caller. */
6732
6733 if (execution_direction == EXEC_REVERSE)
6734 {
6735 /* If we're already at the start of the function, we've either
6736 just stepped backward into a single instruction function,
6737 or stepped back out of a signal handler to the first instruction
6738 of the function. Just keep going, which will single-step back
6739 to the caller. */
6740 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6741 {
6742 struct symtab_and_line sr_sal;
6743
6744 /* Normal function call return (static or dynamic). */
6745 init_sal (&sr_sal);
6746 sr_sal.pc = ecs->stop_func_start;
6747 sr_sal.pspace = get_frame_program_space (frame);
6748 insert_step_resume_breakpoint_at_sal (gdbarch,
6749 sr_sal, null_frame_id);
6750 }
6751 }
6752 else
6753 insert_step_resume_breakpoint_at_caller (frame);
6754
6755 keep_going (ecs);
6756 return;
6757 }
6758
6759 /* If we are in a function call trampoline (a stub between the
6760 calling routine and the real function), locate the real
6761 function. That's what tells us (a) whether we want to step
6762 into it at all, and (b) what prologue we want to run to the
6763 end of, if we do step into it. */
6764 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6765 if (real_stop_pc == 0)
6766 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6767 if (real_stop_pc != 0)
6768 ecs->stop_func_start = real_stop_pc;
6769
6770 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6771 {
6772 struct symtab_and_line sr_sal;
6773
6774 init_sal (&sr_sal);
6775 sr_sal.pc = ecs->stop_func_start;
6776 sr_sal.pspace = get_frame_program_space (frame);
6777
6778 insert_step_resume_breakpoint_at_sal (gdbarch,
6779 sr_sal, null_frame_id);
6780 keep_going (ecs);
6781 return;
6782 }
6783
6784 /* If we have line number information for the function we are
6785 thinking of stepping into and the function isn't on the skip
6786 list, step into it.
6787
6788 If there are several symtabs at that PC (e.g. with include
6789 files), just want to know whether *any* of them have line
6790 numbers. find_pc_line handles this. */
6791 {
6792 struct symtab_and_line tmp_sal;
6793
6794 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6795 if (tmp_sal.line != 0
6796 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6797 &tmp_sal))
6798 {
6799 if (execution_direction == EXEC_REVERSE)
6800 handle_step_into_function_backward (gdbarch, ecs);
6801 else
6802 handle_step_into_function (gdbarch, ecs);
6803 return;
6804 }
6805 }
6806
6807 /* If we have no line number and the step-stop-if-no-debug is
6808 set, we stop the step so that the user has a chance to switch
6809 in assembly mode. */
6810 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6811 && step_stop_if_no_debug)
6812 {
6813 end_stepping_range (ecs);
6814 return;
6815 }
6816
6817 if (execution_direction == EXEC_REVERSE)
6818 {
6819 /* If we're already at the start of the function, we've either just
6820 stepped backward into a single instruction function without line
6821 number info, or stepped back out of a signal handler to the first
6822 instruction of the function without line number info. Just keep
6823 going, which will single-step back to the caller. */
6824 if (ecs->stop_func_start != stop_pc)
6825 {
6826 /* Set a breakpoint at callee's start address.
6827 From there we can step once and be back in the caller. */
6828 struct symtab_and_line sr_sal;
6829
6830 init_sal (&sr_sal);
6831 sr_sal.pc = ecs->stop_func_start;
6832 sr_sal.pspace = get_frame_program_space (frame);
6833 insert_step_resume_breakpoint_at_sal (gdbarch,
6834 sr_sal, null_frame_id);
6835 }
6836 }
6837 else
6838 /* Set a breakpoint at callee's return address (the address
6839 at which the caller will resume). */
6840 insert_step_resume_breakpoint_at_caller (frame);
6841
6842 keep_going (ecs);
6843 return;
6844 }
6845
6846 /* Reverse stepping through solib trampolines. */
6847
6848 if (execution_direction == EXEC_REVERSE
6849 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6850 {
6851 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6852 || (ecs->stop_func_start == 0
6853 && in_solib_dynsym_resolve_code (stop_pc)))
6854 {
6855 /* Any solib trampoline code can be handled in reverse
6856 by simply continuing to single-step. We have already
6857 executed the solib function (backwards), and a few
6858 steps will take us back through the trampoline to the
6859 caller. */
6860 keep_going (ecs);
6861 return;
6862 }
6863 else if (in_solib_dynsym_resolve_code (stop_pc))
6864 {
6865 /* Stepped backward into the solib dynsym resolver.
6866 Set a breakpoint at its start and continue, then
6867 one more step will take us out. */
6868 struct symtab_and_line sr_sal;
6869
6870 init_sal (&sr_sal);
6871 sr_sal.pc = ecs->stop_func_start;
6872 sr_sal.pspace = get_frame_program_space (frame);
6873 insert_step_resume_breakpoint_at_sal (gdbarch,
6874 sr_sal, null_frame_id);
6875 keep_going (ecs);
6876 return;
6877 }
6878 }
6879
6880 stop_pc_sal = find_pc_line (stop_pc, 0);
6881
6882 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6883 the trampoline processing logic, however, there are some trampolines
6884 that have no names, so we should do trampoline handling first. */
6885 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6886 && ecs->stop_func_name == NULL
6887 && stop_pc_sal.line == 0)
6888 {
6889 if (debug_infrun)
6890 fprintf_unfiltered (gdb_stdlog,
6891 "infrun: stepped into undebuggable function\n");
6892
6893 /* The inferior just stepped into, or returned to, an
6894 undebuggable function (where there is no debugging information
6895 and no line number corresponding to the address where the
6896 inferior stopped). Since we want to skip this kind of code,
6897 we keep going until the inferior returns from this
6898 function - unless the user has asked us not to (via
6899 set step-mode) or we no longer know how to get back
6900 to the call site. */
6901 if (step_stop_if_no_debug
6902 || !frame_id_p (frame_unwind_caller_id (frame)))
6903 {
6904 /* If we have no line number and the step-stop-if-no-debug
6905 is set, we stop the step so that the user has a chance to
6906 switch in assembly mode. */
6907 end_stepping_range (ecs);
6908 return;
6909 }
6910 else
6911 {
6912 /* Set a breakpoint at callee's return address (the address
6913 at which the caller will resume). */
6914 insert_step_resume_breakpoint_at_caller (frame);
6915 keep_going (ecs);
6916 return;
6917 }
6918 }
6919
6920 if (ecs->event_thread->control.step_range_end == 1)
6921 {
6922 /* It is stepi or nexti. We always want to stop stepping after
6923 one instruction. */
6924 if (debug_infrun)
6925 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6926 end_stepping_range (ecs);
6927 return;
6928 }
6929
6930 if (stop_pc_sal.line == 0)
6931 {
6932 /* We have no line number information. That means to stop
6933 stepping (does this always happen right after one instruction,
6934 when we do "s" in a function with no line numbers,
6935 or can this happen as a result of a return or longjmp?). */
6936 if (debug_infrun)
6937 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6938 end_stepping_range (ecs);
6939 return;
6940 }
6941
6942 /* Look for "calls" to inlined functions, part one. If the inline
6943 frame machinery detected some skipped call sites, we have entered
6944 a new inline function. */
6945
6946 if (frame_id_eq (get_frame_id (get_current_frame ()),
6947 ecs->event_thread->control.step_frame_id)
6948 && inline_skipped_frames (ecs->ptid))
6949 {
6950 struct symtab_and_line call_sal;
6951
6952 if (debug_infrun)
6953 fprintf_unfiltered (gdb_stdlog,
6954 "infrun: stepped into inlined function\n");
6955
6956 find_frame_sal (get_current_frame (), &call_sal);
6957
6958 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6959 {
6960 /* For "step", we're going to stop. But if the call site
6961 for this inlined function is on the same source line as
6962 we were previously stepping, go down into the function
6963 first. Otherwise stop at the call site. */
6964
6965 if (call_sal.line == ecs->event_thread->current_line
6966 && call_sal.symtab == ecs->event_thread->current_symtab)
6967 step_into_inline_frame (ecs->ptid);
6968
6969 end_stepping_range (ecs);
6970 return;
6971 }
6972 else
6973 {
6974 /* For "next", we should stop at the call site if it is on a
6975 different source line. Otherwise continue through the
6976 inlined function. */
6977 if (call_sal.line == ecs->event_thread->current_line
6978 && call_sal.symtab == ecs->event_thread->current_symtab)
6979 keep_going (ecs);
6980 else
6981 end_stepping_range (ecs);
6982 return;
6983 }
6984 }
6985
6986 /* Look for "calls" to inlined functions, part two. If we are still
6987 in the same real function we were stepping through, but we have
6988 to go further up to find the exact frame ID, we are stepping
6989 through a more inlined call beyond its call site. */
6990
6991 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6992 && !frame_id_eq (get_frame_id (get_current_frame ()),
6993 ecs->event_thread->control.step_frame_id)
6994 && stepped_in_from (get_current_frame (),
6995 ecs->event_thread->control.step_frame_id))
6996 {
6997 if (debug_infrun)
6998 fprintf_unfiltered (gdb_stdlog,
6999 "infrun: stepping through inlined function\n");
7000
7001 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
7002 keep_going (ecs);
7003 else
7004 end_stepping_range (ecs);
7005 return;
7006 }
7007
7008 if ((stop_pc == stop_pc_sal.pc)
7009 && (ecs->event_thread->current_line != stop_pc_sal.line
7010 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7011 {
7012 /* We are at the start of a different line. So stop. Note that
7013 we don't stop if we step into the middle of a different line.
7014 That is said to make things like for (;;) statements work
7015 better. */
7016 if (debug_infrun)
7017 fprintf_unfiltered (gdb_stdlog,
7018 "infrun: stepped to a different line\n");
7019 end_stepping_range (ecs);
7020 return;
7021 }
7022
7023 /* We aren't done stepping.
7024
7025 Optimize by setting the stepping range to the line.
7026 (We might not be in the original line, but if we entered a
7027 new line in mid-statement, we continue stepping. This makes
7028 things like for(;;) statements work better.) */
7029
7030 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7031 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7032 ecs->event_thread->control.may_range_step = 1;
7033 set_step_info (frame, stop_pc_sal);
7034
7035 if (debug_infrun)
7036 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7037 keep_going (ecs);
7038 }
7039
7040 /* In all-stop mode, if we're currently stepping but have stopped in
7041 some other thread, we may need to switch back to the stepped
7042 thread. Returns true we set the inferior running, false if we left
7043 it stopped (and the event needs further processing). */
7044
7045 static int
7046 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7047 {
7048 if (!target_is_non_stop_p ())
7049 {
7050 struct thread_info *tp;
7051 struct thread_info *stepping_thread;
7052
7053 /* If any thread is blocked on some internal breakpoint, and we
7054 simply need to step over that breakpoint to get it going
7055 again, do that first. */
7056
7057 /* However, if we see an event for the stepping thread, then we
7058 know all other threads have been moved past their breakpoints
7059 already. Let the caller check whether the step is finished,
7060 etc., before deciding to move it past a breakpoint. */
7061 if (ecs->event_thread->control.step_range_end != 0)
7062 return 0;
7063
7064 /* Check if the current thread is blocked on an incomplete
7065 step-over, interrupted by a random signal. */
7066 if (ecs->event_thread->control.trap_expected
7067 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7068 {
7069 if (debug_infrun)
7070 {
7071 fprintf_unfiltered (gdb_stdlog,
7072 "infrun: need to finish step-over of [%s]\n",
7073 target_pid_to_str (ecs->event_thread->ptid));
7074 }
7075 keep_going (ecs);
7076 return 1;
7077 }
7078
7079 /* Check if the current thread is blocked by a single-step
7080 breakpoint of another thread. */
7081 if (ecs->hit_singlestep_breakpoint)
7082 {
7083 if (debug_infrun)
7084 {
7085 fprintf_unfiltered (gdb_stdlog,
7086 "infrun: need to step [%s] over single-step "
7087 "breakpoint\n",
7088 target_pid_to_str (ecs->ptid));
7089 }
7090 keep_going (ecs);
7091 return 1;
7092 }
7093
7094 /* If this thread needs yet another step-over (e.g., stepping
7095 through a delay slot), do it first before moving on to
7096 another thread. */
7097 if (thread_still_needs_step_over (ecs->event_thread))
7098 {
7099 if (debug_infrun)
7100 {
7101 fprintf_unfiltered (gdb_stdlog,
7102 "infrun: thread [%s] still needs step-over\n",
7103 target_pid_to_str (ecs->event_thread->ptid));
7104 }
7105 keep_going (ecs);
7106 return 1;
7107 }
7108
7109 /* If scheduler locking applies even if not stepping, there's no
7110 need to walk over threads. Above we've checked whether the
7111 current thread is stepping. If some other thread not the
7112 event thread is stepping, then it must be that scheduler
7113 locking is not in effect. */
7114 if (schedlock_applies (ecs->event_thread))
7115 return 0;
7116
7117 /* Otherwise, we no longer expect a trap in the current thread.
7118 Clear the trap_expected flag before switching back -- this is
7119 what keep_going does as well, if we call it. */
7120 ecs->event_thread->control.trap_expected = 0;
7121
7122 /* Likewise, clear the signal if it should not be passed. */
7123 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7124 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7125
7126 /* Do all pending step-overs before actually proceeding with
7127 step/next/etc. */
7128 if (start_step_over ())
7129 {
7130 prepare_to_wait (ecs);
7131 return 1;
7132 }
7133
7134 /* Look for the stepping/nexting thread. */
7135 stepping_thread = NULL;
7136
7137 ALL_NON_EXITED_THREADS (tp)
7138 {
7139 /* Ignore threads of processes the caller is not
7140 resuming. */
7141 if (!sched_multi
7142 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7143 continue;
7144
7145 /* When stepping over a breakpoint, we lock all threads
7146 except the one that needs to move past the breakpoint.
7147 If a non-event thread has this set, the "incomplete
7148 step-over" check above should have caught it earlier. */
7149 if (tp->control.trap_expected)
7150 {
7151 internal_error (__FILE__, __LINE__,
7152 "[%s] has inconsistent state: "
7153 "trap_expected=%d\n",
7154 target_pid_to_str (tp->ptid),
7155 tp->control.trap_expected);
7156 }
7157
7158 /* Did we find the stepping thread? */
7159 if (tp->control.step_range_end)
7160 {
7161 /* Yep. There should only one though. */
7162 gdb_assert (stepping_thread == NULL);
7163
7164 /* The event thread is handled at the top, before we
7165 enter this loop. */
7166 gdb_assert (tp != ecs->event_thread);
7167
7168 /* If some thread other than the event thread is
7169 stepping, then scheduler locking can't be in effect,
7170 otherwise we wouldn't have resumed the current event
7171 thread in the first place. */
7172 gdb_assert (!schedlock_applies (tp));
7173
7174 stepping_thread = tp;
7175 }
7176 }
7177
7178 if (stepping_thread != NULL)
7179 {
7180 if (debug_infrun)
7181 fprintf_unfiltered (gdb_stdlog,
7182 "infrun: switching back to stepped thread\n");
7183
7184 if (keep_going_stepped_thread (stepping_thread))
7185 {
7186 prepare_to_wait (ecs);
7187 return 1;
7188 }
7189 }
7190 }
7191
7192 return 0;
7193 }
7194
7195 /* Set a previously stepped thread back to stepping. Returns true on
7196 success, false if the resume is not possible (e.g., the thread
7197 vanished). */
7198
7199 static int
7200 keep_going_stepped_thread (struct thread_info *tp)
7201 {
7202 struct frame_info *frame;
7203 struct execution_control_state ecss;
7204 struct execution_control_state *ecs = &ecss;
7205
7206 /* If the stepping thread exited, then don't try to switch back and
7207 resume it, which could fail in several different ways depending
7208 on the target. Instead, just keep going.
7209
7210 We can find a stepping dead thread in the thread list in two
7211 cases:
7212
7213 - The target supports thread exit events, and when the target
7214 tries to delete the thread from the thread list, inferior_ptid
7215 pointed at the exiting thread. In such case, calling
7216 delete_thread does not really remove the thread from the list;
7217 instead, the thread is left listed, with 'exited' state.
7218
7219 - The target's debug interface does not support thread exit
7220 events, and so we have no idea whatsoever if the previously
7221 stepping thread is still alive. For that reason, we need to
7222 synchronously query the target now. */
7223
7224 if (is_exited (tp->ptid)
7225 || !target_thread_alive (tp->ptid))
7226 {
7227 if (debug_infrun)
7228 fprintf_unfiltered (gdb_stdlog,
7229 "infrun: not resuming previously "
7230 "stepped thread, it has vanished\n");
7231
7232 delete_thread (tp->ptid);
7233 return 0;
7234 }
7235
7236 if (debug_infrun)
7237 fprintf_unfiltered (gdb_stdlog,
7238 "infrun: resuming previously stepped thread\n");
7239
7240 reset_ecs (ecs, tp);
7241 switch_to_thread (tp->ptid);
7242
7243 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7244 frame = get_current_frame ();
7245
7246 /* If the PC of the thread we were trying to single-step has
7247 changed, then that thread has trapped or been signaled, but the
7248 event has not been reported to GDB yet. Re-poll the target
7249 looking for this particular thread's event (i.e. temporarily
7250 enable schedlock) by:
7251
7252 - setting a break at the current PC
7253 - resuming that particular thread, only (by setting trap
7254 expected)
7255
7256 This prevents us continuously moving the single-step breakpoint
7257 forward, one instruction at a time, overstepping. */
7258
7259 if (stop_pc != tp->prev_pc)
7260 {
7261 ptid_t resume_ptid;
7262
7263 if (debug_infrun)
7264 fprintf_unfiltered (gdb_stdlog,
7265 "infrun: expected thread advanced also (%s -> %s)\n",
7266 paddress (target_gdbarch (), tp->prev_pc),
7267 paddress (target_gdbarch (), stop_pc));
7268
7269 /* Clear the info of the previous step-over, as it's no longer
7270 valid (if the thread was trying to step over a breakpoint, it
7271 has already succeeded). It's what keep_going would do too,
7272 if we called it. Do this before trying to insert the sss
7273 breakpoint, otherwise if we were previously trying to step
7274 over this exact address in another thread, the breakpoint is
7275 skipped. */
7276 clear_step_over_info ();
7277 tp->control.trap_expected = 0;
7278
7279 insert_single_step_breakpoint (get_frame_arch (frame),
7280 get_frame_address_space (frame),
7281 stop_pc);
7282
7283 tp->resumed = 1;
7284 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7285 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7286 }
7287 else
7288 {
7289 if (debug_infrun)
7290 fprintf_unfiltered (gdb_stdlog,
7291 "infrun: expected thread still hasn't advanced\n");
7292
7293 keep_going_pass_signal (ecs);
7294 }
7295 return 1;
7296 }
7297
7298 /* Is thread TP in the middle of (software or hardware)
7299 single-stepping? (Note the result of this function must never be
7300 passed directly as target_resume's STEP parameter.) */
7301
7302 static int
7303 currently_stepping (struct thread_info *tp)
7304 {
7305 return ((tp->control.step_range_end
7306 && tp->control.step_resume_breakpoint == NULL)
7307 || tp->control.trap_expected
7308 || tp->stepped_breakpoint
7309 || bpstat_should_step ());
7310 }
7311
7312 /* Inferior has stepped into a subroutine call with source code that
7313 we should not step over. Do step to the first line of code in
7314 it. */
7315
7316 static void
7317 handle_step_into_function (struct gdbarch *gdbarch,
7318 struct execution_control_state *ecs)
7319 {
7320 struct compunit_symtab *cust;
7321 struct symtab_and_line stop_func_sal, sr_sal;
7322
7323 fill_in_stop_func (gdbarch, ecs);
7324
7325 cust = find_pc_compunit_symtab (stop_pc);
7326 if (cust != NULL && compunit_language (cust) != language_asm)
7327 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7328 ecs->stop_func_start);
7329
7330 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7331 /* Use the step_resume_break to step until the end of the prologue,
7332 even if that involves jumps (as it seems to on the vax under
7333 4.2). */
7334 /* If the prologue ends in the middle of a source line, continue to
7335 the end of that source line (if it is still within the function).
7336 Otherwise, just go to end of prologue. */
7337 if (stop_func_sal.end
7338 && stop_func_sal.pc != ecs->stop_func_start
7339 && stop_func_sal.end < ecs->stop_func_end)
7340 ecs->stop_func_start = stop_func_sal.end;
7341
7342 /* Architectures which require breakpoint adjustment might not be able
7343 to place a breakpoint at the computed address. If so, the test
7344 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7345 ecs->stop_func_start to an address at which a breakpoint may be
7346 legitimately placed.
7347
7348 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7349 made, GDB will enter an infinite loop when stepping through
7350 optimized code consisting of VLIW instructions which contain
7351 subinstructions corresponding to different source lines. On
7352 FR-V, it's not permitted to place a breakpoint on any but the
7353 first subinstruction of a VLIW instruction. When a breakpoint is
7354 set, GDB will adjust the breakpoint address to the beginning of
7355 the VLIW instruction. Thus, we need to make the corresponding
7356 adjustment here when computing the stop address. */
7357
7358 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7359 {
7360 ecs->stop_func_start
7361 = gdbarch_adjust_breakpoint_address (gdbarch,
7362 ecs->stop_func_start);
7363 }
7364
7365 if (ecs->stop_func_start == stop_pc)
7366 {
7367 /* We are already there: stop now. */
7368 end_stepping_range (ecs);
7369 return;
7370 }
7371 else
7372 {
7373 /* Put the step-breakpoint there and go until there. */
7374 init_sal (&sr_sal); /* initialize to zeroes */
7375 sr_sal.pc = ecs->stop_func_start;
7376 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7377 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7378
7379 /* Do not specify what the fp should be when we stop since on
7380 some machines the prologue is where the new fp value is
7381 established. */
7382 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7383
7384 /* And make sure stepping stops right away then. */
7385 ecs->event_thread->control.step_range_end
7386 = ecs->event_thread->control.step_range_start;
7387 }
7388 keep_going (ecs);
7389 }
7390
7391 /* Inferior has stepped backward into a subroutine call with source
7392 code that we should not step over. Do step to the beginning of the
7393 last line of code in it. */
7394
7395 static void
7396 handle_step_into_function_backward (struct gdbarch *gdbarch,
7397 struct execution_control_state *ecs)
7398 {
7399 struct compunit_symtab *cust;
7400 struct symtab_and_line stop_func_sal;
7401
7402 fill_in_stop_func (gdbarch, ecs);
7403
7404 cust = find_pc_compunit_symtab (stop_pc);
7405 if (cust != NULL && compunit_language (cust) != language_asm)
7406 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7407 ecs->stop_func_start);
7408
7409 stop_func_sal = find_pc_line (stop_pc, 0);
7410
7411 /* OK, we're just going to keep stepping here. */
7412 if (stop_func_sal.pc == stop_pc)
7413 {
7414 /* We're there already. Just stop stepping now. */
7415 end_stepping_range (ecs);
7416 }
7417 else
7418 {
7419 /* Else just reset the step range and keep going.
7420 No step-resume breakpoint, they don't work for
7421 epilogues, which can have multiple entry paths. */
7422 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7423 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7424 keep_going (ecs);
7425 }
7426 return;
7427 }
7428
7429 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7430 This is used to both functions and to skip over code. */
7431
7432 static void
7433 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7434 struct symtab_and_line sr_sal,
7435 struct frame_id sr_id,
7436 enum bptype sr_type)
7437 {
7438 /* There should never be more than one step-resume or longjmp-resume
7439 breakpoint per thread, so we should never be setting a new
7440 step_resume_breakpoint when one is already active. */
7441 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7442 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7443
7444 if (debug_infrun)
7445 fprintf_unfiltered (gdb_stdlog,
7446 "infrun: inserting step-resume breakpoint at %s\n",
7447 paddress (gdbarch, sr_sal.pc));
7448
7449 inferior_thread ()->control.step_resume_breakpoint
7450 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7451 }
7452
7453 void
7454 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7455 struct symtab_and_line sr_sal,
7456 struct frame_id sr_id)
7457 {
7458 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7459 sr_sal, sr_id,
7460 bp_step_resume);
7461 }
7462
7463 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7464 This is used to skip a potential signal handler.
7465
7466 This is called with the interrupted function's frame. The signal
7467 handler, when it returns, will resume the interrupted function at
7468 RETURN_FRAME.pc. */
7469
7470 static void
7471 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7472 {
7473 struct symtab_and_line sr_sal;
7474 struct gdbarch *gdbarch;
7475
7476 gdb_assert (return_frame != NULL);
7477 init_sal (&sr_sal); /* initialize to zeros */
7478
7479 gdbarch = get_frame_arch (return_frame);
7480 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7481 sr_sal.section = find_pc_overlay (sr_sal.pc);
7482 sr_sal.pspace = get_frame_program_space (return_frame);
7483
7484 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7485 get_stack_frame_id (return_frame),
7486 bp_hp_step_resume);
7487 }
7488
7489 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7490 is used to skip a function after stepping into it (for "next" or if
7491 the called function has no debugging information).
7492
7493 The current function has almost always been reached by single
7494 stepping a call or return instruction. NEXT_FRAME belongs to the
7495 current function, and the breakpoint will be set at the caller's
7496 resume address.
7497
7498 This is a separate function rather than reusing
7499 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7500 get_prev_frame, which may stop prematurely (see the implementation
7501 of frame_unwind_caller_id for an example). */
7502
7503 static void
7504 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7505 {
7506 struct symtab_and_line sr_sal;
7507 struct gdbarch *gdbarch;
7508
7509 /* We shouldn't have gotten here if we don't know where the call site
7510 is. */
7511 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7512
7513 init_sal (&sr_sal); /* initialize to zeros */
7514
7515 gdbarch = frame_unwind_caller_arch (next_frame);
7516 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7517 frame_unwind_caller_pc (next_frame));
7518 sr_sal.section = find_pc_overlay (sr_sal.pc);
7519 sr_sal.pspace = frame_unwind_program_space (next_frame);
7520
7521 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7522 frame_unwind_caller_id (next_frame));
7523 }
7524
7525 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7526 new breakpoint at the target of a jmp_buf. The handling of
7527 longjmp-resume uses the same mechanisms used for handling
7528 "step-resume" breakpoints. */
7529
7530 static void
7531 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7532 {
7533 /* There should never be more than one longjmp-resume breakpoint per
7534 thread, so we should never be setting a new
7535 longjmp_resume_breakpoint when one is already active. */
7536 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7537
7538 if (debug_infrun)
7539 fprintf_unfiltered (gdb_stdlog,
7540 "infrun: inserting longjmp-resume breakpoint at %s\n",
7541 paddress (gdbarch, pc));
7542
7543 inferior_thread ()->control.exception_resume_breakpoint =
7544 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7545 }
7546
7547 /* Insert an exception resume breakpoint. TP is the thread throwing
7548 the exception. The block B is the block of the unwinder debug hook
7549 function. FRAME is the frame corresponding to the call to this
7550 function. SYM is the symbol of the function argument holding the
7551 target PC of the exception. */
7552
7553 static void
7554 insert_exception_resume_breakpoint (struct thread_info *tp,
7555 const struct block *b,
7556 struct frame_info *frame,
7557 struct symbol *sym)
7558 {
7559 TRY
7560 {
7561 struct block_symbol vsym;
7562 struct value *value;
7563 CORE_ADDR handler;
7564 struct breakpoint *bp;
7565
7566 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7567 value = read_var_value (vsym.symbol, vsym.block, frame);
7568 /* If the value was optimized out, revert to the old behavior. */
7569 if (! value_optimized_out (value))
7570 {
7571 handler = value_as_address (value);
7572
7573 if (debug_infrun)
7574 fprintf_unfiltered (gdb_stdlog,
7575 "infrun: exception resume at %lx\n",
7576 (unsigned long) handler);
7577
7578 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7579 handler, bp_exception_resume);
7580
7581 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7582 frame = NULL;
7583
7584 bp->thread = tp->global_num;
7585 inferior_thread ()->control.exception_resume_breakpoint = bp;
7586 }
7587 }
7588 CATCH (e, RETURN_MASK_ERROR)
7589 {
7590 /* We want to ignore errors here. */
7591 }
7592 END_CATCH
7593 }
7594
7595 /* A helper for check_exception_resume that sets an
7596 exception-breakpoint based on a SystemTap probe. */
7597
7598 static void
7599 insert_exception_resume_from_probe (struct thread_info *tp,
7600 const struct bound_probe *probe,
7601 struct frame_info *frame)
7602 {
7603 struct value *arg_value;
7604 CORE_ADDR handler;
7605 struct breakpoint *bp;
7606
7607 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7608 if (!arg_value)
7609 return;
7610
7611 handler = value_as_address (arg_value);
7612
7613 if (debug_infrun)
7614 fprintf_unfiltered (gdb_stdlog,
7615 "infrun: exception resume at %s\n",
7616 paddress (get_objfile_arch (probe->objfile),
7617 handler));
7618
7619 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7620 handler, bp_exception_resume);
7621 bp->thread = tp->global_num;
7622 inferior_thread ()->control.exception_resume_breakpoint = bp;
7623 }
7624
7625 /* This is called when an exception has been intercepted. Check to
7626 see whether the exception's destination is of interest, and if so,
7627 set an exception resume breakpoint there. */
7628
7629 static void
7630 check_exception_resume (struct execution_control_state *ecs,
7631 struct frame_info *frame)
7632 {
7633 struct bound_probe probe;
7634 struct symbol *func;
7635
7636 /* First see if this exception unwinding breakpoint was set via a
7637 SystemTap probe point. If so, the probe has two arguments: the
7638 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7639 set a breakpoint there. */
7640 probe = find_probe_by_pc (get_frame_pc (frame));
7641 if (probe.probe)
7642 {
7643 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7644 return;
7645 }
7646
7647 func = get_frame_function (frame);
7648 if (!func)
7649 return;
7650
7651 TRY
7652 {
7653 const struct block *b;
7654 struct block_iterator iter;
7655 struct symbol *sym;
7656 int argno = 0;
7657
7658 /* The exception breakpoint is a thread-specific breakpoint on
7659 the unwinder's debug hook, declared as:
7660
7661 void _Unwind_DebugHook (void *cfa, void *handler);
7662
7663 The CFA argument indicates the frame to which control is
7664 about to be transferred. HANDLER is the destination PC.
7665
7666 We ignore the CFA and set a temporary breakpoint at HANDLER.
7667 This is not extremely efficient but it avoids issues in gdb
7668 with computing the DWARF CFA, and it also works even in weird
7669 cases such as throwing an exception from inside a signal
7670 handler. */
7671
7672 b = SYMBOL_BLOCK_VALUE (func);
7673 ALL_BLOCK_SYMBOLS (b, iter, sym)
7674 {
7675 if (!SYMBOL_IS_ARGUMENT (sym))
7676 continue;
7677
7678 if (argno == 0)
7679 ++argno;
7680 else
7681 {
7682 insert_exception_resume_breakpoint (ecs->event_thread,
7683 b, frame, sym);
7684 break;
7685 }
7686 }
7687 }
7688 CATCH (e, RETURN_MASK_ERROR)
7689 {
7690 }
7691 END_CATCH
7692 }
7693
7694 static void
7695 stop_waiting (struct execution_control_state *ecs)
7696 {
7697 if (debug_infrun)
7698 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7699
7700 clear_step_over_info ();
7701
7702 /* Let callers know we don't want to wait for the inferior anymore. */
7703 ecs->wait_some_more = 0;
7704
7705 /* If all-stop, but the target is always in non-stop mode, stop all
7706 threads now that we're presenting the stop to the user. */
7707 if (!non_stop && target_is_non_stop_p ())
7708 stop_all_threads ();
7709 }
7710
7711 /* Like keep_going, but passes the signal to the inferior, even if the
7712 signal is set to nopass. */
7713
7714 static void
7715 keep_going_pass_signal (struct execution_control_state *ecs)
7716 {
7717 /* Make sure normal_stop is called if we get a QUIT handled before
7718 reaching resume. */
7719 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7720
7721 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7722 gdb_assert (!ecs->event_thread->resumed);
7723
7724 /* Save the pc before execution, to compare with pc after stop. */
7725 ecs->event_thread->prev_pc
7726 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7727
7728 if (ecs->event_thread->control.trap_expected)
7729 {
7730 struct thread_info *tp = ecs->event_thread;
7731
7732 if (debug_infrun)
7733 fprintf_unfiltered (gdb_stdlog,
7734 "infrun: %s has trap_expected set, "
7735 "resuming to collect trap\n",
7736 target_pid_to_str (tp->ptid));
7737
7738 /* We haven't yet gotten our trap, and either: intercepted a
7739 non-signal event (e.g., a fork); or took a signal which we
7740 are supposed to pass through to the inferior. Simply
7741 continue. */
7742 discard_cleanups (old_cleanups);
7743 resume (ecs->event_thread->suspend.stop_signal);
7744 }
7745 else if (step_over_info_valid_p ())
7746 {
7747 /* Another thread is stepping over a breakpoint in-line. If
7748 this thread needs a step-over too, queue the request. In
7749 either case, this resume must be deferred for later. */
7750 struct thread_info *tp = ecs->event_thread;
7751
7752 if (ecs->hit_singlestep_breakpoint
7753 || thread_still_needs_step_over (tp))
7754 {
7755 if (debug_infrun)
7756 fprintf_unfiltered (gdb_stdlog,
7757 "infrun: step-over already in progress: "
7758 "step-over for %s deferred\n",
7759 target_pid_to_str (tp->ptid));
7760 thread_step_over_chain_enqueue (tp);
7761 }
7762 else
7763 {
7764 if (debug_infrun)
7765 fprintf_unfiltered (gdb_stdlog,
7766 "infrun: step-over in progress: "
7767 "resume of %s deferred\n",
7768 target_pid_to_str (tp->ptid));
7769 }
7770
7771 discard_cleanups (old_cleanups);
7772 }
7773 else
7774 {
7775 struct regcache *regcache = get_current_regcache ();
7776 int remove_bp;
7777 int remove_wps;
7778 step_over_what step_what;
7779
7780 /* Either the trap was not expected, but we are continuing
7781 anyway (if we got a signal, the user asked it be passed to
7782 the child)
7783 -- or --
7784 We got our expected trap, but decided we should resume from
7785 it.
7786
7787 We're going to run this baby now!
7788
7789 Note that insert_breakpoints won't try to re-insert
7790 already inserted breakpoints. Therefore, we don't
7791 care if breakpoints were already inserted, or not. */
7792
7793 /* If we need to step over a breakpoint, and we're not using
7794 displaced stepping to do so, insert all breakpoints
7795 (watchpoints, etc.) but the one we're stepping over, step one
7796 instruction, and then re-insert the breakpoint when that step
7797 is finished. */
7798
7799 step_what = thread_still_needs_step_over (ecs->event_thread);
7800
7801 remove_bp = (ecs->hit_singlestep_breakpoint
7802 || (step_what & STEP_OVER_BREAKPOINT));
7803 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7804
7805 /* We can't use displaced stepping if we need to step past a
7806 watchpoint. The instruction copied to the scratch pad would
7807 still trigger the watchpoint. */
7808 if (remove_bp
7809 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7810 {
7811 set_step_over_info (get_regcache_aspace (regcache),
7812 regcache_read_pc (regcache), remove_wps,
7813 ecs->event_thread->global_num);
7814 }
7815 else if (remove_wps)
7816 set_step_over_info (NULL, 0, remove_wps, -1);
7817
7818 /* If we now need to do an in-line step-over, we need to stop
7819 all other threads. Note this must be done before
7820 insert_breakpoints below, because that removes the breakpoint
7821 we're about to step over, otherwise other threads could miss
7822 it. */
7823 if (step_over_info_valid_p () && target_is_non_stop_p ())
7824 stop_all_threads ();
7825
7826 /* Stop stepping if inserting breakpoints fails. */
7827 TRY
7828 {
7829 insert_breakpoints ();
7830 }
7831 CATCH (e, RETURN_MASK_ERROR)
7832 {
7833 exception_print (gdb_stderr, e);
7834 stop_waiting (ecs);
7835 discard_cleanups (old_cleanups);
7836 return;
7837 }
7838 END_CATCH
7839
7840 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7841
7842 discard_cleanups (old_cleanups);
7843 resume (ecs->event_thread->suspend.stop_signal);
7844 }
7845
7846 prepare_to_wait (ecs);
7847 }
7848
7849 /* Called when we should continue running the inferior, because the
7850 current event doesn't cause a user visible stop. This does the
7851 resuming part; waiting for the next event is done elsewhere. */
7852
7853 static void
7854 keep_going (struct execution_control_state *ecs)
7855 {
7856 if (ecs->event_thread->control.trap_expected
7857 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7858 ecs->event_thread->control.trap_expected = 0;
7859
7860 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7861 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7862 keep_going_pass_signal (ecs);
7863 }
7864
7865 /* This function normally comes after a resume, before
7866 handle_inferior_event exits. It takes care of any last bits of
7867 housekeeping, and sets the all-important wait_some_more flag. */
7868
7869 static void
7870 prepare_to_wait (struct execution_control_state *ecs)
7871 {
7872 if (debug_infrun)
7873 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7874
7875 ecs->wait_some_more = 1;
7876
7877 if (!target_is_async_p ())
7878 mark_infrun_async_event_handler ();
7879 }
7880
7881 /* We are done with the step range of a step/next/si/ni command.
7882 Called once for each n of a "step n" operation. */
7883
7884 static void
7885 end_stepping_range (struct execution_control_state *ecs)
7886 {
7887 ecs->event_thread->control.stop_step = 1;
7888 stop_waiting (ecs);
7889 }
7890
7891 /* Several print_*_reason functions to print why the inferior has stopped.
7892 We always print something when the inferior exits, or receives a signal.
7893 The rest of the cases are dealt with later on in normal_stop and
7894 print_it_typical. Ideally there should be a call to one of these
7895 print_*_reason functions functions from handle_inferior_event each time
7896 stop_waiting is called.
7897
7898 Note that we don't call these directly, instead we delegate that to
7899 the interpreters, through observers. Interpreters then call these
7900 with whatever uiout is right. */
7901
7902 void
7903 print_end_stepping_range_reason (struct ui_out *uiout)
7904 {
7905 /* For CLI-like interpreters, print nothing. */
7906
7907 if (ui_out_is_mi_like_p (uiout))
7908 {
7909 ui_out_field_string (uiout, "reason",
7910 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7911 }
7912 }
7913
7914 void
7915 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7916 {
7917 annotate_signalled ();
7918 if (ui_out_is_mi_like_p (uiout))
7919 ui_out_field_string
7920 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7921 ui_out_text (uiout, "\nProgram terminated with signal ");
7922 annotate_signal_name ();
7923 ui_out_field_string (uiout, "signal-name",
7924 gdb_signal_to_name (siggnal));
7925 annotate_signal_name_end ();
7926 ui_out_text (uiout, ", ");
7927 annotate_signal_string ();
7928 ui_out_field_string (uiout, "signal-meaning",
7929 gdb_signal_to_string (siggnal));
7930 annotate_signal_string_end ();
7931 ui_out_text (uiout, ".\n");
7932 ui_out_text (uiout, "The program no longer exists.\n");
7933 }
7934
7935 void
7936 print_exited_reason (struct ui_out *uiout, int exitstatus)
7937 {
7938 struct inferior *inf = current_inferior ();
7939 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7940
7941 annotate_exited (exitstatus);
7942 if (exitstatus)
7943 {
7944 if (ui_out_is_mi_like_p (uiout))
7945 ui_out_field_string (uiout, "reason",
7946 async_reason_lookup (EXEC_ASYNC_EXITED));
7947 ui_out_text (uiout, "[Inferior ");
7948 ui_out_text (uiout, plongest (inf->num));
7949 ui_out_text (uiout, " (");
7950 ui_out_text (uiout, pidstr);
7951 ui_out_text (uiout, ") exited with code ");
7952 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7953 ui_out_text (uiout, "]\n");
7954 }
7955 else
7956 {
7957 if (ui_out_is_mi_like_p (uiout))
7958 ui_out_field_string
7959 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7960 ui_out_text (uiout, "[Inferior ");
7961 ui_out_text (uiout, plongest (inf->num));
7962 ui_out_text (uiout, " (");
7963 ui_out_text (uiout, pidstr);
7964 ui_out_text (uiout, ") exited normally]\n");
7965 }
7966 }
7967
7968 /* Some targets/architectures can do extra processing/display of
7969 segmentation faults. E.g., Intel MPX boundary faults.
7970 Call the architecture dependent function to handle the fault. */
7971
7972 static void
7973 handle_segmentation_fault (struct ui_out *uiout)
7974 {
7975 struct regcache *regcache = get_current_regcache ();
7976 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7977
7978 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7979 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7980 }
7981
7982 void
7983 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7984 {
7985 struct thread_info *thr = inferior_thread ();
7986
7987 annotate_signal ();
7988
7989 if (ui_out_is_mi_like_p (uiout))
7990 ;
7991 else if (show_thread_that_caused_stop ())
7992 {
7993 const char *name;
7994
7995 ui_out_text (uiout, "\nThread ");
7996 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7997
7998 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7999 if (name != NULL)
8000 {
8001 ui_out_text (uiout, " \"");
8002 ui_out_field_fmt (uiout, "name", "%s", name);
8003 ui_out_text (uiout, "\"");
8004 }
8005 }
8006 else
8007 ui_out_text (uiout, "\nProgram");
8008
8009 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
8010 ui_out_text (uiout, " stopped");
8011 else
8012 {
8013 ui_out_text (uiout, " received signal ");
8014 annotate_signal_name ();
8015 if (ui_out_is_mi_like_p (uiout))
8016 ui_out_field_string
8017 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8018 ui_out_field_string (uiout, "signal-name",
8019 gdb_signal_to_name (siggnal));
8020 annotate_signal_name_end ();
8021 ui_out_text (uiout, ", ");
8022 annotate_signal_string ();
8023 ui_out_field_string (uiout, "signal-meaning",
8024 gdb_signal_to_string (siggnal));
8025
8026 if (siggnal == GDB_SIGNAL_SEGV)
8027 handle_segmentation_fault (uiout);
8028
8029 annotate_signal_string_end ();
8030 }
8031 ui_out_text (uiout, ".\n");
8032 }
8033
8034 void
8035 print_no_history_reason (struct ui_out *uiout)
8036 {
8037 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
8038 }
8039
8040 /* Print current location without a level number, if we have changed
8041 functions or hit a breakpoint. Print source line if we have one.
8042 bpstat_print contains the logic deciding in detail what to print,
8043 based on the event(s) that just occurred. */
8044
8045 static void
8046 print_stop_location (struct target_waitstatus *ws)
8047 {
8048 int bpstat_ret;
8049 enum print_what source_flag;
8050 int do_frame_printing = 1;
8051 struct thread_info *tp = inferior_thread ();
8052
8053 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8054 switch (bpstat_ret)
8055 {
8056 case PRINT_UNKNOWN:
8057 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8058 should) carry around the function and does (or should) use
8059 that when doing a frame comparison. */
8060 if (tp->control.stop_step
8061 && frame_id_eq (tp->control.step_frame_id,
8062 get_frame_id (get_current_frame ()))
8063 && tp->control.step_start_function == find_pc_function (stop_pc))
8064 {
8065 /* Finished step, just print source line. */
8066 source_flag = SRC_LINE;
8067 }
8068 else
8069 {
8070 /* Print location and source line. */
8071 source_flag = SRC_AND_LOC;
8072 }
8073 break;
8074 case PRINT_SRC_AND_LOC:
8075 /* Print location and source line. */
8076 source_flag = SRC_AND_LOC;
8077 break;
8078 case PRINT_SRC_ONLY:
8079 source_flag = SRC_LINE;
8080 break;
8081 case PRINT_NOTHING:
8082 /* Something bogus. */
8083 source_flag = SRC_LINE;
8084 do_frame_printing = 0;
8085 break;
8086 default:
8087 internal_error (__FILE__, __LINE__, _("Unknown value."));
8088 }
8089
8090 /* The behavior of this routine with respect to the source
8091 flag is:
8092 SRC_LINE: Print only source line
8093 LOCATION: Print only location
8094 SRC_AND_LOC: Print location and source line. */
8095 if (do_frame_printing)
8096 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8097 }
8098
8099 /* Cleanup that restores a previous current uiout. */
8100
8101 static void
8102 restore_current_uiout_cleanup (void *arg)
8103 {
8104 struct ui_out *saved_uiout = (struct ui_out *) arg;
8105
8106 current_uiout = saved_uiout;
8107 }
8108
8109 /* See infrun.h. */
8110
8111 void
8112 print_stop_event (struct ui_out *uiout)
8113 {
8114 struct cleanup *old_chain;
8115 struct target_waitstatus last;
8116 ptid_t last_ptid;
8117 struct thread_info *tp;
8118
8119 get_last_target_status (&last_ptid, &last);
8120
8121 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
8122 current_uiout = uiout;
8123
8124 print_stop_location (&last);
8125
8126 /* Display the auto-display expressions. */
8127 do_displays ();
8128
8129 do_cleanups (old_chain);
8130
8131 tp = inferior_thread ();
8132 if (tp->thread_fsm != NULL
8133 && thread_fsm_finished_p (tp->thread_fsm))
8134 {
8135 struct return_value_info *rv;
8136
8137 rv = thread_fsm_return_value (tp->thread_fsm);
8138 if (rv != NULL)
8139 print_return_value (uiout, rv);
8140 }
8141 }
8142
8143 /* See infrun.h. */
8144
8145 void
8146 maybe_remove_breakpoints (void)
8147 {
8148 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8149 {
8150 if (remove_breakpoints ())
8151 {
8152 target_terminal_ours_for_output ();
8153 printf_filtered (_("Cannot remove breakpoints because "
8154 "program is no longer writable.\nFurther "
8155 "execution is probably impossible.\n"));
8156 }
8157 }
8158 }
8159
8160 /* The execution context that just caused a normal stop. */
8161
8162 struct stop_context
8163 {
8164 /* The stop ID. */
8165 ULONGEST stop_id;
8166
8167 /* The event PTID. */
8168
8169 ptid_t ptid;
8170
8171 /* If stopp for a thread event, this is the thread that caused the
8172 stop. */
8173 struct thread_info *thread;
8174
8175 /* The inferior that caused the stop. */
8176 int inf_num;
8177 };
8178
8179 /* Returns a new stop context. If stopped for a thread event, this
8180 takes a strong reference to the thread. */
8181
8182 static struct stop_context *
8183 save_stop_context (void)
8184 {
8185 struct stop_context *sc = XNEW (struct stop_context);
8186
8187 sc->stop_id = get_stop_id ();
8188 sc->ptid = inferior_ptid;
8189 sc->inf_num = current_inferior ()->num;
8190
8191 if (!ptid_equal (inferior_ptid, null_ptid))
8192 {
8193 /* Take a strong reference so that the thread can't be deleted
8194 yet. */
8195 sc->thread = inferior_thread ();
8196 sc->thread->refcount++;
8197 }
8198 else
8199 sc->thread = NULL;
8200
8201 return sc;
8202 }
8203
8204 /* Release a stop context previously created with save_stop_context.
8205 Releases the strong reference to the thread as well. */
8206
8207 static void
8208 release_stop_context_cleanup (void *arg)
8209 {
8210 struct stop_context *sc = (struct stop_context *) arg;
8211
8212 if (sc->thread != NULL)
8213 sc->thread->refcount--;
8214 xfree (sc);
8215 }
8216
8217 /* Return true if the current context no longer matches the saved stop
8218 context. */
8219
8220 static int
8221 stop_context_changed (struct stop_context *prev)
8222 {
8223 if (!ptid_equal (prev->ptid, inferior_ptid))
8224 return 1;
8225 if (prev->inf_num != current_inferior ()->num)
8226 return 1;
8227 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8228 return 1;
8229 if (get_stop_id () != prev->stop_id)
8230 return 1;
8231 return 0;
8232 }
8233
8234 /* See infrun.h. */
8235
8236 int
8237 normal_stop (void)
8238 {
8239 struct target_waitstatus last;
8240 ptid_t last_ptid;
8241 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8242 ptid_t pid_ptid;
8243 struct switch_thru_all_uis state;
8244
8245 get_last_target_status (&last_ptid, &last);
8246
8247 new_stop_id ();
8248
8249 /* If an exception is thrown from this point on, make sure to
8250 propagate GDB's knowledge of the executing state to the
8251 frontend/user running state. A QUIT is an easy exception to see
8252 here, so do this before any filtered output. */
8253 if (!non_stop)
8254 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8255 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8256 || last.kind == TARGET_WAITKIND_EXITED)
8257 {
8258 /* On some targets, we may still have live threads in the
8259 inferior when we get a process exit event. E.g., for
8260 "checkpoint", when the current checkpoint/fork exits,
8261 linux-fork.c automatically switches to another fork from
8262 within target_mourn_inferior. */
8263 if (!ptid_equal (inferior_ptid, null_ptid))
8264 {
8265 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8266 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8267 }
8268 }
8269 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8270 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8271
8272 /* As we're presenting a stop, and potentially removing breakpoints,
8273 update the thread list so we can tell whether there are threads
8274 running on the target. With target remote, for example, we can
8275 only learn about new threads when we explicitly update the thread
8276 list. Do this before notifying the interpreters about signal
8277 stops, end of stepping ranges, etc., so that the "new thread"
8278 output is emitted before e.g., "Program received signal FOO",
8279 instead of after. */
8280 update_thread_list ();
8281
8282 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8283 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8284
8285 /* As with the notification of thread events, we want to delay
8286 notifying the user that we've switched thread context until
8287 the inferior actually stops.
8288
8289 There's no point in saying anything if the inferior has exited.
8290 Note that SIGNALLED here means "exited with a signal", not
8291 "received a signal".
8292
8293 Also skip saying anything in non-stop mode. In that mode, as we
8294 don't want GDB to switch threads behind the user's back, to avoid
8295 races where the user is typing a command to apply to thread x,
8296 but GDB switches to thread y before the user finishes entering
8297 the command, fetch_inferior_event installs a cleanup to restore
8298 the current thread back to the thread the user had selected right
8299 after this event is handled, so we're not really switching, only
8300 informing of a stop. */
8301 if (!non_stop
8302 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8303 && target_has_execution
8304 && last.kind != TARGET_WAITKIND_SIGNALLED
8305 && last.kind != TARGET_WAITKIND_EXITED
8306 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8307 {
8308 SWITCH_THRU_ALL_UIS (state)
8309 {
8310 target_terminal_ours_for_output ();
8311 printf_filtered (_("[Switching to %s]\n"),
8312 target_pid_to_str (inferior_ptid));
8313 annotate_thread_changed ();
8314 }
8315 previous_inferior_ptid = inferior_ptid;
8316 }
8317
8318 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8319 {
8320 SWITCH_THRU_ALL_UIS (state)
8321 if (current_ui->prompt_state == PROMPT_BLOCKED)
8322 {
8323 target_terminal_ours_for_output ();
8324 printf_filtered (_("No unwaited-for children left.\n"));
8325 }
8326 }
8327
8328 /* Note: this depends on the update_thread_list call above. */
8329 maybe_remove_breakpoints ();
8330
8331 /* If an auto-display called a function and that got a signal,
8332 delete that auto-display to avoid an infinite recursion. */
8333
8334 if (stopped_by_random_signal)
8335 disable_current_display ();
8336
8337 SWITCH_THRU_ALL_UIS (state)
8338 {
8339 async_enable_stdin ();
8340 }
8341
8342 /* Let the user/frontend see the threads as stopped. */
8343 do_cleanups (old_chain);
8344
8345 /* Select innermost stack frame - i.e., current frame is frame 0,
8346 and current location is based on that. Handle the case where the
8347 dummy call is returning after being stopped. E.g. the dummy call
8348 previously hit a breakpoint. (If the dummy call returns
8349 normally, we won't reach here.) Do this before the stop hook is
8350 run, so that it doesn't get to see the temporary dummy frame,
8351 which is not where we'll present the stop. */
8352 if (has_stack_frames ())
8353 {
8354 if (stop_stack_dummy == STOP_STACK_DUMMY)
8355 {
8356 /* Pop the empty frame that contains the stack dummy. This
8357 also restores inferior state prior to the call (struct
8358 infcall_suspend_state). */
8359 struct frame_info *frame = get_current_frame ();
8360
8361 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8362 frame_pop (frame);
8363 /* frame_pop calls reinit_frame_cache as the last thing it
8364 does which means there's now no selected frame. */
8365 }
8366
8367 select_frame (get_current_frame ());
8368
8369 /* Set the current source location. */
8370 set_current_sal_from_frame (get_current_frame ());
8371 }
8372
8373 /* Look up the hook_stop and run it (CLI internally handles problem
8374 of stop_command's pre-hook not existing). */
8375 if (stop_command != NULL)
8376 {
8377 struct stop_context *saved_context = save_stop_context ();
8378 struct cleanup *old_chain
8379 = make_cleanup (release_stop_context_cleanup, saved_context);
8380
8381 catch_errors (hook_stop_stub, stop_command,
8382 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8383
8384 /* If the stop hook resumes the target, then there's no point in
8385 trying to notify about the previous stop; its context is
8386 gone. Likewise if the command switches thread or inferior --
8387 the observers would print a stop for the wrong
8388 thread/inferior. */
8389 if (stop_context_changed (saved_context))
8390 {
8391 do_cleanups (old_chain);
8392 return 1;
8393 }
8394 do_cleanups (old_chain);
8395 }
8396
8397 /* Notify observers about the stop. This is where the interpreters
8398 print the stop event. */
8399 if (!ptid_equal (inferior_ptid, null_ptid))
8400 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8401 stop_print_frame);
8402 else
8403 observer_notify_normal_stop (NULL, stop_print_frame);
8404
8405 annotate_stopped ();
8406
8407 if (target_has_execution)
8408 {
8409 if (last.kind != TARGET_WAITKIND_SIGNALLED
8410 && last.kind != TARGET_WAITKIND_EXITED)
8411 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8412 Delete any breakpoint that is to be deleted at the next stop. */
8413 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8414 }
8415
8416 /* Try to get rid of automatically added inferiors that are no
8417 longer needed. Keeping those around slows down things linearly.
8418 Note that this never removes the current inferior. */
8419 prune_inferiors ();
8420
8421 return 0;
8422 }
8423
8424 static int
8425 hook_stop_stub (void *cmd)
8426 {
8427 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8428 return (0);
8429 }
8430 \f
8431 int
8432 signal_stop_state (int signo)
8433 {
8434 return signal_stop[signo];
8435 }
8436
8437 int
8438 signal_print_state (int signo)
8439 {
8440 return signal_print[signo];
8441 }
8442
8443 int
8444 signal_pass_state (int signo)
8445 {
8446 return signal_program[signo];
8447 }
8448
8449 static void
8450 signal_cache_update (int signo)
8451 {
8452 if (signo == -1)
8453 {
8454 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8455 signal_cache_update (signo);
8456
8457 return;
8458 }
8459
8460 signal_pass[signo] = (signal_stop[signo] == 0
8461 && signal_print[signo] == 0
8462 && signal_program[signo] == 1
8463 && signal_catch[signo] == 0);
8464 }
8465
8466 int
8467 signal_stop_update (int signo, int state)
8468 {
8469 int ret = signal_stop[signo];
8470
8471 signal_stop[signo] = state;
8472 signal_cache_update (signo);
8473 return ret;
8474 }
8475
8476 int
8477 signal_print_update (int signo, int state)
8478 {
8479 int ret = signal_print[signo];
8480
8481 signal_print[signo] = state;
8482 signal_cache_update (signo);
8483 return ret;
8484 }
8485
8486 int
8487 signal_pass_update (int signo, int state)
8488 {
8489 int ret = signal_program[signo];
8490
8491 signal_program[signo] = state;
8492 signal_cache_update (signo);
8493 return ret;
8494 }
8495
8496 /* Update the global 'signal_catch' from INFO and notify the
8497 target. */
8498
8499 void
8500 signal_catch_update (const unsigned int *info)
8501 {
8502 int i;
8503
8504 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8505 signal_catch[i] = info[i] > 0;
8506 signal_cache_update (-1);
8507 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8508 }
8509
8510 static void
8511 sig_print_header (void)
8512 {
8513 printf_filtered (_("Signal Stop\tPrint\tPass "
8514 "to program\tDescription\n"));
8515 }
8516
8517 static void
8518 sig_print_info (enum gdb_signal oursig)
8519 {
8520 const char *name = gdb_signal_to_name (oursig);
8521 int name_padding = 13 - strlen (name);
8522
8523 if (name_padding <= 0)
8524 name_padding = 0;
8525
8526 printf_filtered ("%s", name);
8527 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8528 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8529 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8530 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8531 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8532 }
8533
8534 /* Specify how various signals in the inferior should be handled. */
8535
8536 static void
8537 handle_command (char *args, int from_tty)
8538 {
8539 char **argv;
8540 int digits, wordlen;
8541 int sigfirst, signum, siglast;
8542 enum gdb_signal oursig;
8543 int allsigs;
8544 int nsigs;
8545 unsigned char *sigs;
8546 struct cleanup *old_chain;
8547
8548 if (args == NULL)
8549 {
8550 error_no_arg (_("signal to handle"));
8551 }
8552
8553 /* Allocate and zero an array of flags for which signals to handle. */
8554
8555 nsigs = (int) GDB_SIGNAL_LAST;
8556 sigs = (unsigned char *) alloca (nsigs);
8557 memset (sigs, 0, nsigs);
8558
8559 /* Break the command line up into args. */
8560
8561 argv = gdb_buildargv (args);
8562 old_chain = make_cleanup_freeargv (argv);
8563
8564 /* Walk through the args, looking for signal oursigs, signal names, and
8565 actions. Signal numbers and signal names may be interspersed with
8566 actions, with the actions being performed for all signals cumulatively
8567 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8568
8569 while (*argv != NULL)
8570 {
8571 wordlen = strlen (*argv);
8572 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8573 {;
8574 }
8575 allsigs = 0;
8576 sigfirst = siglast = -1;
8577
8578 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8579 {
8580 /* Apply action to all signals except those used by the
8581 debugger. Silently skip those. */
8582 allsigs = 1;
8583 sigfirst = 0;
8584 siglast = nsigs - 1;
8585 }
8586 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8587 {
8588 SET_SIGS (nsigs, sigs, signal_stop);
8589 SET_SIGS (nsigs, sigs, signal_print);
8590 }
8591 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8592 {
8593 UNSET_SIGS (nsigs, sigs, signal_program);
8594 }
8595 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8596 {
8597 SET_SIGS (nsigs, sigs, signal_print);
8598 }
8599 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8600 {
8601 SET_SIGS (nsigs, sigs, signal_program);
8602 }
8603 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8604 {
8605 UNSET_SIGS (nsigs, sigs, signal_stop);
8606 }
8607 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8608 {
8609 SET_SIGS (nsigs, sigs, signal_program);
8610 }
8611 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8612 {
8613 UNSET_SIGS (nsigs, sigs, signal_print);
8614 UNSET_SIGS (nsigs, sigs, signal_stop);
8615 }
8616 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8617 {
8618 UNSET_SIGS (nsigs, sigs, signal_program);
8619 }
8620 else if (digits > 0)
8621 {
8622 /* It is numeric. The numeric signal refers to our own
8623 internal signal numbering from target.h, not to host/target
8624 signal number. This is a feature; users really should be
8625 using symbolic names anyway, and the common ones like
8626 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8627
8628 sigfirst = siglast = (int)
8629 gdb_signal_from_command (atoi (*argv));
8630 if ((*argv)[digits] == '-')
8631 {
8632 siglast = (int)
8633 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8634 }
8635 if (sigfirst > siglast)
8636 {
8637 /* Bet he didn't figure we'd think of this case... */
8638 signum = sigfirst;
8639 sigfirst = siglast;
8640 siglast = signum;
8641 }
8642 }
8643 else
8644 {
8645 oursig = gdb_signal_from_name (*argv);
8646 if (oursig != GDB_SIGNAL_UNKNOWN)
8647 {
8648 sigfirst = siglast = (int) oursig;
8649 }
8650 else
8651 {
8652 /* Not a number and not a recognized flag word => complain. */
8653 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8654 }
8655 }
8656
8657 /* If any signal numbers or symbol names were found, set flags for
8658 which signals to apply actions to. */
8659
8660 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8661 {
8662 switch ((enum gdb_signal) signum)
8663 {
8664 case GDB_SIGNAL_TRAP:
8665 case GDB_SIGNAL_INT:
8666 if (!allsigs && !sigs[signum])
8667 {
8668 if (query (_("%s is used by the debugger.\n\
8669 Are you sure you want to change it? "),
8670 gdb_signal_to_name ((enum gdb_signal) signum)))
8671 {
8672 sigs[signum] = 1;
8673 }
8674 else
8675 {
8676 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8677 gdb_flush (gdb_stdout);
8678 }
8679 }
8680 break;
8681 case GDB_SIGNAL_0:
8682 case GDB_SIGNAL_DEFAULT:
8683 case GDB_SIGNAL_UNKNOWN:
8684 /* Make sure that "all" doesn't print these. */
8685 break;
8686 default:
8687 sigs[signum] = 1;
8688 break;
8689 }
8690 }
8691
8692 argv++;
8693 }
8694
8695 for (signum = 0; signum < nsigs; signum++)
8696 if (sigs[signum])
8697 {
8698 signal_cache_update (-1);
8699 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8700 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8701
8702 if (from_tty)
8703 {
8704 /* Show the results. */
8705 sig_print_header ();
8706 for (; signum < nsigs; signum++)
8707 if (sigs[signum])
8708 sig_print_info ((enum gdb_signal) signum);
8709 }
8710
8711 break;
8712 }
8713
8714 do_cleanups (old_chain);
8715 }
8716
8717 /* Complete the "handle" command. */
8718
8719 static VEC (char_ptr) *
8720 handle_completer (struct cmd_list_element *ignore,
8721 const char *text, const char *word)
8722 {
8723 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8724 static const char * const keywords[] =
8725 {
8726 "all",
8727 "stop",
8728 "ignore",
8729 "print",
8730 "pass",
8731 "nostop",
8732 "noignore",
8733 "noprint",
8734 "nopass",
8735 NULL,
8736 };
8737
8738 vec_signals = signal_completer (ignore, text, word);
8739 vec_keywords = complete_on_enum (keywords, word, word);
8740
8741 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8742 VEC_free (char_ptr, vec_signals);
8743 VEC_free (char_ptr, vec_keywords);
8744 return return_val;
8745 }
8746
8747 enum gdb_signal
8748 gdb_signal_from_command (int num)
8749 {
8750 if (num >= 1 && num <= 15)
8751 return (enum gdb_signal) num;
8752 error (_("Only signals 1-15 are valid as numeric signals.\n\
8753 Use \"info signals\" for a list of symbolic signals."));
8754 }
8755
8756 /* Print current contents of the tables set by the handle command.
8757 It is possible we should just be printing signals actually used
8758 by the current target (but for things to work right when switching
8759 targets, all signals should be in the signal tables). */
8760
8761 static void
8762 signals_info (char *signum_exp, int from_tty)
8763 {
8764 enum gdb_signal oursig;
8765
8766 sig_print_header ();
8767
8768 if (signum_exp)
8769 {
8770 /* First see if this is a symbol name. */
8771 oursig = gdb_signal_from_name (signum_exp);
8772 if (oursig == GDB_SIGNAL_UNKNOWN)
8773 {
8774 /* No, try numeric. */
8775 oursig =
8776 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8777 }
8778 sig_print_info (oursig);
8779 return;
8780 }
8781
8782 printf_filtered ("\n");
8783 /* These ugly casts brought to you by the native VAX compiler. */
8784 for (oursig = GDB_SIGNAL_FIRST;
8785 (int) oursig < (int) GDB_SIGNAL_LAST;
8786 oursig = (enum gdb_signal) ((int) oursig + 1))
8787 {
8788 QUIT;
8789
8790 if (oursig != GDB_SIGNAL_UNKNOWN
8791 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8792 sig_print_info (oursig);
8793 }
8794
8795 printf_filtered (_("\nUse the \"handle\" command "
8796 "to change these tables.\n"));
8797 }
8798
8799 /* The $_siginfo convenience variable is a bit special. We don't know
8800 for sure the type of the value until we actually have a chance to
8801 fetch the data. The type can change depending on gdbarch, so it is
8802 also dependent on which thread you have selected.
8803
8804 1. making $_siginfo be an internalvar that creates a new value on
8805 access.
8806
8807 2. making the value of $_siginfo be an lval_computed value. */
8808
8809 /* This function implements the lval_computed support for reading a
8810 $_siginfo value. */
8811
8812 static void
8813 siginfo_value_read (struct value *v)
8814 {
8815 LONGEST transferred;
8816
8817 /* If we can access registers, so can we access $_siginfo. Likewise
8818 vice versa. */
8819 validate_registers_access ();
8820
8821 transferred =
8822 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8823 NULL,
8824 value_contents_all_raw (v),
8825 value_offset (v),
8826 TYPE_LENGTH (value_type (v)));
8827
8828 if (transferred != TYPE_LENGTH (value_type (v)))
8829 error (_("Unable to read siginfo"));
8830 }
8831
8832 /* This function implements the lval_computed support for writing a
8833 $_siginfo value. */
8834
8835 static void
8836 siginfo_value_write (struct value *v, struct value *fromval)
8837 {
8838 LONGEST transferred;
8839
8840 /* If we can access registers, so can we access $_siginfo. Likewise
8841 vice versa. */
8842 validate_registers_access ();
8843
8844 transferred = target_write (&current_target,
8845 TARGET_OBJECT_SIGNAL_INFO,
8846 NULL,
8847 value_contents_all_raw (fromval),
8848 value_offset (v),
8849 TYPE_LENGTH (value_type (fromval)));
8850
8851 if (transferred != TYPE_LENGTH (value_type (fromval)))
8852 error (_("Unable to write siginfo"));
8853 }
8854
8855 static const struct lval_funcs siginfo_value_funcs =
8856 {
8857 siginfo_value_read,
8858 siginfo_value_write
8859 };
8860
8861 /* Return a new value with the correct type for the siginfo object of
8862 the current thread using architecture GDBARCH. Return a void value
8863 if there's no object available. */
8864
8865 static struct value *
8866 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8867 void *ignore)
8868 {
8869 if (target_has_stack
8870 && !ptid_equal (inferior_ptid, null_ptid)
8871 && gdbarch_get_siginfo_type_p (gdbarch))
8872 {
8873 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8874
8875 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8876 }
8877
8878 return allocate_value (builtin_type (gdbarch)->builtin_void);
8879 }
8880
8881 \f
8882 /* infcall_suspend_state contains state about the program itself like its
8883 registers and any signal it received when it last stopped.
8884 This state must be restored regardless of how the inferior function call
8885 ends (either successfully, or after it hits a breakpoint or signal)
8886 if the program is to properly continue where it left off. */
8887
8888 struct infcall_suspend_state
8889 {
8890 struct thread_suspend_state thread_suspend;
8891
8892 /* Other fields: */
8893 CORE_ADDR stop_pc;
8894 struct regcache *registers;
8895
8896 /* Format of SIGINFO_DATA or NULL if it is not present. */
8897 struct gdbarch *siginfo_gdbarch;
8898
8899 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8900 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8901 content would be invalid. */
8902 gdb_byte *siginfo_data;
8903 };
8904
8905 struct infcall_suspend_state *
8906 save_infcall_suspend_state (void)
8907 {
8908 struct infcall_suspend_state *inf_state;
8909 struct thread_info *tp = inferior_thread ();
8910 struct regcache *regcache = get_current_regcache ();
8911 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8912 gdb_byte *siginfo_data = NULL;
8913
8914 if (gdbarch_get_siginfo_type_p (gdbarch))
8915 {
8916 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8917 size_t len = TYPE_LENGTH (type);
8918 struct cleanup *back_to;
8919
8920 siginfo_data = (gdb_byte *) xmalloc (len);
8921 back_to = make_cleanup (xfree, siginfo_data);
8922
8923 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8924 siginfo_data, 0, len) == len)
8925 discard_cleanups (back_to);
8926 else
8927 {
8928 /* Errors ignored. */
8929 do_cleanups (back_to);
8930 siginfo_data = NULL;
8931 }
8932 }
8933
8934 inf_state = XCNEW (struct infcall_suspend_state);
8935
8936 if (siginfo_data)
8937 {
8938 inf_state->siginfo_gdbarch = gdbarch;
8939 inf_state->siginfo_data = siginfo_data;
8940 }
8941
8942 inf_state->thread_suspend = tp->suspend;
8943
8944 /* run_inferior_call will not use the signal due to its `proceed' call with
8945 GDB_SIGNAL_0 anyway. */
8946 tp->suspend.stop_signal = GDB_SIGNAL_0;
8947
8948 inf_state->stop_pc = stop_pc;
8949
8950 inf_state->registers = regcache_dup (regcache);
8951
8952 return inf_state;
8953 }
8954
8955 /* Restore inferior session state to INF_STATE. */
8956
8957 void
8958 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8959 {
8960 struct thread_info *tp = inferior_thread ();
8961 struct regcache *regcache = get_current_regcache ();
8962 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8963
8964 tp->suspend = inf_state->thread_suspend;
8965
8966 stop_pc = inf_state->stop_pc;
8967
8968 if (inf_state->siginfo_gdbarch == gdbarch)
8969 {
8970 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8971
8972 /* Errors ignored. */
8973 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8974 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8975 }
8976
8977 /* The inferior can be gone if the user types "print exit(0)"
8978 (and perhaps other times). */
8979 if (target_has_execution)
8980 /* NB: The register write goes through to the target. */
8981 regcache_cpy (regcache, inf_state->registers);
8982
8983 discard_infcall_suspend_state (inf_state);
8984 }
8985
8986 static void
8987 do_restore_infcall_suspend_state_cleanup (void *state)
8988 {
8989 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8990 }
8991
8992 struct cleanup *
8993 make_cleanup_restore_infcall_suspend_state
8994 (struct infcall_suspend_state *inf_state)
8995 {
8996 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8997 }
8998
8999 void
9000 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9001 {
9002 regcache_xfree (inf_state->registers);
9003 xfree (inf_state->siginfo_data);
9004 xfree (inf_state);
9005 }
9006
9007 struct regcache *
9008 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9009 {
9010 return inf_state->registers;
9011 }
9012
9013 /* infcall_control_state contains state regarding gdb's control of the
9014 inferior itself like stepping control. It also contains session state like
9015 the user's currently selected frame. */
9016
9017 struct infcall_control_state
9018 {
9019 struct thread_control_state thread_control;
9020 struct inferior_control_state inferior_control;
9021
9022 /* Other fields: */
9023 enum stop_stack_kind stop_stack_dummy;
9024 int stopped_by_random_signal;
9025
9026 /* ID if the selected frame when the inferior function call was made. */
9027 struct frame_id selected_frame_id;
9028 };
9029
9030 /* Save all of the information associated with the inferior<==>gdb
9031 connection. */
9032
9033 struct infcall_control_state *
9034 save_infcall_control_state (void)
9035 {
9036 struct infcall_control_state *inf_status =
9037 XNEW (struct infcall_control_state);
9038 struct thread_info *tp = inferior_thread ();
9039 struct inferior *inf = current_inferior ();
9040
9041 inf_status->thread_control = tp->control;
9042 inf_status->inferior_control = inf->control;
9043
9044 tp->control.step_resume_breakpoint = NULL;
9045 tp->control.exception_resume_breakpoint = NULL;
9046
9047 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9048 chain. If caller's caller is walking the chain, they'll be happier if we
9049 hand them back the original chain when restore_infcall_control_state is
9050 called. */
9051 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9052
9053 /* Other fields: */
9054 inf_status->stop_stack_dummy = stop_stack_dummy;
9055 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9056
9057 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9058
9059 return inf_status;
9060 }
9061
9062 static int
9063 restore_selected_frame (void *args)
9064 {
9065 struct frame_id *fid = (struct frame_id *) args;
9066 struct frame_info *frame;
9067
9068 frame = frame_find_by_id (*fid);
9069
9070 /* If inf_status->selected_frame_id is NULL, there was no previously
9071 selected frame. */
9072 if (frame == NULL)
9073 {
9074 warning (_("Unable to restore previously selected frame."));
9075 return 0;
9076 }
9077
9078 select_frame (frame);
9079
9080 return (1);
9081 }
9082
9083 /* Restore inferior session state to INF_STATUS. */
9084
9085 void
9086 restore_infcall_control_state (struct infcall_control_state *inf_status)
9087 {
9088 struct thread_info *tp = inferior_thread ();
9089 struct inferior *inf = current_inferior ();
9090
9091 if (tp->control.step_resume_breakpoint)
9092 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9093
9094 if (tp->control.exception_resume_breakpoint)
9095 tp->control.exception_resume_breakpoint->disposition
9096 = disp_del_at_next_stop;
9097
9098 /* Handle the bpstat_copy of the chain. */
9099 bpstat_clear (&tp->control.stop_bpstat);
9100
9101 tp->control = inf_status->thread_control;
9102 inf->control = inf_status->inferior_control;
9103
9104 /* Other fields: */
9105 stop_stack_dummy = inf_status->stop_stack_dummy;
9106 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9107
9108 if (target_has_stack)
9109 {
9110 /* The point of catch_errors is that if the stack is clobbered,
9111 walking the stack might encounter a garbage pointer and
9112 error() trying to dereference it. */
9113 if (catch_errors
9114 (restore_selected_frame, &inf_status->selected_frame_id,
9115 "Unable to restore previously selected frame:\n",
9116 RETURN_MASK_ERROR) == 0)
9117 /* Error in restoring the selected frame. Select the innermost
9118 frame. */
9119 select_frame (get_current_frame ());
9120 }
9121
9122 xfree (inf_status);
9123 }
9124
9125 static void
9126 do_restore_infcall_control_state_cleanup (void *sts)
9127 {
9128 restore_infcall_control_state ((struct infcall_control_state *) sts);
9129 }
9130
9131 struct cleanup *
9132 make_cleanup_restore_infcall_control_state
9133 (struct infcall_control_state *inf_status)
9134 {
9135 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9136 }
9137
9138 void
9139 discard_infcall_control_state (struct infcall_control_state *inf_status)
9140 {
9141 if (inf_status->thread_control.step_resume_breakpoint)
9142 inf_status->thread_control.step_resume_breakpoint->disposition
9143 = disp_del_at_next_stop;
9144
9145 if (inf_status->thread_control.exception_resume_breakpoint)
9146 inf_status->thread_control.exception_resume_breakpoint->disposition
9147 = disp_del_at_next_stop;
9148
9149 /* See save_infcall_control_state for info on stop_bpstat. */
9150 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9151
9152 xfree (inf_status);
9153 }
9154 \f
9155 /* restore_inferior_ptid() will be used by the cleanup machinery
9156 to restore the inferior_ptid value saved in a call to
9157 save_inferior_ptid(). */
9158
9159 static void
9160 restore_inferior_ptid (void *arg)
9161 {
9162 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9163
9164 inferior_ptid = *saved_ptid_ptr;
9165 xfree (arg);
9166 }
9167
9168 /* Save the value of inferior_ptid so that it may be restored by a
9169 later call to do_cleanups(). Returns the struct cleanup pointer
9170 needed for later doing the cleanup. */
9171
9172 struct cleanup *
9173 save_inferior_ptid (void)
9174 {
9175 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9176
9177 *saved_ptid_ptr = inferior_ptid;
9178 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9179 }
9180
9181 /* See infrun.h. */
9182
9183 void
9184 clear_exit_convenience_vars (void)
9185 {
9186 clear_internalvar (lookup_internalvar ("_exitsignal"));
9187 clear_internalvar (lookup_internalvar ("_exitcode"));
9188 }
9189 \f
9190
9191 /* User interface for reverse debugging:
9192 Set exec-direction / show exec-direction commands
9193 (returns error unless target implements to_set_exec_direction method). */
9194
9195 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9196 static const char exec_forward[] = "forward";
9197 static const char exec_reverse[] = "reverse";
9198 static const char *exec_direction = exec_forward;
9199 static const char *const exec_direction_names[] = {
9200 exec_forward,
9201 exec_reverse,
9202 NULL
9203 };
9204
9205 static void
9206 set_exec_direction_func (char *args, int from_tty,
9207 struct cmd_list_element *cmd)
9208 {
9209 if (target_can_execute_reverse)
9210 {
9211 if (!strcmp (exec_direction, exec_forward))
9212 execution_direction = EXEC_FORWARD;
9213 else if (!strcmp (exec_direction, exec_reverse))
9214 execution_direction = EXEC_REVERSE;
9215 }
9216 else
9217 {
9218 exec_direction = exec_forward;
9219 error (_("Target does not support this operation."));
9220 }
9221 }
9222
9223 static void
9224 show_exec_direction_func (struct ui_file *out, int from_tty,
9225 struct cmd_list_element *cmd, const char *value)
9226 {
9227 switch (execution_direction) {
9228 case EXEC_FORWARD:
9229 fprintf_filtered (out, _("Forward.\n"));
9230 break;
9231 case EXEC_REVERSE:
9232 fprintf_filtered (out, _("Reverse.\n"));
9233 break;
9234 default:
9235 internal_error (__FILE__, __LINE__,
9236 _("bogus execution_direction value: %d"),
9237 (int) execution_direction);
9238 }
9239 }
9240
9241 static void
9242 show_schedule_multiple (struct ui_file *file, int from_tty,
9243 struct cmd_list_element *c, const char *value)
9244 {
9245 fprintf_filtered (file, _("Resuming the execution of threads "
9246 "of all processes is %s.\n"), value);
9247 }
9248
9249 /* Implementation of `siginfo' variable. */
9250
9251 static const struct internalvar_funcs siginfo_funcs =
9252 {
9253 siginfo_make_value,
9254 NULL,
9255 NULL
9256 };
9257
9258 /* Callback for infrun's target events source. This is marked when a
9259 thread has a pending status to process. */
9260
9261 static void
9262 infrun_async_inferior_event_handler (gdb_client_data data)
9263 {
9264 inferior_event_handler (INF_REG_EVENT, NULL);
9265 }
9266
9267 void
9268 _initialize_infrun (void)
9269 {
9270 int i;
9271 int numsigs;
9272 struct cmd_list_element *c;
9273
9274 /* Register extra event sources in the event loop. */
9275 infrun_async_inferior_event_token
9276 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9277
9278 add_info ("signals", signals_info, _("\
9279 What debugger does when program gets various signals.\n\
9280 Specify a signal as argument to print info on that signal only."));
9281 add_info_alias ("handle", "signals", 0);
9282
9283 c = add_com ("handle", class_run, handle_command, _("\
9284 Specify how to handle signals.\n\
9285 Usage: handle SIGNAL [ACTIONS]\n\
9286 Args are signals and actions to apply to those signals.\n\
9287 If no actions are specified, the current settings for the specified signals\n\
9288 will be displayed instead.\n\
9289 \n\
9290 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9291 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9292 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9293 The special arg \"all\" is recognized to mean all signals except those\n\
9294 used by the debugger, typically SIGTRAP and SIGINT.\n\
9295 \n\
9296 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9297 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9298 Stop means reenter debugger if this signal happens (implies print).\n\
9299 Print means print a message if this signal happens.\n\
9300 Pass means let program see this signal; otherwise program doesn't know.\n\
9301 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9302 Pass and Stop may be combined.\n\
9303 \n\
9304 Multiple signals may be specified. Signal numbers and signal names\n\
9305 may be interspersed with actions, with the actions being performed for\n\
9306 all signals cumulatively specified."));
9307 set_cmd_completer (c, handle_completer);
9308
9309 if (!dbx_commands)
9310 stop_command = add_cmd ("stop", class_obscure,
9311 not_just_help_class_command, _("\
9312 There is no `stop' command, but you can set a hook on `stop'.\n\
9313 This allows you to set a list of commands to be run each time execution\n\
9314 of the program stops."), &cmdlist);
9315
9316 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9317 Set inferior debugging."), _("\
9318 Show inferior debugging."), _("\
9319 When non-zero, inferior specific debugging is enabled."),
9320 NULL,
9321 show_debug_infrun,
9322 &setdebuglist, &showdebuglist);
9323
9324 add_setshow_boolean_cmd ("displaced", class_maintenance,
9325 &debug_displaced, _("\
9326 Set displaced stepping debugging."), _("\
9327 Show displaced stepping debugging."), _("\
9328 When non-zero, displaced stepping specific debugging is enabled."),
9329 NULL,
9330 show_debug_displaced,
9331 &setdebuglist, &showdebuglist);
9332
9333 add_setshow_boolean_cmd ("non-stop", no_class,
9334 &non_stop_1, _("\
9335 Set whether gdb controls the inferior in non-stop mode."), _("\
9336 Show whether gdb controls the inferior in non-stop mode."), _("\
9337 When debugging a multi-threaded program and this setting is\n\
9338 off (the default, also called all-stop mode), when one thread stops\n\
9339 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9340 all other threads in the program while you interact with the thread of\n\
9341 interest. When you continue or step a thread, you can allow the other\n\
9342 threads to run, or have them remain stopped, but while you inspect any\n\
9343 thread's state, all threads stop.\n\
9344 \n\
9345 In non-stop mode, when one thread stops, other threads can continue\n\
9346 to run freely. You'll be able to step each thread independently,\n\
9347 leave it stopped or free to run as needed."),
9348 set_non_stop,
9349 show_non_stop,
9350 &setlist,
9351 &showlist);
9352
9353 numsigs = (int) GDB_SIGNAL_LAST;
9354 signal_stop = XNEWVEC (unsigned char, numsigs);
9355 signal_print = XNEWVEC (unsigned char, numsigs);
9356 signal_program = XNEWVEC (unsigned char, numsigs);
9357 signal_catch = XNEWVEC (unsigned char, numsigs);
9358 signal_pass = XNEWVEC (unsigned char, numsigs);
9359 for (i = 0; i < numsigs; i++)
9360 {
9361 signal_stop[i] = 1;
9362 signal_print[i] = 1;
9363 signal_program[i] = 1;
9364 signal_catch[i] = 0;
9365 }
9366
9367 /* Signals caused by debugger's own actions should not be given to
9368 the program afterwards.
9369
9370 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9371 explicitly specifies that it should be delivered to the target
9372 program. Typically, that would occur when a user is debugging a
9373 target monitor on a simulator: the target monitor sets a
9374 breakpoint; the simulator encounters this breakpoint and halts
9375 the simulation handing control to GDB; GDB, noting that the stop
9376 address doesn't map to any known breakpoint, returns control back
9377 to the simulator; the simulator then delivers the hardware
9378 equivalent of a GDB_SIGNAL_TRAP to the program being
9379 debugged. */
9380 signal_program[GDB_SIGNAL_TRAP] = 0;
9381 signal_program[GDB_SIGNAL_INT] = 0;
9382
9383 /* Signals that are not errors should not normally enter the debugger. */
9384 signal_stop[GDB_SIGNAL_ALRM] = 0;
9385 signal_print[GDB_SIGNAL_ALRM] = 0;
9386 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9387 signal_print[GDB_SIGNAL_VTALRM] = 0;
9388 signal_stop[GDB_SIGNAL_PROF] = 0;
9389 signal_print[GDB_SIGNAL_PROF] = 0;
9390 signal_stop[GDB_SIGNAL_CHLD] = 0;
9391 signal_print[GDB_SIGNAL_CHLD] = 0;
9392 signal_stop[GDB_SIGNAL_IO] = 0;
9393 signal_print[GDB_SIGNAL_IO] = 0;
9394 signal_stop[GDB_SIGNAL_POLL] = 0;
9395 signal_print[GDB_SIGNAL_POLL] = 0;
9396 signal_stop[GDB_SIGNAL_URG] = 0;
9397 signal_print[GDB_SIGNAL_URG] = 0;
9398 signal_stop[GDB_SIGNAL_WINCH] = 0;
9399 signal_print[GDB_SIGNAL_WINCH] = 0;
9400 signal_stop[GDB_SIGNAL_PRIO] = 0;
9401 signal_print[GDB_SIGNAL_PRIO] = 0;
9402
9403 /* These signals are used internally by user-level thread
9404 implementations. (See signal(5) on Solaris.) Like the above
9405 signals, a healthy program receives and handles them as part of
9406 its normal operation. */
9407 signal_stop[GDB_SIGNAL_LWP] = 0;
9408 signal_print[GDB_SIGNAL_LWP] = 0;
9409 signal_stop[GDB_SIGNAL_WAITING] = 0;
9410 signal_print[GDB_SIGNAL_WAITING] = 0;
9411 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9412 signal_print[GDB_SIGNAL_CANCEL] = 0;
9413 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9414 signal_print[GDB_SIGNAL_LIBRT] = 0;
9415
9416 /* Update cached state. */
9417 signal_cache_update (-1);
9418
9419 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9420 &stop_on_solib_events, _("\
9421 Set stopping for shared library events."), _("\
9422 Show stopping for shared library events."), _("\
9423 If nonzero, gdb will give control to the user when the dynamic linker\n\
9424 notifies gdb of shared library events. The most common event of interest\n\
9425 to the user would be loading/unloading of a new library."),
9426 set_stop_on_solib_events,
9427 show_stop_on_solib_events,
9428 &setlist, &showlist);
9429
9430 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9431 follow_fork_mode_kind_names,
9432 &follow_fork_mode_string, _("\
9433 Set debugger response to a program call of fork or vfork."), _("\
9434 Show debugger response to a program call of fork or vfork."), _("\
9435 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9436 parent - the original process is debugged after a fork\n\
9437 child - the new process is debugged after a fork\n\
9438 The unfollowed process will continue to run.\n\
9439 By default, the debugger will follow the parent process."),
9440 NULL,
9441 show_follow_fork_mode_string,
9442 &setlist, &showlist);
9443
9444 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9445 follow_exec_mode_names,
9446 &follow_exec_mode_string, _("\
9447 Set debugger response to a program call of exec."), _("\
9448 Show debugger response to a program call of exec."), _("\
9449 An exec call replaces the program image of a process.\n\
9450 \n\
9451 follow-exec-mode can be:\n\
9452 \n\
9453 new - the debugger creates a new inferior and rebinds the process\n\
9454 to this new inferior. The program the process was running before\n\
9455 the exec call can be restarted afterwards by restarting the original\n\
9456 inferior.\n\
9457 \n\
9458 same - the debugger keeps the process bound to the same inferior.\n\
9459 The new executable image replaces the previous executable loaded in\n\
9460 the inferior. Restarting the inferior after the exec call restarts\n\
9461 the executable the process was running after the exec call.\n\
9462 \n\
9463 By default, the debugger will use the same inferior."),
9464 NULL,
9465 show_follow_exec_mode_string,
9466 &setlist, &showlist);
9467
9468 add_setshow_enum_cmd ("scheduler-locking", class_run,
9469 scheduler_enums, &scheduler_mode, _("\
9470 Set mode for locking scheduler during execution."), _("\
9471 Show mode for locking scheduler during execution."), _("\
9472 off == no locking (threads may preempt at any time)\n\
9473 on == full locking (no thread except the current thread may run)\n\
9474 This applies to both normal execution and replay mode.\n\
9475 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9476 In this mode, other threads may run during other commands.\n\
9477 This applies to both normal execution and replay mode.\n\
9478 replay == scheduler locked in replay mode and unlocked during normal execution."),
9479 set_schedlock_func, /* traps on target vector */
9480 show_scheduler_mode,
9481 &setlist, &showlist);
9482
9483 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9484 Set mode for resuming threads of all processes."), _("\
9485 Show mode for resuming threads of all processes."), _("\
9486 When on, execution commands (such as 'continue' or 'next') resume all\n\
9487 threads of all processes. When off (which is the default), execution\n\
9488 commands only resume the threads of the current process. The set of\n\
9489 threads that are resumed is further refined by the scheduler-locking\n\
9490 mode (see help set scheduler-locking)."),
9491 NULL,
9492 show_schedule_multiple,
9493 &setlist, &showlist);
9494
9495 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9496 Set mode of the step operation."), _("\
9497 Show mode of the step operation."), _("\
9498 When set, doing a step over a function without debug line information\n\
9499 will stop at the first instruction of that function. Otherwise, the\n\
9500 function is skipped and the step command stops at a different source line."),
9501 NULL,
9502 show_step_stop_if_no_debug,
9503 &setlist, &showlist);
9504
9505 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9506 &can_use_displaced_stepping, _("\
9507 Set debugger's willingness to use displaced stepping."), _("\
9508 Show debugger's willingness to use displaced stepping."), _("\
9509 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9510 supported by the target architecture. If off, gdb will not use displaced\n\
9511 stepping to step over breakpoints, even if such is supported by the target\n\
9512 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9513 if the target architecture supports it and non-stop mode is active, but will not\n\
9514 use it in all-stop mode (see help set non-stop)."),
9515 NULL,
9516 show_can_use_displaced_stepping,
9517 &setlist, &showlist);
9518
9519 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9520 &exec_direction, _("Set direction of execution.\n\
9521 Options are 'forward' or 'reverse'."),
9522 _("Show direction of execution (forward/reverse)."),
9523 _("Tells gdb whether to execute forward or backward."),
9524 set_exec_direction_func, show_exec_direction_func,
9525 &setlist, &showlist);
9526
9527 /* Set/show detach-on-fork: user-settable mode. */
9528
9529 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9530 Set whether gdb will detach the child of a fork."), _("\
9531 Show whether gdb will detach the child of a fork."), _("\
9532 Tells gdb whether to detach the child of a fork."),
9533 NULL, NULL, &setlist, &showlist);
9534
9535 /* Set/show disable address space randomization mode. */
9536
9537 add_setshow_boolean_cmd ("disable-randomization", class_support,
9538 &disable_randomization, _("\
9539 Set disabling of debuggee's virtual address space randomization."), _("\
9540 Show disabling of debuggee's virtual address space randomization."), _("\
9541 When this mode is on (which is the default), randomization of the virtual\n\
9542 address space is disabled. Standalone programs run with the randomization\n\
9543 enabled by default on some platforms."),
9544 &set_disable_randomization,
9545 &show_disable_randomization,
9546 &setlist, &showlist);
9547
9548 /* ptid initializations */
9549 inferior_ptid = null_ptid;
9550 target_last_wait_ptid = minus_one_ptid;
9551
9552 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9553 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9554 observer_attach_thread_exit (infrun_thread_thread_exit);
9555 observer_attach_inferior_exit (infrun_inferior_exit);
9556
9557 /* Explicitly create without lookup, since that tries to create a
9558 value with a void typed value, and when we get here, gdbarch
9559 isn't initialized yet. At this point, we're quite sure there
9560 isn't another convenience variable of the same name. */
9561 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9562
9563 add_setshow_boolean_cmd ("observer", no_class,
9564 &observer_mode_1, _("\
9565 Set whether gdb controls the inferior in observer mode."), _("\
9566 Show whether gdb controls the inferior in observer mode."), _("\
9567 In observer mode, GDB can get data from the inferior, but not\n\
9568 affect its execution. Registers and memory may not be changed,\n\
9569 breakpoints may not be set, and the program cannot be interrupted\n\
9570 or signalled."),
9571 set_observer_mode,
9572 show_observer_mode,
9573 &setlist,
9574 &showlist);
9575 }
This page took 0.247799 seconds and 5 git commands to generate.