Remote all-stop-on-top-of-non-stop
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* In asynchronous mode, but simulating synchronous execution. */
156
157 int sync_execution = 0;
158
159 /* proceed and normal_stop use this to notify the user when the
160 inferior stopped in a different thread than it had been running
161 in. */
162
163 static ptid_t previous_inferior_ptid;
164
165 /* If set (default for legacy reasons), when following a fork, GDB
166 will detach from one of the fork branches, child or parent.
167 Exactly which branch is detached depends on 'set follow-fork-mode'
168 setting. */
169
170 static int detach_fork = 1;
171
172 int debug_displaced = 0;
173 static void
174 show_debug_displaced (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
178 }
179
180 unsigned int debug_infrun = 0;
181 static void
182 show_debug_infrun (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184 {
185 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
186 }
187
188
189 /* Support for disabling address space randomization. */
190
191 int disable_randomization = 1;
192
193 static void
194 show_disable_randomization (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 if (target_supports_disable_randomization ())
198 fprintf_filtered (file,
199 _("Disabling randomization of debuggee's "
200 "virtual address space is %s.\n"),
201 value);
202 else
203 fputs_filtered (_("Disabling randomization of debuggee's "
204 "virtual address space is unsupported on\n"
205 "this platform.\n"), file);
206 }
207
208 static void
209 set_disable_randomization (char *args, int from_tty,
210 struct cmd_list_element *c)
211 {
212 if (!target_supports_disable_randomization ())
213 error (_("Disabling randomization of debuggee's "
214 "virtual address space is unsupported on\n"
215 "this platform."));
216 }
217
218 /* User interface for non-stop mode. */
219
220 int non_stop = 0;
221 static int non_stop_1 = 0;
222
223 static void
224 set_non_stop (char *args, int from_tty,
225 struct cmd_list_element *c)
226 {
227 if (target_has_execution)
228 {
229 non_stop_1 = non_stop;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 non_stop = non_stop_1;
234 }
235
236 static void
237 show_non_stop (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file,
241 _("Controlling the inferior in non-stop mode is %s.\n"),
242 value);
243 }
244
245 /* "Observer mode" is somewhat like a more extreme version of
246 non-stop, in which all GDB operations that might affect the
247 target's execution have been disabled. */
248
249 int observer_mode = 0;
250 static int observer_mode_1 = 0;
251
252 static void
253 set_observer_mode (char *args, int from_tty,
254 struct cmd_list_element *c)
255 {
256 if (target_has_execution)
257 {
258 observer_mode_1 = observer_mode;
259 error (_("Cannot change this setting while the inferior is running."));
260 }
261
262 observer_mode = observer_mode_1;
263
264 may_write_registers = !observer_mode;
265 may_write_memory = !observer_mode;
266 may_insert_breakpoints = !observer_mode;
267 may_insert_tracepoints = !observer_mode;
268 /* We can insert fast tracepoints in or out of observer mode,
269 but enable them if we're going into this mode. */
270 if (observer_mode)
271 may_insert_fast_tracepoints = 1;
272 may_stop = !observer_mode;
273 update_target_permissions ();
274
275 /* Going *into* observer mode we must force non-stop, then
276 going out we leave it that way. */
277 if (observer_mode)
278 {
279 pagination_enabled = 0;
280 non_stop = non_stop_1 = 1;
281 }
282
283 if (from_tty)
284 printf_filtered (_("Observer mode is now %s.\n"),
285 (observer_mode ? "on" : "off"));
286 }
287
288 static void
289 show_observer_mode (struct ui_file *file, int from_tty,
290 struct cmd_list_element *c, const char *value)
291 {
292 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
293 }
294
295 /* This updates the value of observer mode based on changes in
296 permissions. Note that we are deliberately ignoring the values of
297 may-write-registers and may-write-memory, since the user may have
298 reason to enable these during a session, for instance to turn on a
299 debugging-related global. */
300
301 void
302 update_observer_mode (void)
303 {
304 int newval;
305
306 newval = (!may_insert_breakpoints
307 && !may_insert_tracepoints
308 && may_insert_fast_tracepoints
309 && !may_stop
310 && non_stop);
311
312 /* Let the user know if things change. */
313 if (newval != observer_mode)
314 printf_filtered (_("Observer mode is now %s.\n"),
315 (newval ? "on" : "off"));
316
317 observer_mode = observer_mode_1 = newval;
318 }
319
320 /* Tables of how to react to signals; the user sets them. */
321
322 static unsigned char *signal_stop;
323 static unsigned char *signal_print;
324 static unsigned char *signal_program;
325
326 /* Table of signals that are registered with "catch signal". A
327 non-zero entry indicates that the signal is caught by some "catch
328 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
329 signals. */
330 static unsigned char *signal_catch;
331
332 /* Table of signals that the target may silently handle.
333 This is automatically determined from the flags above,
334 and simply cached here. */
335 static unsigned char *signal_pass;
336
337 #define SET_SIGS(nsigs,sigs,flags) \
338 do { \
339 int signum = (nsigs); \
340 while (signum-- > 0) \
341 if ((sigs)[signum]) \
342 (flags)[signum] = 1; \
343 } while (0)
344
345 #define UNSET_SIGS(nsigs,sigs,flags) \
346 do { \
347 int signum = (nsigs); \
348 while (signum-- > 0) \
349 if ((sigs)[signum]) \
350 (flags)[signum] = 0; \
351 } while (0)
352
353 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
354 this function is to avoid exporting `signal_program'. */
355
356 void
357 update_signals_program_target (void)
358 {
359 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
360 }
361
362 /* Value to pass to target_resume() to cause all threads to resume. */
363
364 #define RESUME_ALL minus_one_ptid
365
366 /* Command list pointer for the "stop" placeholder. */
367
368 static struct cmd_list_element *stop_command;
369
370 /* Nonzero if we want to give control to the user when we're notified
371 of shared library events by the dynamic linker. */
372 int stop_on_solib_events;
373
374 /* Enable or disable optional shared library event breakpoints
375 as appropriate when the above flag is changed. */
376
377 static void
378 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
379 {
380 update_solib_breakpoints ();
381 }
382
383 static void
384 show_stop_on_solib_events (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386 {
387 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
388 value);
389 }
390
391 /* Nonzero after stop if current stack frame should be printed. */
392
393 static int stop_print_frame;
394
395 /* This is a cached copy of the pid/waitstatus of the last event
396 returned by target_wait()/deprecated_target_wait_hook(). This
397 information is returned by get_last_target_status(). */
398 static ptid_t target_last_wait_ptid;
399 static struct target_waitstatus target_last_waitstatus;
400
401 static void context_switch (ptid_t ptid);
402
403 void init_thread_stepping_state (struct thread_info *tss);
404
405 static const char follow_fork_mode_child[] = "child";
406 static const char follow_fork_mode_parent[] = "parent";
407
408 static const char *const follow_fork_mode_kind_names[] = {
409 follow_fork_mode_child,
410 follow_fork_mode_parent,
411 NULL
412 };
413
414 static const char *follow_fork_mode_string = follow_fork_mode_parent;
415 static void
416 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c, const char *value)
418 {
419 fprintf_filtered (file,
420 _("Debugger response to a program "
421 "call of fork or vfork is \"%s\".\n"),
422 value);
423 }
424 \f
425
426 /* Handle changes to the inferior list based on the type of fork,
427 which process is being followed, and whether the other process
428 should be detached. On entry inferior_ptid must be the ptid of
429 the fork parent. At return inferior_ptid is the ptid of the
430 followed inferior. */
431
432 static int
433 follow_fork_inferior (int follow_child, int detach_fork)
434 {
435 int has_vforked;
436 ptid_t parent_ptid, child_ptid;
437
438 has_vforked = (inferior_thread ()->pending_follow.kind
439 == TARGET_WAITKIND_VFORKED);
440 parent_ptid = inferior_ptid;
441 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
442
443 if (has_vforked
444 && !non_stop /* Non-stop always resumes both branches. */
445 && (!target_is_async_p () || sync_execution)
446 && !(follow_child || detach_fork || sched_multi))
447 {
448 /* The parent stays blocked inside the vfork syscall until the
449 child execs or exits. If we don't let the child run, then
450 the parent stays blocked. If we're telling the parent to run
451 in the foreground, the user will not be able to ctrl-c to get
452 back the terminal, effectively hanging the debug session. */
453 fprintf_filtered (gdb_stderr, _("\
454 Can not resume the parent process over vfork in the foreground while\n\
455 holding the child stopped. Try \"set detach-on-fork\" or \
456 \"set schedule-multiple\".\n"));
457 /* FIXME output string > 80 columns. */
458 return 1;
459 }
460
461 if (!follow_child)
462 {
463 /* Detach new forked process? */
464 if (detach_fork)
465 {
466 struct cleanup *old_chain;
467
468 /* Before detaching from the child, remove all breakpoints
469 from it. If we forked, then this has already been taken
470 care of by infrun.c. If we vforked however, any
471 breakpoint inserted in the parent is visible in the
472 child, even those added while stopped in a vfork
473 catchpoint. This will remove the breakpoints from the
474 parent also, but they'll be reinserted below. */
475 if (has_vforked)
476 {
477 /* Keep breakpoints list in sync. */
478 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
479 }
480
481 if (info_verbose || debug_infrun)
482 {
483 /* Ensure that we have a process ptid. */
484 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
485
486 target_terminal_ours_for_output ();
487 fprintf_filtered (gdb_stdlog,
488 _("Detaching after %s from child %s.\n"),
489 has_vforked ? "vfork" : "fork",
490 target_pid_to_str (process_ptid));
491 }
492 }
493 else
494 {
495 struct inferior *parent_inf, *child_inf;
496 struct cleanup *old_chain;
497
498 /* Add process to GDB's tables. */
499 child_inf = add_inferior (ptid_get_pid (child_ptid));
500
501 parent_inf = current_inferior ();
502 child_inf->attach_flag = parent_inf->attach_flag;
503 copy_terminal_info (child_inf, parent_inf);
504 child_inf->gdbarch = parent_inf->gdbarch;
505 copy_inferior_target_desc_info (child_inf, parent_inf);
506
507 old_chain = save_inferior_ptid ();
508 save_current_program_space ();
509
510 inferior_ptid = child_ptid;
511 add_thread (inferior_ptid);
512 child_inf->symfile_flags = SYMFILE_NO_READ;
513
514 /* If this is a vfork child, then the address-space is
515 shared with the parent. */
516 if (has_vforked)
517 {
518 child_inf->pspace = parent_inf->pspace;
519 child_inf->aspace = parent_inf->aspace;
520
521 /* The parent will be frozen until the child is done
522 with the shared region. Keep track of the
523 parent. */
524 child_inf->vfork_parent = parent_inf;
525 child_inf->pending_detach = 0;
526 parent_inf->vfork_child = child_inf;
527 parent_inf->pending_detach = 0;
528 }
529 else
530 {
531 child_inf->aspace = new_address_space ();
532 child_inf->pspace = add_program_space (child_inf->aspace);
533 child_inf->removable = 1;
534 set_current_program_space (child_inf->pspace);
535 clone_program_space (child_inf->pspace, parent_inf->pspace);
536
537 /* Let the shared library layer (e.g., solib-svr4) learn
538 about this new process, relocate the cloned exec, pull
539 in shared libraries, and install the solib event
540 breakpoint. If a "cloned-VM" event was propagated
541 better throughout the core, this wouldn't be
542 required. */
543 solib_create_inferior_hook (0);
544 }
545
546 do_cleanups (old_chain);
547 }
548
549 if (has_vforked)
550 {
551 struct inferior *parent_inf;
552
553 parent_inf = current_inferior ();
554
555 /* If we detached from the child, then we have to be careful
556 to not insert breakpoints in the parent until the child
557 is done with the shared memory region. However, if we're
558 staying attached to the child, then we can and should
559 insert breakpoints, so that we can debug it. A
560 subsequent child exec or exit is enough to know when does
561 the child stops using the parent's address space. */
562 parent_inf->waiting_for_vfork_done = detach_fork;
563 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
564 }
565 }
566 else
567 {
568 /* Follow the child. */
569 struct inferior *parent_inf, *child_inf;
570 struct program_space *parent_pspace;
571
572 if (info_verbose || debug_infrun)
573 {
574 target_terminal_ours_for_output ();
575 fprintf_filtered (gdb_stdlog,
576 _("Attaching after %s %s to child %s.\n"),
577 target_pid_to_str (parent_ptid),
578 has_vforked ? "vfork" : "fork",
579 target_pid_to_str (child_ptid));
580 }
581
582 /* Add the new inferior first, so that the target_detach below
583 doesn't unpush the target. */
584
585 child_inf = add_inferior (ptid_get_pid (child_ptid));
586
587 parent_inf = current_inferior ();
588 child_inf->attach_flag = parent_inf->attach_flag;
589 copy_terminal_info (child_inf, parent_inf);
590 child_inf->gdbarch = parent_inf->gdbarch;
591 copy_inferior_target_desc_info (child_inf, parent_inf);
592
593 parent_pspace = parent_inf->pspace;
594
595 /* If we're vforking, we want to hold on to the parent until the
596 child exits or execs. At child exec or exit time we can
597 remove the old breakpoints from the parent and detach or
598 resume debugging it. Otherwise, detach the parent now; we'll
599 want to reuse it's program/address spaces, but we can't set
600 them to the child before removing breakpoints from the
601 parent, otherwise, the breakpoints module could decide to
602 remove breakpoints from the wrong process (since they'd be
603 assigned to the same address space). */
604
605 if (has_vforked)
606 {
607 gdb_assert (child_inf->vfork_parent == NULL);
608 gdb_assert (parent_inf->vfork_child == NULL);
609 child_inf->vfork_parent = parent_inf;
610 child_inf->pending_detach = 0;
611 parent_inf->vfork_child = child_inf;
612 parent_inf->pending_detach = detach_fork;
613 parent_inf->waiting_for_vfork_done = 0;
614 }
615 else if (detach_fork)
616 {
617 if (info_verbose || debug_infrun)
618 {
619 /* Ensure that we have a process ptid. */
620 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
621
622 target_terminal_ours_for_output ();
623 fprintf_filtered (gdb_stdlog,
624 _("Detaching after fork from "
625 "child %s.\n"),
626 target_pid_to_str (process_ptid));
627 }
628
629 target_detach (NULL, 0);
630 }
631
632 /* Note that the detach above makes PARENT_INF dangling. */
633
634 /* Add the child thread to the appropriate lists, and switch to
635 this new thread, before cloning the program space, and
636 informing the solib layer about this new process. */
637
638 inferior_ptid = child_ptid;
639 add_thread (inferior_ptid);
640
641 /* If this is a vfork child, then the address-space is shared
642 with the parent. If we detached from the parent, then we can
643 reuse the parent's program/address spaces. */
644 if (has_vforked || detach_fork)
645 {
646 child_inf->pspace = parent_pspace;
647 child_inf->aspace = child_inf->pspace->aspace;
648 }
649 else
650 {
651 child_inf->aspace = new_address_space ();
652 child_inf->pspace = add_program_space (child_inf->aspace);
653 child_inf->removable = 1;
654 child_inf->symfile_flags = SYMFILE_NO_READ;
655 set_current_program_space (child_inf->pspace);
656 clone_program_space (child_inf->pspace, parent_pspace);
657
658 /* Let the shared library layer (e.g., solib-svr4) learn
659 about this new process, relocate the cloned exec, pull in
660 shared libraries, and install the solib event breakpoint.
661 If a "cloned-VM" event was propagated better throughout
662 the core, this wouldn't be required. */
663 solib_create_inferior_hook (0);
664 }
665 }
666
667 return target_follow_fork (follow_child, detach_fork);
668 }
669
670 /* Tell the target to follow the fork we're stopped at. Returns true
671 if the inferior should be resumed; false, if the target for some
672 reason decided it's best not to resume. */
673
674 static int
675 follow_fork (void)
676 {
677 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
678 int should_resume = 1;
679 struct thread_info *tp;
680
681 /* Copy user stepping state to the new inferior thread. FIXME: the
682 followed fork child thread should have a copy of most of the
683 parent thread structure's run control related fields, not just these.
684 Initialized to avoid "may be used uninitialized" warnings from gcc. */
685 struct breakpoint *step_resume_breakpoint = NULL;
686 struct breakpoint *exception_resume_breakpoint = NULL;
687 CORE_ADDR step_range_start = 0;
688 CORE_ADDR step_range_end = 0;
689 struct frame_id step_frame_id = { 0 };
690 struct interp *command_interp = NULL;
691
692 if (!non_stop)
693 {
694 ptid_t wait_ptid;
695 struct target_waitstatus wait_status;
696
697 /* Get the last target status returned by target_wait(). */
698 get_last_target_status (&wait_ptid, &wait_status);
699
700 /* If not stopped at a fork event, then there's nothing else to
701 do. */
702 if (wait_status.kind != TARGET_WAITKIND_FORKED
703 && wait_status.kind != TARGET_WAITKIND_VFORKED)
704 return 1;
705
706 /* Check if we switched over from WAIT_PTID, since the event was
707 reported. */
708 if (!ptid_equal (wait_ptid, minus_one_ptid)
709 && !ptid_equal (inferior_ptid, wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 switch_to_thread (wait_ptid);
716 should_resume = 0;
717 }
718 }
719
720 tp = inferior_thread ();
721
722 /* If there were any forks/vforks that were caught and are now to be
723 followed, then do so now. */
724 switch (tp->pending_follow.kind)
725 {
726 case TARGET_WAITKIND_FORKED:
727 case TARGET_WAITKIND_VFORKED:
728 {
729 ptid_t parent, child;
730
731 /* If the user did a next/step, etc, over a fork call,
732 preserve the stepping state in the fork child. */
733 if (follow_child && should_resume)
734 {
735 step_resume_breakpoint = clone_momentary_breakpoint
736 (tp->control.step_resume_breakpoint);
737 step_range_start = tp->control.step_range_start;
738 step_range_end = tp->control.step_range_end;
739 step_frame_id = tp->control.step_frame_id;
740 exception_resume_breakpoint
741 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
742 command_interp = tp->control.command_interp;
743
744 /* For now, delete the parent's sr breakpoint, otherwise,
745 parent/child sr breakpoints are considered duplicates,
746 and the child version will not be installed. Remove
747 this when the breakpoints module becomes aware of
748 inferiors and address spaces. */
749 delete_step_resume_breakpoint (tp);
750 tp->control.step_range_start = 0;
751 tp->control.step_range_end = 0;
752 tp->control.step_frame_id = null_frame_id;
753 delete_exception_resume_breakpoint (tp);
754 tp->control.command_interp = NULL;
755 }
756
757 parent = inferior_ptid;
758 child = tp->pending_follow.value.related_pid;
759
760 /* Set up inferior(s) as specified by the caller, and tell the
761 target to do whatever is necessary to follow either parent
762 or child. */
763 if (follow_fork_inferior (follow_child, detach_fork))
764 {
765 /* Target refused to follow, or there's some other reason
766 we shouldn't resume. */
767 should_resume = 0;
768 }
769 else
770 {
771 /* This pending follow fork event is now handled, one way
772 or another. The previous selected thread may be gone
773 from the lists by now, but if it is still around, need
774 to clear the pending follow request. */
775 tp = find_thread_ptid (parent);
776 if (tp)
777 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
778
779 /* This makes sure we don't try to apply the "Switched
780 over from WAIT_PID" logic above. */
781 nullify_last_target_wait_ptid ();
782
783 /* If we followed the child, switch to it... */
784 if (follow_child)
785 {
786 switch_to_thread (child);
787
788 /* ... and preserve the stepping state, in case the
789 user was stepping over the fork call. */
790 if (should_resume)
791 {
792 tp = inferior_thread ();
793 tp->control.step_resume_breakpoint
794 = step_resume_breakpoint;
795 tp->control.step_range_start = step_range_start;
796 tp->control.step_range_end = step_range_end;
797 tp->control.step_frame_id = step_frame_id;
798 tp->control.exception_resume_breakpoint
799 = exception_resume_breakpoint;
800 tp->control.command_interp = command_interp;
801 }
802 else
803 {
804 /* If we get here, it was because we're trying to
805 resume from a fork catchpoint, but, the user
806 has switched threads away from the thread that
807 forked. In that case, the resume command
808 issued is most likely not applicable to the
809 child, so just warn, and refuse to resume. */
810 warning (_("Not resuming: switched threads "
811 "before following fork child."));
812 }
813
814 /* Reset breakpoints in the child as appropriate. */
815 follow_inferior_reset_breakpoints ();
816 }
817 else
818 switch_to_thread (parent);
819 }
820 }
821 break;
822 case TARGET_WAITKIND_SPURIOUS:
823 /* Nothing to follow. */
824 break;
825 default:
826 internal_error (__FILE__, __LINE__,
827 "Unexpected pending_follow.kind %d\n",
828 tp->pending_follow.kind);
829 break;
830 }
831
832 return should_resume;
833 }
834
835 static void
836 follow_inferior_reset_breakpoints (void)
837 {
838 struct thread_info *tp = inferior_thread ();
839
840 /* Was there a step_resume breakpoint? (There was if the user
841 did a "next" at the fork() call.) If so, explicitly reset its
842 thread number. Cloned step_resume breakpoints are disabled on
843 creation, so enable it here now that it is associated with the
844 correct thread.
845
846 step_resumes are a form of bp that are made to be per-thread.
847 Since we created the step_resume bp when the parent process
848 was being debugged, and now are switching to the child process,
849 from the breakpoint package's viewpoint, that's a switch of
850 "threads". We must update the bp's notion of which thread
851 it is for, or it'll be ignored when it triggers. */
852
853 if (tp->control.step_resume_breakpoint)
854 {
855 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
856 tp->control.step_resume_breakpoint->loc->enabled = 1;
857 }
858
859 /* Treat exception_resume breakpoints like step_resume breakpoints. */
860 if (tp->control.exception_resume_breakpoint)
861 {
862 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
863 tp->control.exception_resume_breakpoint->loc->enabled = 1;
864 }
865
866 /* Reinsert all breakpoints in the child. The user may have set
867 breakpoints after catching the fork, in which case those
868 were never set in the child, but only in the parent. This makes
869 sure the inserted breakpoints match the breakpoint list. */
870
871 breakpoint_re_set ();
872 insert_breakpoints ();
873 }
874
875 /* The child has exited or execed: resume threads of the parent the
876 user wanted to be executing. */
877
878 static int
879 proceed_after_vfork_done (struct thread_info *thread,
880 void *arg)
881 {
882 int pid = * (int *) arg;
883
884 if (ptid_get_pid (thread->ptid) == pid
885 && is_running (thread->ptid)
886 && !is_executing (thread->ptid)
887 && !thread->stop_requested
888 && thread->suspend.stop_signal == GDB_SIGNAL_0)
889 {
890 if (debug_infrun)
891 fprintf_unfiltered (gdb_stdlog,
892 "infrun: resuming vfork parent thread %s\n",
893 target_pid_to_str (thread->ptid));
894
895 switch_to_thread (thread->ptid);
896 clear_proceed_status (0);
897 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
898 }
899
900 return 0;
901 }
902
903 /* Called whenever we notice an exec or exit event, to handle
904 detaching or resuming a vfork parent. */
905
906 static void
907 handle_vfork_child_exec_or_exit (int exec)
908 {
909 struct inferior *inf = current_inferior ();
910
911 if (inf->vfork_parent)
912 {
913 int resume_parent = -1;
914
915 /* This exec or exit marks the end of the shared memory region
916 between the parent and the child. If the user wanted to
917 detach from the parent, now is the time. */
918
919 if (inf->vfork_parent->pending_detach)
920 {
921 struct thread_info *tp;
922 struct cleanup *old_chain;
923 struct program_space *pspace;
924 struct address_space *aspace;
925
926 /* follow-fork child, detach-on-fork on. */
927
928 inf->vfork_parent->pending_detach = 0;
929
930 if (!exec)
931 {
932 /* If we're handling a child exit, then inferior_ptid
933 points at the inferior's pid, not to a thread. */
934 old_chain = save_inferior_ptid ();
935 save_current_program_space ();
936 save_current_inferior ();
937 }
938 else
939 old_chain = save_current_space_and_thread ();
940
941 /* We're letting loose of the parent. */
942 tp = any_live_thread_of_process (inf->vfork_parent->pid);
943 switch_to_thread (tp->ptid);
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
962 if (debug_infrun || info_verbose)
963 {
964 target_terminal_ours_for_output ();
965
966 if (exec)
967 {
968 fprintf_filtered (gdb_stdlog,
969 _("Detaching vfork parent process "
970 "%d after child exec.\n"),
971 inf->vfork_parent->pid);
972 }
973 else
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("Detaching vfork parent process "
977 "%d after child exit.\n"),
978 inf->vfork_parent->pid);
979 }
980 }
981
982 target_detach (NULL, 0);
983
984 /* Put it back. */
985 inf->pspace = pspace;
986 inf->aspace = aspace;
987
988 do_cleanups (old_chain);
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
994 inf->pspace = add_program_space (maybe_new_address_space ());
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
1006 struct cleanup *old_chain;
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to null_ptid, so that clone_program_space doesn't want
1019 to read the selected frame of a dead process. */
1020 old_chain = save_inferior_ptid ();
1021 inferior_ptid = null_ptid;
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
1028 pspace = add_program_space (maybe_new_address_space ());
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
1031 inf->symfile_flags = SYMFILE_NO_READ;
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
1036 /* Put back inferior_ptid. We'll continue mourning this
1037 inferior. */
1038 do_cleanups (old_chain);
1039
1040 resume_parent = inf->vfork_parent->pid;
1041 /* Break the bonds. */
1042 inf->vfork_parent->vfork_child = NULL;
1043 }
1044
1045 inf->vfork_parent = NULL;
1046
1047 gdb_assert (current_program_space == inf->pspace);
1048
1049 if (non_stop && resume_parent != -1)
1050 {
1051 /* If the user wanted the parent to be running, let it go
1052 free now. */
1053 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1054
1055 if (debug_infrun)
1056 fprintf_unfiltered (gdb_stdlog,
1057 "infrun: resuming vfork parent process %d\n",
1058 resume_parent);
1059
1060 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1061
1062 do_cleanups (old_chain);
1063 }
1064 }
1065 }
1066
1067 /* Enum strings for "set|show follow-exec-mode". */
1068
1069 static const char follow_exec_mode_new[] = "new";
1070 static const char follow_exec_mode_same[] = "same";
1071 static const char *const follow_exec_mode_names[] =
1072 {
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076 };
1077
1078 static const char *follow_exec_mode_string = follow_exec_mode_same;
1079 static void
1080 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082 {
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084 }
1085
1086 /* EXECD_PATHNAME is assumed to be non-NULL. */
1087
1088 static void
1089 follow_exec (ptid_t ptid, char *execd_pathname)
1090 {
1091 struct thread_info *th, *tmp;
1092 struct inferior *inf = current_inferior ();
1093 int pid = ptid_get_pid (ptid);
1094 ptid_t process_ptid;
1095
1096 /* This is an exec event that we actually wish to pay attention to.
1097 Refresh our symbol table to the newly exec'd program, remove any
1098 momentary bp's, etc.
1099
1100 If there are breakpoints, they aren't really inserted now,
1101 since the exec() transformed our inferior into a fresh set
1102 of instructions.
1103
1104 We want to preserve symbolic breakpoints on the list, since
1105 we have hopes that they can be reset after the new a.out's
1106 symbol table is read.
1107
1108 However, any "raw" breakpoints must be removed from the list
1109 (e.g., the solib bp's), since their address is probably invalid
1110 now.
1111
1112 And, we DON'T want to call delete_breakpoints() here, since
1113 that may write the bp's "shadow contents" (the instruction
1114 value that was overwritten witha TRAP instruction). Since
1115 we now have a new a.out, those shadow contents aren't valid. */
1116
1117 mark_breakpoints_out ();
1118
1119 /* The target reports the exec event to the main thread, even if
1120 some other thread does the exec, and even if the main thread was
1121 stopped or already gone. We may still have non-leader threads of
1122 the process on our list. E.g., on targets that don't have thread
1123 exit events (like remote); or on native Linux in non-stop mode if
1124 there were only two threads in the inferior and the non-leader
1125 one is the one that execs (and nothing forces an update of the
1126 thread list up to here). When debugging remotely, it's best to
1127 avoid extra traffic, when possible, so avoid syncing the thread
1128 list with the target, and instead go ahead and delete all threads
1129 of the process but one that reported the event. Note this must
1130 be done before calling update_breakpoints_after_exec, as
1131 otherwise clearing the threads' resources would reference stale
1132 thread breakpoints -- it may have been one of these threads that
1133 stepped across the exec. We could just clear their stepping
1134 states, but as long as we're iterating, might as well delete
1135 them. Deleting them now rather than at the next user-visible
1136 stop provides a nicer sequence of events for user and MI
1137 notifications. */
1138 ALL_THREADS_SAFE (th, tmp)
1139 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1140 delete_thread (th->ptid);
1141
1142 /* We also need to clear any left over stale state for the
1143 leader/event thread. E.g., if there was any step-resume
1144 breakpoint or similar, it's gone now. We cannot truly
1145 step-to-next statement through an exec(). */
1146 th = inferior_thread ();
1147 th->control.step_resume_breakpoint = NULL;
1148 th->control.exception_resume_breakpoint = NULL;
1149 th->control.single_step_breakpoints = NULL;
1150 th->control.step_range_start = 0;
1151 th->control.step_range_end = 0;
1152
1153 /* The user may have had the main thread held stopped in the
1154 previous image (e.g., schedlock on, or non-stop). Release
1155 it now. */
1156 th->stop_requested = 0;
1157
1158 update_breakpoints_after_exec ();
1159
1160 /* What is this a.out's name? */
1161 process_ptid = pid_to_ptid (pid);
1162 printf_unfiltered (_("%s is executing new program: %s\n"),
1163 target_pid_to_str (process_ptid),
1164 execd_pathname);
1165
1166 /* We've followed the inferior through an exec. Therefore, the
1167 inferior has essentially been killed & reborn. */
1168
1169 gdb_flush (gdb_stdout);
1170
1171 breakpoint_init_inferior (inf_execd);
1172
1173 if (*gdb_sysroot != '\0')
1174 {
1175 char *name = exec_file_find (execd_pathname, NULL);
1176
1177 execd_pathname = (char *) alloca (strlen (name) + 1);
1178 strcpy (execd_pathname, name);
1179 xfree (name);
1180 }
1181
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
1195 /* Do exit processing for the original inferior before adding
1196 the new inferior so we don't have two active inferiors with
1197 the same ptid, which can confuse find_inferior_ptid. */
1198 exit_inferior_num_silent (current_inferior ()->num);
1199
1200 inf = add_inferior_with_spaces ();
1201 inf->pid = pid;
1202 target_follow_exec (inf, execd_pathname);
1203
1204 set_current_inferior (inf);
1205 set_current_program_space (inf->pspace);
1206 add_thread (ptid);
1207 }
1208 else
1209 {
1210 /* The old description may no longer be fit for the new image.
1211 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1212 old description; we'll read a new one below. No need to do
1213 this on "follow-exec-mode new", as the old inferior stays
1214 around (its description is later cleared/refetched on
1215 restart). */
1216 target_clear_description ();
1217 }
1218
1219 gdb_assert (current_program_space == inf->pspace);
1220
1221 /* That a.out is now the one to use. */
1222 exec_file_attach (execd_pathname, 0);
1223
1224 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1225 (Position Independent Executable) main symbol file will get applied by
1226 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1227 the breakpoints with the zero displacement. */
1228
1229 symbol_file_add (execd_pathname,
1230 (inf->symfile_flags
1231 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1232 NULL, 0);
1233
1234 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1235 set_initial_language ();
1236
1237 /* If the target can specify a description, read it. Must do this
1238 after flipping to the new executable (because the target supplied
1239 description must be compatible with the executable's
1240 architecture, and the old executable may e.g., be 32-bit, while
1241 the new one 64-bit), and before anything involving memory or
1242 registers. */
1243 target_find_description ();
1244
1245 solib_create_inferior_hook (0);
1246
1247 jit_inferior_created_hook ();
1248
1249 breakpoint_re_set ();
1250
1251 /* Reinsert all breakpoints. (Those which were symbolic have
1252 been reset to the proper address in the new a.out, thanks
1253 to symbol_file_command...). */
1254 insert_breakpoints ();
1255
1256 /* The next resume of this inferior should bring it to the shlib
1257 startup breakpoints. (If the user had also set bp's on
1258 "main" from the old (parent) process, then they'll auto-
1259 matically get reset there in the new process.). */
1260 }
1261
1262 /* The queue of threads that need to do a step-over operation to get
1263 past e.g., a breakpoint. What technique is used to step over the
1264 breakpoint/watchpoint does not matter -- all threads end up in the
1265 same queue, to maintain rough temporal order of execution, in order
1266 to avoid starvation, otherwise, we could e.g., find ourselves
1267 constantly stepping the same couple threads past their breakpoints
1268 over and over, if the single-step finish fast enough. */
1269 struct thread_info *step_over_queue_head;
1270
1271 /* Bit flags indicating what the thread needs to step over. */
1272
1273 enum step_over_what_flag
1274 {
1275 /* Step over a breakpoint. */
1276 STEP_OVER_BREAKPOINT = 1,
1277
1278 /* Step past a non-continuable watchpoint, in order to let the
1279 instruction execute so we can evaluate the watchpoint
1280 expression. */
1281 STEP_OVER_WATCHPOINT = 2
1282 };
1283 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1284
1285 /* Info about an instruction that is being stepped over. */
1286
1287 struct step_over_info
1288 {
1289 /* If we're stepping past a breakpoint, this is the address space
1290 and address of the instruction the breakpoint is set at. We'll
1291 skip inserting all breakpoints here. Valid iff ASPACE is
1292 non-NULL. */
1293 struct address_space *aspace;
1294 CORE_ADDR address;
1295
1296 /* The instruction being stepped over triggers a nonsteppable
1297 watchpoint. If true, we'll skip inserting watchpoints. */
1298 int nonsteppable_watchpoint_p;
1299 };
1300
1301 /* The step-over info of the location that is being stepped over.
1302
1303 Note that with async/breakpoint always-inserted mode, a user might
1304 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1305 being stepped over. As setting a new breakpoint inserts all
1306 breakpoints, we need to make sure the breakpoint being stepped over
1307 isn't inserted then. We do that by only clearing the step-over
1308 info when the step-over is actually finished (or aborted).
1309
1310 Presently GDB can only step over one breakpoint at any given time.
1311 Given threads that can't run code in the same address space as the
1312 breakpoint's can't really miss the breakpoint, GDB could be taught
1313 to step-over at most one breakpoint per address space (so this info
1314 could move to the address space object if/when GDB is extended).
1315 The set of breakpoints being stepped over will normally be much
1316 smaller than the set of all breakpoints, so a flag in the
1317 breakpoint location structure would be wasteful. A separate list
1318 also saves complexity and run-time, as otherwise we'd have to go
1319 through all breakpoint locations clearing their flag whenever we
1320 start a new sequence. Similar considerations weigh against storing
1321 this info in the thread object. Plus, not all step overs actually
1322 have breakpoint locations -- e.g., stepping past a single-step
1323 breakpoint, or stepping to complete a non-continuable
1324 watchpoint. */
1325 static struct step_over_info step_over_info;
1326
1327 /* Record the address of the breakpoint/instruction we're currently
1328 stepping over. */
1329
1330 static void
1331 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1332 int nonsteppable_watchpoint_p)
1333 {
1334 step_over_info.aspace = aspace;
1335 step_over_info.address = address;
1336 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1337 }
1338
1339 /* Called when we're not longer stepping over a breakpoint / an
1340 instruction, so all breakpoints are free to be (re)inserted. */
1341
1342 static void
1343 clear_step_over_info (void)
1344 {
1345 if (debug_infrun)
1346 fprintf_unfiltered (gdb_stdlog,
1347 "infrun: clear_step_over_info\n");
1348 step_over_info.aspace = NULL;
1349 step_over_info.address = 0;
1350 step_over_info.nonsteppable_watchpoint_p = 0;
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358 {
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363 }
1364
1365 /* See infrun.h. */
1366
1367 int
1368 stepping_past_nonsteppable_watchpoint (void)
1369 {
1370 return step_over_info.nonsteppable_watchpoint_p;
1371 }
1372
1373 /* Returns true if step-over info is valid. */
1374
1375 static int
1376 step_over_info_valid_p (void)
1377 {
1378 return (step_over_info.aspace != NULL
1379 || stepping_past_nonsteppable_watchpoint ());
1380 }
1381
1382 \f
1383 /* Displaced stepping. */
1384
1385 /* In non-stop debugging mode, we must take special care to manage
1386 breakpoints properly; in particular, the traditional strategy for
1387 stepping a thread past a breakpoint it has hit is unsuitable.
1388 'Displaced stepping' is a tactic for stepping one thread past a
1389 breakpoint it has hit while ensuring that other threads running
1390 concurrently will hit the breakpoint as they should.
1391
1392 The traditional way to step a thread T off a breakpoint in a
1393 multi-threaded program in all-stop mode is as follows:
1394
1395 a0) Initially, all threads are stopped, and breakpoints are not
1396 inserted.
1397 a1) We single-step T, leaving breakpoints uninserted.
1398 a2) We insert breakpoints, and resume all threads.
1399
1400 In non-stop debugging, however, this strategy is unsuitable: we
1401 don't want to have to stop all threads in the system in order to
1402 continue or step T past a breakpoint. Instead, we use displaced
1403 stepping:
1404
1405 n0) Initially, T is stopped, other threads are running, and
1406 breakpoints are inserted.
1407 n1) We copy the instruction "under" the breakpoint to a separate
1408 location, outside the main code stream, making any adjustments
1409 to the instruction, register, and memory state as directed by
1410 T's architecture.
1411 n2) We single-step T over the instruction at its new location.
1412 n3) We adjust the resulting register and memory state as directed
1413 by T's architecture. This includes resetting T's PC to point
1414 back into the main instruction stream.
1415 n4) We resume T.
1416
1417 This approach depends on the following gdbarch methods:
1418
1419 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1420 indicate where to copy the instruction, and how much space must
1421 be reserved there. We use these in step n1.
1422
1423 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1424 address, and makes any necessary adjustments to the instruction,
1425 register contents, and memory. We use this in step n1.
1426
1427 - gdbarch_displaced_step_fixup adjusts registers and memory after
1428 we have successfuly single-stepped the instruction, to yield the
1429 same effect the instruction would have had if we had executed it
1430 at its original address. We use this in step n3.
1431
1432 - gdbarch_displaced_step_free_closure provides cleanup.
1433
1434 The gdbarch_displaced_step_copy_insn and
1435 gdbarch_displaced_step_fixup functions must be written so that
1436 copying an instruction with gdbarch_displaced_step_copy_insn,
1437 single-stepping across the copied instruction, and then applying
1438 gdbarch_displaced_insn_fixup should have the same effects on the
1439 thread's memory and registers as stepping the instruction in place
1440 would have. Exactly which responsibilities fall to the copy and
1441 which fall to the fixup is up to the author of those functions.
1442
1443 See the comments in gdbarch.sh for details.
1444
1445 Note that displaced stepping and software single-step cannot
1446 currently be used in combination, although with some care I think
1447 they could be made to. Software single-step works by placing
1448 breakpoints on all possible subsequent instructions; if the
1449 displaced instruction is a PC-relative jump, those breakpoints
1450 could fall in very strange places --- on pages that aren't
1451 executable, or at addresses that are not proper instruction
1452 boundaries. (We do generally let other threads run while we wait
1453 to hit the software single-step breakpoint, and they might
1454 encounter such a corrupted instruction.) One way to work around
1455 this would be to have gdbarch_displaced_step_copy_insn fully
1456 simulate the effect of PC-relative instructions (and return NULL)
1457 on architectures that use software single-stepping.
1458
1459 In non-stop mode, we can have independent and simultaneous step
1460 requests, so more than one thread may need to simultaneously step
1461 over a breakpoint. The current implementation assumes there is
1462 only one scratch space per process. In this case, we have to
1463 serialize access to the scratch space. If thread A wants to step
1464 over a breakpoint, but we are currently waiting for some other
1465 thread to complete a displaced step, we leave thread A stopped and
1466 place it in the displaced_step_request_queue. Whenever a displaced
1467 step finishes, we pick the next thread in the queue and start a new
1468 displaced step operation on it. See displaced_step_prepare and
1469 displaced_step_fixup for details. */
1470
1471 /* Per-inferior displaced stepping state. */
1472 struct displaced_step_inferior_state
1473 {
1474 /* Pointer to next in linked list. */
1475 struct displaced_step_inferior_state *next;
1476
1477 /* The process this displaced step state refers to. */
1478 int pid;
1479
1480 /* True if preparing a displaced step ever failed. If so, we won't
1481 try displaced stepping for this inferior again. */
1482 int failed_before;
1483
1484 /* If this is not null_ptid, this is the thread carrying out a
1485 displaced single-step in process PID. This thread's state will
1486 require fixing up once it has completed its step. */
1487 ptid_t step_ptid;
1488
1489 /* The architecture the thread had when we stepped it. */
1490 struct gdbarch *step_gdbarch;
1491
1492 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1493 for post-step cleanup. */
1494 struct displaced_step_closure *step_closure;
1495
1496 /* The address of the original instruction, and the copy we
1497 made. */
1498 CORE_ADDR step_original, step_copy;
1499
1500 /* Saved contents of copy area. */
1501 gdb_byte *step_saved_copy;
1502 };
1503
1504 /* The list of states of processes involved in displaced stepping
1505 presently. */
1506 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1507
1508 /* Get the displaced stepping state of process PID. */
1509
1510 static struct displaced_step_inferior_state *
1511 get_displaced_stepping_state (int pid)
1512 {
1513 struct displaced_step_inferior_state *state;
1514
1515 for (state = displaced_step_inferior_states;
1516 state != NULL;
1517 state = state->next)
1518 if (state->pid == pid)
1519 return state;
1520
1521 return NULL;
1522 }
1523
1524 /* Returns true if any inferior has a thread doing a displaced
1525 step. */
1526
1527 static int
1528 displaced_step_in_progress_any_inferior (void)
1529 {
1530 struct displaced_step_inferior_state *state;
1531
1532 for (state = displaced_step_inferior_states;
1533 state != NULL;
1534 state = state->next)
1535 if (!ptid_equal (state->step_ptid, null_ptid))
1536 return 1;
1537
1538 return 0;
1539 }
1540
1541 /* Return true if thread represented by PTID is doing a displaced
1542 step. */
1543
1544 static int
1545 displaced_step_in_progress_thread (ptid_t ptid)
1546 {
1547 struct displaced_step_inferior_state *displaced;
1548
1549 gdb_assert (!ptid_equal (ptid, null_ptid));
1550
1551 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1552
1553 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1554 }
1555
1556 /* Return true if process PID has a thread doing a displaced step. */
1557
1558 static int
1559 displaced_step_in_progress (int pid)
1560 {
1561 struct displaced_step_inferior_state *displaced;
1562
1563 displaced = get_displaced_stepping_state (pid);
1564 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1565 return 1;
1566
1567 return 0;
1568 }
1569
1570 /* Add a new displaced stepping state for process PID to the displaced
1571 stepping state list, or return a pointer to an already existing
1572 entry, if it already exists. Never returns NULL. */
1573
1574 static struct displaced_step_inferior_state *
1575 add_displaced_stepping_state (int pid)
1576 {
1577 struct displaced_step_inferior_state *state;
1578
1579 for (state = displaced_step_inferior_states;
1580 state != NULL;
1581 state = state->next)
1582 if (state->pid == pid)
1583 return state;
1584
1585 state = XCNEW (struct displaced_step_inferior_state);
1586 state->pid = pid;
1587 state->next = displaced_step_inferior_states;
1588 displaced_step_inferior_states = state;
1589
1590 return state;
1591 }
1592
1593 /* If inferior is in displaced stepping, and ADDR equals to starting address
1594 of copy area, return corresponding displaced_step_closure. Otherwise,
1595 return NULL. */
1596
1597 struct displaced_step_closure*
1598 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1599 {
1600 struct displaced_step_inferior_state *displaced
1601 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1602
1603 /* If checking the mode of displaced instruction in copy area. */
1604 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1605 && (displaced->step_copy == addr))
1606 return displaced->step_closure;
1607
1608 return NULL;
1609 }
1610
1611 /* Remove the displaced stepping state of process PID. */
1612
1613 static void
1614 remove_displaced_stepping_state (int pid)
1615 {
1616 struct displaced_step_inferior_state *it, **prev_next_p;
1617
1618 gdb_assert (pid != 0);
1619
1620 it = displaced_step_inferior_states;
1621 prev_next_p = &displaced_step_inferior_states;
1622 while (it)
1623 {
1624 if (it->pid == pid)
1625 {
1626 *prev_next_p = it->next;
1627 xfree (it);
1628 return;
1629 }
1630
1631 prev_next_p = &it->next;
1632 it = *prev_next_p;
1633 }
1634 }
1635
1636 static void
1637 infrun_inferior_exit (struct inferior *inf)
1638 {
1639 remove_displaced_stepping_state (inf->pid);
1640 }
1641
1642 /* If ON, and the architecture supports it, GDB will use displaced
1643 stepping to step over breakpoints. If OFF, or if the architecture
1644 doesn't support it, GDB will instead use the traditional
1645 hold-and-step approach. If AUTO (which is the default), GDB will
1646 decide which technique to use to step over breakpoints depending on
1647 which of all-stop or non-stop mode is active --- displaced stepping
1648 in non-stop mode; hold-and-step in all-stop mode. */
1649
1650 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1651
1652 static void
1653 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1654 struct cmd_list_element *c,
1655 const char *value)
1656 {
1657 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1658 fprintf_filtered (file,
1659 _("Debugger's willingness to use displaced stepping "
1660 "to step over breakpoints is %s (currently %s).\n"),
1661 value, target_is_non_stop_p () ? "on" : "off");
1662 else
1663 fprintf_filtered (file,
1664 _("Debugger's willingness to use displaced stepping "
1665 "to step over breakpoints is %s.\n"), value);
1666 }
1667
1668 /* Return non-zero if displaced stepping can/should be used to step
1669 over breakpoints of thread TP. */
1670
1671 static int
1672 use_displaced_stepping (struct thread_info *tp)
1673 {
1674 struct regcache *regcache = get_thread_regcache (tp->ptid);
1675 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1676 struct displaced_step_inferior_state *displaced_state;
1677
1678 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1679
1680 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1681 && target_is_non_stop_p ())
1682 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1683 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1684 && find_record_target () == NULL
1685 && (displaced_state == NULL
1686 || !displaced_state->failed_before));
1687 }
1688
1689 /* Clean out any stray displaced stepping state. */
1690 static void
1691 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1692 {
1693 /* Indicate that there is no cleanup pending. */
1694 displaced->step_ptid = null_ptid;
1695
1696 if (displaced->step_closure)
1697 {
1698 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1699 displaced->step_closure);
1700 displaced->step_closure = NULL;
1701 }
1702 }
1703
1704 static void
1705 displaced_step_clear_cleanup (void *arg)
1706 {
1707 struct displaced_step_inferior_state *state
1708 = (struct displaced_step_inferior_state *) arg;
1709
1710 displaced_step_clear (state);
1711 }
1712
1713 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1714 void
1715 displaced_step_dump_bytes (struct ui_file *file,
1716 const gdb_byte *buf,
1717 size_t len)
1718 {
1719 int i;
1720
1721 for (i = 0; i < len; i++)
1722 fprintf_unfiltered (file, "%02x ", buf[i]);
1723 fputs_unfiltered ("\n", file);
1724 }
1725
1726 /* Prepare to single-step, using displaced stepping.
1727
1728 Note that we cannot use displaced stepping when we have a signal to
1729 deliver. If we have a signal to deliver and an instruction to step
1730 over, then after the step, there will be no indication from the
1731 target whether the thread entered a signal handler or ignored the
1732 signal and stepped over the instruction successfully --- both cases
1733 result in a simple SIGTRAP. In the first case we mustn't do a
1734 fixup, and in the second case we must --- but we can't tell which.
1735 Comments in the code for 'random signals' in handle_inferior_event
1736 explain how we handle this case instead.
1737
1738 Returns 1 if preparing was successful -- this thread is going to be
1739 stepped now; 0 if displaced stepping this thread got queued; or -1
1740 if this instruction can't be displaced stepped. */
1741
1742 static int
1743 displaced_step_prepare_throw (ptid_t ptid)
1744 {
1745 struct cleanup *old_cleanups, *ignore_cleanups;
1746 struct thread_info *tp = find_thread_ptid (ptid);
1747 struct regcache *regcache = get_thread_regcache (ptid);
1748 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1749 struct address_space *aspace = get_regcache_aspace (regcache);
1750 CORE_ADDR original, copy;
1751 ULONGEST len;
1752 struct displaced_step_closure *closure;
1753 struct displaced_step_inferior_state *displaced;
1754 int status;
1755
1756 /* We should never reach this function if the architecture does not
1757 support displaced stepping. */
1758 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1759
1760 /* Nor if the thread isn't meant to step over a breakpoint. */
1761 gdb_assert (tp->control.trap_expected);
1762
1763 /* Disable range stepping while executing in the scratch pad. We
1764 want a single-step even if executing the displaced instruction in
1765 the scratch buffer lands within the stepping range (e.g., a
1766 jump/branch). */
1767 tp->control.may_range_step = 0;
1768
1769 /* We have to displaced step one thread at a time, as we only have
1770 access to a single scratch space per inferior. */
1771
1772 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1773
1774 if (!ptid_equal (displaced->step_ptid, null_ptid))
1775 {
1776 /* Already waiting for a displaced step to finish. Defer this
1777 request and place in queue. */
1778
1779 if (debug_displaced)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "displaced: deferring step of %s\n",
1782 target_pid_to_str (ptid));
1783
1784 thread_step_over_chain_enqueue (tp);
1785 return 0;
1786 }
1787 else
1788 {
1789 if (debug_displaced)
1790 fprintf_unfiltered (gdb_stdlog,
1791 "displaced: stepping %s now\n",
1792 target_pid_to_str (ptid));
1793 }
1794
1795 displaced_step_clear (displaced);
1796
1797 old_cleanups = save_inferior_ptid ();
1798 inferior_ptid = ptid;
1799
1800 original = regcache_read_pc (regcache);
1801
1802 copy = gdbarch_displaced_step_location (gdbarch);
1803 len = gdbarch_max_insn_length (gdbarch);
1804
1805 if (breakpoint_in_range_p (aspace, copy, len))
1806 {
1807 /* There's a breakpoint set in the scratch pad location range
1808 (which is usually around the entry point). We'd either
1809 install it before resuming, which would overwrite/corrupt the
1810 scratch pad, or if it was already inserted, this displaced
1811 step would overwrite it. The latter is OK in the sense that
1812 we already assume that no thread is going to execute the code
1813 in the scratch pad range (after initial startup) anyway, but
1814 the former is unacceptable. Simply punt and fallback to
1815 stepping over this breakpoint in-line. */
1816 if (debug_displaced)
1817 {
1818 fprintf_unfiltered (gdb_stdlog,
1819 "displaced: breakpoint set in scratch pad. "
1820 "Stepping over breakpoint in-line instead.\n");
1821 }
1822
1823 do_cleanups (old_cleanups);
1824 return -1;
1825 }
1826
1827 /* Save the original contents of the copy area. */
1828 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1829 ignore_cleanups = make_cleanup (free_current_contents,
1830 &displaced->step_saved_copy);
1831 status = target_read_memory (copy, displaced->step_saved_copy, len);
1832 if (status != 0)
1833 throw_error (MEMORY_ERROR,
1834 _("Error accessing memory address %s (%s) for "
1835 "displaced-stepping scratch space."),
1836 paddress (gdbarch, copy), safe_strerror (status));
1837 if (debug_displaced)
1838 {
1839 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1840 paddress (gdbarch, copy));
1841 displaced_step_dump_bytes (gdb_stdlog,
1842 displaced->step_saved_copy,
1843 len);
1844 };
1845
1846 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1847 original, copy, regcache);
1848 if (closure == NULL)
1849 {
1850 /* The architecture doesn't know how or want to displaced step
1851 this instruction or instruction sequence. Fallback to
1852 stepping over the breakpoint in-line. */
1853 do_cleanups (old_cleanups);
1854 return -1;
1855 }
1856
1857 /* Save the information we need to fix things up if the step
1858 succeeds. */
1859 displaced->step_ptid = ptid;
1860 displaced->step_gdbarch = gdbarch;
1861 displaced->step_closure = closure;
1862 displaced->step_original = original;
1863 displaced->step_copy = copy;
1864
1865 make_cleanup (displaced_step_clear_cleanup, displaced);
1866
1867 /* Resume execution at the copy. */
1868 regcache_write_pc (regcache, copy);
1869
1870 discard_cleanups (ignore_cleanups);
1871
1872 do_cleanups (old_cleanups);
1873
1874 if (debug_displaced)
1875 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1876 paddress (gdbarch, copy));
1877
1878 return 1;
1879 }
1880
1881 /* Wrapper for displaced_step_prepare_throw that disabled further
1882 attempts at displaced stepping if we get a memory error. */
1883
1884 static int
1885 displaced_step_prepare (ptid_t ptid)
1886 {
1887 int prepared = -1;
1888
1889 TRY
1890 {
1891 prepared = displaced_step_prepare_throw (ptid);
1892 }
1893 CATCH (ex, RETURN_MASK_ERROR)
1894 {
1895 struct displaced_step_inferior_state *displaced_state;
1896
1897 if (ex.error != MEMORY_ERROR)
1898 throw_exception (ex);
1899
1900 if (debug_infrun)
1901 {
1902 fprintf_unfiltered (gdb_stdlog,
1903 "infrun: disabling displaced stepping: %s\n",
1904 ex.message);
1905 }
1906
1907 /* Be verbose if "set displaced-stepping" is "on", silent if
1908 "auto". */
1909 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1910 {
1911 warning (_("disabling displaced stepping: %s"),
1912 ex.message);
1913 }
1914
1915 /* Disable further displaced stepping attempts. */
1916 displaced_state
1917 = get_displaced_stepping_state (ptid_get_pid (ptid));
1918 displaced_state->failed_before = 1;
1919 }
1920 END_CATCH
1921
1922 return prepared;
1923 }
1924
1925 static void
1926 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1927 const gdb_byte *myaddr, int len)
1928 {
1929 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1930
1931 inferior_ptid = ptid;
1932 write_memory (memaddr, myaddr, len);
1933 do_cleanups (ptid_cleanup);
1934 }
1935
1936 /* Restore the contents of the copy area for thread PTID. */
1937
1938 static void
1939 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1940 ptid_t ptid)
1941 {
1942 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1943
1944 write_memory_ptid (ptid, displaced->step_copy,
1945 displaced->step_saved_copy, len);
1946 if (debug_displaced)
1947 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1948 target_pid_to_str (ptid),
1949 paddress (displaced->step_gdbarch,
1950 displaced->step_copy));
1951 }
1952
1953 /* If we displaced stepped an instruction successfully, adjust
1954 registers and memory to yield the same effect the instruction would
1955 have had if we had executed it at its original address, and return
1956 1. If the instruction didn't complete, relocate the PC and return
1957 -1. If the thread wasn't displaced stepping, return 0. */
1958
1959 static int
1960 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1961 {
1962 struct cleanup *old_cleanups;
1963 struct displaced_step_inferior_state *displaced
1964 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1965 int ret;
1966
1967 /* Was any thread of this process doing a displaced step? */
1968 if (displaced == NULL)
1969 return 0;
1970
1971 /* Was this event for the pid we displaced? */
1972 if (ptid_equal (displaced->step_ptid, null_ptid)
1973 || ! ptid_equal (displaced->step_ptid, event_ptid))
1974 return 0;
1975
1976 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1977
1978 displaced_step_restore (displaced, displaced->step_ptid);
1979
1980 /* Fixup may need to read memory/registers. Switch to the thread
1981 that we're fixing up. Also, target_stopped_by_watchpoint checks
1982 the current thread. */
1983 switch_to_thread (event_ptid);
1984
1985 /* Did the instruction complete successfully? */
1986 if (signal == GDB_SIGNAL_TRAP
1987 && !(target_stopped_by_watchpoint ()
1988 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1989 || target_have_steppable_watchpoint)))
1990 {
1991 /* Fix up the resulting state. */
1992 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1993 displaced->step_closure,
1994 displaced->step_original,
1995 displaced->step_copy,
1996 get_thread_regcache (displaced->step_ptid));
1997 ret = 1;
1998 }
1999 else
2000 {
2001 /* Since the instruction didn't complete, all we can do is
2002 relocate the PC. */
2003 struct regcache *regcache = get_thread_regcache (event_ptid);
2004 CORE_ADDR pc = regcache_read_pc (regcache);
2005
2006 pc = displaced->step_original + (pc - displaced->step_copy);
2007 regcache_write_pc (regcache, pc);
2008 ret = -1;
2009 }
2010
2011 do_cleanups (old_cleanups);
2012
2013 displaced->step_ptid = null_ptid;
2014
2015 return ret;
2016 }
2017
2018 /* Data to be passed around while handling an event. This data is
2019 discarded between events. */
2020 struct execution_control_state
2021 {
2022 ptid_t ptid;
2023 /* The thread that got the event, if this was a thread event; NULL
2024 otherwise. */
2025 struct thread_info *event_thread;
2026
2027 struct target_waitstatus ws;
2028 int stop_func_filled_in;
2029 CORE_ADDR stop_func_start;
2030 CORE_ADDR stop_func_end;
2031 const char *stop_func_name;
2032 int wait_some_more;
2033
2034 /* True if the event thread hit the single-step breakpoint of
2035 another thread. Thus the event doesn't cause a stop, the thread
2036 needs to be single-stepped past the single-step breakpoint before
2037 we can switch back to the original stepping thread. */
2038 int hit_singlestep_breakpoint;
2039 };
2040
2041 /* Clear ECS and set it to point at TP. */
2042
2043 static void
2044 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2045 {
2046 memset (ecs, 0, sizeof (*ecs));
2047 ecs->event_thread = tp;
2048 ecs->ptid = tp->ptid;
2049 }
2050
2051 static void keep_going_pass_signal (struct execution_control_state *ecs);
2052 static void prepare_to_wait (struct execution_control_state *ecs);
2053 static int keep_going_stepped_thread (struct thread_info *tp);
2054 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2055
2056 /* Are there any pending step-over requests? If so, run all we can
2057 now and return true. Otherwise, return false. */
2058
2059 static int
2060 start_step_over (void)
2061 {
2062 struct thread_info *tp, *next;
2063
2064 /* Don't start a new step-over if we already have an in-line
2065 step-over operation ongoing. */
2066 if (step_over_info_valid_p ())
2067 return 0;
2068
2069 for (tp = step_over_queue_head; tp != NULL; tp = next)
2070 {
2071 struct execution_control_state ecss;
2072 struct execution_control_state *ecs = &ecss;
2073 step_over_what step_what;
2074 int must_be_in_line;
2075
2076 next = thread_step_over_chain_next (tp);
2077
2078 /* If this inferior already has a displaced step in process,
2079 don't start a new one. */
2080 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2081 continue;
2082
2083 step_what = thread_still_needs_step_over (tp);
2084 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2085 || ((step_what & STEP_OVER_BREAKPOINT)
2086 && !use_displaced_stepping (tp)));
2087
2088 /* We currently stop all threads of all processes to step-over
2089 in-line. If we need to start a new in-line step-over, let
2090 any pending displaced steps finish first. */
2091 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2092 return 0;
2093
2094 thread_step_over_chain_remove (tp);
2095
2096 if (step_over_queue_head == NULL)
2097 {
2098 if (debug_infrun)
2099 fprintf_unfiltered (gdb_stdlog,
2100 "infrun: step-over queue now empty\n");
2101 }
2102
2103 if (tp->control.trap_expected
2104 || tp->resumed
2105 || tp->executing)
2106 {
2107 internal_error (__FILE__, __LINE__,
2108 "[%s] has inconsistent state: "
2109 "trap_expected=%d, resumed=%d, executing=%d\n",
2110 target_pid_to_str (tp->ptid),
2111 tp->control.trap_expected,
2112 tp->resumed,
2113 tp->executing);
2114 }
2115
2116 if (debug_infrun)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "infrun: resuming [%s] for step-over\n",
2119 target_pid_to_str (tp->ptid));
2120
2121 /* keep_going_pass_signal skips the step-over if the breakpoint
2122 is no longer inserted. In all-stop, we want to keep looking
2123 for a thread that needs a step-over instead of resuming TP,
2124 because we wouldn't be able to resume anything else until the
2125 target stops again. In non-stop, the resume always resumes
2126 only TP, so it's OK to let the thread resume freely. */
2127 if (!target_is_non_stop_p () && !step_what)
2128 continue;
2129
2130 switch_to_thread (tp->ptid);
2131 reset_ecs (ecs, tp);
2132 keep_going_pass_signal (ecs);
2133
2134 if (!ecs->wait_some_more)
2135 error (_("Command aborted."));
2136
2137 gdb_assert (tp->resumed);
2138
2139 /* If we started a new in-line step-over, we're done. */
2140 if (step_over_info_valid_p ())
2141 {
2142 gdb_assert (tp->control.trap_expected);
2143 return 1;
2144 }
2145
2146 if (!target_is_non_stop_p ())
2147 {
2148 /* On all-stop, shouldn't have resumed unless we needed a
2149 step over. */
2150 gdb_assert (tp->control.trap_expected
2151 || tp->step_after_step_resume_breakpoint);
2152
2153 /* With remote targets (at least), in all-stop, we can't
2154 issue any further remote commands until the program stops
2155 again. */
2156 return 1;
2157 }
2158
2159 /* Either the thread no longer needed a step-over, or a new
2160 displaced stepping sequence started. Even in the latter
2161 case, continue looking. Maybe we can also start another
2162 displaced step on a thread of other process. */
2163 }
2164
2165 return 0;
2166 }
2167
2168 /* Update global variables holding ptids to hold NEW_PTID if they were
2169 holding OLD_PTID. */
2170 static void
2171 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2172 {
2173 struct displaced_step_request *it;
2174 struct displaced_step_inferior_state *displaced;
2175
2176 if (ptid_equal (inferior_ptid, old_ptid))
2177 inferior_ptid = new_ptid;
2178
2179 for (displaced = displaced_step_inferior_states;
2180 displaced;
2181 displaced = displaced->next)
2182 {
2183 if (ptid_equal (displaced->step_ptid, old_ptid))
2184 displaced->step_ptid = new_ptid;
2185 }
2186 }
2187
2188 \f
2189 /* Resuming. */
2190
2191 /* Things to clean up if we QUIT out of resume (). */
2192 static void
2193 resume_cleanups (void *ignore)
2194 {
2195 if (!ptid_equal (inferior_ptid, null_ptid))
2196 delete_single_step_breakpoints (inferior_thread ());
2197
2198 normal_stop ();
2199 }
2200
2201 static const char schedlock_off[] = "off";
2202 static const char schedlock_on[] = "on";
2203 static const char schedlock_step[] = "step";
2204 static const char schedlock_replay[] = "replay";
2205 static const char *const scheduler_enums[] = {
2206 schedlock_off,
2207 schedlock_on,
2208 schedlock_step,
2209 schedlock_replay,
2210 NULL
2211 };
2212 static const char *scheduler_mode = schedlock_replay;
2213 static void
2214 show_scheduler_mode (struct ui_file *file, int from_tty,
2215 struct cmd_list_element *c, const char *value)
2216 {
2217 fprintf_filtered (file,
2218 _("Mode for locking scheduler "
2219 "during execution is \"%s\".\n"),
2220 value);
2221 }
2222
2223 static void
2224 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2225 {
2226 if (!target_can_lock_scheduler)
2227 {
2228 scheduler_mode = schedlock_off;
2229 error (_("Target '%s' cannot support this command."), target_shortname);
2230 }
2231 }
2232
2233 /* True if execution commands resume all threads of all processes by
2234 default; otherwise, resume only threads of the current inferior
2235 process. */
2236 int sched_multi = 0;
2237
2238 /* Try to setup for software single stepping over the specified location.
2239 Return 1 if target_resume() should use hardware single step.
2240
2241 GDBARCH the current gdbarch.
2242 PC the location to step over. */
2243
2244 static int
2245 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2246 {
2247 int hw_step = 1;
2248
2249 if (execution_direction == EXEC_FORWARD
2250 && gdbarch_software_single_step_p (gdbarch)
2251 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2252 {
2253 hw_step = 0;
2254 }
2255 return hw_step;
2256 }
2257
2258 /* See infrun.h. */
2259
2260 ptid_t
2261 user_visible_resume_ptid (int step)
2262 {
2263 ptid_t resume_ptid;
2264
2265 if (non_stop)
2266 {
2267 /* With non-stop mode on, threads are always handled
2268 individually. */
2269 resume_ptid = inferior_ptid;
2270 }
2271 else if ((scheduler_mode == schedlock_on)
2272 || (scheduler_mode == schedlock_step && step))
2273 {
2274 /* User-settable 'scheduler' mode requires solo thread
2275 resume. */
2276 resume_ptid = inferior_ptid;
2277 }
2278 else if ((scheduler_mode == schedlock_replay)
2279 && target_record_will_replay (minus_one_ptid, execution_direction))
2280 {
2281 /* User-settable 'scheduler' mode requires solo thread resume in replay
2282 mode. */
2283 resume_ptid = inferior_ptid;
2284 }
2285 else if (!sched_multi && target_supports_multi_process ())
2286 {
2287 /* Resume all threads of the current process (and none of other
2288 processes). */
2289 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2290 }
2291 else
2292 {
2293 /* Resume all threads of all processes. */
2294 resume_ptid = RESUME_ALL;
2295 }
2296
2297 return resume_ptid;
2298 }
2299
2300 /* Return a ptid representing the set of threads that we will resume,
2301 in the perspective of the target, assuming run control handling
2302 does not require leaving some threads stopped (e.g., stepping past
2303 breakpoint). USER_STEP indicates whether we're about to start the
2304 target for a stepping command. */
2305
2306 static ptid_t
2307 internal_resume_ptid (int user_step)
2308 {
2309 /* In non-stop, we always control threads individually. Note that
2310 the target may always work in non-stop mode even with "set
2311 non-stop off", in which case user_visible_resume_ptid could
2312 return a wildcard ptid. */
2313 if (target_is_non_stop_p ())
2314 return inferior_ptid;
2315 else
2316 return user_visible_resume_ptid (user_step);
2317 }
2318
2319 /* Wrapper for target_resume, that handles infrun-specific
2320 bookkeeping. */
2321
2322 static void
2323 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2324 {
2325 struct thread_info *tp = inferior_thread ();
2326
2327 /* Install inferior's terminal modes. */
2328 target_terminal_inferior ();
2329
2330 /* Avoid confusing the next resume, if the next stop/resume
2331 happens to apply to another thread. */
2332 tp->suspend.stop_signal = GDB_SIGNAL_0;
2333
2334 /* Advise target which signals may be handled silently.
2335
2336 If we have removed breakpoints because we are stepping over one
2337 in-line (in any thread), we need to receive all signals to avoid
2338 accidentally skipping a breakpoint during execution of a signal
2339 handler.
2340
2341 Likewise if we're displaced stepping, otherwise a trap for a
2342 breakpoint in a signal handler might be confused with the
2343 displaced step finishing. We don't make the displaced_step_fixup
2344 step distinguish the cases instead, because:
2345
2346 - a backtrace while stopped in the signal handler would show the
2347 scratch pad as frame older than the signal handler, instead of
2348 the real mainline code.
2349
2350 - when the thread is later resumed, the signal handler would
2351 return to the scratch pad area, which would no longer be
2352 valid. */
2353 if (step_over_info_valid_p ()
2354 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2355 target_pass_signals (0, NULL);
2356 else
2357 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2358
2359 target_resume (resume_ptid, step, sig);
2360 }
2361
2362 /* Resume the inferior, but allow a QUIT. This is useful if the user
2363 wants to interrupt some lengthy single-stepping operation
2364 (for child processes, the SIGINT goes to the inferior, and so
2365 we get a SIGINT random_signal, but for remote debugging and perhaps
2366 other targets, that's not true).
2367
2368 SIG is the signal to give the inferior (zero for none). */
2369 void
2370 resume (enum gdb_signal sig)
2371 {
2372 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2373 struct regcache *regcache = get_current_regcache ();
2374 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2375 struct thread_info *tp = inferior_thread ();
2376 CORE_ADDR pc = regcache_read_pc (regcache);
2377 struct address_space *aspace = get_regcache_aspace (regcache);
2378 ptid_t resume_ptid;
2379 /* This represents the user's step vs continue request. When
2380 deciding whether "set scheduler-locking step" applies, it's the
2381 user's intention that counts. */
2382 const int user_step = tp->control.stepping_command;
2383 /* This represents what we'll actually request the target to do.
2384 This can decay from a step to a continue, if e.g., we need to
2385 implement single-stepping with breakpoints (software
2386 single-step). */
2387 int step;
2388
2389 gdb_assert (!thread_is_in_step_over_chain (tp));
2390
2391 QUIT;
2392
2393 if (tp->suspend.waitstatus_pending_p)
2394 {
2395 if (debug_infrun)
2396 {
2397 char *statstr;
2398
2399 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2400 fprintf_unfiltered (gdb_stdlog,
2401 "infrun: resume: thread %s has pending wait status %s "
2402 "(currently_stepping=%d).\n",
2403 target_pid_to_str (tp->ptid), statstr,
2404 currently_stepping (tp));
2405 xfree (statstr);
2406 }
2407
2408 tp->resumed = 1;
2409
2410 /* FIXME: What should we do if we are supposed to resume this
2411 thread with a signal? Maybe we should maintain a queue of
2412 pending signals to deliver. */
2413 if (sig != GDB_SIGNAL_0)
2414 {
2415 warning (_("Couldn't deliver signal %s to %s."),
2416 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2417 }
2418
2419 tp->suspend.stop_signal = GDB_SIGNAL_0;
2420 discard_cleanups (old_cleanups);
2421
2422 if (target_can_async_p ())
2423 target_async (1);
2424 return;
2425 }
2426
2427 tp->stepped_breakpoint = 0;
2428
2429 /* Depends on stepped_breakpoint. */
2430 step = currently_stepping (tp);
2431
2432 if (current_inferior ()->waiting_for_vfork_done)
2433 {
2434 /* Don't try to single-step a vfork parent that is waiting for
2435 the child to get out of the shared memory region (by exec'ing
2436 or exiting). This is particularly important on software
2437 single-step archs, as the child process would trip on the
2438 software single step breakpoint inserted for the parent
2439 process. Since the parent will not actually execute any
2440 instruction until the child is out of the shared region (such
2441 are vfork's semantics), it is safe to simply continue it.
2442 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2443 the parent, and tell it to `keep_going', which automatically
2444 re-sets it stepping. */
2445 if (debug_infrun)
2446 fprintf_unfiltered (gdb_stdlog,
2447 "infrun: resume : clear step\n");
2448 step = 0;
2449 }
2450
2451 if (debug_infrun)
2452 fprintf_unfiltered (gdb_stdlog,
2453 "infrun: resume (step=%d, signal=%s), "
2454 "trap_expected=%d, current thread [%s] at %s\n",
2455 step, gdb_signal_to_symbol_string (sig),
2456 tp->control.trap_expected,
2457 target_pid_to_str (inferior_ptid),
2458 paddress (gdbarch, pc));
2459
2460 /* Normally, by the time we reach `resume', the breakpoints are either
2461 removed or inserted, as appropriate. The exception is if we're sitting
2462 at a permanent breakpoint; we need to step over it, but permanent
2463 breakpoints can't be removed. So we have to test for it here. */
2464 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2465 {
2466 if (sig != GDB_SIGNAL_0)
2467 {
2468 /* We have a signal to pass to the inferior. The resume
2469 may, or may not take us to the signal handler. If this
2470 is a step, we'll need to stop in the signal handler, if
2471 there's one, (if the target supports stepping into
2472 handlers), or in the next mainline instruction, if
2473 there's no handler. If this is a continue, we need to be
2474 sure to run the handler with all breakpoints inserted.
2475 In all cases, set a breakpoint at the current address
2476 (where the handler returns to), and once that breakpoint
2477 is hit, resume skipping the permanent breakpoint. If
2478 that breakpoint isn't hit, then we've stepped into the
2479 signal handler (or hit some other event). We'll delete
2480 the step-resume breakpoint then. */
2481
2482 if (debug_infrun)
2483 fprintf_unfiltered (gdb_stdlog,
2484 "infrun: resume: skipping permanent breakpoint, "
2485 "deliver signal first\n");
2486
2487 clear_step_over_info ();
2488 tp->control.trap_expected = 0;
2489
2490 if (tp->control.step_resume_breakpoint == NULL)
2491 {
2492 /* Set a "high-priority" step-resume, as we don't want
2493 user breakpoints at PC to trigger (again) when this
2494 hits. */
2495 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2496 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2497
2498 tp->step_after_step_resume_breakpoint = step;
2499 }
2500
2501 insert_breakpoints ();
2502 }
2503 else
2504 {
2505 /* There's no signal to pass, we can go ahead and skip the
2506 permanent breakpoint manually. */
2507 if (debug_infrun)
2508 fprintf_unfiltered (gdb_stdlog,
2509 "infrun: resume: skipping permanent breakpoint\n");
2510 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2511 /* Update pc to reflect the new address from which we will
2512 execute instructions. */
2513 pc = regcache_read_pc (regcache);
2514
2515 if (step)
2516 {
2517 /* We've already advanced the PC, so the stepping part
2518 is done. Now we need to arrange for a trap to be
2519 reported to handle_inferior_event. Set a breakpoint
2520 at the current PC, and run to it. Don't update
2521 prev_pc, because if we end in
2522 switch_back_to_stepped_thread, we want the "expected
2523 thread advanced also" branch to be taken. IOW, we
2524 don't want this thread to step further from PC
2525 (overstep). */
2526 gdb_assert (!step_over_info_valid_p ());
2527 insert_single_step_breakpoint (gdbarch, aspace, pc);
2528 insert_breakpoints ();
2529
2530 resume_ptid = internal_resume_ptid (user_step);
2531 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2532 discard_cleanups (old_cleanups);
2533 tp->resumed = 1;
2534 return;
2535 }
2536 }
2537 }
2538
2539 /* If we have a breakpoint to step over, make sure to do a single
2540 step only. Same if we have software watchpoints. */
2541 if (tp->control.trap_expected || bpstat_should_step ())
2542 tp->control.may_range_step = 0;
2543
2544 /* If enabled, step over breakpoints by executing a copy of the
2545 instruction at a different address.
2546
2547 We can't use displaced stepping when we have a signal to deliver;
2548 the comments for displaced_step_prepare explain why. The
2549 comments in the handle_inferior event for dealing with 'random
2550 signals' explain what we do instead.
2551
2552 We can't use displaced stepping when we are waiting for vfork_done
2553 event, displaced stepping breaks the vfork child similarly as single
2554 step software breakpoint. */
2555 if (tp->control.trap_expected
2556 && use_displaced_stepping (tp)
2557 && !step_over_info_valid_p ()
2558 && sig == GDB_SIGNAL_0
2559 && !current_inferior ()->waiting_for_vfork_done)
2560 {
2561 int prepared = displaced_step_prepare (inferior_ptid);
2562
2563 if (prepared == 0)
2564 {
2565 if (debug_infrun)
2566 fprintf_unfiltered (gdb_stdlog,
2567 "Got placed in step-over queue\n");
2568
2569 tp->control.trap_expected = 0;
2570 discard_cleanups (old_cleanups);
2571 return;
2572 }
2573 else if (prepared < 0)
2574 {
2575 /* Fallback to stepping over the breakpoint in-line. */
2576
2577 if (target_is_non_stop_p ())
2578 stop_all_threads ();
2579
2580 set_step_over_info (get_regcache_aspace (regcache),
2581 regcache_read_pc (regcache), 0);
2582
2583 step = maybe_software_singlestep (gdbarch, pc);
2584
2585 insert_breakpoints ();
2586 }
2587 else if (prepared > 0)
2588 {
2589 struct displaced_step_inferior_state *displaced;
2590
2591 /* Update pc to reflect the new address from which we will
2592 execute instructions due to displaced stepping. */
2593 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2594
2595 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2596 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2597 displaced->step_closure);
2598 }
2599 }
2600
2601 /* Do we need to do it the hard way, w/temp breakpoints? */
2602 else if (step)
2603 step = maybe_software_singlestep (gdbarch, pc);
2604
2605 /* Currently, our software single-step implementation leads to different
2606 results than hardware single-stepping in one situation: when stepping
2607 into delivering a signal which has an associated signal handler,
2608 hardware single-step will stop at the first instruction of the handler,
2609 while software single-step will simply skip execution of the handler.
2610
2611 For now, this difference in behavior is accepted since there is no
2612 easy way to actually implement single-stepping into a signal handler
2613 without kernel support.
2614
2615 However, there is one scenario where this difference leads to follow-on
2616 problems: if we're stepping off a breakpoint by removing all breakpoints
2617 and then single-stepping. In this case, the software single-step
2618 behavior means that even if there is a *breakpoint* in the signal
2619 handler, GDB still would not stop.
2620
2621 Fortunately, we can at least fix this particular issue. We detect
2622 here the case where we are about to deliver a signal while software
2623 single-stepping with breakpoints removed. In this situation, we
2624 revert the decisions to remove all breakpoints and insert single-
2625 step breakpoints, and instead we install a step-resume breakpoint
2626 at the current address, deliver the signal without stepping, and
2627 once we arrive back at the step-resume breakpoint, actually step
2628 over the breakpoint we originally wanted to step over. */
2629 if (thread_has_single_step_breakpoints_set (tp)
2630 && sig != GDB_SIGNAL_0
2631 && step_over_info_valid_p ())
2632 {
2633 /* If we have nested signals or a pending signal is delivered
2634 immediately after a handler returns, might might already have
2635 a step-resume breakpoint set on the earlier handler. We cannot
2636 set another step-resume breakpoint; just continue on until the
2637 original breakpoint is hit. */
2638 if (tp->control.step_resume_breakpoint == NULL)
2639 {
2640 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2641 tp->step_after_step_resume_breakpoint = 1;
2642 }
2643
2644 delete_single_step_breakpoints (tp);
2645
2646 clear_step_over_info ();
2647 tp->control.trap_expected = 0;
2648
2649 insert_breakpoints ();
2650 }
2651
2652 /* If STEP is set, it's a request to use hardware stepping
2653 facilities. But in that case, we should never
2654 use singlestep breakpoint. */
2655 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2656
2657 /* Decide the set of threads to ask the target to resume. */
2658 if (tp->control.trap_expected)
2659 {
2660 /* We're allowing a thread to run past a breakpoint it has
2661 hit, either by single-stepping the thread with the breakpoint
2662 removed, or by displaced stepping, with the breakpoint inserted.
2663 In the former case, we need to single-step only this thread,
2664 and keep others stopped, as they can miss this breakpoint if
2665 allowed to run. That's not really a problem for displaced
2666 stepping, but, we still keep other threads stopped, in case
2667 another thread is also stopped for a breakpoint waiting for
2668 its turn in the displaced stepping queue. */
2669 resume_ptid = inferior_ptid;
2670 }
2671 else
2672 resume_ptid = internal_resume_ptid (user_step);
2673
2674 if (execution_direction != EXEC_REVERSE
2675 && step && breakpoint_inserted_here_p (aspace, pc))
2676 {
2677 /* There are two cases where we currently need to step a
2678 breakpoint instruction when we have a signal to deliver:
2679
2680 - See handle_signal_stop where we handle random signals that
2681 could take out us out of the stepping range. Normally, in
2682 that case we end up continuing (instead of stepping) over the
2683 signal handler with a breakpoint at PC, but there are cases
2684 where we should _always_ single-step, even if we have a
2685 step-resume breakpoint, like when a software watchpoint is
2686 set. Assuming single-stepping and delivering a signal at the
2687 same time would takes us to the signal handler, then we could
2688 have removed the breakpoint at PC to step over it. However,
2689 some hardware step targets (like e.g., Mac OS) can't step
2690 into signal handlers, and for those, we need to leave the
2691 breakpoint at PC inserted, as otherwise if the handler
2692 recurses and executes PC again, it'll miss the breakpoint.
2693 So we leave the breakpoint inserted anyway, but we need to
2694 record that we tried to step a breakpoint instruction, so
2695 that adjust_pc_after_break doesn't end up confused.
2696
2697 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2698 in one thread after another thread that was stepping had been
2699 momentarily paused for a step-over. When we re-resume the
2700 stepping thread, it may be resumed from that address with a
2701 breakpoint that hasn't trapped yet. Seen with
2702 gdb.threads/non-stop-fair-events.exp, on targets that don't
2703 do displaced stepping. */
2704
2705 if (debug_infrun)
2706 fprintf_unfiltered (gdb_stdlog,
2707 "infrun: resume: [%s] stepped breakpoint\n",
2708 target_pid_to_str (tp->ptid));
2709
2710 tp->stepped_breakpoint = 1;
2711
2712 /* Most targets can step a breakpoint instruction, thus
2713 executing it normally. But if this one cannot, just
2714 continue and we will hit it anyway. */
2715 if (gdbarch_cannot_step_breakpoint (gdbarch))
2716 step = 0;
2717 }
2718
2719 if (debug_displaced
2720 && tp->control.trap_expected
2721 && use_displaced_stepping (tp)
2722 && !step_over_info_valid_p ())
2723 {
2724 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2725 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2726 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2727 gdb_byte buf[4];
2728
2729 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2730 paddress (resume_gdbarch, actual_pc));
2731 read_memory (actual_pc, buf, sizeof (buf));
2732 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2733 }
2734
2735 if (tp->control.may_range_step)
2736 {
2737 /* If we're resuming a thread with the PC out of the step
2738 range, then we're doing some nested/finer run control
2739 operation, like stepping the thread out of the dynamic
2740 linker or the displaced stepping scratch pad. We
2741 shouldn't have allowed a range step then. */
2742 gdb_assert (pc_in_thread_step_range (pc, tp));
2743 }
2744
2745 do_target_resume (resume_ptid, step, sig);
2746 tp->resumed = 1;
2747 discard_cleanups (old_cleanups);
2748 }
2749 \f
2750 /* Proceeding. */
2751
2752 /* See infrun.h. */
2753
2754 /* Counter that tracks number of user visible stops. This can be used
2755 to tell whether a command has proceeded the inferior past the
2756 current location. This allows e.g., inferior function calls in
2757 breakpoint commands to not interrupt the command list. When the
2758 call finishes successfully, the inferior is standing at the same
2759 breakpoint as if nothing happened (and so we don't call
2760 normal_stop). */
2761 static ULONGEST current_stop_id;
2762
2763 /* See infrun.h. */
2764
2765 ULONGEST
2766 get_stop_id (void)
2767 {
2768 return current_stop_id;
2769 }
2770
2771 /* Called when we report a user visible stop. */
2772
2773 static void
2774 new_stop_id (void)
2775 {
2776 current_stop_id++;
2777 }
2778
2779 /* Clear out all variables saying what to do when inferior is continued.
2780 First do this, then set the ones you want, then call `proceed'. */
2781
2782 static void
2783 clear_proceed_status_thread (struct thread_info *tp)
2784 {
2785 if (debug_infrun)
2786 fprintf_unfiltered (gdb_stdlog,
2787 "infrun: clear_proceed_status_thread (%s)\n",
2788 target_pid_to_str (tp->ptid));
2789
2790 /* If we're starting a new sequence, then the previous finished
2791 single-step is no longer relevant. */
2792 if (tp->suspend.waitstatus_pending_p)
2793 {
2794 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2795 {
2796 if (debug_infrun)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "infrun: clear_proceed_status: pending "
2799 "event of %s was a finished step. "
2800 "Discarding.\n",
2801 target_pid_to_str (tp->ptid));
2802
2803 tp->suspend.waitstatus_pending_p = 0;
2804 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2805 }
2806 else if (debug_infrun)
2807 {
2808 char *statstr;
2809
2810 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2811 fprintf_unfiltered (gdb_stdlog,
2812 "infrun: clear_proceed_status_thread: thread %s "
2813 "has pending wait status %s "
2814 "(currently_stepping=%d).\n",
2815 target_pid_to_str (tp->ptid), statstr,
2816 currently_stepping (tp));
2817 xfree (statstr);
2818 }
2819 }
2820
2821 /* If this signal should not be seen by program, give it zero.
2822 Used for debugging signals. */
2823 if (!signal_pass_state (tp->suspend.stop_signal))
2824 tp->suspend.stop_signal = GDB_SIGNAL_0;
2825
2826 thread_fsm_delete (tp->thread_fsm);
2827 tp->thread_fsm = NULL;
2828
2829 tp->control.trap_expected = 0;
2830 tp->control.step_range_start = 0;
2831 tp->control.step_range_end = 0;
2832 tp->control.may_range_step = 0;
2833 tp->control.step_frame_id = null_frame_id;
2834 tp->control.step_stack_frame_id = null_frame_id;
2835 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2836 tp->control.step_start_function = NULL;
2837 tp->stop_requested = 0;
2838
2839 tp->control.stop_step = 0;
2840
2841 tp->control.proceed_to_finish = 0;
2842
2843 tp->control.command_interp = NULL;
2844 tp->control.stepping_command = 0;
2845
2846 /* Discard any remaining commands or status from previous stop. */
2847 bpstat_clear (&tp->control.stop_bpstat);
2848 }
2849
2850 void
2851 clear_proceed_status (int step)
2852 {
2853 /* With scheduler-locking replay, stop replaying other threads if we're
2854 not replaying the user-visible resume ptid.
2855
2856 This is a convenience feature to not require the user to explicitly
2857 stop replaying the other threads. We're assuming that the user's
2858 intent is to resume tracing the recorded process. */
2859 if (!non_stop && scheduler_mode == schedlock_replay
2860 && target_record_is_replaying (minus_one_ptid)
2861 && !target_record_will_replay (user_visible_resume_ptid (step),
2862 execution_direction))
2863 target_record_stop_replaying ();
2864
2865 if (!non_stop)
2866 {
2867 struct thread_info *tp;
2868 ptid_t resume_ptid;
2869
2870 resume_ptid = user_visible_resume_ptid (step);
2871
2872 /* In all-stop mode, delete the per-thread status of all threads
2873 we're about to resume, implicitly and explicitly. */
2874 ALL_NON_EXITED_THREADS (tp)
2875 {
2876 if (!ptid_match (tp->ptid, resume_ptid))
2877 continue;
2878 clear_proceed_status_thread (tp);
2879 }
2880 }
2881
2882 if (!ptid_equal (inferior_ptid, null_ptid))
2883 {
2884 struct inferior *inferior;
2885
2886 if (non_stop)
2887 {
2888 /* If in non-stop mode, only delete the per-thread status of
2889 the current thread. */
2890 clear_proceed_status_thread (inferior_thread ());
2891 }
2892
2893 inferior = current_inferior ();
2894 inferior->control.stop_soon = NO_STOP_QUIETLY;
2895 }
2896
2897 observer_notify_about_to_proceed ();
2898 }
2899
2900 /* Returns true if TP is still stopped at a breakpoint that needs
2901 stepping-over in order to make progress. If the breakpoint is gone
2902 meanwhile, we can skip the whole step-over dance. */
2903
2904 static int
2905 thread_still_needs_step_over_bp (struct thread_info *tp)
2906 {
2907 if (tp->stepping_over_breakpoint)
2908 {
2909 struct regcache *regcache = get_thread_regcache (tp->ptid);
2910
2911 if (breakpoint_here_p (get_regcache_aspace (regcache),
2912 regcache_read_pc (regcache))
2913 == ordinary_breakpoint_here)
2914 return 1;
2915
2916 tp->stepping_over_breakpoint = 0;
2917 }
2918
2919 return 0;
2920 }
2921
2922 /* Check whether thread TP still needs to start a step-over in order
2923 to make progress when resumed. Returns an bitwise or of enum
2924 step_over_what bits, indicating what needs to be stepped over. */
2925
2926 static step_over_what
2927 thread_still_needs_step_over (struct thread_info *tp)
2928 {
2929 struct inferior *inf = find_inferior_ptid (tp->ptid);
2930 step_over_what what = 0;
2931
2932 if (thread_still_needs_step_over_bp (tp))
2933 what |= STEP_OVER_BREAKPOINT;
2934
2935 if (tp->stepping_over_watchpoint
2936 && !target_have_steppable_watchpoint)
2937 what |= STEP_OVER_WATCHPOINT;
2938
2939 return what;
2940 }
2941
2942 /* Returns true if scheduler locking applies. STEP indicates whether
2943 we're about to do a step/next-like command to a thread. */
2944
2945 static int
2946 schedlock_applies (struct thread_info *tp)
2947 {
2948 return (scheduler_mode == schedlock_on
2949 || (scheduler_mode == schedlock_step
2950 && tp->control.stepping_command)
2951 || (scheduler_mode == schedlock_replay
2952 && target_record_will_replay (minus_one_ptid,
2953 execution_direction)));
2954 }
2955
2956 /* Basic routine for continuing the program in various fashions.
2957
2958 ADDR is the address to resume at, or -1 for resume where stopped.
2959 SIGGNAL is the signal to give it, or 0 for none,
2960 or -1 for act according to how it stopped.
2961 STEP is nonzero if should trap after one instruction.
2962 -1 means return after that and print nothing.
2963 You should probably set various step_... variables
2964 before calling here, if you are stepping.
2965
2966 You should call clear_proceed_status before calling proceed. */
2967
2968 void
2969 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2970 {
2971 struct regcache *regcache;
2972 struct gdbarch *gdbarch;
2973 struct thread_info *tp;
2974 CORE_ADDR pc;
2975 struct address_space *aspace;
2976 ptid_t resume_ptid;
2977 struct execution_control_state ecss;
2978 struct execution_control_state *ecs = &ecss;
2979 struct cleanup *old_chain;
2980 int started;
2981
2982 /* If we're stopped at a fork/vfork, follow the branch set by the
2983 "set follow-fork-mode" command; otherwise, we'll just proceed
2984 resuming the current thread. */
2985 if (!follow_fork ())
2986 {
2987 /* The target for some reason decided not to resume. */
2988 normal_stop ();
2989 if (target_can_async_p ())
2990 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2991 return;
2992 }
2993
2994 /* We'll update this if & when we switch to a new thread. */
2995 previous_inferior_ptid = inferior_ptid;
2996
2997 regcache = get_current_regcache ();
2998 gdbarch = get_regcache_arch (regcache);
2999 aspace = get_regcache_aspace (regcache);
3000 pc = regcache_read_pc (regcache);
3001 tp = inferior_thread ();
3002
3003 /* Fill in with reasonable starting values. */
3004 init_thread_stepping_state (tp);
3005
3006 gdb_assert (!thread_is_in_step_over_chain (tp));
3007
3008 if (addr == (CORE_ADDR) -1)
3009 {
3010 if (pc == stop_pc
3011 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3012 && execution_direction != EXEC_REVERSE)
3013 /* There is a breakpoint at the address we will resume at,
3014 step one instruction before inserting breakpoints so that
3015 we do not stop right away (and report a second hit at this
3016 breakpoint).
3017
3018 Note, we don't do this in reverse, because we won't
3019 actually be executing the breakpoint insn anyway.
3020 We'll be (un-)executing the previous instruction. */
3021 tp->stepping_over_breakpoint = 1;
3022 else if (gdbarch_single_step_through_delay_p (gdbarch)
3023 && gdbarch_single_step_through_delay (gdbarch,
3024 get_current_frame ()))
3025 /* We stepped onto an instruction that needs to be stepped
3026 again before re-inserting the breakpoint, do so. */
3027 tp->stepping_over_breakpoint = 1;
3028 }
3029 else
3030 {
3031 regcache_write_pc (regcache, addr);
3032 }
3033
3034 if (siggnal != GDB_SIGNAL_DEFAULT)
3035 tp->suspend.stop_signal = siggnal;
3036
3037 /* Record the interpreter that issued the execution command that
3038 caused this thread to resume. If the top level interpreter is
3039 MI/async, and the execution command was a CLI command
3040 (next/step/etc.), we'll want to print stop event output to the MI
3041 console channel (the stepped-to line, etc.), as if the user
3042 entered the execution command on a real GDB console. */
3043 tp->control.command_interp = command_interp ();
3044
3045 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3046
3047 /* If an exception is thrown from this point on, make sure to
3048 propagate GDB's knowledge of the executing state to the
3049 frontend/user running state. */
3050 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3051
3052 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3053 threads (e.g., we might need to set threads stepping over
3054 breakpoints first), from the user/frontend's point of view, all
3055 threads in RESUME_PTID are now running. Unless we're calling an
3056 inferior function, as in that case we pretend the inferior
3057 doesn't run at all. */
3058 if (!tp->control.in_infcall)
3059 set_running (resume_ptid, 1);
3060
3061 if (debug_infrun)
3062 fprintf_unfiltered (gdb_stdlog,
3063 "infrun: proceed (addr=%s, signal=%s)\n",
3064 paddress (gdbarch, addr),
3065 gdb_signal_to_symbol_string (siggnal));
3066
3067 annotate_starting ();
3068
3069 /* Make sure that output from GDB appears before output from the
3070 inferior. */
3071 gdb_flush (gdb_stdout);
3072
3073 /* In a multi-threaded task we may select another thread and
3074 then continue or step.
3075
3076 But if a thread that we're resuming had stopped at a breakpoint,
3077 it will immediately cause another breakpoint stop without any
3078 execution (i.e. it will report a breakpoint hit incorrectly). So
3079 we must step over it first.
3080
3081 Look for threads other than the current (TP) that reported a
3082 breakpoint hit and haven't been resumed yet since. */
3083
3084 /* If scheduler locking applies, we can avoid iterating over all
3085 threads. */
3086 if (!non_stop && !schedlock_applies (tp))
3087 {
3088 struct thread_info *current = tp;
3089
3090 ALL_NON_EXITED_THREADS (tp)
3091 {
3092 /* Ignore the current thread here. It's handled
3093 afterwards. */
3094 if (tp == current)
3095 continue;
3096
3097 /* Ignore threads of processes we're not resuming. */
3098 if (!ptid_match (tp->ptid, resume_ptid))
3099 continue;
3100
3101 if (!thread_still_needs_step_over (tp))
3102 continue;
3103
3104 gdb_assert (!thread_is_in_step_over_chain (tp));
3105
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "infrun: need to step-over [%s] first\n",
3109 target_pid_to_str (tp->ptid));
3110
3111 thread_step_over_chain_enqueue (tp);
3112 }
3113
3114 tp = current;
3115 }
3116
3117 /* Enqueue the current thread last, so that we move all other
3118 threads over their breakpoints first. */
3119 if (tp->stepping_over_breakpoint)
3120 thread_step_over_chain_enqueue (tp);
3121
3122 /* If the thread isn't started, we'll still need to set its prev_pc,
3123 so that switch_back_to_stepped_thread knows the thread hasn't
3124 advanced. Must do this before resuming any thread, as in
3125 all-stop/remote, once we resume we can't send any other packet
3126 until the target stops again. */
3127 tp->prev_pc = regcache_read_pc (regcache);
3128
3129 started = start_step_over ();
3130
3131 if (step_over_info_valid_p ())
3132 {
3133 /* Either this thread started a new in-line step over, or some
3134 other thread was already doing one. In either case, don't
3135 resume anything else until the step-over is finished. */
3136 }
3137 else if (started && !target_is_non_stop_p ())
3138 {
3139 /* A new displaced stepping sequence was started. In all-stop,
3140 we can't talk to the target anymore until it next stops. */
3141 }
3142 else if (!non_stop && target_is_non_stop_p ())
3143 {
3144 /* In all-stop, but the target is always in non-stop mode.
3145 Start all other threads that are implicitly resumed too. */
3146 ALL_NON_EXITED_THREADS (tp)
3147 {
3148 /* Ignore threads of processes we're not resuming. */
3149 if (!ptid_match (tp->ptid, resume_ptid))
3150 continue;
3151
3152 if (tp->resumed)
3153 {
3154 if (debug_infrun)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "infrun: proceed: [%s] resumed\n",
3157 target_pid_to_str (tp->ptid));
3158 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3159 continue;
3160 }
3161
3162 if (thread_is_in_step_over_chain (tp))
3163 {
3164 if (debug_infrun)
3165 fprintf_unfiltered (gdb_stdlog,
3166 "infrun: proceed: [%s] needs step-over\n",
3167 target_pid_to_str (tp->ptid));
3168 continue;
3169 }
3170
3171 if (debug_infrun)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "infrun: proceed: resuming %s\n",
3174 target_pid_to_str (tp->ptid));
3175
3176 reset_ecs (ecs, tp);
3177 switch_to_thread (tp->ptid);
3178 keep_going_pass_signal (ecs);
3179 if (!ecs->wait_some_more)
3180 error (_("Command aborted."));
3181 }
3182 }
3183 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3184 {
3185 /* The thread wasn't started, and isn't queued, run it now. */
3186 reset_ecs (ecs, tp);
3187 switch_to_thread (tp->ptid);
3188 keep_going_pass_signal (ecs);
3189 if (!ecs->wait_some_more)
3190 error (_("Command aborted."));
3191 }
3192
3193 discard_cleanups (old_chain);
3194
3195 /* Tell the event loop to wait for it to stop. If the target
3196 supports asynchronous execution, it'll do this from within
3197 target_resume. */
3198 if (!target_can_async_p ())
3199 mark_async_event_handler (infrun_async_inferior_event_token);
3200 }
3201 \f
3202
3203 /* Start remote-debugging of a machine over a serial link. */
3204
3205 void
3206 start_remote (int from_tty)
3207 {
3208 struct inferior *inferior;
3209
3210 inferior = current_inferior ();
3211 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3212
3213 /* Always go on waiting for the target, regardless of the mode. */
3214 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3215 indicate to wait_for_inferior that a target should timeout if
3216 nothing is returned (instead of just blocking). Because of this,
3217 targets expecting an immediate response need to, internally, set
3218 things up so that the target_wait() is forced to eventually
3219 timeout. */
3220 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3221 differentiate to its caller what the state of the target is after
3222 the initial open has been performed. Here we're assuming that
3223 the target has stopped. It should be possible to eventually have
3224 target_open() return to the caller an indication that the target
3225 is currently running and GDB state should be set to the same as
3226 for an async run. */
3227 wait_for_inferior ();
3228
3229 /* Now that the inferior has stopped, do any bookkeeping like
3230 loading shared libraries. We want to do this before normal_stop,
3231 so that the displayed frame is up to date. */
3232 post_create_inferior (&current_target, from_tty);
3233
3234 normal_stop ();
3235 }
3236
3237 /* Initialize static vars when a new inferior begins. */
3238
3239 void
3240 init_wait_for_inferior (void)
3241 {
3242 /* These are meaningless until the first time through wait_for_inferior. */
3243
3244 breakpoint_init_inferior (inf_starting);
3245
3246 clear_proceed_status (0);
3247
3248 target_last_wait_ptid = minus_one_ptid;
3249
3250 previous_inferior_ptid = inferior_ptid;
3251
3252 /* Discard any skipped inlined frames. */
3253 clear_inline_frame_state (minus_one_ptid);
3254 }
3255
3256 \f
3257
3258 static void handle_inferior_event (struct execution_control_state *ecs);
3259
3260 static void handle_step_into_function (struct gdbarch *gdbarch,
3261 struct execution_control_state *ecs);
3262 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3263 struct execution_control_state *ecs);
3264 static void handle_signal_stop (struct execution_control_state *ecs);
3265 static void check_exception_resume (struct execution_control_state *,
3266 struct frame_info *);
3267
3268 static void end_stepping_range (struct execution_control_state *ecs);
3269 static void stop_waiting (struct execution_control_state *ecs);
3270 static void keep_going (struct execution_control_state *ecs);
3271 static void process_event_stop_test (struct execution_control_state *ecs);
3272 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3273
3274 /* Callback for iterate over threads. If the thread is stopped, but
3275 the user/frontend doesn't know about that yet, go through
3276 normal_stop, as if the thread had just stopped now. ARG points at
3277 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3278 ptid_is_pid(PTID) is true, applies to all threads of the process
3279 pointed at by PTID. Otherwise, apply only to the thread pointed by
3280 PTID. */
3281
3282 static int
3283 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3284 {
3285 ptid_t ptid = * (ptid_t *) arg;
3286
3287 if ((ptid_equal (info->ptid, ptid)
3288 || ptid_equal (minus_one_ptid, ptid)
3289 || (ptid_is_pid (ptid)
3290 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3291 && is_running (info->ptid)
3292 && !is_executing (info->ptid))
3293 {
3294 struct cleanup *old_chain;
3295 struct execution_control_state ecss;
3296 struct execution_control_state *ecs = &ecss;
3297
3298 memset (ecs, 0, sizeof (*ecs));
3299
3300 old_chain = make_cleanup_restore_current_thread ();
3301
3302 overlay_cache_invalid = 1;
3303 /* Flush target cache before starting to handle each event.
3304 Target was running and cache could be stale. This is just a
3305 heuristic. Running threads may modify target memory, but we
3306 don't get any event. */
3307 target_dcache_invalidate ();
3308
3309 /* Go through handle_inferior_event/normal_stop, so we always
3310 have consistent output as if the stop event had been
3311 reported. */
3312 ecs->ptid = info->ptid;
3313 ecs->event_thread = info;
3314 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3315 ecs->ws.value.sig = GDB_SIGNAL_0;
3316
3317 handle_inferior_event (ecs);
3318
3319 if (!ecs->wait_some_more)
3320 {
3321 /* Cancel any running execution command. */
3322 thread_cancel_execution_command (info);
3323
3324 normal_stop ();
3325 }
3326
3327 do_cleanups (old_chain);
3328 }
3329
3330 return 0;
3331 }
3332
3333 /* This function is attached as a "thread_stop_requested" observer.
3334 Cleanup local state that assumed the PTID was to be resumed, and
3335 report the stop to the frontend. */
3336
3337 static void
3338 infrun_thread_stop_requested (ptid_t ptid)
3339 {
3340 struct thread_info *tp;
3341
3342 /* PTID was requested to stop. Remove matching threads from the
3343 step-over queue, so we don't try to resume them
3344 automatically. */
3345 ALL_NON_EXITED_THREADS (tp)
3346 if (ptid_match (tp->ptid, ptid))
3347 {
3348 if (thread_is_in_step_over_chain (tp))
3349 thread_step_over_chain_remove (tp);
3350 }
3351
3352 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3353 }
3354
3355 static void
3356 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3357 {
3358 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3359 nullify_last_target_wait_ptid ();
3360 }
3361
3362 /* Delete the step resume, single-step and longjmp/exception resume
3363 breakpoints of TP. */
3364
3365 static void
3366 delete_thread_infrun_breakpoints (struct thread_info *tp)
3367 {
3368 delete_step_resume_breakpoint (tp);
3369 delete_exception_resume_breakpoint (tp);
3370 delete_single_step_breakpoints (tp);
3371 }
3372
3373 /* If the target still has execution, call FUNC for each thread that
3374 just stopped. In all-stop, that's all the non-exited threads; in
3375 non-stop, that's the current thread, only. */
3376
3377 typedef void (*for_each_just_stopped_thread_callback_func)
3378 (struct thread_info *tp);
3379
3380 static void
3381 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3382 {
3383 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3384 return;
3385
3386 if (target_is_non_stop_p ())
3387 {
3388 /* If in non-stop mode, only the current thread stopped. */
3389 func (inferior_thread ());
3390 }
3391 else
3392 {
3393 struct thread_info *tp;
3394
3395 /* In all-stop mode, all threads have stopped. */
3396 ALL_NON_EXITED_THREADS (tp)
3397 {
3398 func (tp);
3399 }
3400 }
3401 }
3402
3403 /* Delete the step resume and longjmp/exception resume breakpoints of
3404 the threads that just stopped. */
3405
3406 static void
3407 delete_just_stopped_threads_infrun_breakpoints (void)
3408 {
3409 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3410 }
3411
3412 /* Delete the single-step breakpoints of the threads that just
3413 stopped. */
3414
3415 static void
3416 delete_just_stopped_threads_single_step_breakpoints (void)
3417 {
3418 for_each_just_stopped_thread (delete_single_step_breakpoints);
3419 }
3420
3421 /* A cleanup wrapper. */
3422
3423 static void
3424 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3425 {
3426 delete_just_stopped_threads_infrun_breakpoints ();
3427 }
3428
3429 /* See infrun.h. */
3430
3431 void
3432 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3433 const struct target_waitstatus *ws)
3434 {
3435 char *status_string = target_waitstatus_to_string (ws);
3436 struct ui_file *tmp_stream = mem_fileopen ();
3437 char *text;
3438
3439 /* The text is split over several lines because it was getting too long.
3440 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3441 output as a unit; we want only one timestamp printed if debug_timestamp
3442 is set. */
3443
3444 fprintf_unfiltered (tmp_stream,
3445 "infrun: target_wait (%d.%ld.%ld",
3446 ptid_get_pid (waiton_ptid),
3447 ptid_get_lwp (waiton_ptid),
3448 ptid_get_tid (waiton_ptid));
3449 if (ptid_get_pid (waiton_ptid) != -1)
3450 fprintf_unfiltered (tmp_stream,
3451 " [%s]", target_pid_to_str (waiton_ptid));
3452 fprintf_unfiltered (tmp_stream, ", status) =\n");
3453 fprintf_unfiltered (tmp_stream,
3454 "infrun: %d.%ld.%ld [%s],\n",
3455 ptid_get_pid (result_ptid),
3456 ptid_get_lwp (result_ptid),
3457 ptid_get_tid (result_ptid),
3458 target_pid_to_str (result_ptid));
3459 fprintf_unfiltered (tmp_stream,
3460 "infrun: %s\n",
3461 status_string);
3462
3463 text = ui_file_xstrdup (tmp_stream, NULL);
3464
3465 /* This uses %s in part to handle %'s in the text, but also to avoid
3466 a gcc error: the format attribute requires a string literal. */
3467 fprintf_unfiltered (gdb_stdlog, "%s", text);
3468
3469 xfree (status_string);
3470 xfree (text);
3471 ui_file_delete (tmp_stream);
3472 }
3473
3474 /* Select a thread at random, out of those which are resumed and have
3475 had events. */
3476
3477 static struct thread_info *
3478 random_pending_event_thread (ptid_t waiton_ptid)
3479 {
3480 struct thread_info *event_tp;
3481 int num_events = 0;
3482 int random_selector;
3483
3484 /* First see how many events we have. Count only resumed threads
3485 that have an event pending. */
3486 ALL_NON_EXITED_THREADS (event_tp)
3487 if (ptid_match (event_tp->ptid, waiton_ptid)
3488 && event_tp->resumed
3489 && event_tp->suspend.waitstatus_pending_p)
3490 num_events++;
3491
3492 if (num_events == 0)
3493 return NULL;
3494
3495 /* Now randomly pick a thread out of those that have had events. */
3496 random_selector = (int)
3497 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3498
3499 if (debug_infrun && num_events > 1)
3500 fprintf_unfiltered (gdb_stdlog,
3501 "infrun: Found %d events, selecting #%d\n",
3502 num_events, random_selector);
3503
3504 /* Select the Nth thread that has had an event. */
3505 ALL_NON_EXITED_THREADS (event_tp)
3506 if (ptid_match (event_tp->ptid, waiton_ptid)
3507 && event_tp->resumed
3508 && event_tp->suspend.waitstatus_pending_p)
3509 if (random_selector-- == 0)
3510 break;
3511
3512 return event_tp;
3513 }
3514
3515 /* Wrapper for target_wait that first checks whether threads have
3516 pending statuses to report before actually asking the target for
3517 more events. */
3518
3519 static ptid_t
3520 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3521 {
3522 ptid_t event_ptid;
3523 struct thread_info *tp;
3524
3525 /* First check if there is a resumed thread with a wait status
3526 pending. */
3527 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3528 {
3529 tp = random_pending_event_thread (ptid);
3530 }
3531 else
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: Waiting for specific thread %s.\n",
3536 target_pid_to_str (ptid));
3537
3538 /* We have a specific thread to check. */
3539 tp = find_thread_ptid (ptid);
3540 gdb_assert (tp != NULL);
3541 if (!tp->suspend.waitstatus_pending_p)
3542 tp = NULL;
3543 }
3544
3545 if (tp != NULL
3546 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3547 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3548 {
3549 struct regcache *regcache = get_thread_regcache (tp->ptid);
3550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3551 CORE_ADDR pc;
3552 int discard = 0;
3553
3554 pc = regcache_read_pc (regcache);
3555
3556 if (pc != tp->suspend.stop_pc)
3557 {
3558 if (debug_infrun)
3559 fprintf_unfiltered (gdb_stdlog,
3560 "infrun: PC of %s changed. was=%s, now=%s\n",
3561 target_pid_to_str (tp->ptid),
3562 paddress (gdbarch, tp->prev_pc),
3563 paddress (gdbarch, pc));
3564 discard = 1;
3565 }
3566 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3567 {
3568 if (debug_infrun)
3569 fprintf_unfiltered (gdb_stdlog,
3570 "infrun: previous breakpoint of %s, at %s gone\n",
3571 target_pid_to_str (tp->ptid),
3572 paddress (gdbarch, pc));
3573
3574 discard = 1;
3575 }
3576
3577 if (discard)
3578 {
3579 if (debug_infrun)
3580 fprintf_unfiltered (gdb_stdlog,
3581 "infrun: pending event of %s cancelled.\n",
3582 target_pid_to_str (tp->ptid));
3583
3584 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3585 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3586 }
3587 }
3588
3589 if (tp != NULL)
3590 {
3591 if (debug_infrun)
3592 {
3593 char *statstr;
3594
3595 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3596 fprintf_unfiltered (gdb_stdlog,
3597 "infrun: Using pending wait status %s for %s.\n",
3598 statstr,
3599 target_pid_to_str (tp->ptid));
3600 xfree (statstr);
3601 }
3602
3603 /* Now that we've selected our final event LWP, un-adjust its PC
3604 if it was a software breakpoint (and the target doesn't
3605 always adjust the PC itself). */
3606 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3607 && !target_supports_stopped_by_sw_breakpoint ())
3608 {
3609 struct regcache *regcache;
3610 struct gdbarch *gdbarch;
3611 int decr_pc;
3612
3613 regcache = get_thread_regcache (tp->ptid);
3614 gdbarch = get_regcache_arch (regcache);
3615
3616 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3617 if (decr_pc != 0)
3618 {
3619 CORE_ADDR pc;
3620
3621 pc = regcache_read_pc (regcache);
3622 regcache_write_pc (regcache, pc + decr_pc);
3623 }
3624 }
3625
3626 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3627 *status = tp->suspend.waitstatus;
3628 tp->suspend.waitstatus_pending_p = 0;
3629
3630 /* Wake up the event loop again, until all pending events are
3631 processed. */
3632 if (target_is_async_p ())
3633 mark_async_event_handler (infrun_async_inferior_event_token);
3634 return tp->ptid;
3635 }
3636
3637 /* But if we don't find one, we'll have to wait. */
3638
3639 if (deprecated_target_wait_hook)
3640 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3641 else
3642 event_ptid = target_wait (ptid, status, options);
3643
3644 return event_ptid;
3645 }
3646
3647 /* Prepare and stabilize the inferior for detaching it. E.g.,
3648 detaching while a thread is displaced stepping is a recipe for
3649 crashing it, as nothing would readjust the PC out of the scratch
3650 pad. */
3651
3652 void
3653 prepare_for_detach (void)
3654 {
3655 struct inferior *inf = current_inferior ();
3656 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3657 struct cleanup *old_chain_1;
3658 struct displaced_step_inferior_state *displaced;
3659
3660 displaced = get_displaced_stepping_state (inf->pid);
3661
3662 /* Is any thread of this process displaced stepping? If not,
3663 there's nothing else to do. */
3664 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3665 return;
3666
3667 if (debug_infrun)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "displaced-stepping in-process while detaching");
3670
3671 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3672 inf->detaching = 1;
3673
3674 while (!ptid_equal (displaced->step_ptid, null_ptid))
3675 {
3676 struct cleanup *old_chain_2;
3677 struct execution_control_state ecss;
3678 struct execution_control_state *ecs;
3679
3680 ecs = &ecss;
3681 memset (ecs, 0, sizeof (*ecs));
3682
3683 overlay_cache_invalid = 1;
3684 /* Flush target cache before starting to handle each event.
3685 Target was running and cache could be stale. This is just a
3686 heuristic. Running threads may modify target memory, but we
3687 don't get any event. */
3688 target_dcache_invalidate ();
3689
3690 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3691
3692 if (debug_infrun)
3693 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3694
3695 /* If an error happens while handling the event, propagate GDB's
3696 knowledge of the executing state to the frontend/user running
3697 state. */
3698 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3699 &minus_one_ptid);
3700
3701 /* Now figure out what to do with the result of the result. */
3702 handle_inferior_event (ecs);
3703
3704 /* No error, don't finish the state yet. */
3705 discard_cleanups (old_chain_2);
3706
3707 /* Breakpoints and watchpoints are not installed on the target
3708 at this point, and signals are passed directly to the
3709 inferior, so this must mean the process is gone. */
3710 if (!ecs->wait_some_more)
3711 {
3712 discard_cleanups (old_chain_1);
3713 error (_("Program exited while detaching"));
3714 }
3715 }
3716
3717 discard_cleanups (old_chain_1);
3718 }
3719
3720 /* Wait for control to return from inferior to debugger.
3721
3722 If inferior gets a signal, we may decide to start it up again
3723 instead of returning. That is why there is a loop in this function.
3724 When this function actually returns it means the inferior
3725 should be left stopped and GDB should read more commands. */
3726
3727 void
3728 wait_for_inferior (void)
3729 {
3730 struct cleanup *old_cleanups;
3731 struct cleanup *thread_state_chain;
3732
3733 if (debug_infrun)
3734 fprintf_unfiltered
3735 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3736
3737 old_cleanups
3738 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3739 NULL);
3740
3741 /* If an error happens while handling the event, propagate GDB's
3742 knowledge of the executing state to the frontend/user running
3743 state. */
3744 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3745
3746 while (1)
3747 {
3748 struct execution_control_state ecss;
3749 struct execution_control_state *ecs = &ecss;
3750 ptid_t waiton_ptid = minus_one_ptid;
3751
3752 memset (ecs, 0, sizeof (*ecs));
3753
3754 overlay_cache_invalid = 1;
3755
3756 /* Flush target cache before starting to handle each event.
3757 Target was running and cache could be stale. This is just a
3758 heuristic. Running threads may modify target memory, but we
3759 don't get any event. */
3760 target_dcache_invalidate ();
3761
3762 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3763
3764 if (debug_infrun)
3765 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3766
3767 /* Now figure out what to do with the result of the result. */
3768 handle_inferior_event (ecs);
3769
3770 if (!ecs->wait_some_more)
3771 break;
3772 }
3773
3774 /* No error, don't finish the state yet. */
3775 discard_cleanups (thread_state_chain);
3776
3777 do_cleanups (old_cleanups);
3778 }
3779
3780 /* Cleanup that reinstalls the readline callback handler, if the
3781 target is running in the background. If while handling the target
3782 event something triggered a secondary prompt, like e.g., a
3783 pagination prompt, we'll have removed the callback handler (see
3784 gdb_readline_wrapper_line). Need to do this as we go back to the
3785 event loop, ready to process further input. Note this has no
3786 effect if the handler hasn't actually been removed, because calling
3787 rl_callback_handler_install resets the line buffer, thus losing
3788 input. */
3789
3790 static void
3791 reinstall_readline_callback_handler_cleanup (void *arg)
3792 {
3793 if (!interpreter_async)
3794 {
3795 /* We're not going back to the top level event loop yet. Don't
3796 install the readline callback, as it'd prep the terminal,
3797 readline-style (raw, noecho) (e.g., --batch). We'll install
3798 it the next time the prompt is displayed, when we're ready
3799 for input. */
3800 return;
3801 }
3802
3803 if (async_command_editing_p && !sync_execution)
3804 gdb_rl_callback_handler_reinstall ();
3805 }
3806
3807 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3808 that's just the event thread. In all-stop, that's all threads. */
3809
3810 static void
3811 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3812 {
3813 struct thread_info *thr = ecs->event_thread;
3814
3815 if (thr != NULL && thr->thread_fsm != NULL)
3816 thread_fsm_clean_up (thr->thread_fsm);
3817
3818 if (!non_stop)
3819 {
3820 ALL_NON_EXITED_THREADS (thr)
3821 {
3822 if (thr->thread_fsm == NULL)
3823 continue;
3824 if (thr == ecs->event_thread)
3825 continue;
3826
3827 switch_to_thread (thr->ptid);
3828 thread_fsm_clean_up (thr->thread_fsm);
3829 }
3830
3831 if (ecs->event_thread != NULL)
3832 switch_to_thread (ecs->event_thread->ptid);
3833 }
3834 }
3835
3836 /* A cleanup that restores the execution direction to the value saved
3837 in *ARG. */
3838
3839 static void
3840 restore_execution_direction (void *arg)
3841 {
3842 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3843
3844 execution_direction = *save_exec_dir;
3845 }
3846
3847 /* Asynchronous version of wait_for_inferior. It is called by the
3848 event loop whenever a change of state is detected on the file
3849 descriptor corresponding to the target. It can be called more than
3850 once to complete a single execution command. In such cases we need
3851 to keep the state in a global variable ECSS. If it is the last time
3852 that this function is called for a single execution command, then
3853 report to the user that the inferior has stopped, and do the
3854 necessary cleanups. */
3855
3856 void
3857 fetch_inferior_event (void *client_data)
3858 {
3859 struct execution_control_state ecss;
3860 struct execution_control_state *ecs = &ecss;
3861 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3862 struct cleanup *ts_old_chain;
3863 int was_sync = sync_execution;
3864 enum exec_direction_kind save_exec_dir = execution_direction;
3865 int cmd_done = 0;
3866 ptid_t waiton_ptid = minus_one_ptid;
3867
3868 memset (ecs, 0, sizeof (*ecs));
3869
3870 /* End up with readline processing input, if necessary. */
3871 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3872
3873 /* We're handling a live event, so make sure we're doing live
3874 debugging. If we're looking at traceframes while the target is
3875 running, we're going to need to get back to that mode after
3876 handling the event. */
3877 if (non_stop)
3878 {
3879 make_cleanup_restore_current_traceframe ();
3880 set_current_traceframe (-1);
3881 }
3882
3883 if (non_stop)
3884 /* In non-stop mode, the user/frontend should not notice a thread
3885 switch due to internal events. Make sure we reverse to the
3886 user selected thread and frame after handling the event and
3887 running any breakpoint commands. */
3888 make_cleanup_restore_current_thread ();
3889
3890 overlay_cache_invalid = 1;
3891 /* Flush target cache before starting to handle each event. Target
3892 was running and cache could be stale. This is just a heuristic.
3893 Running threads may modify target memory, but we don't get any
3894 event. */
3895 target_dcache_invalidate ();
3896
3897 make_cleanup (restore_execution_direction, &save_exec_dir);
3898 execution_direction = target_execution_direction ();
3899
3900 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3901 target_can_async_p () ? TARGET_WNOHANG : 0);
3902
3903 if (debug_infrun)
3904 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3905
3906 /* If an error happens while handling the event, propagate GDB's
3907 knowledge of the executing state to the frontend/user running
3908 state. */
3909 if (!target_is_non_stop_p ())
3910 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3911 else
3912 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3913
3914 /* Get executed before make_cleanup_restore_current_thread above to apply
3915 still for the thread which has thrown the exception. */
3916 make_bpstat_clear_actions_cleanup ();
3917
3918 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3919
3920 /* Now figure out what to do with the result of the result. */
3921 handle_inferior_event (ecs);
3922
3923 if (!ecs->wait_some_more)
3924 {
3925 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3926 int should_stop = 1;
3927 struct thread_info *thr = ecs->event_thread;
3928 int should_notify_stop = 1;
3929
3930 delete_just_stopped_threads_infrun_breakpoints ();
3931
3932 if (thr != NULL)
3933 {
3934 struct thread_fsm *thread_fsm = thr->thread_fsm;
3935
3936 if (thread_fsm != NULL)
3937 should_stop = thread_fsm_should_stop (thread_fsm);
3938 }
3939
3940 if (!should_stop)
3941 {
3942 keep_going (ecs);
3943 }
3944 else
3945 {
3946 clean_up_just_stopped_threads_fsms (ecs);
3947
3948 if (thr != NULL && thr->thread_fsm != NULL)
3949 {
3950 should_notify_stop
3951 = thread_fsm_should_notify_stop (thr->thread_fsm);
3952 }
3953
3954 if (should_notify_stop)
3955 {
3956 int proceeded = 0;
3957
3958 /* We may not find an inferior if this was a process exit. */
3959 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3960 proceeded = normal_stop ();
3961
3962 if (!proceeded)
3963 {
3964 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3965 cmd_done = 1;
3966 }
3967 }
3968 }
3969 }
3970
3971 /* No error, don't finish the thread states yet. */
3972 discard_cleanups (ts_old_chain);
3973
3974 /* Revert thread and frame. */
3975 do_cleanups (old_chain);
3976
3977 /* If the inferior was in sync execution mode, and now isn't,
3978 restore the prompt (a synchronous execution command has finished,
3979 and we're ready for input). */
3980 if (interpreter_async && was_sync && !sync_execution)
3981 observer_notify_sync_execution_done ();
3982
3983 if (cmd_done
3984 && !was_sync
3985 && exec_done_display_p
3986 && (ptid_equal (inferior_ptid, null_ptid)
3987 || !is_running (inferior_ptid)))
3988 printf_unfiltered (_("completed.\n"));
3989 }
3990
3991 /* Record the frame and location we're currently stepping through. */
3992 void
3993 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3994 {
3995 struct thread_info *tp = inferior_thread ();
3996
3997 tp->control.step_frame_id = get_frame_id (frame);
3998 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3999
4000 tp->current_symtab = sal.symtab;
4001 tp->current_line = sal.line;
4002 }
4003
4004 /* Clear context switchable stepping state. */
4005
4006 void
4007 init_thread_stepping_state (struct thread_info *tss)
4008 {
4009 tss->stepped_breakpoint = 0;
4010 tss->stepping_over_breakpoint = 0;
4011 tss->stepping_over_watchpoint = 0;
4012 tss->step_after_step_resume_breakpoint = 0;
4013 }
4014
4015 /* Set the cached copy of the last ptid/waitstatus. */
4016
4017 void
4018 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4019 {
4020 target_last_wait_ptid = ptid;
4021 target_last_waitstatus = status;
4022 }
4023
4024 /* Return the cached copy of the last pid/waitstatus returned by
4025 target_wait()/deprecated_target_wait_hook(). The data is actually
4026 cached by handle_inferior_event(), which gets called immediately
4027 after target_wait()/deprecated_target_wait_hook(). */
4028
4029 void
4030 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4031 {
4032 *ptidp = target_last_wait_ptid;
4033 *status = target_last_waitstatus;
4034 }
4035
4036 void
4037 nullify_last_target_wait_ptid (void)
4038 {
4039 target_last_wait_ptid = minus_one_ptid;
4040 }
4041
4042 /* Switch thread contexts. */
4043
4044 static void
4045 context_switch (ptid_t ptid)
4046 {
4047 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4048 {
4049 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4050 target_pid_to_str (inferior_ptid));
4051 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4052 target_pid_to_str (ptid));
4053 }
4054
4055 switch_to_thread (ptid);
4056 }
4057
4058 /* If the target can't tell whether we've hit breakpoints
4059 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4060 check whether that could have been caused by a breakpoint. If so,
4061 adjust the PC, per gdbarch_decr_pc_after_break. */
4062
4063 static void
4064 adjust_pc_after_break (struct thread_info *thread,
4065 struct target_waitstatus *ws)
4066 {
4067 struct regcache *regcache;
4068 struct gdbarch *gdbarch;
4069 struct address_space *aspace;
4070 CORE_ADDR breakpoint_pc, decr_pc;
4071
4072 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4073 we aren't, just return.
4074
4075 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4076 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4077 implemented by software breakpoints should be handled through the normal
4078 breakpoint layer.
4079
4080 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4081 different signals (SIGILL or SIGEMT for instance), but it is less
4082 clear where the PC is pointing afterwards. It may not match
4083 gdbarch_decr_pc_after_break. I don't know any specific target that
4084 generates these signals at breakpoints (the code has been in GDB since at
4085 least 1992) so I can not guess how to handle them here.
4086
4087 In earlier versions of GDB, a target with
4088 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4089 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4090 target with both of these set in GDB history, and it seems unlikely to be
4091 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4092
4093 if (ws->kind != TARGET_WAITKIND_STOPPED)
4094 return;
4095
4096 if (ws->value.sig != GDB_SIGNAL_TRAP)
4097 return;
4098
4099 /* In reverse execution, when a breakpoint is hit, the instruction
4100 under it has already been de-executed. The reported PC always
4101 points at the breakpoint address, so adjusting it further would
4102 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4103 architecture:
4104
4105 B1 0x08000000 : INSN1
4106 B2 0x08000001 : INSN2
4107 0x08000002 : INSN3
4108 PC -> 0x08000003 : INSN4
4109
4110 Say you're stopped at 0x08000003 as above. Reverse continuing
4111 from that point should hit B2 as below. Reading the PC when the
4112 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4113 been de-executed already.
4114
4115 B1 0x08000000 : INSN1
4116 B2 PC -> 0x08000001 : INSN2
4117 0x08000002 : INSN3
4118 0x08000003 : INSN4
4119
4120 We can't apply the same logic as for forward execution, because
4121 we would wrongly adjust the PC to 0x08000000, since there's a
4122 breakpoint at PC - 1. We'd then report a hit on B1, although
4123 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4124 behaviour. */
4125 if (execution_direction == EXEC_REVERSE)
4126 return;
4127
4128 /* If the target can tell whether the thread hit a SW breakpoint,
4129 trust it. Targets that can tell also adjust the PC
4130 themselves. */
4131 if (target_supports_stopped_by_sw_breakpoint ())
4132 return;
4133
4134 /* Note that relying on whether a breakpoint is planted in memory to
4135 determine this can fail. E.g,. the breakpoint could have been
4136 removed since. Or the thread could have been told to step an
4137 instruction the size of a breakpoint instruction, and only
4138 _after_ was a breakpoint inserted at its address. */
4139
4140 /* If this target does not decrement the PC after breakpoints, then
4141 we have nothing to do. */
4142 regcache = get_thread_regcache (thread->ptid);
4143 gdbarch = get_regcache_arch (regcache);
4144
4145 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4146 if (decr_pc == 0)
4147 return;
4148
4149 aspace = get_regcache_aspace (regcache);
4150
4151 /* Find the location where (if we've hit a breakpoint) the
4152 breakpoint would be. */
4153 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4154
4155 /* If the target can't tell whether a software breakpoint triggered,
4156 fallback to figuring it out based on breakpoints we think were
4157 inserted in the target, and on whether the thread was stepped or
4158 continued. */
4159
4160 /* Check whether there actually is a software breakpoint inserted at
4161 that location.
4162
4163 If in non-stop mode, a race condition is possible where we've
4164 removed a breakpoint, but stop events for that breakpoint were
4165 already queued and arrive later. To suppress those spurious
4166 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4167 and retire them after a number of stop events are reported. Note
4168 this is an heuristic and can thus get confused. The real fix is
4169 to get the "stopped by SW BP and needs adjustment" info out of
4170 the target/kernel (and thus never reach here; see above). */
4171 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4172 || (target_is_non_stop_p ()
4173 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4174 {
4175 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4176
4177 if (record_full_is_used ())
4178 record_full_gdb_operation_disable_set ();
4179
4180 /* When using hardware single-step, a SIGTRAP is reported for both
4181 a completed single-step and a software breakpoint. Need to
4182 differentiate between the two, as the latter needs adjusting
4183 but the former does not.
4184
4185 The SIGTRAP can be due to a completed hardware single-step only if
4186 - we didn't insert software single-step breakpoints
4187 - this thread is currently being stepped
4188
4189 If any of these events did not occur, we must have stopped due
4190 to hitting a software breakpoint, and have to back up to the
4191 breakpoint address.
4192
4193 As a special case, we could have hardware single-stepped a
4194 software breakpoint. In this case (prev_pc == breakpoint_pc),
4195 we also need to back up to the breakpoint address. */
4196
4197 if (thread_has_single_step_breakpoints_set (thread)
4198 || !currently_stepping (thread)
4199 || (thread->stepped_breakpoint
4200 && thread->prev_pc == breakpoint_pc))
4201 regcache_write_pc (regcache, breakpoint_pc);
4202
4203 do_cleanups (old_cleanups);
4204 }
4205 }
4206
4207 static int
4208 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4209 {
4210 for (frame = get_prev_frame (frame);
4211 frame != NULL;
4212 frame = get_prev_frame (frame))
4213 {
4214 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4215 return 1;
4216 if (get_frame_type (frame) != INLINE_FRAME)
4217 break;
4218 }
4219
4220 return 0;
4221 }
4222
4223 /* Auxiliary function that handles syscall entry/return events.
4224 It returns 1 if the inferior should keep going (and GDB
4225 should ignore the event), or 0 if the event deserves to be
4226 processed. */
4227
4228 static int
4229 handle_syscall_event (struct execution_control_state *ecs)
4230 {
4231 struct regcache *regcache;
4232 int syscall_number;
4233
4234 if (!ptid_equal (ecs->ptid, inferior_ptid))
4235 context_switch (ecs->ptid);
4236
4237 regcache = get_thread_regcache (ecs->ptid);
4238 syscall_number = ecs->ws.value.syscall_number;
4239 stop_pc = regcache_read_pc (regcache);
4240
4241 if (catch_syscall_enabled () > 0
4242 && catching_syscall_number (syscall_number) > 0)
4243 {
4244 if (debug_infrun)
4245 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4246 syscall_number);
4247
4248 ecs->event_thread->control.stop_bpstat
4249 = bpstat_stop_status (get_regcache_aspace (regcache),
4250 stop_pc, ecs->ptid, &ecs->ws);
4251
4252 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4253 {
4254 /* Catchpoint hit. */
4255 return 0;
4256 }
4257 }
4258
4259 /* If no catchpoint triggered for this, then keep going. */
4260 keep_going (ecs);
4261 return 1;
4262 }
4263
4264 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4265
4266 static void
4267 fill_in_stop_func (struct gdbarch *gdbarch,
4268 struct execution_control_state *ecs)
4269 {
4270 if (!ecs->stop_func_filled_in)
4271 {
4272 /* Don't care about return value; stop_func_start and stop_func_name
4273 will both be 0 if it doesn't work. */
4274 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4275 &ecs->stop_func_start, &ecs->stop_func_end);
4276 ecs->stop_func_start
4277 += gdbarch_deprecated_function_start_offset (gdbarch);
4278
4279 if (gdbarch_skip_entrypoint_p (gdbarch))
4280 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4281 ecs->stop_func_start);
4282
4283 ecs->stop_func_filled_in = 1;
4284 }
4285 }
4286
4287
4288 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4289
4290 static enum stop_kind
4291 get_inferior_stop_soon (ptid_t ptid)
4292 {
4293 struct inferior *inf = find_inferior_ptid (ptid);
4294
4295 gdb_assert (inf != NULL);
4296 return inf->control.stop_soon;
4297 }
4298
4299 /* Wait for one event. Store the resulting waitstatus in WS, and
4300 return the event ptid. */
4301
4302 static ptid_t
4303 wait_one (struct target_waitstatus *ws)
4304 {
4305 ptid_t event_ptid;
4306 ptid_t wait_ptid = minus_one_ptid;
4307
4308 overlay_cache_invalid = 1;
4309
4310 /* Flush target cache before starting to handle each event.
4311 Target was running and cache could be stale. This is just a
4312 heuristic. Running threads may modify target memory, but we
4313 don't get any event. */
4314 target_dcache_invalidate ();
4315
4316 if (deprecated_target_wait_hook)
4317 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4318 else
4319 event_ptid = target_wait (wait_ptid, ws, 0);
4320
4321 if (debug_infrun)
4322 print_target_wait_results (wait_ptid, event_ptid, ws);
4323
4324 return event_ptid;
4325 }
4326
4327 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4328 instead of the current thread. */
4329 #define THREAD_STOPPED_BY(REASON) \
4330 static int \
4331 thread_stopped_by_ ## REASON (ptid_t ptid) \
4332 { \
4333 struct cleanup *old_chain; \
4334 int res; \
4335 \
4336 old_chain = save_inferior_ptid (); \
4337 inferior_ptid = ptid; \
4338 \
4339 res = target_stopped_by_ ## REASON (); \
4340 \
4341 do_cleanups (old_chain); \
4342 \
4343 return res; \
4344 }
4345
4346 /* Generate thread_stopped_by_watchpoint. */
4347 THREAD_STOPPED_BY (watchpoint)
4348 /* Generate thread_stopped_by_sw_breakpoint. */
4349 THREAD_STOPPED_BY (sw_breakpoint)
4350 /* Generate thread_stopped_by_hw_breakpoint. */
4351 THREAD_STOPPED_BY (hw_breakpoint)
4352
4353 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4354
4355 static void
4356 switch_to_thread_cleanup (void *ptid_p)
4357 {
4358 ptid_t ptid = *(ptid_t *) ptid_p;
4359
4360 switch_to_thread (ptid);
4361 }
4362
4363 /* Save the thread's event and stop reason to process it later. */
4364
4365 static void
4366 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4367 {
4368 struct regcache *regcache;
4369 struct address_space *aspace;
4370
4371 if (debug_infrun)
4372 {
4373 char *statstr;
4374
4375 statstr = target_waitstatus_to_string (ws);
4376 fprintf_unfiltered (gdb_stdlog,
4377 "infrun: saving status %s for %d.%ld.%ld\n",
4378 statstr,
4379 ptid_get_pid (tp->ptid),
4380 ptid_get_lwp (tp->ptid),
4381 ptid_get_tid (tp->ptid));
4382 xfree (statstr);
4383 }
4384
4385 /* Record for later. */
4386 tp->suspend.waitstatus = *ws;
4387 tp->suspend.waitstatus_pending_p = 1;
4388
4389 regcache = get_thread_regcache (tp->ptid);
4390 aspace = get_regcache_aspace (regcache);
4391
4392 if (ws->kind == TARGET_WAITKIND_STOPPED
4393 && ws->value.sig == GDB_SIGNAL_TRAP)
4394 {
4395 CORE_ADDR pc = regcache_read_pc (regcache);
4396
4397 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4398
4399 if (thread_stopped_by_watchpoint (tp->ptid))
4400 {
4401 tp->suspend.stop_reason
4402 = TARGET_STOPPED_BY_WATCHPOINT;
4403 }
4404 else if (target_supports_stopped_by_sw_breakpoint ()
4405 && thread_stopped_by_sw_breakpoint (tp->ptid))
4406 {
4407 tp->suspend.stop_reason
4408 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4409 }
4410 else if (target_supports_stopped_by_hw_breakpoint ()
4411 && thread_stopped_by_hw_breakpoint (tp->ptid))
4412 {
4413 tp->suspend.stop_reason
4414 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4415 }
4416 else if (!target_supports_stopped_by_hw_breakpoint ()
4417 && hardware_breakpoint_inserted_here_p (aspace,
4418 pc))
4419 {
4420 tp->suspend.stop_reason
4421 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4422 }
4423 else if (!target_supports_stopped_by_sw_breakpoint ()
4424 && software_breakpoint_inserted_here_p (aspace,
4425 pc))
4426 {
4427 tp->suspend.stop_reason
4428 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4429 }
4430 else if (!thread_has_single_step_breakpoints_set (tp)
4431 && currently_stepping (tp))
4432 {
4433 tp->suspend.stop_reason
4434 = TARGET_STOPPED_BY_SINGLE_STEP;
4435 }
4436 }
4437 }
4438
4439 /* See infrun.h. */
4440
4441 void
4442 stop_all_threads (void)
4443 {
4444 /* We may need multiple passes to discover all threads. */
4445 int pass;
4446 int iterations = 0;
4447 ptid_t entry_ptid;
4448 struct cleanup *old_chain;
4449
4450 gdb_assert (target_is_non_stop_p ());
4451
4452 if (debug_infrun)
4453 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4454
4455 entry_ptid = inferior_ptid;
4456 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4457
4458 /* Request threads to stop, and then wait for the stops. Because
4459 threads we already know about can spawn more threads while we're
4460 trying to stop them, and we only learn about new threads when we
4461 update the thread list, do this in a loop, and keep iterating
4462 until two passes find no threads that need to be stopped. */
4463 for (pass = 0; pass < 2; pass++, iterations++)
4464 {
4465 if (debug_infrun)
4466 fprintf_unfiltered (gdb_stdlog,
4467 "infrun: stop_all_threads, pass=%d, "
4468 "iterations=%d\n", pass, iterations);
4469 while (1)
4470 {
4471 ptid_t event_ptid;
4472 struct target_waitstatus ws;
4473 int need_wait = 0;
4474 struct thread_info *t;
4475
4476 update_thread_list ();
4477
4478 /* Go through all threads looking for threads that we need
4479 to tell the target to stop. */
4480 ALL_NON_EXITED_THREADS (t)
4481 {
4482 if (t->executing)
4483 {
4484 /* If already stopping, don't request a stop again.
4485 We just haven't seen the notification yet. */
4486 if (!t->stop_requested)
4487 {
4488 if (debug_infrun)
4489 fprintf_unfiltered (gdb_stdlog,
4490 "infrun: %s executing, "
4491 "need stop\n",
4492 target_pid_to_str (t->ptid));
4493 target_stop (t->ptid);
4494 t->stop_requested = 1;
4495 }
4496 else
4497 {
4498 if (debug_infrun)
4499 fprintf_unfiltered (gdb_stdlog,
4500 "infrun: %s executing, "
4501 "already stopping\n",
4502 target_pid_to_str (t->ptid));
4503 }
4504
4505 if (t->stop_requested)
4506 need_wait = 1;
4507 }
4508 else
4509 {
4510 if (debug_infrun)
4511 fprintf_unfiltered (gdb_stdlog,
4512 "infrun: %s not executing\n",
4513 target_pid_to_str (t->ptid));
4514
4515 /* The thread may be not executing, but still be
4516 resumed with a pending status to process. */
4517 t->resumed = 0;
4518 }
4519 }
4520
4521 if (!need_wait)
4522 break;
4523
4524 /* If we find new threads on the second iteration, restart
4525 over. We want to see two iterations in a row with all
4526 threads stopped. */
4527 if (pass > 0)
4528 pass = -1;
4529
4530 event_ptid = wait_one (&ws);
4531 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4532 {
4533 /* All resumed threads exited. */
4534 }
4535 else if (ws.kind == TARGET_WAITKIND_EXITED
4536 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4537 {
4538 if (debug_infrun)
4539 {
4540 ptid_t ptid = pid_to_ptid (ws.value.integer);
4541
4542 fprintf_unfiltered (gdb_stdlog,
4543 "infrun: %s exited while "
4544 "stopping threads\n",
4545 target_pid_to_str (ptid));
4546 }
4547 }
4548 else
4549 {
4550 struct inferior *inf;
4551
4552 t = find_thread_ptid (event_ptid);
4553 if (t == NULL)
4554 t = add_thread (event_ptid);
4555
4556 t->stop_requested = 0;
4557 t->executing = 0;
4558 t->resumed = 0;
4559 t->control.may_range_step = 0;
4560
4561 /* This may be the first time we see the inferior report
4562 a stop. */
4563 inf = find_inferior_ptid (event_ptid);
4564 if (inf->needs_setup)
4565 {
4566 switch_to_thread_no_regs (t);
4567 setup_inferior (0);
4568 }
4569
4570 if (ws.kind == TARGET_WAITKIND_STOPPED
4571 && ws.value.sig == GDB_SIGNAL_0)
4572 {
4573 /* We caught the event that we intended to catch, so
4574 there's no event pending. */
4575 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4576 t->suspend.waitstatus_pending_p = 0;
4577
4578 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4579 {
4580 /* Add it back to the step-over queue. */
4581 if (debug_infrun)
4582 {
4583 fprintf_unfiltered (gdb_stdlog,
4584 "infrun: displaced-step of %s "
4585 "canceled: adding back to the "
4586 "step-over queue\n",
4587 target_pid_to_str (t->ptid));
4588 }
4589 t->control.trap_expected = 0;
4590 thread_step_over_chain_enqueue (t);
4591 }
4592 }
4593 else
4594 {
4595 enum gdb_signal sig;
4596 struct regcache *regcache;
4597 struct address_space *aspace;
4598
4599 if (debug_infrun)
4600 {
4601 char *statstr;
4602
4603 statstr = target_waitstatus_to_string (&ws);
4604 fprintf_unfiltered (gdb_stdlog,
4605 "infrun: target_wait %s, saving "
4606 "status for %d.%ld.%ld\n",
4607 statstr,
4608 ptid_get_pid (t->ptid),
4609 ptid_get_lwp (t->ptid),
4610 ptid_get_tid (t->ptid));
4611 xfree (statstr);
4612 }
4613
4614 /* Record for later. */
4615 save_waitstatus (t, &ws);
4616
4617 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4618 ? ws.value.sig : GDB_SIGNAL_0);
4619
4620 if (displaced_step_fixup (t->ptid, sig) < 0)
4621 {
4622 /* Add it back to the step-over queue. */
4623 t->control.trap_expected = 0;
4624 thread_step_over_chain_enqueue (t);
4625 }
4626
4627 regcache = get_thread_regcache (t->ptid);
4628 t->suspend.stop_pc = regcache_read_pc (regcache);
4629
4630 if (debug_infrun)
4631 {
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: saved stop_pc=%s for %s "
4634 "(currently_stepping=%d)\n",
4635 paddress (target_gdbarch (),
4636 t->suspend.stop_pc),
4637 target_pid_to_str (t->ptid),
4638 currently_stepping (t));
4639 }
4640 }
4641 }
4642 }
4643 }
4644
4645 do_cleanups (old_chain);
4646
4647 if (debug_infrun)
4648 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4649 }
4650
4651 /* Given an execution control state that has been freshly filled in by
4652 an event from the inferior, figure out what it means and take
4653 appropriate action.
4654
4655 The alternatives are:
4656
4657 1) stop_waiting and return; to really stop and return to the
4658 debugger.
4659
4660 2) keep_going and return; to wait for the next event (set
4661 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4662 once). */
4663
4664 static void
4665 handle_inferior_event_1 (struct execution_control_state *ecs)
4666 {
4667 enum stop_kind stop_soon;
4668
4669 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4670 {
4671 /* We had an event in the inferior, but we are not interested in
4672 handling it at this level. The lower layers have already
4673 done what needs to be done, if anything.
4674
4675 One of the possible circumstances for this is when the
4676 inferior produces output for the console. The inferior has
4677 not stopped, and we are ignoring the event. Another possible
4678 circumstance is any event which the lower level knows will be
4679 reported multiple times without an intervening resume. */
4680 if (debug_infrun)
4681 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4682 prepare_to_wait (ecs);
4683 return;
4684 }
4685
4686 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4687 && target_can_async_p () && !sync_execution)
4688 {
4689 /* There were no unwaited-for children left in the target, but,
4690 we're not synchronously waiting for events either. Just
4691 ignore. Otherwise, if we were running a synchronous
4692 execution command, we need to cancel it and give the user
4693 back the terminal. */
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog,
4696 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4697 prepare_to_wait (ecs);
4698 return;
4699 }
4700
4701 /* Cache the last pid/waitstatus. */
4702 set_last_target_status (ecs->ptid, ecs->ws);
4703
4704 /* Always clear state belonging to the previous time we stopped. */
4705 stop_stack_dummy = STOP_NONE;
4706
4707 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4708 {
4709 /* No unwaited-for children left. IOW, all resumed children
4710 have exited. */
4711 if (debug_infrun)
4712 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4713
4714 stop_print_frame = 0;
4715 stop_waiting (ecs);
4716 return;
4717 }
4718
4719 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4720 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4721 {
4722 ecs->event_thread = find_thread_ptid (ecs->ptid);
4723 /* If it's a new thread, add it to the thread database. */
4724 if (ecs->event_thread == NULL)
4725 ecs->event_thread = add_thread (ecs->ptid);
4726
4727 /* Disable range stepping. If the next step request could use a
4728 range, this will be end up re-enabled then. */
4729 ecs->event_thread->control.may_range_step = 0;
4730 }
4731
4732 /* Dependent on valid ECS->EVENT_THREAD. */
4733 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4734
4735 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4736 reinit_frame_cache ();
4737
4738 breakpoint_retire_moribund ();
4739
4740 /* First, distinguish signals caused by the debugger from signals
4741 that have to do with the program's own actions. Note that
4742 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4743 on the operating system version. Here we detect when a SIGILL or
4744 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4745 something similar for SIGSEGV, since a SIGSEGV will be generated
4746 when we're trying to execute a breakpoint instruction on a
4747 non-executable stack. This happens for call dummy breakpoints
4748 for architectures like SPARC that place call dummies on the
4749 stack. */
4750 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4751 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4752 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4753 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4754 {
4755 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4756
4757 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4758 regcache_read_pc (regcache)))
4759 {
4760 if (debug_infrun)
4761 fprintf_unfiltered (gdb_stdlog,
4762 "infrun: Treating signal as SIGTRAP\n");
4763 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4764 }
4765 }
4766
4767 /* Mark the non-executing threads accordingly. In all-stop, all
4768 threads of all processes are stopped when we get any event
4769 reported. In non-stop mode, only the event thread stops. */
4770 {
4771 ptid_t mark_ptid;
4772
4773 if (!target_is_non_stop_p ())
4774 mark_ptid = minus_one_ptid;
4775 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4776 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4777 {
4778 /* If we're handling a process exit in non-stop mode, even
4779 though threads haven't been deleted yet, one would think
4780 that there is nothing to do, as threads of the dead process
4781 will be soon deleted, and threads of any other process were
4782 left running. However, on some targets, threads survive a
4783 process exit event. E.g., for the "checkpoint" command,
4784 when the current checkpoint/fork exits, linux-fork.c
4785 automatically switches to another fork from within
4786 target_mourn_inferior, by associating the same
4787 inferior/thread to another fork. We haven't mourned yet at
4788 this point, but we must mark any threads left in the
4789 process as not-executing so that finish_thread_state marks
4790 them stopped (in the user's perspective) if/when we present
4791 the stop to the user. */
4792 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4793 }
4794 else
4795 mark_ptid = ecs->ptid;
4796
4797 set_executing (mark_ptid, 0);
4798
4799 /* Likewise the resumed flag. */
4800 set_resumed (mark_ptid, 0);
4801 }
4802
4803 switch (ecs->ws.kind)
4804 {
4805 case TARGET_WAITKIND_LOADED:
4806 if (debug_infrun)
4807 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4808 if (!ptid_equal (ecs->ptid, inferior_ptid))
4809 context_switch (ecs->ptid);
4810 /* Ignore gracefully during startup of the inferior, as it might
4811 be the shell which has just loaded some objects, otherwise
4812 add the symbols for the newly loaded objects. Also ignore at
4813 the beginning of an attach or remote session; we will query
4814 the full list of libraries once the connection is
4815 established. */
4816
4817 stop_soon = get_inferior_stop_soon (ecs->ptid);
4818 if (stop_soon == NO_STOP_QUIETLY)
4819 {
4820 struct regcache *regcache;
4821
4822 regcache = get_thread_regcache (ecs->ptid);
4823
4824 handle_solib_event ();
4825
4826 ecs->event_thread->control.stop_bpstat
4827 = bpstat_stop_status (get_regcache_aspace (regcache),
4828 stop_pc, ecs->ptid, &ecs->ws);
4829
4830 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4831 {
4832 /* A catchpoint triggered. */
4833 process_event_stop_test (ecs);
4834 return;
4835 }
4836
4837 /* If requested, stop when the dynamic linker notifies
4838 gdb of events. This allows the user to get control
4839 and place breakpoints in initializer routines for
4840 dynamically loaded objects (among other things). */
4841 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4842 if (stop_on_solib_events)
4843 {
4844 /* Make sure we print "Stopped due to solib-event" in
4845 normal_stop. */
4846 stop_print_frame = 1;
4847
4848 stop_waiting (ecs);
4849 return;
4850 }
4851 }
4852
4853 /* If we are skipping through a shell, or through shared library
4854 loading that we aren't interested in, resume the program. If
4855 we're running the program normally, also resume. */
4856 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4857 {
4858 /* Loading of shared libraries might have changed breakpoint
4859 addresses. Make sure new breakpoints are inserted. */
4860 if (stop_soon == NO_STOP_QUIETLY)
4861 insert_breakpoints ();
4862 resume (GDB_SIGNAL_0);
4863 prepare_to_wait (ecs);
4864 return;
4865 }
4866
4867 /* But stop if we're attaching or setting up a remote
4868 connection. */
4869 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4870 || stop_soon == STOP_QUIETLY_REMOTE)
4871 {
4872 if (debug_infrun)
4873 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4874 stop_waiting (ecs);
4875 return;
4876 }
4877
4878 internal_error (__FILE__, __LINE__,
4879 _("unhandled stop_soon: %d"), (int) stop_soon);
4880
4881 case TARGET_WAITKIND_SPURIOUS:
4882 if (debug_infrun)
4883 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4884 if (!ptid_equal (ecs->ptid, inferior_ptid))
4885 context_switch (ecs->ptid);
4886 resume (GDB_SIGNAL_0);
4887 prepare_to_wait (ecs);
4888 return;
4889
4890 case TARGET_WAITKIND_EXITED:
4891 case TARGET_WAITKIND_SIGNALLED:
4892 if (debug_infrun)
4893 {
4894 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4895 fprintf_unfiltered (gdb_stdlog,
4896 "infrun: TARGET_WAITKIND_EXITED\n");
4897 else
4898 fprintf_unfiltered (gdb_stdlog,
4899 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4900 }
4901
4902 inferior_ptid = ecs->ptid;
4903 set_current_inferior (find_inferior_ptid (ecs->ptid));
4904 set_current_program_space (current_inferior ()->pspace);
4905 handle_vfork_child_exec_or_exit (0);
4906 target_terminal_ours (); /* Must do this before mourn anyway. */
4907
4908 /* Clearing any previous state of convenience variables. */
4909 clear_exit_convenience_vars ();
4910
4911 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4912 {
4913 /* Record the exit code in the convenience variable $_exitcode, so
4914 that the user can inspect this again later. */
4915 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4916 (LONGEST) ecs->ws.value.integer);
4917
4918 /* Also record this in the inferior itself. */
4919 current_inferior ()->has_exit_code = 1;
4920 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4921
4922 /* Support the --return-child-result option. */
4923 return_child_result_value = ecs->ws.value.integer;
4924
4925 observer_notify_exited (ecs->ws.value.integer);
4926 }
4927 else
4928 {
4929 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4930 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4931
4932 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4933 {
4934 /* Set the value of the internal variable $_exitsignal,
4935 which holds the signal uncaught by the inferior. */
4936 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4937 gdbarch_gdb_signal_to_target (gdbarch,
4938 ecs->ws.value.sig));
4939 }
4940 else
4941 {
4942 /* We don't have access to the target's method used for
4943 converting between signal numbers (GDB's internal
4944 representation <-> target's representation).
4945 Therefore, we cannot do a good job at displaying this
4946 information to the user. It's better to just warn
4947 her about it (if infrun debugging is enabled), and
4948 give up. */
4949 if (debug_infrun)
4950 fprintf_filtered (gdb_stdlog, _("\
4951 Cannot fill $_exitsignal with the correct signal number.\n"));
4952 }
4953
4954 observer_notify_signal_exited (ecs->ws.value.sig);
4955 }
4956
4957 gdb_flush (gdb_stdout);
4958 target_mourn_inferior ();
4959 stop_print_frame = 0;
4960 stop_waiting (ecs);
4961 return;
4962
4963 /* The following are the only cases in which we keep going;
4964 the above cases end in a continue or goto. */
4965 case TARGET_WAITKIND_FORKED:
4966 case TARGET_WAITKIND_VFORKED:
4967 if (debug_infrun)
4968 {
4969 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4970 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4971 else
4972 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4973 }
4974
4975 /* Check whether the inferior is displaced stepping. */
4976 {
4977 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4978 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4979
4980 /* If checking displaced stepping is supported, and thread
4981 ecs->ptid is displaced stepping. */
4982 if (displaced_step_in_progress_thread (ecs->ptid))
4983 {
4984 struct inferior *parent_inf
4985 = find_inferior_ptid (ecs->ptid);
4986 struct regcache *child_regcache;
4987 CORE_ADDR parent_pc;
4988
4989 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4990 indicating that the displaced stepping of syscall instruction
4991 has been done. Perform cleanup for parent process here. Note
4992 that this operation also cleans up the child process for vfork,
4993 because their pages are shared. */
4994 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
4995 /* Start a new step-over in another thread if there's one
4996 that needs it. */
4997 start_step_over ();
4998
4999 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5000 {
5001 struct displaced_step_inferior_state *displaced
5002 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5003
5004 /* Restore scratch pad for child process. */
5005 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5006 }
5007
5008 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5009 the child's PC is also within the scratchpad. Set the child's PC
5010 to the parent's PC value, which has already been fixed up.
5011 FIXME: we use the parent's aspace here, although we're touching
5012 the child, because the child hasn't been added to the inferior
5013 list yet at this point. */
5014
5015 child_regcache
5016 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5017 gdbarch,
5018 parent_inf->aspace);
5019 /* Read PC value of parent process. */
5020 parent_pc = regcache_read_pc (regcache);
5021
5022 if (debug_displaced)
5023 fprintf_unfiltered (gdb_stdlog,
5024 "displaced: write child pc from %s to %s\n",
5025 paddress (gdbarch,
5026 regcache_read_pc (child_regcache)),
5027 paddress (gdbarch, parent_pc));
5028
5029 regcache_write_pc (child_regcache, parent_pc);
5030 }
5031 }
5032
5033 if (!ptid_equal (ecs->ptid, inferior_ptid))
5034 context_switch (ecs->ptid);
5035
5036 /* Immediately detach breakpoints from the child before there's
5037 any chance of letting the user delete breakpoints from the
5038 breakpoint lists. If we don't do this early, it's easy to
5039 leave left over traps in the child, vis: "break foo; catch
5040 fork; c; <fork>; del; c; <child calls foo>". We only follow
5041 the fork on the last `continue', and by that time the
5042 breakpoint at "foo" is long gone from the breakpoint table.
5043 If we vforked, then we don't need to unpatch here, since both
5044 parent and child are sharing the same memory pages; we'll
5045 need to unpatch at follow/detach time instead to be certain
5046 that new breakpoints added between catchpoint hit time and
5047 vfork follow are detached. */
5048 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5049 {
5050 /* This won't actually modify the breakpoint list, but will
5051 physically remove the breakpoints from the child. */
5052 detach_breakpoints (ecs->ws.value.related_pid);
5053 }
5054
5055 delete_just_stopped_threads_single_step_breakpoints ();
5056
5057 /* In case the event is caught by a catchpoint, remember that
5058 the event is to be followed at the next resume of the thread,
5059 and not immediately. */
5060 ecs->event_thread->pending_follow = ecs->ws;
5061
5062 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5063
5064 ecs->event_thread->control.stop_bpstat
5065 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5066 stop_pc, ecs->ptid, &ecs->ws);
5067
5068 /* If no catchpoint triggered for this, then keep going. Note
5069 that we're interested in knowing the bpstat actually causes a
5070 stop, not just if it may explain the signal. Software
5071 watchpoints, for example, always appear in the bpstat. */
5072 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5073 {
5074 ptid_t parent;
5075 ptid_t child;
5076 int should_resume;
5077 int follow_child
5078 = (follow_fork_mode_string == follow_fork_mode_child);
5079
5080 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5081
5082 should_resume = follow_fork ();
5083
5084 parent = ecs->ptid;
5085 child = ecs->ws.value.related_pid;
5086
5087 /* In non-stop mode, also resume the other branch. */
5088 if (!detach_fork && (non_stop
5089 || (sched_multi && target_is_non_stop_p ())))
5090 {
5091 if (follow_child)
5092 switch_to_thread (parent);
5093 else
5094 switch_to_thread (child);
5095
5096 ecs->event_thread = inferior_thread ();
5097 ecs->ptid = inferior_ptid;
5098 keep_going (ecs);
5099 }
5100
5101 if (follow_child)
5102 switch_to_thread (child);
5103 else
5104 switch_to_thread (parent);
5105
5106 ecs->event_thread = inferior_thread ();
5107 ecs->ptid = inferior_ptid;
5108
5109 if (should_resume)
5110 keep_going (ecs);
5111 else
5112 stop_waiting (ecs);
5113 return;
5114 }
5115 process_event_stop_test (ecs);
5116 return;
5117
5118 case TARGET_WAITKIND_VFORK_DONE:
5119 /* Done with the shared memory region. Re-insert breakpoints in
5120 the parent, and keep going. */
5121
5122 if (debug_infrun)
5123 fprintf_unfiltered (gdb_stdlog,
5124 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5125
5126 if (!ptid_equal (ecs->ptid, inferior_ptid))
5127 context_switch (ecs->ptid);
5128
5129 current_inferior ()->waiting_for_vfork_done = 0;
5130 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5131 /* This also takes care of reinserting breakpoints in the
5132 previously locked inferior. */
5133 keep_going (ecs);
5134 return;
5135
5136 case TARGET_WAITKIND_EXECD:
5137 if (debug_infrun)
5138 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5139
5140 if (!ptid_equal (ecs->ptid, inferior_ptid))
5141 context_switch (ecs->ptid);
5142
5143 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5144
5145 /* Do whatever is necessary to the parent branch of the vfork. */
5146 handle_vfork_child_exec_or_exit (1);
5147
5148 /* This causes the eventpoints and symbol table to be reset.
5149 Must do this now, before trying to determine whether to
5150 stop. */
5151 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5152
5153 /* In follow_exec we may have deleted the original thread and
5154 created a new one. Make sure that the event thread is the
5155 execd thread for that case (this is a nop otherwise). */
5156 ecs->event_thread = inferior_thread ();
5157
5158 ecs->event_thread->control.stop_bpstat
5159 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5160 stop_pc, ecs->ptid, &ecs->ws);
5161
5162 /* Note that this may be referenced from inside
5163 bpstat_stop_status above, through inferior_has_execd. */
5164 xfree (ecs->ws.value.execd_pathname);
5165 ecs->ws.value.execd_pathname = NULL;
5166
5167 /* If no catchpoint triggered for this, then keep going. */
5168 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5169 {
5170 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5171 keep_going (ecs);
5172 return;
5173 }
5174 process_event_stop_test (ecs);
5175 return;
5176
5177 /* Be careful not to try to gather much state about a thread
5178 that's in a syscall. It's frequently a losing proposition. */
5179 case TARGET_WAITKIND_SYSCALL_ENTRY:
5180 if (debug_infrun)
5181 fprintf_unfiltered (gdb_stdlog,
5182 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5183 /* Getting the current syscall number. */
5184 if (handle_syscall_event (ecs) == 0)
5185 process_event_stop_test (ecs);
5186 return;
5187
5188 /* Before examining the threads further, step this thread to
5189 get it entirely out of the syscall. (We get notice of the
5190 event when the thread is just on the verge of exiting a
5191 syscall. Stepping one instruction seems to get it back
5192 into user code.) */
5193 case TARGET_WAITKIND_SYSCALL_RETURN:
5194 if (debug_infrun)
5195 fprintf_unfiltered (gdb_stdlog,
5196 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5197 if (handle_syscall_event (ecs) == 0)
5198 process_event_stop_test (ecs);
5199 return;
5200
5201 case TARGET_WAITKIND_STOPPED:
5202 if (debug_infrun)
5203 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5204 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5205 handle_signal_stop (ecs);
5206 return;
5207
5208 case TARGET_WAITKIND_NO_HISTORY:
5209 if (debug_infrun)
5210 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5211 /* Reverse execution: target ran out of history info. */
5212
5213 /* Switch to the stopped thread. */
5214 if (!ptid_equal (ecs->ptid, inferior_ptid))
5215 context_switch (ecs->ptid);
5216 if (debug_infrun)
5217 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5218
5219 delete_just_stopped_threads_single_step_breakpoints ();
5220 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5221 observer_notify_no_history ();
5222 stop_waiting (ecs);
5223 return;
5224 }
5225 }
5226
5227 /* A wrapper around handle_inferior_event_1, which also makes sure
5228 that all temporary struct value objects that were created during
5229 the handling of the event get deleted at the end. */
5230
5231 static void
5232 handle_inferior_event (struct execution_control_state *ecs)
5233 {
5234 struct value *mark = value_mark ();
5235
5236 handle_inferior_event_1 (ecs);
5237 /* Purge all temporary values created during the event handling,
5238 as it could be a long time before we return to the command level
5239 where such values would otherwise be purged. */
5240 value_free_to_mark (mark);
5241 }
5242
5243 /* Restart threads back to what they were trying to do back when we
5244 paused them for an in-line step-over. The EVENT_THREAD thread is
5245 ignored. */
5246
5247 static void
5248 restart_threads (struct thread_info *event_thread)
5249 {
5250 struct thread_info *tp;
5251 struct thread_info *step_over = NULL;
5252
5253 /* In case the instruction just stepped spawned a new thread. */
5254 update_thread_list ();
5255
5256 ALL_NON_EXITED_THREADS (tp)
5257 {
5258 if (tp == event_thread)
5259 {
5260 if (debug_infrun)
5261 fprintf_unfiltered (gdb_stdlog,
5262 "infrun: restart threads: "
5263 "[%s] is event thread\n",
5264 target_pid_to_str (tp->ptid));
5265 continue;
5266 }
5267
5268 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5269 {
5270 if (debug_infrun)
5271 fprintf_unfiltered (gdb_stdlog,
5272 "infrun: restart threads: "
5273 "[%s] not meant to be running\n",
5274 target_pid_to_str (tp->ptid));
5275 continue;
5276 }
5277
5278 if (tp->resumed)
5279 {
5280 if (debug_infrun)
5281 fprintf_unfiltered (gdb_stdlog,
5282 "infrun: restart threads: [%s] resumed\n",
5283 target_pid_to_str (tp->ptid));
5284 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5285 continue;
5286 }
5287
5288 if (thread_is_in_step_over_chain (tp))
5289 {
5290 if (debug_infrun)
5291 fprintf_unfiltered (gdb_stdlog,
5292 "infrun: restart threads: "
5293 "[%s] needs step-over\n",
5294 target_pid_to_str (tp->ptid));
5295 gdb_assert (!tp->resumed);
5296 continue;
5297 }
5298
5299
5300 if (tp->suspend.waitstatus_pending_p)
5301 {
5302 if (debug_infrun)
5303 fprintf_unfiltered (gdb_stdlog,
5304 "infrun: restart threads: "
5305 "[%s] has pending status\n",
5306 target_pid_to_str (tp->ptid));
5307 tp->resumed = 1;
5308 continue;
5309 }
5310
5311 /* If some thread needs to start a step-over at this point, it
5312 should still be in the step-over queue, and thus skipped
5313 above. */
5314 if (thread_still_needs_step_over (tp))
5315 {
5316 internal_error (__FILE__, __LINE__,
5317 "thread [%s] needs a step-over, but not in "
5318 "step-over queue\n",
5319 target_pid_to_str (tp->ptid));
5320 }
5321
5322 if (currently_stepping (tp))
5323 {
5324 if (debug_infrun)
5325 fprintf_unfiltered (gdb_stdlog,
5326 "infrun: restart threads: [%s] was stepping\n",
5327 target_pid_to_str (tp->ptid));
5328 keep_going_stepped_thread (tp);
5329 }
5330 else
5331 {
5332 struct execution_control_state ecss;
5333 struct execution_control_state *ecs = &ecss;
5334
5335 if (debug_infrun)
5336 fprintf_unfiltered (gdb_stdlog,
5337 "infrun: restart threads: [%s] continuing\n",
5338 target_pid_to_str (tp->ptid));
5339 reset_ecs (ecs, tp);
5340 switch_to_thread (tp->ptid);
5341 keep_going_pass_signal (ecs);
5342 }
5343 }
5344 }
5345
5346 /* Callback for iterate_over_threads. Find a resumed thread that has
5347 a pending waitstatus. */
5348
5349 static int
5350 resumed_thread_with_pending_status (struct thread_info *tp,
5351 void *arg)
5352 {
5353 return (tp->resumed
5354 && tp->suspend.waitstatus_pending_p);
5355 }
5356
5357 /* Called when we get an event that may finish an in-line or
5358 out-of-line (displaced stepping) step-over started previously.
5359 Return true if the event is processed and we should go back to the
5360 event loop; false if the caller should continue processing the
5361 event. */
5362
5363 static int
5364 finish_step_over (struct execution_control_state *ecs)
5365 {
5366 int had_step_over_info;
5367
5368 displaced_step_fixup (ecs->ptid,
5369 ecs->event_thread->suspend.stop_signal);
5370
5371 had_step_over_info = step_over_info_valid_p ();
5372
5373 if (had_step_over_info)
5374 {
5375 /* If we're stepping over a breakpoint with all threads locked,
5376 then only the thread that was stepped should be reporting
5377 back an event. */
5378 gdb_assert (ecs->event_thread->control.trap_expected);
5379
5380 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5381 clear_step_over_info ();
5382 }
5383
5384 if (!target_is_non_stop_p ())
5385 return 0;
5386
5387 /* Start a new step-over in another thread if there's one that
5388 needs it. */
5389 start_step_over ();
5390
5391 /* If we were stepping over a breakpoint before, and haven't started
5392 a new in-line step-over sequence, then restart all other threads
5393 (except the event thread). We can't do this in all-stop, as then
5394 e.g., we wouldn't be able to issue any other remote packet until
5395 these other threads stop. */
5396 if (had_step_over_info && !step_over_info_valid_p ())
5397 {
5398 struct thread_info *pending;
5399
5400 /* If we only have threads with pending statuses, the restart
5401 below won't restart any thread and so nothing re-inserts the
5402 breakpoint we just stepped over. But we need it inserted
5403 when we later process the pending events, otherwise if
5404 another thread has a pending event for this breakpoint too,
5405 we'd discard its event (because the breakpoint that
5406 originally caused the event was no longer inserted). */
5407 context_switch (ecs->ptid);
5408 insert_breakpoints ();
5409
5410 restart_threads (ecs->event_thread);
5411
5412 /* If we have events pending, go through handle_inferior_event
5413 again, picking up a pending event at random. This avoids
5414 thread starvation. */
5415
5416 /* But not if we just stepped over a watchpoint in order to let
5417 the instruction execute so we can evaluate its expression.
5418 The set of watchpoints that triggered is recorded in the
5419 breakpoint objects themselves (see bp->watchpoint_triggered).
5420 If we processed another event first, that other event could
5421 clobber this info. */
5422 if (ecs->event_thread->stepping_over_watchpoint)
5423 return 0;
5424
5425 pending = iterate_over_threads (resumed_thread_with_pending_status,
5426 NULL);
5427 if (pending != NULL)
5428 {
5429 struct thread_info *tp = ecs->event_thread;
5430 struct regcache *regcache;
5431
5432 if (debug_infrun)
5433 {
5434 fprintf_unfiltered (gdb_stdlog,
5435 "infrun: found resumed threads with "
5436 "pending events, saving status\n");
5437 }
5438
5439 gdb_assert (pending != tp);
5440
5441 /* Record the event thread's event for later. */
5442 save_waitstatus (tp, &ecs->ws);
5443 /* This was cleared early, by handle_inferior_event. Set it
5444 so this pending event is considered by
5445 do_target_wait. */
5446 tp->resumed = 1;
5447
5448 gdb_assert (!tp->executing);
5449
5450 regcache = get_thread_regcache (tp->ptid);
5451 tp->suspend.stop_pc = regcache_read_pc (regcache);
5452
5453 if (debug_infrun)
5454 {
5455 fprintf_unfiltered (gdb_stdlog,
5456 "infrun: saved stop_pc=%s for %s "
5457 "(currently_stepping=%d)\n",
5458 paddress (target_gdbarch (),
5459 tp->suspend.stop_pc),
5460 target_pid_to_str (tp->ptid),
5461 currently_stepping (tp));
5462 }
5463
5464 /* This in-line step-over finished; clear this so we won't
5465 start a new one. This is what handle_signal_stop would
5466 do, if we returned false. */
5467 tp->stepping_over_breakpoint = 0;
5468
5469 /* Wake up the event loop again. */
5470 mark_async_event_handler (infrun_async_inferior_event_token);
5471
5472 prepare_to_wait (ecs);
5473 return 1;
5474 }
5475 }
5476
5477 return 0;
5478 }
5479
5480 /* Come here when the program has stopped with a signal. */
5481
5482 static void
5483 handle_signal_stop (struct execution_control_state *ecs)
5484 {
5485 struct frame_info *frame;
5486 struct gdbarch *gdbarch;
5487 int stopped_by_watchpoint;
5488 enum stop_kind stop_soon;
5489 int random_signal;
5490
5491 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5492
5493 /* Do we need to clean up the state of a thread that has
5494 completed a displaced single-step? (Doing so usually affects
5495 the PC, so do it here, before we set stop_pc.) */
5496 if (finish_step_over (ecs))
5497 return;
5498
5499 /* If we either finished a single-step or hit a breakpoint, but
5500 the user wanted this thread to be stopped, pretend we got a
5501 SIG0 (generic unsignaled stop). */
5502 if (ecs->event_thread->stop_requested
5503 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5504 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5505
5506 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5507
5508 if (debug_infrun)
5509 {
5510 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5511 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5512 struct cleanup *old_chain = save_inferior_ptid ();
5513
5514 inferior_ptid = ecs->ptid;
5515
5516 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5517 paddress (gdbarch, stop_pc));
5518 if (target_stopped_by_watchpoint ())
5519 {
5520 CORE_ADDR addr;
5521
5522 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5523
5524 if (target_stopped_data_address (&current_target, &addr))
5525 fprintf_unfiltered (gdb_stdlog,
5526 "infrun: stopped data address = %s\n",
5527 paddress (gdbarch, addr));
5528 else
5529 fprintf_unfiltered (gdb_stdlog,
5530 "infrun: (no data address available)\n");
5531 }
5532
5533 do_cleanups (old_chain);
5534 }
5535
5536 /* This is originated from start_remote(), start_inferior() and
5537 shared libraries hook functions. */
5538 stop_soon = get_inferior_stop_soon (ecs->ptid);
5539 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5540 {
5541 if (!ptid_equal (ecs->ptid, inferior_ptid))
5542 context_switch (ecs->ptid);
5543 if (debug_infrun)
5544 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5545 stop_print_frame = 1;
5546 stop_waiting (ecs);
5547 return;
5548 }
5549
5550 /* This originates from attach_command(). We need to overwrite
5551 the stop_signal here, because some kernels don't ignore a
5552 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5553 See more comments in inferior.h. On the other hand, if we
5554 get a non-SIGSTOP, report it to the user - assume the backend
5555 will handle the SIGSTOP if it should show up later.
5556
5557 Also consider that the attach is complete when we see a
5558 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5559 target extended-remote report it instead of a SIGSTOP
5560 (e.g. gdbserver). We already rely on SIGTRAP being our
5561 signal, so this is no exception.
5562
5563 Also consider that the attach is complete when we see a
5564 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5565 the target to stop all threads of the inferior, in case the
5566 low level attach operation doesn't stop them implicitly. If
5567 they weren't stopped implicitly, then the stub will report a
5568 GDB_SIGNAL_0, meaning: stopped for no particular reason
5569 other than GDB's request. */
5570 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5571 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5572 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5573 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5574 {
5575 stop_print_frame = 1;
5576 stop_waiting (ecs);
5577 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5578 return;
5579 }
5580
5581 /* See if something interesting happened to the non-current thread. If
5582 so, then switch to that thread. */
5583 if (!ptid_equal (ecs->ptid, inferior_ptid))
5584 {
5585 if (debug_infrun)
5586 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5587
5588 context_switch (ecs->ptid);
5589
5590 if (deprecated_context_hook)
5591 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
5592 }
5593
5594 /* At this point, get hold of the now-current thread's frame. */
5595 frame = get_current_frame ();
5596 gdbarch = get_frame_arch (frame);
5597
5598 /* Pull the single step breakpoints out of the target. */
5599 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5600 {
5601 struct regcache *regcache;
5602 struct address_space *aspace;
5603 CORE_ADDR pc;
5604
5605 regcache = get_thread_regcache (ecs->ptid);
5606 aspace = get_regcache_aspace (regcache);
5607 pc = regcache_read_pc (regcache);
5608
5609 /* However, before doing so, if this single-step breakpoint was
5610 actually for another thread, set this thread up for moving
5611 past it. */
5612 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5613 aspace, pc))
5614 {
5615 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5616 {
5617 if (debug_infrun)
5618 {
5619 fprintf_unfiltered (gdb_stdlog,
5620 "infrun: [%s] hit another thread's "
5621 "single-step breakpoint\n",
5622 target_pid_to_str (ecs->ptid));
5623 }
5624 ecs->hit_singlestep_breakpoint = 1;
5625 }
5626 }
5627 else
5628 {
5629 if (debug_infrun)
5630 {
5631 fprintf_unfiltered (gdb_stdlog,
5632 "infrun: [%s] hit its "
5633 "single-step breakpoint\n",
5634 target_pid_to_str (ecs->ptid));
5635 }
5636 }
5637 }
5638 delete_just_stopped_threads_single_step_breakpoints ();
5639
5640 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5641 && ecs->event_thread->control.trap_expected
5642 && ecs->event_thread->stepping_over_watchpoint)
5643 stopped_by_watchpoint = 0;
5644 else
5645 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5646
5647 /* If necessary, step over this watchpoint. We'll be back to display
5648 it in a moment. */
5649 if (stopped_by_watchpoint
5650 && (target_have_steppable_watchpoint
5651 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5652 {
5653 /* At this point, we are stopped at an instruction which has
5654 attempted to write to a piece of memory under control of
5655 a watchpoint. The instruction hasn't actually executed
5656 yet. If we were to evaluate the watchpoint expression
5657 now, we would get the old value, and therefore no change
5658 would seem to have occurred.
5659
5660 In order to make watchpoints work `right', we really need
5661 to complete the memory write, and then evaluate the
5662 watchpoint expression. We do this by single-stepping the
5663 target.
5664
5665 It may not be necessary to disable the watchpoint to step over
5666 it. For example, the PA can (with some kernel cooperation)
5667 single step over a watchpoint without disabling the watchpoint.
5668
5669 It is far more common to need to disable a watchpoint to step
5670 the inferior over it. If we have non-steppable watchpoints,
5671 we must disable the current watchpoint; it's simplest to
5672 disable all watchpoints.
5673
5674 Any breakpoint at PC must also be stepped over -- if there's
5675 one, it will have already triggered before the watchpoint
5676 triggered, and we either already reported it to the user, or
5677 it didn't cause a stop and we called keep_going. In either
5678 case, if there was a breakpoint at PC, we must be trying to
5679 step past it. */
5680 ecs->event_thread->stepping_over_watchpoint = 1;
5681 keep_going (ecs);
5682 return;
5683 }
5684
5685 ecs->event_thread->stepping_over_breakpoint = 0;
5686 ecs->event_thread->stepping_over_watchpoint = 0;
5687 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5688 ecs->event_thread->control.stop_step = 0;
5689 stop_print_frame = 1;
5690 stopped_by_random_signal = 0;
5691
5692 /* Hide inlined functions starting here, unless we just performed stepi or
5693 nexti. After stepi and nexti, always show the innermost frame (not any
5694 inline function call sites). */
5695 if (ecs->event_thread->control.step_range_end != 1)
5696 {
5697 struct address_space *aspace =
5698 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5699
5700 /* skip_inline_frames is expensive, so we avoid it if we can
5701 determine that the address is one where functions cannot have
5702 been inlined. This improves performance with inferiors that
5703 load a lot of shared libraries, because the solib event
5704 breakpoint is defined as the address of a function (i.e. not
5705 inline). Note that we have to check the previous PC as well
5706 as the current one to catch cases when we have just
5707 single-stepped off a breakpoint prior to reinstating it.
5708 Note that we're assuming that the code we single-step to is
5709 not inline, but that's not definitive: there's nothing
5710 preventing the event breakpoint function from containing
5711 inlined code, and the single-step ending up there. If the
5712 user had set a breakpoint on that inlined code, the missing
5713 skip_inline_frames call would break things. Fortunately
5714 that's an extremely unlikely scenario. */
5715 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5716 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5717 && ecs->event_thread->control.trap_expected
5718 && pc_at_non_inline_function (aspace,
5719 ecs->event_thread->prev_pc,
5720 &ecs->ws)))
5721 {
5722 skip_inline_frames (ecs->ptid);
5723
5724 /* Re-fetch current thread's frame in case that invalidated
5725 the frame cache. */
5726 frame = get_current_frame ();
5727 gdbarch = get_frame_arch (frame);
5728 }
5729 }
5730
5731 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5732 && ecs->event_thread->control.trap_expected
5733 && gdbarch_single_step_through_delay_p (gdbarch)
5734 && currently_stepping (ecs->event_thread))
5735 {
5736 /* We're trying to step off a breakpoint. Turns out that we're
5737 also on an instruction that needs to be stepped multiple
5738 times before it's been fully executing. E.g., architectures
5739 with a delay slot. It needs to be stepped twice, once for
5740 the instruction and once for the delay slot. */
5741 int step_through_delay
5742 = gdbarch_single_step_through_delay (gdbarch, frame);
5743
5744 if (debug_infrun && step_through_delay)
5745 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5746 if (ecs->event_thread->control.step_range_end == 0
5747 && step_through_delay)
5748 {
5749 /* The user issued a continue when stopped at a breakpoint.
5750 Set up for another trap and get out of here. */
5751 ecs->event_thread->stepping_over_breakpoint = 1;
5752 keep_going (ecs);
5753 return;
5754 }
5755 else if (step_through_delay)
5756 {
5757 /* The user issued a step when stopped at a breakpoint.
5758 Maybe we should stop, maybe we should not - the delay
5759 slot *might* correspond to a line of source. In any
5760 case, don't decide that here, just set
5761 ecs->stepping_over_breakpoint, making sure we
5762 single-step again before breakpoints are re-inserted. */
5763 ecs->event_thread->stepping_over_breakpoint = 1;
5764 }
5765 }
5766
5767 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5768 handles this event. */
5769 ecs->event_thread->control.stop_bpstat
5770 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5771 stop_pc, ecs->ptid, &ecs->ws);
5772
5773 /* Following in case break condition called a
5774 function. */
5775 stop_print_frame = 1;
5776
5777 /* This is where we handle "moribund" watchpoints. Unlike
5778 software breakpoints traps, hardware watchpoint traps are
5779 always distinguishable from random traps. If no high-level
5780 watchpoint is associated with the reported stop data address
5781 anymore, then the bpstat does not explain the signal ---
5782 simply make sure to ignore it if `stopped_by_watchpoint' is
5783 set. */
5784
5785 if (debug_infrun
5786 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5787 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5788 GDB_SIGNAL_TRAP)
5789 && stopped_by_watchpoint)
5790 fprintf_unfiltered (gdb_stdlog,
5791 "infrun: no user watchpoint explains "
5792 "watchpoint SIGTRAP, ignoring\n");
5793
5794 /* NOTE: cagney/2003-03-29: These checks for a random signal
5795 at one stage in the past included checks for an inferior
5796 function call's call dummy's return breakpoint. The original
5797 comment, that went with the test, read:
5798
5799 ``End of a stack dummy. Some systems (e.g. Sony news) give
5800 another signal besides SIGTRAP, so check here as well as
5801 above.''
5802
5803 If someone ever tries to get call dummys on a
5804 non-executable stack to work (where the target would stop
5805 with something like a SIGSEGV), then those tests might need
5806 to be re-instated. Given, however, that the tests were only
5807 enabled when momentary breakpoints were not being used, I
5808 suspect that it won't be the case.
5809
5810 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5811 be necessary for call dummies on a non-executable stack on
5812 SPARC. */
5813
5814 /* See if the breakpoints module can explain the signal. */
5815 random_signal
5816 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5817 ecs->event_thread->suspend.stop_signal);
5818
5819 /* Maybe this was a trap for a software breakpoint that has since
5820 been removed. */
5821 if (random_signal && target_stopped_by_sw_breakpoint ())
5822 {
5823 if (program_breakpoint_here_p (gdbarch, stop_pc))
5824 {
5825 struct regcache *regcache;
5826 int decr_pc;
5827
5828 /* Re-adjust PC to what the program would see if GDB was not
5829 debugging it. */
5830 regcache = get_thread_regcache (ecs->event_thread->ptid);
5831 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5832 if (decr_pc != 0)
5833 {
5834 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5835
5836 if (record_full_is_used ())
5837 record_full_gdb_operation_disable_set ();
5838
5839 regcache_write_pc (regcache, stop_pc + decr_pc);
5840
5841 do_cleanups (old_cleanups);
5842 }
5843 }
5844 else
5845 {
5846 /* A delayed software breakpoint event. Ignore the trap. */
5847 if (debug_infrun)
5848 fprintf_unfiltered (gdb_stdlog,
5849 "infrun: delayed software breakpoint "
5850 "trap, ignoring\n");
5851 random_signal = 0;
5852 }
5853 }
5854
5855 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5856 has since been removed. */
5857 if (random_signal && target_stopped_by_hw_breakpoint ())
5858 {
5859 /* A delayed hardware breakpoint event. Ignore the trap. */
5860 if (debug_infrun)
5861 fprintf_unfiltered (gdb_stdlog,
5862 "infrun: delayed hardware breakpoint/watchpoint "
5863 "trap, ignoring\n");
5864 random_signal = 0;
5865 }
5866
5867 /* If not, perhaps stepping/nexting can. */
5868 if (random_signal)
5869 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5870 && currently_stepping (ecs->event_thread));
5871
5872 /* Perhaps the thread hit a single-step breakpoint of _another_
5873 thread. Single-step breakpoints are transparent to the
5874 breakpoints module. */
5875 if (random_signal)
5876 random_signal = !ecs->hit_singlestep_breakpoint;
5877
5878 /* No? Perhaps we got a moribund watchpoint. */
5879 if (random_signal)
5880 random_signal = !stopped_by_watchpoint;
5881
5882 /* For the program's own signals, act according to
5883 the signal handling tables. */
5884
5885 if (random_signal)
5886 {
5887 /* Signal not for debugging purposes. */
5888 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5889 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5890
5891 if (debug_infrun)
5892 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5893 gdb_signal_to_symbol_string (stop_signal));
5894
5895 stopped_by_random_signal = 1;
5896
5897 /* Always stop on signals if we're either just gaining control
5898 of the program, or the user explicitly requested this thread
5899 to remain stopped. */
5900 if (stop_soon != NO_STOP_QUIETLY
5901 || ecs->event_thread->stop_requested
5902 || (!inf->detaching
5903 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5904 {
5905 stop_waiting (ecs);
5906 return;
5907 }
5908
5909 /* Notify observers the signal has "handle print" set. Note we
5910 returned early above if stopping; normal_stop handles the
5911 printing in that case. */
5912 if (signal_print[ecs->event_thread->suspend.stop_signal])
5913 {
5914 /* The signal table tells us to print about this signal. */
5915 target_terminal_ours_for_output ();
5916 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5917 target_terminal_inferior ();
5918 }
5919
5920 /* Clear the signal if it should not be passed. */
5921 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5922 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5923
5924 if (ecs->event_thread->prev_pc == stop_pc
5925 && ecs->event_thread->control.trap_expected
5926 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5927 {
5928 int was_in_line;
5929
5930 /* We were just starting a new sequence, attempting to
5931 single-step off of a breakpoint and expecting a SIGTRAP.
5932 Instead this signal arrives. This signal will take us out
5933 of the stepping range so GDB needs to remember to, when
5934 the signal handler returns, resume stepping off that
5935 breakpoint. */
5936 /* To simplify things, "continue" is forced to use the same
5937 code paths as single-step - set a breakpoint at the
5938 signal return address and then, once hit, step off that
5939 breakpoint. */
5940 if (debug_infrun)
5941 fprintf_unfiltered (gdb_stdlog,
5942 "infrun: signal arrived while stepping over "
5943 "breakpoint\n");
5944
5945 was_in_line = step_over_info_valid_p ();
5946 clear_step_over_info ();
5947 insert_hp_step_resume_breakpoint_at_frame (frame);
5948 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5949 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5950 ecs->event_thread->control.trap_expected = 0;
5951
5952 if (target_is_non_stop_p ())
5953 {
5954 /* Either "set non-stop" is "on", or the target is
5955 always in non-stop mode. In this case, we have a bit
5956 more work to do. Resume the current thread, and if
5957 we had paused all threads, restart them while the
5958 signal handler runs. */
5959 keep_going (ecs);
5960
5961 if (was_in_line)
5962 {
5963 restart_threads (ecs->event_thread);
5964 }
5965 else if (debug_infrun)
5966 {
5967 fprintf_unfiltered (gdb_stdlog,
5968 "infrun: no need to restart threads\n");
5969 }
5970 return;
5971 }
5972
5973 /* If we were nexting/stepping some other thread, switch to
5974 it, so that we don't continue it, losing control. */
5975 if (!switch_back_to_stepped_thread (ecs))
5976 keep_going (ecs);
5977 return;
5978 }
5979
5980 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5981 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5982 || ecs->event_thread->control.step_range_end == 1)
5983 && frame_id_eq (get_stack_frame_id (frame),
5984 ecs->event_thread->control.step_stack_frame_id)
5985 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5986 {
5987 /* The inferior is about to take a signal that will take it
5988 out of the single step range. Set a breakpoint at the
5989 current PC (which is presumably where the signal handler
5990 will eventually return) and then allow the inferior to
5991 run free.
5992
5993 Note that this is only needed for a signal delivered
5994 while in the single-step range. Nested signals aren't a
5995 problem as they eventually all return. */
5996 if (debug_infrun)
5997 fprintf_unfiltered (gdb_stdlog,
5998 "infrun: signal may take us out of "
5999 "single-step range\n");
6000
6001 clear_step_over_info ();
6002 insert_hp_step_resume_breakpoint_at_frame (frame);
6003 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6004 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6005 ecs->event_thread->control.trap_expected = 0;
6006 keep_going (ecs);
6007 return;
6008 }
6009
6010 /* Note: step_resume_breakpoint may be non-NULL. This occures
6011 when either there's a nested signal, or when there's a
6012 pending signal enabled just as the signal handler returns
6013 (leaving the inferior at the step-resume-breakpoint without
6014 actually executing it). Either way continue until the
6015 breakpoint is really hit. */
6016
6017 if (!switch_back_to_stepped_thread (ecs))
6018 {
6019 if (debug_infrun)
6020 fprintf_unfiltered (gdb_stdlog,
6021 "infrun: random signal, keep going\n");
6022
6023 keep_going (ecs);
6024 }
6025 return;
6026 }
6027
6028 process_event_stop_test (ecs);
6029 }
6030
6031 /* Come here when we've got some debug event / signal we can explain
6032 (IOW, not a random signal), and test whether it should cause a
6033 stop, or whether we should resume the inferior (transparently).
6034 E.g., could be a breakpoint whose condition evaluates false; we
6035 could be still stepping within the line; etc. */
6036
6037 static void
6038 process_event_stop_test (struct execution_control_state *ecs)
6039 {
6040 struct symtab_and_line stop_pc_sal;
6041 struct frame_info *frame;
6042 struct gdbarch *gdbarch;
6043 CORE_ADDR jmp_buf_pc;
6044 struct bpstat_what what;
6045
6046 /* Handle cases caused by hitting a breakpoint. */
6047
6048 frame = get_current_frame ();
6049 gdbarch = get_frame_arch (frame);
6050
6051 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6052
6053 if (what.call_dummy)
6054 {
6055 stop_stack_dummy = what.call_dummy;
6056 }
6057
6058 /* A few breakpoint types have callbacks associated (e.g.,
6059 bp_jit_event). Run them now. */
6060 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6061
6062 /* If we hit an internal event that triggers symbol changes, the
6063 current frame will be invalidated within bpstat_what (e.g., if we
6064 hit an internal solib event). Re-fetch it. */
6065 frame = get_current_frame ();
6066 gdbarch = get_frame_arch (frame);
6067
6068 switch (what.main_action)
6069 {
6070 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6071 /* If we hit the breakpoint at longjmp while stepping, we
6072 install a momentary breakpoint at the target of the
6073 jmp_buf. */
6074
6075 if (debug_infrun)
6076 fprintf_unfiltered (gdb_stdlog,
6077 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6078
6079 ecs->event_thread->stepping_over_breakpoint = 1;
6080
6081 if (what.is_longjmp)
6082 {
6083 struct value *arg_value;
6084
6085 /* If we set the longjmp breakpoint via a SystemTap probe,
6086 then use it to extract the arguments. The destination PC
6087 is the third argument to the probe. */
6088 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6089 if (arg_value)
6090 {
6091 jmp_buf_pc = value_as_address (arg_value);
6092 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6093 }
6094 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6095 || !gdbarch_get_longjmp_target (gdbarch,
6096 frame, &jmp_buf_pc))
6097 {
6098 if (debug_infrun)
6099 fprintf_unfiltered (gdb_stdlog,
6100 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6101 "(!gdbarch_get_longjmp_target)\n");
6102 keep_going (ecs);
6103 return;
6104 }
6105
6106 /* Insert a breakpoint at resume address. */
6107 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6108 }
6109 else
6110 check_exception_resume (ecs, frame);
6111 keep_going (ecs);
6112 return;
6113
6114 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6115 {
6116 struct frame_info *init_frame;
6117
6118 /* There are several cases to consider.
6119
6120 1. The initiating frame no longer exists. In this case we
6121 must stop, because the exception or longjmp has gone too
6122 far.
6123
6124 2. The initiating frame exists, and is the same as the
6125 current frame. We stop, because the exception or longjmp
6126 has been caught.
6127
6128 3. The initiating frame exists and is different from the
6129 current frame. This means the exception or longjmp has
6130 been caught beneath the initiating frame, so keep going.
6131
6132 4. longjmp breakpoint has been placed just to protect
6133 against stale dummy frames and user is not interested in
6134 stopping around longjmps. */
6135
6136 if (debug_infrun)
6137 fprintf_unfiltered (gdb_stdlog,
6138 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6139
6140 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6141 != NULL);
6142 delete_exception_resume_breakpoint (ecs->event_thread);
6143
6144 if (what.is_longjmp)
6145 {
6146 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6147
6148 if (!frame_id_p (ecs->event_thread->initiating_frame))
6149 {
6150 /* Case 4. */
6151 keep_going (ecs);
6152 return;
6153 }
6154 }
6155
6156 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6157
6158 if (init_frame)
6159 {
6160 struct frame_id current_id
6161 = get_frame_id (get_current_frame ());
6162 if (frame_id_eq (current_id,
6163 ecs->event_thread->initiating_frame))
6164 {
6165 /* Case 2. Fall through. */
6166 }
6167 else
6168 {
6169 /* Case 3. */
6170 keep_going (ecs);
6171 return;
6172 }
6173 }
6174
6175 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6176 exists. */
6177 delete_step_resume_breakpoint (ecs->event_thread);
6178
6179 end_stepping_range (ecs);
6180 }
6181 return;
6182
6183 case BPSTAT_WHAT_SINGLE:
6184 if (debug_infrun)
6185 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6186 ecs->event_thread->stepping_over_breakpoint = 1;
6187 /* Still need to check other stuff, at least the case where we
6188 are stepping and step out of the right range. */
6189 break;
6190
6191 case BPSTAT_WHAT_STEP_RESUME:
6192 if (debug_infrun)
6193 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6194
6195 delete_step_resume_breakpoint (ecs->event_thread);
6196 if (ecs->event_thread->control.proceed_to_finish
6197 && execution_direction == EXEC_REVERSE)
6198 {
6199 struct thread_info *tp = ecs->event_thread;
6200
6201 /* We are finishing a function in reverse, and just hit the
6202 step-resume breakpoint at the start address of the
6203 function, and we're almost there -- just need to back up
6204 by one more single-step, which should take us back to the
6205 function call. */
6206 tp->control.step_range_start = tp->control.step_range_end = 1;
6207 keep_going (ecs);
6208 return;
6209 }
6210 fill_in_stop_func (gdbarch, ecs);
6211 if (stop_pc == ecs->stop_func_start
6212 && execution_direction == EXEC_REVERSE)
6213 {
6214 /* We are stepping over a function call in reverse, and just
6215 hit the step-resume breakpoint at the start address of
6216 the function. Go back to single-stepping, which should
6217 take us back to the function call. */
6218 ecs->event_thread->stepping_over_breakpoint = 1;
6219 keep_going (ecs);
6220 return;
6221 }
6222 break;
6223
6224 case BPSTAT_WHAT_STOP_NOISY:
6225 if (debug_infrun)
6226 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6227 stop_print_frame = 1;
6228
6229 /* Assume the thread stopped for a breapoint. We'll still check
6230 whether a/the breakpoint is there when the thread is next
6231 resumed. */
6232 ecs->event_thread->stepping_over_breakpoint = 1;
6233
6234 stop_waiting (ecs);
6235 return;
6236
6237 case BPSTAT_WHAT_STOP_SILENT:
6238 if (debug_infrun)
6239 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6240 stop_print_frame = 0;
6241
6242 /* Assume the thread stopped for a breapoint. We'll still check
6243 whether a/the breakpoint is there when the thread is next
6244 resumed. */
6245 ecs->event_thread->stepping_over_breakpoint = 1;
6246 stop_waiting (ecs);
6247 return;
6248
6249 case BPSTAT_WHAT_HP_STEP_RESUME:
6250 if (debug_infrun)
6251 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6252
6253 delete_step_resume_breakpoint (ecs->event_thread);
6254 if (ecs->event_thread->step_after_step_resume_breakpoint)
6255 {
6256 /* Back when the step-resume breakpoint was inserted, we
6257 were trying to single-step off a breakpoint. Go back to
6258 doing that. */
6259 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6260 ecs->event_thread->stepping_over_breakpoint = 1;
6261 keep_going (ecs);
6262 return;
6263 }
6264 break;
6265
6266 case BPSTAT_WHAT_KEEP_CHECKING:
6267 break;
6268 }
6269
6270 /* If we stepped a permanent breakpoint and we had a high priority
6271 step-resume breakpoint for the address we stepped, but we didn't
6272 hit it, then we must have stepped into the signal handler. The
6273 step-resume was only necessary to catch the case of _not_
6274 stepping into the handler, so delete it, and fall through to
6275 checking whether the step finished. */
6276 if (ecs->event_thread->stepped_breakpoint)
6277 {
6278 struct breakpoint *sr_bp
6279 = ecs->event_thread->control.step_resume_breakpoint;
6280
6281 if (sr_bp != NULL
6282 && sr_bp->loc->permanent
6283 && sr_bp->type == bp_hp_step_resume
6284 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6285 {
6286 if (debug_infrun)
6287 fprintf_unfiltered (gdb_stdlog,
6288 "infrun: stepped permanent breakpoint, stopped in "
6289 "handler\n");
6290 delete_step_resume_breakpoint (ecs->event_thread);
6291 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6292 }
6293 }
6294
6295 /* We come here if we hit a breakpoint but should not stop for it.
6296 Possibly we also were stepping and should stop for that. So fall
6297 through and test for stepping. But, if not stepping, do not
6298 stop. */
6299
6300 /* In all-stop mode, if we're currently stepping but have stopped in
6301 some other thread, we need to switch back to the stepped thread. */
6302 if (switch_back_to_stepped_thread (ecs))
6303 return;
6304
6305 if (ecs->event_thread->control.step_resume_breakpoint)
6306 {
6307 if (debug_infrun)
6308 fprintf_unfiltered (gdb_stdlog,
6309 "infrun: step-resume breakpoint is inserted\n");
6310
6311 /* Having a step-resume breakpoint overrides anything
6312 else having to do with stepping commands until
6313 that breakpoint is reached. */
6314 keep_going (ecs);
6315 return;
6316 }
6317
6318 if (ecs->event_thread->control.step_range_end == 0)
6319 {
6320 if (debug_infrun)
6321 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6322 /* Likewise if we aren't even stepping. */
6323 keep_going (ecs);
6324 return;
6325 }
6326
6327 /* Re-fetch current thread's frame in case the code above caused
6328 the frame cache to be re-initialized, making our FRAME variable
6329 a dangling pointer. */
6330 frame = get_current_frame ();
6331 gdbarch = get_frame_arch (frame);
6332 fill_in_stop_func (gdbarch, ecs);
6333
6334 /* If stepping through a line, keep going if still within it.
6335
6336 Note that step_range_end is the address of the first instruction
6337 beyond the step range, and NOT the address of the last instruction
6338 within it!
6339
6340 Note also that during reverse execution, we may be stepping
6341 through a function epilogue and therefore must detect when
6342 the current-frame changes in the middle of a line. */
6343
6344 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6345 && (execution_direction != EXEC_REVERSE
6346 || frame_id_eq (get_frame_id (frame),
6347 ecs->event_thread->control.step_frame_id)))
6348 {
6349 if (debug_infrun)
6350 fprintf_unfiltered
6351 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6352 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6353 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6354
6355 /* Tentatively re-enable range stepping; `resume' disables it if
6356 necessary (e.g., if we're stepping over a breakpoint or we
6357 have software watchpoints). */
6358 ecs->event_thread->control.may_range_step = 1;
6359
6360 /* When stepping backward, stop at beginning of line range
6361 (unless it's the function entry point, in which case
6362 keep going back to the call point). */
6363 if (stop_pc == ecs->event_thread->control.step_range_start
6364 && stop_pc != ecs->stop_func_start
6365 && execution_direction == EXEC_REVERSE)
6366 end_stepping_range (ecs);
6367 else
6368 keep_going (ecs);
6369
6370 return;
6371 }
6372
6373 /* We stepped out of the stepping range. */
6374
6375 /* If we are stepping at the source level and entered the runtime
6376 loader dynamic symbol resolution code...
6377
6378 EXEC_FORWARD: we keep on single stepping until we exit the run
6379 time loader code and reach the callee's address.
6380
6381 EXEC_REVERSE: we've already executed the callee (backward), and
6382 the runtime loader code is handled just like any other
6383 undebuggable function call. Now we need only keep stepping
6384 backward through the trampoline code, and that's handled further
6385 down, so there is nothing for us to do here. */
6386
6387 if (execution_direction != EXEC_REVERSE
6388 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6389 && in_solib_dynsym_resolve_code (stop_pc))
6390 {
6391 CORE_ADDR pc_after_resolver =
6392 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6393
6394 if (debug_infrun)
6395 fprintf_unfiltered (gdb_stdlog,
6396 "infrun: stepped into dynsym resolve code\n");
6397
6398 if (pc_after_resolver)
6399 {
6400 /* Set up a step-resume breakpoint at the address
6401 indicated by SKIP_SOLIB_RESOLVER. */
6402 struct symtab_and_line sr_sal;
6403
6404 init_sal (&sr_sal);
6405 sr_sal.pc = pc_after_resolver;
6406 sr_sal.pspace = get_frame_program_space (frame);
6407
6408 insert_step_resume_breakpoint_at_sal (gdbarch,
6409 sr_sal, null_frame_id);
6410 }
6411
6412 keep_going (ecs);
6413 return;
6414 }
6415
6416 if (ecs->event_thread->control.step_range_end != 1
6417 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6418 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6419 && get_frame_type (frame) == SIGTRAMP_FRAME)
6420 {
6421 if (debug_infrun)
6422 fprintf_unfiltered (gdb_stdlog,
6423 "infrun: stepped into signal trampoline\n");
6424 /* The inferior, while doing a "step" or "next", has ended up in
6425 a signal trampoline (either by a signal being delivered or by
6426 the signal handler returning). Just single-step until the
6427 inferior leaves the trampoline (either by calling the handler
6428 or returning). */
6429 keep_going (ecs);
6430 return;
6431 }
6432
6433 /* If we're in the return path from a shared library trampoline,
6434 we want to proceed through the trampoline when stepping. */
6435 /* macro/2012-04-25: This needs to come before the subroutine
6436 call check below as on some targets return trampolines look
6437 like subroutine calls (MIPS16 return thunks). */
6438 if (gdbarch_in_solib_return_trampoline (gdbarch,
6439 stop_pc, ecs->stop_func_name)
6440 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6441 {
6442 /* Determine where this trampoline returns. */
6443 CORE_ADDR real_stop_pc;
6444
6445 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6446
6447 if (debug_infrun)
6448 fprintf_unfiltered (gdb_stdlog,
6449 "infrun: stepped into solib return tramp\n");
6450
6451 /* Only proceed through if we know where it's going. */
6452 if (real_stop_pc)
6453 {
6454 /* And put the step-breakpoint there and go until there. */
6455 struct symtab_and_line sr_sal;
6456
6457 init_sal (&sr_sal); /* initialize to zeroes */
6458 sr_sal.pc = real_stop_pc;
6459 sr_sal.section = find_pc_overlay (sr_sal.pc);
6460 sr_sal.pspace = get_frame_program_space (frame);
6461
6462 /* Do not specify what the fp should be when we stop since
6463 on some machines the prologue is where the new fp value
6464 is established. */
6465 insert_step_resume_breakpoint_at_sal (gdbarch,
6466 sr_sal, null_frame_id);
6467
6468 /* Restart without fiddling with the step ranges or
6469 other state. */
6470 keep_going (ecs);
6471 return;
6472 }
6473 }
6474
6475 /* Check for subroutine calls. The check for the current frame
6476 equalling the step ID is not necessary - the check of the
6477 previous frame's ID is sufficient - but it is a common case and
6478 cheaper than checking the previous frame's ID.
6479
6480 NOTE: frame_id_eq will never report two invalid frame IDs as
6481 being equal, so to get into this block, both the current and
6482 previous frame must have valid frame IDs. */
6483 /* The outer_frame_id check is a heuristic to detect stepping
6484 through startup code. If we step over an instruction which
6485 sets the stack pointer from an invalid value to a valid value,
6486 we may detect that as a subroutine call from the mythical
6487 "outermost" function. This could be fixed by marking
6488 outermost frames as !stack_p,code_p,special_p. Then the
6489 initial outermost frame, before sp was valid, would
6490 have code_addr == &_start. See the comment in frame_id_eq
6491 for more. */
6492 if (!frame_id_eq (get_stack_frame_id (frame),
6493 ecs->event_thread->control.step_stack_frame_id)
6494 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6495 ecs->event_thread->control.step_stack_frame_id)
6496 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6497 outer_frame_id)
6498 || (ecs->event_thread->control.step_start_function
6499 != find_pc_function (stop_pc)))))
6500 {
6501 CORE_ADDR real_stop_pc;
6502
6503 if (debug_infrun)
6504 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6505
6506 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6507 {
6508 /* I presume that step_over_calls is only 0 when we're
6509 supposed to be stepping at the assembly language level
6510 ("stepi"). Just stop. */
6511 /* And this works the same backward as frontward. MVS */
6512 end_stepping_range (ecs);
6513 return;
6514 }
6515
6516 /* Reverse stepping through solib trampolines. */
6517
6518 if (execution_direction == EXEC_REVERSE
6519 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6520 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6521 || (ecs->stop_func_start == 0
6522 && in_solib_dynsym_resolve_code (stop_pc))))
6523 {
6524 /* Any solib trampoline code can be handled in reverse
6525 by simply continuing to single-step. We have already
6526 executed the solib function (backwards), and a few
6527 steps will take us back through the trampoline to the
6528 caller. */
6529 keep_going (ecs);
6530 return;
6531 }
6532
6533 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6534 {
6535 /* We're doing a "next".
6536
6537 Normal (forward) execution: set a breakpoint at the
6538 callee's return address (the address at which the caller
6539 will resume).
6540
6541 Reverse (backward) execution. set the step-resume
6542 breakpoint at the start of the function that we just
6543 stepped into (backwards), and continue to there. When we
6544 get there, we'll need to single-step back to the caller. */
6545
6546 if (execution_direction == EXEC_REVERSE)
6547 {
6548 /* If we're already at the start of the function, we've either
6549 just stepped backward into a single instruction function,
6550 or stepped back out of a signal handler to the first instruction
6551 of the function. Just keep going, which will single-step back
6552 to the caller. */
6553 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6554 {
6555 struct symtab_and_line sr_sal;
6556
6557 /* Normal function call return (static or dynamic). */
6558 init_sal (&sr_sal);
6559 sr_sal.pc = ecs->stop_func_start;
6560 sr_sal.pspace = get_frame_program_space (frame);
6561 insert_step_resume_breakpoint_at_sal (gdbarch,
6562 sr_sal, null_frame_id);
6563 }
6564 }
6565 else
6566 insert_step_resume_breakpoint_at_caller (frame);
6567
6568 keep_going (ecs);
6569 return;
6570 }
6571
6572 /* If we are in a function call trampoline (a stub between the
6573 calling routine and the real function), locate the real
6574 function. That's what tells us (a) whether we want to step
6575 into it at all, and (b) what prologue we want to run to the
6576 end of, if we do step into it. */
6577 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6578 if (real_stop_pc == 0)
6579 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6580 if (real_stop_pc != 0)
6581 ecs->stop_func_start = real_stop_pc;
6582
6583 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6584 {
6585 struct symtab_and_line sr_sal;
6586
6587 init_sal (&sr_sal);
6588 sr_sal.pc = ecs->stop_func_start;
6589 sr_sal.pspace = get_frame_program_space (frame);
6590
6591 insert_step_resume_breakpoint_at_sal (gdbarch,
6592 sr_sal, null_frame_id);
6593 keep_going (ecs);
6594 return;
6595 }
6596
6597 /* If we have line number information for the function we are
6598 thinking of stepping into and the function isn't on the skip
6599 list, step into it.
6600
6601 If there are several symtabs at that PC (e.g. with include
6602 files), just want to know whether *any* of them have line
6603 numbers. find_pc_line handles this. */
6604 {
6605 struct symtab_and_line tmp_sal;
6606
6607 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6608 if (tmp_sal.line != 0
6609 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6610 &tmp_sal))
6611 {
6612 if (execution_direction == EXEC_REVERSE)
6613 handle_step_into_function_backward (gdbarch, ecs);
6614 else
6615 handle_step_into_function (gdbarch, ecs);
6616 return;
6617 }
6618 }
6619
6620 /* If we have no line number and the step-stop-if-no-debug is
6621 set, we stop the step so that the user has a chance to switch
6622 in assembly mode. */
6623 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6624 && step_stop_if_no_debug)
6625 {
6626 end_stepping_range (ecs);
6627 return;
6628 }
6629
6630 if (execution_direction == EXEC_REVERSE)
6631 {
6632 /* If we're already at the start of the function, we've either just
6633 stepped backward into a single instruction function without line
6634 number info, or stepped back out of a signal handler to the first
6635 instruction of the function without line number info. Just keep
6636 going, which will single-step back to the caller. */
6637 if (ecs->stop_func_start != stop_pc)
6638 {
6639 /* Set a breakpoint at callee's start address.
6640 From there we can step once and be back in the caller. */
6641 struct symtab_and_line sr_sal;
6642
6643 init_sal (&sr_sal);
6644 sr_sal.pc = ecs->stop_func_start;
6645 sr_sal.pspace = get_frame_program_space (frame);
6646 insert_step_resume_breakpoint_at_sal (gdbarch,
6647 sr_sal, null_frame_id);
6648 }
6649 }
6650 else
6651 /* Set a breakpoint at callee's return address (the address
6652 at which the caller will resume). */
6653 insert_step_resume_breakpoint_at_caller (frame);
6654
6655 keep_going (ecs);
6656 return;
6657 }
6658
6659 /* Reverse stepping through solib trampolines. */
6660
6661 if (execution_direction == EXEC_REVERSE
6662 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6663 {
6664 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6665 || (ecs->stop_func_start == 0
6666 && in_solib_dynsym_resolve_code (stop_pc)))
6667 {
6668 /* Any solib trampoline code can be handled in reverse
6669 by simply continuing to single-step. We have already
6670 executed the solib function (backwards), and a few
6671 steps will take us back through the trampoline to the
6672 caller. */
6673 keep_going (ecs);
6674 return;
6675 }
6676 else if (in_solib_dynsym_resolve_code (stop_pc))
6677 {
6678 /* Stepped backward into the solib dynsym resolver.
6679 Set a breakpoint at its start and continue, then
6680 one more step will take us out. */
6681 struct symtab_and_line sr_sal;
6682
6683 init_sal (&sr_sal);
6684 sr_sal.pc = ecs->stop_func_start;
6685 sr_sal.pspace = get_frame_program_space (frame);
6686 insert_step_resume_breakpoint_at_sal (gdbarch,
6687 sr_sal, null_frame_id);
6688 keep_going (ecs);
6689 return;
6690 }
6691 }
6692
6693 stop_pc_sal = find_pc_line (stop_pc, 0);
6694
6695 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6696 the trampoline processing logic, however, there are some trampolines
6697 that have no names, so we should do trampoline handling first. */
6698 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6699 && ecs->stop_func_name == NULL
6700 && stop_pc_sal.line == 0)
6701 {
6702 if (debug_infrun)
6703 fprintf_unfiltered (gdb_stdlog,
6704 "infrun: stepped into undebuggable function\n");
6705
6706 /* The inferior just stepped into, or returned to, an
6707 undebuggable function (where there is no debugging information
6708 and no line number corresponding to the address where the
6709 inferior stopped). Since we want to skip this kind of code,
6710 we keep going until the inferior returns from this
6711 function - unless the user has asked us not to (via
6712 set step-mode) or we no longer know how to get back
6713 to the call site. */
6714 if (step_stop_if_no_debug
6715 || !frame_id_p (frame_unwind_caller_id (frame)))
6716 {
6717 /* If we have no line number and the step-stop-if-no-debug
6718 is set, we stop the step so that the user has a chance to
6719 switch in assembly mode. */
6720 end_stepping_range (ecs);
6721 return;
6722 }
6723 else
6724 {
6725 /* Set a breakpoint at callee's return address (the address
6726 at which the caller will resume). */
6727 insert_step_resume_breakpoint_at_caller (frame);
6728 keep_going (ecs);
6729 return;
6730 }
6731 }
6732
6733 if (ecs->event_thread->control.step_range_end == 1)
6734 {
6735 /* It is stepi or nexti. We always want to stop stepping after
6736 one instruction. */
6737 if (debug_infrun)
6738 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6739 end_stepping_range (ecs);
6740 return;
6741 }
6742
6743 if (stop_pc_sal.line == 0)
6744 {
6745 /* We have no line number information. That means to stop
6746 stepping (does this always happen right after one instruction,
6747 when we do "s" in a function with no line numbers,
6748 or can this happen as a result of a return or longjmp?). */
6749 if (debug_infrun)
6750 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6751 end_stepping_range (ecs);
6752 return;
6753 }
6754
6755 /* Look for "calls" to inlined functions, part one. If the inline
6756 frame machinery detected some skipped call sites, we have entered
6757 a new inline function. */
6758
6759 if (frame_id_eq (get_frame_id (get_current_frame ()),
6760 ecs->event_thread->control.step_frame_id)
6761 && inline_skipped_frames (ecs->ptid))
6762 {
6763 struct symtab_and_line call_sal;
6764
6765 if (debug_infrun)
6766 fprintf_unfiltered (gdb_stdlog,
6767 "infrun: stepped into inlined function\n");
6768
6769 find_frame_sal (get_current_frame (), &call_sal);
6770
6771 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6772 {
6773 /* For "step", we're going to stop. But if the call site
6774 for this inlined function is on the same source line as
6775 we were previously stepping, go down into the function
6776 first. Otherwise stop at the call site. */
6777
6778 if (call_sal.line == ecs->event_thread->current_line
6779 && call_sal.symtab == ecs->event_thread->current_symtab)
6780 step_into_inline_frame (ecs->ptid);
6781
6782 end_stepping_range (ecs);
6783 return;
6784 }
6785 else
6786 {
6787 /* For "next", we should stop at the call site if it is on a
6788 different source line. Otherwise continue through the
6789 inlined function. */
6790 if (call_sal.line == ecs->event_thread->current_line
6791 && call_sal.symtab == ecs->event_thread->current_symtab)
6792 keep_going (ecs);
6793 else
6794 end_stepping_range (ecs);
6795 return;
6796 }
6797 }
6798
6799 /* Look for "calls" to inlined functions, part two. If we are still
6800 in the same real function we were stepping through, but we have
6801 to go further up to find the exact frame ID, we are stepping
6802 through a more inlined call beyond its call site. */
6803
6804 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6805 && !frame_id_eq (get_frame_id (get_current_frame ()),
6806 ecs->event_thread->control.step_frame_id)
6807 && stepped_in_from (get_current_frame (),
6808 ecs->event_thread->control.step_frame_id))
6809 {
6810 if (debug_infrun)
6811 fprintf_unfiltered (gdb_stdlog,
6812 "infrun: stepping through inlined function\n");
6813
6814 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6815 keep_going (ecs);
6816 else
6817 end_stepping_range (ecs);
6818 return;
6819 }
6820
6821 if ((stop_pc == stop_pc_sal.pc)
6822 && (ecs->event_thread->current_line != stop_pc_sal.line
6823 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6824 {
6825 /* We are at the start of a different line. So stop. Note that
6826 we don't stop if we step into the middle of a different line.
6827 That is said to make things like for (;;) statements work
6828 better. */
6829 if (debug_infrun)
6830 fprintf_unfiltered (gdb_stdlog,
6831 "infrun: stepped to a different line\n");
6832 end_stepping_range (ecs);
6833 return;
6834 }
6835
6836 /* We aren't done stepping.
6837
6838 Optimize by setting the stepping range to the line.
6839 (We might not be in the original line, but if we entered a
6840 new line in mid-statement, we continue stepping. This makes
6841 things like for(;;) statements work better.) */
6842
6843 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6844 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6845 ecs->event_thread->control.may_range_step = 1;
6846 set_step_info (frame, stop_pc_sal);
6847
6848 if (debug_infrun)
6849 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6850 keep_going (ecs);
6851 }
6852
6853 /* In all-stop mode, if we're currently stepping but have stopped in
6854 some other thread, we may need to switch back to the stepped
6855 thread. Returns true we set the inferior running, false if we left
6856 it stopped (and the event needs further processing). */
6857
6858 static int
6859 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6860 {
6861 if (!target_is_non_stop_p ())
6862 {
6863 struct thread_info *tp;
6864 struct thread_info *stepping_thread;
6865
6866 /* If any thread is blocked on some internal breakpoint, and we
6867 simply need to step over that breakpoint to get it going
6868 again, do that first. */
6869
6870 /* However, if we see an event for the stepping thread, then we
6871 know all other threads have been moved past their breakpoints
6872 already. Let the caller check whether the step is finished,
6873 etc., before deciding to move it past a breakpoint. */
6874 if (ecs->event_thread->control.step_range_end != 0)
6875 return 0;
6876
6877 /* Check if the current thread is blocked on an incomplete
6878 step-over, interrupted by a random signal. */
6879 if (ecs->event_thread->control.trap_expected
6880 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6881 {
6882 if (debug_infrun)
6883 {
6884 fprintf_unfiltered (gdb_stdlog,
6885 "infrun: need to finish step-over of [%s]\n",
6886 target_pid_to_str (ecs->event_thread->ptid));
6887 }
6888 keep_going (ecs);
6889 return 1;
6890 }
6891
6892 /* Check if the current thread is blocked by a single-step
6893 breakpoint of another thread. */
6894 if (ecs->hit_singlestep_breakpoint)
6895 {
6896 if (debug_infrun)
6897 {
6898 fprintf_unfiltered (gdb_stdlog,
6899 "infrun: need to step [%s] over single-step "
6900 "breakpoint\n",
6901 target_pid_to_str (ecs->ptid));
6902 }
6903 keep_going (ecs);
6904 return 1;
6905 }
6906
6907 /* If this thread needs yet another step-over (e.g., stepping
6908 through a delay slot), do it first before moving on to
6909 another thread. */
6910 if (thread_still_needs_step_over (ecs->event_thread))
6911 {
6912 if (debug_infrun)
6913 {
6914 fprintf_unfiltered (gdb_stdlog,
6915 "infrun: thread [%s] still needs step-over\n",
6916 target_pid_to_str (ecs->event_thread->ptid));
6917 }
6918 keep_going (ecs);
6919 return 1;
6920 }
6921
6922 /* If scheduler locking applies even if not stepping, there's no
6923 need to walk over threads. Above we've checked whether the
6924 current thread is stepping. If some other thread not the
6925 event thread is stepping, then it must be that scheduler
6926 locking is not in effect. */
6927 if (schedlock_applies (ecs->event_thread))
6928 return 0;
6929
6930 /* Otherwise, we no longer expect a trap in the current thread.
6931 Clear the trap_expected flag before switching back -- this is
6932 what keep_going does as well, if we call it. */
6933 ecs->event_thread->control.trap_expected = 0;
6934
6935 /* Likewise, clear the signal if it should not be passed. */
6936 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6937 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6938
6939 /* Do all pending step-overs before actually proceeding with
6940 step/next/etc. */
6941 if (start_step_over ())
6942 {
6943 prepare_to_wait (ecs);
6944 return 1;
6945 }
6946
6947 /* Look for the stepping/nexting thread. */
6948 stepping_thread = NULL;
6949
6950 ALL_NON_EXITED_THREADS (tp)
6951 {
6952 /* Ignore threads of processes the caller is not
6953 resuming. */
6954 if (!sched_multi
6955 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
6956 continue;
6957
6958 /* When stepping over a breakpoint, we lock all threads
6959 except the one that needs to move past the breakpoint.
6960 If a non-event thread has this set, the "incomplete
6961 step-over" check above should have caught it earlier. */
6962 if (tp->control.trap_expected)
6963 {
6964 internal_error (__FILE__, __LINE__,
6965 "[%s] has inconsistent state: "
6966 "trap_expected=%d\n",
6967 target_pid_to_str (tp->ptid),
6968 tp->control.trap_expected);
6969 }
6970
6971 /* Did we find the stepping thread? */
6972 if (tp->control.step_range_end)
6973 {
6974 /* Yep. There should only one though. */
6975 gdb_assert (stepping_thread == NULL);
6976
6977 /* The event thread is handled at the top, before we
6978 enter this loop. */
6979 gdb_assert (tp != ecs->event_thread);
6980
6981 /* If some thread other than the event thread is
6982 stepping, then scheduler locking can't be in effect,
6983 otherwise we wouldn't have resumed the current event
6984 thread in the first place. */
6985 gdb_assert (!schedlock_applies (tp));
6986
6987 stepping_thread = tp;
6988 }
6989 }
6990
6991 if (stepping_thread != NULL)
6992 {
6993 if (debug_infrun)
6994 fprintf_unfiltered (gdb_stdlog,
6995 "infrun: switching back to stepped thread\n");
6996
6997 if (keep_going_stepped_thread (stepping_thread))
6998 {
6999 prepare_to_wait (ecs);
7000 return 1;
7001 }
7002 }
7003 }
7004
7005 return 0;
7006 }
7007
7008 /* Set a previously stepped thread back to stepping. Returns true on
7009 success, false if the resume is not possible (e.g., the thread
7010 vanished). */
7011
7012 static int
7013 keep_going_stepped_thread (struct thread_info *tp)
7014 {
7015 struct frame_info *frame;
7016 struct gdbarch *gdbarch;
7017 struct execution_control_state ecss;
7018 struct execution_control_state *ecs = &ecss;
7019
7020 /* If the stepping thread exited, then don't try to switch back and
7021 resume it, which could fail in several different ways depending
7022 on the target. Instead, just keep going.
7023
7024 We can find a stepping dead thread in the thread list in two
7025 cases:
7026
7027 - The target supports thread exit events, and when the target
7028 tries to delete the thread from the thread list, inferior_ptid
7029 pointed at the exiting thread. In such case, calling
7030 delete_thread does not really remove the thread from the list;
7031 instead, the thread is left listed, with 'exited' state.
7032
7033 - The target's debug interface does not support thread exit
7034 events, and so we have no idea whatsoever if the previously
7035 stepping thread is still alive. For that reason, we need to
7036 synchronously query the target now. */
7037
7038 if (is_exited (tp->ptid)
7039 || !target_thread_alive (tp->ptid))
7040 {
7041 if (debug_infrun)
7042 fprintf_unfiltered (gdb_stdlog,
7043 "infrun: not resuming previously "
7044 "stepped thread, it has vanished\n");
7045
7046 delete_thread (tp->ptid);
7047 return 0;
7048 }
7049
7050 if (debug_infrun)
7051 fprintf_unfiltered (gdb_stdlog,
7052 "infrun: resuming previously stepped thread\n");
7053
7054 reset_ecs (ecs, tp);
7055 switch_to_thread (tp->ptid);
7056
7057 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7058 frame = get_current_frame ();
7059 gdbarch = get_frame_arch (frame);
7060
7061 /* If the PC of the thread we were trying to single-step has
7062 changed, then that thread has trapped or been signaled, but the
7063 event has not been reported to GDB yet. Re-poll the target
7064 looking for this particular thread's event (i.e. temporarily
7065 enable schedlock) by:
7066
7067 - setting a break at the current PC
7068 - resuming that particular thread, only (by setting trap
7069 expected)
7070
7071 This prevents us continuously moving the single-step breakpoint
7072 forward, one instruction at a time, overstepping. */
7073
7074 if (stop_pc != tp->prev_pc)
7075 {
7076 ptid_t resume_ptid;
7077
7078 if (debug_infrun)
7079 fprintf_unfiltered (gdb_stdlog,
7080 "infrun: expected thread advanced also (%s -> %s)\n",
7081 paddress (target_gdbarch (), tp->prev_pc),
7082 paddress (target_gdbarch (), stop_pc));
7083
7084 /* Clear the info of the previous step-over, as it's no longer
7085 valid (if the thread was trying to step over a breakpoint, it
7086 has already succeeded). It's what keep_going would do too,
7087 if we called it. Do this before trying to insert the sss
7088 breakpoint, otherwise if we were previously trying to step
7089 over this exact address in another thread, the breakpoint is
7090 skipped. */
7091 clear_step_over_info ();
7092 tp->control.trap_expected = 0;
7093
7094 insert_single_step_breakpoint (get_frame_arch (frame),
7095 get_frame_address_space (frame),
7096 stop_pc);
7097
7098 tp->resumed = 1;
7099 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7100 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7101 }
7102 else
7103 {
7104 if (debug_infrun)
7105 fprintf_unfiltered (gdb_stdlog,
7106 "infrun: expected thread still hasn't advanced\n");
7107
7108 keep_going_pass_signal (ecs);
7109 }
7110 return 1;
7111 }
7112
7113 /* Is thread TP in the middle of (software or hardware)
7114 single-stepping? (Note the result of this function must never be
7115 passed directly as target_resume's STEP parameter.) */
7116
7117 static int
7118 currently_stepping (struct thread_info *tp)
7119 {
7120 return ((tp->control.step_range_end
7121 && tp->control.step_resume_breakpoint == NULL)
7122 || tp->control.trap_expected
7123 || tp->stepped_breakpoint
7124 || bpstat_should_step ());
7125 }
7126
7127 /* Inferior has stepped into a subroutine call with source code that
7128 we should not step over. Do step to the first line of code in
7129 it. */
7130
7131 static void
7132 handle_step_into_function (struct gdbarch *gdbarch,
7133 struct execution_control_state *ecs)
7134 {
7135 struct compunit_symtab *cust;
7136 struct symtab_and_line stop_func_sal, sr_sal;
7137
7138 fill_in_stop_func (gdbarch, ecs);
7139
7140 cust = find_pc_compunit_symtab (stop_pc);
7141 if (cust != NULL && compunit_language (cust) != language_asm)
7142 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7143 ecs->stop_func_start);
7144
7145 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7146 /* Use the step_resume_break to step until the end of the prologue,
7147 even if that involves jumps (as it seems to on the vax under
7148 4.2). */
7149 /* If the prologue ends in the middle of a source line, continue to
7150 the end of that source line (if it is still within the function).
7151 Otherwise, just go to end of prologue. */
7152 if (stop_func_sal.end
7153 && stop_func_sal.pc != ecs->stop_func_start
7154 && stop_func_sal.end < ecs->stop_func_end)
7155 ecs->stop_func_start = stop_func_sal.end;
7156
7157 /* Architectures which require breakpoint adjustment might not be able
7158 to place a breakpoint at the computed address. If so, the test
7159 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7160 ecs->stop_func_start to an address at which a breakpoint may be
7161 legitimately placed.
7162
7163 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7164 made, GDB will enter an infinite loop when stepping through
7165 optimized code consisting of VLIW instructions which contain
7166 subinstructions corresponding to different source lines. On
7167 FR-V, it's not permitted to place a breakpoint on any but the
7168 first subinstruction of a VLIW instruction. When a breakpoint is
7169 set, GDB will adjust the breakpoint address to the beginning of
7170 the VLIW instruction. Thus, we need to make the corresponding
7171 adjustment here when computing the stop address. */
7172
7173 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7174 {
7175 ecs->stop_func_start
7176 = gdbarch_adjust_breakpoint_address (gdbarch,
7177 ecs->stop_func_start);
7178 }
7179
7180 if (ecs->stop_func_start == stop_pc)
7181 {
7182 /* We are already there: stop now. */
7183 end_stepping_range (ecs);
7184 return;
7185 }
7186 else
7187 {
7188 /* Put the step-breakpoint there and go until there. */
7189 init_sal (&sr_sal); /* initialize to zeroes */
7190 sr_sal.pc = ecs->stop_func_start;
7191 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7192 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7193
7194 /* Do not specify what the fp should be when we stop since on
7195 some machines the prologue is where the new fp value is
7196 established. */
7197 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7198
7199 /* And make sure stepping stops right away then. */
7200 ecs->event_thread->control.step_range_end
7201 = ecs->event_thread->control.step_range_start;
7202 }
7203 keep_going (ecs);
7204 }
7205
7206 /* Inferior has stepped backward into a subroutine call with source
7207 code that we should not step over. Do step to the beginning of the
7208 last line of code in it. */
7209
7210 static void
7211 handle_step_into_function_backward (struct gdbarch *gdbarch,
7212 struct execution_control_state *ecs)
7213 {
7214 struct compunit_symtab *cust;
7215 struct symtab_and_line stop_func_sal;
7216
7217 fill_in_stop_func (gdbarch, ecs);
7218
7219 cust = find_pc_compunit_symtab (stop_pc);
7220 if (cust != NULL && compunit_language (cust) != language_asm)
7221 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7222 ecs->stop_func_start);
7223
7224 stop_func_sal = find_pc_line (stop_pc, 0);
7225
7226 /* OK, we're just going to keep stepping here. */
7227 if (stop_func_sal.pc == stop_pc)
7228 {
7229 /* We're there already. Just stop stepping now. */
7230 end_stepping_range (ecs);
7231 }
7232 else
7233 {
7234 /* Else just reset the step range and keep going.
7235 No step-resume breakpoint, they don't work for
7236 epilogues, which can have multiple entry paths. */
7237 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7238 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7239 keep_going (ecs);
7240 }
7241 return;
7242 }
7243
7244 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7245 This is used to both functions and to skip over code. */
7246
7247 static void
7248 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7249 struct symtab_and_line sr_sal,
7250 struct frame_id sr_id,
7251 enum bptype sr_type)
7252 {
7253 /* There should never be more than one step-resume or longjmp-resume
7254 breakpoint per thread, so we should never be setting a new
7255 step_resume_breakpoint when one is already active. */
7256 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7257 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7258
7259 if (debug_infrun)
7260 fprintf_unfiltered (gdb_stdlog,
7261 "infrun: inserting step-resume breakpoint at %s\n",
7262 paddress (gdbarch, sr_sal.pc));
7263
7264 inferior_thread ()->control.step_resume_breakpoint
7265 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7266 }
7267
7268 void
7269 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7270 struct symtab_and_line sr_sal,
7271 struct frame_id sr_id)
7272 {
7273 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7274 sr_sal, sr_id,
7275 bp_step_resume);
7276 }
7277
7278 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7279 This is used to skip a potential signal handler.
7280
7281 This is called with the interrupted function's frame. The signal
7282 handler, when it returns, will resume the interrupted function at
7283 RETURN_FRAME.pc. */
7284
7285 static void
7286 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7287 {
7288 struct symtab_and_line sr_sal;
7289 struct gdbarch *gdbarch;
7290
7291 gdb_assert (return_frame != NULL);
7292 init_sal (&sr_sal); /* initialize to zeros */
7293
7294 gdbarch = get_frame_arch (return_frame);
7295 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7296 sr_sal.section = find_pc_overlay (sr_sal.pc);
7297 sr_sal.pspace = get_frame_program_space (return_frame);
7298
7299 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7300 get_stack_frame_id (return_frame),
7301 bp_hp_step_resume);
7302 }
7303
7304 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7305 is used to skip a function after stepping into it (for "next" or if
7306 the called function has no debugging information).
7307
7308 The current function has almost always been reached by single
7309 stepping a call or return instruction. NEXT_FRAME belongs to the
7310 current function, and the breakpoint will be set at the caller's
7311 resume address.
7312
7313 This is a separate function rather than reusing
7314 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7315 get_prev_frame, which may stop prematurely (see the implementation
7316 of frame_unwind_caller_id for an example). */
7317
7318 static void
7319 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7320 {
7321 struct symtab_and_line sr_sal;
7322 struct gdbarch *gdbarch;
7323
7324 /* We shouldn't have gotten here if we don't know where the call site
7325 is. */
7326 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7327
7328 init_sal (&sr_sal); /* initialize to zeros */
7329
7330 gdbarch = frame_unwind_caller_arch (next_frame);
7331 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7332 frame_unwind_caller_pc (next_frame));
7333 sr_sal.section = find_pc_overlay (sr_sal.pc);
7334 sr_sal.pspace = frame_unwind_program_space (next_frame);
7335
7336 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7337 frame_unwind_caller_id (next_frame));
7338 }
7339
7340 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7341 new breakpoint at the target of a jmp_buf. The handling of
7342 longjmp-resume uses the same mechanisms used for handling
7343 "step-resume" breakpoints. */
7344
7345 static void
7346 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7347 {
7348 /* There should never be more than one longjmp-resume breakpoint per
7349 thread, so we should never be setting a new
7350 longjmp_resume_breakpoint when one is already active. */
7351 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7352
7353 if (debug_infrun)
7354 fprintf_unfiltered (gdb_stdlog,
7355 "infrun: inserting longjmp-resume breakpoint at %s\n",
7356 paddress (gdbarch, pc));
7357
7358 inferior_thread ()->control.exception_resume_breakpoint =
7359 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7360 }
7361
7362 /* Insert an exception resume breakpoint. TP is the thread throwing
7363 the exception. The block B is the block of the unwinder debug hook
7364 function. FRAME is the frame corresponding to the call to this
7365 function. SYM is the symbol of the function argument holding the
7366 target PC of the exception. */
7367
7368 static void
7369 insert_exception_resume_breakpoint (struct thread_info *tp,
7370 const struct block *b,
7371 struct frame_info *frame,
7372 struct symbol *sym)
7373 {
7374 TRY
7375 {
7376 struct block_symbol vsym;
7377 struct value *value;
7378 CORE_ADDR handler;
7379 struct breakpoint *bp;
7380
7381 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7382 value = read_var_value (vsym.symbol, vsym.block, frame);
7383 /* If the value was optimized out, revert to the old behavior. */
7384 if (! value_optimized_out (value))
7385 {
7386 handler = value_as_address (value);
7387
7388 if (debug_infrun)
7389 fprintf_unfiltered (gdb_stdlog,
7390 "infrun: exception resume at %lx\n",
7391 (unsigned long) handler);
7392
7393 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7394 handler, bp_exception_resume);
7395
7396 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7397 frame = NULL;
7398
7399 bp->thread = tp->num;
7400 inferior_thread ()->control.exception_resume_breakpoint = bp;
7401 }
7402 }
7403 CATCH (e, RETURN_MASK_ERROR)
7404 {
7405 /* We want to ignore errors here. */
7406 }
7407 END_CATCH
7408 }
7409
7410 /* A helper for check_exception_resume that sets an
7411 exception-breakpoint based on a SystemTap probe. */
7412
7413 static void
7414 insert_exception_resume_from_probe (struct thread_info *tp,
7415 const struct bound_probe *probe,
7416 struct frame_info *frame)
7417 {
7418 struct value *arg_value;
7419 CORE_ADDR handler;
7420 struct breakpoint *bp;
7421
7422 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7423 if (!arg_value)
7424 return;
7425
7426 handler = value_as_address (arg_value);
7427
7428 if (debug_infrun)
7429 fprintf_unfiltered (gdb_stdlog,
7430 "infrun: exception resume at %s\n",
7431 paddress (get_objfile_arch (probe->objfile),
7432 handler));
7433
7434 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7435 handler, bp_exception_resume);
7436 bp->thread = tp->num;
7437 inferior_thread ()->control.exception_resume_breakpoint = bp;
7438 }
7439
7440 /* This is called when an exception has been intercepted. Check to
7441 see whether the exception's destination is of interest, and if so,
7442 set an exception resume breakpoint there. */
7443
7444 static void
7445 check_exception_resume (struct execution_control_state *ecs,
7446 struct frame_info *frame)
7447 {
7448 struct bound_probe probe;
7449 struct symbol *func;
7450
7451 /* First see if this exception unwinding breakpoint was set via a
7452 SystemTap probe point. If so, the probe has two arguments: the
7453 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7454 set a breakpoint there. */
7455 probe = find_probe_by_pc (get_frame_pc (frame));
7456 if (probe.probe)
7457 {
7458 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7459 return;
7460 }
7461
7462 func = get_frame_function (frame);
7463 if (!func)
7464 return;
7465
7466 TRY
7467 {
7468 const struct block *b;
7469 struct block_iterator iter;
7470 struct symbol *sym;
7471 int argno = 0;
7472
7473 /* The exception breakpoint is a thread-specific breakpoint on
7474 the unwinder's debug hook, declared as:
7475
7476 void _Unwind_DebugHook (void *cfa, void *handler);
7477
7478 The CFA argument indicates the frame to which control is
7479 about to be transferred. HANDLER is the destination PC.
7480
7481 We ignore the CFA and set a temporary breakpoint at HANDLER.
7482 This is not extremely efficient but it avoids issues in gdb
7483 with computing the DWARF CFA, and it also works even in weird
7484 cases such as throwing an exception from inside a signal
7485 handler. */
7486
7487 b = SYMBOL_BLOCK_VALUE (func);
7488 ALL_BLOCK_SYMBOLS (b, iter, sym)
7489 {
7490 if (!SYMBOL_IS_ARGUMENT (sym))
7491 continue;
7492
7493 if (argno == 0)
7494 ++argno;
7495 else
7496 {
7497 insert_exception_resume_breakpoint (ecs->event_thread,
7498 b, frame, sym);
7499 break;
7500 }
7501 }
7502 }
7503 CATCH (e, RETURN_MASK_ERROR)
7504 {
7505 }
7506 END_CATCH
7507 }
7508
7509 static void
7510 stop_waiting (struct execution_control_state *ecs)
7511 {
7512 if (debug_infrun)
7513 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7514
7515 clear_step_over_info ();
7516
7517 /* Let callers know we don't want to wait for the inferior anymore. */
7518 ecs->wait_some_more = 0;
7519
7520 /* If all-stop, but the target is always in non-stop mode, stop all
7521 threads now that we're presenting the stop to the user. */
7522 if (!non_stop && target_is_non_stop_p ())
7523 stop_all_threads ();
7524 }
7525
7526 /* Like keep_going, but passes the signal to the inferior, even if the
7527 signal is set to nopass. */
7528
7529 static void
7530 keep_going_pass_signal (struct execution_control_state *ecs)
7531 {
7532 /* Make sure normal_stop is called if we get a QUIT handled before
7533 reaching resume. */
7534 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7535
7536 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7537 gdb_assert (!ecs->event_thread->resumed);
7538
7539 /* Save the pc before execution, to compare with pc after stop. */
7540 ecs->event_thread->prev_pc
7541 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7542
7543 if (ecs->event_thread->control.trap_expected)
7544 {
7545 struct thread_info *tp = ecs->event_thread;
7546
7547 if (debug_infrun)
7548 fprintf_unfiltered (gdb_stdlog,
7549 "infrun: %s has trap_expected set, "
7550 "resuming to collect trap\n",
7551 target_pid_to_str (tp->ptid));
7552
7553 /* We haven't yet gotten our trap, and either: intercepted a
7554 non-signal event (e.g., a fork); or took a signal which we
7555 are supposed to pass through to the inferior. Simply
7556 continue. */
7557 discard_cleanups (old_cleanups);
7558 resume (ecs->event_thread->suspend.stop_signal);
7559 }
7560 else if (step_over_info_valid_p ())
7561 {
7562 /* Another thread is stepping over a breakpoint in-line. If
7563 this thread needs a step-over too, queue the request. In
7564 either case, this resume must be deferred for later. */
7565 struct thread_info *tp = ecs->event_thread;
7566
7567 if (ecs->hit_singlestep_breakpoint
7568 || thread_still_needs_step_over (tp))
7569 {
7570 if (debug_infrun)
7571 fprintf_unfiltered (gdb_stdlog,
7572 "infrun: step-over already in progress: "
7573 "step-over for %s deferred\n",
7574 target_pid_to_str (tp->ptid));
7575 thread_step_over_chain_enqueue (tp);
7576 }
7577 else
7578 {
7579 if (debug_infrun)
7580 fprintf_unfiltered (gdb_stdlog,
7581 "infrun: step-over in progress: "
7582 "resume of %s deferred\n",
7583 target_pid_to_str (tp->ptid));
7584 }
7585
7586 discard_cleanups (old_cleanups);
7587 }
7588 else
7589 {
7590 struct regcache *regcache = get_current_regcache ();
7591 int remove_bp;
7592 int remove_wps;
7593 step_over_what step_what;
7594
7595 /* Either the trap was not expected, but we are continuing
7596 anyway (if we got a signal, the user asked it be passed to
7597 the child)
7598 -- or --
7599 We got our expected trap, but decided we should resume from
7600 it.
7601
7602 We're going to run this baby now!
7603
7604 Note that insert_breakpoints won't try to re-insert
7605 already inserted breakpoints. Therefore, we don't
7606 care if breakpoints were already inserted, or not. */
7607
7608 /* If we need to step over a breakpoint, and we're not using
7609 displaced stepping to do so, insert all breakpoints
7610 (watchpoints, etc.) but the one we're stepping over, step one
7611 instruction, and then re-insert the breakpoint when that step
7612 is finished. */
7613
7614 step_what = thread_still_needs_step_over (ecs->event_thread);
7615
7616 remove_bp = (ecs->hit_singlestep_breakpoint
7617 || (step_what & STEP_OVER_BREAKPOINT));
7618 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7619
7620 /* We can't use displaced stepping if we need to step past a
7621 watchpoint. The instruction copied to the scratch pad would
7622 still trigger the watchpoint. */
7623 if (remove_bp
7624 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7625 {
7626 set_step_over_info (get_regcache_aspace (regcache),
7627 regcache_read_pc (regcache), remove_wps);
7628 }
7629 else if (remove_wps)
7630 set_step_over_info (NULL, 0, remove_wps);
7631
7632 /* If we now need to do an in-line step-over, we need to stop
7633 all other threads. Note this must be done before
7634 insert_breakpoints below, because that removes the breakpoint
7635 we're about to step over, otherwise other threads could miss
7636 it. */
7637 if (step_over_info_valid_p () && target_is_non_stop_p ())
7638 stop_all_threads ();
7639
7640 /* Stop stepping if inserting breakpoints fails. */
7641 TRY
7642 {
7643 insert_breakpoints ();
7644 }
7645 CATCH (e, RETURN_MASK_ERROR)
7646 {
7647 exception_print (gdb_stderr, e);
7648 stop_waiting (ecs);
7649 discard_cleanups (old_cleanups);
7650 return;
7651 }
7652 END_CATCH
7653
7654 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7655
7656 discard_cleanups (old_cleanups);
7657 resume (ecs->event_thread->suspend.stop_signal);
7658 }
7659
7660 prepare_to_wait (ecs);
7661 }
7662
7663 /* Called when we should continue running the inferior, because the
7664 current event doesn't cause a user visible stop. This does the
7665 resuming part; waiting for the next event is done elsewhere. */
7666
7667 static void
7668 keep_going (struct execution_control_state *ecs)
7669 {
7670 if (ecs->event_thread->control.trap_expected
7671 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7672 ecs->event_thread->control.trap_expected = 0;
7673
7674 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7675 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7676 keep_going_pass_signal (ecs);
7677 }
7678
7679 /* This function normally comes after a resume, before
7680 handle_inferior_event exits. It takes care of any last bits of
7681 housekeeping, and sets the all-important wait_some_more flag. */
7682
7683 static void
7684 prepare_to_wait (struct execution_control_state *ecs)
7685 {
7686 if (debug_infrun)
7687 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7688
7689 ecs->wait_some_more = 1;
7690
7691 if (!target_is_async_p ())
7692 mark_infrun_async_event_handler ();
7693 }
7694
7695 /* We are done with the step range of a step/next/si/ni command.
7696 Called once for each n of a "step n" operation. */
7697
7698 static void
7699 end_stepping_range (struct execution_control_state *ecs)
7700 {
7701 ecs->event_thread->control.stop_step = 1;
7702 stop_waiting (ecs);
7703 }
7704
7705 /* Several print_*_reason functions to print why the inferior has stopped.
7706 We always print something when the inferior exits, or receives a signal.
7707 The rest of the cases are dealt with later on in normal_stop and
7708 print_it_typical. Ideally there should be a call to one of these
7709 print_*_reason functions functions from handle_inferior_event each time
7710 stop_waiting is called.
7711
7712 Note that we don't call these directly, instead we delegate that to
7713 the interpreters, through observers. Interpreters then call these
7714 with whatever uiout is right. */
7715
7716 void
7717 print_end_stepping_range_reason (struct ui_out *uiout)
7718 {
7719 /* For CLI-like interpreters, print nothing. */
7720
7721 if (ui_out_is_mi_like_p (uiout))
7722 {
7723 ui_out_field_string (uiout, "reason",
7724 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7725 }
7726 }
7727
7728 void
7729 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7730 {
7731 annotate_signalled ();
7732 if (ui_out_is_mi_like_p (uiout))
7733 ui_out_field_string
7734 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7735 ui_out_text (uiout, "\nProgram terminated with signal ");
7736 annotate_signal_name ();
7737 ui_out_field_string (uiout, "signal-name",
7738 gdb_signal_to_name (siggnal));
7739 annotate_signal_name_end ();
7740 ui_out_text (uiout, ", ");
7741 annotate_signal_string ();
7742 ui_out_field_string (uiout, "signal-meaning",
7743 gdb_signal_to_string (siggnal));
7744 annotate_signal_string_end ();
7745 ui_out_text (uiout, ".\n");
7746 ui_out_text (uiout, "The program no longer exists.\n");
7747 }
7748
7749 void
7750 print_exited_reason (struct ui_out *uiout, int exitstatus)
7751 {
7752 struct inferior *inf = current_inferior ();
7753 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7754
7755 annotate_exited (exitstatus);
7756 if (exitstatus)
7757 {
7758 if (ui_out_is_mi_like_p (uiout))
7759 ui_out_field_string (uiout, "reason",
7760 async_reason_lookup (EXEC_ASYNC_EXITED));
7761 ui_out_text (uiout, "[Inferior ");
7762 ui_out_text (uiout, plongest (inf->num));
7763 ui_out_text (uiout, " (");
7764 ui_out_text (uiout, pidstr);
7765 ui_out_text (uiout, ") exited with code ");
7766 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7767 ui_out_text (uiout, "]\n");
7768 }
7769 else
7770 {
7771 if (ui_out_is_mi_like_p (uiout))
7772 ui_out_field_string
7773 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7774 ui_out_text (uiout, "[Inferior ");
7775 ui_out_text (uiout, plongest (inf->num));
7776 ui_out_text (uiout, " (");
7777 ui_out_text (uiout, pidstr);
7778 ui_out_text (uiout, ") exited normally]\n");
7779 }
7780 }
7781
7782 void
7783 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7784 {
7785 annotate_signal ();
7786
7787 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7788 {
7789 struct thread_info *t = inferior_thread ();
7790
7791 ui_out_text (uiout, "\n[");
7792 ui_out_field_string (uiout, "thread-name",
7793 target_pid_to_str (t->ptid));
7794 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7795 ui_out_text (uiout, " stopped");
7796 }
7797 else
7798 {
7799 ui_out_text (uiout, "\nProgram received signal ");
7800 annotate_signal_name ();
7801 if (ui_out_is_mi_like_p (uiout))
7802 ui_out_field_string
7803 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7804 ui_out_field_string (uiout, "signal-name",
7805 gdb_signal_to_name (siggnal));
7806 annotate_signal_name_end ();
7807 ui_out_text (uiout, ", ");
7808 annotate_signal_string ();
7809 ui_out_field_string (uiout, "signal-meaning",
7810 gdb_signal_to_string (siggnal));
7811 annotate_signal_string_end ();
7812 }
7813 ui_out_text (uiout, ".\n");
7814 }
7815
7816 void
7817 print_no_history_reason (struct ui_out *uiout)
7818 {
7819 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
7820 }
7821
7822 /* Print current location without a level number, if we have changed
7823 functions or hit a breakpoint. Print source line if we have one.
7824 bpstat_print contains the logic deciding in detail what to print,
7825 based on the event(s) that just occurred. */
7826
7827 static void
7828 print_stop_location (struct target_waitstatus *ws)
7829 {
7830 int bpstat_ret;
7831 enum print_what source_flag;
7832 int do_frame_printing = 1;
7833 struct thread_info *tp = inferior_thread ();
7834
7835 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7836 switch (bpstat_ret)
7837 {
7838 case PRINT_UNKNOWN:
7839 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7840 should) carry around the function and does (or should) use
7841 that when doing a frame comparison. */
7842 if (tp->control.stop_step
7843 && frame_id_eq (tp->control.step_frame_id,
7844 get_frame_id (get_current_frame ()))
7845 && tp->control.step_start_function == find_pc_function (stop_pc))
7846 {
7847 /* Finished step, just print source line. */
7848 source_flag = SRC_LINE;
7849 }
7850 else
7851 {
7852 /* Print location and source line. */
7853 source_flag = SRC_AND_LOC;
7854 }
7855 break;
7856 case PRINT_SRC_AND_LOC:
7857 /* Print location and source line. */
7858 source_flag = SRC_AND_LOC;
7859 break;
7860 case PRINT_SRC_ONLY:
7861 source_flag = SRC_LINE;
7862 break;
7863 case PRINT_NOTHING:
7864 /* Something bogus. */
7865 source_flag = SRC_LINE;
7866 do_frame_printing = 0;
7867 break;
7868 default:
7869 internal_error (__FILE__, __LINE__, _("Unknown value."));
7870 }
7871
7872 /* The behavior of this routine with respect to the source
7873 flag is:
7874 SRC_LINE: Print only source line
7875 LOCATION: Print only location
7876 SRC_AND_LOC: Print location and source line. */
7877 if (do_frame_printing)
7878 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7879 }
7880
7881 /* Cleanup that restores a previous current uiout. */
7882
7883 static void
7884 restore_current_uiout_cleanup (void *arg)
7885 {
7886 struct ui_out *saved_uiout = (struct ui_out *) arg;
7887
7888 current_uiout = saved_uiout;
7889 }
7890
7891 /* See infrun.h. */
7892
7893 void
7894 print_stop_event (struct ui_out *uiout)
7895 {
7896 struct cleanup *old_chain;
7897 struct target_waitstatus last;
7898 ptid_t last_ptid;
7899 struct thread_info *tp;
7900
7901 get_last_target_status (&last_ptid, &last);
7902
7903 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7904 current_uiout = uiout;
7905
7906 print_stop_location (&last);
7907
7908 /* Display the auto-display expressions. */
7909 do_displays ();
7910
7911 do_cleanups (old_chain);
7912
7913 tp = inferior_thread ();
7914 if (tp->thread_fsm != NULL
7915 && thread_fsm_finished_p (tp->thread_fsm))
7916 {
7917 struct return_value_info *rv;
7918
7919 rv = thread_fsm_return_value (tp->thread_fsm);
7920 if (rv != NULL)
7921 print_return_value (uiout, rv);
7922 }
7923 }
7924
7925 /* See infrun.h. */
7926
7927 void
7928 maybe_remove_breakpoints (void)
7929 {
7930 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7931 {
7932 if (remove_breakpoints ())
7933 {
7934 target_terminal_ours_for_output ();
7935 printf_filtered (_("Cannot remove breakpoints because "
7936 "program is no longer writable.\nFurther "
7937 "execution is probably impossible.\n"));
7938 }
7939 }
7940 }
7941
7942 /* The execution context that just caused a normal stop. */
7943
7944 struct stop_context
7945 {
7946 /* The stop ID. */
7947 ULONGEST stop_id;
7948
7949 /* The event PTID. */
7950
7951 ptid_t ptid;
7952
7953 /* If stopp for a thread event, this is the thread that caused the
7954 stop. */
7955 struct thread_info *thread;
7956
7957 /* The inferior that caused the stop. */
7958 int inf_num;
7959 };
7960
7961 /* Returns a new stop context. If stopped for a thread event, this
7962 takes a strong reference to the thread. */
7963
7964 static struct stop_context *
7965 save_stop_context (void)
7966 {
7967 struct stop_context *sc = XNEW (struct stop_context);
7968
7969 sc->stop_id = get_stop_id ();
7970 sc->ptid = inferior_ptid;
7971 sc->inf_num = current_inferior ()->num;
7972
7973 if (!ptid_equal (inferior_ptid, null_ptid))
7974 {
7975 /* Take a strong reference so that the thread can't be deleted
7976 yet. */
7977 sc->thread = inferior_thread ();
7978 sc->thread->refcount++;
7979 }
7980 else
7981 sc->thread = NULL;
7982
7983 return sc;
7984 }
7985
7986 /* Release a stop context previously created with save_stop_context.
7987 Releases the strong reference to the thread as well. */
7988
7989 static void
7990 release_stop_context_cleanup (void *arg)
7991 {
7992 struct stop_context *sc = (struct stop_context *) arg;
7993
7994 if (sc->thread != NULL)
7995 sc->thread->refcount--;
7996 xfree (sc);
7997 }
7998
7999 /* Return true if the current context no longer matches the saved stop
8000 context. */
8001
8002 static int
8003 stop_context_changed (struct stop_context *prev)
8004 {
8005 if (!ptid_equal (prev->ptid, inferior_ptid))
8006 return 1;
8007 if (prev->inf_num != current_inferior ()->num)
8008 return 1;
8009 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8010 return 1;
8011 if (get_stop_id () != prev->stop_id)
8012 return 1;
8013 return 0;
8014 }
8015
8016 /* See infrun.h. */
8017
8018 int
8019 normal_stop (void)
8020 {
8021 struct target_waitstatus last;
8022 ptid_t last_ptid;
8023 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8024 ptid_t pid_ptid;
8025
8026 get_last_target_status (&last_ptid, &last);
8027
8028 new_stop_id ();
8029
8030 /* If an exception is thrown from this point on, make sure to
8031 propagate GDB's knowledge of the executing state to the
8032 frontend/user running state. A QUIT is an easy exception to see
8033 here, so do this before any filtered output. */
8034 if (!non_stop)
8035 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8036 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8037 || last.kind == TARGET_WAITKIND_EXITED)
8038 {
8039 /* On some targets, we may still have live threads in the
8040 inferior when we get a process exit event. E.g., for
8041 "checkpoint", when the current checkpoint/fork exits,
8042 linux-fork.c automatically switches to another fork from
8043 within target_mourn_inferior. */
8044 if (!ptid_equal (inferior_ptid, null_ptid))
8045 {
8046 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8047 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8048 }
8049 }
8050 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8051 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8052
8053 /* As we're presenting a stop, and potentially removing breakpoints,
8054 update the thread list so we can tell whether there are threads
8055 running on the target. With target remote, for example, we can
8056 only learn about new threads when we explicitly update the thread
8057 list. Do this before notifying the interpreters about signal
8058 stops, end of stepping ranges, etc., so that the "new thread"
8059 output is emitted before e.g., "Program received signal FOO",
8060 instead of after. */
8061 update_thread_list ();
8062
8063 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8064 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8065
8066 /* As with the notification of thread events, we want to delay
8067 notifying the user that we've switched thread context until
8068 the inferior actually stops.
8069
8070 There's no point in saying anything if the inferior has exited.
8071 Note that SIGNALLED here means "exited with a signal", not
8072 "received a signal".
8073
8074 Also skip saying anything in non-stop mode. In that mode, as we
8075 don't want GDB to switch threads behind the user's back, to avoid
8076 races where the user is typing a command to apply to thread x,
8077 but GDB switches to thread y before the user finishes entering
8078 the command, fetch_inferior_event installs a cleanup to restore
8079 the current thread back to the thread the user had selected right
8080 after this event is handled, so we're not really switching, only
8081 informing of a stop. */
8082 if (!non_stop
8083 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8084 && target_has_execution
8085 && last.kind != TARGET_WAITKIND_SIGNALLED
8086 && last.kind != TARGET_WAITKIND_EXITED
8087 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8088 {
8089 target_terminal_ours_for_output ();
8090 printf_filtered (_("[Switching to %s]\n"),
8091 target_pid_to_str (inferior_ptid));
8092 annotate_thread_changed ();
8093 previous_inferior_ptid = inferior_ptid;
8094 }
8095
8096 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8097 {
8098 gdb_assert (sync_execution || !target_can_async_p ());
8099
8100 target_terminal_ours_for_output ();
8101 printf_filtered (_("No unwaited-for children left.\n"));
8102 }
8103
8104 /* Note: this depends on the update_thread_list call above. */
8105 maybe_remove_breakpoints ();
8106
8107 /* If an auto-display called a function and that got a signal,
8108 delete that auto-display to avoid an infinite recursion. */
8109
8110 if (stopped_by_random_signal)
8111 disable_current_display ();
8112
8113 target_terminal_ours ();
8114 async_enable_stdin ();
8115
8116 /* Let the user/frontend see the threads as stopped. */
8117 do_cleanups (old_chain);
8118
8119 /* Select innermost stack frame - i.e., current frame is frame 0,
8120 and current location is based on that. Handle the case where the
8121 dummy call is returning after being stopped. E.g. the dummy call
8122 previously hit a breakpoint. (If the dummy call returns
8123 normally, we won't reach here.) Do this before the stop hook is
8124 run, so that it doesn't get to see the temporary dummy frame,
8125 which is not where we'll present the stop. */
8126 if (has_stack_frames ())
8127 {
8128 if (stop_stack_dummy == STOP_STACK_DUMMY)
8129 {
8130 /* Pop the empty frame that contains the stack dummy. This
8131 also restores inferior state prior to the call (struct
8132 infcall_suspend_state). */
8133 struct frame_info *frame = get_current_frame ();
8134
8135 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8136 frame_pop (frame);
8137 /* frame_pop calls reinit_frame_cache as the last thing it
8138 does which means there's now no selected frame. */
8139 }
8140
8141 select_frame (get_current_frame ());
8142
8143 /* Set the current source location. */
8144 set_current_sal_from_frame (get_current_frame ());
8145 }
8146
8147 /* Look up the hook_stop and run it (CLI internally handles problem
8148 of stop_command's pre-hook not existing). */
8149 if (stop_command != NULL)
8150 {
8151 struct stop_context *saved_context = save_stop_context ();
8152 struct cleanup *old_chain
8153 = make_cleanup (release_stop_context_cleanup, saved_context);
8154
8155 catch_errors (hook_stop_stub, stop_command,
8156 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8157
8158 /* If the stop hook resumes the target, then there's no point in
8159 trying to notify about the previous stop; its context is
8160 gone. Likewise if the command switches thread or inferior --
8161 the observers would print a stop for the wrong
8162 thread/inferior. */
8163 if (stop_context_changed (saved_context))
8164 {
8165 do_cleanups (old_chain);
8166 return 1;
8167 }
8168 do_cleanups (old_chain);
8169 }
8170
8171 /* Notify observers about the stop. This is where the interpreters
8172 print the stop event. */
8173 if (!ptid_equal (inferior_ptid, null_ptid))
8174 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8175 stop_print_frame);
8176 else
8177 observer_notify_normal_stop (NULL, stop_print_frame);
8178
8179 annotate_stopped ();
8180
8181 if (target_has_execution)
8182 {
8183 if (last.kind != TARGET_WAITKIND_SIGNALLED
8184 && last.kind != TARGET_WAITKIND_EXITED)
8185 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8186 Delete any breakpoint that is to be deleted at the next stop. */
8187 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8188 }
8189
8190 /* Try to get rid of automatically added inferiors that are no
8191 longer needed. Keeping those around slows down things linearly.
8192 Note that this never removes the current inferior. */
8193 prune_inferiors ();
8194
8195 return 0;
8196 }
8197
8198 static int
8199 hook_stop_stub (void *cmd)
8200 {
8201 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8202 return (0);
8203 }
8204 \f
8205 int
8206 signal_stop_state (int signo)
8207 {
8208 return signal_stop[signo];
8209 }
8210
8211 int
8212 signal_print_state (int signo)
8213 {
8214 return signal_print[signo];
8215 }
8216
8217 int
8218 signal_pass_state (int signo)
8219 {
8220 return signal_program[signo];
8221 }
8222
8223 static void
8224 signal_cache_update (int signo)
8225 {
8226 if (signo == -1)
8227 {
8228 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8229 signal_cache_update (signo);
8230
8231 return;
8232 }
8233
8234 signal_pass[signo] = (signal_stop[signo] == 0
8235 && signal_print[signo] == 0
8236 && signal_program[signo] == 1
8237 && signal_catch[signo] == 0);
8238 }
8239
8240 int
8241 signal_stop_update (int signo, int state)
8242 {
8243 int ret = signal_stop[signo];
8244
8245 signal_stop[signo] = state;
8246 signal_cache_update (signo);
8247 return ret;
8248 }
8249
8250 int
8251 signal_print_update (int signo, int state)
8252 {
8253 int ret = signal_print[signo];
8254
8255 signal_print[signo] = state;
8256 signal_cache_update (signo);
8257 return ret;
8258 }
8259
8260 int
8261 signal_pass_update (int signo, int state)
8262 {
8263 int ret = signal_program[signo];
8264
8265 signal_program[signo] = state;
8266 signal_cache_update (signo);
8267 return ret;
8268 }
8269
8270 /* Update the global 'signal_catch' from INFO and notify the
8271 target. */
8272
8273 void
8274 signal_catch_update (const unsigned int *info)
8275 {
8276 int i;
8277
8278 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8279 signal_catch[i] = info[i] > 0;
8280 signal_cache_update (-1);
8281 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8282 }
8283
8284 static void
8285 sig_print_header (void)
8286 {
8287 printf_filtered (_("Signal Stop\tPrint\tPass "
8288 "to program\tDescription\n"));
8289 }
8290
8291 static void
8292 sig_print_info (enum gdb_signal oursig)
8293 {
8294 const char *name = gdb_signal_to_name (oursig);
8295 int name_padding = 13 - strlen (name);
8296
8297 if (name_padding <= 0)
8298 name_padding = 0;
8299
8300 printf_filtered ("%s", name);
8301 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8302 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8303 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8304 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8305 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8306 }
8307
8308 /* Specify how various signals in the inferior should be handled. */
8309
8310 static void
8311 handle_command (char *args, int from_tty)
8312 {
8313 char **argv;
8314 int digits, wordlen;
8315 int sigfirst, signum, siglast;
8316 enum gdb_signal oursig;
8317 int allsigs;
8318 int nsigs;
8319 unsigned char *sigs;
8320 struct cleanup *old_chain;
8321
8322 if (args == NULL)
8323 {
8324 error_no_arg (_("signal to handle"));
8325 }
8326
8327 /* Allocate and zero an array of flags for which signals to handle. */
8328
8329 nsigs = (int) GDB_SIGNAL_LAST;
8330 sigs = (unsigned char *) alloca (nsigs);
8331 memset (sigs, 0, nsigs);
8332
8333 /* Break the command line up into args. */
8334
8335 argv = gdb_buildargv (args);
8336 old_chain = make_cleanup_freeargv (argv);
8337
8338 /* Walk through the args, looking for signal oursigs, signal names, and
8339 actions. Signal numbers and signal names may be interspersed with
8340 actions, with the actions being performed for all signals cumulatively
8341 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8342
8343 while (*argv != NULL)
8344 {
8345 wordlen = strlen (*argv);
8346 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8347 {;
8348 }
8349 allsigs = 0;
8350 sigfirst = siglast = -1;
8351
8352 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8353 {
8354 /* Apply action to all signals except those used by the
8355 debugger. Silently skip those. */
8356 allsigs = 1;
8357 sigfirst = 0;
8358 siglast = nsigs - 1;
8359 }
8360 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8361 {
8362 SET_SIGS (nsigs, sigs, signal_stop);
8363 SET_SIGS (nsigs, sigs, signal_print);
8364 }
8365 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8366 {
8367 UNSET_SIGS (nsigs, sigs, signal_program);
8368 }
8369 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8370 {
8371 SET_SIGS (nsigs, sigs, signal_print);
8372 }
8373 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8374 {
8375 SET_SIGS (nsigs, sigs, signal_program);
8376 }
8377 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8378 {
8379 UNSET_SIGS (nsigs, sigs, signal_stop);
8380 }
8381 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8382 {
8383 SET_SIGS (nsigs, sigs, signal_program);
8384 }
8385 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8386 {
8387 UNSET_SIGS (nsigs, sigs, signal_print);
8388 UNSET_SIGS (nsigs, sigs, signal_stop);
8389 }
8390 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8391 {
8392 UNSET_SIGS (nsigs, sigs, signal_program);
8393 }
8394 else if (digits > 0)
8395 {
8396 /* It is numeric. The numeric signal refers to our own
8397 internal signal numbering from target.h, not to host/target
8398 signal number. This is a feature; users really should be
8399 using symbolic names anyway, and the common ones like
8400 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8401
8402 sigfirst = siglast = (int)
8403 gdb_signal_from_command (atoi (*argv));
8404 if ((*argv)[digits] == '-')
8405 {
8406 siglast = (int)
8407 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8408 }
8409 if (sigfirst > siglast)
8410 {
8411 /* Bet he didn't figure we'd think of this case... */
8412 signum = sigfirst;
8413 sigfirst = siglast;
8414 siglast = signum;
8415 }
8416 }
8417 else
8418 {
8419 oursig = gdb_signal_from_name (*argv);
8420 if (oursig != GDB_SIGNAL_UNKNOWN)
8421 {
8422 sigfirst = siglast = (int) oursig;
8423 }
8424 else
8425 {
8426 /* Not a number and not a recognized flag word => complain. */
8427 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8428 }
8429 }
8430
8431 /* If any signal numbers or symbol names were found, set flags for
8432 which signals to apply actions to. */
8433
8434 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8435 {
8436 switch ((enum gdb_signal) signum)
8437 {
8438 case GDB_SIGNAL_TRAP:
8439 case GDB_SIGNAL_INT:
8440 if (!allsigs && !sigs[signum])
8441 {
8442 if (query (_("%s is used by the debugger.\n\
8443 Are you sure you want to change it? "),
8444 gdb_signal_to_name ((enum gdb_signal) signum)))
8445 {
8446 sigs[signum] = 1;
8447 }
8448 else
8449 {
8450 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8451 gdb_flush (gdb_stdout);
8452 }
8453 }
8454 break;
8455 case GDB_SIGNAL_0:
8456 case GDB_SIGNAL_DEFAULT:
8457 case GDB_SIGNAL_UNKNOWN:
8458 /* Make sure that "all" doesn't print these. */
8459 break;
8460 default:
8461 sigs[signum] = 1;
8462 break;
8463 }
8464 }
8465
8466 argv++;
8467 }
8468
8469 for (signum = 0; signum < nsigs; signum++)
8470 if (sigs[signum])
8471 {
8472 signal_cache_update (-1);
8473 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8474 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8475
8476 if (from_tty)
8477 {
8478 /* Show the results. */
8479 sig_print_header ();
8480 for (; signum < nsigs; signum++)
8481 if (sigs[signum])
8482 sig_print_info ((enum gdb_signal) signum);
8483 }
8484
8485 break;
8486 }
8487
8488 do_cleanups (old_chain);
8489 }
8490
8491 /* Complete the "handle" command. */
8492
8493 static VEC (char_ptr) *
8494 handle_completer (struct cmd_list_element *ignore,
8495 const char *text, const char *word)
8496 {
8497 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8498 static const char * const keywords[] =
8499 {
8500 "all",
8501 "stop",
8502 "ignore",
8503 "print",
8504 "pass",
8505 "nostop",
8506 "noignore",
8507 "noprint",
8508 "nopass",
8509 NULL,
8510 };
8511
8512 vec_signals = signal_completer (ignore, text, word);
8513 vec_keywords = complete_on_enum (keywords, word, word);
8514
8515 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8516 VEC_free (char_ptr, vec_signals);
8517 VEC_free (char_ptr, vec_keywords);
8518 return return_val;
8519 }
8520
8521 enum gdb_signal
8522 gdb_signal_from_command (int num)
8523 {
8524 if (num >= 1 && num <= 15)
8525 return (enum gdb_signal) num;
8526 error (_("Only signals 1-15 are valid as numeric signals.\n\
8527 Use \"info signals\" for a list of symbolic signals."));
8528 }
8529
8530 /* Print current contents of the tables set by the handle command.
8531 It is possible we should just be printing signals actually used
8532 by the current target (but for things to work right when switching
8533 targets, all signals should be in the signal tables). */
8534
8535 static void
8536 signals_info (char *signum_exp, int from_tty)
8537 {
8538 enum gdb_signal oursig;
8539
8540 sig_print_header ();
8541
8542 if (signum_exp)
8543 {
8544 /* First see if this is a symbol name. */
8545 oursig = gdb_signal_from_name (signum_exp);
8546 if (oursig == GDB_SIGNAL_UNKNOWN)
8547 {
8548 /* No, try numeric. */
8549 oursig =
8550 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8551 }
8552 sig_print_info (oursig);
8553 return;
8554 }
8555
8556 printf_filtered ("\n");
8557 /* These ugly casts brought to you by the native VAX compiler. */
8558 for (oursig = GDB_SIGNAL_FIRST;
8559 (int) oursig < (int) GDB_SIGNAL_LAST;
8560 oursig = (enum gdb_signal) ((int) oursig + 1))
8561 {
8562 QUIT;
8563
8564 if (oursig != GDB_SIGNAL_UNKNOWN
8565 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8566 sig_print_info (oursig);
8567 }
8568
8569 printf_filtered (_("\nUse the \"handle\" command "
8570 "to change these tables.\n"));
8571 }
8572
8573 /* Check if it makes sense to read $_siginfo from the current thread
8574 at this point. If not, throw an error. */
8575
8576 static void
8577 validate_siginfo_access (void)
8578 {
8579 /* No current inferior, no siginfo. */
8580 if (ptid_equal (inferior_ptid, null_ptid))
8581 error (_("No thread selected."));
8582
8583 /* Don't try to read from a dead thread. */
8584 if (is_exited (inferior_ptid))
8585 error (_("The current thread has terminated"));
8586
8587 /* ... or from a spinning thread. */
8588 if (is_running (inferior_ptid))
8589 error (_("Selected thread is running."));
8590 }
8591
8592 /* The $_siginfo convenience variable is a bit special. We don't know
8593 for sure the type of the value until we actually have a chance to
8594 fetch the data. The type can change depending on gdbarch, so it is
8595 also dependent on which thread you have selected.
8596
8597 1. making $_siginfo be an internalvar that creates a new value on
8598 access.
8599
8600 2. making the value of $_siginfo be an lval_computed value. */
8601
8602 /* This function implements the lval_computed support for reading a
8603 $_siginfo value. */
8604
8605 static void
8606 siginfo_value_read (struct value *v)
8607 {
8608 LONGEST transferred;
8609
8610 validate_siginfo_access ();
8611
8612 transferred =
8613 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8614 NULL,
8615 value_contents_all_raw (v),
8616 value_offset (v),
8617 TYPE_LENGTH (value_type (v)));
8618
8619 if (transferred != TYPE_LENGTH (value_type (v)))
8620 error (_("Unable to read siginfo"));
8621 }
8622
8623 /* This function implements the lval_computed support for writing a
8624 $_siginfo value. */
8625
8626 static void
8627 siginfo_value_write (struct value *v, struct value *fromval)
8628 {
8629 LONGEST transferred;
8630
8631 validate_siginfo_access ();
8632
8633 transferred = target_write (&current_target,
8634 TARGET_OBJECT_SIGNAL_INFO,
8635 NULL,
8636 value_contents_all_raw (fromval),
8637 value_offset (v),
8638 TYPE_LENGTH (value_type (fromval)));
8639
8640 if (transferred != TYPE_LENGTH (value_type (fromval)))
8641 error (_("Unable to write siginfo"));
8642 }
8643
8644 static const struct lval_funcs siginfo_value_funcs =
8645 {
8646 siginfo_value_read,
8647 siginfo_value_write
8648 };
8649
8650 /* Return a new value with the correct type for the siginfo object of
8651 the current thread using architecture GDBARCH. Return a void value
8652 if there's no object available. */
8653
8654 static struct value *
8655 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8656 void *ignore)
8657 {
8658 if (target_has_stack
8659 && !ptid_equal (inferior_ptid, null_ptid)
8660 && gdbarch_get_siginfo_type_p (gdbarch))
8661 {
8662 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8663
8664 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8665 }
8666
8667 return allocate_value (builtin_type (gdbarch)->builtin_void);
8668 }
8669
8670 \f
8671 /* infcall_suspend_state contains state about the program itself like its
8672 registers and any signal it received when it last stopped.
8673 This state must be restored regardless of how the inferior function call
8674 ends (either successfully, or after it hits a breakpoint or signal)
8675 if the program is to properly continue where it left off. */
8676
8677 struct infcall_suspend_state
8678 {
8679 struct thread_suspend_state thread_suspend;
8680
8681 /* Other fields: */
8682 CORE_ADDR stop_pc;
8683 struct regcache *registers;
8684
8685 /* Format of SIGINFO_DATA or NULL if it is not present. */
8686 struct gdbarch *siginfo_gdbarch;
8687
8688 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8689 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8690 content would be invalid. */
8691 gdb_byte *siginfo_data;
8692 };
8693
8694 struct infcall_suspend_state *
8695 save_infcall_suspend_state (void)
8696 {
8697 struct infcall_suspend_state *inf_state;
8698 struct thread_info *tp = inferior_thread ();
8699 struct regcache *regcache = get_current_regcache ();
8700 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8701 gdb_byte *siginfo_data = NULL;
8702
8703 if (gdbarch_get_siginfo_type_p (gdbarch))
8704 {
8705 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8706 size_t len = TYPE_LENGTH (type);
8707 struct cleanup *back_to;
8708
8709 siginfo_data = (gdb_byte *) xmalloc (len);
8710 back_to = make_cleanup (xfree, siginfo_data);
8711
8712 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8713 siginfo_data, 0, len) == len)
8714 discard_cleanups (back_to);
8715 else
8716 {
8717 /* Errors ignored. */
8718 do_cleanups (back_to);
8719 siginfo_data = NULL;
8720 }
8721 }
8722
8723 inf_state = XCNEW (struct infcall_suspend_state);
8724
8725 if (siginfo_data)
8726 {
8727 inf_state->siginfo_gdbarch = gdbarch;
8728 inf_state->siginfo_data = siginfo_data;
8729 }
8730
8731 inf_state->thread_suspend = tp->suspend;
8732
8733 /* run_inferior_call will not use the signal due to its `proceed' call with
8734 GDB_SIGNAL_0 anyway. */
8735 tp->suspend.stop_signal = GDB_SIGNAL_0;
8736
8737 inf_state->stop_pc = stop_pc;
8738
8739 inf_state->registers = regcache_dup (regcache);
8740
8741 return inf_state;
8742 }
8743
8744 /* Restore inferior session state to INF_STATE. */
8745
8746 void
8747 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8748 {
8749 struct thread_info *tp = inferior_thread ();
8750 struct regcache *regcache = get_current_regcache ();
8751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8752
8753 tp->suspend = inf_state->thread_suspend;
8754
8755 stop_pc = inf_state->stop_pc;
8756
8757 if (inf_state->siginfo_gdbarch == gdbarch)
8758 {
8759 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8760
8761 /* Errors ignored. */
8762 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8763 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8764 }
8765
8766 /* The inferior can be gone if the user types "print exit(0)"
8767 (and perhaps other times). */
8768 if (target_has_execution)
8769 /* NB: The register write goes through to the target. */
8770 regcache_cpy (regcache, inf_state->registers);
8771
8772 discard_infcall_suspend_state (inf_state);
8773 }
8774
8775 static void
8776 do_restore_infcall_suspend_state_cleanup (void *state)
8777 {
8778 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8779 }
8780
8781 struct cleanup *
8782 make_cleanup_restore_infcall_suspend_state
8783 (struct infcall_suspend_state *inf_state)
8784 {
8785 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8786 }
8787
8788 void
8789 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8790 {
8791 regcache_xfree (inf_state->registers);
8792 xfree (inf_state->siginfo_data);
8793 xfree (inf_state);
8794 }
8795
8796 struct regcache *
8797 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8798 {
8799 return inf_state->registers;
8800 }
8801
8802 /* infcall_control_state contains state regarding gdb's control of the
8803 inferior itself like stepping control. It also contains session state like
8804 the user's currently selected frame. */
8805
8806 struct infcall_control_state
8807 {
8808 struct thread_control_state thread_control;
8809 struct inferior_control_state inferior_control;
8810
8811 /* Other fields: */
8812 enum stop_stack_kind stop_stack_dummy;
8813 int stopped_by_random_signal;
8814
8815 /* ID if the selected frame when the inferior function call was made. */
8816 struct frame_id selected_frame_id;
8817 };
8818
8819 /* Save all of the information associated with the inferior<==>gdb
8820 connection. */
8821
8822 struct infcall_control_state *
8823 save_infcall_control_state (void)
8824 {
8825 struct infcall_control_state *inf_status =
8826 XNEW (struct infcall_control_state);
8827 struct thread_info *tp = inferior_thread ();
8828 struct inferior *inf = current_inferior ();
8829
8830 inf_status->thread_control = tp->control;
8831 inf_status->inferior_control = inf->control;
8832
8833 tp->control.step_resume_breakpoint = NULL;
8834 tp->control.exception_resume_breakpoint = NULL;
8835
8836 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8837 chain. If caller's caller is walking the chain, they'll be happier if we
8838 hand them back the original chain when restore_infcall_control_state is
8839 called. */
8840 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8841
8842 /* Other fields: */
8843 inf_status->stop_stack_dummy = stop_stack_dummy;
8844 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8845
8846 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8847
8848 return inf_status;
8849 }
8850
8851 static int
8852 restore_selected_frame (void *args)
8853 {
8854 struct frame_id *fid = (struct frame_id *) args;
8855 struct frame_info *frame;
8856
8857 frame = frame_find_by_id (*fid);
8858
8859 /* If inf_status->selected_frame_id is NULL, there was no previously
8860 selected frame. */
8861 if (frame == NULL)
8862 {
8863 warning (_("Unable to restore previously selected frame."));
8864 return 0;
8865 }
8866
8867 select_frame (frame);
8868
8869 return (1);
8870 }
8871
8872 /* Restore inferior session state to INF_STATUS. */
8873
8874 void
8875 restore_infcall_control_state (struct infcall_control_state *inf_status)
8876 {
8877 struct thread_info *tp = inferior_thread ();
8878 struct inferior *inf = current_inferior ();
8879
8880 if (tp->control.step_resume_breakpoint)
8881 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8882
8883 if (tp->control.exception_resume_breakpoint)
8884 tp->control.exception_resume_breakpoint->disposition
8885 = disp_del_at_next_stop;
8886
8887 /* Handle the bpstat_copy of the chain. */
8888 bpstat_clear (&tp->control.stop_bpstat);
8889
8890 tp->control = inf_status->thread_control;
8891 inf->control = inf_status->inferior_control;
8892
8893 /* Other fields: */
8894 stop_stack_dummy = inf_status->stop_stack_dummy;
8895 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8896
8897 if (target_has_stack)
8898 {
8899 /* The point of catch_errors is that if the stack is clobbered,
8900 walking the stack might encounter a garbage pointer and
8901 error() trying to dereference it. */
8902 if (catch_errors
8903 (restore_selected_frame, &inf_status->selected_frame_id,
8904 "Unable to restore previously selected frame:\n",
8905 RETURN_MASK_ERROR) == 0)
8906 /* Error in restoring the selected frame. Select the innermost
8907 frame. */
8908 select_frame (get_current_frame ());
8909 }
8910
8911 xfree (inf_status);
8912 }
8913
8914 static void
8915 do_restore_infcall_control_state_cleanup (void *sts)
8916 {
8917 restore_infcall_control_state ((struct infcall_control_state *) sts);
8918 }
8919
8920 struct cleanup *
8921 make_cleanup_restore_infcall_control_state
8922 (struct infcall_control_state *inf_status)
8923 {
8924 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
8925 }
8926
8927 void
8928 discard_infcall_control_state (struct infcall_control_state *inf_status)
8929 {
8930 if (inf_status->thread_control.step_resume_breakpoint)
8931 inf_status->thread_control.step_resume_breakpoint->disposition
8932 = disp_del_at_next_stop;
8933
8934 if (inf_status->thread_control.exception_resume_breakpoint)
8935 inf_status->thread_control.exception_resume_breakpoint->disposition
8936 = disp_del_at_next_stop;
8937
8938 /* See save_infcall_control_state for info on stop_bpstat. */
8939 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8940
8941 xfree (inf_status);
8942 }
8943 \f
8944 /* restore_inferior_ptid() will be used by the cleanup machinery
8945 to restore the inferior_ptid value saved in a call to
8946 save_inferior_ptid(). */
8947
8948 static void
8949 restore_inferior_ptid (void *arg)
8950 {
8951 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
8952
8953 inferior_ptid = *saved_ptid_ptr;
8954 xfree (arg);
8955 }
8956
8957 /* Save the value of inferior_ptid so that it may be restored by a
8958 later call to do_cleanups(). Returns the struct cleanup pointer
8959 needed for later doing the cleanup. */
8960
8961 struct cleanup *
8962 save_inferior_ptid (void)
8963 {
8964 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
8965
8966 *saved_ptid_ptr = inferior_ptid;
8967 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8968 }
8969
8970 /* See infrun.h. */
8971
8972 void
8973 clear_exit_convenience_vars (void)
8974 {
8975 clear_internalvar (lookup_internalvar ("_exitsignal"));
8976 clear_internalvar (lookup_internalvar ("_exitcode"));
8977 }
8978 \f
8979
8980 /* User interface for reverse debugging:
8981 Set exec-direction / show exec-direction commands
8982 (returns error unless target implements to_set_exec_direction method). */
8983
8984 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8985 static const char exec_forward[] = "forward";
8986 static const char exec_reverse[] = "reverse";
8987 static const char *exec_direction = exec_forward;
8988 static const char *const exec_direction_names[] = {
8989 exec_forward,
8990 exec_reverse,
8991 NULL
8992 };
8993
8994 static void
8995 set_exec_direction_func (char *args, int from_tty,
8996 struct cmd_list_element *cmd)
8997 {
8998 if (target_can_execute_reverse)
8999 {
9000 if (!strcmp (exec_direction, exec_forward))
9001 execution_direction = EXEC_FORWARD;
9002 else if (!strcmp (exec_direction, exec_reverse))
9003 execution_direction = EXEC_REVERSE;
9004 }
9005 else
9006 {
9007 exec_direction = exec_forward;
9008 error (_("Target does not support this operation."));
9009 }
9010 }
9011
9012 static void
9013 show_exec_direction_func (struct ui_file *out, int from_tty,
9014 struct cmd_list_element *cmd, const char *value)
9015 {
9016 switch (execution_direction) {
9017 case EXEC_FORWARD:
9018 fprintf_filtered (out, _("Forward.\n"));
9019 break;
9020 case EXEC_REVERSE:
9021 fprintf_filtered (out, _("Reverse.\n"));
9022 break;
9023 default:
9024 internal_error (__FILE__, __LINE__,
9025 _("bogus execution_direction value: %d"),
9026 (int) execution_direction);
9027 }
9028 }
9029
9030 static void
9031 show_schedule_multiple (struct ui_file *file, int from_tty,
9032 struct cmd_list_element *c, const char *value)
9033 {
9034 fprintf_filtered (file, _("Resuming the execution of threads "
9035 "of all processes is %s.\n"), value);
9036 }
9037
9038 /* Implementation of `siginfo' variable. */
9039
9040 static const struct internalvar_funcs siginfo_funcs =
9041 {
9042 siginfo_make_value,
9043 NULL,
9044 NULL
9045 };
9046
9047 /* Callback for infrun's target events source. This is marked when a
9048 thread has a pending status to process. */
9049
9050 static void
9051 infrun_async_inferior_event_handler (gdb_client_data data)
9052 {
9053 inferior_event_handler (INF_REG_EVENT, NULL);
9054 }
9055
9056 void
9057 _initialize_infrun (void)
9058 {
9059 int i;
9060 int numsigs;
9061 struct cmd_list_element *c;
9062
9063 /* Register extra event sources in the event loop. */
9064 infrun_async_inferior_event_token
9065 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9066
9067 add_info ("signals", signals_info, _("\
9068 What debugger does when program gets various signals.\n\
9069 Specify a signal as argument to print info on that signal only."));
9070 add_info_alias ("handle", "signals", 0);
9071
9072 c = add_com ("handle", class_run, handle_command, _("\
9073 Specify how to handle signals.\n\
9074 Usage: handle SIGNAL [ACTIONS]\n\
9075 Args are signals and actions to apply to those signals.\n\
9076 If no actions are specified, the current settings for the specified signals\n\
9077 will be displayed instead.\n\
9078 \n\
9079 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9080 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9081 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9082 The special arg \"all\" is recognized to mean all signals except those\n\
9083 used by the debugger, typically SIGTRAP and SIGINT.\n\
9084 \n\
9085 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9086 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9087 Stop means reenter debugger if this signal happens (implies print).\n\
9088 Print means print a message if this signal happens.\n\
9089 Pass means let program see this signal; otherwise program doesn't know.\n\
9090 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9091 Pass and Stop may be combined.\n\
9092 \n\
9093 Multiple signals may be specified. Signal numbers and signal names\n\
9094 may be interspersed with actions, with the actions being performed for\n\
9095 all signals cumulatively specified."));
9096 set_cmd_completer (c, handle_completer);
9097
9098 if (!dbx_commands)
9099 stop_command = add_cmd ("stop", class_obscure,
9100 not_just_help_class_command, _("\
9101 There is no `stop' command, but you can set a hook on `stop'.\n\
9102 This allows you to set a list of commands to be run each time execution\n\
9103 of the program stops."), &cmdlist);
9104
9105 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9106 Set inferior debugging."), _("\
9107 Show inferior debugging."), _("\
9108 When non-zero, inferior specific debugging is enabled."),
9109 NULL,
9110 show_debug_infrun,
9111 &setdebuglist, &showdebuglist);
9112
9113 add_setshow_boolean_cmd ("displaced", class_maintenance,
9114 &debug_displaced, _("\
9115 Set displaced stepping debugging."), _("\
9116 Show displaced stepping debugging."), _("\
9117 When non-zero, displaced stepping specific debugging is enabled."),
9118 NULL,
9119 show_debug_displaced,
9120 &setdebuglist, &showdebuglist);
9121
9122 add_setshow_boolean_cmd ("non-stop", no_class,
9123 &non_stop_1, _("\
9124 Set whether gdb controls the inferior in non-stop mode."), _("\
9125 Show whether gdb controls the inferior in non-stop mode."), _("\
9126 When debugging a multi-threaded program and this setting is\n\
9127 off (the default, also called all-stop mode), when one thread stops\n\
9128 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9129 all other threads in the program while you interact with the thread of\n\
9130 interest. When you continue or step a thread, you can allow the other\n\
9131 threads to run, or have them remain stopped, but while you inspect any\n\
9132 thread's state, all threads stop.\n\
9133 \n\
9134 In non-stop mode, when one thread stops, other threads can continue\n\
9135 to run freely. You'll be able to step each thread independently,\n\
9136 leave it stopped or free to run as needed."),
9137 set_non_stop,
9138 show_non_stop,
9139 &setlist,
9140 &showlist);
9141
9142 numsigs = (int) GDB_SIGNAL_LAST;
9143 signal_stop = XNEWVEC (unsigned char, numsigs);
9144 signal_print = XNEWVEC (unsigned char, numsigs);
9145 signal_program = XNEWVEC (unsigned char, numsigs);
9146 signal_catch = XNEWVEC (unsigned char, numsigs);
9147 signal_pass = XNEWVEC (unsigned char, numsigs);
9148 for (i = 0; i < numsigs; i++)
9149 {
9150 signal_stop[i] = 1;
9151 signal_print[i] = 1;
9152 signal_program[i] = 1;
9153 signal_catch[i] = 0;
9154 }
9155
9156 /* Signals caused by debugger's own actions should not be given to
9157 the program afterwards.
9158
9159 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9160 explicitly specifies that it should be delivered to the target
9161 program. Typically, that would occur when a user is debugging a
9162 target monitor on a simulator: the target monitor sets a
9163 breakpoint; the simulator encounters this breakpoint and halts
9164 the simulation handing control to GDB; GDB, noting that the stop
9165 address doesn't map to any known breakpoint, returns control back
9166 to the simulator; the simulator then delivers the hardware
9167 equivalent of a GDB_SIGNAL_TRAP to the program being
9168 debugged. */
9169 signal_program[GDB_SIGNAL_TRAP] = 0;
9170 signal_program[GDB_SIGNAL_INT] = 0;
9171
9172 /* Signals that are not errors should not normally enter the debugger. */
9173 signal_stop[GDB_SIGNAL_ALRM] = 0;
9174 signal_print[GDB_SIGNAL_ALRM] = 0;
9175 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9176 signal_print[GDB_SIGNAL_VTALRM] = 0;
9177 signal_stop[GDB_SIGNAL_PROF] = 0;
9178 signal_print[GDB_SIGNAL_PROF] = 0;
9179 signal_stop[GDB_SIGNAL_CHLD] = 0;
9180 signal_print[GDB_SIGNAL_CHLD] = 0;
9181 signal_stop[GDB_SIGNAL_IO] = 0;
9182 signal_print[GDB_SIGNAL_IO] = 0;
9183 signal_stop[GDB_SIGNAL_POLL] = 0;
9184 signal_print[GDB_SIGNAL_POLL] = 0;
9185 signal_stop[GDB_SIGNAL_URG] = 0;
9186 signal_print[GDB_SIGNAL_URG] = 0;
9187 signal_stop[GDB_SIGNAL_WINCH] = 0;
9188 signal_print[GDB_SIGNAL_WINCH] = 0;
9189 signal_stop[GDB_SIGNAL_PRIO] = 0;
9190 signal_print[GDB_SIGNAL_PRIO] = 0;
9191
9192 /* These signals are used internally by user-level thread
9193 implementations. (See signal(5) on Solaris.) Like the above
9194 signals, a healthy program receives and handles them as part of
9195 its normal operation. */
9196 signal_stop[GDB_SIGNAL_LWP] = 0;
9197 signal_print[GDB_SIGNAL_LWP] = 0;
9198 signal_stop[GDB_SIGNAL_WAITING] = 0;
9199 signal_print[GDB_SIGNAL_WAITING] = 0;
9200 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9201 signal_print[GDB_SIGNAL_CANCEL] = 0;
9202
9203 /* Update cached state. */
9204 signal_cache_update (-1);
9205
9206 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9207 &stop_on_solib_events, _("\
9208 Set stopping for shared library events."), _("\
9209 Show stopping for shared library events."), _("\
9210 If nonzero, gdb will give control to the user when the dynamic linker\n\
9211 notifies gdb of shared library events. The most common event of interest\n\
9212 to the user would be loading/unloading of a new library."),
9213 set_stop_on_solib_events,
9214 show_stop_on_solib_events,
9215 &setlist, &showlist);
9216
9217 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9218 follow_fork_mode_kind_names,
9219 &follow_fork_mode_string, _("\
9220 Set debugger response to a program call of fork or vfork."), _("\
9221 Show debugger response to a program call of fork or vfork."), _("\
9222 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9223 parent - the original process is debugged after a fork\n\
9224 child - the new process is debugged after a fork\n\
9225 The unfollowed process will continue to run.\n\
9226 By default, the debugger will follow the parent process."),
9227 NULL,
9228 show_follow_fork_mode_string,
9229 &setlist, &showlist);
9230
9231 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9232 follow_exec_mode_names,
9233 &follow_exec_mode_string, _("\
9234 Set debugger response to a program call of exec."), _("\
9235 Show debugger response to a program call of exec."), _("\
9236 An exec call replaces the program image of a process.\n\
9237 \n\
9238 follow-exec-mode can be:\n\
9239 \n\
9240 new - the debugger creates a new inferior and rebinds the process\n\
9241 to this new inferior. The program the process was running before\n\
9242 the exec call can be restarted afterwards by restarting the original\n\
9243 inferior.\n\
9244 \n\
9245 same - the debugger keeps the process bound to the same inferior.\n\
9246 The new executable image replaces the previous executable loaded in\n\
9247 the inferior. Restarting the inferior after the exec call restarts\n\
9248 the executable the process was running after the exec call.\n\
9249 \n\
9250 By default, the debugger will use the same inferior."),
9251 NULL,
9252 show_follow_exec_mode_string,
9253 &setlist, &showlist);
9254
9255 add_setshow_enum_cmd ("scheduler-locking", class_run,
9256 scheduler_enums, &scheduler_mode, _("\
9257 Set mode for locking scheduler during execution."), _("\
9258 Show mode for locking scheduler during execution."), _("\
9259 off == no locking (threads may preempt at any time)\n\
9260 on == full locking (no thread except the current thread may run)\n\
9261 This applies to both normal execution and replay mode.\n\
9262 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9263 In this mode, other threads may run during other commands.\n\
9264 This applies to both normal execution and replay mode.\n\
9265 replay == scheduler locked in replay mode and unlocked during normal execution."),
9266 set_schedlock_func, /* traps on target vector */
9267 show_scheduler_mode,
9268 &setlist, &showlist);
9269
9270 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9271 Set mode for resuming threads of all processes."), _("\
9272 Show mode for resuming threads of all processes."), _("\
9273 When on, execution commands (such as 'continue' or 'next') resume all\n\
9274 threads of all processes. When off (which is the default), execution\n\
9275 commands only resume the threads of the current process. The set of\n\
9276 threads that are resumed is further refined by the scheduler-locking\n\
9277 mode (see help set scheduler-locking)."),
9278 NULL,
9279 show_schedule_multiple,
9280 &setlist, &showlist);
9281
9282 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9283 Set mode of the step operation."), _("\
9284 Show mode of the step operation."), _("\
9285 When set, doing a step over a function without debug line information\n\
9286 will stop at the first instruction of that function. Otherwise, the\n\
9287 function is skipped and the step command stops at a different source line."),
9288 NULL,
9289 show_step_stop_if_no_debug,
9290 &setlist, &showlist);
9291
9292 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9293 &can_use_displaced_stepping, _("\
9294 Set debugger's willingness to use displaced stepping."), _("\
9295 Show debugger's willingness to use displaced stepping."), _("\
9296 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9297 supported by the target architecture. If off, gdb will not use displaced\n\
9298 stepping to step over breakpoints, even if such is supported by the target\n\
9299 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9300 if the target architecture supports it and non-stop mode is active, but will not\n\
9301 use it in all-stop mode (see help set non-stop)."),
9302 NULL,
9303 show_can_use_displaced_stepping,
9304 &setlist, &showlist);
9305
9306 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9307 &exec_direction, _("Set direction of execution.\n\
9308 Options are 'forward' or 'reverse'."),
9309 _("Show direction of execution (forward/reverse)."),
9310 _("Tells gdb whether to execute forward or backward."),
9311 set_exec_direction_func, show_exec_direction_func,
9312 &setlist, &showlist);
9313
9314 /* Set/show detach-on-fork: user-settable mode. */
9315
9316 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9317 Set whether gdb will detach the child of a fork."), _("\
9318 Show whether gdb will detach the child of a fork."), _("\
9319 Tells gdb whether to detach the child of a fork."),
9320 NULL, NULL, &setlist, &showlist);
9321
9322 /* Set/show disable address space randomization mode. */
9323
9324 add_setshow_boolean_cmd ("disable-randomization", class_support,
9325 &disable_randomization, _("\
9326 Set disabling of debuggee's virtual address space randomization."), _("\
9327 Show disabling of debuggee's virtual address space randomization."), _("\
9328 When this mode is on (which is the default), randomization of the virtual\n\
9329 address space is disabled. Standalone programs run with the randomization\n\
9330 enabled by default on some platforms."),
9331 &set_disable_randomization,
9332 &show_disable_randomization,
9333 &setlist, &showlist);
9334
9335 /* ptid initializations */
9336 inferior_ptid = null_ptid;
9337 target_last_wait_ptid = minus_one_ptid;
9338
9339 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9340 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9341 observer_attach_thread_exit (infrun_thread_thread_exit);
9342 observer_attach_inferior_exit (infrun_inferior_exit);
9343
9344 /* Explicitly create without lookup, since that tries to create a
9345 value with a void typed value, and when we get here, gdbarch
9346 isn't initialized yet. At this point, we're quite sure there
9347 isn't another convenience variable of the same name. */
9348 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9349
9350 add_setshow_boolean_cmd ("observer", no_class,
9351 &observer_mode_1, _("\
9352 Set whether gdb controls the inferior in observer mode."), _("\
9353 Show whether gdb controls the inferior in observer mode."), _("\
9354 In observer mode, GDB can get data from the inferior, but not\n\
9355 affect its execution. Registers and memory may not be changed,\n\
9356 breakpoints may not be set, and the program cannot be interrupted\n\
9357 or signalled."),
9358 set_observer_mode,
9359 show_observer_mode,
9360 &setlist,
9361 &showlist);
9362 }
This page took 0.207106 seconds and 5 git commands to generate.