Remove make_cleanup_restore_current_uiout
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
158
159 static ptid_t previous_inferior_ptid;
160
161 /* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166 static int detach_fork = 1;
167
168 int debug_displaced = 0;
169 static void
170 show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174 }
175
176 unsigned int debug_infrun = 0;
177 static void
178 show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182 }
183
184
185 /* Support for disabling address space randomization. */
186
187 int disable_randomization = 1;
188
189 static void
190 show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202 }
203
204 static void
205 set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207 {
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212 }
213
214 /* User interface for non-stop mode. */
215
216 int non_stop = 0;
217 static int non_stop_1 = 0;
218
219 static void
220 set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230 }
231
232 static void
233 show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239 }
240
241 /* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
245 int observer_mode = 0;
246 static int observer_mode_1 = 0;
247
248 static void
249 set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251 {
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282 }
283
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290
291 /* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297 void
298 update_observer_mode (void)
299 {
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314 }
315
316 /* Tables of how to react to signals; the user sets them. */
317
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321
322 /* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326 static unsigned char *signal_catch;
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char *signal_pass;
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368 int stop_on_solib_events;
369
370 /* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373 static void
374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375 {
376 update_solib_breakpoints ();
377 }
378
379 static void
380 show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382 {
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385 }
386
387 /* Nonzero after stop if current stack frame should be printed. */
388
389 static int stop_print_frame;
390
391 /* This is a cached copy of the pid/waitstatus of the last event
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396
397 static void context_switch (ptid_t ptid);
398
399 void init_thread_stepping_state (struct thread_info *tss);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428 static int
429 follow_fork_inferior (int follow_child, int detach_fork)
430 {
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped. Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
480 target_terminal_ours_for_output ();
481 fprintf_filtered (gdb_stdlog,
482 _("Detaching after %s from child %s.\n"),
483 has_vforked ? "vfork" : "fork",
484 target_pid_to_str (process_ptid));
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
504 inferior_ptid = child_ptid;
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662 }
663
664 /* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
668 static int
669 follow_fork (void)
670 {
671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
680 struct breakpoint *exception_resume_breakpoint = NULL;
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
684 struct thread_fsm *thread_fsm = NULL;
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
736 thread_fsm = tp->thread_fsm;
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
747 delete_exception_resume_breakpoint (tp);
748 tp->thread_fsm = NULL;
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
769 tp = find_thread_ptid (parent);
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
777 /* If we followed the child, switch to it... */
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
794 tp->thread_fsm = thread_fsm;
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
804 warning (_("Not resuming: switched threads "
805 "before following fork child."));
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
825
826 return should_resume;
827 }
828
829 static void
830 follow_inferior_reset_breakpoints (void)
831 {
832 struct thread_info *tp = inferior_thread ();
833
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
847 if (tp->control.step_resume_breakpoint)
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
852
853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
854 if (tp->control.exception_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
867 }
868
869 /* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872 static int
873 proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875 {
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
890 clear_proceed_status (0);
891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
892 }
893
894 return 0;
895 }
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
920 /* follow-fork child, detach-on-fork on. */
921
922 inf->vfork_parent->pending_detach = 0;
923
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
958 target_terminal_ours_for_output ();
959
960 if (exec)
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
967 else
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1031 inferior. */
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059 }
1060
1061 /* Enum strings for "set|show follow-exec-mode". */
1062
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070 };
1071
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078 }
1079
1080 /* EXECD_PATHNAME is assumed to be non-NULL. */
1081
1082 static void
1083 follow_exec (ptid_t ptid, char *execd_pathname)
1084 {
1085 struct thread_info *th, *tmp;
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid_get_pid (ptid);
1088 ptid_t process_ptid;
1089
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1109 we now have a new a.out, those shadow contents aren't valid. */
1110
1111 mark_breakpoints_out ();
1112
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
1132 ALL_THREADS_SAFE (th, tmp)
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
1141 th->control.step_resume_breakpoint = NULL;
1142 th->control.exception_resume_breakpoint = NULL;
1143 th->control.single_step_breakpoints = NULL;
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
1146
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
1150 th->stop_requested = 0;
1151
1152 update_breakpoints_after_exec ();
1153
1154 /* What is this a.out's name? */
1155 process_ptid = pid_to_ptid (pid);
1156 printf_unfiltered (_("%s is executing new program: %s\n"),
1157 target_pid_to_str (process_ptid),
1158 execd_pathname);
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1161 inferior has essentially been killed & reborn. */
1162
1163 gdb_flush (gdb_stdout);
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 if (*gdb_sysroot != '\0')
1168 {
1169 char *name = exec_file_find (execd_pathname, NULL);
1170
1171 execd_pathname = (char *) alloca (strlen (name) + 1);
1172 strcpy (execd_pathname, name);
1173 xfree (name);
1174 }
1175
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, execd_pathname);
1197
1198 set_current_inferior (inf);
1199 set_current_program_space (inf->pspace);
1200 add_thread (ptid);
1201 }
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1215 /* That a.out is now the one to use. */
1216 exec_file_attach (execd_pathname, 0);
1217
1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219 (Position Independent Executable) main symbol file will get applied by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1221 the breakpoints with the zero displacement. */
1222
1223 symbol_file_add (execd_pathname,
1224 (inf->symfile_flags
1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1226 NULL, 0);
1227
1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229 set_initial_language ();
1230
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
1239 solib_create_inferior_hook (0);
1240
1241 jit_inferior_created_hook ();
1242
1243 breakpoint_re_set ();
1244
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1247 to symbol_file_command...). */
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1253 matically get reset there in the new process.). */
1254 }
1255
1256 /* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263 struct thread_info *step_over_queue_head;
1264
1265 /* Bit flags indicating what the thread needs to step over. */
1266
1267 enum step_over_what_flag
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
1277 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1278
1279 /* Info about an instruction that is being stepped over. */
1280
1281 struct step_over_info
1282 {
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
1287 struct address_space *aspace;
1288 CORE_ADDR address;
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
1293
1294 /* The thread's global number. */
1295 int thread;
1296 };
1297
1298 /* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322 static struct step_over_info step_over_info;
1323
1324 /* Record the address of the breakpoint/instruction we're currently
1325 stepping over. */
1326
1327 static void
1328 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
1349 step_over_info.nonsteppable_watchpoint_p = 0;
1350 step_over_info.thread = -1;
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358 {
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363 }
1364
1365 /* See infrun.h. */
1366
1367 int
1368 thread_is_stepping_over_breakpoint (int thread)
1369 {
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372 }
1373
1374 /* See infrun.h. */
1375
1376 int
1377 stepping_past_nonsteppable_watchpoint (void)
1378 {
1379 return step_over_info.nonsteppable_watchpoint_p;
1380 }
1381
1382 /* Returns true if step-over info is valid. */
1383
1384 static int
1385 step_over_info_valid_p (void)
1386 {
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
1389 }
1390
1391 \f
1392 /* Displaced stepping. */
1393
1394 /* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
1480 /* Per-inferior displaced stepping state. */
1481 struct displaced_step_inferior_state
1482 {
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511 };
1512
1513 /* The list of states of processes involved in displaced stepping
1514 presently. */
1515 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517 /* Get the displaced stepping state of process PID. */
1518
1519 static struct displaced_step_inferior_state *
1520 get_displaced_stepping_state (int pid)
1521 {
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531 }
1532
1533 /* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536 static int
1537 displaced_step_in_progress_any_inferior (void)
1538 {
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548 }
1549
1550 /* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553 static int
1554 displaced_step_in_progress_thread (ptid_t ptid)
1555 {
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563 }
1564
1565 /* Return true if process PID has a thread doing a displaced step. */
1566
1567 static int
1568 displaced_step_in_progress (int pid)
1569 {
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577 }
1578
1579 /* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583 static struct displaced_step_inferior_state *
1584 add_displaced_stepping_state (int pid)
1585 {
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
1593
1594 state = XCNEW (struct displaced_step_inferior_state);
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
1598
1599 return state;
1600 }
1601
1602 /* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606 struct displaced_step_closure*
1607 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608 {
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618 }
1619
1620 /* Remove the displaced stepping state of process PID. */
1621
1622 static void
1623 remove_displaced_stepping_state (int pid)
1624 {
1625 struct displaced_step_inferior_state *it, **prev_next_p;
1626
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643 }
1644
1645 static void
1646 infrun_inferior_exit (struct inferior *inf)
1647 {
1648 remove_displaced_stepping_state (inf->pid);
1649 }
1650
1651 /* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
1659 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1660
1661 static void
1662 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665 {
1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
1670 value, target_is_non_stop_p () ? "on" : "off");
1671 else
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
1675 }
1676
1677 /* Return non-zero if displaced stepping can/should be used to step
1678 over breakpoints of thread TP. */
1679
1680 static int
1681 use_displaced_stepping (struct thread_info *tp)
1682 {
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
1696 }
1697
1698 /* Clean out any stray displaced stepping state. */
1699 static void
1700 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1701 {
1702 /* Indicate that there is no cleanup pending. */
1703 displaced->step_ptid = null_ptid;
1704
1705 if (displaced->step_closure)
1706 {
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
1710 }
1711 }
1712
1713 static void
1714 displaced_step_clear_cleanup (void *arg)
1715 {
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
1718
1719 displaced_step_clear (state);
1720 }
1721
1722 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723 void
1724 displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727 {
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733 }
1734
1735 /* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
1751 static int
1752 displaced_step_prepare_throw (ptid_t ptid)
1753 {
1754 struct cleanup *old_cleanups, *ignore_cleanups;
1755 struct thread_info *tp = find_thread_ptid (ptid);
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1758 struct address_space *aspace = get_regcache_aspace (regcache);
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
1762 struct displaced_step_inferior_state *displaced;
1763 int status;
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
1780
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "displaced: deferring step of %s\n",
1791 target_pid_to_str (ptid));
1792
1793 thread_step_over_chain_enqueue (tp);
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
1804 displaced_step_clear (displaced);
1805
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
1809 original = regcache_read_pc (regcache);
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
1836 /* Save the original contents of the copy area. */
1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1838 ignore_cleanups = make_cleanup (free_current_contents,
1839 &displaced->step_saved_copy);
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
1846 if (debug_displaced)
1847 {
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1856 original, copy, regcache);
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
1865
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
1873
1874 make_cleanup (displaced_step_clear_cleanup, displaced);
1875
1876 /* Resume execution at the copy. */
1877 regcache_write_pc (regcache, copy);
1878
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
1882
1883 if (debug_displaced)
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
1886
1887 return 1;
1888 }
1889
1890 /* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893 static int
1894 displaced_step_prepare (ptid_t ptid)
1895 {
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
1921 warning (_("disabling displaced stepping: %s"),
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933 }
1934
1935 static void
1936 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
1938 {
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1940
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944 }
1945
1946 /* Restore the contents of the copy area for thread PTID. */
1947
1948 static void
1949 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951 {
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961 }
1962
1963 /* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969 static int
1970 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1971 {
1972 struct cleanup *old_cleanups;
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1975 int ret;
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
1979 return 0;
1980
1981 /* Was this event for the pid we displaced? */
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
1984 return 0;
1985
1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1987
1988 displaced_step_restore (displaced, displaced->step_ptid);
1989
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
1995 /* Did the instruction complete successfully? */
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
2000 {
2001 /* Fix up the resulting state. */
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
2007 ret = 1;
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
2015
2016 pc = displaced->step_original + (pc - displaced->step_copy);
2017 regcache_write_pc (regcache, pc);
2018 ret = -1;
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
2023 displaced->step_ptid = null_ptid;
2024
2025 return ret;
2026 }
2027
2028 /* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030 struct execution_control_state
2031 {
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049 };
2050
2051 /* Clear ECS and set it to point at TP. */
2052
2053 static void
2054 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055 {
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059 }
2060
2061 static void keep_going_pass_signal (struct execution_control_state *ecs);
2062 static void prepare_to_wait (struct execution_control_state *ecs);
2063 static int keep_going_stepped_thread (struct thread_info *tp);
2064 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2065
2066 /* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069 static int
2070 start_step_over (void)
2071 {
2072 struct thread_info *tp, *next;
2073
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
2080 {
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
2083 step_over_what step_what;
2084 int must_be_in_line;
2085
2086 next = thread_step_over_chain_next (tp);
2087
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2091 continue;
2092
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
2096 && !use_displaced_stepping (tp)));
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
2116 {
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
2119 "trap_expected=%d, resumed=%d, executing=%d\n",
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
2122 tp->resumed,
2123 tp->executing);
2124 }
2125
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
2137 if (!target_is_non_stop_p () && !step_what)
2138 continue;
2139
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
2143
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
2146
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
2156 if (!target_is_non_stop_p ())
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
2167 }
2168
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
2173 }
2174
2175 return 0;
2176 }
2177
2178 /* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180 static void
2181 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182 {
2183 struct displaced_step_inferior_state *displaced;
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
2194 }
2195 }
2196
2197 \f
2198 /* Resuming. */
2199
2200 /* Things to clean up if we QUIT out of resume (). */
2201 static void
2202 resume_cleanups (void *ignore)
2203 {
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
2206
2207 normal_stop ();
2208 }
2209
2210 static const char schedlock_off[] = "off";
2211 static const char schedlock_on[] = "on";
2212 static const char schedlock_step[] = "step";
2213 static const char schedlock_replay[] = "replay";
2214 static const char *const scheduler_enums[] = {
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
2218 schedlock_replay,
2219 NULL
2220 };
2221 static const char *scheduler_mode = schedlock_replay;
2222 static void
2223 show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225 {
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
2229 value);
2230 }
2231
2232 static void
2233 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2234 {
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
2240 }
2241
2242 /* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245 int sched_multi = 0;
2246
2247 /* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253 static int
2254 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255 {
2256 int hw_step = 1;
2257
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch)
2260 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2261 {
2262 hw_step = 0;
2263 }
2264 return hw_step;
2265 }
2266
2267 /* See infrun.h. */
2268
2269 ptid_t
2270 user_visible_resume_ptid (int step)
2271 {
2272 ptid_t resume_ptid;
2273
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
2281 || (scheduler_mode == schedlock_step && step))
2282 {
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
2285 resume_ptid = inferior_ptid;
2286 }
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
2305
2306 return resume_ptid;
2307 }
2308
2309 /* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315 static ptid_t
2316 internal_resume_ptid (int user_step)
2317 {
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326 }
2327
2328 /* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331 static void
2332 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333 {
2334 struct thread_info *tp = inferior_thread ();
2335
2336 /* Install inferior's terminal modes. */
2337 target_terminal_inferior ();
2338
2339 /* Avoid confusing the next resume, if the next stop/resume
2340 happens to apply to another thread. */
2341 tp->suspend.stop_signal = GDB_SIGNAL_0;
2342
2343 /* Advise target which signals may be handled silently.
2344
2345 If we have removed breakpoints because we are stepping over one
2346 in-line (in any thread), we need to receive all signals to avoid
2347 accidentally skipping a breakpoint during execution of a signal
2348 handler.
2349
2350 Likewise if we're displaced stepping, otherwise a trap for a
2351 breakpoint in a signal handler might be confused with the
2352 displaced step finishing. We don't make the displaced_step_fixup
2353 step distinguish the cases instead, because:
2354
2355 - a backtrace while stopped in the signal handler would show the
2356 scratch pad as frame older than the signal handler, instead of
2357 the real mainline code.
2358
2359 - when the thread is later resumed, the signal handler would
2360 return to the scratch pad area, which would no longer be
2361 valid. */
2362 if (step_over_info_valid_p ()
2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2364 target_pass_signals (0, NULL);
2365 else
2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367
2368 target_resume (resume_ptid, step, sig);
2369 }
2370
2371 /* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
2377 SIG is the signal to give the inferior (zero for none). */
2378 void
2379 resume (enum gdb_signal sig)
2380 {
2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2384 struct thread_info *tp = inferior_thread ();
2385 CORE_ADDR pc = regcache_read_pc (regcache);
2386 struct address_space *aspace = get_regcache_aspace (regcache);
2387 ptid_t resume_ptid;
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
2396 int step;
2397
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
2400 QUIT;
2401
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
2424 warning (_("Couldn't deliver signal %s to %s."),
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
2457 step = 0;
2458 }
2459
2460 if (debug_infrun)
2461 fprintf_unfiltered (gdb_stdlog,
2462 "infrun: resume (step=%d, signal=%s), "
2463 "trap_expected=%d, current thread [%s] at %s\n",
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
2468
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2474 {
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
2534 (overstep). */
2535 gdb_assert (!step_over_info_valid_p ());
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
2539 resume_ptid = internal_resume_ptid (user_step);
2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2541 discard_cleanups (old_cleanups);
2542 tp->resumed = 1;
2543 return;
2544 }
2545 }
2546 }
2547
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
2566 && !step_over_info_valid_p ()
2567 && sig == GDB_SIGNAL_0
2568 && !current_inferior ()->waiting_for_vfork_done)
2569 {
2570 int prepared = displaced_step_prepare (inferior_ptid);
2571
2572 if (prepared == 0)
2573 {
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
2590 regcache_read_pc (regcache), 0, tp->global_num);
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
2599
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2603
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
2608 }
2609
2610 /* Do we need to do it the hard way, w/temp breakpoints? */
2611 else if (step)
2612 step = maybe_software_singlestep (gdbarch, pc);
2613
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
2638 if (thread_has_single_step_breakpoints_set (tp)
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
2653 delete_single_step_breakpoints (tp);
2654
2655 clear_step_over_info ();
2656 tp->control.trap_expected = 0;
2657
2658 insert_breakpoints ();
2659 }
2660
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2665
2666 /* Decide the set of threads to ask the target to resume. */
2667 if (tp->control.trap_expected)
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
2678 resume_ptid = inferior_ptid;
2679 }
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
2682
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
2685 {
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
2718
2719 tp->stepped_breakpoint = 1;
2720
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
2725 step = 0;
2726 }
2727
2728 if (debug_displaced
2729 && tp->control.trap_expected
2730 && use_displaced_stepping (tp)
2731 && !step_over_info_valid_p ())
2732 {
2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
2743
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
2753
2754 do_target_resume (resume_ptid, step, sig);
2755 tp->resumed = 1;
2756 discard_cleanups (old_cleanups);
2757 }
2758 \f
2759 /* Proceeding. */
2760
2761 /* See infrun.h. */
2762
2763 /* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770 static ULONGEST current_stop_id;
2771
2772 /* See infrun.h. */
2773
2774 ULONGEST
2775 get_stop_id (void)
2776 {
2777 return current_stop_id;
2778 }
2779
2780 /* Called when we report a user visible stop. */
2781
2782 static void
2783 new_stop_id (void)
2784 {
2785 current_stop_id++;
2786 }
2787
2788 /* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
2791 static void
2792 clear_proceed_status_thread (struct thread_info *tp)
2793 {
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
2798
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
2841 tp->control.may_range_step = 0;
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2845 tp->control.step_start_function = NULL;
2846 tp->stop_requested = 0;
2847
2848 tp->control.stop_step = 0;
2849
2850 tp->control.proceed_to_finish = 0;
2851
2852 tp->control.stepping_command = 0;
2853
2854 /* Discard any remaining commands or status from previous stop. */
2855 bpstat_clear (&tp->control.stop_bpstat);
2856 }
2857
2858 void
2859 clear_proceed_status (int step)
2860 {
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
2873 if (!non_stop)
2874 {
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
2888 }
2889
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
2900
2901 inferior = current_inferior ();
2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
2903 }
2904
2905 observer_notify_about_to_proceed ();
2906 }
2907
2908 /* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
2911
2912 static int
2913 thread_still_needs_step_over_bp (struct thread_info *tp)
2914 {
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928 }
2929
2930 /* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
2934 static step_over_what
2935 thread_still_needs_step_over (struct thread_info *tp)
2936 {
2937 step_over_what what = 0;
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947 }
2948
2949 /* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952 static int
2953 schedlock_applies (struct thread_info *tp)
2954 {
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
2961 }
2962
2963 /* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
2967 or -1 for act according to how it stopped.
2968 STEP is nonzero if should trap after one instruction.
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975 void
2976 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2977 {
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
2980 struct thread_info *tp;
2981 CORE_ADDR pc;
2982 struct address_space *aspace;
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
2987 int started;
2988
2989 /* If we're stopped at a fork/vfork, follow the branch set by the
2990 "set follow-fork-mode" command; otherwise, we'll just proceed
2991 resuming the current thread. */
2992 if (!follow_fork ())
2993 {
2994 /* The target for some reason decided not to resume. */
2995 normal_stop ();
2996 if (target_can_async_p ())
2997 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2998 return;
2999 }
3000
3001 /* We'll update this if & when we switch to a new thread. */
3002 previous_inferior_ptid = inferior_ptid;
3003
3004 regcache = get_current_regcache ();
3005 gdbarch = get_regcache_arch (regcache);
3006 aspace = get_regcache_aspace (regcache);
3007 pc = regcache_read_pc (regcache);
3008 tp = inferior_thread ();
3009
3010 /* Fill in with reasonable starting values. */
3011 init_thread_stepping_state (tp);
3012
3013 gdb_assert (!thread_is_in_step_over_chain (tp));
3014
3015 if (addr == (CORE_ADDR) -1)
3016 {
3017 if (pc == stop_pc
3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3019 && execution_direction != EXEC_REVERSE)
3020 /* There is a breakpoint at the address we will resume at,
3021 step one instruction before inserting breakpoints so that
3022 we do not stop right away (and report a second hit at this
3023 breakpoint).
3024
3025 Note, we don't do this in reverse, because we won't
3026 actually be executing the breakpoint insn anyway.
3027 We'll be (un-)executing the previous instruction. */
3028 tp->stepping_over_breakpoint = 1;
3029 else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 && gdbarch_single_step_through_delay (gdbarch,
3031 get_current_frame ()))
3032 /* We stepped onto an instruction that needs to be stepped
3033 again before re-inserting the breakpoint, do so. */
3034 tp->stepping_over_breakpoint = 1;
3035 }
3036 else
3037 {
3038 regcache_write_pc (regcache, addr);
3039 }
3040
3041 if (siggnal != GDB_SIGNAL_DEFAULT)
3042 tp->suspend.stop_signal = siggnal;
3043
3044 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3045
3046 /* If an exception is thrown from this point on, make sure to
3047 propagate GDB's knowledge of the executing state to the
3048 frontend/user running state. */
3049 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3050
3051 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3052 threads (e.g., we might need to set threads stepping over
3053 breakpoints first), from the user/frontend's point of view, all
3054 threads in RESUME_PTID are now running. Unless we're calling an
3055 inferior function, as in that case we pretend the inferior
3056 doesn't run at all. */
3057 if (!tp->control.in_infcall)
3058 set_running (resume_ptid, 1);
3059
3060 if (debug_infrun)
3061 fprintf_unfiltered (gdb_stdlog,
3062 "infrun: proceed (addr=%s, signal=%s)\n",
3063 paddress (gdbarch, addr),
3064 gdb_signal_to_symbol_string (siggnal));
3065
3066 annotate_starting ();
3067
3068 /* Make sure that output from GDB appears before output from the
3069 inferior. */
3070 gdb_flush (gdb_stdout);
3071
3072 /* In a multi-threaded task we may select another thread and
3073 then continue or step.
3074
3075 But if a thread that we're resuming had stopped at a breakpoint,
3076 it will immediately cause another breakpoint stop without any
3077 execution (i.e. it will report a breakpoint hit incorrectly). So
3078 we must step over it first.
3079
3080 Look for threads other than the current (TP) that reported a
3081 breakpoint hit and haven't been resumed yet since. */
3082
3083 /* If scheduler locking applies, we can avoid iterating over all
3084 threads. */
3085 if (!non_stop && !schedlock_applies (tp))
3086 {
3087 struct thread_info *current = tp;
3088
3089 ALL_NON_EXITED_THREADS (tp)
3090 {
3091 /* Ignore the current thread here. It's handled
3092 afterwards. */
3093 if (tp == current)
3094 continue;
3095
3096 /* Ignore threads of processes we're not resuming. */
3097 if (!ptid_match (tp->ptid, resume_ptid))
3098 continue;
3099
3100 if (!thread_still_needs_step_over (tp))
3101 continue;
3102
3103 gdb_assert (!thread_is_in_step_over_chain (tp));
3104
3105 if (debug_infrun)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "infrun: need to step-over [%s] first\n",
3108 target_pid_to_str (tp->ptid));
3109
3110 thread_step_over_chain_enqueue (tp);
3111 }
3112
3113 tp = current;
3114 }
3115
3116 /* Enqueue the current thread last, so that we move all other
3117 threads over their breakpoints first. */
3118 if (tp->stepping_over_breakpoint)
3119 thread_step_over_chain_enqueue (tp);
3120
3121 /* If the thread isn't started, we'll still need to set its prev_pc,
3122 so that switch_back_to_stepped_thread knows the thread hasn't
3123 advanced. Must do this before resuming any thread, as in
3124 all-stop/remote, once we resume we can't send any other packet
3125 until the target stops again. */
3126 tp->prev_pc = regcache_read_pc (regcache);
3127
3128 started = start_step_over ();
3129
3130 if (step_over_info_valid_p ())
3131 {
3132 /* Either this thread started a new in-line step over, or some
3133 other thread was already doing one. In either case, don't
3134 resume anything else until the step-over is finished. */
3135 }
3136 else if (started && !target_is_non_stop_p ())
3137 {
3138 /* A new displaced stepping sequence was started. In all-stop,
3139 we can't talk to the target anymore until it next stops. */
3140 }
3141 else if (!non_stop && target_is_non_stop_p ())
3142 {
3143 /* In all-stop, but the target is always in non-stop mode.
3144 Start all other threads that are implicitly resumed too. */
3145 ALL_NON_EXITED_THREADS (tp)
3146 {
3147 /* Ignore threads of processes we're not resuming. */
3148 if (!ptid_match (tp->ptid, resume_ptid))
3149 continue;
3150
3151 if (tp->resumed)
3152 {
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: [%s] resumed\n",
3156 target_pid_to_str (tp->ptid));
3157 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3158 continue;
3159 }
3160
3161 if (thread_is_in_step_over_chain (tp))
3162 {
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "infrun: proceed: [%s] needs step-over\n",
3166 target_pid_to_str (tp->ptid));
3167 continue;
3168 }
3169
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: resuming %s\n",
3173 target_pid_to_str (tp->ptid));
3174
3175 reset_ecs (ecs, tp);
3176 switch_to_thread (tp->ptid);
3177 keep_going_pass_signal (ecs);
3178 if (!ecs->wait_some_more)
3179 error (_("Command aborted."));
3180 }
3181 }
3182 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3183 {
3184 /* The thread wasn't started, and isn't queued, run it now. */
3185 reset_ecs (ecs, tp);
3186 switch_to_thread (tp->ptid);
3187 keep_going_pass_signal (ecs);
3188 if (!ecs->wait_some_more)
3189 error (_("Command aborted."));
3190 }
3191
3192 discard_cleanups (old_chain);
3193
3194 /* Tell the event loop to wait for it to stop. If the target
3195 supports asynchronous execution, it'll do this from within
3196 target_resume. */
3197 if (!target_can_async_p ())
3198 mark_async_event_handler (infrun_async_inferior_event_token);
3199 }
3200 \f
3201
3202 /* Start remote-debugging of a machine over a serial link. */
3203
3204 void
3205 start_remote (int from_tty)
3206 {
3207 struct inferior *inferior;
3208
3209 inferior = current_inferior ();
3210 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3211
3212 /* Always go on waiting for the target, regardless of the mode. */
3213 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3214 indicate to wait_for_inferior that a target should timeout if
3215 nothing is returned (instead of just blocking). Because of this,
3216 targets expecting an immediate response need to, internally, set
3217 things up so that the target_wait() is forced to eventually
3218 timeout. */
3219 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3220 differentiate to its caller what the state of the target is after
3221 the initial open has been performed. Here we're assuming that
3222 the target has stopped. It should be possible to eventually have
3223 target_open() return to the caller an indication that the target
3224 is currently running and GDB state should be set to the same as
3225 for an async run. */
3226 wait_for_inferior ();
3227
3228 /* Now that the inferior has stopped, do any bookkeeping like
3229 loading shared libraries. We want to do this before normal_stop,
3230 so that the displayed frame is up to date. */
3231 post_create_inferior (&current_target, from_tty);
3232
3233 normal_stop ();
3234 }
3235
3236 /* Initialize static vars when a new inferior begins. */
3237
3238 void
3239 init_wait_for_inferior (void)
3240 {
3241 /* These are meaningless until the first time through wait_for_inferior. */
3242
3243 breakpoint_init_inferior (inf_starting);
3244
3245 clear_proceed_status (0);
3246
3247 target_last_wait_ptid = minus_one_ptid;
3248
3249 previous_inferior_ptid = inferior_ptid;
3250
3251 /* Discard any skipped inlined frames. */
3252 clear_inline_frame_state (minus_one_ptid);
3253 }
3254
3255 \f
3256
3257 static void handle_inferior_event (struct execution_control_state *ecs);
3258
3259 static void handle_step_into_function (struct gdbarch *gdbarch,
3260 struct execution_control_state *ecs);
3261 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3262 struct execution_control_state *ecs);
3263 static void handle_signal_stop (struct execution_control_state *ecs);
3264 static void check_exception_resume (struct execution_control_state *,
3265 struct frame_info *);
3266
3267 static void end_stepping_range (struct execution_control_state *ecs);
3268 static void stop_waiting (struct execution_control_state *ecs);
3269 static void keep_going (struct execution_control_state *ecs);
3270 static void process_event_stop_test (struct execution_control_state *ecs);
3271 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3272
3273 /* Callback for iterate over threads. If the thread is stopped, but
3274 the user/frontend doesn't know about that yet, go through
3275 normal_stop, as if the thread had just stopped now. ARG points at
3276 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3277 ptid_is_pid(PTID) is true, applies to all threads of the process
3278 pointed at by PTID. Otherwise, apply only to the thread pointed by
3279 PTID. */
3280
3281 static int
3282 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3283 {
3284 ptid_t ptid = * (ptid_t *) arg;
3285
3286 if ((ptid_equal (info->ptid, ptid)
3287 || ptid_equal (minus_one_ptid, ptid)
3288 || (ptid_is_pid (ptid)
3289 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3290 && is_running (info->ptid)
3291 && !is_executing (info->ptid))
3292 {
3293 struct cleanup *old_chain;
3294 struct execution_control_state ecss;
3295 struct execution_control_state *ecs = &ecss;
3296
3297 memset (ecs, 0, sizeof (*ecs));
3298
3299 old_chain = make_cleanup_restore_current_thread ();
3300
3301 overlay_cache_invalid = 1;
3302 /* Flush target cache before starting to handle each event.
3303 Target was running and cache could be stale. This is just a
3304 heuristic. Running threads may modify target memory, but we
3305 don't get any event. */
3306 target_dcache_invalidate ();
3307
3308 /* Go through handle_inferior_event/normal_stop, so we always
3309 have consistent output as if the stop event had been
3310 reported. */
3311 ecs->ptid = info->ptid;
3312 ecs->event_thread = info;
3313 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3314 ecs->ws.value.sig = GDB_SIGNAL_0;
3315
3316 handle_inferior_event (ecs);
3317
3318 if (!ecs->wait_some_more)
3319 {
3320 /* Cancel any running execution command. */
3321 thread_cancel_execution_command (info);
3322
3323 normal_stop ();
3324 }
3325
3326 do_cleanups (old_chain);
3327 }
3328
3329 return 0;
3330 }
3331
3332 /* This function is attached as a "thread_stop_requested" observer.
3333 Cleanup local state that assumed the PTID was to be resumed, and
3334 report the stop to the frontend. */
3335
3336 static void
3337 infrun_thread_stop_requested (ptid_t ptid)
3338 {
3339 struct thread_info *tp;
3340
3341 /* PTID was requested to stop. Remove matching threads from the
3342 step-over queue, so we don't try to resume them
3343 automatically. */
3344 ALL_NON_EXITED_THREADS (tp)
3345 if (ptid_match (tp->ptid, ptid))
3346 {
3347 if (thread_is_in_step_over_chain (tp))
3348 thread_step_over_chain_remove (tp);
3349 }
3350
3351 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3352 }
3353
3354 static void
3355 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3356 {
3357 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3358 nullify_last_target_wait_ptid ();
3359 }
3360
3361 /* Delete the step resume, single-step and longjmp/exception resume
3362 breakpoints of TP. */
3363
3364 static void
3365 delete_thread_infrun_breakpoints (struct thread_info *tp)
3366 {
3367 delete_step_resume_breakpoint (tp);
3368 delete_exception_resume_breakpoint (tp);
3369 delete_single_step_breakpoints (tp);
3370 }
3371
3372 /* If the target still has execution, call FUNC for each thread that
3373 just stopped. In all-stop, that's all the non-exited threads; in
3374 non-stop, that's the current thread, only. */
3375
3376 typedef void (*for_each_just_stopped_thread_callback_func)
3377 (struct thread_info *tp);
3378
3379 static void
3380 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3381 {
3382 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3383 return;
3384
3385 if (target_is_non_stop_p ())
3386 {
3387 /* If in non-stop mode, only the current thread stopped. */
3388 func (inferior_thread ());
3389 }
3390 else
3391 {
3392 struct thread_info *tp;
3393
3394 /* In all-stop mode, all threads have stopped. */
3395 ALL_NON_EXITED_THREADS (tp)
3396 {
3397 func (tp);
3398 }
3399 }
3400 }
3401
3402 /* Delete the step resume and longjmp/exception resume breakpoints of
3403 the threads that just stopped. */
3404
3405 static void
3406 delete_just_stopped_threads_infrun_breakpoints (void)
3407 {
3408 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3409 }
3410
3411 /* Delete the single-step breakpoints of the threads that just
3412 stopped. */
3413
3414 static void
3415 delete_just_stopped_threads_single_step_breakpoints (void)
3416 {
3417 for_each_just_stopped_thread (delete_single_step_breakpoints);
3418 }
3419
3420 /* A cleanup wrapper. */
3421
3422 static void
3423 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3424 {
3425 delete_just_stopped_threads_infrun_breakpoints ();
3426 }
3427
3428 /* See infrun.h. */
3429
3430 void
3431 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3432 const struct target_waitstatus *ws)
3433 {
3434 char *status_string = target_waitstatus_to_string (ws);
3435 struct ui_file *tmp_stream = mem_fileopen ();
3436 char *text;
3437
3438 /* The text is split over several lines because it was getting too long.
3439 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3440 output as a unit; we want only one timestamp printed if debug_timestamp
3441 is set. */
3442
3443 fprintf_unfiltered (tmp_stream,
3444 "infrun: target_wait (%d.%ld.%ld",
3445 ptid_get_pid (waiton_ptid),
3446 ptid_get_lwp (waiton_ptid),
3447 ptid_get_tid (waiton_ptid));
3448 if (ptid_get_pid (waiton_ptid) != -1)
3449 fprintf_unfiltered (tmp_stream,
3450 " [%s]", target_pid_to_str (waiton_ptid));
3451 fprintf_unfiltered (tmp_stream, ", status) =\n");
3452 fprintf_unfiltered (tmp_stream,
3453 "infrun: %d.%ld.%ld [%s],\n",
3454 ptid_get_pid (result_ptid),
3455 ptid_get_lwp (result_ptid),
3456 ptid_get_tid (result_ptid),
3457 target_pid_to_str (result_ptid));
3458 fprintf_unfiltered (tmp_stream,
3459 "infrun: %s\n",
3460 status_string);
3461
3462 text = ui_file_xstrdup (tmp_stream, NULL);
3463
3464 /* This uses %s in part to handle %'s in the text, but also to avoid
3465 a gcc error: the format attribute requires a string literal. */
3466 fprintf_unfiltered (gdb_stdlog, "%s", text);
3467
3468 xfree (status_string);
3469 xfree (text);
3470 ui_file_delete (tmp_stream);
3471 }
3472
3473 /* Select a thread at random, out of those which are resumed and have
3474 had events. */
3475
3476 static struct thread_info *
3477 random_pending_event_thread (ptid_t waiton_ptid)
3478 {
3479 struct thread_info *event_tp;
3480 int num_events = 0;
3481 int random_selector;
3482
3483 /* First see how many events we have. Count only resumed threads
3484 that have an event pending. */
3485 ALL_NON_EXITED_THREADS (event_tp)
3486 if (ptid_match (event_tp->ptid, waiton_ptid)
3487 && event_tp->resumed
3488 && event_tp->suspend.waitstatus_pending_p)
3489 num_events++;
3490
3491 if (num_events == 0)
3492 return NULL;
3493
3494 /* Now randomly pick a thread out of those that have had events. */
3495 random_selector = (int)
3496 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3497
3498 if (debug_infrun && num_events > 1)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Found %d events, selecting #%d\n",
3501 num_events, random_selector);
3502
3503 /* Select the Nth thread that has had an event. */
3504 ALL_NON_EXITED_THREADS (event_tp)
3505 if (ptid_match (event_tp->ptid, waiton_ptid)
3506 && event_tp->resumed
3507 && event_tp->suspend.waitstatus_pending_p)
3508 if (random_selector-- == 0)
3509 break;
3510
3511 return event_tp;
3512 }
3513
3514 /* Wrapper for target_wait that first checks whether threads have
3515 pending statuses to report before actually asking the target for
3516 more events. */
3517
3518 static ptid_t
3519 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3520 {
3521 ptid_t event_ptid;
3522 struct thread_info *tp;
3523
3524 /* First check if there is a resumed thread with a wait status
3525 pending. */
3526 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3527 {
3528 tp = random_pending_event_thread (ptid);
3529 }
3530 else
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: Waiting for specific thread %s.\n",
3535 target_pid_to_str (ptid));
3536
3537 /* We have a specific thread to check. */
3538 tp = find_thread_ptid (ptid);
3539 gdb_assert (tp != NULL);
3540 if (!tp->suspend.waitstatus_pending_p)
3541 tp = NULL;
3542 }
3543
3544 if (tp != NULL
3545 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3546 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3547 {
3548 struct regcache *regcache = get_thread_regcache (tp->ptid);
3549 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3550 CORE_ADDR pc;
3551 int discard = 0;
3552
3553 pc = regcache_read_pc (regcache);
3554
3555 if (pc != tp->suspend.stop_pc)
3556 {
3557 if (debug_infrun)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "infrun: PC of %s changed. was=%s, now=%s\n",
3560 target_pid_to_str (tp->ptid),
3561 paddress (gdbarch, tp->prev_pc),
3562 paddress (gdbarch, pc));
3563 discard = 1;
3564 }
3565 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3566 {
3567 if (debug_infrun)
3568 fprintf_unfiltered (gdb_stdlog,
3569 "infrun: previous breakpoint of %s, at %s gone\n",
3570 target_pid_to_str (tp->ptid),
3571 paddress (gdbarch, pc));
3572
3573 discard = 1;
3574 }
3575
3576 if (discard)
3577 {
3578 if (debug_infrun)
3579 fprintf_unfiltered (gdb_stdlog,
3580 "infrun: pending event of %s cancelled.\n",
3581 target_pid_to_str (tp->ptid));
3582
3583 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3584 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3585 }
3586 }
3587
3588 if (tp != NULL)
3589 {
3590 if (debug_infrun)
3591 {
3592 char *statstr;
3593
3594 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3595 fprintf_unfiltered (gdb_stdlog,
3596 "infrun: Using pending wait status %s for %s.\n",
3597 statstr,
3598 target_pid_to_str (tp->ptid));
3599 xfree (statstr);
3600 }
3601
3602 /* Now that we've selected our final event LWP, un-adjust its PC
3603 if it was a software breakpoint (and the target doesn't
3604 always adjust the PC itself). */
3605 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3606 && !target_supports_stopped_by_sw_breakpoint ())
3607 {
3608 struct regcache *regcache;
3609 struct gdbarch *gdbarch;
3610 int decr_pc;
3611
3612 regcache = get_thread_regcache (tp->ptid);
3613 gdbarch = get_regcache_arch (regcache);
3614
3615 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3616 if (decr_pc != 0)
3617 {
3618 CORE_ADDR pc;
3619
3620 pc = regcache_read_pc (regcache);
3621 regcache_write_pc (regcache, pc + decr_pc);
3622 }
3623 }
3624
3625 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3626 *status = tp->suspend.waitstatus;
3627 tp->suspend.waitstatus_pending_p = 0;
3628
3629 /* Wake up the event loop again, until all pending events are
3630 processed. */
3631 if (target_is_async_p ())
3632 mark_async_event_handler (infrun_async_inferior_event_token);
3633 return tp->ptid;
3634 }
3635
3636 /* But if we don't find one, we'll have to wait. */
3637
3638 if (deprecated_target_wait_hook)
3639 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3640 else
3641 event_ptid = target_wait (ptid, status, options);
3642
3643 return event_ptid;
3644 }
3645
3646 /* Prepare and stabilize the inferior for detaching it. E.g.,
3647 detaching while a thread is displaced stepping is a recipe for
3648 crashing it, as nothing would readjust the PC out of the scratch
3649 pad. */
3650
3651 void
3652 prepare_for_detach (void)
3653 {
3654 struct inferior *inf = current_inferior ();
3655 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3656 struct cleanup *old_chain_1;
3657 struct displaced_step_inferior_state *displaced;
3658
3659 displaced = get_displaced_stepping_state (inf->pid);
3660
3661 /* Is any thread of this process displaced stepping? If not,
3662 there's nothing else to do. */
3663 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3664 return;
3665
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog,
3668 "displaced-stepping in-process while detaching");
3669
3670 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3671 inf->detaching = 1;
3672
3673 while (!ptid_equal (displaced->step_ptid, null_ptid))
3674 {
3675 struct cleanup *old_chain_2;
3676 struct execution_control_state ecss;
3677 struct execution_control_state *ecs;
3678
3679 ecs = &ecss;
3680 memset (ecs, 0, sizeof (*ecs));
3681
3682 overlay_cache_invalid = 1;
3683 /* Flush target cache before starting to handle each event.
3684 Target was running and cache could be stale. This is just a
3685 heuristic. Running threads may modify target memory, but we
3686 don't get any event. */
3687 target_dcache_invalidate ();
3688
3689 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3690
3691 if (debug_infrun)
3692 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3693
3694 /* If an error happens while handling the event, propagate GDB's
3695 knowledge of the executing state to the frontend/user running
3696 state. */
3697 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3698 &minus_one_ptid);
3699
3700 /* Now figure out what to do with the result of the result. */
3701 handle_inferior_event (ecs);
3702
3703 /* No error, don't finish the state yet. */
3704 discard_cleanups (old_chain_2);
3705
3706 /* Breakpoints and watchpoints are not installed on the target
3707 at this point, and signals are passed directly to the
3708 inferior, so this must mean the process is gone. */
3709 if (!ecs->wait_some_more)
3710 {
3711 discard_cleanups (old_chain_1);
3712 error (_("Program exited while detaching"));
3713 }
3714 }
3715
3716 discard_cleanups (old_chain_1);
3717 }
3718
3719 /* Wait for control to return from inferior to debugger.
3720
3721 If inferior gets a signal, we may decide to start it up again
3722 instead of returning. That is why there is a loop in this function.
3723 When this function actually returns it means the inferior
3724 should be left stopped and GDB should read more commands. */
3725
3726 void
3727 wait_for_inferior (void)
3728 {
3729 struct cleanup *old_cleanups;
3730 struct cleanup *thread_state_chain;
3731
3732 if (debug_infrun)
3733 fprintf_unfiltered
3734 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3735
3736 old_cleanups
3737 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3738 NULL);
3739
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
3743 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3744
3745 while (1)
3746 {
3747 struct execution_control_state ecss;
3748 struct execution_control_state *ecs = &ecss;
3749 ptid_t waiton_ptid = minus_one_ptid;
3750
3751 memset (ecs, 0, sizeof (*ecs));
3752
3753 overlay_cache_invalid = 1;
3754
3755 /* Flush target cache before starting to handle each event.
3756 Target was running and cache could be stale. This is just a
3757 heuristic. Running threads may modify target memory, but we
3758 don't get any event. */
3759 target_dcache_invalidate ();
3760
3761 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3762
3763 if (debug_infrun)
3764 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3765
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
3768
3769 if (!ecs->wait_some_more)
3770 break;
3771 }
3772
3773 /* No error, don't finish the state yet. */
3774 discard_cleanups (thread_state_chain);
3775
3776 do_cleanups (old_cleanups);
3777 }
3778
3779 /* Cleanup that reinstalls the readline callback handler, if the
3780 target is running in the background. If while handling the target
3781 event something triggered a secondary prompt, like e.g., a
3782 pagination prompt, we'll have removed the callback handler (see
3783 gdb_readline_wrapper_line). Need to do this as we go back to the
3784 event loop, ready to process further input. Note this has no
3785 effect if the handler hasn't actually been removed, because calling
3786 rl_callback_handler_install resets the line buffer, thus losing
3787 input. */
3788
3789 static void
3790 reinstall_readline_callback_handler_cleanup (void *arg)
3791 {
3792 struct ui *ui = current_ui;
3793
3794 if (!ui->async)
3795 {
3796 /* We're not going back to the top level event loop yet. Don't
3797 install the readline callback, as it'd prep the terminal,
3798 readline-style (raw, noecho) (e.g., --batch). We'll install
3799 it the next time the prompt is displayed, when we're ready
3800 for input. */
3801 return;
3802 }
3803
3804 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3805 gdb_rl_callback_handler_reinstall ();
3806 }
3807
3808 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3809 that's just the event thread. In all-stop, that's all threads. */
3810
3811 static void
3812 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3813 {
3814 struct thread_info *thr = ecs->event_thread;
3815
3816 if (thr != NULL && thr->thread_fsm != NULL)
3817 thread_fsm_clean_up (thr->thread_fsm, thr);
3818
3819 if (!non_stop)
3820 {
3821 ALL_NON_EXITED_THREADS (thr)
3822 {
3823 if (thr->thread_fsm == NULL)
3824 continue;
3825 if (thr == ecs->event_thread)
3826 continue;
3827
3828 switch_to_thread (thr->ptid);
3829 thread_fsm_clean_up (thr->thread_fsm, thr);
3830 }
3831
3832 if (ecs->event_thread != NULL)
3833 switch_to_thread (ecs->event_thread->ptid);
3834 }
3835 }
3836
3837 /* Helper for all_uis_check_sync_execution_done that works on the
3838 current UI. */
3839
3840 static void
3841 check_curr_ui_sync_execution_done (void)
3842 {
3843 struct ui *ui = current_ui;
3844
3845 if (ui->prompt_state == PROMPT_NEEDED
3846 && ui->async
3847 && !gdb_in_secondary_prompt_p (ui))
3848 {
3849 target_terminal_ours ();
3850 observer_notify_sync_execution_done ();
3851 ui_register_input_event_handler (ui);
3852 }
3853 }
3854
3855 /* See infrun.h. */
3856
3857 void
3858 all_uis_check_sync_execution_done (void)
3859 {
3860 SWITCH_THRU_ALL_UIS ()
3861 {
3862 check_curr_ui_sync_execution_done ();
3863 }
3864 }
3865
3866 /* See infrun.h. */
3867
3868 void
3869 all_uis_on_sync_execution_starting (void)
3870 {
3871 SWITCH_THRU_ALL_UIS ()
3872 {
3873 if (current_ui->prompt_state == PROMPT_NEEDED)
3874 async_disable_stdin ();
3875 }
3876 }
3877
3878 /* Asynchronous version of wait_for_inferior. It is called by the
3879 event loop whenever a change of state is detected on the file
3880 descriptor corresponding to the target. It can be called more than
3881 once to complete a single execution command. In such cases we need
3882 to keep the state in a global variable ECSS. If it is the last time
3883 that this function is called for a single execution command, then
3884 report to the user that the inferior has stopped, and do the
3885 necessary cleanups. */
3886
3887 void
3888 fetch_inferior_event (void *client_data)
3889 {
3890 struct execution_control_state ecss;
3891 struct execution_control_state *ecs = &ecss;
3892 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3893 struct cleanup *ts_old_chain;
3894 int cmd_done = 0;
3895 ptid_t waiton_ptid = minus_one_ptid;
3896
3897 memset (ecs, 0, sizeof (*ecs));
3898
3899 /* Events are always processed with the main UI as current UI. This
3900 way, warnings, debug output, etc. are always consistently sent to
3901 the main console. */
3902 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3903
3904 /* End up with readline processing input, if necessary. */
3905 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3906
3907 /* We're handling a live event, so make sure we're doing live
3908 debugging. If we're looking at traceframes while the target is
3909 running, we're going to need to get back to that mode after
3910 handling the event. */
3911 if (non_stop)
3912 {
3913 make_cleanup_restore_current_traceframe ();
3914 set_current_traceframe (-1);
3915 }
3916
3917 if (non_stop)
3918 /* In non-stop mode, the user/frontend should not notice a thread
3919 switch due to internal events. Make sure we reverse to the
3920 user selected thread and frame after handling the event and
3921 running any breakpoint commands. */
3922 make_cleanup_restore_current_thread ();
3923
3924 overlay_cache_invalid = 1;
3925 /* Flush target cache before starting to handle each event. Target
3926 was running and cache could be stale. This is just a heuristic.
3927 Running threads may modify target memory, but we don't get any
3928 event. */
3929 target_dcache_invalidate ();
3930
3931 scoped_restore save_exec_dir
3932 = make_scoped_restore (&execution_direction, target_execution_direction ());
3933
3934 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3935 target_can_async_p () ? TARGET_WNOHANG : 0);
3936
3937 if (debug_infrun)
3938 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3939
3940 /* If an error happens while handling the event, propagate GDB's
3941 knowledge of the executing state to the frontend/user running
3942 state. */
3943 if (!target_is_non_stop_p ())
3944 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3945 else
3946 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3947
3948 /* Get executed before make_cleanup_restore_current_thread above to apply
3949 still for the thread which has thrown the exception. */
3950 make_bpstat_clear_actions_cleanup ();
3951
3952 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3953
3954 /* Now figure out what to do with the result of the result. */
3955 handle_inferior_event (ecs);
3956
3957 if (!ecs->wait_some_more)
3958 {
3959 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3960 int should_stop = 1;
3961 struct thread_info *thr = ecs->event_thread;
3962 int should_notify_stop = 1;
3963
3964 delete_just_stopped_threads_infrun_breakpoints ();
3965
3966 if (thr != NULL)
3967 {
3968 struct thread_fsm *thread_fsm = thr->thread_fsm;
3969
3970 if (thread_fsm != NULL)
3971 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3972 }
3973
3974 if (!should_stop)
3975 {
3976 keep_going (ecs);
3977 }
3978 else
3979 {
3980 clean_up_just_stopped_threads_fsms (ecs);
3981
3982 if (thr != NULL && thr->thread_fsm != NULL)
3983 {
3984 should_notify_stop
3985 = thread_fsm_should_notify_stop (thr->thread_fsm);
3986 }
3987
3988 if (should_notify_stop)
3989 {
3990 int proceeded = 0;
3991
3992 /* We may not find an inferior if this was a process exit. */
3993 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3994 proceeded = normal_stop ();
3995
3996 if (!proceeded)
3997 {
3998 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3999 cmd_done = 1;
4000 }
4001 }
4002 }
4003 }
4004
4005 /* No error, don't finish the thread states yet. */
4006 discard_cleanups (ts_old_chain);
4007
4008 /* Revert thread and frame. */
4009 do_cleanups (old_chain);
4010
4011 /* If a UI was in sync execution mode, and now isn't, restore its
4012 prompt (a synchronous execution command has finished, and we're
4013 ready for input). */
4014 all_uis_check_sync_execution_done ();
4015
4016 if (cmd_done
4017 && exec_done_display_p
4018 && (ptid_equal (inferior_ptid, null_ptid)
4019 || !is_running (inferior_ptid)))
4020 printf_unfiltered (_("completed.\n"));
4021 }
4022
4023 /* Record the frame and location we're currently stepping through. */
4024 void
4025 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4026 {
4027 struct thread_info *tp = inferior_thread ();
4028
4029 tp->control.step_frame_id = get_frame_id (frame);
4030 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4031
4032 tp->current_symtab = sal.symtab;
4033 tp->current_line = sal.line;
4034 }
4035
4036 /* Clear context switchable stepping state. */
4037
4038 void
4039 init_thread_stepping_state (struct thread_info *tss)
4040 {
4041 tss->stepped_breakpoint = 0;
4042 tss->stepping_over_breakpoint = 0;
4043 tss->stepping_over_watchpoint = 0;
4044 tss->step_after_step_resume_breakpoint = 0;
4045 }
4046
4047 /* Set the cached copy of the last ptid/waitstatus. */
4048
4049 void
4050 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4051 {
4052 target_last_wait_ptid = ptid;
4053 target_last_waitstatus = status;
4054 }
4055
4056 /* Return the cached copy of the last pid/waitstatus returned by
4057 target_wait()/deprecated_target_wait_hook(). The data is actually
4058 cached by handle_inferior_event(), which gets called immediately
4059 after target_wait()/deprecated_target_wait_hook(). */
4060
4061 void
4062 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4063 {
4064 *ptidp = target_last_wait_ptid;
4065 *status = target_last_waitstatus;
4066 }
4067
4068 void
4069 nullify_last_target_wait_ptid (void)
4070 {
4071 target_last_wait_ptid = minus_one_ptid;
4072 }
4073
4074 /* Switch thread contexts. */
4075
4076 static void
4077 context_switch (ptid_t ptid)
4078 {
4079 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4080 {
4081 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4082 target_pid_to_str (inferior_ptid));
4083 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4084 target_pid_to_str (ptid));
4085 }
4086
4087 switch_to_thread (ptid);
4088 }
4089
4090 /* If the target can't tell whether we've hit breakpoints
4091 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4092 check whether that could have been caused by a breakpoint. If so,
4093 adjust the PC, per gdbarch_decr_pc_after_break. */
4094
4095 static void
4096 adjust_pc_after_break (struct thread_info *thread,
4097 struct target_waitstatus *ws)
4098 {
4099 struct regcache *regcache;
4100 struct gdbarch *gdbarch;
4101 struct address_space *aspace;
4102 CORE_ADDR breakpoint_pc, decr_pc;
4103
4104 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4105 we aren't, just return.
4106
4107 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4108 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4109 implemented by software breakpoints should be handled through the normal
4110 breakpoint layer.
4111
4112 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4113 different signals (SIGILL or SIGEMT for instance), but it is less
4114 clear where the PC is pointing afterwards. It may not match
4115 gdbarch_decr_pc_after_break. I don't know any specific target that
4116 generates these signals at breakpoints (the code has been in GDB since at
4117 least 1992) so I can not guess how to handle them here.
4118
4119 In earlier versions of GDB, a target with
4120 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4121 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4122 target with both of these set in GDB history, and it seems unlikely to be
4123 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4124
4125 if (ws->kind != TARGET_WAITKIND_STOPPED)
4126 return;
4127
4128 if (ws->value.sig != GDB_SIGNAL_TRAP)
4129 return;
4130
4131 /* In reverse execution, when a breakpoint is hit, the instruction
4132 under it has already been de-executed. The reported PC always
4133 points at the breakpoint address, so adjusting it further would
4134 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4135 architecture:
4136
4137 B1 0x08000000 : INSN1
4138 B2 0x08000001 : INSN2
4139 0x08000002 : INSN3
4140 PC -> 0x08000003 : INSN4
4141
4142 Say you're stopped at 0x08000003 as above. Reverse continuing
4143 from that point should hit B2 as below. Reading the PC when the
4144 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4145 been de-executed already.
4146
4147 B1 0x08000000 : INSN1
4148 B2 PC -> 0x08000001 : INSN2
4149 0x08000002 : INSN3
4150 0x08000003 : INSN4
4151
4152 We can't apply the same logic as for forward execution, because
4153 we would wrongly adjust the PC to 0x08000000, since there's a
4154 breakpoint at PC - 1. We'd then report a hit on B1, although
4155 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4156 behaviour. */
4157 if (execution_direction == EXEC_REVERSE)
4158 return;
4159
4160 /* If the target can tell whether the thread hit a SW breakpoint,
4161 trust it. Targets that can tell also adjust the PC
4162 themselves. */
4163 if (target_supports_stopped_by_sw_breakpoint ())
4164 return;
4165
4166 /* Note that relying on whether a breakpoint is planted in memory to
4167 determine this can fail. E.g,. the breakpoint could have been
4168 removed since. Or the thread could have been told to step an
4169 instruction the size of a breakpoint instruction, and only
4170 _after_ was a breakpoint inserted at its address. */
4171
4172 /* If this target does not decrement the PC after breakpoints, then
4173 we have nothing to do. */
4174 regcache = get_thread_regcache (thread->ptid);
4175 gdbarch = get_regcache_arch (regcache);
4176
4177 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4178 if (decr_pc == 0)
4179 return;
4180
4181 aspace = get_regcache_aspace (regcache);
4182
4183 /* Find the location where (if we've hit a breakpoint) the
4184 breakpoint would be. */
4185 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4186
4187 /* If the target can't tell whether a software breakpoint triggered,
4188 fallback to figuring it out based on breakpoints we think were
4189 inserted in the target, and on whether the thread was stepped or
4190 continued. */
4191
4192 /* Check whether there actually is a software breakpoint inserted at
4193 that location.
4194
4195 If in non-stop mode, a race condition is possible where we've
4196 removed a breakpoint, but stop events for that breakpoint were
4197 already queued and arrive later. To suppress those spurious
4198 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4199 and retire them after a number of stop events are reported. Note
4200 this is an heuristic and can thus get confused. The real fix is
4201 to get the "stopped by SW BP and needs adjustment" info out of
4202 the target/kernel (and thus never reach here; see above). */
4203 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4204 || (target_is_non_stop_p ()
4205 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4206 {
4207 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4208
4209 if (record_full_is_used ())
4210 record_full_gdb_operation_disable_set ();
4211
4212 /* When using hardware single-step, a SIGTRAP is reported for both
4213 a completed single-step and a software breakpoint. Need to
4214 differentiate between the two, as the latter needs adjusting
4215 but the former does not.
4216
4217 The SIGTRAP can be due to a completed hardware single-step only if
4218 - we didn't insert software single-step breakpoints
4219 - this thread is currently being stepped
4220
4221 If any of these events did not occur, we must have stopped due
4222 to hitting a software breakpoint, and have to back up to the
4223 breakpoint address.
4224
4225 As a special case, we could have hardware single-stepped a
4226 software breakpoint. In this case (prev_pc == breakpoint_pc),
4227 we also need to back up to the breakpoint address. */
4228
4229 if (thread_has_single_step_breakpoints_set (thread)
4230 || !currently_stepping (thread)
4231 || (thread->stepped_breakpoint
4232 && thread->prev_pc == breakpoint_pc))
4233 regcache_write_pc (regcache, breakpoint_pc);
4234
4235 do_cleanups (old_cleanups);
4236 }
4237 }
4238
4239 static int
4240 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4241 {
4242 for (frame = get_prev_frame (frame);
4243 frame != NULL;
4244 frame = get_prev_frame (frame))
4245 {
4246 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4247 return 1;
4248 if (get_frame_type (frame) != INLINE_FRAME)
4249 break;
4250 }
4251
4252 return 0;
4253 }
4254
4255 /* Auxiliary function that handles syscall entry/return events.
4256 It returns 1 if the inferior should keep going (and GDB
4257 should ignore the event), or 0 if the event deserves to be
4258 processed. */
4259
4260 static int
4261 handle_syscall_event (struct execution_control_state *ecs)
4262 {
4263 struct regcache *regcache;
4264 int syscall_number;
4265
4266 if (!ptid_equal (ecs->ptid, inferior_ptid))
4267 context_switch (ecs->ptid);
4268
4269 regcache = get_thread_regcache (ecs->ptid);
4270 syscall_number = ecs->ws.value.syscall_number;
4271 stop_pc = regcache_read_pc (regcache);
4272
4273 if (catch_syscall_enabled () > 0
4274 && catching_syscall_number (syscall_number) > 0)
4275 {
4276 if (debug_infrun)
4277 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4278 syscall_number);
4279
4280 ecs->event_thread->control.stop_bpstat
4281 = bpstat_stop_status (get_regcache_aspace (regcache),
4282 stop_pc, ecs->ptid, &ecs->ws);
4283
4284 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4285 {
4286 /* Catchpoint hit. */
4287 return 0;
4288 }
4289 }
4290
4291 /* If no catchpoint triggered for this, then keep going. */
4292 keep_going (ecs);
4293 return 1;
4294 }
4295
4296 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4297
4298 static void
4299 fill_in_stop_func (struct gdbarch *gdbarch,
4300 struct execution_control_state *ecs)
4301 {
4302 if (!ecs->stop_func_filled_in)
4303 {
4304 /* Don't care about return value; stop_func_start and stop_func_name
4305 will both be 0 if it doesn't work. */
4306 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4307 &ecs->stop_func_start, &ecs->stop_func_end);
4308 ecs->stop_func_start
4309 += gdbarch_deprecated_function_start_offset (gdbarch);
4310
4311 if (gdbarch_skip_entrypoint_p (gdbarch))
4312 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4313 ecs->stop_func_start);
4314
4315 ecs->stop_func_filled_in = 1;
4316 }
4317 }
4318
4319
4320 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4321
4322 static enum stop_kind
4323 get_inferior_stop_soon (ptid_t ptid)
4324 {
4325 struct inferior *inf = find_inferior_ptid (ptid);
4326
4327 gdb_assert (inf != NULL);
4328 return inf->control.stop_soon;
4329 }
4330
4331 /* Wait for one event. Store the resulting waitstatus in WS, and
4332 return the event ptid. */
4333
4334 static ptid_t
4335 wait_one (struct target_waitstatus *ws)
4336 {
4337 ptid_t event_ptid;
4338 ptid_t wait_ptid = minus_one_ptid;
4339
4340 overlay_cache_invalid = 1;
4341
4342 /* Flush target cache before starting to handle each event.
4343 Target was running and cache could be stale. This is just a
4344 heuristic. Running threads may modify target memory, but we
4345 don't get any event. */
4346 target_dcache_invalidate ();
4347
4348 if (deprecated_target_wait_hook)
4349 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4350 else
4351 event_ptid = target_wait (wait_ptid, ws, 0);
4352
4353 if (debug_infrun)
4354 print_target_wait_results (wait_ptid, event_ptid, ws);
4355
4356 return event_ptid;
4357 }
4358
4359 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4360 instead of the current thread. */
4361 #define THREAD_STOPPED_BY(REASON) \
4362 static int \
4363 thread_stopped_by_ ## REASON (ptid_t ptid) \
4364 { \
4365 struct cleanup *old_chain; \
4366 int res; \
4367 \
4368 old_chain = save_inferior_ptid (); \
4369 inferior_ptid = ptid; \
4370 \
4371 res = target_stopped_by_ ## REASON (); \
4372 \
4373 do_cleanups (old_chain); \
4374 \
4375 return res; \
4376 }
4377
4378 /* Generate thread_stopped_by_watchpoint. */
4379 THREAD_STOPPED_BY (watchpoint)
4380 /* Generate thread_stopped_by_sw_breakpoint. */
4381 THREAD_STOPPED_BY (sw_breakpoint)
4382 /* Generate thread_stopped_by_hw_breakpoint. */
4383 THREAD_STOPPED_BY (hw_breakpoint)
4384
4385 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4386
4387 static void
4388 switch_to_thread_cleanup (void *ptid_p)
4389 {
4390 ptid_t ptid = *(ptid_t *) ptid_p;
4391
4392 switch_to_thread (ptid);
4393 }
4394
4395 /* Save the thread's event and stop reason to process it later. */
4396
4397 static void
4398 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4399 {
4400 struct regcache *regcache;
4401 struct address_space *aspace;
4402
4403 if (debug_infrun)
4404 {
4405 char *statstr;
4406
4407 statstr = target_waitstatus_to_string (ws);
4408 fprintf_unfiltered (gdb_stdlog,
4409 "infrun: saving status %s for %d.%ld.%ld\n",
4410 statstr,
4411 ptid_get_pid (tp->ptid),
4412 ptid_get_lwp (tp->ptid),
4413 ptid_get_tid (tp->ptid));
4414 xfree (statstr);
4415 }
4416
4417 /* Record for later. */
4418 tp->suspend.waitstatus = *ws;
4419 tp->suspend.waitstatus_pending_p = 1;
4420
4421 regcache = get_thread_regcache (tp->ptid);
4422 aspace = get_regcache_aspace (regcache);
4423
4424 if (ws->kind == TARGET_WAITKIND_STOPPED
4425 && ws->value.sig == GDB_SIGNAL_TRAP)
4426 {
4427 CORE_ADDR pc = regcache_read_pc (regcache);
4428
4429 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4430
4431 if (thread_stopped_by_watchpoint (tp->ptid))
4432 {
4433 tp->suspend.stop_reason
4434 = TARGET_STOPPED_BY_WATCHPOINT;
4435 }
4436 else if (target_supports_stopped_by_sw_breakpoint ()
4437 && thread_stopped_by_sw_breakpoint (tp->ptid))
4438 {
4439 tp->suspend.stop_reason
4440 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4441 }
4442 else if (target_supports_stopped_by_hw_breakpoint ()
4443 && thread_stopped_by_hw_breakpoint (tp->ptid))
4444 {
4445 tp->suspend.stop_reason
4446 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4447 }
4448 else if (!target_supports_stopped_by_hw_breakpoint ()
4449 && hardware_breakpoint_inserted_here_p (aspace,
4450 pc))
4451 {
4452 tp->suspend.stop_reason
4453 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4454 }
4455 else if (!target_supports_stopped_by_sw_breakpoint ()
4456 && software_breakpoint_inserted_here_p (aspace,
4457 pc))
4458 {
4459 tp->suspend.stop_reason
4460 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4461 }
4462 else if (!thread_has_single_step_breakpoints_set (tp)
4463 && currently_stepping (tp))
4464 {
4465 tp->suspend.stop_reason
4466 = TARGET_STOPPED_BY_SINGLE_STEP;
4467 }
4468 }
4469 }
4470
4471 /* A cleanup that disables thread create/exit events. */
4472
4473 static void
4474 disable_thread_events (void *arg)
4475 {
4476 target_thread_events (0);
4477 }
4478
4479 /* See infrun.h. */
4480
4481 void
4482 stop_all_threads (void)
4483 {
4484 /* We may need multiple passes to discover all threads. */
4485 int pass;
4486 int iterations = 0;
4487 ptid_t entry_ptid;
4488 struct cleanup *old_chain;
4489
4490 gdb_assert (target_is_non_stop_p ());
4491
4492 if (debug_infrun)
4493 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4494
4495 entry_ptid = inferior_ptid;
4496 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4497
4498 target_thread_events (1);
4499 make_cleanup (disable_thread_events, NULL);
4500
4501 /* Request threads to stop, and then wait for the stops. Because
4502 threads we already know about can spawn more threads while we're
4503 trying to stop them, and we only learn about new threads when we
4504 update the thread list, do this in a loop, and keep iterating
4505 until two passes find no threads that need to be stopped. */
4506 for (pass = 0; pass < 2; pass++, iterations++)
4507 {
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog,
4510 "infrun: stop_all_threads, pass=%d, "
4511 "iterations=%d\n", pass, iterations);
4512 while (1)
4513 {
4514 ptid_t event_ptid;
4515 struct target_waitstatus ws;
4516 int need_wait = 0;
4517 struct thread_info *t;
4518
4519 update_thread_list ();
4520
4521 /* Go through all threads looking for threads that we need
4522 to tell the target to stop. */
4523 ALL_NON_EXITED_THREADS (t)
4524 {
4525 if (t->executing)
4526 {
4527 /* If already stopping, don't request a stop again.
4528 We just haven't seen the notification yet. */
4529 if (!t->stop_requested)
4530 {
4531 if (debug_infrun)
4532 fprintf_unfiltered (gdb_stdlog,
4533 "infrun: %s executing, "
4534 "need stop\n",
4535 target_pid_to_str (t->ptid));
4536 target_stop (t->ptid);
4537 t->stop_requested = 1;
4538 }
4539 else
4540 {
4541 if (debug_infrun)
4542 fprintf_unfiltered (gdb_stdlog,
4543 "infrun: %s executing, "
4544 "already stopping\n",
4545 target_pid_to_str (t->ptid));
4546 }
4547
4548 if (t->stop_requested)
4549 need_wait = 1;
4550 }
4551 else
4552 {
4553 if (debug_infrun)
4554 fprintf_unfiltered (gdb_stdlog,
4555 "infrun: %s not executing\n",
4556 target_pid_to_str (t->ptid));
4557
4558 /* The thread may be not executing, but still be
4559 resumed with a pending status to process. */
4560 t->resumed = 0;
4561 }
4562 }
4563
4564 if (!need_wait)
4565 break;
4566
4567 /* If we find new threads on the second iteration, restart
4568 over. We want to see two iterations in a row with all
4569 threads stopped. */
4570 if (pass > 0)
4571 pass = -1;
4572
4573 event_ptid = wait_one (&ws);
4574 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4575 {
4576 /* All resumed threads exited. */
4577 }
4578 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4579 || ws.kind == TARGET_WAITKIND_EXITED
4580 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4581 {
4582 if (debug_infrun)
4583 {
4584 ptid_t ptid = pid_to_ptid (ws.value.integer);
4585
4586 fprintf_unfiltered (gdb_stdlog,
4587 "infrun: %s exited while "
4588 "stopping threads\n",
4589 target_pid_to_str (ptid));
4590 }
4591 }
4592 else
4593 {
4594 struct inferior *inf;
4595
4596 t = find_thread_ptid (event_ptid);
4597 if (t == NULL)
4598 t = add_thread (event_ptid);
4599
4600 t->stop_requested = 0;
4601 t->executing = 0;
4602 t->resumed = 0;
4603 t->control.may_range_step = 0;
4604
4605 /* This may be the first time we see the inferior report
4606 a stop. */
4607 inf = find_inferior_ptid (event_ptid);
4608 if (inf->needs_setup)
4609 {
4610 switch_to_thread_no_regs (t);
4611 setup_inferior (0);
4612 }
4613
4614 if (ws.kind == TARGET_WAITKIND_STOPPED
4615 && ws.value.sig == GDB_SIGNAL_0)
4616 {
4617 /* We caught the event that we intended to catch, so
4618 there's no event pending. */
4619 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4620 t->suspend.waitstatus_pending_p = 0;
4621
4622 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4623 {
4624 /* Add it back to the step-over queue. */
4625 if (debug_infrun)
4626 {
4627 fprintf_unfiltered (gdb_stdlog,
4628 "infrun: displaced-step of %s "
4629 "canceled: adding back to the "
4630 "step-over queue\n",
4631 target_pid_to_str (t->ptid));
4632 }
4633 t->control.trap_expected = 0;
4634 thread_step_over_chain_enqueue (t);
4635 }
4636 }
4637 else
4638 {
4639 enum gdb_signal sig;
4640 struct regcache *regcache;
4641
4642 if (debug_infrun)
4643 {
4644 char *statstr;
4645
4646 statstr = target_waitstatus_to_string (&ws);
4647 fprintf_unfiltered (gdb_stdlog,
4648 "infrun: target_wait %s, saving "
4649 "status for %d.%ld.%ld\n",
4650 statstr,
4651 ptid_get_pid (t->ptid),
4652 ptid_get_lwp (t->ptid),
4653 ptid_get_tid (t->ptid));
4654 xfree (statstr);
4655 }
4656
4657 /* Record for later. */
4658 save_waitstatus (t, &ws);
4659
4660 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4661 ? ws.value.sig : GDB_SIGNAL_0);
4662
4663 if (displaced_step_fixup (t->ptid, sig) < 0)
4664 {
4665 /* Add it back to the step-over queue. */
4666 t->control.trap_expected = 0;
4667 thread_step_over_chain_enqueue (t);
4668 }
4669
4670 regcache = get_thread_regcache (t->ptid);
4671 t->suspend.stop_pc = regcache_read_pc (regcache);
4672
4673 if (debug_infrun)
4674 {
4675 fprintf_unfiltered (gdb_stdlog,
4676 "infrun: saved stop_pc=%s for %s "
4677 "(currently_stepping=%d)\n",
4678 paddress (target_gdbarch (),
4679 t->suspend.stop_pc),
4680 target_pid_to_str (t->ptid),
4681 currently_stepping (t));
4682 }
4683 }
4684 }
4685 }
4686 }
4687
4688 do_cleanups (old_chain);
4689
4690 if (debug_infrun)
4691 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4692 }
4693
4694 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4695
4696 static int
4697 handle_no_resumed (struct execution_control_state *ecs)
4698 {
4699 struct inferior *inf;
4700 struct thread_info *thread;
4701
4702 if (target_can_async_p ())
4703 {
4704 struct ui *ui;
4705 int any_sync = 0;
4706
4707 ALL_UIS (ui)
4708 {
4709 if (ui->prompt_state == PROMPT_BLOCKED)
4710 {
4711 any_sync = 1;
4712 break;
4713 }
4714 }
4715 if (!any_sync)
4716 {
4717 /* There were no unwaited-for children left in the target, but,
4718 we're not synchronously waiting for events either. Just
4719 ignore. */
4720
4721 if (debug_infrun)
4722 fprintf_unfiltered (gdb_stdlog,
4723 "infrun: TARGET_WAITKIND_NO_RESUMED "
4724 "(ignoring: bg)\n");
4725 prepare_to_wait (ecs);
4726 return 1;
4727 }
4728 }
4729
4730 /* Otherwise, if we were running a synchronous execution command, we
4731 may need to cancel it and give the user back the terminal.
4732
4733 In non-stop mode, the target can't tell whether we've already
4734 consumed previous stop events, so it can end up sending us a
4735 no-resumed event like so:
4736
4737 #0 - thread 1 is left stopped
4738
4739 #1 - thread 2 is resumed and hits breakpoint
4740 -> TARGET_WAITKIND_STOPPED
4741
4742 #2 - thread 3 is resumed and exits
4743 this is the last resumed thread, so
4744 -> TARGET_WAITKIND_NO_RESUMED
4745
4746 #3 - gdb processes stop for thread 2 and decides to re-resume
4747 it.
4748
4749 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4750 thread 2 is now resumed, so the event should be ignored.
4751
4752 IOW, if the stop for thread 2 doesn't end a foreground command,
4753 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4754 event. But it could be that the event meant that thread 2 itself
4755 (or whatever other thread was the last resumed thread) exited.
4756
4757 To address this we refresh the thread list and check whether we
4758 have resumed threads _now_. In the example above, this removes
4759 thread 3 from the thread list. If thread 2 was re-resumed, we
4760 ignore this event. If we find no thread resumed, then we cancel
4761 the synchronous command show "no unwaited-for " to the user. */
4762 update_thread_list ();
4763
4764 ALL_NON_EXITED_THREADS (thread)
4765 {
4766 if (thread->executing
4767 || thread->suspend.waitstatus_pending_p)
4768 {
4769 /* There were no unwaited-for children left in the target at
4770 some point, but there are now. Just ignore. */
4771 if (debug_infrun)
4772 fprintf_unfiltered (gdb_stdlog,
4773 "infrun: TARGET_WAITKIND_NO_RESUMED "
4774 "(ignoring: found resumed)\n");
4775 prepare_to_wait (ecs);
4776 return 1;
4777 }
4778 }
4779
4780 /* Note however that we may find no resumed thread because the whole
4781 process exited meanwhile (thus updating the thread list results
4782 in an empty thread list). In this case we know we'll be getting
4783 a process exit event shortly. */
4784 ALL_INFERIORS (inf)
4785 {
4786 if (inf->pid == 0)
4787 continue;
4788
4789 thread = any_live_thread_of_process (inf->pid);
4790 if (thread == NULL)
4791 {
4792 if (debug_infrun)
4793 fprintf_unfiltered (gdb_stdlog,
4794 "infrun: TARGET_WAITKIND_NO_RESUMED "
4795 "(expect process exit)\n");
4796 prepare_to_wait (ecs);
4797 return 1;
4798 }
4799 }
4800
4801 /* Go ahead and report the event. */
4802 return 0;
4803 }
4804
4805 /* Given an execution control state that has been freshly filled in by
4806 an event from the inferior, figure out what it means and take
4807 appropriate action.
4808
4809 The alternatives are:
4810
4811 1) stop_waiting and return; to really stop and return to the
4812 debugger.
4813
4814 2) keep_going and return; to wait for the next event (set
4815 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4816 once). */
4817
4818 static void
4819 handle_inferior_event_1 (struct execution_control_state *ecs)
4820 {
4821 enum stop_kind stop_soon;
4822
4823 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4824 {
4825 /* We had an event in the inferior, but we are not interested in
4826 handling it at this level. The lower layers have already
4827 done what needs to be done, if anything.
4828
4829 One of the possible circumstances for this is when the
4830 inferior produces output for the console. The inferior has
4831 not stopped, and we are ignoring the event. Another possible
4832 circumstance is any event which the lower level knows will be
4833 reported multiple times without an intervening resume. */
4834 if (debug_infrun)
4835 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4836 prepare_to_wait (ecs);
4837 return;
4838 }
4839
4840 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4841 {
4842 if (debug_infrun)
4843 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4844 prepare_to_wait (ecs);
4845 return;
4846 }
4847
4848 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4849 && handle_no_resumed (ecs))
4850 return;
4851
4852 /* Cache the last pid/waitstatus. */
4853 set_last_target_status (ecs->ptid, ecs->ws);
4854
4855 /* Always clear state belonging to the previous time we stopped. */
4856 stop_stack_dummy = STOP_NONE;
4857
4858 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4859 {
4860 /* No unwaited-for children left. IOW, all resumed children
4861 have exited. */
4862 if (debug_infrun)
4863 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4864
4865 stop_print_frame = 0;
4866 stop_waiting (ecs);
4867 return;
4868 }
4869
4870 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4871 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4872 {
4873 ecs->event_thread = find_thread_ptid (ecs->ptid);
4874 /* If it's a new thread, add it to the thread database. */
4875 if (ecs->event_thread == NULL)
4876 ecs->event_thread = add_thread (ecs->ptid);
4877
4878 /* Disable range stepping. If the next step request could use a
4879 range, this will be end up re-enabled then. */
4880 ecs->event_thread->control.may_range_step = 0;
4881 }
4882
4883 /* Dependent on valid ECS->EVENT_THREAD. */
4884 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4885
4886 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4887 reinit_frame_cache ();
4888
4889 breakpoint_retire_moribund ();
4890
4891 /* First, distinguish signals caused by the debugger from signals
4892 that have to do with the program's own actions. Note that
4893 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4894 on the operating system version. Here we detect when a SIGILL or
4895 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4896 something similar for SIGSEGV, since a SIGSEGV will be generated
4897 when we're trying to execute a breakpoint instruction on a
4898 non-executable stack. This happens for call dummy breakpoints
4899 for architectures like SPARC that place call dummies on the
4900 stack. */
4901 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4902 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4903 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4904 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4905 {
4906 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4907
4908 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4909 regcache_read_pc (regcache)))
4910 {
4911 if (debug_infrun)
4912 fprintf_unfiltered (gdb_stdlog,
4913 "infrun: Treating signal as SIGTRAP\n");
4914 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4915 }
4916 }
4917
4918 /* Mark the non-executing threads accordingly. In all-stop, all
4919 threads of all processes are stopped when we get any event
4920 reported. In non-stop mode, only the event thread stops. */
4921 {
4922 ptid_t mark_ptid;
4923
4924 if (!target_is_non_stop_p ())
4925 mark_ptid = minus_one_ptid;
4926 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4927 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4928 {
4929 /* If we're handling a process exit in non-stop mode, even
4930 though threads haven't been deleted yet, one would think
4931 that there is nothing to do, as threads of the dead process
4932 will be soon deleted, and threads of any other process were
4933 left running. However, on some targets, threads survive a
4934 process exit event. E.g., for the "checkpoint" command,
4935 when the current checkpoint/fork exits, linux-fork.c
4936 automatically switches to another fork from within
4937 target_mourn_inferior, by associating the same
4938 inferior/thread to another fork. We haven't mourned yet at
4939 this point, but we must mark any threads left in the
4940 process as not-executing so that finish_thread_state marks
4941 them stopped (in the user's perspective) if/when we present
4942 the stop to the user. */
4943 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4944 }
4945 else
4946 mark_ptid = ecs->ptid;
4947
4948 set_executing (mark_ptid, 0);
4949
4950 /* Likewise the resumed flag. */
4951 set_resumed (mark_ptid, 0);
4952 }
4953
4954 switch (ecs->ws.kind)
4955 {
4956 case TARGET_WAITKIND_LOADED:
4957 if (debug_infrun)
4958 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4959 if (!ptid_equal (ecs->ptid, inferior_ptid))
4960 context_switch (ecs->ptid);
4961 /* Ignore gracefully during startup of the inferior, as it might
4962 be the shell which has just loaded some objects, otherwise
4963 add the symbols for the newly loaded objects. Also ignore at
4964 the beginning of an attach or remote session; we will query
4965 the full list of libraries once the connection is
4966 established. */
4967
4968 stop_soon = get_inferior_stop_soon (ecs->ptid);
4969 if (stop_soon == NO_STOP_QUIETLY)
4970 {
4971 struct regcache *regcache;
4972
4973 regcache = get_thread_regcache (ecs->ptid);
4974
4975 handle_solib_event ();
4976
4977 ecs->event_thread->control.stop_bpstat
4978 = bpstat_stop_status (get_regcache_aspace (regcache),
4979 stop_pc, ecs->ptid, &ecs->ws);
4980
4981 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4982 {
4983 /* A catchpoint triggered. */
4984 process_event_stop_test (ecs);
4985 return;
4986 }
4987
4988 /* If requested, stop when the dynamic linker notifies
4989 gdb of events. This allows the user to get control
4990 and place breakpoints in initializer routines for
4991 dynamically loaded objects (among other things). */
4992 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4993 if (stop_on_solib_events)
4994 {
4995 /* Make sure we print "Stopped due to solib-event" in
4996 normal_stop. */
4997 stop_print_frame = 1;
4998
4999 stop_waiting (ecs);
5000 return;
5001 }
5002 }
5003
5004 /* If we are skipping through a shell, or through shared library
5005 loading that we aren't interested in, resume the program. If
5006 we're running the program normally, also resume. */
5007 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5008 {
5009 /* Loading of shared libraries might have changed breakpoint
5010 addresses. Make sure new breakpoints are inserted. */
5011 if (stop_soon == NO_STOP_QUIETLY)
5012 insert_breakpoints ();
5013 resume (GDB_SIGNAL_0);
5014 prepare_to_wait (ecs);
5015 return;
5016 }
5017
5018 /* But stop if we're attaching or setting up a remote
5019 connection. */
5020 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5021 || stop_soon == STOP_QUIETLY_REMOTE)
5022 {
5023 if (debug_infrun)
5024 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5025 stop_waiting (ecs);
5026 return;
5027 }
5028
5029 internal_error (__FILE__, __LINE__,
5030 _("unhandled stop_soon: %d"), (int) stop_soon);
5031
5032 case TARGET_WAITKIND_SPURIOUS:
5033 if (debug_infrun)
5034 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5035 if (!ptid_equal (ecs->ptid, inferior_ptid))
5036 context_switch (ecs->ptid);
5037 resume (GDB_SIGNAL_0);
5038 prepare_to_wait (ecs);
5039 return;
5040
5041 case TARGET_WAITKIND_THREAD_CREATED:
5042 if (debug_infrun)
5043 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5044 if (!ptid_equal (ecs->ptid, inferior_ptid))
5045 context_switch (ecs->ptid);
5046 if (!switch_back_to_stepped_thread (ecs))
5047 keep_going (ecs);
5048 return;
5049
5050 case TARGET_WAITKIND_EXITED:
5051 case TARGET_WAITKIND_SIGNALLED:
5052 if (debug_infrun)
5053 {
5054 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5055 fprintf_unfiltered (gdb_stdlog,
5056 "infrun: TARGET_WAITKIND_EXITED\n");
5057 else
5058 fprintf_unfiltered (gdb_stdlog,
5059 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5060 }
5061
5062 inferior_ptid = ecs->ptid;
5063 set_current_inferior (find_inferior_ptid (ecs->ptid));
5064 set_current_program_space (current_inferior ()->pspace);
5065 handle_vfork_child_exec_or_exit (0);
5066 target_terminal_ours (); /* Must do this before mourn anyway. */
5067
5068 /* Clearing any previous state of convenience variables. */
5069 clear_exit_convenience_vars ();
5070
5071 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5072 {
5073 /* Record the exit code in the convenience variable $_exitcode, so
5074 that the user can inspect this again later. */
5075 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5076 (LONGEST) ecs->ws.value.integer);
5077
5078 /* Also record this in the inferior itself. */
5079 current_inferior ()->has_exit_code = 1;
5080 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5081
5082 /* Support the --return-child-result option. */
5083 return_child_result_value = ecs->ws.value.integer;
5084
5085 observer_notify_exited (ecs->ws.value.integer);
5086 }
5087 else
5088 {
5089 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5090 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5091
5092 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5093 {
5094 /* Set the value of the internal variable $_exitsignal,
5095 which holds the signal uncaught by the inferior. */
5096 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5097 gdbarch_gdb_signal_to_target (gdbarch,
5098 ecs->ws.value.sig));
5099 }
5100 else
5101 {
5102 /* We don't have access to the target's method used for
5103 converting between signal numbers (GDB's internal
5104 representation <-> target's representation).
5105 Therefore, we cannot do a good job at displaying this
5106 information to the user. It's better to just warn
5107 her about it (if infrun debugging is enabled), and
5108 give up. */
5109 if (debug_infrun)
5110 fprintf_filtered (gdb_stdlog, _("\
5111 Cannot fill $_exitsignal with the correct signal number.\n"));
5112 }
5113
5114 observer_notify_signal_exited (ecs->ws.value.sig);
5115 }
5116
5117 gdb_flush (gdb_stdout);
5118 target_mourn_inferior (inferior_ptid);
5119 stop_print_frame = 0;
5120 stop_waiting (ecs);
5121 return;
5122
5123 /* The following are the only cases in which we keep going;
5124 the above cases end in a continue or goto. */
5125 case TARGET_WAITKIND_FORKED:
5126 case TARGET_WAITKIND_VFORKED:
5127 if (debug_infrun)
5128 {
5129 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5130 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5131 else
5132 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5133 }
5134
5135 /* Check whether the inferior is displaced stepping. */
5136 {
5137 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5138 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5139
5140 /* If checking displaced stepping is supported, and thread
5141 ecs->ptid is displaced stepping. */
5142 if (displaced_step_in_progress_thread (ecs->ptid))
5143 {
5144 struct inferior *parent_inf
5145 = find_inferior_ptid (ecs->ptid);
5146 struct regcache *child_regcache;
5147 CORE_ADDR parent_pc;
5148
5149 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5150 indicating that the displaced stepping of syscall instruction
5151 has been done. Perform cleanup for parent process here. Note
5152 that this operation also cleans up the child process for vfork,
5153 because their pages are shared. */
5154 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5155 /* Start a new step-over in another thread if there's one
5156 that needs it. */
5157 start_step_over ();
5158
5159 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5160 {
5161 struct displaced_step_inferior_state *displaced
5162 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5163
5164 /* Restore scratch pad for child process. */
5165 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5166 }
5167
5168 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5169 the child's PC is also within the scratchpad. Set the child's PC
5170 to the parent's PC value, which has already been fixed up.
5171 FIXME: we use the parent's aspace here, although we're touching
5172 the child, because the child hasn't been added to the inferior
5173 list yet at this point. */
5174
5175 child_regcache
5176 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5177 gdbarch,
5178 parent_inf->aspace);
5179 /* Read PC value of parent process. */
5180 parent_pc = regcache_read_pc (regcache);
5181
5182 if (debug_displaced)
5183 fprintf_unfiltered (gdb_stdlog,
5184 "displaced: write child pc from %s to %s\n",
5185 paddress (gdbarch,
5186 regcache_read_pc (child_regcache)),
5187 paddress (gdbarch, parent_pc));
5188
5189 regcache_write_pc (child_regcache, parent_pc);
5190 }
5191 }
5192
5193 if (!ptid_equal (ecs->ptid, inferior_ptid))
5194 context_switch (ecs->ptid);
5195
5196 /* Immediately detach breakpoints from the child before there's
5197 any chance of letting the user delete breakpoints from the
5198 breakpoint lists. If we don't do this early, it's easy to
5199 leave left over traps in the child, vis: "break foo; catch
5200 fork; c; <fork>; del; c; <child calls foo>". We only follow
5201 the fork on the last `continue', and by that time the
5202 breakpoint at "foo" is long gone from the breakpoint table.
5203 If we vforked, then we don't need to unpatch here, since both
5204 parent and child are sharing the same memory pages; we'll
5205 need to unpatch at follow/detach time instead to be certain
5206 that new breakpoints added between catchpoint hit time and
5207 vfork follow are detached. */
5208 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5209 {
5210 /* This won't actually modify the breakpoint list, but will
5211 physically remove the breakpoints from the child. */
5212 detach_breakpoints (ecs->ws.value.related_pid);
5213 }
5214
5215 delete_just_stopped_threads_single_step_breakpoints ();
5216
5217 /* In case the event is caught by a catchpoint, remember that
5218 the event is to be followed at the next resume of the thread,
5219 and not immediately. */
5220 ecs->event_thread->pending_follow = ecs->ws;
5221
5222 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5223
5224 ecs->event_thread->control.stop_bpstat
5225 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5226 stop_pc, ecs->ptid, &ecs->ws);
5227
5228 /* If no catchpoint triggered for this, then keep going. Note
5229 that we're interested in knowing the bpstat actually causes a
5230 stop, not just if it may explain the signal. Software
5231 watchpoints, for example, always appear in the bpstat. */
5232 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5233 {
5234 ptid_t parent;
5235 ptid_t child;
5236 int should_resume;
5237 int follow_child
5238 = (follow_fork_mode_string == follow_fork_mode_child);
5239
5240 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5241
5242 should_resume = follow_fork ();
5243
5244 parent = ecs->ptid;
5245 child = ecs->ws.value.related_pid;
5246
5247 /* At this point, the parent is marked running, and the
5248 child is marked stopped. */
5249
5250 /* If not resuming the parent, mark it stopped. */
5251 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5252 set_running (parent, 0);
5253
5254 /* If resuming the child, mark it running. */
5255 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5256 set_running (child, 1);
5257
5258 /* In non-stop mode, also resume the other branch. */
5259 if (!detach_fork && (non_stop
5260 || (sched_multi && target_is_non_stop_p ())))
5261 {
5262 if (follow_child)
5263 switch_to_thread (parent);
5264 else
5265 switch_to_thread (child);
5266
5267 ecs->event_thread = inferior_thread ();
5268 ecs->ptid = inferior_ptid;
5269 keep_going (ecs);
5270 }
5271
5272 if (follow_child)
5273 switch_to_thread (child);
5274 else
5275 switch_to_thread (parent);
5276
5277 ecs->event_thread = inferior_thread ();
5278 ecs->ptid = inferior_ptid;
5279
5280 if (should_resume)
5281 keep_going (ecs);
5282 else
5283 stop_waiting (ecs);
5284 return;
5285 }
5286 process_event_stop_test (ecs);
5287 return;
5288
5289 case TARGET_WAITKIND_VFORK_DONE:
5290 /* Done with the shared memory region. Re-insert breakpoints in
5291 the parent, and keep going. */
5292
5293 if (debug_infrun)
5294 fprintf_unfiltered (gdb_stdlog,
5295 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5296
5297 if (!ptid_equal (ecs->ptid, inferior_ptid))
5298 context_switch (ecs->ptid);
5299
5300 current_inferior ()->waiting_for_vfork_done = 0;
5301 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5302 /* This also takes care of reinserting breakpoints in the
5303 previously locked inferior. */
5304 keep_going (ecs);
5305 return;
5306
5307 case TARGET_WAITKIND_EXECD:
5308 if (debug_infrun)
5309 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5310
5311 if (!ptid_equal (ecs->ptid, inferior_ptid))
5312 context_switch (ecs->ptid);
5313
5314 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5315
5316 /* Do whatever is necessary to the parent branch of the vfork. */
5317 handle_vfork_child_exec_or_exit (1);
5318
5319 /* This causes the eventpoints and symbol table to be reset.
5320 Must do this now, before trying to determine whether to
5321 stop. */
5322 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5323
5324 /* In follow_exec we may have deleted the original thread and
5325 created a new one. Make sure that the event thread is the
5326 execd thread for that case (this is a nop otherwise). */
5327 ecs->event_thread = inferior_thread ();
5328
5329 ecs->event_thread->control.stop_bpstat
5330 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5331 stop_pc, ecs->ptid, &ecs->ws);
5332
5333 /* Note that this may be referenced from inside
5334 bpstat_stop_status above, through inferior_has_execd. */
5335 xfree (ecs->ws.value.execd_pathname);
5336 ecs->ws.value.execd_pathname = NULL;
5337
5338 /* If no catchpoint triggered for this, then keep going. */
5339 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5340 {
5341 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5342 keep_going (ecs);
5343 return;
5344 }
5345 process_event_stop_test (ecs);
5346 return;
5347
5348 /* Be careful not to try to gather much state about a thread
5349 that's in a syscall. It's frequently a losing proposition. */
5350 case TARGET_WAITKIND_SYSCALL_ENTRY:
5351 if (debug_infrun)
5352 fprintf_unfiltered (gdb_stdlog,
5353 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5354 /* Getting the current syscall number. */
5355 if (handle_syscall_event (ecs) == 0)
5356 process_event_stop_test (ecs);
5357 return;
5358
5359 /* Before examining the threads further, step this thread to
5360 get it entirely out of the syscall. (We get notice of the
5361 event when the thread is just on the verge of exiting a
5362 syscall. Stepping one instruction seems to get it back
5363 into user code.) */
5364 case TARGET_WAITKIND_SYSCALL_RETURN:
5365 if (debug_infrun)
5366 fprintf_unfiltered (gdb_stdlog,
5367 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5368 if (handle_syscall_event (ecs) == 0)
5369 process_event_stop_test (ecs);
5370 return;
5371
5372 case TARGET_WAITKIND_STOPPED:
5373 if (debug_infrun)
5374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5375 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5376 handle_signal_stop (ecs);
5377 return;
5378
5379 case TARGET_WAITKIND_NO_HISTORY:
5380 if (debug_infrun)
5381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5382 /* Reverse execution: target ran out of history info. */
5383
5384 /* Switch to the stopped thread. */
5385 if (!ptid_equal (ecs->ptid, inferior_ptid))
5386 context_switch (ecs->ptid);
5387 if (debug_infrun)
5388 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5389
5390 delete_just_stopped_threads_single_step_breakpoints ();
5391 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5392 observer_notify_no_history ();
5393 stop_waiting (ecs);
5394 return;
5395 }
5396 }
5397
5398 /* A wrapper around handle_inferior_event_1, which also makes sure
5399 that all temporary struct value objects that were created during
5400 the handling of the event get deleted at the end. */
5401
5402 static void
5403 handle_inferior_event (struct execution_control_state *ecs)
5404 {
5405 struct value *mark = value_mark ();
5406
5407 handle_inferior_event_1 (ecs);
5408 /* Purge all temporary values created during the event handling,
5409 as it could be a long time before we return to the command level
5410 where such values would otherwise be purged. */
5411 value_free_to_mark (mark);
5412 }
5413
5414 /* Restart threads back to what they were trying to do back when we
5415 paused them for an in-line step-over. The EVENT_THREAD thread is
5416 ignored. */
5417
5418 static void
5419 restart_threads (struct thread_info *event_thread)
5420 {
5421 struct thread_info *tp;
5422
5423 /* In case the instruction just stepped spawned a new thread. */
5424 update_thread_list ();
5425
5426 ALL_NON_EXITED_THREADS (tp)
5427 {
5428 if (tp == event_thread)
5429 {
5430 if (debug_infrun)
5431 fprintf_unfiltered (gdb_stdlog,
5432 "infrun: restart threads: "
5433 "[%s] is event thread\n",
5434 target_pid_to_str (tp->ptid));
5435 continue;
5436 }
5437
5438 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5439 {
5440 if (debug_infrun)
5441 fprintf_unfiltered (gdb_stdlog,
5442 "infrun: restart threads: "
5443 "[%s] not meant to be running\n",
5444 target_pid_to_str (tp->ptid));
5445 continue;
5446 }
5447
5448 if (tp->resumed)
5449 {
5450 if (debug_infrun)
5451 fprintf_unfiltered (gdb_stdlog,
5452 "infrun: restart threads: [%s] resumed\n",
5453 target_pid_to_str (tp->ptid));
5454 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5455 continue;
5456 }
5457
5458 if (thread_is_in_step_over_chain (tp))
5459 {
5460 if (debug_infrun)
5461 fprintf_unfiltered (gdb_stdlog,
5462 "infrun: restart threads: "
5463 "[%s] needs step-over\n",
5464 target_pid_to_str (tp->ptid));
5465 gdb_assert (!tp->resumed);
5466 continue;
5467 }
5468
5469
5470 if (tp->suspend.waitstatus_pending_p)
5471 {
5472 if (debug_infrun)
5473 fprintf_unfiltered (gdb_stdlog,
5474 "infrun: restart threads: "
5475 "[%s] has pending status\n",
5476 target_pid_to_str (tp->ptid));
5477 tp->resumed = 1;
5478 continue;
5479 }
5480
5481 /* If some thread needs to start a step-over at this point, it
5482 should still be in the step-over queue, and thus skipped
5483 above. */
5484 if (thread_still_needs_step_over (tp))
5485 {
5486 internal_error (__FILE__, __LINE__,
5487 "thread [%s] needs a step-over, but not in "
5488 "step-over queue\n",
5489 target_pid_to_str (tp->ptid));
5490 }
5491
5492 if (currently_stepping (tp))
5493 {
5494 if (debug_infrun)
5495 fprintf_unfiltered (gdb_stdlog,
5496 "infrun: restart threads: [%s] was stepping\n",
5497 target_pid_to_str (tp->ptid));
5498 keep_going_stepped_thread (tp);
5499 }
5500 else
5501 {
5502 struct execution_control_state ecss;
5503 struct execution_control_state *ecs = &ecss;
5504
5505 if (debug_infrun)
5506 fprintf_unfiltered (gdb_stdlog,
5507 "infrun: restart threads: [%s] continuing\n",
5508 target_pid_to_str (tp->ptid));
5509 reset_ecs (ecs, tp);
5510 switch_to_thread (tp->ptid);
5511 keep_going_pass_signal (ecs);
5512 }
5513 }
5514 }
5515
5516 /* Callback for iterate_over_threads. Find a resumed thread that has
5517 a pending waitstatus. */
5518
5519 static int
5520 resumed_thread_with_pending_status (struct thread_info *tp,
5521 void *arg)
5522 {
5523 return (tp->resumed
5524 && tp->suspend.waitstatus_pending_p);
5525 }
5526
5527 /* Called when we get an event that may finish an in-line or
5528 out-of-line (displaced stepping) step-over started previously.
5529 Return true if the event is processed and we should go back to the
5530 event loop; false if the caller should continue processing the
5531 event. */
5532
5533 static int
5534 finish_step_over (struct execution_control_state *ecs)
5535 {
5536 int had_step_over_info;
5537
5538 displaced_step_fixup (ecs->ptid,
5539 ecs->event_thread->suspend.stop_signal);
5540
5541 had_step_over_info = step_over_info_valid_p ();
5542
5543 if (had_step_over_info)
5544 {
5545 /* If we're stepping over a breakpoint with all threads locked,
5546 then only the thread that was stepped should be reporting
5547 back an event. */
5548 gdb_assert (ecs->event_thread->control.trap_expected);
5549
5550 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5551 clear_step_over_info ();
5552 }
5553
5554 if (!target_is_non_stop_p ())
5555 return 0;
5556
5557 /* Start a new step-over in another thread if there's one that
5558 needs it. */
5559 start_step_over ();
5560
5561 /* If we were stepping over a breakpoint before, and haven't started
5562 a new in-line step-over sequence, then restart all other threads
5563 (except the event thread). We can't do this in all-stop, as then
5564 e.g., we wouldn't be able to issue any other remote packet until
5565 these other threads stop. */
5566 if (had_step_over_info && !step_over_info_valid_p ())
5567 {
5568 struct thread_info *pending;
5569
5570 /* If we only have threads with pending statuses, the restart
5571 below won't restart any thread and so nothing re-inserts the
5572 breakpoint we just stepped over. But we need it inserted
5573 when we later process the pending events, otherwise if
5574 another thread has a pending event for this breakpoint too,
5575 we'd discard its event (because the breakpoint that
5576 originally caused the event was no longer inserted). */
5577 context_switch (ecs->ptid);
5578 insert_breakpoints ();
5579
5580 restart_threads (ecs->event_thread);
5581
5582 /* If we have events pending, go through handle_inferior_event
5583 again, picking up a pending event at random. This avoids
5584 thread starvation. */
5585
5586 /* But not if we just stepped over a watchpoint in order to let
5587 the instruction execute so we can evaluate its expression.
5588 The set of watchpoints that triggered is recorded in the
5589 breakpoint objects themselves (see bp->watchpoint_triggered).
5590 If we processed another event first, that other event could
5591 clobber this info. */
5592 if (ecs->event_thread->stepping_over_watchpoint)
5593 return 0;
5594
5595 pending = iterate_over_threads (resumed_thread_with_pending_status,
5596 NULL);
5597 if (pending != NULL)
5598 {
5599 struct thread_info *tp = ecs->event_thread;
5600 struct regcache *regcache;
5601
5602 if (debug_infrun)
5603 {
5604 fprintf_unfiltered (gdb_stdlog,
5605 "infrun: found resumed threads with "
5606 "pending events, saving status\n");
5607 }
5608
5609 gdb_assert (pending != tp);
5610
5611 /* Record the event thread's event for later. */
5612 save_waitstatus (tp, &ecs->ws);
5613 /* This was cleared early, by handle_inferior_event. Set it
5614 so this pending event is considered by
5615 do_target_wait. */
5616 tp->resumed = 1;
5617
5618 gdb_assert (!tp->executing);
5619
5620 regcache = get_thread_regcache (tp->ptid);
5621 tp->suspend.stop_pc = regcache_read_pc (regcache);
5622
5623 if (debug_infrun)
5624 {
5625 fprintf_unfiltered (gdb_stdlog,
5626 "infrun: saved stop_pc=%s for %s "
5627 "(currently_stepping=%d)\n",
5628 paddress (target_gdbarch (),
5629 tp->suspend.stop_pc),
5630 target_pid_to_str (tp->ptid),
5631 currently_stepping (tp));
5632 }
5633
5634 /* This in-line step-over finished; clear this so we won't
5635 start a new one. This is what handle_signal_stop would
5636 do, if we returned false. */
5637 tp->stepping_over_breakpoint = 0;
5638
5639 /* Wake up the event loop again. */
5640 mark_async_event_handler (infrun_async_inferior_event_token);
5641
5642 prepare_to_wait (ecs);
5643 return 1;
5644 }
5645 }
5646
5647 return 0;
5648 }
5649
5650 /* Come here when the program has stopped with a signal. */
5651
5652 static void
5653 handle_signal_stop (struct execution_control_state *ecs)
5654 {
5655 struct frame_info *frame;
5656 struct gdbarch *gdbarch;
5657 int stopped_by_watchpoint;
5658 enum stop_kind stop_soon;
5659 int random_signal;
5660
5661 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5662
5663 /* Do we need to clean up the state of a thread that has
5664 completed a displaced single-step? (Doing so usually affects
5665 the PC, so do it here, before we set stop_pc.) */
5666 if (finish_step_over (ecs))
5667 return;
5668
5669 /* If we either finished a single-step or hit a breakpoint, but
5670 the user wanted this thread to be stopped, pretend we got a
5671 SIG0 (generic unsignaled stop). */
5672 if (ecs->event_thread->stop_requested
5673 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5674 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5675
5676 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5677
5678 if (debug_infrun)
5679 {
5680 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5681 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5682 struct cleanup *old_chain = save_inferior_ptid ();
5683
5684 inferior_ptid = ecs->ptid;
5685
5686 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5687 paddress (gdbarch, stop_pc));
5688 if (target_stopped_by_watchpoint ())
5689 {
5690 CORE_ADDR addr;
5691
5692 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5693
5694 if (target_stopped_data_address (&current_target, &addr))
5695 fprintf_unfiltered (gdb_stdlog,
5696 "infrun: stopped data address = %s\n",
5697 paddress (gdbarch, addr));
5698 else
5699 fprintf_unfiltered (gdb_stdlog,
5700 "infrun: (no data address available)\n");
5701 }
5702
5703 do_cleanups (old_chain);
5704 }
5705
5706 /* This is originated from start_remote(), start_inferior() and
5707 shared libraries hook functions. */
5708 stop_soon = get_inferior_stop_soon (ecs->ptid);
5709 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5710 {
5711 if (!ptid_equal (ecs->ptid, inferior_ptid))
5712 context_switch (ecs->ptid);
5713 if (debug_infrun)
5714 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5715 stop_print_frame = 1;
5716 stop_waiting (ecs);
5717 return;
5718 }
5719
5720 /* This originates from attach_command(). We need to overwrite
5721 the stop_signal here, because some kernels don't ignore a
5722 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5723 See more comments in inferior.h. On the other hand, if we
5724 get a non-SIGSTOP, report it to the user - assume the backend
5725 will handle the SIGSTOP if it should show up later.
5726
5727 Also consider that the attach is complete when we see a
5728 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5729 target extended-remote report it instead of a SIGSTOP
5730 (e.g. gdbserver). We already rely on SIGTRAP being our
5731 signal, so this is no exception.
5732
5733 Also consider that the attach is complete when we see a
5734 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5735 the target to stop all threads of the inferior, in case the
5736 low level attach operation doesn't stop them implicitly. If
5737 they weren't stopped implicitly, then the stub will report a
5738 GDB_SIGNAL_0, meaning: stopped for no particular reason
5739 other than GDB's request. */
5740 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5741 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5742 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5743 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5744 {
5745 stop_print_frame = 1;
5746 stop_waiting (ecs);
5747 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5748 return;
5749 }
5750
5751 /* See if something interesting happened to the non-current thread. If
5752 so, then switch to that thread. */
5753 if (!ptid_equal (ecs->ptid, inferior_ptid))
5754 {
5755 if (debug_infrun)
5756 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5757
5758 context_switch (ecs->ptid);
5759
5760 if (deprecated_context_hook)
5761 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5762 }
5763
5764 /* At this point, get hold of the now-current thread's frame. */
5765 frame = get_current_frame ();
5766 gdbarch = get_frame_arch (frame);
5767
5768 /* Pull the single step breakpoints out of the target. */
5769 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5770 {
5771 struct regcache *regcache;
5772 struct address_space *aspace;
5773 CORE_ADDR pc;
5774
5775 regcache = get_thread_regcache (ecs->ptid);
5776 aspace = get_regcache_aspace (regcache);
5777 pc = regcache_read_pc (regcache);
5778
5779 /* However, before doing so, if this single-step breakpoint was
5780 actually for another thread, set this thread up for moving
5781 past it. */
5782 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5783 aspace, pc))
5784 {
5785 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5786 {
5787 if (debug_infrun)
5788 {
5789 fprintf_unfiltered (gdb_stdlog,
5790 "infrun: [%s] hit another thread's "
5791 "single-step breakpoint\n",
5792 target_pid_to_str (ecs->ptid));
5793 }
5794 ecs->hit_singlestep_breakpoint = 1;
5795 }
5796 }
5797 else
5798 {
5799 if (debug_infrun)
5800 {
5801 fprintf_unfiltered (gdb_stdlog,
5802 "infrun: [%s] hit its "
5803 "single-step breakpoint\n",
5804 target_pid_to_str (ecs->ptid));
5805 }
5806 }
5807 }
5808 delete_just_stopped_threads_single_step_breakpoints ();
5809
5810 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5811 && ecs->event_thread->control.trap_expected
5812 && ecs->event_thread->stepping_over_watchpoint)
5813 stopped_by_watchpoint = 0;
5814 else
5815 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5816
5817 /* If necessary, step over this watchpoint. We'll be back to display
5818 it in a moment. */
5819 if (stopped_by_watchpoint
5820 && (target_have_steppable_watchpoint
5821 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5822 {
5823 /* At this point, we are stopped at an instruction which has
5824 attempted to write to a piece of memory under control of
5825 a watchpoint. The instruction hasn't actually executed
5826 yet. If we were to evaluate the watchpoint expression
5827 now, we would get the old value, and therefore no change
5828 would seem to have occurred.
5829
5830 In order to make watchpoints work `right', we really need
5831 to complete the memory write, and then evaluate the
5832 watchpoint expression. We do this by single-stepping the
5833 target.
5834
5835 It may not be necessary to disable the watchpoint to step over
5836 it. For example, the PA can (with some kernel cooperation)
5837 single step over a watchpoint without disabling the watchpoint.
5838
5839 It is far more common to need to disable a watchpoint to step
5840 the inferior over it. If we have non-steppable watchpoints,
5841 we must disable the current watchpoint; it's simplest to
5842 disable all watchpoints.
5843
5844 Any breakpoint at PC must also be stepped over -- if there's
5845 one, it will have already triggered before the watchpoint
5846 triggered, and we either already reported it to the user, or
5847 it didn't cause a stop and we called keep_going. In either
5848 case, if there was a breakpoint at PC, we must be trying to
5849 step past it. */
5850 ecs->event_thread->stepping_over_watchpoint = 1;
5851 keep_going (ecs);
5852 return;
5853 }
5854
5855 ecs->event_thread->stepping_over_breakpoint = 0;
5856 ecs->event_thread->stepping_over_watchpoint = 0;
5857 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5858 ecs->event_thread->control.stop_step = 0;
5859 stop_print_frame = 1;
5860 stopped_by_random_signal = 0;
5861
5862 /* Hide inlined functions starting here, unless we just performed stepi or
5863 nexti. After stepi and nexti, always show the innermost frame (not any
5864 inline function call sites). */
5865 if (ecs->event_thread->control.step_range_end != 1)
5866 {
5867 struct address_space *aspace =
5868 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5869
5870 /* skip_inline_frames is expensive, so we avoid it if we can
5871 determine that the address is one where functions cannot have
5872 been inlined. This improves performance with inferiors that
5873 load a lot of shared libraries, because the solib event
5874 breakpoint is defined as the address of a function (i.e. not
5875 inline). Note that we have to check the previous PC as well
5876 as the current one to catch cases when we have just
5877 single-stepped off a breakpoint prior to reinstating it.
5878 Note that we're assuming that the code we single-step to is
5879 not inline, but that's not definitive: there's nothing
5880 preventing the event breakpoint function from containing
5881 inlined code, and the single-step ending up there. If the
5882 user had set a breakpoint on that inlined code, the missing
5883 skip_inline_frames call would break things. Fortunately
5884 that's an extremely unlikely scenario. */
5885 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5886 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5887 && ecs->event_thread->control.trap_expected
5888 && pc_at_non_inline_function (aspace,
5889 ecs->event_thread->prev_pc,
5890 &ecs->ws)))
5891 {
5892 skip_inline_frames (ecs->ptid);
5893
5894 /* Re-fetch current thread's frame in case that invalidated
5895 the frame cache. */
5896 frame = get_current_frame ();
5897 gdbarch = get_frame_arch (frame);
5898 }
5899 }
5900
5901 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5902 && ecs->event_thread->control.trap_expected
5903 && gdbarch_single_step_through_delay_p (gdbarch)
5904 && currently_stepping (ecs->event_thread))
5905 {
5906 /* We're trying to step off a breakpoint. Turns out that we're
5907 also on an instruction that needs to be stepped multiple
5908 times before it's been fully executing. E.g., architectures
5909 with a delay slot. It needs to be stepped twice, once for
5910 the instruction and once for the delay slot. */
5911 int step_through_delay
5912 = gdbarch_single_step_through_delay (gdbarch, frame);
5913
5914 if (debug_infrun && step_through_delay)
5915 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5916 if (ecs->event_thread->control.step_range_end == 0
5917 && step_through_delay)
5918 {
5919 /* The user issued a continue when stopped at a breakpoint.
5920 Set up for another trap and get out of here. */
5921 ecs->event_thread->stepping_over_breakpoint = 1;
5922 keep_going (ecs);
5923 return;
5924 }
5925 else if (step_through_delay)
5926 {
5927 /* The user issued a step when stopped at a breakpoint.
5928 Maybe we should stop, maybe we should not - the delay
5929 slot *might* correspond to a line of source. In any
5930 case, don't decide that here, just set
5931 ecs->stepping_over_breakpoint, making sure we
5932 single-step again before breakpoints are re-inserted. */
5933 ecs->event_thread->stepping_over_breakpoint = 1;
5934 }
5935 }
5936
5937 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5938 handles this event. */
5939 ecs->event_thread->control.stop_bpstat
5940 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5941 stop_pc, ecs->ptid, &ecs->ws);
5942
5943 /* Following in case break condition called a
5944 function. */
5945 stop_print_frame = 1;
5946
5947 /* This is where we handle "moribund" watchpoints. Unlike
5948 software breakpoints traps, hardware watchpoint traps are
5949 always distinguishable from random traps. If no high-level
5950 watchpoint is associated with the reported stop data address
5951 anymore, then the bpstat does not explain the signal ---
5952 simply make sure to ignore it if `stopped_by_watchpoint' is
5953 set. */
5954
5955 if (debug_infrun
5956 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5957 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5958 GDB_SIGNAL_TRAP)
5959 && stopped_by_watchpoint)
5960 fprintf_unfiltered (gdb_stdlog,
5961 "infrun: no user watchpoint explains "
5962 "watchpoint SIGTRAP, ignoring\n");
5963
5964 /* NOTE: cagney/2003-03-29: These checks for a random signal
5965 at one stage in the past included checks for an inferior
5966 function call's call dummy's return breakpoint. The original
5967 comment, that went with the test, read:
5968
5969 ``End of a stack dummy. Some systems (e.g. Sony news) give
5970 another signal besides SIGTRAP, so check here as well as
5971 above.''
5972
5973 If someone ever tries to get call dummys on a
5974 non-executable stack to work (where the target would stop
5975 with something like a SIGSEGV), then those tests might need
5976 to be re-instated. Given, however, that the tests were only
5977 enabled when momentary breakpoints were not being used, I
5978 suspect that it won't be the case.
5979
5980 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5981 be necessary for call dummies on a non-executable stack on
5982 SPARC. */
5983
5984 /* See if the breakpoints module can explain the signal. */
5985 random_signal
5986 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5987 ecs->event_thread->suspend.stop_signal);
5988
5989 /* Maybe this was a trap for a software breakpoint that has since
5990 been removed. */
5991 if (random_signal && target_stopped_by_sw_breakpoint ())
5992 {
5993 if (program_breakpoint_here_p (gdbarch, stop_pc))
5994 {
5995 struct regcache *regcache;
5996 int decr_pc;
5997
5998 /* Re-adjust PC to what the program would see if GDB was not
5999 debugging it. */
6000 regcache = get_thread_regcache (ecs->event_thread->ptid);
6001 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6002 if (decr_pc != 0)
6003 {
6004 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6005
6006 if (record_full_is_used ())
6007 record_full_gdb_operation_disable_set ();
6008
6009 regcache_write_pc (regcache, stop_pc + decr_pc);
6010
6011 do_cleanups (old_cleanups);
6012 }
6013 }
6014 else
6015 {
6016 /* A delayed software breakpoint event. Ignore the trap. */
6017 if (debug_infrun)
6018 fprintf_unfiltered (gdb_stdlog,
6019 "infrun: delayed software breakpoint "
6020 "trap, ignoring\n");
6021 random_signal = 0;
6022 }
6023 }
6024
6025 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6026 has since been removed. */
6027 if (random_signal && target_stopped_by_hw_breakpoint ())
6028 {
6029 /* A delayed hardware breakpoint event. Ignore the trap. */
6030 if (debug_infrun)
6031 fprintf_unfiltered (gdb_stdlog,
6032 "infrun: delayed hardware breakpoint/watchpoint "
6033 "trap, ignoring\n");
6034 random_signal = 0;
6035 }
6036
6037 /* If not, perhaps stepping/nexting can. */
6038 if (random_signal)
6039 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6040 && currently_stepping (ecs->event_thread));
6041
6042 /* Perhaps the thread hit a single-step breakpoint of _another_
6043 thread. Single-step breakpoints are transparent to the
6044 breakpoints module. */
6045 if (random_signal)
6046 random_signal = !ecs->hit_singlestep_breakpoint;
6047
6048 /* No? Perhaps we got a moribund watchpoint. */
6049 if (random_signal)
6050 random_signal = !stopped_by_watchpoint;
6051
6052 /* For the program's own signals, act according to
6053 the signal handling tables. */
6054
6055 if (random_signal)
6056 {
6057 /* Signal not for debugging purposes. */
6058 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6059 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6060
6061 if (debug_infrun)
6062 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6063 gdb_signal_to_symbol_string (stop_signal));
6064
6065 stopped_by_random_signal = 1;
6066
6067 /* Always stop on signals if we're either just gaining control
6068 of the program, or the user explicitly requested this thread
6069 to remain stopped. */
6070 if (stop_soon != NO_STOP_QUIETLY
6071 || ecs->event_thread->stop_requested
6072 || (!inf->detaching
6073 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6074 {
6075 stop_waiting (ecs);
6076 return;
6077 }
6078
6079 /* Notify observers the signal has "handle print" set. Note we
6080 returned early above if stopping; normal_stop handles the
6081 printing in that case. */
6082 if (signal_print[ecs->event_thread->suspend.stop_signal])
6083 {
6084 /* The signal table tells us to print about this signal. */
6085 target_terminal_ours_for_output ();
6086 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6087 target_terminal_inferior ();
6088 }
6089
6090 /* Clear the signal if it should not be passed. */
6091 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6092 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6093
6094 if (ecs->event_thread->prev_pc == stop_pc
6095 && ecs->event_thread->control.trap_expected
6096 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6097 {
6098 int was_in_line;
6099
6100 /* We were just starting a new sequence, attempting to
6101 single-step off of a breakpoint and expecting a SIGTRAP.
6102 Instead this signal arrives. This signal will take us out
6103 of the stepping range so GDB needs to remember to, when
6104 the signal handler returns, resume stepping off that
6105 breakpoint. */
6106 /* To simplify things, "continue" is forced to use the same
6107 code paths as single-step - set a breakpoint at the
6108 signal return address and then, once hit, step off that
6109 breakpoint. */
6110 if (debug_infrun)
6111 fprintf_unfiltered (gdb_stdlog,
6112 "infrun: signal arrived while stepping over "
6113 "breakpoint\n");
6114
6115 was_in_line = step_over_info_valid_p ();
6116 clear_step_over_info ();
6117 insert_hp_step_resume_breakpoint_at_frame (frame);
6118 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6119 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6120 ecs->event_thread->control.trap_expected = 0;
6121
6122 if (target_is_non_stop_p ())
6123 {
6124 /* Either "set non-stop" is "on", or the target is
6125 always in non-stop mode. In this case, we have a bit
6126 more work to do. Resume the current thread, and if
6127 we had paused all threads, restart them while the
6128 signal handler runs. */
6129 keep_going (ecs);
6130
6131 if (was_in_line)
6132 {
6133 restart_threads (ecs->event_thread);
6134 }
6135 else if (debug_infrun)
6136 {
6137 fprintf_unfiltered (gdb_stdlog,
6138 "infrun: no need to restart threads\n");
6139 }
6140 return;
6141 }
6142
6143 /* If we were nexting/stepping some other thread, switch to
6144 it, so that we don't continue it, losing control. */
6145 if (!switch_back_to_stepped_thread (ecs))
6146 keep_going (ecs);
6147 return;
6148 }
6149
6150 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6151 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6152 || ecs->event_thread->control.step_range_end == 1)
6153 && frame_id_eq (get_stack_frame_id (frame),
6154 ecs->event_thread->control.step_stack_frame_id)
6155 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6156 {
6157 /* The inferior is about to take a signal that will take it
6158 out of the single step range. Set a breakpoint at the
6159 current PC (which is presumably where the signal handler
6160 will eventually return) and then allow the inferior to
6161 run free.
6162
6163 Note that this is only needed for a signal delivered
6164 while in the single-step range. Nested signals aren't a
6165 problem as they eventually all return. */
6166 if (debug_infrun)
6167 fprintf_unfiltered (gdb_stdlog,
6168 "infrun: signal may take us out of "
6169 "single-step range\n");
6170
6171 clear_step_over_info ();
6172 insert_hp_step_resume_breakpoint_at_frame (frame);
6173 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6174 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6175 ecs->event_thread->control.trap_expected = 0;
6176 keep_going (ecs);
6177 return;
6178 }
6179
6180 /* Note: step_resume_breakpoint may be non-NULL. This occures
6181 when either there's a nested signal, or when there's a
6182 pending signal enabled just as the signal handler returns
6183 (leaving the inferior at the step-resume-breakpoint without
6184 actually executing it). Either way continue until the
6185 breakpoint is really hit. */
6186
6187 if (!switch_back_to_stepped_thread (ecs))
6188 {
6189 if (debug_infrun)
6190 fprintf_unfiltered (gdb_stdlog,
6191 "infrun: random signal, keep going\n");
6192
6193 keep_going (ecs);
6194 }
6195 return;
6196 }
6197
6198 process_event_stop_test (ecs);
6199 }
6200
6201 /* Come here when we've got some debug event / signal we can explain
6202 (IOW, not a random signal), and test whether it should cause a
6203 stop, or whether we should resume the inferior (transparently).
6204 E.g., could be a breakpoint whose condition evaluates false; we
6205 could be still stepping within the line; etc. */
6206
6207 static void
6208 process_event_stop_test (struct execution_control_state *ecs)
6209 {
6210 struct symtab_and_line stop_pc_sal;
6211 struct frame_info *frame;
6212 struct gdbarch *gdbarch;
6213 CORE_ADDR jmp_buf_pc;
6214 struct bpstat_what what;
6215
6216 /* Handle cases caused by hitting a breakpoint. */
6217
6218 frame = get_current_frame ();
6219 gdbarch = get_frame_arch (frame);
6220
6221 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6222
6223 if (what.call_dummy)
6224 {
6225 stop_stack_dummy = what.call_dummy;
6226 }
6227
6228 /* A few breakpoint types have callbacks associated (e.g.,
6229 bp_jit_event). Run them now. */
6230 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6231
6232 /* If we hit an internal event that triggers symbol changes, the
6233 current frame will be invalidated within bpstat_what (e.g., if we
6234 hit an internal solib event). Re-fetch it. */
6235 frame = get_current_frame ();
6236 gdbarch = get_frame_arch (frame);
6237
6238 switch (what.main_action)
6239 {
6240 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6241 /* If we hit the breakpoint at longjmp while stepping, we
6242 install a momentary breakpoint at the target of the
6243 jmp_buf. */
6244
6245 if (debug_infrun)
6246 fprintf_unfiltered (gdb_stdlog,
6247 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6248
6249 ecs->event_thread->stepping_over_breakpoint = 1;
6250
6251 if (what.is_longjmp)
6252 {
6253 struct value *arg_value;
6254
6255 /* If we set the longjmp breakpoint via a SystemTap probe,
6256 then use it to extract the arguments. The destination PC
6257 is the third argument to the probe. */
6258 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6259 if (arg_value)
6260 {
6261 jmp_buf_pc = value_as_address (arg_value);
6262 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6263 }
6264 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6265 || !gdbarch_get_longjmp_target (gdbarch,
6266 frame, &jmp_buf_pc))
6267 {
6268 if (debug_infrun)
6269 fprintf_unfiltered (gdb_stdlog,
6270 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6271 "(!gdbarch_get_longjmp_target)\n");
6272 keep_going (ecs);
6273 return;
6274 }
6275
6276 /* Insert a breakpoint at resume address. */
6277 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6278 }
6279 else
6280 check_exception_resume (ecs, frame);
6281 keep_going (ecs);
6282 return;
6283
6284 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6285 {
6286 struct frame_info *init_frame;
6287
6288 /* There are several cases to consider.
6289
6290 1. The initiating frame no longer exists. In this case we
6291 must stop, because the exception or longjmp has gone too
6292 far.
6293
6294 2. The initiating frame exists, and is the same as the
6295 current frame. We stop, because the exception or longjmp
6296 has been caught.
6297
6298 3. The initiating frame exists and is different from the
6299 current frame. This means the exception or longjmp has
6300 been caught beneath the initiating frame, so keep going.
6301
6302 4. longjmp breakpoint has been placed just to protect
6303 against stale dummy frames and user is not interested in
6304 stopping around longjmps. */
6305
6306 if (debug_infrun)
6307 fprintf_unfiltered (gdb_stdlog,
6308 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6309
6310 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6311 != NULL);
6312 delete_exception_resume_breakpoint (ecs->event_thread);
6313
6314 if (what.is_longjmp)
6315 {
6316 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6317
6318 if (!frame_id_p (ecs->event_thread->initiating_frame))
6319 {
6320 /* Case 4. */
6321 keep_going (ecs);
6322 return;
6323 }
6324 }
6325
6326 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6327
6328 if (init_frame)
6329 {
6330 struct frame_id current_id
6331 = get_frame_id (get_current_frame ());
6332 if (frame_id_eq (current_id,
6333 ecs->event_thread->initiating_frame))
6334 {
6335 /* Case 2. Fall through. */
6336 }
6337 else
6338 {
6339 /* Case 3. */
6340 keep_going (ecs);
6341 return;
6342 }
6343 }
6344
6345 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6346 exists. */
6347 delete_step_resume_breakpoint (ecs->event_thread);
6348
6349 end_stepping_range (ecs);
6350 }
6351 return;
6352
6353 case BPSTAT_WHAT_SINGLE:
6354 if (debug_infrun)
6355 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6356 ecs->event_thread->stepping_over_breakpoint = 1;
6357 /* Still need to check other stuff, at least the case where we
6358 are stepping and step out of the right range. */
6359 break;
6360
6361 case BPSTAT_WHAT_STEP_RESUME:
6362 if (debug_infrun)
6363 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6364
6365 delete_step_resume_breakpoint (ecs->event_thread);
6366 if (ecs->event_thread->control.proceed_to_finish
6367 && execution_direction == EXEC_REVERSE)
6368 {
6369 struct thread_info *tp = ecs->event_thread;
6370
6371 /* We are finishing a function in reverse, and just hit the
6372 step-resume breakpoint at the start address of the
6373 function, and we're almost there -- just need to back up
6374 by one more single-step, which should take us back to the
6375 function call. */
6376 tp->control.step_range_start = tp->control.step_range_end = 1;
6377 keep_going (ecs);
6378 return;
6379 }
6380 fill_in_stop_func (gdbarch, ecs);
6381 if (stop_pc == ecs->stop_func_start
6382 && execution_direction == EXEC_REVERSE)
6383 {
6384 /* We are stepping over a function call in reverse, and just
6385 hit the step-resume breakpoint at the start address of
6386 the function. Go back to single-stepping, which should
6387 take us back to the function call. */
6388 ecs->event_thread->stepping_over_breakpoint = 1;
6389 keep_going (ecs);
6390 return;
6391 }
6392 break;
6393
6394 case BPSTAT_WHAT_STOP_NOISY:
6395 if (debug_infrun)
6396 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6397 stop_print_frame = 1;
6398
6399 /* Assume the thread stopped for a breapoint. We'll still check
6400 whether a/the breakpoint is there when the thread is next
6401 resumed. */
6402 ecs->event_thread->stepping_over_breakpoint = 1;
6403
6404 stop_waiting (ecs);
6405 return;
6406
6407 case BPSTAT_WHAT_STOP_SILENT:
6408 if (debug_infrun)
6409 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6410 stop_print_frame = 0;
6411
6412 /* Assume the thread stopped for a breapoint. We'll still check
6413 whether a/the breakpoint is there when the thread is next
6414 resumed. */
6415 ecs->event_thread->stepping_over_breakpoint = 1;
6416 stop_waiting (ecs);
6417 return;
6418
6419 case BPSTAT_WHAT_HP_STEP_RESUME:
6420 if (debug_infrun)
6421 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6422
6423 delete_step_resume_breakpoint (ecs->event_thread);
6424 if (ecs->event_thread->step_after_step_resume_breakpoint)
6425 {
6426 /* Back when the step-resume breakpoint was inserted, we
6427 were trying to single-step off a breakpoint. Go back to
6428 doing that. */
6429 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6430 ecs->event_thread->stepping_over_breakpoint = 1;
6431 keep_going (ecs);
6432 return;
6433 }
6434 break;
6435
6436 case BPSTAT_WHAT_KEEP_CHECKING:
6437 break;
6438 }
6439
6440 /* If we stepped a permanent breakpoint and we had a high priority
6441 step-resume breakpoint for the address we stepped, but we didn't
6442 hit it, then we must have stepped into the signal handler. The
6443 step-resume was only necessary to catch the case of _not_
6444 stepping into the handler, so delete it, and fall through to
6445 checking whether the step finished. */
6446 if (ecs->event_thread->stepped_breakpoint)
6447 {
6448 struct breakpoint *sr_bp
6449 = ecs->event_thread->control.step_resume_breakpoint;
6450
6451 if (sr_bp != NULL
6452 && sr_bp->loc->permanent
6453 && sr_bp->type == bp_hp_step_resume
6454 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6455 {
6456 if (debug_infrun)
6457 fprintf_unfiltered (gdb_stdlog,
6458 "infrun: stepped permanent breakpoint, stopped in "
6459 "handler\n");
6460 delete_step_resume_breakpoint (ecs->event_thread);
6461 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6462 }
6463 }
6464
6465 /* We come here if we hit a breakpoint but should not stop for it.
6466 Possibly we also were stepping and should stop for that. So fall
6467 through and test for stepping. But, if not stepping, do not
6468 stop. */
6469
6470 /* In all-stop mode, if we're currently stepping but have stopped in
6471 some other thread, we need to switch back to the stepped thread. */
6472 if (switch_back_to_stepped_thread (ecs))
6473 return;
6474
6475 if (ecs->event_thread->control.step_resume_breakpoint)
6476 {
6477 if (debug_infrun)
6478 fprintf_unfiltered (gdb_stdlog,
6479 "infrun: step-resume breakpoint is inserted\n");
6480
6481 /* Having a step-resume breakpoint overrides anything
6482 else having to do with stepping commands until
6483 that breakpoint is reached. */
6484 keep_going (ecs);
6485 return;
6486 }
6487
6488 if (ecs->event_thread->control.step_range_end == 0)
6489 {
6490 if (debug_infrun)
6491 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6492 /* Likewise if we aren't even stepping. */
6493 keep_going (ecs);
6494 return;
6495 }
6496
6497 /* Re-fetch current thread's frame in case the code above caused
6498 the frame cache to be re-initialized, making our FRAME variable
6499 a dangling pointer. */
6500 frame = get_current_frame ();
6501 gdbarch = get_frame_arch (frame);
6502 fill_in_stop_func (gdbarch, ecs);
6503
6504 /* If stepping through a line, keep going if still within it.
6505
6506 Note that step_range_end is the address of the first instruction
6507 beyond the step range, and NOT the address of the last instruction
6508 within it!
6509
6510 Note also that during reverse execution, we may be stepping
6511 through a function epilogue and therefore must detect when
6512 the current-frame changes in the middle of a line. */
6513
6514 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6515 && (execution_direction != EXEC_REVERSE
6516 || frame_id_eq (get_frame_id (frame),
6517 ecs->event_thread->control.step_frame_id)))
6518 {
6519 if (debug_infrun)
6520 fprintf_unfiltered
6521 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6522 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6523 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6524
6525 /* Tentatively re-enable range stepping; `resume' disables it if
6526 necessary (e.g., if we're stepping over a breakpoint or we
6527 have software watchpoints). */
6528 ecs->event_thread->control.may_range_step = 1;
6529
6530 /* When stepping backward, stop at beginning of line range
6531 (unless it's the function entry point, in which case
6532 keep going back to the call point). */
6533 if (stop_pc == ecs->event_thread->control.step_range_start
6534 && stop_pc != ecs->stop_func_start
6535 && execution_direction == EXEC_REVERSE)
6536 end_stepping_range (ecs);
6537 else
6538 keep_going (ecs);
6539
6540 return;
6541 }
6542
6543 /* We stepped out of the stepping range. */
6544
6545 /* If we are stepping at the source level and entered the runtime
6546 loader dynamic symbol resolution code...
6547
6548 EXEC_FORWARD: we keep on single stepping until we exit the run
6549 time loader code and reach the callee's address.
6550
6551 EXEC_REVERSE: we've already executed the callee (backward), and
6552 the runtime loader code is handled just like any other
6553 undebuggable function call. Now we need only keep stepping
6554 backward through the trampoline code, and that's handled further
6555 down, so there is nothing for us to do here. */
6556
6557 if (execution_direction != EXEC_REVERSE
6558 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6559 && in_solib_dynsym_resolve_code (stop_pc))
6560 {
6561 CORE_ADDR pc_after_resolver =
6562 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6563
6564 if (debug_infrun)
6565 fprintf_unfiltered (gdb_stdlog,
6566 "infrun: stepped into dynsym resolve code\n");
6567
6568 if (pc_after_resolver)
6569 {
6570 /* Set up a step-resume breakpoint at the address
6571 indicated by SKIP_SOLIB_RESOLVER. */
6572 struct symtab_and_line sr_sal;
6573
6574 init_sal (&sr_sal);
6575 sr_sal.pc = pc_after_resolver;
6576 sr_sal.pspace = get_frame_program_space (frame);
6577
6578 insert_step_resume_breakpoint_at_sal (gdbarch,
6579 sr_sal, null_frame_id);
6580 }
6581
6582 keep_going (ecs);
6583 return;
6584 }
6585
6586 if (ecs->event_thread->control.step_range_end != 1
6587 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6588 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6589 && get_frame_type (frame) == SIGTRAMP_FRAME)
6590 {
6591 if (debug_infrun)
6592 fprintf_unfiltered (gdb_stdlog,
6593 "infrun: stepped into signal trampoline\n");
6594 /* The inferior, while doing a "step" or "next", has ended up in
6595 a signal trampoline (either by a signal being delivered or by
6596 the signal handler returning). Just single-step until the
6597 inferior leaves the trampoline (either by calling the handler
6598 or returning). */
6599 keep_going (ecs);
6600 return;
6601 }
6602
6603 /* If we're in the return path from a shared library trampoline,
6604 we want to proceed through the trampoline when stepping. */
6605 /* macro/2012-04-25: This needs to come before the subroutine
6606 call check below as on some targets return trampolines look
6607 like subroutine calls (MIPS16 return thunks). */
6608 if (gdbarch_in_solib_return_trampoline (gdbarch,
6609 stop_pc, ecs->stop_func_name)
6610 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6611 {
6612 /* Determine where this trampoline returns. */
6613 CORE_ADDR real_stop_pc;
6614
6615 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6616
6617 if (debug_infrun)
6618 fprintf_unfiltered (gdb_stdlog,
6619 "infrun: stepped into solib return tramp\n");
6620
6621 /* Only proceed through if we know where it's going. */
6622 if (real_stop_pc)
6623 {
6624 /* And put the step-breakpoint there and go until there. */
6625 struct symtab_and_line sr_sal;
6626
6627 init_sal (&sr_sal); /* initialize to zeroes */
6628 sr_sal.pc = real_stop_pc;
6629 sr_sal.section = find_pc_overlay (sr_sal.pc);
6630 sr_sal.pspace = get_frame_program_space (frame);
6631
6632 /* Do not specify what the fp should be when we stop since
6633 on some machines the prologue is where the new fp value
6634 is established. */
6635 insert_step_resume_breakpoint_at_sal (gdbarch,
6636 sr_sal, null_frame_id);
6637
6638 /* Restart without fiddling with the step ranges or
6639 other state. */
6640 keep_going (ecs);
6641 return;
6642 }
6643 }
6644
6645 /* Check for subroutine calls. The check for the current frame
6646 equalling the step ID is not necessary - the check of the
6647 previous frame's ID is sufficient - but it is a common case and
6648 cheaper than checking the previous frame's ID.
6649
6650 NOTE: frame_id_eq will never report two invalid frame IDs as
6651 being equal, so to get into this block, both the current and
6652 previous frame must have valid frame IDs. */
6653 /* The outer_frame_id check is a heuristic to detect stepping
6654 through startup code. If we step over an instruction which
6655 sets the stack pointer from an invalid value to a valid value,
6656 we may detect that as a subroutine call from the mythical
6657 "outermost" function. This could be fixed by marking
6658 outermost frames as !stack_p,code_p,special_p. Then the
6659 initial outermost frame, before sp was valid, would
6660 have code_addr == &_start. See the comment in frame_id_eq
6661 for more. */
6662 if (!frame_id_eq (get_stack_frame_id (frame),
6663 ecs->event_thread->control.step_stack_frame_id)
6664 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6665 ecs->event_thread->control.step_stack_frame_id)
6666 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6667 outer_frame_id)
6668 || (ecs->event_thread->control.step_start_function
6669 != find_pc_function (stop_pc)))))
6670 {
6671 CORE_ADDR real_stop_pc;
6672
6673 if (debug_infrun)
6674 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6675
6676 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6677 {
6678 /* I presume that step_over_calls is only 0 when we're
6679 supposed to be stepping at the assembly language level
6680 ("stepi"). Just stop. */
6681 /* And this works the same backward as frontward. MVS */
6682 end_stepping_range (ecs);
6683 return;
6684 }
6685
6686 /* Reverse stepping through solib trampolines. */
6687
6688 if (execution_direction == EXEC_REVERSE
6689 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6690 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6691 || (ecs->stop_func_start == 0
6692 && in_solib_dynsym_resolve_code (stop_pc))))
6693 {
6694 /* Any solib trampoline code can be handled in reverse
6695 by simply continuing to single-step. We have already
6696 executed the solib function (backwards), and a few
6697 steps will take us back through the trampoline to the
6698 caller. */
6699 keep_going (ecs);
6700 return;
6701 }
6702
6703 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6704 {
6705 /* We're doing a "next".
6706
6707 Normal (forward) execution: set a breakpoint at the
6708 callee's return address (the address at which the caller
6709 will resume).
6710
6711 Reverse (backward) execution. set the step-resume
6712 breakpoint at the start of the function that we just
6713 stepped into (backwards), and continue to there. When we
6714 get there, we'll need to single-step back to the caller. */
6715
6716 if (execution_direction == EXEC_REVERSE)
6717 {
6718 /* If we're already at the start of the function, we've either
6719 just stepped backward into a single instruction function,
6720 or stepped back out of a signal handler to the first instruction
6721 of the function. Just keep going, which will single-step back
6722 to the caller. */
6723 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6724 {
6725 struct symtab_and_line sr_sal;
6726
6727 /* Normal function call return (static or dynamic). */
6728 init_sal (&sr_sal);
6729 sr_sal.pc = ecs->stop_func_start;
6730 sr_sal.pspace = get_frame_program_space (frame);
6731 insert_step_resume_breakpoint_at_sal (gdbarch,
6732 sr_sal, null_frame_id);
6733 }
6734 }
6735 else
6736 insert_step_resume_breakpoint_at_caller (frame);
6737
6738 keep_going (ecs);
6739 return;
6740 }
6741
6742 /* If we are in a function call trampoline (a stub between the
6743 calling routine and the real function), locate the real
6744 function. That's what tells us (a) whether we want to step
6745 into it at all, and (b) what prologue we want to run to the
6746 end of, if we do step into it. */
6747 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6748 if (real_stop_pc == 0)
6749 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6750 if (real_stop_pc != 0)
6751 ecs->stop_func_start = real_stop_pc;
6752
6753 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6754 {
6755 struct symtab_and_line sr_sal;
6756
6757 init_sal (&sr_sal);
6758 sr_sal.pc = ecs->stop_func_start;
6759 sr_sal.pspace = get_frame_program_space (frame);
6760
6761 insert_step_resume_breakpoint_at_sal (gdbarch,
6762 sr_sal, null_frame_id);
6763 keep_going (ecs);
6764 return;
6765 }
6766
6767 /* If we have line number information for the function we are
6768 thinking of stepping into and the function isn't on the skip
6769 list, step into it.
6770
6771 If there are several symtabs at that PC (e.g. with include
6772 files), just want to know whether *any* of them have line
6773 numbers. find_pc_line handles this. */
6774 {
6775 struct symtab_and_line tmp_sal;
6776
6777 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6778 if (tmp_sal.line != 0
6779 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6780 &tmp_sal))
6781 {
6782 if (execution_direction == EXEC_REVERSE)
6783 handle_step_into_function_backward (gdbarch, ecs);
6784 else
6785 handle_step_into_function (gdbarch, ecs);
6786 return;
6787 }
6788 }
6789
6790 /* If we have no line number and the step-stop-if-no-debug is
6791 set, we stop the step so that the user has a chance to switch
6792 in assembly mode. */
6793 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6794 && step_stop_if_no_debug)
6795 {
6796 end_stepping_range (ecs);
6797 return;
6798 }
6799
6800 if (execution_direction == EXEC_REVERSE)
6801 {
6802 /* If we're already at the start of the function, we've either just
6803 stepped backward into a single instruction function without line
6804 number info, or stepped back out of a signal handler to the first
6805 instruction of the function without line number info. Just keep
6806 going, which will single-step back to the caller. */
6807 if (ecs->stop_func_start != stop_pc)
6808 {
6809 /* Set a breakpoint at callee's start address.
6810 From there we can step once and be back in the caller. */
6811 struct symtab_and_line sr_sal;
6812
6813 init_sal (&sr_sal);
6814 sr_sal.pc = ecs->stop_func_start;
6815 sr_sal.pspace = get_frame_program_space (frame);
6816 insert_step_resume_breakpoint_at_sal (gdbarch,
6817 sr_sal, null_frame_id);
6818 }
6819 }
6820 else
6821 /* Set a breakpoint at callee's return address (the address
6822 at which the caller will resume). */
6823 insert_step_resume_breakpoint_at_caller (frame);
6824
6825 keep_going (ecs);
6826 return;
6827 }
6828
6829 /* Reverse stepping through solib trampolines. */
6830
6831 if (execution_direction == EXEC_REVERSE
6832 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6833 {
6834 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6835 || (ecs->stop_func_start == 0
6836 && in_solib_dynsym_resolve_code (stop_pc)))
6837 {
6838 /* Any solib trampoline code can be handled in reverse
6839 by simply continuing to single-step. We have already
6840 executed the solib function (backwards), and a few
6841 steps will take us back through the trampoline to the
6842 caller. */
6843 keep_going (ecs);
6844 return;
6845 }
6846 else if (in_solib_dynsym_resolve_code (stop_pc))
6847 {
6848 /* Stepped backward into the solib dynsym resolver.
6849 Set a breakpoint at its start and continue, then
6850 one more step will take us out. */
6851 struct symtab_and_line sr_sal;
6852
6853 init_sal (&sr_sal);
6854 sr_sal.pc = ecs->stop_func_start;
6855 sr_sal.pspace = get_frame_program_space (frame);
6856 insert_step_resume_breakpoint_at_sal (gdbarch,
6857 sr_sal, null_frame_id);
6858 keep_going (ecs);
6859 return;
6860 }
6861 }
6862
6863 stop_pc_sal = find_pc_line (stop_pc, 0);
6864
6865 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6866 the trampoline processing logic, however, there are some trampolines
6867 that have no names, so we should do trampoline handling first. */
6868 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6869 && ecs->stop_func_name == NULL
6870 && stop_pc_sal.line == 0)
6871 {
6872 if (debug_infrun)
6873 fprintf_unfiltered (gdb_stdlog,
6874 "infrun: stepped into undebuggable function\n");
6875
6876 /* The inferior just stepped into, or returned to, an
6877 undebuggable function (where there is no debugging information
6878 and no line number corresponding to the address where the
6879 inferior stopped). Since we want to skip this kind of code,
6880 we keep going until the inferior returns from this
6881 function - unless the user has asked us not to (via
6882 set step-mode) or we no longer know how to get back
6883 to the call site. */
6884 if (step_stop_if_no_debug
6885 || !frame_id_p (frame_unwind_caller_id (frame)))
6886 {
6887 /* If we have no line number and the step-stop-if-no-debug
6888 is set, we stop the step so that the user has a chance to
6889 switch in assembly mode. */
6890 end_stepping_range (ecs);
6891 return;
6892 }
6893 else
6894 {
6895 /* Set a breakpoint at callee's return address (the address
6896 at which the caller will resume). */
6897 insert_step_resume_breakpoint_at_caller (frame);
6898 keep_going (ecs);
6899 return;
6900 }
6901 }
6902
6903 if (ecs->event_thread->control.step_range_end == 1)
6904 {
6905 /* It is stepi or nexti. We always want to stop stepping after
6906 one instruction. */
6907 if (debug_infrun)
6908 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6909 end_stepping_range (ecs);
6910 return;
6911 }
6912
6913 if (stop_pc_sal.line == 0)
6914 {
6915 /* We have no line number information. That means to stop
6916 stepping (does this always happen right after one instruction,
6917 when we do "s" in a function with no line numbers,
6918 or can this happen as a result of a return or longjmp?). */
6919 if (debug_infrun)
6920 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6921 end_stepping_range (ecs);
6922 return;
6923 }
6924
6925 /* Look for "calls" to inlined functions, part one. If the inline
6926 frame machinery detected some skipped call sites, we have entered
6927 a new inline function. */
6928
6929 if (frame_id_eq (get_frame_id (get_current_frame ()),
6930 ecs->event_thread->control.step_frame_id)
6931 && inline_skipped_frames (ecs->ptid))
6932 {
6933 struct symtab_and_line call_sal;
6934
6935 if (debug_infrun)
6936 fprintf_unfiltered (gdb_stdlog,
6937 "infrun: stepped into inlined function\n");
6938
6939 find_frame_sal (get_current_frame (), &call_sal);
6940
6941 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6942 {
6943 /* For "step", we're going to stop. But if the call site
6944 for this inlined function is on the same source line as
6945 we were previously stepping, go down into the function
6946 first. Otherwise stop at the call site. */
6947
6948 if (call_sal.line == ecs->event_thread->current_line
6949 && call_sal.symtab == ecs->event_thread->current_symtab)
6950 step_into_inline_frame (ecs->ptid);
6951
6952 end_stepping_range (ecs);
6953 return;
6954 }
6955 else
6956 {
6957 /* For "next", we should stop at the call site if it is on a
6958 different source line. Otherwise continue through the
6959 inlined function. */
6960 if (call_sal.line == ecs->event_thread->current_line
6961 && call_sal.symtab == ecs->event_thread->current_symtab)
6962 keep_going (ecs);
6963 else
6964 end_stepping_range (ecs);
6965 return;
6966 }
6967 }
6968
6969 /* Look for "calls" to inlined functions, part two. If we are still
6970 in the same real function we were stepping through, but we have
6971 to go further up to find the exact frame ID, we are stepping
6972 through a more inlined call beyond its call site. */
6973
6974 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6975 && !frame_id_eq (get_frame_id (get_current_frame ()),
6976 ecs->event_thread->control.step_frame_id)
6977 && stepped_in_from (get_current_frame (),
6978 ecs->event_thread->control.step_frame_id))
6979 {
6980 if (debug_infrun)
6981 fprintf_unfiltered (gdb_stdlog,
6982 "infrun: stepping through inlined function\n");
6983
6984 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6985 keep_going (ecs);
6986 else
6987 end_stepping_range (ecs);
6988 return;
6989 }
6990
6991 if ((stop_pc == stop_pc_sal.pc)
6992 && (ecs->event_thread->current_line != stop_pc_sal.line
6993 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6994 {
6995 /* We are at the start of a different line. So stop. Note that
6996 we don't stop if we step into the middle of a different line.
6997 That is said to make things like for (;;) statements work
6998 better. */
6999 if (debug_infrun)
7000 fprintf_unfiltered (gdb_stdlog,
7001 "infrun: stepped to a different line\n");
7002 end_stepping_range (ecs);
7003 return;
7004 }
7005
7006 /* We aren't done stepping.
7007
7008 Optimize by setting the stepping range to the line.
7009 (We might not be in the original line, but if we entered a
7010 new line in mid-statement, we continue stepping. This makes
7011 things like for(;;) statements work better.) */
7012
7013 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7014 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7015 ecs->event_thread->control.may_range_step = 1;
7016 set_step_info (frame, stop_pc_sal);
7017
7018 if (debug_infrun)
7019 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7020 keep_going (ecs);
7021 }
7022
7023 /* In all-stop mode, if we're currently stepping but have stopped in
7024 some other thread, we may need to switch back to the stepped
7025 thread. Returns true we set the inferior running, false if we left
7026 it stopped (and the event needs further processing). */
7027
7028 static int
7029 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7030 {
7031 if (!target_is_non_stop_p ())
7032 {
7033 struct thread_info *tp;
7034 struct thread_info *stepping_thread;
7035
7036 /* If any thread is blocked on some internal breakpoint, and we
7037 simply need to step over that breakpoint to get it going
7038 again, do that first. */
7039
7040 /* However, if we see an event for the stepping thread, then we
7041 know all other threads have been moved past their breakpoints
7042 already. Let the caller check whether the step is finished,
7043 etc., before deciding to move it past a breakpoint. */
7044 if (ecs->event_thread->control.step_range_end != 0)
7045 return 0;
7046
7047 /* Check if the current thread is blocked on an incomplete
7048 step-over, interrupted by a random signal. */
7049 if (ecs->event_thread->control.trap_expected
7050 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7051 {
7052 if (debug_infrun)
7053 {
7054 fprintf_unfiltered (gdb_stdlog,
7055 "infrun: need to finish step-over of [%s]\n",
7056 target_pid_to_str (ecs->event_thread->ptid));
7057 }
7058 keep_going (ecs);
7059 return 1;
7060 }
7061
7062 /* Check if the current thread is blocked by a single-step
7063 breakpoint of another thread. */
7064 if (ecs->hit_singlestep_breakpoint)
7065 {
7066 if (debug_infrun)
7067 {
7068 fprintf_unfiltered (gdb_stdlog,
7069 "infrun: need to step [%s] over single-step "
7070 "breakpoint\n",
7071 target_pid_to_str (ecs->ptid));
7072 }
7073 keep_going (ecs);
7074 return 1;
7075 }
7076
7077 /* If this thread needs yet another step-over (e.g., stepping
7078 through a delay slot), do it first before moving on to
7079 another thread. */
7080 if (thread_still_needs_step_over (ecs->event_thread))
7081 {
7082 if (debug_infrun)
7083 {
7084 fprintf_unfiltered (gdb_stdlog,
7085 "infrun: thread [%s] still needs step-over\n",
7086 target_pid_to_str (ecs->event_thread->ptid));
7087 }
7088 keep_going (ecs);
7089 return 1;
7090 }
7091
7092 /* If scheduler locking applies even if not stepping, there's no
7093 need to walk over threads. Above we've checked whether the
7094 current thread is stepping. If some other thread not the
7095 event thread is stepping, then it must be that scheduler
7096 locking is not in effect. */
7097 if (schedlock_applies (ecs->event_thread))
7098 return 0;
7099
7100 /* Otherwise, we no longer expect a trap in the current thread.
7101 Clear the trap_expected flag before switching back -- this is
7102 what keep_going does as well, if we call it. */
7103 ecs->event_thread->control.trap_expected = 0;
7104
7105 /* Likewise, clear the signal if it should not be passed. */
7106 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7107 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7108
7109 /* Do all pending step-overs before actually proceeding with
7110 step/next/etc. */
7111 if (start_step_over ())
7112 {
7113 prepare_to_wait (ecs);
7114 return 1;
7115 }
7116
7117 /* Look for the stepping/nexting thread. */
7118 stepping_thread = NULL;
7119
7120 ALL_NON_EXITED_THREADS (tp)
7121 {
7122 /* Ignore threads of processes the caller is not
7123 resuming. */
7124 if (!sched_multi
7125 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7126 continue;
7127
7128 /* When stepping over a breakpoint, we lock all threads
7129 except the one that needs to move past the breakpoint.
7130 If a non-event thread has this set, the "incomplete
7131 step-over" check above should have caught it earlier. */
7132 if (tp->control.trap_expected)
7133 {
7134 internal_error (__FILE__, __LINE__,
7135 "[%s] has inconsistent state: "
7136 "trap_expected=%d\n",
7137 target_pid_to_str (tp->ptid),
7138 tp->control.trap_expected);
7139 }
7140
7141 /* Did we find the stepping thread? */
7142 if (tp->control.step_range_end)
7143 {
7144 /* Yep. There should only one though. */
7145 gdb_assert (stepping_thread == NULL);
7146
7147 /* The event thread is handled at the top, before we
7148 enter this loop. */
7149 gdb_assert (tp != ecs->event_thread);
7150
7151 /* If some thread other than the event thread is
7152 stepping, then scheduler locking can't be in effect,
7153 otherwise we wouldn't have resumed the current event
7154 thread in the first place. */
7155 gdb_assert (!schedlock_applies (tp));
7156
7157 stepping_thread = tp;
7158 }
7159 }
7160
7161 if (stepping_thread != NULL)
7162 {
7163 if (debug_infrun)
7164 fprintf_unfiltered (gdb_stdlog,
7165 "infrun: switching back to stepped thread\n");
7166
7167 if (keep_going_stepped_thread (stepping_thread))
7168 {
7169 prepare_to_wait (ecs);
7170 return 1;
7171 }
7172 }
7173 }
7174
7175 return 0;
7176 }
7177
7178 /* Set a previously stepped thread back to stepping. Returns true on
7179 success, false if the resume is not possible (e.g., the thread
7180 vanished). */
7181
7182 static int
7183 keep_going_stepped_thread (struct thread_info *tp)
7184 {
7185 struct frame_info *frame;
7186 struct execution_control_state ecss;
7187 struct execution_control_state *ecs = &ecss;
7188
7189 /* If the stepping thread exited, then don't try to switch back and
7190 resume it, which could fail in several different ways depending
7191 on the target. Instead, just keep going.
7192
7193 We can find a stepping dead thread in the thread list in two
7194 cases:
7195
7196 - The target supports thread exit events, and when the target
7197 tries to delete the thread from the thread list, inferior_ptid
7198 pointed at the exiting thread. In such case, calling
7199 delete_thread does not really remove the thread from the list;
7200 instead, the thread is left listed, with 'exited' state.
7201
7202 - The target's debug interface does not support thread exit
7203 events, and so we have no idea whatsoever if the previously
7204 stepping thread is still alive. For that reason, we need to
7205 synchronously query the target now. */
7206
7207 if (is_exited (tp->ptid)
7208 || !target_thread_alive (tp->ptid))
7209 {
7210 if (debug_infrun)
7211 fprintf_unfiltered (gdb_stdlog,
7212 "infrun: not resuming previously "
7213 "stepped thread, it has vanished\n");
7214
7215 delete_thread (tp->ptid);
7216 return 0;
7217 }
7218
7219 if (debug_infrun)
7220 fprintf_unfiltered (gdb_stdlog,
7221 "infrun: resuming previously stepped thread\n");
7222
7223 reset_ecs (ecs, tp);
7224 switch_to_thread (tp->ptid);
7225
7226 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7227 frame = get_current_frame ();
7228
7229 /* If the PC of the thread we were trying to single-step has
7230 changed, then that thread has trapped or been signaled, but the
7231 event has not been reported to GDB yet. Re-poll the target
7232 looking for this particular thread's event (i.e. temporarily
7233 enable schedlock) by:
7234
7235 - setting a break at the current PC
7236 - resuming that particular thread, only (by setting trap
7237 expected)
7238
7239 This prevents us continuously moving the single-step breakpoint
7240 forward, one instruction at a time, overstepping. */
7241
7242 if (stop_pc != tp->prev_pc)
7243 {
7244 ptid_t resume_ptid;
7245
7246 if (debug_infrun)
7247 fprintf_unfiltered (gdb_stdlog,
7248 "infrun: expected thread advanced also (%s -> %s)\n",
7249 paddress (target_gdbarch (), tp->prev_pc),
7250 paddress (target_gdbarch (), stop_pc));
7251
7252 /* Clear the info of the previous step-over, as it's no longer
7253 valid (if the thread was trying to step over a breakpoint, it
7254 has already succeeded). It's what keep_going would do too,
7255 if we called it. Do this before trying to insert the sss
7256 breakpoint, otherwise if we were previously trying to step
7257 over this exact address in another thread, the breakpoint is
7258 skipped. */
7259 clear_step_over_info ();
7260 tp->control.trap_expected = 0;
7261
7262 insert_single_step_breakpoint (get_frame_arch (frame),
7263 get_frame_address_space (frame),
7264 stop_pc);
7265
7266 tp->resumed = 1;
7267 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7268 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7269 }
7270 else
7271 {
7272 if (debug_infrun)
7273 fprintf_unfiltered (gdb_stdlog,
7274 "infrun: expected thread still hasn't advanced\n");
7275
7276 keep_going_pass_signal (ecs);
7277 }
7278 return 1;
7279 }
7280
7281 /* Is thread TP in the middle of (software or hardware)
7282 single-stepping? (Note the result of this function must never be
7283 passed directly as target_resume's STEP parameter.) */
7284
7285 static int
7286 currently_stepping (struct thread_info *tp)
7287 {
7288 return ((tp->control.step_range_end
7289 && tp->control.step_resume_breakpoint == NULL)
7290 || tp->control.trap_expected
7291 || tp->stepped_breakpoint
7292 || bpstat_should_step ());
7293 }
7294
7295 /* Inferior has stepped into a subroutine call with source code that
7296 we should not step over. Do step to the first line of code in
7297 it. */
7298
7299 static void
7300 handle_step_into_function (struct gdbarch *gdbarch,
7301 struct execution_control_state *ecs)
7302 {
7303 struct compunit_symtab *cust;
7304 struct symtab_and_line stop_func_sal, sr_sal;
7305
7306 fill_in_stop_func (gdbarch, ecs);
7307
7308 cust = find_pc_compunit_symtab (stop_pc);
7309 if (cust != NULL && compunit_language (cust) != language_asm)
7310 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7311 ecs->stop_func_start);
7312
7313 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7314 /* Use the step_resume_break to step until the end of the prologue,
7315 even if that involves jumps (as it seems to on the vax under
7316 4.2). */
7317 /* If the prologue ends in the middle of a source line, continue to
7318 the end of that source line (if it is still within the function).
7319 Otherwise, just go to end of prologue. */
7320 if (stop_func_sal.end
7321 && stop_func_sal.pc != ecs->stop_func_start
7322 && stop_func_sal.end < ecs->stop_func_end)
7323 ecs->stop_func_start = stop_func_sal.end;
7324
7325 /* Architectures which require breakpoint adjustment might not be able
7326 to place a breakpoint at the computed address. If so, the test
7327 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7328 ecs->stop_func_start to an address at which a breakpoint may be
7329 legitimately placed.
7330
7331 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7332 made, GDB will enter an infinite loop when stepping through
7333 optimized code consisting of VLIW instructions which contain
7334 subinstructions corresponding to different source lines. On
7335 FR-V, it's not permitted to place a breakpoint on any but the
7336 first subinstruction of a VLIW instruction. When a breakpoint is
7337 set, GDB will adjust the breakpoint address to the beginning of
7338 the VLIW instruction. Thus, we need to make the corresponding
7339 adjustment here when computing the stop address. */
7340
7341 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7342 {
7343 ecs->stop_func_start
7344 = gdbarch_adjust_breakpoint_address (gdbarch,
7345 ecs->stop_func_start);
7346 }
7347
7348 if (ecs->stop_func_start == stop_pc)
7349 {
7350 /* We are already there: stop now. */
7351 end_stepping_range (ecs);
7352 return;
7353 }
7354 else
7355 {
7356 /* Put the step-breakpoint there and go until there. */
7357 init_sal (&sr_sal); /* initialize to zeroes */
7358 sr_sal.pc = ecs->stop_func_start;
7359 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7360 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7361
7362 /* Do not specify what the fp should be when we stop since on
7363 some machines the prologue is where the new fp value is
7364 established. */
7365 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7366
7367 /* And make sure stepping stops right away then. */
7368 ecs->event_thread->control.step_range_end
7369 = ecs->event_thread->control.step_range_start;
7370 }
7371 keep_going (ecs);
7372 }
7373
7374 /* Inferior has stepped backward into a subroutine call with source
7375 code that we should not step over. Do step to the beginning of the
7376 last line of code in it. */
7377
7378 static void
7379 handle_step_into_function_backward (struct gdbarch *gdbarch,
7380 struct execution_control_state *ecs)
7381 {
7382 struct compunit_symtab *cust;
7383 struct symtab_and_line stop_func_sal;
7384
7385 fill_in_stop_func (gdbarch, ecs);
7386
7387 cust = find_pc_compunit_symtab (stop_pc);
7388 if (cust != NULL && compunit_language (cust) != language_asm)
7389 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7390 ecs->stop_func_start);
7391
7392 stop_func_sal = find_pc_line (stop_pc, 0);
7393
7394 /* OK, we're just going to keep stepping here. */
7395 if (stop_func_sal.pc == stop_pc)
7396 {
7397 /* We're there already. Just stop stepping now. */
7398 end_stepping_range (ecs);
7399 }
7400 else
7401 {
7402 /* Else just reset the step range and keep going.
7403 No step-resume breakpoint, they don't work for
7404 epilogues, which can have multiple entry paths. */
7405 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7406 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7407 keep_going (ecs);
7408 }
7409 return;
7410 }
7411
7412 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7413 This is used to both functions and to skip over code. */
7414
7415 static void
7416 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7417 struct symtab_and_line sr_sal,
7418 struct frame_id sr_id,
7419 enum bptype sr_type)
7420 {
7421 /* There should never be more than one step-resume or longjmp-resume
7422 breakpoint per thread, so we should never be setting a new
7423 step_resume_breakpoint when one is already active. */
7424 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7425 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7426
7427 if (debug_infrun)
7428 fprintf_unfiltered (gdb_stdlog,
7429 "infrun: inserting step-resume breakpoint at %s\n",
7430 paddress (gdbarch, sr_sal.pc));
7431
7432 inferior_thread ()->control.step_resume_breakpoint
7433 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7434 }
7435
7436 void
7437 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7438 struct symtab_and_line sr_sal,
7439 struct frame_id sr_id)
7440 {
7441 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7442 sr_sal, sr_id,
7443 bp_step_resume);
7444 }
7445
7446 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7447 This is used to skip a potential signal handler.
7448
7449 This is called with the interrupted function's frame. The signal
7450 handler, when it returns, will resume the interrupted function at
7451 RETURN_FRAME.pc. */
7452
7453 static void
7454 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7455 {
7456 struct symtab_and_line sr_sal;
7457 struct gdbarch *gdbarch;
7458
7459 gdb_assert (return_frame != NULL);
7460 init_sal (&sr_sal); /* initialize to zeros */
7461
7462 gdbarch = get_frame_arch (return_frame);
7463 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7464 sr_sal.section = find_pc_overlay (sr_sal.pc);
7465 sr_sal.pspace = get_frame_program_space (return_frame);
7466
7467 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7468 get_stack_frame_id (return_frame),
7469 bp_hp_step_resume);
7470 }
7471
7472 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7473 is used to skip a function after stepping into it (for "next" or if
7474 the called function has no debugging information).
7475
7476 The current function has almost always been reached by single
7477 stepping a call or return instruction. NEXT_FRAME belongs to the
7478 current function, and the breakpoint will be set at the caller's
7479 resume address.
7480
7481 This is a separate function rather than reusing
7482 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7483 get_prev_frame, which may stop prematurely (see the implementation
7484 of frame_unwind_caller_id for an example). */
7485
7486 static void
7487 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7488 {
7489 struct symtab_and_line sr_sal;
7490 struct gdbarch *gdbarch;
7491
7492 /* We shouldn't have gotten here if we don't know where the call site
7493 is. */
7494 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7495
7496 init_sal (&sr_sal); /* initialize to zeros */
7497
7498 gdbarch = frame_unwind_caller_arch (next_frame);
7499 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7500 frame_unwind_caller_pc (next_frame));
7501 sr_sal.section = find_pc_overlay (sr_sal.pc);
7502 sr_sal.pspace = frame_unwind_program_space (next_frame);
7503
7504 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7505 frame_unwind_caller_id (next_frame));
7506 }
7507
7508 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7509 new breakpoint at the target of a jmp_buf. The handling of
7510 longjmp-resume uses the same mechanisms used for handling
7511 "step-resume" breakpoints. */
7512
7513 static void
7514 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7515 {
7516 /* There should never be more than one longjmp-resume breakpoint per
7517 thread, so we should never be setting a new
7518 longjmp_resume_breakpoint when one is already active. */
7519 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7520
7521 if (debug_infrun)
7522 fprintf_unfiltered (gdb_stdlog,
7523 "infrun: inserting longjmp-resume breakpoint at %s\n",
7524 paddress (gdbarch, pc));
7525
7526 inferior_thread ()->control.exception_resume_breakpoint =
7527 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7528 }
7529
7530 /* Insert an exception resume breakpoint. TP is the thread throwing
7531 the exception. The block B is the block of the unwinder debug hook
7532 function. FRAME is the frame corresponding to the call to this
7533 function. SYM is the symbol of the function argument holding the
7534 target PC of the exception. */
7535
7536 static void
7537 insert_exception_resume_breakpoint (struct thread_info *tp,
7538 const struct block *b,
7539 struct frame_info *frame,
7540 struct symbol *sym)
7541 {
7542 TRY
7543 {
7544 struct block_symbol vsym;
7545 struct value *value;
7546 CORE_ADDR handler;
7547 struct breakpoint *bp;
7548
7549 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7550 value = read_var_value (vsym.symbol, vsym.block, frame);
7551 /* If the value was optimized out, revert to the old behavior. */
7552 if (! value_optimized_out (value))
7553 {
7554 handler = value_as_address (value);
7555
7556 if (debug_infrun)
7557 fprintf_unfiltered (gdb_stdlog,
7558 "infrun: exception resume at %lx\n",
7559 (unsigned long) handler);
7560
7561 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7562 handler, bp_exception_resume);
7563
7564 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7565 frame = NULL;
7566
7567 bp->thread = tp->global_num;
7568 inferior_thread ()->control.exception_resume_breakpoint = bp;
7569 }
7570 }
7571 CATCH (e, RETURN_MASK_ERROR)
7572 {
7573 /* We want to ignore errors here. */
7574 }
7575 END_CATCH
7576 }
7577
7578 /* A helper for check_exception_resume that sets an
7579 exception-breakpoint based on a SystemTap probe. */
7580
7581 static void
7582 insert_exception_resume_from_probe (struct thread_info *tp,
7583 const struct bound_probe *probe,
7584 struct frame_info *frame)
7585 {
7586 struct value *arg_value;
7587 CORE_ADDR handler;
7588 struct breakpoint *bp;
7589
7590 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7591 if (!arg_value)
7592 return;
7593
7594 handler = value_as_address (arg_value);
7595
7596 if (debug_infrun)
7597 fprintf_unfiltered (gdb_stdlog,
7598 "infrun: exception resume at %s\n",
7599 paddress (get_objfile_arch (probe->objfile),
7600 handler));
7601
7602 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7603 handler, bp_exception_resume);
7604 bp->thread = tp->global_num;
7605 inferior_thread ()->control.exception_resume_breakpoint = bp;
7606 }
7607
7608 /* This is called when an exception has been intercepted. Check to
7609 see whether the exception's destination is of interest, and if so,
7610 set an exception resume breakpoint there. */
7611
7612 static void
7613 check_exception_resume (struct execution_control_state *ecs,
7614 struct frame_info *frame)
7615 {
7616 struct bound_probe probe;
7617 struct symbol *func;
7618
7619 /* First see if this exception unwinding breakpoint was set via a
7620 SystemTap probe point. If so, the probe has two arguments: the
7621 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7622 set a breakpoint there. */
7623 probe = find_probe_by_pc (get_frame_pc (frame));
7624 if (probe.probe)
7625 {
7626 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7627 return;
7628 }
7629
7630 func = get_frame_function (frame);
7631 if (!func)
7632 return;
7633
7634 TRY
7635 {
7636 const struct block *b;
7637 struct block_iterator iter;
7638 struct symbol *sym;
7639 int argno = 0;
7640
7641 /* The exception breakpoint is a thread-specific breakpoint on
7642 the unwinder's debug hook, declared as:
7643
7644 void _Unwind_DebugHook (void *cfa, void *handler);
7645
7646 The CFA argument indicates the frame to which control is
7647 about to be transferred. HANDLER is the destination PC.
7648
7649 We ignore the CFA and set a temporary breakpoint at HANDLER.
7650 This is not extremely efficient but it avoids issues in gdb
7651 with computing the DWARF CFA, and it also works even in weird
7652 cases such as throwing an exception from inside a signal
7653 handler. */
7654
7655 b = SYMBOL_BLOCK_VALUE (func);
7656 ALL_BLOCK_SYMBOLS (b, iter, sym)
7657 {
7658 if (!SYMBOL_IS_ARGUMENT (sym))
7659 continue;
7660
7661 if (argno == 0)
7662 ++argno;
7663 else
7664 {
7665 insert_exception_resume_breakpoint (ecs->event_thread,
7666 b, frame, sym);
7667 break;
7668 }
7669 }
7670 }
7671 CATCH (e, RETURN_MASK_ERROR)
7672 {
7673 }
7674 END_CATCH
7675 }
7676
7677 static void
7678 stop_waiting (struct execution_control_state *ecs)
7679 {
7680 if (debug_infrun)
7681 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7682
7683 clear_step_over_info ();
7684
7685 /* Let callers know we don't want to wait for the inferior anymore. */
7686 ecs->wait_some_more = 0;
7687
7688 /* If all-stop, but the target is always in non-stop mode, stop all
7689 threads now that we're presenting the stop to the user. */
7690 if (!non_stop && target_is_non_stop_p ())
7691 stop_all_threads ();
7692 }
7693
7694 /* Like keep_going, but passes the signal to the inferior, even if the
7695 signal is set to nopass. */
7696
7697 static void
7698 keep_going_pass_signal (struct execution_control_state *ecs)
7699 {
7700 /* Make sure normal_stop is called if we get a QUIT handled before
7701 reaching resume. */
7702 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7703
7704 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7705 gdb_assert (!ecs->event_thread->resumed);
7706
7707 /* Save the pc before execution, to compare with pc after stop. */
7708 ecs->event_thread->prev_pc
7709 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7710
7711 if (ecs->event_thread->control.trap_expected)
7712 {
7713 struct thread_info *tp = ecs->event_thread;
7714
7715 if (debug_infrun)
7716 fprintf_unfiltered (gdb_stdlog,
7717 "infrun: %s has trap_expected set, "
7718 "resuming to collect trap\n",
7719 target_pid_to_str (tp->ptid));
7720
7721 /* We haven't yet gotten our trap, and either: intercepted a
7722 non-signal event (e.g., a fork); or took a signal which we
7723 are supposed to pass through to the inferior. Simply
7724 continue. */
7725 discard_cleanups (old_cleanups);
7726 resume (ecs->event_thread->suspend.stop_signal);
7727 }
7728 else if (step_over_info_valid_p ())
7729 {
7730 /* Another thread is stepping over a breakpoint in-line. If
7731 this thread needs a step-over too, queue the request. In
7732 either case, this resume must be deferred for later. */
7733 struct thread_info *tp = ecs->event_thread;
7734
7735 if (ecs->hit_singlestep_breakpoint
7736 || thread_still_needs_step_over (tp))
7737 {
7738 if (debug_infrun)
7739 fprintf_unfiltered (gdb_stdlog,
7740 "infrun: step-over already in progress: "
7741 "step-over for %s deferred\n",
7742 target_pid_to_str (tp->ptid));
7743 thread_step_over_chain_enqueue (tp);
7744 }
7745 else
7746 {
7747 if (debug_infrun)
7748 fprintf_unfiltered (gdb_stdlog,
7749 "infrun: step-over in progress: "
7750 "resume of %s deferred\n",
7751 target_pid_to_str (tp->ptid));
7752 }
7753
7754 discard_cleanups (old_cleanups);
7755 }
7756 else
7757 {
7758 struct regcache *regcache = get_current_regcache ();
7759 int remove_bp;
7760 int remove_wps;
7761 step_over_what step_what;
7762
7763 /* Either the trap was not expected, but we are continuing
7764 anyway (if we got a signal, the user asked it be passed to
7765 the child)
7766 -- or --
7767 We got our expected trap, but decided we should resume from
7768 it.
7769
7770 We're going to run this baby now!
7771
7772 Note that insert_breakpoints won't try to re-insert
7773 already inserted breakpoints. Therefore, we don't
7774 care if breakpoints were already inserted, or not. */
7775
7776 /* If we need to step over a breakpoint, and we're not using
7777 displaced stepping to do so, insert all breakpoints
7778 (watchpoints, etc.) but the one we're stepping over, step one
7779 instruction, and then re-insert the breakpoint when that step
7780 is finished. */
7781
7782 step_what = thread_still_needs_step_over (ecs->event_thread);
7783
7784 remove_bp = (ecs->hit_singlestep_breakpoint
7785 || (step_what & STEP_OVER_BREAKPOINT));
7786 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7787
7788 /* We can't use displaced stepping if we need to step past a
7789 watchpoint. The instruction copied to the scratch pad would
7790 still trigger the watchpoint. */
7791 if (remove_bp
7792 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7793 {
7794 set_step_over_info (get_regcache_aspace (regcache),
7795 regcache_read_pc (regcache), remove_wps,
7796 ecs->event_thread->global_num);
7797 }
7798 else if (remove_wps)
7799 set_step_over_info (NULL, 0, remove_wps, -1);
7800
7801 /* If we now need to do an in-line step-over, we need to stop
7802 all other threads. Note this must be done before
7803 insert_breakpoints below, because that removes the breakpoint
7804 we're about to step over, otherwise other threads could miss
7805 it. */
7806 if (step_over_info_valid_p () && target_is_non_stop_p ())
7807 stop_all_threads ();
7808
7809 /* Stop stepping if inserting breakpoints fails. */
7810 TRY
7811 {
7812 insert_breakpoints ();
7813 }
7814 CATCH (e, RETURN_MASK_ERROR)
7815 {
7816 exception_print (gdb_stderr, e);
7817 stop_waiting (ecs);
7818 discard_cleanups (old_cleanups);
7819 return;
7820 }
7821 END_CATCH
7822
7823 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7824
7825 discard_cleanups (old_cleanups);
7826 resume (ecs->event_thread->suspend.stop_signal);
7827 }
7828
7829 prepare_to_wait (ecs);
7830 }
7831
7832 /* Called when we should continue running the inferior, because the
7833 current event doesn't cause a user visible stop. This does the
7834 resuming part; waiting for the next event is done elsewhere. */
7835
7836 static void
7837 keep_going (struct execution_control_state *ecs)
7838 {
7839 if (ecs->event_thread->control.trap_expected
7840 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7841 ecs->event_thread->control.trap_expected = 0;
7842
7843 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7844 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7845 keep_going_pass_signal (ecs);
7846 }
7847
7848 /* This function normally comes after a resume, before
7849 handle_inferior_event exits. It takes care of any last bits of
7850 housekeeping, and sets the all-important wait_some_more flag. */
7851
7852 static void
7853 prepare_to_wait (struct execution_control_state *ecs)
7854 {
7855 if (debug_infrun)
7856 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7857
7858 ecs->wait_some_more = 1;
7859
7860 if (!target_is_async_p ())
7861 mark_infrun_async_event_handler ();
7862 }
7863
7864 /* We are done with the step range of a step/next/si/ni command.
7865 Called once for each n of a "step n" operation. */
7866
7867 static void
7868 end_stepping_range (struct execution_control_state *ecs)
7869 {
7870 ecs->event_thread->control.stop_step = 1;
7871 stop_waiting (ecs);
7872 }
7873
7874 /* Several print_*_reason functions to print why the inferior has stopped.
7875 We always print something when the inferior exits, or receives a signal.
7876 The rest of the cases are dealt with later on in normal_stop and
7877 print_it_typical. Ideally there should be a call to one of these
7878 print_*_reason functions functions from handle_inferior_event each time
7879 stop_waiting is called.
7880
7881 Note that we don't call these directly, instead we delegate that to
7882 the interpreters, through observers. Interpreters then call these
7883 with whatever uiout is right. */
7884
7885 void
7886 print_end_stepping_range_reason (struct ui_out *uiout)
7887 {
7888 /* For CLI-like interpreters, print nothing. */
7889
7890 if (ui_out_is_mi_like_p (uiout))
7891 {
7892 ui_out_field_string (uiout, "reason",
7893 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7894 }
7895 }
7896
7897 void
7898 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7899 {
7900 annotate_signalled ();
7901 if (ui_out_is_mi_like_p (uiout))
7902 ui_out_field_string
7903 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7904 ui_out_text (uiout, "\nProgram terminated with signal ");
7905 annotate_signal_name ();
7906 ui_out_field_string (uiout, "signal-name",
7907 gdb_signal_to_name (siggnal));
7908 annotate_signal_name_end ();
7909 ui_out_text (uiout, ", ");
7910 annotate_signal_string ();
7911 ui_out_field_string (uiout, "signal-meaning",
7912 gdb_signal_to_string (siggnal));
7913 annotate_signal_string_end ();
7914 ui_out_text (uiout, ".\n");
7915 ui_out_text (uiout, "The program no longer exists.\n");
7916 }
7917
7918 void
7919 print_exited_reason (struct ui_out *uiout, int exitstatus)
7920 {
7921 struct inferior *inf = current_inferior ();
7922 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7923
7924 annotate_exited (exitstatus);
7925 if (exitstatus)
7926 {
7927 if (ui_out_is_mi_like_p (uiout))
7928 ui_out_field_string (uiout, "reason",
7929 async_reason_lookup (EXEC_ASYNC_EXITED));
7930 ui_out_text (uiout, "[Inferior ");
7931 ui_out_text (uiout, plongest (inf->num));
7932 ui_out_text (uiout, " (");
7933 ui_out_text (uiout, pidstr);
7934 ui_out_text (uiout, ") exited with code ");
7935 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7936 ui_out_text (uiout, "]\n");
7937 }
7938 else
7939 {
7940 if (ui_out_is_mi_like_p (uiout))
7941 ui_out_field_string
7942 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7943 ui_out_text (uiout, "[Inferior ");
7944 ui_out_text (uiout, plongest (inf->num));
7945 ui_out_text (uiout, " (");
7946 ui_out_text (uiout, pidstr);
7947 ui_out_text (uiout, ") exited normally]\n");
7948 }
7949 }
7950
7951 /* Some targets/architectures can do extra processing/display of
7952 segmentation faults. E.g., Intel MPX boundary faults.
7953 Call the architecture dependent function to handle the fault. */
7954
7955 static void
7956 handle_segmentation_fault (struct ui_out *uiout)
7957 {
7958 struct regcache *regcache = get_current_regcache ();
7959 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7960
7961 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7962 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7963 }
7964
7965 void
7966 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7967 {
7968 struct thread_info *thr = inferior_thread ();
7969
7970 annotate_signal ();
7971
7972 if (ui_out_is_mi_like_p (uiout))
7973 ;
7974 else if (show_thread_that_caused_stop ())
7975 {
7976 const char *name;
7977
7978 ui_out_text (uiout, "\nThread ");
7979 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7980
7981 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7982 if (name != NULL)
7983 {
7984 ui_out_text (uiout, " \"");
7985 ui_out_field_fmt (uiout, "name", "%s", name);
7986 ui_out_text (uiout, "\"");
7987 }
7988 }
7989 else
7990 ui_out_text (uiout, "\nProgram");
7991
7992 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7993 ui_out_text (uiout, " stopped");
7994 else
7995 {
7996 ui_out_text (uiout, " received signal ");
7997 annotate_signal_name ();
7998 if (ui_out_is_mi_like_p (uiout))
7999 ui_out_field_string
8000 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8001 ui_out_field_string (uiout, "signal-name",
8002 gdb_signal_to_name (siggnal));
8003 annotate_signal_name_end ();
8004 ui_out_text (uiout, ", ");
8005 annotate_signal_string ();
8006 ui_out_field_string (uiout, "signal-meaning",
8007 gdb_signal_to_string (siggnal));
8008
8009 if (siggnal == GDB_SIGNAL_SEGV)
8010 handle_segmentation_fault (uiout);
8011
8012 annotate_signal_string_end ();
8013 }
8014 ui_out_text (uiout, ".\n");
8015 }
8016
8017 void
8018 print_no_history_reason (struct ui_out *uiout)
8019 {
8020 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
8021 }
8022
8023 /* Print current location without a level number, if we have changed
8024 functions or hit a breakpoint. Print source line if we have one.
8025 bpstat_print contains the logic deciding in detail what to print,
8026 based on the event(s) that just occurred. */
8027
8028 static void
8029 print_stop_location (struct target_waitstatus *ws)
8030 {
8031 int bpstat_ret;
8032 enum print_what source_flag;
8033 int do_frame_printing = 1;
8034 struct thread_info *tp = inferior_thread ();
8035
8036 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8037 switch (bpstat_ret)
8038 {
8039 case PRINT_UNKNOWN:
8040 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8041 should) carry around the function and does (or should) use
8042 that when doing a frame comparison. */
8043 if (tp->control.stop_step
8044 && frame_id_eq (tp->control.step_frame_id,
8045 get_frame_id (get_current_frame ()))
8046 && tp->control.step_start_function == find_pc_function (stop_pc))
8047 {
8048 /* Finished step, just print source line. */
8049 source_flag = SRC_LINE;
8050 }
8051 else
8052 {
8053 /* Print location and source line. */
8054 source_flag = SRC_AND_LOC;
8055 }
8056 break;
8057 case PRINT_SRC_AND_LOC:
8058 /* Print location and source line. */
8059 source_flag = SRC_AND_LOC;
8060 break;
8061 case PRINT_SRC_ONLY:
8062 source_flag = SRC_LINE;
8063 break;
8064 case PRINT_NOTHING:
8065 /* Something bogus. */
8066 source_flag = SRC_LINE;
8067 do_frame_printing = 0;
8068 break;
8069 default:
8070 internal_error (__FILE__, __LINE__, _("Unknown value."));
8071 }
8072
8073 /* The behavior of this routine with respect to the source
8074 flag is:
8075 SRC_LINE: Print only source line
8076 LOCATION: Print only location
8077 SRC_AND_LOC: Print location and source line. */
8078 if (do_frame_printing)
8079 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8080 }
8081
8082 /* See infrun.h. */
8083
8084 void
8085 print_stop_event (struct ui_out *uiout)
8086 {
8087 struct target_waitstatus last;
8088 ptid_t last_ptid;
8089 struct thread_info *tp;
8090
8091 get_last_target_status (&last_ptid, &last);
8092
8093 {
8094 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8095
8096 print_stop_location (&last);
8097
8098 /* Display the auto-display expressions. */
8099 do_displays ();
8100 }
8101
8102 tp = inferior_thread ();
8103 if (tp->thread_fsm != NULL
8104 && thread_fsm_finished_p (tp->thread_fsm))
8105 {
8106 struct return_value_info *rv;
8107
8108 rv = thread_fsm_return_value (tp->thread_fsm);
8109 if (rv != NULL)
8110 print_return_value (uiout, rv);
8111 }
8112 }
8113
8114 /* See infrun.h. */
8115
8116 void
8117 maybe_remove_breakpoints (void)
8118 {
8119 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8120 {
8121 if (remove_breakpoints ())
8122 {
8123 target_terminal_ours_for_output ();
8124 printf_filtered (_("Cannot remove breakpoints because "
8125 "program is no longer writable.\nFurther "
8126 "execution is probably impossible.\n"));
8127 }
8128 }
8129 }
8130
8131 /* The execution context that just caused a normal stop. */
8132
8133 struct stop_context
8134 {
8135 /* The stop ID. */
8136 ULONGEST stop_id;
8137
8138 /* The event PTID. */
8139
8140 ptid_t ptid;
8141
8142 /* If stopp for a thread event, this is the thread that caused the
8143 stop. */
8144 struct thread_info *thread;
8145
8146 /* The inferior that caused the stop. */
8147 int inf_num;
8148 };
8149
8150 /* Returns a new stop context. If stopped for a thread event, this
8151 takes a strong reference to the thread. */
8152
8153 static struct stop_context *
8154 save_stop_context (void)
8155 {
8156 struct stop_context *sc = XNEW (struct stop_context);
8157
8158 sc->stop_id = get_stop_id ();
8159 sc->ptid = inferior_ptid;
8160 sc->inf_num = current_inferior ()->num;
8161
8162 if (!ptid_equal (inferior_ptid, null_ptid))
8163 {
8164 /* Take a strong reference so that the thread can't be deleted
8165 yet. */
8166 sc->thread = inferior_thread ();
8167 sc->thread->refcount++;
8168 }
8169 else
8170 sc->thread = NULL;
8171
8172 return sc;
8173 }
8174
8175 /* Release a stop context previously created with save_stop_context.
8176 Releases the strong reference to the thread as well. */
8177
8178 static void
8179 release_stop_context_cleanup (void *arg)
8180 {
8181 struct stop_context *sc = (struct stop_context *) arg;
8182
8183 if (sc->thread != NULL)
8184 sc->thread->refcount--;
8185 xfree (sc);
8186 }
8187
8188 /* Return true if the current context no longer matches the saved stop
8189 context. */
8190
8191 static int
8192 stop_context_changed (struct stop_context *prev)
8193 {
8194 if (!ptid_equal (prev->ptid, inferior_ptid))
8195 return 1;
8196 if (prev->inf_num != current_inferior ()->num)
8197 return 1;
8198 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8199 return 1;
8200 if (get_stop_id () != prev->stop_id)
8201 return 1;
8202 return 0;
8203 }
8204
8205 /* See infrun.h. */
8206
8207 int
8208 normal_stop (void)
8209 {
8210 struct target_waitstatus last;
8211 ptid_t last_ptid;
8212 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8213 ptid_t pid_ptid;
8214
8215 get_last_target_status (&last_ptid, &last);
8216
8217 new_stop_id ();
8218
8219 /* If an exception is thrown from this point on, make sure to
8220 propagate GDB's knowledge of the executing state to the
8221 frontend/user running state. A QUIT is an easy exception to see
8222 here, so do this before any filtered output. */
8223 if (!non_stop)
8224 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8225 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8226 || last.kind == TARGET_WAITKIND_EXITED)
8227 {
8228 /* On some targets, we may still have live threads in the
8229 inferior when we get a process exit event. E.g., for
8230 "checkpoint", when the current checkpoint/fork exits,
8231 linux-fork.c automatically switches to another fork from
8232 within target_mourn_inferior. */
8233 if (!ptid_equal (inferior_ptid, null_ptid))
8234 {
8235 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8236 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8237 }
8238 }
8239 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8240 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8241
8242 /* As we're presenting a stop, and potentially removing breakpoints,
8243 update the thread list so we can tell whether there are threads
8244 running on the target. With target remote, for example, we can
8245 only learn about new threads when we explicitly update the thread
8246 list. Do this before notifying the interpreters about signal
8247 stops, end of stepping ranges, etc., so that the "new thread"
8248 output is emitted before e.g., "Program received signal FOO",
8249 instead of after. */
8250 update_thread_list ();
8251
8252 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8253 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8254
8255 /* As with the notification of thread events, we want to delay
8256 notifying the user that we've switched thread context until
8257 the inferior actually stops.
8258
8259 There's no point in saying anything if the inferior has exited.
8260 Note that SIGNALLED here means "exited with a signal", not
8261 "received a signal".
8262
8263 Also skip saying anything in non-stop mode. In that mode, as we
8264 don't want GDB to switch threads behind the user's back, to avoid
8265 races where the user is typing a command to apply to thread x,
8266 but GDB switches to thread y before the user finishes entering
8267 the command, fetch_inferior_event installs a cleanup to restore
8268 the current thread back to the thread the user had selected right
8269 after this event is handled, so we're not really switching, only
8270 informing of a stop. */
8271 if (!non_stop
8272 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8273 && target_has_execution
8274 && last.kind != TARGET_WAITKIND_SIGNALLED
8275 && last.kind != TARGET_WAITKIND_EXITED
8276 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8277 {
8278 SWITCH_THRU_ALL_UIS ()
8279 {
8280 target_terminal_ours_for_output ();
8281 printf_filtered (_("[Switching to %s]\n"),
8282 target_pid_to_str (inferior_ptid));
8283 annotate_thread_changed ();
8284 }
8285 previous_inferior_ptid = inferior_ptid;
8286 }
8287
8288 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8289 {
8290 SWITCH_THRU_ALL_UIS ()
8291 if (current_ui->prompt_state == PROMPT_BLOCKED)
8292 {
8293 target_terminal_ours_for_output ();
8294 printf_filtered (_("No unwaited-for children left.\n"));
8295 }
8296 }
8297
8298 /* Note: this depends on the update_thread_list call above. */
8299 maybe_remove_breakpoints ();
8300
8301 /* If an auto-display called a function and that got a signal,
8302 delete that auto-display to avoid an infinite recursion. */
8303
8304 if (stopped_by_random_signal)
8305 disable_current_display ();
8306
8307 SWITCH_THRU_ALL_UIS ()
8308 {
8309 async_enable_stdin ();
8310 }
8311
8312 /* Let the user/frontend see the threads as stopped. */
8313 do_cleanups (old_chain);
8314
8315 /* Select innermost stack frame - i.e., current frame is frame 0,
8316 and current location is based on that. Handle the case where the
8317 dummy call is returning after being stopped. E.g. the dummy call
8318 previously hit a breakpoint. (If the dummy call returns
8319 normally, we won't reach here.) Do this before the stop hook is
8320 run, so that it doesn't get to see the temporary dummy frame,
8321 which is not where we'll present the stop. */
8322 if (has_stack_frames ())
8323 {
8324 if (stop_stack_dummy == STOP_STACK_DUMMY)
8325 {
8326 /* Pop the empty frame that contains the stack dummy. This
8327 also restores inferior state prior to the call (struct
8328 infcall_suspend_state). */
8329 struct frame_info *frame = get_current_frame ();
8330
8331 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8332 frame_pop (frame);
8333 /* frame_pop calls reinit_frame_cache as the last thing it
8334 does which means there's now no selected frame. */
8335 }
8336
8337 select_frame (get_current_frame ());
8338
8339 /* Set the current source location. */
8340 set_current_sal_from_frame (get_current_frame ());
8341 }
8342
8343 /* Look up the hook_stop and run it (CLI internally handles problem
8344 of stop_command's pre-hook not existing). */
8345 if (stop_command != NULL)
8346 {
8347 struct stop_context *saved_context = save_stop_context ();
8348 struct cleanup *old_chain
8349 = make_cleanup (release_stop_context_cleanup, saved_context);
8350
8351 catch_errors (hook_stop_stub, stop_command,
8352 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8353
8354 /* If the stop hook resumes the target, then there's no point in
8355 trying to notify about the previous stop; its context is
8356 gone. Likewise if the command switches thread or inferior --
8357 the observers would print a stop for the wrong
8358 thread/inferior. */
8359 if (stop_context_changed (saved_context))
8360 {
8361 do_cleanups (old_chain);
8362 return 1;
8363 }
8364 do_cleanups (old_chain);
8365 }
8366
8367 /* Notify observers about the stop. This is where the interpreters
8368 print the stop event. */
8369 if (!ptid_equal (inferior_ptid, null_ptid))
8370 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8371 stop_print_frame);
8372 else
8373 observer_notify_normal_stop (NULL, stop_print_frame);
8374
8375 annotate_stopped ();
8376
8377 if (target_has_execution)
8378 {
8379 if (last.kind != TARGET_WAITKIND_SIGNALLED
8380 && last.kind != TARGET_WAITKIND_EXITED)
8381 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8382 Delete any breakpoint that is to be deleted at the next stop. */
8383 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8384 }
8385
8386 /* Try to get rid of automatically added inferiors that are no
8387 longer needed. Keeping those around slows down things linearly.
8388 Note that this never removes the current inferior. */
8389 prune_inferiors ();
8390
8391 return 0;
8392 }
8393
8394 static int
8395 hook_stop_stub (void *cmd)
8396 {
8397 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8398 return (0);
8399 }
8400 \f
8401 int
8402 signal_stop_state (int signo)
8403 {
8404 return signal_stop[signo];
8405 }
8406
8407 int
8408 signal_print_state (int signo)
8409 {
8410 return signal_print[signo];
8411 }
8412
8413 int
8414 signal_pass_state (int signo)
8415 {
8416 return signal_program[signo];
8417 }
8418
8419 static void
8420 signal_cache_update (int signo)
8421 {
8422 if (signo == -1)
8423 {
8424 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8425 signal_cache_update (signo);
8426
8427 return;
8428 }
8429
8430 signal_pass[signo] = (signal_stop[signo] == 0
8431 && signal_print[signo] == 0
8432 && signal_program[signo] == 1
8433 && signal_catch[signo] == 0);
8434 }
8435
8436 int
8437 signal_stop_update (int signo, int state)
8438 {
8439 int ret = signal_stop[signo];
8440
8441 signal_stop[signo] = state;
8442 signal_cache_update (signo);
8443 return ret;
8444 }
8445
8446 int
8447 signal_print_update (int signo, int state)
8448 {
8449 int ret = signal_print[signo];
8450
8451 signal_print[signo] = state;
8452 signal_cache_update (signo);
8453 return ret;
8454 }
8455
8456 int
8457 signal_pass_update (int signo, int state)
8458 {
8459 int ret = signal_program[signo];
8460
8461 signal_program[signo] = state;
8462 signal_cache_update (signo);
8463 return ret;
8464 }
8465
8466 /* Update the global 'signal_catch' from INFO and notify the
8467 target. */
8468
8469 void
8470 signal_catch_update (const unsigned int *info)
8471 {
8472 int i;
8473
8474 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8475 signal_catch[i] = info[i] > 0;
8476 signal_cache_update (-1);
8477 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8478 }
8479
8480 static void
8481 sig_print_header (void)
8482 {
8483 printf_filtered (_("Signal Stop\tPrint\tPass "
8484 "to program\tDescription\n"));
8485 }
8486
8487 static void
8488 sig_print_info (enum gdb_signal oursig)
8489 {
8490 const char *name = gdb_signal_to_name (oursig);
8491 int name_padding = 13 - strlen (name);
8492
8493 if (name_padding <= 0)
8494 name_padding = 0;
8495
8496 printf_filtered ("%s", name);
8497 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8498 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8499 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8500 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8501 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8502 }
8503
8504 /* Specify how various signals in the inferior should be handled. */
8505
8506 static void
8507 handle_command (char *args, int from_tty)
8508 {
8509 char **argv;
8510 int digits, wordlen;
8511 int sigfirst, signum, siglast;
8512 enum gdb_signal oursig;
8513 int allsigs;
8514 int nsigs;
8515 unsigned char *sigs;
8516 struct cleanup *old_chain;
8517
8518 if (args == NULL)
8519 {
8520 error_no_arg (_("signal to handle"));
8521 }
8522
8523 /* Allocate and zero an array of flags for which signals to handle. */
8524
8525 nsigs = (int) GDB_SIGNAL_LAST;
8526 sigs = (unsigned char *) alloca (nsigs);
8527 memset (sigs, 0, nsigs);
8528
8529 /* Break the command line up into args. */
8530
8531 argv = gdb_buildargv (args);
8532 old_chain = make_cleanup_freeargv (argv);
8533
8534 /* Walk through the args, looking for signal oursigs, signal names, and
8535 actions. Signal numbers and signal names may be interspersed with
8536 actions, with the actions being performed for all signals cumulatively
8537 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8538
8539 while (*argv != NULL)
8540 {
8541 wordlen = strlen (*argv);
8542 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8543 {;
8544 }
8545 allsigs = 0;
8546 sigfirst = siglast = -1;
8547
8548 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8549 {
8550 /* Apply action to all signals except those used by the
8551 debugger. Silently skip those. */
8552 allsigs = 1;
8553 sigfirst = 0;
8554 siglast = nsigs - 1;
8555 }
8556 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8557 {
8558 SET_SIGS (nsigs, sigs, signal_stop);
8559 SET_SIGS (nsigs, sigs, signal_print);
8560 }
8561 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8562 {
8563 UNSET_SIGS (nsigs, sigs, signal_program);
8564 }
8565 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8566 {
8567 SET_SIGS (nsigs, sigs, signal_print);
8568 }
8569 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8570 {
8571 SET_SIGS (nsigs, sigs, signal_program);
8572 }
8573 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8574 {
8575 UNSET_SIGS (nsigs, sigs, signal_stop);
8576 }
8577 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8578 {
8579 SET_SIGS (nsigs, sigs, signal_program);
8580 }
8581 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8582 {
8583 UNSET_SIGS (nsigs, sigs, signal_print);
8584 UNSET_SIGS (nsigs, sigs, signal_stop);
8585 }
8586 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8587 {
8588 UNSET_SIGS (nsigs, sigs, signal_program);
8589 }
8590 else if (digits > 0)
8591 {
8592 /* It is numeric. The numeric signal refers to our own
8593 internal signal numbering from target.h, not to host/target
8594 signal number. This is a feature; users really should be
8595 using symbolic names anyway, and the common ones like
8596 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8597
8598 sigfirst = siglast = (int)
8599 gdb_signal_from_command (atoi (*argv));
8600 if ((*argv)[digits] == '-')
8601 {
8602 siglast = (int)
8603 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8604 }
8605 if (sigfirst > siglast)
8606 {
8607 /* Bet he didn't figure we'd think of this case... */
8608 signum = sigfirst;
8609 sigfirst = siglast;
8610 siglast = signum;
8611 }
8612 }
8613 else
8614 {
8615 oursig = gdb_signal_from_name (*argv);
8616 if (oursig != GDB_SIGNAL_UNKNOWN)
8617 {
8618 sigfirst = siglast = (int) oursig;
8619 }
8620 else
8621 {
8622 /* Not a number and not a recognized flag word => complain. */
8623 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8624 }
8625 }
8626
8627 /* If any signal numbers or symbol names were found, set flags for
8628 which signals to apply actions to. */
8629
8630 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8631 {
8632 switch ((enum gdb_signal) signum)
8633 {
8634 case GDB_SIGNAL_TRAP:
8635 case GDB_SIGNAL_INT:
8636 if (!allsigs && !sigs[signum])
8637 {
8638 if (query (_("%s is used by the debugger.\n\
8639 Are you sure you want to change it? "),
8640 gdb_signal_to_name ((enum gdb_signal) signum)))
8641 {
8642 sigs[signum] = 1;
8643 }
8644 else
8645 {
8646 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8647 gdb_flush (gdb_stdout);
8648 }
8649 }
8650 break;
8651 case GDB_SIGNAL_0:
8652 case GDB_SIGNAL_DEFAULT:
8653 case GDB_SIGNAL_UNKNOWN:
8654 /* Make sure that "all" doesn't print these. */
8655 break;
8656 default:
8657 sigs[signum] = 1;
8658 break;
8659 }
8660 }
8661
8662 argv++;
8663 }
8664
8665 for (signum = 0; signum < nsigs; signum++)
8666 if (sigs[signum])
8667 {
8668 signal_cache_update (-1);
8669 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8670 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8671
8672 if (from_tty)
8673 {
8674 /* Show the results. */
8675 sig_print_header ();
8676 for (; signum < nsigs; signum++)
8677 if (sigs[signum])
8678 sig_print_info ((enum gdb_signal) signum);
8679 }
8680
8681 break;
8682 }
8683
8684 do_cleanups (old_chain);
8685 }
8686
8687 /* Complete the "handle" command. */
8688
8689 static VEC (char_ptr) *
8690 handle_completer (struct cmd_list_element *ignore,
8691 const char *text, const char *word)
8692 {
8693 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8694 static const char * const keywords[] =
8695 {
8696 "all",
8697 "stop",
8698 "ignore",
8699 "print",
8700 "pass",
8701 "nostop",
8702 "noignore",
8703 "noprint",
8704 "nopass",
8705 NULL,
8706 };
8707
8708 vec_signals = signal_completer (ignore, text, word);
8709 vec_keywords = complete_on_enum (keywords, word, word);
8710
8711 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8712 VEC_free (char_ptr, vec_signals);
8713 VEC_free (char_ptr, vec_keywords);
8714 return return_val;
8715 }
8716
8717 enum gdb_signal
8718 gdb_signal_from_command (int num)
8719 {
8720 if (num >= 1 && num <= 15)
8721 return (enum gdb_signal) num;
8722 error (_("Only signals 1-15 are valid as numeric signals.\n\
8723 Use \"info signals\" for a list of symbolic signals."));
8724 }
8725
8726 /* Print current contents of the tables set by the handle command.
8727 It is possible we should just be printing signals actually used
8728 by the current target (but for things to work right when switching
8729 targets, all signals should be in the signal tables). */
8730
8731 static void
8732 signals_info (char *signum_exp, int from_tty)
8733 {
8734 enum gdb_signal oursig;
8735
8736 sig_print_header ();
8737
8738 if (signum_exp)
8739 {
8740 /* First see if this is a symbol name. */
8741 oursig = gdb_signal_from_name (signum_exp);
8742 if (oursig == GDB_SIGNAL_UNKNOWN)
8743 {
8744 /* No, try numeric. */
8745 oursig =
8746 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8747 }
8748 sig_print_info (oursig);
8749 return;
8750 }
8751
8752 printf_filtered ("\n");
8753 /* These ugly casts brought to you by the native VAX compiler. */
8754 for (oursig = GDB_SIGNAL_FIRST;
8755 (int) oursig < (int) GDB_SIGNAL_LAST;
8756 oursig = (enum gdb_signal) ((int) oursig + 1))
8757 {
8758 QUIT;
8759
8760 if (oursig != GDB_SIGNAL_UNKNOWN
8761 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8762 sig_print_info (oursig);
8763 }
8764
8765 printf_filtered (_("\nUse the \"handle\" command "
8766 "to change these tables.\n"));
8767 }
8768
8769 /* The $_siginfo convenience variable is a bit special. We don't know
8770 for sure the type of the value until we actually have a chance to
8771 fetch the data. The type can change depending on gdbarch, so it is
8772 also dependent on which thread you have selected.
8773
8774 1. making $_siginfo be an internalvar that creates a new value on
8775 access.
8776
8777 2. making the value of $_siginfo be an lval_computed value. */
8778
8779 /* This function implements the lval_computed support for reading a
8780 $_siginfo value. */
8781
8782 static void
8783 siginfo_value_read (struct value *v)
8784 {
8785 LONGEST transferred;
8786
8787 /* If we can access registers, so can we access $_siginfo. Likewise
8788 vice versa. */
8789 validate_registers_access ();
8790
8791 transferred =
8792 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8793 NULL,
8794 value_contents_all_raw (v),
8795 value_offset (v),
8796 TYPE_LENGTH (value_type (v)));
8797
8798 if (transferred != TYPE_LENGTH (value_type (v)))
8799 error (_("Unable to read siginfo"));
8800 }
8801
8802 /* This function implements the lval_computed support for writing a
8803 $_siginfo value. */
8804
8805 static void
8806 siginfo_value_write (struct value *v, struct value *fromval)
8807 {
8808 LONGEST transferred;
8809
8810 /* If we can access registers, so can we access $_siginfo. Likewise
8811 vice versa. */
8812 validate_registers_access ();
8813
8814 transferred = target_write (&current_target,
8815 TARGET_OBJECT_SIGNAL_INFO,
8816 NULL,
8817 value_contents_all_raw (fromval),
8818 value_offset (v),
8819 TYPE_LENGTH (value_type (fromval)));
8820
8821 if (transferred != TYPE_LENGTH (value_type (fromval)))
8822 error (_("Unable to write siginfo"));
8823 }
8824
8825 static const struct lval_funcs siginfo_value_funcs =
8826 {
8827 siginfo_value_read,
8828 siginfo_value_write
8829 };
8830
8831 /* Return a new value with the correct type for the siginfo object of
8832 the current thread using architecture GDBARCH. Return a void value
8833 if there's no object available. */
8834
8835 static struct value *
8836 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8837 void *ignore)
8838 {
8839 if (target_has_stack
8840 && !ptid_equal (inferior_ptid, null_ptid)
8841 && gdbarch_get_siginfo_type_p (gdbarch))
8842 {
8843 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8844
8845 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8846 }
8847
8848 return allocate_value (builtin_type (gdbarch)->builtin_void);
8849 }
8850
8851 \f
8852 /* infcall_suspend_state contains state about the program itself like its
8853 registers and any signal it received when it last stopped.
8854 This state must be restored regardless of how the inferior function call
8855 ends (either successfully, or after it hits a breakpoint or signal)
8856 if the program is to properly continue where it left off. */
8857
8858 struct infcall_suspend_state
8859 {
8860 struct thread_suspend_state thread_suspend;
8861
8862 /* Other fields: */
8863 CORE_ADDR stop_pc;
8864 struct regcache *registers;
8865
8866 /* Format of SIGINFO_DATA or NULL if it is not present. */
8867 struct gdbarch *siginfo_gdbarch;
8868
8869 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8870 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8871 content would be invalid. */
8872 gdb_byte *siginfo_data;
8873 };
8874
8875 struct infcall_suspend_state *
8876 save_infcall_suspend_state (void)
8877 {
8878 struct infcall_suspend_state *inf_state;
8879 struct thread_info *tp = inferior_thread ();
8880 struct regcache *regcache = get_current_regcache ();
8881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8882 gdb_byte *siginfo_data = NULL;
8883
8884 if (gdbarch_get_siginfo_type_p (gdbarch))
8885 {
8886 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8887 size_t len = TYPE_LENGTH (type);
8888 struct cleanup *back_to;
8889
8890 siginfo_data = (gdb_byte *) xmalloc (len);
8891 back_to = make_cleanup (xfree, siginfo_data);
8892
8893 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8894 siginfo_data, 0, len) == len)
8895 discard_cleanups (back_to);
8896 else
8897 {
8898 /* Errors ignored. */
8899 do_cleanups (back_to);
8900 siginfo_data = NULL;
8901 }
8902 }
8903
8904 inf_state = XCNEW (struct infcall_suspend_state);
8905
8906 if (siginfo_data)
8907 {
8908 inf_state->siginfo_gdbarch = gdbarch;
8909 inf_state->siginfo_data = siginfo_data;
8910 }
8911
8912 inf_state->thread_suspend = tp->suspend;
8913
8914 /* run_inferior_call will not use the signal due to its `proceed' call with
8915 GDB_SIGNAL_0 anyway. */
8916 tp->suspend.stop_signal = GDB_SIGNAL_0;
8917
8918 inf_state->stop_pc = stop_pc;
8919
8920 inf_state->registers = regcache_dup (regcache);
8921
8922 return inf_state;
8923 }
8924
8925 /* Restore inferior session state to INF_STATE. */
8926
8927 void
8928 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8929 {
8930 struct thread_info *tp = inferior_thread ();
8931 struct regcache *regcache = get_current_regcache ();
8932 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8933
8934 tp->suspend = inf_state->thread_suspend;
8935
8936 stop_pc = inf_state->stop_pc;
8937
8938 if (inf_state->siginfo_gdbarch == gdbarch)
8939 {
8940 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8941
8942 /* Errors ignored. */
8943 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8944 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8945 }
8946
8947 /* The inferior can be gone if the user types "print exit(0)"
8948 (and perhaps other times). */
8949 if (target_has_execution)
8950 /* NB: The register write goes through to the target. */
8951 regcache_cpy (regcache, inf_state->registers);
8952
8953 discard_infcall_suspend_state (inf_state);
8954 }
8955
8956 static void
8957 do_restore_infcall_suspend_state_cleanup (void *state)
8958 {
8959 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8960 }
8961
8962 struct cleanup *
8963 make_cleanup_restore_infcall_suspend_state
8964 (struct infcall_suspend_state *inf_state)
8965 {
8966 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8967 }
8968
8969 void
8970 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8971 {
8972 regcache_xfree (inf_state->registers);
8973 xfree (inf_state->siginfo_data);
8974 xfree (inf_state);
8975 }
8976
8977 struct regcache *
8978 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8979 {
8980 return inf_state->registers;
8981 }
8982
8983 /* infcall_control_state contains state regarding gdb's control of the
8984 inferior itself like stepping control. It also contains session state like
8985 the user's currently selected frame. */
8986
8987 struct infcall_control_state
8988 {
8989 struct thread_control_state thread_control;
8990 struct inferior_control_state inferior_control;
8991
8992 /* Other fields: */
8993 enum stop_stack_kind stop_stack_dummy;
8994 int stopped_by_random_signal;
8995
8996 /* ID if the selected frame when the inferior function call was made. */
8997 struct frame_id selected_frame_id;
8998 };
8999
9000 /* Save all of the information associated with the inferior<==>gdb
9001 connection. */
9002
9003 struct infcall_control_state *
9004 save_infcall_control_state (void)
9005 {
9006 struct infcall_control_state *inf_status =
9007 XNEW (struct infcall_control_state);
9008 struct thread_info *tp = inferior_thread ();
9009 struct inferior *inf = current_inferior ();
9010
9011 inf_status->thread_control = tp->control;
9012 inf_status->inferior_control = inf->control;
9013
9014 tp->control.step_resume_breakpoint = NULL;
9015 tp->control.exception_resume_breakpoint = NULL;
9016
9017 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9018 chain. If caller's caller is walking the chain, they'll be happier if we
9019 hand them back the original chain when restore_infcall_control_state is
9020 called. */
9021 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9022
9023 /* Other fields: */
9024 inf_status->stop_stack_dummy = stop_stack_dummy;
9025 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9026
9027 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9028
9029 return inf_status;
9030 }
9031
9032 static int
9033 restore_selected_frame (void *args)
9034 {
9035 struct frame_id *fid = (struct frame_id *) args;
9036 struct frame_info *frame;
9037
9038 frame = frame_find_by_id (*fid);
9039
9040 /* If inf_status->selected_frame_id is NULL, there was no previously
9041 selected frame. */
9042 if (frame == NULL)
9043 {
9044 warning (_("Unable to restore previously selected frame."));
9045 return 0;
9046 }
9047
9048 select_frame (frame);
9049
9050 return (1);
9051 }
9052
9053 /* Restore inferior session state to INF_STATUS. */
9054
9055 void
9056 restore_infcall_control_state (struct infcall_control_state *inf_status)
9057 {
9058 struct thread_info *tp = inferior_thread ();
9059 struct inferior *inf = current_inferior ();
9060
9061 if (tp->control.step_resume_breakpoint)
9062 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9063
9064 if (tp->control.exception_resume_breakpoint)
9065 tp->control.exception_resume_breakpoint->disposition
9066 = disp_del_at_next_stop;
9067
9068 /* Handle the bpstat_copy of the chain. */
9069 bpstat_clear (&tp->control.stop_bpstat);
9070
9071 tp->control = inf_status->thread_control;
9072 inf->control = inf_status->inferior_control;
9073
9074 /* Other fields: */
9075 stop_stack_dummy = inf_status->stop_stack_dummy;
9076 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9077
9078 if (target_has_stack)
9079 {
9080 /* The point of catch_errors is that if the stack is clobbered,
9081 walking the stack might encounter a garbage pointer and
9082 error() trying to dereference it. */
9083 if (catch_errors
9084 (restore_selected_frame, &inf_status->selected_frame_id,
9085 "Unable to restore previously selected frame:\n",
9086 RETURN_MASK_ERROR) == 0)
9087 /* Error in restoring the selected frame. Select the innermost
9088 frame. */
9089 select_frame (get_current_frame ());
9090 }
9091
9092 xfree (inf_status);
9093 }
9094
9095 static void
9096 do_restore_infcall_control_state_cleanup (void *sts)
9097 {
9098 restore_infcall_control_state ((struct infcall_control_state *) sts);
9099 }
9100
9101 struct cleanup *
9102 make_cleanup_restore_infcall_control_state
9103 (struct infcall_control_state *inf_status)
9104 {
9105 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9106 }
9107
9108 void
9109 discard_infcall_control_state (struct infcall_control_state *inf_status)
9110 {
9111 if (inf_status->thread_control.step_resume_breakpoint)
9112 inf_status->thread_control.step_resume_breakpoint->disposition
9113 = disp_del_at_next_stop;
9114
9115 if (inf_status->thread_control.exception_resume_breakpoint)
9116 inf_status->thread_control.exception_resume_breakpoint->disposition
9117 = disp_del_at_next_stop;
9118
9119 /* See save_infcall_control_state for info on stop_bpstat. */
9120 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9121
9122 xfree (inf_status);
9123 }
9124 \f
9125 /* restore_inferior_ptid() will be used by the cleanup machinery
9126 to restore the inferior_ptid value saved in a call to
9127 save_inferior_ptid(). */
9128
9129 static void
9130 restore_inferior_ptid (void *arg)
9131 {
9132 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9133
9134 inferior_ptid = *saved_ptid_ptr;
9135 xfree (arg);
9136 }
9137
9138 /* Save the value of inferior_ptid so that it may be restored by a
9139 later call to do_cleanups(). Returns the struct cleanup pointer
9140 needed for later doing the cleanup. */
9141
9142 struct cleanup *
9143 save_inferior_ptid (void)
9144 {
9145 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9146
9147 *saved_ptid_ptr = inferior_ptid;
9148 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9149 }
9150
9151 /* See infrun.h. */
9152
9153 void
9154 clear_exit_convenience_vars (void)
9155 {
9156 clear_internalvar (lookup_internalvar ("_exitsignal"));
9157 clear_internalvar (lookup_internalvar ("_exitcode"));
9158 }
9159 \f
9160
9161 /* User interface for reverse debugging:
9162 Set exec-direction / show exec-direction commands
9163 (returns error unless target implements to_set_exec_direction method). */
9164
9165 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9166 static const char exec_forward[] = "forward";
9167 static const char exec_reverse[] = "reverse";
9168 static const char *exec_direction = exec_forward;
9169 static const char *const exec_direction_names[] = {
9170 exec_forward,
9171 exec_reverse,
9172 NULL
9173 };
9174
9175 static void
9176 set_exec_direction_func (char *args, int from_tty,
9177 struct cmd_list_element *cmd)
9178 {
9179 if (target_can_execute_reverse)
9180 {
9181 if (!strcmp (exec_direction, exec_forward))
9182 execution_direction = EXEC_FORWARD;
9183 else if (!strcmp (exec_direction, exec_reverse))
9184 execution_direction = EXEC_REVERSE;
9185 }
9186 else
9187 {
9188 exec_direction = exec_forward;
9189 error (_("Target does not support this operation."));
9190 }
9191 }
9192
9193 static void
9194 show_exec_direction_func (struct ui_file *out, int from_tty,
9195 struct cmd_list_element *cmd, const char *value)
9196 {
9197 switch (execution_direction) {
9198 case EXEC_FORWARD:
9199 fprintf_filtered (out, _("Forward.\n"));
9200 break;
9201 case EXEC_REVERSE:
9202 fprintf_filtered (out, _("Reverse.\n"));
9203 break;
9204 default:
9205 internal_error (__FILE__, __LINE__,
9206 _("bogus execution_direction value: %d"),
9207 (int) execution_direction);
9208 }
9209 }
9210
9211 static void
9212 show_schedule_multiple (struct ui_file *file, int from_tty,
9213 struct cmd_list_element *c, const char *value)
9214 {
9215 fprintf_filtered (file, _("Resuming the execution of threads "
9216 "of all processes is %s.\n"), value);
9217 }
9218
9219 /* Implementation of `siginfo' variable. */
9220
9221 static const struct internalvar_funcs siginfo_funcs =
9222 {
9223 siginfo_make_value,
9224 NULL,
9225 NULL
9226 };
9227
9228 /* Callback for infrun's target events source. This is marked when a
9229 thread has a pending status to process. */
9230
9231 static void
9232 infrun_async_inferior_event_handler (gdb_client_data data)
9233 {
9234 inferior_event_handler (INF_REG_EVENT, NULL);
9235 }
9236
9237 void
9238 _initialize_infrun (void)
9239 {
9240 int i;
9241 int numsigs;
9242 struct cmd_list_element *c;
9243
9244 /* Register extra event sources in the event loop. */
9245 infrun_async_inferior_event_token
9246 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9247
9248 add_info ("signals", signals_info, _("\
9249 What debugger does when program gets various signals.\n\
9250 Specify a signal as argument to print info on that signal only."));
9251 add_info_alias ("handle", "signals", 0);
9252
9253 c = add_com ("handle", class_run, handle_command, _("\
9254 Specify how to handle signals.\n\
9255 Usage: handle SIGNAL [ACTIONS]\n\
9256 Args are signals and actions to apply to those signals.\n\
9257 If no actions are specified, the current settings for the specified signals\n\
9258 will be displayed instead.\n\
9259 \n\
9260 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9261 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9262 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9263 The special arg \"all\" is recognized to mean all signals except those\n\
9264 used by the debugger, typically SIGTRAP and SIGINT.\n\
9265 \n\
9266 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9267 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9268 Stop means reenter debugger if this signal happens (implies print).\n\
9269 Print means print a message if this signal happens.\n\
9270 Pass means let program see this signal; otherwise program doesn't know.\n\
9271 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9272 Pass and Stop may be combined.\n\
9273 \n\
9274 Multiple signals may be specified. Signal numbers and signal names\n\
9275 may be interspersed with actions, with the actions being performed for\n\
9276 all signals cumulatively specified."));
9277 set_cmd_completer (c, handle_completer);
9278
9279 if (!dbx_commands)
9280 stop_command = add_cmd ("stop", class_obscure,
9281 not_just_help_class_command, _("\
9282 There is no `stop' command, but you can set a hook on `stop'.\n\
9283 This allows you to set a list of commands to be run each time execution\n\
9284 of the program stops."), &cmdlist);
9285
9286 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9287 Set inferior debugging."), _("\
9288 Show inferior debugging."), _("\
9289 When non-zero, inferior specific debugging is enabled."),
9290 NULL,
9291 show_debug_infrun,
9292 &setdebuglist, &showdebuglist);
9293
9294 add_setshow_boolean_cmd ("displaced", class_maintenance,
9295 &debug_displaced, _("\
9296 Set displaced stepping debugging."), _("\
9297 Show displaced stepping debugging."), _("\
9298 When non-zero, displaced stepping specific debugging is enabled."),
9299 NULL,
9300 show_debug_displaced,
9301 &setdebuglist, &showdebuglist);
9302
9303 add_setshow_boolean_cmd ("non-stop", no_class,
9304 &non_stop_1, _("\
9305 Set whether gdb controls the inferior in non-stop mode."), _("\
9306 Show whether gdb controls the inferior in non-stop mode."), _("\
9307 When debugging a multi-threaded program and this setting is\n\
9308 off (the default, also called all-stop mode), when one thread stops\n\
9309 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9310 all other threads in the program while you interact with the thread of\n\
9311 interest. When you continue or step a thread, you can allow the other\n\
9312 threads to run, or have them remain stopped, but while you inspect any\n\
9313 thread's state, all threads stop.\n\
9314 \n\
9315 In non-stop mode, when one thread stops, other threads can continue\n\
9316 to run freely. You'll be able to step each thread independently,\n\
9317 leave it stopped or free to run as needed."),
9318 set_non_stop,
9319 show_non_stop,
9320 &setlist,
9321 &showlist);
9322
9323 numsigs = (int) GDB_SIGNAL_LAST;
9324 signal_stop = XNEWVEC (unsigned char, numsigs);
9325 signal_print = XNEWVEC (unsigned char, numsigs);
9326 signal_program = XNEWVEC (unsigned char, numsigs);
9327 signal_catch = XNEWVEC (unsigned char, numsigs);
9328 signal_pass = XNEWVEC (unsigned char, numsigs);
9329 for (i = 0; i < numsigs; i++)
9330 {
9331 signal_stop[i] = 1;
9332 signal_print[i] = 1;
9333 signal_program[i] = 1;
9334 signal_catch[i] = 0;
9335 }
9336
9337 /* Signals caused by debugger's own actions should not be given to
9338 the program afterwards.
9339
9340 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9341 explicitly specifies that it should be delivered to the target
9342 program. Typically, that would occur when a user is debugging a
9343 target monitor on a simulator: the target monitor sets a
9344 breakpoint; the simulator encounters this breakpoint and halts
9345 the simulation handing control to GDB; GDB, noting that the stop
9346 address doesn't map to any known breakpoint, returns control back
9347 to the simulator; the simulator then delivers the hardware
9348 equivalent of a GDB_SIGNAL_TRAP to the program being
9349 debugged. */
9350 signal_program[GDB_SIGNAL_TRAP] = 0;
9351 signal_program[GDB_SIGNAL_INT] = 0;
9352
9353 /* Signals that are not errors should not normally enter the debugger. */
9354 signal_stop[GDB_SIGNAL_ALRM] = 0;
9355 signal_print[GDB_SIGNAL_ALRM] = 0;
9356 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9357 signal_print[GDB_SIGNAL_VTALRM] = 0;
9358 signal_stop[GDB_SIGNAL_PROF] = 0;
9359 signal_print[GDB_SIGNAL_PROF] = 0;
9360 signal_stop[GDB_SIGNAL_CHLD] = 0;
9361 signal_print[GDB_SIGNAL_CHLD] = 0;
9362 signal_stop[GDB_SIGNAL_IO] = 0;
9363 signal_print[GDB_SIGNAL_IO] = 0;
9364 signal_stop[GDB_SIGNAL_POLL] = 0;
9365 signal_print[GDB_SIGNAL_POLL] = 0;
9366 signal_stop[GDB_SIGNAL_URG] = 0;
9367 signal_print[GDB_SIGNAL_URG] = 0;
9368 signal_stop[GDB_SIGNAL_WINCH] = 0;
9369 signal_print[GDB_SIGNAL_WINCH] = 0;
9370 signal_stop[GDB_SIGNAL_PRIO] = 0;
9371 signal_print[GDB_SIGNAL_PRIO] = 0;
9372
9373 /* These signals are used internally by user-level thread
9374 implementations. (See signal(5) on Solaris.) Like the above
9375 signals, a healthy program receives and handles them as part of
9376 its normal operation. */
9377 signal_stop[GDB_SIGNAL_LWP] = 0;
9378 signal_print[GDB_SIGNAL_LWP] = 0;
9379 signal_stop[GDB_SIGNAL_WAITING] = 0;
9380 signal_print[GDB_SIGNAL_WAITING] = 0;
9381 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9382 signal_print[GDB_SIGNAL_CANCEL] = 0;
9383 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9384 signal_print[GDB_SIGNAL_LIBRT] = 0;
9385
9386 /* Update cached state. */
9387 signal_cache_update (-1);
9388
9389 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9390 &stop_on_solib_events, _("\
9391 Set stopping for shared library events."), _("\
9392 Show stopping for shared library events."), _("\
9393 If nonzero, gdb will give control to the user when the dynamic linker\n\
9394 notifies gdb of shared library events. The most common event of interest\n\
9395 to the user would be loading/unloading of a new library."),
9396 set_stop_on_solib_events,
9397 show_stop_on_solib_events,
9398 &setlist, &showlist);
9399
9400 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9401 follow_fork_mode_kind_names,
9402 &follow_fork_mode_string, _("\
9403 Set debugger response to a program call of fork or vfork."), _("\
9404 Show debugger response to a program call of fork or vfork."), _("\
9405 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9406 parent - the original process is debugged after a fork\n\
9407 child - the new process is debugged after a fork\n\
9408 The unfollowed process will continue to run.\n\
9409 By default, the debugger will follow the parent process."),
9410 NULL,
9411 show_follow_fork_mode_string,
9412 &setlist, &showlist);
9413
9414 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9415 follow_exec_mode_names,
9416 &follow_exec_mode_string, _("\
9417 Set debugger response to a program call of exec."), _("\
9418 Show debugger response to a program call of exec."), _("\
9419 An exec call replaces the program image of a process.\n\
9420 \n\
9421 follow-exec-mode can be:\n\
9422 \n\
9423 new - the debugger creates a new inferior and rebinds the process\n\
9424 to this new inferior. The program the process was running before\n\
9425 the exec call can be restarted afterwards by restarting the original\n\
9426 inferior.\n\
9427 \n\
9428 same - the debugger keeps the process bound to the same inferior.\n\
9429 The new executable image replaces the previous executable loaded in\n\
9430 the inferior. Restarting the inferior after the exec call restarts\n\
9431 the executable the process was running after the exec call.\n\
9432 \n\
9433 By default, the debugger will use the same inferior."),
9434 NULL,
9435 show_follow_exec_mode_string,
9436 &setlist, &showlist);
9437
9438 add_setshow_enum_cmd ("scheduler-locking", class_run,
9439 scheduler_enums, &scheduler_mode, _("\
9440 Set mode for locking scheduler during execution."), _("\
9441 Show mode for locking scheduler during execution."), _("\
9442 off == no locking (threads may preempt at any time)\n\
9443 on == full locking (no thread except the current thread may run)\n\
9444 This applies to both normal execution and replay mode.\n\
9445 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9446 In this mode, other threads may run during other commands.\n\
9447 This applies to both normal execution and replay mode.\n\
9448 replay == scheduler locked in replay mode and unlocked during normal execution."),
9449 set_schedlock_func, /* traps on target vector */
9450 show_scheduler_mode,
9451 &setlist, &showlist);
9452
9453 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9454 Set mode for resuming threads of all processes."), _("\
9455 Show mode for resuming threads of all processes."), _("\
9456 When on, execution commands (such as 'continue' or 'next') resume all\n\
9457 threads of all processes. When off (which is the default), execution\n\
9458 commands only resume the threads of the current process. The set of\n\
9459 threads that are resumed is further refined by the scheduler-locking\n\
9460 mode (see help set scheduler-locking)."),
9461 NULL,
9462 show_schedule_multiple,
9463 &setlist, &showlist);
9464
9465 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9466 Set mode of the step operation."), _("\
9467 Show mode of the step operation."), _("\
9468 When set, doing a step over a function without debug line information\n\
9469 will stop at the first instruction of that function. Otherwise, the\n\
9470 function is skipped and the step command stops at a different source line."),
9471 NULL,
9472 show_step_stop_if_no_debug,
9473 &setlist, &showlist);
9474
9475 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9476 &can_use_displaced_stepping, _("\
9477 Set debugger's willingness to use displaced stepping."), _("\
9478 Show debugger's willingness to use displaced stepping."), _("\
9479 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9480 supported by the target architecture. If off, gdb will not use displaced\n\
9481 stepping to step over breakpoints, even if such is supported by the target\n\
9482 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9483 if the target architecture supports it and non-stop mode is active, but will not\n\
9484 use it in all-stop mode (see help set non-stop)."),
9485 NULL,
9486 show_can_use_displaced_stepping,
9487 &setlist, &showlist);
9488
9489 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9490 &exec_direction, _("Set direction of execution.\n\
9491 Options are 'forward' or 'reverse'."),
9492 _("Show direction of execution (forward/reverse)."),
9493 _("Tells gdb whether to execute forward or backward."),
9494 set_exec_direction_func, show_exec_direction_func,
9495 &setlist, &showlist);
9496
9497 /* Set/show detach-on-fork: user-settable mode. */
9498
9499 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9500 Set whether gdb will detach the child of a fork."), _("\
9501 Show whether gdb will detach the child of a fork."), _("\
9502 Tells gdb whether to detach the child of a fork."),
9503 NULL, NULL, &setlist, &showlist);
9504
9505 /* Set/show disable address space randomization mode. */
9506
9507 add_setshow_boolean_cmd ("disable-randomization", class_support,
9508 &disable_randomization, _("\
9509 Set disabling of debuggee's virtual address space randomization."), _("\
9510 Show disabling of debuggee's virtual address space randomization."), _("\
9511 When this mode is on (which is the default), randomization of the virtual\n\
9512 address space is disabled. Standalone programs run with the randomization\n\
9513 enabled by default on some platforms."),
9514 &set_disable_randomization,
9515 &show_disable_randomization,
9516 &setlist, &showlist);
9517
9518 /* ptid initializations */
9519 inferior_ptid = null_ptid;
9520 target_last_wait_ptid = minus_one_ptid;
9521
9522 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9523 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9524 observer_attach_thread_exit (infrun_thread_thread_exit);
9525 observer_attach_inferior_exit (infrun_inferior_exit);
9526
9527 /* Explicitly create without lookup, since that tries to create a
9528 value with a void typed value, and when we get here, gdbarch
9529 isn't initialized yet. At this point, we're quite sure there
9530 isn't another convenience variable of the same name. */
9531 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9532
9533 add_setshow_boolean_cmd ("observer", no_class,
9534 &observer_mode_1, _("\
9535 Set whether gdb controls the inferior in observer mode."), _("\
9536 Show whether gdb controls the inferior in observer mode."), _("\
9537 In observer mode, GDB can get data from the inferior, but not\n\
9538 affect its execution. Registers and memory may not be changed,\n\
9539 breakpoints may not be set, and the program cannot be interrupted\n\
9540 or signalled."),
9541 set_observer_mode,
9542 show_observer_mode,
9543 &setlist,
9544 &showlist);
9545 }
This page took 0.214899 seconds and 5 git commands to generate.