* infrun.c (_initialize_infrun): Add TARGET_SIGNAL_POLL to list of
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "thread.h"
33
34 #include <signal.h>
35
36 /* unistd.h is needed to #define X_OK */
37 #ifdef USG
38 #include <unistd.h>
39 #else
40 #include <sys/file.h>
41 #endif
42
43 /* Prototypes for local functions */
44
45 static void
46 signals_info PARAMS ((char *, int));
47
48 static void
49 handle_command PARAMS ((char *, int));
50
51 static void sig_print_info PARAMS ((enum target_signal));
52
53 static void
54 sig_print_header PARAMS ((void));
55
56 static void
57 resume_cleanups PARAMS ((int));
58
59 static int
60 hook_stop_stub PARAMS ((char *));
61
62 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
63 program. It needs to examine the jmp_buf argument and extract the PC
64 from it. The return value is non-zero on success, zero otherwise. */
65 #ifndef GET_LONGJMP_TARGET
66 #define GET_LONGJMP_TARGET(PC_ADDR) 0
67 #endif
68
69
70 /* Some machines have trampoline code that sits between function callers
71 and the actual functions themselves. If this machine doesn't have
72 such things, disable their processing. */
73 #ifndef SKIP_TRAMPOLINE_CODE
74 #define SKIP_TRAMPOLINE_CODE(pc) 0
75 #endif
76
77 /* For SVR4 shared libraries, each call goes through a small piece of
78 trampoline code in the ".init" section. IN_SOLIB_TRAMPOLINE evaluates
79 to nonzero if we are current stopped in one of these. */
80 #ifndef IN_SOLIB_TRAMPOLINE
81 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
82 #endif
83
84 /* On some systems, the PC may be left pointing at an instruction that won't
85 actually be executed. This is usually indicated by a bit in the PSW. If
86 we find ourselves in such a state, then we step the target beyond the
87 nullified instruction before returning control to the user so as to avoid
88 confusion. */
89
90 #ifndef INSTRUCTION_NULLIFIED
91 #define INSTRUCTION_NULLIFIED 0
92 #endif
93
94 /* Tables of how to react to signals; the user sets them. */
95
96 static unsigned char *signal_stop;
97 static unsigned char *signal_print;
98 static unsigned char *signal_program;
99
100 #define SET_SIGS(nsigs,sigs,flags) \
101 do { \
102 int signum = (nsigs); \
103 while (signum-- > 0) \
104 if ((sigs)[signum]) \
105 (flags)[signum] = 1; \
106 } while (0)
107
108 #define UNSET_SIGS(nsigs,sigs,flags) \
109 do { \
110 int signum = (nsigs); \
111 while (signum-- > 0) \
112 if ((sigs)[signum]) \
113 (flags)[signum] = 0; \
114 } while (0)
115
116
117 /* Command list pointer for the "stop" placeholder. */
118
119 static struct cmd_list_element *stop_command;
120
121 /* Nonzero if breakpoints are now inserted in the inferior. */
122
123 static int breakpoints_inserted;
124
125 /* Function inferior was in as of last step command. */
126
127 static struct symbol *step_start_function;
128
129 /* Nonzero if we are expecting a trace trap and should proceed from it. */
130
131 static int trap_expected;
132
133 /* Nonzero if the next time we try to continue the inferior, it will
134 step one instruction and generate a spurious trace trap.
135 This is used to compensate for a bug in HP-UX. */
136
137 static int trap_expected_after_continue;
138
139 /* Nonzero means expecting a trace trap
140 and should stop the inferior and return silently when it happens. */
141
142 int stop_after_trap;
143
144 /* Nonzero means expecting a trap and caller will handle it themselves.
145 It is used after attach, due to attaching to a process;
146 when running in the shell before the child program has been exec'd;
147 and when running some kinds of remote stuff (FIXME?). */
148
149 int stop_soon_quietly;
150
151 /* Nonzero if proceed is being used for a "finish" command or a similar
152 situation when stop_registers should be saved. */
153
154 int proceed_to_finish;
155
156 /* Save register contents here when about to pop a stack dummy frame,
157 if-and-only-if proceed_to_finish is set.
158 Thus this contains the return value from the called function (assuming
159 values are returned in a register). */
160
161 char stop_registers[REGISTER_BYTES];
162
163 /* Nonzero if program stopped due to error trying to insert breakpoints. */
164
165 static int breakpoints_failed;
166
167 /* Nonzero after stop if current stack frame should be printed. */
168
169 static int stop_print_frame;
170
171 #ifdef NO_SINGLE_STEP
172 extern int one_stepped; /* From machine dependent code */
173 extern void single_step (); /* Same. */
174 #endif /* NO_SINGLE_STEP */
175
176 \f
177 /* Things to clean up if we QUIT out of resume (). */
178 /* ARGSUSED */
179 static void
180 resume_cleanups (arg)
181 int arg;
182 {
183 normal_stop ();
184 }
185
186 /* Resume the inferior, but allow a QUIT. This is useful if the user
187 wants to interrupt some lengthy single-stepping operation
188 (for child processes, the SIGINT goes to the inferior, and so
189 we get a SIGINT random_signal, but for remote debugging and perhaps
190 other targets, that's not true).
191
192 STEP nonzero if we should step (zero to continue instead).
193 SIG is the signal to give the inferior (zero for none). */
194 void
195 resume (step, sig)
196 int step;
197 enum target_signal sig;
198 {
199 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
200 QUIT;
201
202 #ifdef CANNOT_STEP_BREAKPOINT
203 /* Most targets can step a breakpoint instruction, thus executing it
204 normally. But if this one cannot, just continue and we will hit
205 it anyway. */
206 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
207 step = 0;
208 #endif
209
210 #ifdef NO_SINGLE_STEP
211 if (step) {
212 single_step(sig); /* Do it the hard way, w/temp breakpoints */
213 step = 0; /* ...and don't ask hardware to do it. */
214 }
215 #endif
216
217 /* Handle any optimized stores to the inferior NOW... */
218 #ifdef DO_DEFERRED_STORES
219 DO_DEFERRED_STORES;
220 #endif
221
222 /* Install inferior's terminal modes. */
223 target_terminal_inferior ();
224
225 target_resume (-1, step, sig);
226 discard_cleanups (old_cleanups);
227 }
228
229 \f
230 /* Clear out all variables saying what to do when inferior is continued.
231 First do this, then set the ones you want, then call `proceed'. */
232
233 void
234 clear_proceed_status ()
235 {
236 trap_expected = 0;
237 step_range_start = 0;
238 step_range_end = 0;
239 step_frame_address = 0;
240 step_over_calls = -1;
241 stop_after_trap = 0;
242 stop_soon_quietly = 0;
243 proceed_to_finish = 0;
244 breakpoint_proceeded = 1; /* We're about to proceed... */
245
246 /* Discard any remaining commands or status from previous stop. */
247 bpstat_clear (&stop_bpstat);
248 }
249
250 /* Basic routine for continuing the program in various fashions.
251
252 ADDR is the address to resume at, or -1 for resume where stopped.
253 SIGGNAL is the signal to give it, or 0 for none,
254 or -1 for act according to how it stopped.
255 STEP is nonzero if should trap after one instruction.
256 -1 means return after that and print nothing.
257 You should probably set various step_... variables
258 before calling here, if you are stepping.
259
260 You should call clear_proceed_status before calling proceed. */
261
262 void
263 proceed (addr, siggnal, step)
264 CORE_ADDR addr;
265 enum target_signal siggnal;
266 int step;
267 {
268 int oneproc = 0;
269
270 if (step > 0)
271 step_start_function = find_pc_function (read_pc ());
272 if (step < 0)
273 stop_after_trap = 1;
274
275 if (addr == (CORE_ADDR)-1)
276 {
277 /* If there is a breakpoint at the address we will resume at,
278 step one instruction before inserting breakpoints
279 so that we do not stop right away. */
280
281 if (breakpoint_here_p (read_pc ()))
282 oneproc = 1;
283 }
284 else
285 write_pc (addr);
286
287 if (trap_expected_after_continue)
288 {
289 /* If (step == 0), a trap will be automatically generated after
290 the first instruction is executed. Force step one
291 instruction to clear this condition. This should not occur
292 if step is nonzero, but it is harmless in that case. */
293 oneproc = 1;
294 trap_expected_after_continue = 0;
295 }
296
297 if (oneproc)
298 /* We will get a trace trap after one instruction.
299 Continue it automatically and insert breakpoints then. */
300 trap_expected = 1;
301 else
302 {
303 int temp = insert_breakpoints ();
304 if (temp)
305 {
306 print_sys_errmsg ("ptrace", temp);
307 error ("Cannot insert breakpoints.\n\
308 The same program may be running in another process.");
309 }
310 breakpoints_inserted = 1;
311 }
312
313 if (siggnal != TARGET_SIGNAL_DEFAULT)
314 stop_signal = siggnal;
315 /* If this signal should not be seen by program,
316 give it zero. Used for debugging signals. */
317 else if (!signal_program[stop_signal])
318 stop_signal = TARGET_SIGNAL_0;
319
320 /* Resume inferior. */
321 resume (oneproc || step || bpstat_should_step (), stop_signal);
322
323 /* Wait for it to stop (if not standalone)
324 and in any case decode why it stopped, and act accordingly. */
325
326 wait_for_inferior ();
327 normal_stop ();
328 }
329
330 /* Record the pc and sp of the program the last time it stopped.
331 These are just used internally by wait_for_inferior, but need
332 to be preserved over calls to it and cleared when the inferior
333 is started. */
334 static CORE_ADDR prev_pc;
335 static CORE_ADDR prev_sp;
336 static CORE_ADDR prev_func_start;
337 static char *prev_func_name;
338
339 \f
340 /* Start remote-debugging of a machine over a serial link. */
341
342 void
343 start_remote ()
344 {
345 init_wait_for_inferior ();
346 clear_proceed_status ();
347 stop_soon_quietly = 1;
348 trap_expected = 0;
349 wait_for_inferior ();
350 normal_stop ();
351 }
352
353 /* Initialize static vars when a new inferior begins. */
354
355 void
356 init_wait_for_inferior ()
357 {
358 /* These are meaningless until the first time through wait_for_inferior. */
359 prev_pc = 0;
360 prev_sp = 0;
361 prev_func_start = 0;
362 prev_func_name = NULL;
363
364 trap_expected_after_continue = 0;
365 breakpoints_inserted = 0;
366 breakpoint_init_inferior ();
367
368 /* Don't confuse first call to proceed(). */
369 stop_signal = TARGET_SIGNAL_0;
370 }
371
372 static void
373 delete_breakpoint_current_contents (arg)
374 PTR arg;
375 {
376 struct breakpoint **breakpointp = (struct breakpoint **)arg;
377 if (*breakpointp != NULL)
378 delete_breakpoint (*breakpointp);
379 }
380 \f
381 /* Wait for control to return from inferior to debugger.
382 If inferior gets a signal, we may decide to start it up again
383 instead of returning. That is why there is a loop in this function.
384 When this function actually returns it means the inferior
385 should be left stopped and GDB should read more commands. */
386
387 void
388 wait_for_inferior ()
389 {
390 struct cleanup *old_cleanups;
391 struct target_waitstatus w;
392 int another_trap;
393 int random_signal;
394 CORE_ADDR stop_sp = 0;
395 CORE_ADDR stop_func_start;
396 CORE_ADDR stop_func_end;
397 char *stop_func_name;
398 CORE_ADDR prologue_pc = 0, tmp;
399 struct symtab_and_line sal;
400 int remove_breakpoints_on_following_step = 0;
401 int current_line;
402 struct symtab *current_symtab;
403 int handling_longjmp = 0; /* FIXME */
404 struct breakpoint *step_resume_breakpoint = NULL;
405 int pid;
406
407 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
408 &step_resume_breakpoint);
409 sal = find_pc_line(prev_pc, 0);
410 current_line = sal.line;
411 current_symtab = sal.symtab;
412
413 /* Are we stepping? */
414 #define CURRENTLY_STEPPING() ((step_resume_breakpoint == NULL \
415 && !handling_longjmp \
416 && (step_range_end \
417 || trap_expected)) \
418 || bpstat_should_step ())
419
420 while (1)
421 {
422 /* Clean up saved state that will become invalid. */
423 flush_cached_frames ();
424 registers_changed ();
425
426 pid = target_wait (-1, &w);
427
428 switch (w.kind)
429 {
430 case TARGET_WAITKIND_LOADED:
431 /* Ignore it gracefully. */
432 if (breakpoints_inserted)
433 {
434 mark_breakpoints_out ();
435 insert_breakpoints ();
436 }
437 resume (0, TARGET_SIGNAL_0);
438 continue;
439
440 case TARGET_WAITKIND_SPURIOUS:
441 resume (0, TARGET_SIGNAL_0);
442 continue;
443
444 case TARGET_WAITKIND_EXITED:
445 target_terminal_ours (); /* Must do this before mourn anyway */
446 if (w.value.integer)
447 printf_filtered ("\nProgram exited with code 0%o.\n",
448 (unsigned int)w.value.integer);
449 else
450 if (!batch_mode())
451 printf_filtered ("\nProgram exited normally.\n");
452 gdb_flush (gdb_stdout);
453 target_mourn_inferior ();
454 #ifdef NO_SINGLE_STEP
455 one_stepped = 0;
456 #endif
457 stop_print_frame = 0;
458 goto stop_stepping;
459
460 case TARGET_WAITKIND_SIGNALLED:
461 stop_print_frame = 0;
462 stop_signal = w.value.sig;
463 target_terminal_ours (); /* Must do this before mourn anyway */
464 target_kill (); /* kill mourns as well */
465 printf_filtered ("\nProgram terminated with signal %s, %s.\n",
466 target_signal_to_name (stop_signal),
467 target_signal_to_string (stop_signal));
468
469 printf_filtered ("The program no longer exists.\n");
470 gdb_flush (gdb_stdout);
471 #ifdef NO_SINGLE_STEP
472 one_stepped = 0;
473 #endif
474 goto stop_stepping;
475
476 case TARGET_WAITKIND_STOPPED:
477 /* This is the only case in which we keep going; the above cases
478 end in a continue or goto. */
479 break;
480 }
481
482 stop_signal = w.value.sig;
483
484 if (pid != inferior_pid)
485 {
486 int save_pid = inferior_pid;
487
488 inferior_pid = pid; /* Setup for target memory/regs */
489 registers_changed ();
490 stop_pc = read_pc ();
491 inferior_pid = save_pid;
492 registers_changed ();
493 }
494 else
495 stop_pc = read_pc ();
496
497 if (stop_signal == TARGET_SIGNAL_TRAP
498 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
499 {
500 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid))
501 {
502 /* Saw a breakpoint, but it was hit by the wrong thread. Just continue. */
503 if (breakpoints_inserted)
504 {
505 if (pid != inferior_pid)
506 {
507 int save_pid = inferior_pid;
508
509 inferior_pid = pid;
510 registers_changed ();
511 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
512 inferior_pid = save_pid;
513 registers_changed ();
514 }
515 else
516 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
517
518 remove_breakpoints ();
519 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
520 /* FIXME: What if a signal arrives instead of the single-step
521 happening? */
522 target_wait (pid, &w);
523 insert_breakpoints ();
524 }
525 target_resume (-1, 0, TARGET_SIGNAL_0);
526 continue;
527 }
528 else
529 if (pid != inferior_pid)
530 goto switch_thread;
531 }
532
533 if (pid != inferior_pid)
534 {
535 int printed = 0;
536
537 if (!in_thread_list (pid))
538 {
539 fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid));
540 add_thread (pid);
541
542 target_resume (-1, 0, TARGET_SIGNAL_0);
543 continue;
544 }
545 else
546 {
547 if (signal_print[stop_signal])
548 {
549 char *signame;
550
551 printed = 1;
552 target_terminal_ours_for_output ();
553 printf_filtered ("\nProgram received signal %s, %s.\n",
554 target_signal_to_name (stop_signal),
555 target_signal_to_string (stop_signal));
556 gdb_flush (gdb_stdout);
557 }
558
559 if (stop_signal == TARGET_SIGNAL_TRAP
560 || signal_stop[stop_signal])
561 {
562 switch_thread:
563 inferior_pid = pid;
564 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
565
566 flush_cached_frames ();
567 registers_changed ();
568 trap_expected = 0;
569 if (step_resume_breakpoint)
570 {
571 delete_breakpoint (step_resume_breakpoint);
572 step_resume_breakpoint = NULL;
573 }
574 prev_pc = 0;
575 prev_sp = 0;
576 prev_func_name = NULL;
577 step_range_start = 0;
578 step_range_end = 0;
579 step_frame_address = 0;
580 handling_longjmp = 0;
581 another_trap = 0;
582 }
583 else
584 {
585 if (printed)
586 target_terminal_inferior ();
587
588 /* Clear the signal if it should not be passed. */
589 if (signal_program[stop_signal] == 0)
590 stop_signal = TARGET_SIGNAL_0;
591
592 target_resume (pid, 0, stop_signal);
593 continue;
594 }
595 }
596 }
597
598 #ifdef NO_SINGLE_STEP
599 if (one_stepped)
600 single_step (0); /* This actually cleans up the ss */
601 #endif /* NO_SINGLE_STEP */
602
603 /* If PC is pointing at a nullified instruction, then step beyond it so that
604 the user won't be confused when GDB appears to be ready to execute it. */
605
606 if (INSTRUCTION_NULLIFIED)
607 {
608 resume (1, 0);
609 continue;
610 }
611
612 set_current_frame ( create_new_frame (read_fp (), stop_pc));
613
614 stop_frame_address = FRAME_FP (get_current_frame ());
615 stop_sp = read_sp ();
616 stop_func_start = 0;
617 stop_func_name = 0;
618 /* Don't care about return value; stop_func_start and stop_func_name
619 will both be 0 if it doesn't work. */
620 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
621 &stop_func_end);
622 stop_func_start += FUNCTION_START_OFFSET;
623 another_trap = 0;
624 bpstat_clear (&stop_bpstat);
625 stop_step = 0;
626 stop_stack_dummy = 0;
627 stop_print_frame = 1;
628 random_signal = 0;
629 stopped_by_random_signal = 0;
630 breakpoints_failed = 0;
631
632 /* Look at the cause of the stop, and decide what to do.
633 The alternatives are:
634 1) break; to really stop and return to the debugger,
635 2) drop through to start up again
636 (set another_trap to 1 to single step once)
637 3) set random_signal to 1, and the decision between 1 and 2
638 will be made according to the signal handling tables. */
639
640 /* First, distinguish signals caused by the debugger from signals
641 that have to do with the program's own actions.
642 Note that breakpoint insns may cause SIGTRAP or SIGILL
643 or SIGEMT, depending on the operating system version.
644 Here we detect when a SIGILL or SIGEMT is really a breakpoint
645 and change it to SIGTRAP. */
646
647 if (stop_signal == TARGET_SIGNAL_TRAP
648 || (breakpoints_inserted &&
649 (stop_signal == TARGET_SIGNAL_ILL
650 || stop_signal == TARGET_SIGNAL_EMT
651 ))
652 || stop_soon_quietly)
653 {
654 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
655 {
656 stop_print_frame = 0;
657 break;
658 }
659 if (stop_soon_quietly)
660 break;
661
662 /* Don't even think about breakpoints
663 if just proceeded over a breakpoint.
664
665 However, if we are trying to proceed over a breakpoint
666 and end up in sigtramp, then step_resume_breakpoint
667 will be set and we should check whether we've hit the
668 step breakpoint. */
669 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
670 && step_resume_breakpoint == NULL)
671 bpstat_clear (&stop_bpstat);
672 else
673 {
674 /* See if there is a breakpoint at the current PC. */
675 stop_bpstat = bpstat_stop_status
676 (&stop_pc, stop_frame_address,
677 #if DECR_PC_AFTER_BREAK
678 /* Notice the case of stepping through a jump
679 that lands just after a breakpoint.
680 Don't confuse that with hitting the breakpoint.
681 What we check for is that 1) stepping is going on
682 and 2) the pc before the last insn does not match
683 the address of the breakpoint before the current pc. */
684 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
685 && CURRENTLY_STEPPING ())
686 #else /* DECR_PC_AFTER_BREAK zero */
687 0
688 #endif /* DECR_PC_AFTER_BREAK zero */
689 );
690 /* Following in case break condition called a
691 function. */
692 stop_print_frame = 1;
693 }
694
695 if (stop_signal == TARGET_SIGNAL_TRAP)
696 random_signal
697 = !(bpstat_explains_signal (stop_bpstat)
698 || trap_expected
699 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
700 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
701 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
702 || (step_range_end && step_resume_breakpoint == NULL));
703 else
704 {
705 random_signal
706 = !(bpstat_explains_signal (stop_bpstat)
707 /* End of a stack dummy. Some systems (e.g. Sony
708 news) give another signal besides SIGTRAP,
709 so check here as well as above. */
710 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
711 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
712 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
713 );
714 if (!random_signal)
715 stop_signal = TARGET_SIGNAL_TRAP;
716 }
717 }
718 else
719 random_signal = 1;
720
721 /* For the program's own signals, act according to
722 the signal handling tables. */
723
724 if (random_signal)
725 {
726 /* Signal not for debugging purposes. */
727 int printed = 0;
728
729 stopped_by_random_signal = 1;
730
731 if (signal_print[stop_signal])
732 {
733 char *signame;
734 printed = 1;
735 target_terminal_ours_for_output ();
736 printf_filtered ("\nProgram received signal %s, %s.\n",
737 target_signal_to_name (stop_signal),
738 target_signal_to_string (stop_signal));
739 gdb_flush (gdb_stdout);
740 }
741 if (signal_stop[stop_signal])
742 break;
743 /* If not going to stop, give terminal back
744 if we took it away. */
745 else if (printed)
746 target_terminal_inferior ();
747
748 /* Clear the signal if it should not be passed. */
749 if (signal_program[stop_signal] == 0)
750 stop_signal = TARGET_SIGNAL_0;
751
752 /* I'm not sure whether this needs to be check_sigtramp2 or
753 whether it could/should be keep_going. */
754 goto check_sigtramp2;
755 }
756
757 /* Handle cases caused by hitting a breakpoint. */
758 {
759 CORE_ADDR jmp_buf_pc;
760 struct bpstat_what what;
761
762 what = bpstat_what (stop_bpstat);
763
764 if (what.call_dummy)
765 {
766 stop_stack_dummy = 1;
767 #ifdef HP_OS_BUG
768 trap_expected_after_continue = 1;
769 #endif
770 }
771
772 switch (what.main_action)
773 {
774 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
775 /* If we hit the breakpoint at longjmp, disable it for the
776 duration of this command. Then, install a temporary
777 breakpoint at the target of the jmp_buf. */
778 disable_longjmp_breakpoint();
779 remove_breakpoints ();
780 breakpoints_inserted = 0;
781 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
782
783 /* Need to blow away step-resume breakpoint, as it
784 interferes with us */
785 if (step_resume_breakpoint != NULL)
786 {
787 delete_breakpoint (step_resume_breakpoint);
788 step_resume_breakpoint = NULL;
789 what.step_resume = 0;
790 }
791
792 #if 0
793 /* FIXME - Need to implement nested temporary breakpoints */
794 if (step_over_calls > 0)
795 set_longjmp_resume_breakpoint(jmp_buf_pc,
796 get_current_frame());
797 else
798 #endif /* 0 */
799 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
800 handling_longjmp = 1; /* FIXME */
801 goto keep_going;
802
803 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
804 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
805 remove_breakpoints ();
806 breakpoints_inserted = 0;
807 #if 0
808 /* FIXME - Need to implement nested temporary breakpoints */
809 if (step_over_calls
810 && (stop_frame_address
811 INNER_THAN step_frame_address))
812 {
813 another_trap = 1;
814 goto keep_going;
815 }
816 #endif /* 0 */
817 disable_longjmp_breakpoint();
818 handling_longjmp = 0; /* FIXME */
819 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
820 break;
821 /* else fallthrough */
822
823 case BPSTAT_WHAT_SINGLE:
824 if (breakpoints_inserted)
825 remove_breakpoints ();
826 breakpoints_inserted = 0;
827 another_trap = 1;
828 /* Still need to check other stuff, at least the case
829 where we are stepping and step out of the right range. */
830 break;
831
832 case BPSTAT_WHAT_STOP_NOISY:
833 stop_print_frame = 1;
834 /* We are about to nuke the step_resume_breakpoint via the
835 cleanup chain, so no need to worry about it here. */
836 goto stop_stepping;
837
838 case BPSTAT_WHAT_STOP_SILENT:
839 stop_print_frame = 0;
840 /* We are about to nuke the step_resume_breakpoint via the
841 cleanup chain, so no need to worry about it here. */
842 goto stop_stepping;
843
844 case BPSTAT_WHAT_LAST:
845 /* Not a real code, but listed here to shut up gcc -Wall. */
846
847 case BPSTAT_WHAT_KEEP_CHECKING:
848 break;
849 }
850
851 if (what.step_resume)
852 {
853 delete_breakpoint (step_resume_breakpoint);
854 step_resume_breakpoint = NULL;
855
856 /* If were waiting for a trap, hitting the step_resume_break
857 doesn't count as getting it. */
858 if (trap_expected)
859 another_trap = 1;
860 }
861 }
862
863 /* We come here if we hit a breakpoint but should not
864 stop for it. Possibly we also were stepping
865 and should stop for that. So fall through and
866 test for stepping. But, if not stepping,
867 do not stop. */
868
869 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
870 /* This is the old way of detecting the end of the stack dummy.
871 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
872 handled above. As soon as we can test it on all of them, all
873 architectures should define it. */
874
875 /* If this is the breakpoint at the end of a stack dummy,
876 just stop silently, unless the user was doing an si/ni, in which
877 case she'd better know what she's doing. */
878
879 if (PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
880 && !step_range_end)
881 {
882 stop_print_frame = 0;
883 stop_stack_dummy = 1;
884 #ifdef HP_OS_BUG
885 trap_expected_after_continue = 1;
886 #endif
887 break;
888 }
889 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
890
891 if (step_resume_breakpoint)
892 /* Having a step-resume breakpoint overrides anything
893 else having to do with stepping commands until
894 that breakpoint is reached. */
895 /* I suspect this could/should be keep_going, because if the
896 check_sigtramp2 check succeeds, then it will put in another
897 step_resume_breakpoint, and we aren't (yet) prepared to nest
898 them. */
899 goto check_sigtramp2;
900
901 if (step_range_end == 0)
902 /* Likewise if we aren't even stepping. */
903 /* I'm not sure whether this needs to be check_sigtramp2 or
904 whether it could/should be keep_going. */
905 goto check_sigtramp2;
906
907 /* If stepping through a line, keep going if still within it. */
908 if (stop_pc >= step_range_start
909 && stop_pc < step_range_end
910 /* The step range might include the start of the
911 function, so if we are at the start of the
912 step range and either the stack or frame pointers
913 just changed, we've stepped outside */
914 && !(stop_pc == step_range_start
915 && stop_frame_address
916 && (stop_sp INNER_THAN prev_sp
917 || stop_frame_address != step_frame_address)))
918 {
919 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
920 So definately need to check for sigtramp here. */
921 goto check_sigtramp2;
922 }
923
924 /* We stepped out of the stepping range. See if that was due
925 to a subroutine call that we should proceed to the end of. */
926
927 /* Did we just take a signal? */
928 if (IN_SIGTRAMP (stop_pc, stop_func_name)
929 && !IN_SIGTRAMP (prev_pc, prev_func_name))
930 {
931 /* This code is needed at least in the following case:
932 The user types "next" and then a signal arrives (before
933 the "next" is done). */
934 /* We've just taken a signal; go until we are back to
935 the point where we took it and one more. */
936 {
937 struct symtab_and_line sr_sal;
938
939 sr_sal.pc = prev_pc;
940 sr_sal.symtab = NULL;
941 sr_sal.line = 0;
942 step_resume_breakpoint =
943 set_momentary_breakpoint (sr_sal, get_current_frame (),
944 bp_step_resume);
945 if (breakpoints_inserted)
946 insert_breakpoints ();
947 }
948
949 /* If this is stepi or nexti, make sure that the stepping range
950 gets us past that instruction. */
951 if (step_range_end == 1)
952 /* FIXME: Does this run afoul of the code below which, if
953 we step into the middle of a line, resets the stepping
954 range? */
955 step_range_end = (step_range_start = prev_pc) + 1;
956
957 remove_breakpoints_on_following_step = 1;
958 goto keep_going;
959 }
960
961 if (stop_func_start)
962 {
963 /* Do this after the IN_SIGTRAMP check; it might give
964 an error. */
965 prologue_pc = stop_func_start;
966 SKIP_PROLOGUE (prologue_pc);
967 }
968
969 if ((/* Might be a non-recursive call. If the symbols are missing
970 enough that stop_func_start == prev_func_start even though
971 they are really two functions, we will treat some calls as
972 jumps. */
973 stop_func_start != prev_func_start
974
975 /* Might be a recursive call if either we have a prologue
976 or the call instruction itself saves the PC on the stack. */
977 || prologue_pc != stop_func_start
978 || stop_sp != prev_sp)
979 && (/* PC is completely out of bounds of any known objfiles. Treat
980 like a subroutine call. */
981 ! stop_func_start
982
983 /* If we do a call, we will be at the start of a function... */
984 || stop_pc == stop_func_start
985
986 /* ...except on the Alpha with -O (and also Irix 5 and
987 perhaps others), in which we might call the address
988 after the load of gp. Since prologues don't contain
989 calls, we can't return to within one, and we don't
990 jump back into them, so this check is OK. */
991
992 || stop_pc < prologue_pc
993
994 /* If we end up in certain places, it means we did a subroutine
995 call. I'm not completely sure this is necessary now that we
996 have the above checks with stop_func_start (and now that
997 find_pc_partial_function is pickier). */
998 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name)
999
1000 /* If none of the above apply, it is a jump within a function,
1001 or a return from a subroutine. The other case is longjmp,
1002 which can no longer happen here as long as the
1003 handling_longjmp stuff is working. */
1004 ))
1005 {
1006 /* It's a subroutine call. */
1007
1008 if (step_over_calls == 0)
1009 {
1010 /* I presume that step_over_calls is only 0 when we're
1011 supposed to be stepping at the assembly language level
1012 ("stepi"). Just stop. */
1013 stop_step = 1;
1014 break;
1015 }
1016
1017 if (step_over_calls > 0)
1018 /* We're doing a "next". */
1019 goto step_over_function;
1020
1021 /* If we are in a function call trampoline (a stub between
1022 the calling routine and the real function), locate the real
1023 function. That's what tells us (a) whether we want to step
1024 into it at all, and (b) what prologue we want to run to
1025 the end of, if we do step into it. */
1026 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1027 if (tmp != 0)
1028 stop_func_start = tmp;
1029
1030 /* If we have line number information for the function we
1031 are thinking of stepping into, step into it.
1032
1033 If there are several symtabs at that PC (e.g. with include
1034 files), just want to know whether *any* of them have line
1035 numbers. find_pc_line handles this. */
1036 {
1037 struct symtab_and_line tmp_sal;
1038
1039 tmp_sal = find_pc_line (stop_func_start, 0);
1040 if (tmp_sal.line != 0)
1041 goto step_into_function;
1042 }
1043
1044 step_over_function:
1045 /* A subroutine call has happened. */
1046 {
1047 /* Set a special breakpoint after the return */
1048 struct symtab_and_line sr_sal;
1049 sr_sal.pc =
1050 ADDR_BITS_REMOVE
1051 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1052 sr_sal.symtab = NULL;
1053 sr_sal.line = 0;
1054 step_resume_breakpoint =
1055 set_momentary_breakpoint (sr_sal, get_current_frame (),
1056 bp_step_resume);
1057 if (breakpoints_inserted)
1058 insert_breakpoints ();
1059 }
1060 goto keep_going;
1061
1062 step_into_function:
1063 /* Subroutine call with source code we should not step over.
1064 Do step to the first line of code in it. */
1065 SKIP_PROLOGUE (stop_func_start);
1066 sal = find_pc_line (stop_func_start, 0);
1067 /* Use the step_resume_break to step until
1068 the end of the prologue, even if that involves jumps
1069 (as it seems to on the vax under 4.2). */
1070 /* If the prologue ends in the middle of a source line,
1071 continue to the end of that source line (if it is still
1072 within the function). Otherwise, just go to end of prologue. */
1073 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1074 /* no, don't either. It skips any code that's
1075 legitimately on the first line. */
1076 #else
1077 if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end)
1078 stop_func_start = sal.end;
1079 #endif
1080
1081 if (stop_func_start == stop_pc)
1082 {
1083 /* We are already there: stop now. */
1084 stop_step = 1;
1085 break;
1086 }
1087 else
1088 /* Put the step-breakpoint there and go until there. */
1089 {
1090 struct symtab_and_line sr_sal;
1091
1092 sr_sal.pc = stop_func_start;
1093 sr_sal.symtab = NULL;
1094 sr_sal.line = 0;
1095 /* Do not specify what the fp should be when we stop
1096 since on some machines the prologue
1097 is where the new fp value is established. */
1098 step_resume_breakpoint =
1099 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1100 if (breakpoints_inserted)
1101 insert_breakpoints ();
1102
1103 /* And make sure stepping stops right away then. */
1104 step_range_end = step_range_start;
1105 }
1106 goto keep_going;
1107 }
1108
1109 /* We've wandered out of the step range. */
1110
1111 sal = find_pc_line(stop_pc, 0);
1112
1113 if (step_range_end == 1)
1114 {
1115 /* It is stepi or nexti. We always want to stop stepping after
1116 one instruction. */
1117 stop_step = 1;
1118 break;
1119 }
1120
1121 if (sal.line == 0)
1122 {
1123 /* We have no line number information. That means to stop
1124 stepping (does this always happen right after one instruction,
1125 when we do "s" in a function with no line numbers,
1126 or can this happen as a result of a return or longjmp?). */
1127 stop_step = 1;
1128 break;
1129 }
1130
1131 if (stop_pc == sal.pc
1132 && (current_line != sal.line || current_symtab != sal.symtab))
1133 {
1134 /* We are at the start of a different line. So stop. Note that
1135 we don't stop if we step into the middle of a different line.
1136 That is said to make things like for (;;) statements work
1137 better. */
1138 stop_step = 1;
1139 break;
1140 }
1141
1142 /* We aren't done stepping.
1143
1144 Optimize by setting the stepping range to the line.
1145 (We might not be in the original line, but if we entered a
1146 new line in mid-statement, we continue stepping. This makes
1147 things like for(;;) statements work better.) */
1148
1149 if (stop_func_end && sal.end >= stop_func_end)
1150 {
1151 /* If this is the last line of the function, don't keep stepping
1152 (it would probably step us out of the function).
1153 This is particularly necessary for a one-line function,
1154 in which after skipping the prologue we better stop even though
1155 we will be in mid-line. */
1156 stop_step = 1;
1157 break;
1158 }
1159 step_range_start = sal.pc;
1160 step_range_end = sal.end;
1161 goto keep_going;
1162
1163 check_sigtramp2:
1164 if (trap_expected
1165 && IN_SIGTRAMP (stop_pc, stop_func_name)
1166 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1167 {
1168 /* What has happened here is that we have just stepped the inferior
1169 with a signal (because it is a signal which shouldn't make
1170 us stop), thus stepping into sigtramp.
1171
1172 So we need to set a step_resume_break_address breakpoint
1173 and continue until we hit it, and then step. FIXME: This should
1174 be more enduring than a step_resume breakpoint; we should know
1175 that we will later need to keep going rather than re-hitting
1176 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1177 it says "exceedingly difficult"). */
1178 struct symtab_and_line sr_sal;
1179
1180 sr_sal.pc = prev_pc;
1181 sr_sal.symtab = NULL;
1182 sr_sal.line = 0;
1183 step_resume_breakpoint =
1184 set_momentary_breakpoint (sr_sal, get_current_frame (),
1185 bp_step_resume);
1186 if (breakpoints_inserted)
1187 insert_breakpoints ();
1188
1189 remove_breakpoints_on_following_step = 1;
1190 another_trap = 1;
1191 }
1192
1193 keep_going:
1194 /* Come to this label when you need to resume the inferior.
1195 It's really much cleaner to do a goto than a maze of if-else
1196 conditions. */
1197
1198 /* Save the pc before execution, to compare with pc after stop. */
1199 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1200 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1201 BREAK is defined, the
1202 original pc would not have
1203 been at the start of a
1204 function. */
1205 prev_func_name = stop_func_name;
1206 prev_sp = stop_sp;
1207
1208 /* If we did not do break;, it means we should keep
1209 running the inferior and not return to debugger. */
1210
1211 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
1212 {
1213 /* We took a signal (which we are supposed to pass through to
1214 the inferior, else we'd have done a break above) and we
1215 haven't yet gotten our trap. Simply continue. */
1216 resume (CURRENTLY_STEPPING (), stop_signal);
1217 }
1218 else
1219 {
1220 /* Either the trap was not expected, but we are continuing
1221 anyway (the user asked that this signal be passed to the
1222 child)
1223 -- or --
1224 The signal was SIGTRAP, e.g. it was our signal, but we
1225 decided we should resume from it.
1226
1227 We're going to run this baby now!
1228
1229 Insert breakpoints now, unless we are trying
1230 to one-proceed past a breakpoint. */
1231 /* If we've just finished a special step resume and we don't
1232 want to hit a breakpoint, pull em out. */
1233 if (step_resume_breakpoint == NULL &&
1234 remove_breakpoints_on_following_step)
1235 {
1236 remove_breakpoints_on_following_step = 0;
1237 remove_breakpoints ();
1238 breakpoints_inserted = 0;
1239 }
1240 else if (!breakpoints_inserted &&
1241 (step_resume_breakpoint != NULL || !another_trap))
1242 {
1243 breakpoints_failed = insert_breakpoints ();
1244 if (breakpoints_failed)
1245 break;
1246 breakpoints_inserted = 1;
1247 }
1248
1249 trap_expected = another_trap;
1250
1251 if (stop_signal == TARGET_SIGNAL_TRAP)
1252 stop_signal = TARGET_SIGNAL_0;
1253
1254 #ifdef SHIFT_INST_REGS
1255 /* I'm not sure when this following segment applies. I do know, now,
1256 that we shouldn't rewrite the regs when we were stopped by a
1257 random signal from the inferior process. */
1258 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
1259 (this is only used on the 88k). */
1260
1261 if (!bpstat_explains_signal (stop_bpstat)
1262 && (stop_signal != TARGET_SIGNAL_CHLD)
1263 && !stopped_by_random_signal)
1264 SHIFT_INST_REGS();
1265 #endif /* SHIFT_INST_REGS */
1266
1267 resume (CURRENTLY_STEPPING (), stop_signal);
1268 }
1269 }
1270
1271 stop_stepping:
1272 if (target_has_execution)
1273 {
1274 /* Assuming the inferior still exists, set these up for next
1275 time, just like we did above if we didn't break out of the
1276 loop. */
1277 prev_pc = read_pc ();
1278 prev_func_start = stop_func_start;
1279 prev_func_name = stop_func_name;
1280 prev_sp = stop_sp;
1281 }
1282 do_cleanups (old_cleanups);
1283 }
1284 \f
1285 /* Here to return control to GDB when the inferior stops for real.
1286 Print appropriate messages, remove breakpoints, give terminal our modes.
1287
1288 STOP_PRINT_FRAME nonzero means print the executing frame
1289 (pc, function, args, file, line number and line text).
1290 BREAKPOINTS_FAILED nonzero means stop was due to error
1291 attempting to insert breakpoints. */
1292
1293 void
1294 normal_stop ()
1295 {
1296 /* Make sure that the current_frame's pc is correct. This
1297 is a correction for setting up the frame info before doing
1298 DECR_PC_AFTER_BREAK */
1299 if (target_has_execution && get_current_frame())
1300 (get_current_frame ())->pc = read_pc ();
1301
1302 if (breakpoints_failed)
1303 {
1304 target_terminal_ours_for_output ();
1305 print_sys_errmsg ("ptrace", breakpoints_failed);
1306 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1307 The same program may be running in another process.\n");
1308 }
1309
1310 if (target_has_execution && breakpoints_inserted)
1311 if (remove_breakpoints ())
1312 {
1313 target_terminal_ours_for_output ();
1314 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1315 It might be running in another process.\n\
1316 Further execution is probably impossible.\n");
1317 }
1318
1319 breakpoints_inserted = 0;
1320
1321 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1322 Delete any breakpoint that is to be deleted at the next stop. */
1323
1324 breakpoint_auto_delete (stop_bpstat);
1325
1326 /* If an auto-display called a function and that got a signal,
1327 delete that auto-display to avoid an infinite recursion. */
1328
1329 if (stopped_by_random_signal)
1330 disable_current_display ();
1331
1332 if (step_multi && stop_step)
1333 return;
1334
1335 target_terminal_ours ();
1336
1337 /* Look up the hook_stop and run it if it exists. */
1338
1339 if (stop_command->hook)
1340 {
1341 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1342 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1343 }
1344
1345 if (!target_has_stack)
1346 return;
1347
1348 /* Select innermost stack frame except on return from a stack dummy routine,
1349 or if the program has exited. Print it without a level number if
1350 we have changed functions or hit a breakpoint. Print source line
1351 if we have one. */
1352 if (!stop_stack_dummy)
1353 {
1354 select_frame (get_current_frame (), 0);
1355
1356 if (stop_print_frame)
1357 {
1358 int source_only;
1359
1360 source_only = bpstat_print (stop_bpstat);
1361 source_only = source_only ||
1362 ( stop_step
1363 && step_frame_address == stop_frame_address
1364 && step_start_function == find_pc_function (stop_pc));
1365
1366 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1367
1368 /* Display the auto-display expressions. */
1369 do_displays ();
1370 }
1371 }
1372
1373 /* Save the function value return registers, if we care.
1374 We might be about to restore their previous contents. */
1375 if (proceed_to_finish)
1376 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1377
1378 if (stop_stack_dummy)
1379 {
1380 /* Pop the empty frame that contains the stack dummy.
1381 POP_FRAME ends with a setting of the current frame, so we
1382 can use that next. */
1383 POP_FRAME;
1384 select_frame (get_current_frame (), 0);
1385 }
1386 }
1387
1388 static int
1389 hook_stop_stub (cmd)
1390 char *cmd;
1391 {
1392 execute_user_command ((struct cmd_list_element *)cmd, 0);
1393 return (0);
1394 }
1395 \f
1396 int signal_stop_state (signo)
1397 int signo;
1398 {
1399 return signal_stop[signo];
1400 }
1401
1402 int signal_print_state (signo)
1403 int signo;
1404 {
1405 return signal_print[signo];
1406 }
1407
1408 int signal_pass_state (signo)
1409 int signo;
1410 {
1411 return signal_program[signo];
1412 }
1413
1414 static void
1415 sig_print_header ()
1416 {
1417 printf_filtered ("\
1418 Signal Stop\tPrint\tPass to program\tDescription\n");
1419 }
1420
1421 static void
1422 sig_print_info (oursig)
1423 enum target_signal oursig;
1424 {
1425 char *name = target_signal_to_name (oursig);
1426 printf_filtered ("%s", name);
1427 printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name),
1428 " ");
1429 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
1430 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
1431 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
1432 printf_filtered ("%s\n", target_signal_to_string (oursig));
1433 }
1434
1435 /* Specify how various signals in the inferior should be handled. */
1436
1437 static void
1438 handle_command (args, from_tty)
1439 char *args;
1440 int from_tty;
1441 {
1442 char **argv;
1443 int digits, wordlen;
1444 int sigfirst, signum, siglast;
1445 enum target_signal oursig;
1446 int allsigs;
1447 int nsigs;
1448 unsigned char *sigs;
1449 struct cleanup *old_chain;
1450
1451 if (args == NULL)
1452 {
1453 error_no_arg ("signal to handle");
1454 }
1455
1456 /* Allocate and zero an array of flags for which signals to handle. */
1457
1458 nsigs = (int)TARGET_SIGNAL_LAST;
1459 sigs = (unsigned char *) alloca (nsigs);
1460 memset (sigs, 0, nsigs);
1461
1462 /* Break the command line up into args. */
1463
1464 argv = buildargv (args);
1465 if (argv == NULL)
1466 {
1467 nomem (0);
1468 }
1469 old_chain = make_cleanup (freeargv, (char *) argv);
1470
1471 /* Walk through the args, looking for signal oursigs, signal names, and
1472 actions. Signal numbers and signal names may be interspersed with
1473 actions, with the actions being performed for all signals cumulatively
1474 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1475
1476 while (*argv != NULL)
1477 {
1478 wordlen = strlen (*argv);
1479 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1480 allsigs = 0;
1481 sigfirst = siglast = -1;
1482
1483 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1484 {
1485 /* Apply action to all signals except those used by the
1486 debugger. Silently skip those. */
1487 allsigs = 1;
1488 sigfirst = 0;
1489 siglast = nsigs - 1;
1490 }
1491 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1492 {
1493 SET_SIGS (nsigs, sigs, signal_stop);
1494 SET_SIGS (nsigs, sigs, signal_print);
1495 }
1496 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1497 {
1498 UNSET_SIGS (nsigs, sigs, signal_program);
1499 }
1500 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1501 {
1502 SET_SIGS (nsigs, sigs, signal_print);
1503 }
1504 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1505 {
1506 SET_SIGS (nsigs, sigs, signal_program);
1507 }
1508 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1509 {
1510 UNSET_SIGS (nsigs, sigs, signal_stop);
1511 }
1512 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1513 {
1514 SET_SIGS (nsigs, sigs, signal_program);
1515 }
1516 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1517 {
1518 UNSET_SIGS (nsigs, sigs, signal_print);
1519 UNSET_SIGS (nsigs, sigs, signal_stop);
1520 }
1521 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1522 {
1523 UNSET_SIGS (nsigs, sigs, signal_program);
1524 }
1525 else if (digits > 0)
1526 {
1527 /* It is numeric. The numeric signal refers to our own internal
1528 signal numbering from target.h, not to host/target signal number.
1529 This is a feature; users really should be using symbolic names
1530 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1531 will work right anyway. */
1532
1533 sigfirst = siglast = atoi (*argv);
1534 if ((*argv)[digits] == '-')
1535 {
1536 siglast = atoi ((*argv) + digits + 1);
1537 }
1538 if (sigfirst > siglast)
1539 {
1540 /* Bet he didn't figure we'd think of this case... */
1541 signum = sigfirst;
1542 sigfirst = siglast;
1543 siglast = signum;
1544 }
1545 if (sigfirst < 0 || sigfirst >= nsigs)
1546 {
1547 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1548 }
1549 if (siglast < 0 || siglast >= nsigs)
1550 {
1551 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1552 }
1553 }
1554 else
1555 {
1556 oursig = target_signal_from_name (*argv);
1557 if (oursig != TARGET_SIGNAL_UNKNOWN)
1558 {
1559 sigfirst = siglast = (int)oursig;
1560 }
1561 else
1562 {
1563 /* Not a number and not a recognized flag word => complain. */
1564 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1565 }
1566 }
1567
1568 /* If any signal numbers or symbol names were found, set flags for
1569 which signals to apply actions to. */
1570
1571 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1572 {
1573 switch ((enum target_signal)signum)
1574 {
1575 case TARGET_SIGNAL_TRAP:
1576 case TARGET_SIGNAL_INT:
1577 if (!allsigs && !sigs[signum])
1578 {
1579 if (query ("%s is used by the debugger.\n\
1580 Are you sure you want to change it? ",
1581 target_signal_to_name
1582 ((enum target_signal)signum)))
1583 {
1584 sigs[signum] = 1;
1585 }
1586 else
1587 {
1588 printf_unfiltered ("Not confirmed, unchanged.\n");
1589 gdb_flush (gdb_stdout);
1590 }
1591 }
1592 break;
1593 default:
1594 sigs[signum] = 1;
1595 break;
1596 }
1597 }
1598
1599 argv++;
1600 }
1601
1602 target_notice_signals(inferior_pid);
1603
1604 if (from_tty)
1605 {
1606 /* Show the results. */
1607 sig_print_header ();
1608 for (signum = 0; signum < nsigs; signum++)
1609 {
1610 if (sigs[signum])
1611 {
1612 sig_print_info (signum);
1613 }
1614 }
1615 }
1616
1617 do_cleanups (old_chain);
1618 }
1619
1620 /* Print current contents of the tables set by the handle command.
1621 It is possible we should just be printing signals actually used
1622 by the current target (but for things to work right when switching
1623 targets, all signals should be in the signal tables). */
1624
1625 static void
1626 signals_info (signum_exp, from_tty)
1627 char *signum_exp;
1628 int from_tty;
1629 {
1630 enum target_signal oursig;
1631 sig_print_header ();
1632
1633 if (signum_exp)
1634 {
1635 /* First see if this is a symbol name. */
1636 oursig = target_signal_from_name (signum_exp);
1637 if (oursig == TARGET_SIGNAL_UNKNOWN)
1638 {
1639 /* Nope, maybe it's an address which evaluates to a signal
1640 number. */
1641 /* The numeric signal refers to our own internal
1642 signal numbering from target.h, not to host/target signal number.
1643 This is a feature; users really should be using symbolic names
1644 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1645 will work right anyway. */
1646 int i = parse_and_eval_address (signum_exp);
1647 if (i >= (int)TARGET_SIGNAL_LAST
1648 || i < 0
1649 || i == (int)TARGET_SIGNAL_UNKNOWN
1650 || i == (int)TARGET_SIGNAL_DEFAULT)
1651 error ("Signal number out of bounds.");
1652 oursig = (enum target_signal)i;
1653 }
1654 sig_print_info (oursig);
1655 return;
1656 }
1657
1658 printf_filtered ("\n");
1659 for (oursig = 0; oursig < TARGET_SIGNAL_LAST; ++oursig)
1660 {
1661 QUIT;
1662
1663 if (oursig != TARGET_SIGNAL_UNKNOWN
1664 && oursig != TARGET_SIGNAL_DEFAULT
1665 && oursig != TARGET_SIGNAL_0)
1666 sig_print_info (oursig);
1667 }
1668
1669 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1670 }
1671 \f
1672 /* Save all of the information associated with the inferior<==>gdb
1673 connection. INF_STATUS is a pointer to a "struct inferior_status"
1674 (defined in inferior.h). */
1675
1676 void
1677 save_inferior_status (inf_status, restore_stack_info)
1678 struct inferior_status *inf_status;
1679 int restore_stack_info;
1680 {
1681 inf_status->stop_signal = stop_signal;
1682 inf_status->stop_pc = stop_pc;
1683 inf_status->stop_frame_address = stop_frame_address;
1684 inf_status->stop_step = stop_step;
1685 inf_status->stop_stack_dummy = stop_stack_dummy;
1686 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1687 inf_status->trap_expected = trap_expected;
1688 inf_status->step_range_start = step_range_start;
1689 inf_status->step_range_end = step_range_end;
1690 inf_status->step_frame_address = step_frame_address;
1691 inf_status->step_over_calls = step_over_calls;
1692 inf_status->stop_after_trap = stop_after_trap;
1693 inf_status->stop_soon_quietly = stop_soon_quietly;
1694 /* Save original bpstat chain here; replace it with copy of chain.
1695 If caller's caller is walking the chain, they'll be happier if we
1696 hand them back the original chain when restore_i_s is called. */
1697 inf_status->stop_bpstat = stop_bpstat;
1698 stop_bpstat = bpstat_copy (stop_bpstat);
1699 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1700 inf_status->restore_stack_info = restore_stack_info;
1701 inf_status->proceed_to_finish = proceed_to_finish;
1702
1703 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1704
1705 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1706
1707 record_selected_frame (&(inf_status->selected_frame_address),
1708 &(inf_status->selected_level));
1709 return;
1710 }
1711
1712 struct restore_selected_frame_args {
1713 FRAME_ADDR frame_address;
1714 int level;
1715 };
1716
1717 static int restore_selected_frame PARAMS ((char *));
1718
1719 /* Restore the selected frame. args is really a struct
1720 restore_selected_frame_args * (declared as char * for catch_errors)
1721 telling us what frame to restore. Returns 1 for success, or 0 for
1722 failure. An error message will have been printed on error. */
1723 static int
1724 restore_selected_frame (args)
1725 char *args;
1726 {
1727 struct restore_selected_frame_args *fr =
1728 (struct restore_selected_frame_args *) args;
1729 FRAME fid;
1730 int level = fr->level;
1731
1732 fid = find_relative_frame (get_current_frame (), &level);
1733
1734 /* If inf_status->selected_frame_address is NULL, there was no
1735 previously selected frame. */
1736 if (fid == 0 ||
1737 FRAME_FP (fid) != fr->frame_address ||
1738 level != 0)
1739 {
1740 warning ("Unable to restore previously selected frame.\n");
1741 return 0;
1742 }
1743 select_frame (fid, fr->level);
1744 return(1);
1745 }
1746
1747 void
1748 restore_inferior_status (inf_status)
1749 struct inferior_status *inf_status;
1750 {
1751 stop_signal = inf_status->stop_signal;
1752 stop_pc = inf_status->stop_pc;
1753 stop_frame_address = inf_status->stop_frame_address;
1754 stop_step = inf_status->stop_step;
1755 stop_stack_dummy = inf_status->stop_stack_dummy;
1756 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1757 trap_expected = inf_status->trap_expected;
1758 step_range_start = inf_status->step_range_start;
1759 step_range_end = inf_status->step_range_end;
1760 step_frame_address = inf_status->step_frame_address;
1761 step_over_calls = inf_status->step_over_calls;
1762 stop_after_trap = inf_status->stop_after_trap;
1763 stop_soon_quietly = inf_status->stop_soon_quietly;
1764 bpstat_clear (&stop_bpstat);
1765 stop_bpstat = inf_status->stop_bpstat;
1766 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1767 proceed_to_finish = inf_status->proceed_to_finish;
1768
1769 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1770
1771 /* The inferior can be gone if the user types "print exit(0)"
1772 (and perhaps other times). */
1773 if (target_has_execution)
1774 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1775
1776 /* The inferior can be gone if the user types "print exit(0)"
1777 (and perhaps other times). */
1778
1779 /* FIXME: If we are being called after stopping in a function which
1780 is called from gdb, we should not be trying to restore the
1781 selected frame; it just prints a spurious error message (The
1782 message is useful, however, in detecting bugs in gdb (like if gdb
1783 clobbers the stack)). In fact, should we be restoring the
1784 inferior status at all in that case? . */
1785
1786 if (target_has_stack && inf_status->restore_stack_info)
1787 {
1788 struct restore_selected_frame_args fr;
1789 fr.level = inf_status->selected_level;
1790 fr.frame_address = inf_status->selected_frame_address;
1791 /* The point of catch_errors is that if the stack is clobbered,
1792 walking the stack might encounter a garbage pointer and error()
1793 trying to dereference it. */
1794 if (catch_errors (restore_selected_frame, &fr,
1795 "Unable to restore previously selected frame:\n",
1796 RETURN_MASK_ERROR) == 0)
1797 /* Error in restoring the selected frame. Select the innermost
1798 frame. */
1799 select_frame (get_current_frame (), 0);
1800 }
1801 }
1802
1803 \f
1804 void
1805 _initialize_infrun ()
1806 {
1807 register int i;
1808 register int numsigs;
1809
1810 add_info ("signals", signals_info,
1811 "What debugger does when program gets various signals.\n\
1812 Specify a signal number as argument to print info on that signal only.");
1813 add_info_alias ("handle", "signals", 0);
1814
1815 add_com ("handle", class_run, handle_command,
1816 "Specify how to handle a signal.\n\
1817 Args are signal numbers and actions to apply to those signals.\n\
1818 Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1819 Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1820 The special arg \"all\" is recognized to mean all signals except those\n\
1821 used by the debugger, typically SIGTRAP and SIGINT.\n\
1822 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1823 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1824 Stop means reenter debugger if this signal happens (implies print).\n\
1825 Print means print a message if this signal happens.\n\
1826 Pass means let program see this signal; otherwise program doesn't know.\n\
1827 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1828 Pass and Stop may be combined.");
1829
1830 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
1831 "There is no `stop' command, but you can set a hook on `stop'.\n\
1832 This allows you to set a list of commands to be run each time execution\n\
1833 of the program stops.", &cmdlist);
1834
1835 numsigs = (int)TARGET_SIGNAL_LAST;
1836 signal_stop = (unsigned char *)
1837 xmalloc (sizeof (signal_stop[0]) * numsigs);
1838 signal_print = (unsigned char *)
1839 xmalloc (sizeof (signal_print[0]) * numsigs);
1840 signal_program = (unsigned char *)
1841 xmalloc (sizeof (signal_program[0]) * numsigs);
1842 for (i = 0; i < numsigs; i++)
1843 {
1844 signal_stop[i] = 1;
1845 signal_print[i] = 1;
1846 signal_program[i] = 1;
1847 }
1848
1849 /* Signals caused by debugger's own actions
1850 should not be given to the program afterwards. */
1851 signal_program[TARGET_SIGNAL_TRAP] = 0;
1852 signal_program[TARGET_SIGNAL_INT] = 0;
1853
1854 /* Signals that are not errors should not normally enter the debugger. */
1855 signal_stop[TARGET_SIGNAL_ALRM] = 0;
1856 signal_print[TARGET_SIGNAL_ALRM] = 0;
1857 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
1858 signal_print[TARGET_SIGNAL_VTALRM] = 0;
1859 signal_stop[TARGET_SIGNAL_PROF] = 0;
1860 signal_print[TARGET_SIGNAL_PROF] = 0;
1861 signal_stop[TARGET_SIGNAL_CHLD] = 0;
1862 signal_print[TARGET_SIGNAL_CHLD] = 0;
1863 signal_stop[TARGET_SIGNAL_IO] = 0;
1864 signal_print[TARGET_SIGNAL_IO] = 0;
1865 signal_stop[TARGET_SIGNAL_POLL] = 0;
1866 signal_print[TARGET_SIGNAL_POLL] = 0;
1867 signal_stop[TARGET_SIGNAL_URG] = 0;
1868 signal_print[TARGET_SIGNAL_URG] = 0;
1869 }
This page took 0.08331 seconds and 5 git commands to generate.