2011-05-20 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "dictionary.h"
49 #include "block.h"
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52 #include "event-top.h"
53 #include "record.h"
54 #include "inline-frame.h"
55 #include "jit.h"
56 #include "tracepoint.h"
57
58 /* Prototypes for local functions */
59
60 static void signals_info (char *, int);
61
62 static void handle_command (char *, int);
63
64 static void sig_print_info (enum target_signal);
65
66 static void sig_print_header (void);
67
68 static void resume_cleanups (void *);
69
70 static int hook_stop_stub (void *);
71
72 static int restore_selected_frame (void *);
73
74 static int follow_fork (void);
75
76 static void set_schedlock_func (char *args, int from_tty,
77 struct cmd_list_element *c);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
82 void *data);
83
84 static void xdb_handle_command (char *args, int from_tty);
85
86 static int prepare_to_proceed (int);
87
88 static void print_exited_reason (int exitstatus);
89
90 static void print_signal_exited_reason (enum target_signal siggnal);
91
92 static void print_no_history_reason (void);
93
94 static void print_signal_received_reason (enum target_signal siggnal);
95
96 static void print_end_stepping_range_reason (void);
97
98 void _initialize_infrun (void);
99
100 void nullify_last_target_wait_ptid (void);
101
102 static void insert_step_resume_breakpoint_at_frame (struct frame_info *);
103
104 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
105
106 static void insert_step_resume_breakpoint_at_sal (struct gdbarch *,
107 struct symtab_and_line ,
108 struct frame_id);
109
110 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
111
112 /* When set, stop the 'step' command if we enter a function which has
113 no line number information. The normal behavior is that we step
114 over such function. */
115 int step_stop_if_no_debug = 0;
116 static void
117 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
121 }
122
123 /* In asynchronous mode, but simulating synchronous execution. */
124
125 int sync_execution = 0;
126
127 /* wait_for_inferior and normal_stop use this to notify the user
128 when the inferior stopped in a different thread than it had been
129 running in. */
130
131 static ptid_t previous_inferior_ptid;
132
133 /* Default behavior is to detach newly forked processes (legacy). */
134 int detach_fork = 1;
135
136 int debug_displaced = 0;
137 static void
138 show_debug_displaced (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140 {
141 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
142 }
143
144 int debug_infrun = 0;
145 static void
146 show_debug_infrun (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
150 }
151
152 /* If the program uses ELF-style shared libraries, then calls to
153 functions in shared libraries go through stubs, which live in a
154 table called the PLT (Procedure Linkage Table). The first time the
155 function is called, the stub sends control to the dynamic linker,
156 which looks up the function's real address, patches the stub so
157 that future calls will go directly to the function, and then passes
158 control to the function.
159
160 If we are stepping at the source level, we don't want to see any of
161 this --- we just want to skip over the stub and the dynamic linker.
162 The simple approach is to single-step until control leaves the
163 dynamic linker.
164
165 However, on some systems (e.g., Red Hat's 5.2 distribution) the
166 dynamic linker calls functions in the shared C library, so you
167 can't tell from the PC alone whether the dynamic linker is still
168 running. In this case, we use a step-resume breakpoint to get us
169 past the dynamic linker, as if we were using "next" to step over a
170 function call.
171
172 in_solib_dynsym_resolve_code() says whether we're in the dynamic
173 linker code or not. Normally, this means we single-step. However,
174 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
175 address where we can place a step-resume breakpoint to get past the
176 linker's symbol resolution function.
177
178 in_solib_dynsym_resolve_code() can generally be implemented in a
179 pretty portable way, by comparing the PC against the address ranges
180 of the dynamic linker's sections.
181
182 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
183 it depends on internal details of the dynamic linker. It's usually
184 not too hard to figure out where to put a breakpoint, but it
185 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
186 sanity checking. If it can't figure things out, returning zero and
187 getting the (possibly confusing) stepping behavior is better than
188 signalling an error, which will obscure the change in the
189 inferior's state. */
190
191 /* This function returns TRUE if pc is the address of an instruction
192 that lies within the dynamic linker (such as the event hook, or the
193 dld itself).
194
195 This function must be used only when a dynamic linker event has
196 been caught, and the inferior is being stepped out of the hook, or
197 undefined results are guaranteed. */
198
199 #ifndef SOLIB_IN_DYNAMIC_LINKER
200 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
201 #endif
202
203 /* "Observer mode" is somewhat like a more extreme version of
204 non-stop, in which all GDB operations that might affect the
205 target's execution have been disabled. */
206
207 static int non_stop_1 = 0;
208
209 int observer_mode = 0;
210 static int observer_mode_1 = 0;
211
212 static void
213 set_observer_mode (char *args, int from_tty,
214 struct cmd_list_element *c)
215 {
216 extern int pagination_enabled;
217
218 if (target_has_execution)
219 {
220 observer_mode_1 = observer_mode;
221 error (_("Cannot change this setting while the inferior is running."));
222 }
223
224 observer_mode = observer_mode_1;
225
226 may_write_registers = !observer_mode;
227 may_write_memory = !observer_mode;
228 may_insert_breakpoints = !observer_mode;
229 may_insert_tracepoints = !observer_mode;
230 /* We can insert fast tracepoints in or out of observer mode,
231 but enable them if we're going into this mode. */
232 if (observer_mode)
233 may_insert_fast_tracepoints = 1;
234 may_stop = !observer_mode;
235 update_target_permissions ();
236
237 /* Going *into* observer mode we must force non-stop, then
238 going out we leave it that way. */
239 if (observer_mode)
240 {
241 target_async_permitted = 1;
242 pagination_enabled = 0;
243 non_stop = non_stop_1 = 1;
244 }
245
246 if (from_tty)
247 printf_filtered (_("Observer mode is now %s.\n"),
248 (observer_mode ? "on" : "off"));
249 }
250
251 static void
252 show_observer_mode (struct ui_file *file, int from_tty,
253 struct cmd_list_element *c, const char *value)
254 {
255 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
256 }
257
258 /* This updates the value of observer mode based on changes in
259 permissions. Note that we are deliberately ignoring the values of
260 may-write-registers and may-write-memory, since the user may have
261 reason to enable these during a session, for instance to turn on a
262 debugging-related global. */
263
264 void
265 update_observer_mode (void)
266 {
267 int newval;
268
269 newval = (!may_insert_breakpoints
270 && !may_insert_tracepoints
271 && may_insert_fast_tracepoints
272 && !may_stop
273 && non_stop);
274
275 /* Let the user know if things change. */
276 if (newval != observer_mode)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (newval ? "on" : "off"));
279
280 observer_mode = observer_mode_1 = newval;
281 }
282
283 /* Tables of how to react to signals; the user sets them. */
284
285 static unsigned char *signal_stop;
286 static unsigned char *signal_print;
287 static unsigned char *signal_program;
288
289 /* Table of signals that the target may silently handle.
290 This is automatically determined from the flags above,
291 and simply cached here. */
292 static unsigned char *signal_pass;
293
294 #define SET_SIGS(nsigs,sigs,flags) \
295 do { \
296 int signum = (nsigs); \
297 while (signum-- > 0) \
298 if ((sigs)[signum]) \
299 (flags)[signum] = 1; \
300 } while (0)
301
302 #define UNSET_SIGS(nsigs,sigs,flags) \
303 do { \
304 int signum = (nsigs); \
305 while (signum-- > 0) \
306 if ((sigs)[signum]) \
307 (flags)[signum] = 0; \
308 } while (0)
309
310 /* Value to pass to target_resume() to cause all threads to resume. */
311
312 #define RESUME_ALL minus_one_ptid
313
314 /* Command list pointer for the "stop" placeholder. */
315
316 static struct cmd_list_element *stop_command;
317
318 /* Function inferior was in as of last step command. */
319
320 static struct symbol *step_start_function;
321
322 /* Nonzero if we want to give control to the user when we're notified
323 of shared library events by the dynamic linker. */
324 int stop_on_solib_events;
325 static void
326 show_stop_on_solib_events (struct ui_file *file, int from_tty,
327 struct cmd_list_element *c, const char *value)
328 {
329 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
330 value);
331 }
332
333 /* Nonzero means expecting a trace trap
334 and should stop the inferior and return silently when it happens. */
335
336 int stop_after_trap;
337
338 /* Save register contents here when executing a "finish" command or are
339 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
340 Thus this contains the return value from the called function (assuming
341 values are returned in a register). */
342
343 struct regcache *stop_registers;
344
345 /* Nonzero after stop if current stack frame should be printed. */
346
347 static int stop_print_frame;
348
349 /* This is a cached copy of the pid/waitstatus of the last event
350 returned by target_wait()/deprecated_target_wait_hook(). This
351 information is returned by get_last_target_status(). */
352 static ptid_t target_last_wait_ptid;
353 static struct target_waitstatus target_last_waitstatus;
354
355 static void context_switch (ptid_t ptid);
356
357 void init_thread_stepping_state (struct thread_info *tss);
358
359 void init_infwait_state (void);
360
361 static const char follow_fork_mode_child[] = "child";
362 static const char follow_fork_mode_parent[] = "parent";
363
364 static const char *follow_fork_mode_kind_names[] = {
365 follow_fork_mode_child,
366 follow_fork_mode_parent,
367 NULL
368 };
369
370 static const char *follow_fork_mode_string = follow_fork_mode_parent;
371 static void
372 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374 {
375 fprintf_filtered (file,
376 _("Debugger response to a program "
377 "call of fork or vfork is \"%s\".\n"),
378 value);
379 }
380 \f
381
382 /* Tell the target to follow the fork we're stopped at. Returns true
383 if the inferior should be resumed; false, if the target for some
384 reason decided it's best not to resume. */
385
386 static int
387 follow_fork (void)
388 {
389 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
390 int should_resume = 1;
391 struct thread_info *tp;
392
393 /* Copy user stepping state to the new inferior thread. FIXME: the
394 followed fork child thread should have a copy of most of the
395 parent thread structure's run control related fields, not just these.
396 Initialized to avoid "may be used uninitialized" warnings from gcc. */
397 struct breakpoint *step_resume_breakpoint = NULL;
398 struct breakpoint *exception_resume_breakpoint = NULL;
399 CORE_ADDR step_range_start = 0;
400 CORE_ADDR step_range_end = 0;
401 struct frame_id step_frame_id = { 0 };
402
403 if (!non_stop)
404 {
405 ptid_t wait_ptid;
406 struct target_waitstatus wait_status;
407
408 /* Get the last target status returned by target_wait(). */
409 get_last_target_status (&wait_ptid, &wait_status);
410
411 /* If not stopped at a fork event, then there's nothing else to
412 do. */
413 if (wait_status.kind != TARGET_WAITKIND_FORKED
414 && wait_status.kind != TARGET_WAITKIND_VFORKED)
415 return 1;
416
417 /* Check if we switched over from WAIT_PTID, since the event was
418 reported. */
419 if (!ptid_equal (wait_ptid, minus_one_ptid)
420 && !ptid_equal (inferior_ptid, wait_ptid))
421 {
422 /* We did. Switch back to WAIT_PTID thread, to tell the
423 target to follow it (in either direction). We'll
424 afterwards refuse to resume, and inform the user what
425 happened. */
426 switch_to_thread (wait_ptid);
427 should_resume = 0;
428 }
429 }
430
431 tp = inferior_thread ();
432
433 /* If there were any forks/vforks that were caught and are now to be
434 followed, then do so now. */
435 switch (tp->pending_follow.kind)
436 {
437 case TARGET_WAITKIND_FORKED:
438 case TARGET_WAITKIND_VFORKED:
439 {
440 ptid_t parent, child;
441
442 /* If the user did a next/step, etc, over a fork call,
443 preserve the stepping state in the fork child. */
444 if (follow_child && should_resume)
445 {
446 step_resume_breakpoint = clone_momentary_breakpoint
447 (tp->control.step_resume_breakpoint);
448 step_range_start = tp->control.step_range_start;
449 step_range_end = tp->control.step_range_end;
450 step_frame_id = tp->control.step_frame_id;
451 exception_resume_breakpoint
452 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
453
454 /* For now, delete the parent's sr breakpoint, otherwise,
455 parent/child sr breakpoints are considered duplicates,
456 and the child version will not be installed. Remove
457 this when the breakpoints module becomes aware of
458 inferiors and address spaces. */
459 delete_step_resume_breakpoint (tp);
460 tp->control.step_range_start = 0;
461 tp->control.step_range_end = 0;
462 tp->control.step_frame_id = null_frame_id;
463 delete_exception_resume_breakpoint (tp);
464 }
465
466 parent = inferior_ptid;
467 child = tp->pending_follow.value.related_pid;
468
469 /* Tell the target to do whatever is necessary to follow
470 either parent or child. */
471 if (target_follow_fork (follow_child))
472 {
473 /* Target refused to follow, or there's some other reason
474 we shouldn't resume. */
475 should_resume = 0;
476 }
477 else
478 {
479 /* This pending follow fork event is now handled, one way
480 or another. The previous selected thread may be gone
481 from the lists by now, but if it is still around, need
482 to clear the pending follow request. */
483 tp = find_thread_ptid (parent);
484 if (tp)
485 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
486
487 /* This makes sure we don't try to apply the "Switched
488 over from WAIT_PID" logic above. */
489 nullify_last_target_wait_ptid ();
490
491 /* If we followed the child, switch to it... */
492 if (follow_child)
493 {
494 switch_to_thread (child);
495
496 /* ... and preserve the stepping state, in case the
497 user was stepping over the fork call. */
498 if (should_resume)
499 {
500 tp = inferior_thread ();
501 tp->control.step_resume_breakpoint
502 = step_resume_breakpoint;
503 tp->control.step_range_start = step_range_start;
504 tp->control.step_range_end = step_range_end;
505 tp->control.step_frame_id = step_frame_id;
506 tp->control.exception_resume_breakpoint
507 = exception_resume_breakpoint;
508 }
509 else
510 {
511 /* If we get here, it was because we're trying to
512 resume from a fork catchpoint, but, the user
513 has switched threads away from the thread that
514 forked. In that case, the resume command
515 issued is most likely not applicable to the
516 child, so just warn, and refuse to resume. */
517 warning (_("Not resuming: switched threads "
518 "before following fork child.\n"));
519 }
520
521 /* Reset breakpoints in the child as appropriate. */
522 follow_inferior_reset_breakpoints ();
523 }
524 else
525 switch_to_thread (parent);
526 }
527 }
528 break;
529 case TARGET_WAITKIND_SPURIOUS:
530 /* Nothing to follow. */
531 break;
532 default:
533 internal_error (__FILE__, __LINE__,
534 "Unexpected pending_follow.kind %d\n",
535 tp->pending_follow.kind);
536 break;
537 }
538
539 return should_resume;
540 }
541
542 void
543 follow_inferior_reset_breakpoints (void)
544 {
545 struct thread_info *tp = inferior_thread ();
546
547 /* Was there a step_resume breakpoint? (There was if the user
548 did a "next" at the fork() call.) If so, explicitly reset its
549 thread number.
550
551 step_resumes are a form of bp that are made to be per-thread.
552 Since we created the step_resume bp when the parent process
553 was being debugged, and now are switching to the child process,
554 from the breakpoint package's viewpoint, that's a switch of
555 "threads". We must update the bp's notion of which thread
556 it is for, or it'll be ignored when it triggers. */
557
558 if (tp->control.step_resume_breakpoint)
559 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
560
561 if (tp->control.exception_resume_breakpoint)
562 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
563
564 /* Reinsert all breakpoints in the child. The user may have set
565 breakpoints after catching the fork, in which case those
566 were never set in the child, but only in the parent. This makes
567 sure the inserted breakpoints match the breakpoint list. */
568
569 breakpoint_re_set ();
570 insert_breakpoints ();
571 }
572
573 /* The child has exited or execed: resume threads of the parent the
574 user wanted to be executing. */
575
576 static int
577 proceed_after_vfork_done (struct thread_info *thread,
578 void *arg)
579 {
580 int pid = * (int *) arg;
581
582 if (ptid_get_pid (thread->ptid) == pid
583 && is_running (thread->ptid)
584 && !is_executing (thread->ptid)
585 && !thread->stop_requested
586 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
587 {
588 if (debug_infrun)
589 fprintf_unfiltered (gdb_stdlog,
590 "infrun: resuming vfork parent thread %s\n",
591 target_pid_to_str (thread->ptid));
592
593 switch_to_thread (thread->ptid);
594 clear_proceed_status ();
595 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
596 }
597
598 return 0;
599 }
600
601 /* Called whenever we notice an exec or exit event, to handle
602 detaching or resuming a vfork parent. */
603
604 static void
605 handle_vfork_child_exec_or_exit (int exec)
606 {
607 struct inferior *inf = current_inferior ();
608
609 if (inf->vfork_parent)
610 {
611 int resume_parent = -1;
612
613 /* This exec or exit marks the end of the shared memory region
614 between the parent and the child. If the user wanted to
615 detach from the parent, now is the time. */
616
617 if (inf->vfork_parent->pending_detach)
618 {
619 struct thread_info *tp;
620 struct cleanup *old_chain;
621 struct program_space *pspace;
622 struct address_space *aspace;
623
624 /* follow-fork child, detach-on-fork on. */
625
626 old_chain = make_cleanup_restore_current_thread ();
627
628 /* We're letting loose of the parent. */
629 tp = any_live_thread_of_process (inf->vfork_parent->pid);
630 switch_to_thread (tp->ptid);
631
632 /* We're about to detach from the parent, which implicitly
633 removes breakpoints from its address space. There's a
634 catch here: we want to reuse the spaces for the child,
635 but, parent/child are still sharing the pspace at this
636 point, although the exec in reality makes the kernel give
637 the child a fresh set of new pages. The problem here is
638 that the breakpoints module being unaware of this, would
639 likely chose the child process to write to the parent
640 address space. Swapping the child temporarily away from
641 the spaces has the desired effect. Yes, this is "sort
642 of" a hack. */
643
644 pspace = inf->pspace;
645 aspace = inf->aspace;
646 inf->aspace = NULL;
647 inf->pspace = NULL;
648
649 if (debug_infrun || info_verbose)
650 {
651 target_terminal_ours ();
652
653 if (exec)
654 fprintf_filtered (gdb_stdlog,
655 "Detaching vfork parent process "
656 "%d after child exec.\n",
657 inf->vfork_parent->pid);
658 else
659 fprintf_filtered (gdb_stdlog,
660 "Detaching vfork parent process "
661 "%d after child exit.\n",
662 inf->vfork_parent->pid);
663 }
664
665 target_detach (NULL, 0);
666
667 /* Put it back. */
668 inf->pspace = pspace;
669 inf->aspace = aspace;
670
671 do_cleanups (old_chain);
672 }
673 else if (exec)
674 {
675 /* We're staying attached to the parent, so, really give the
676 child a new address space. */
677 inf->pspace = add_program_space (maybe_new_address_space ());
678 inf->aspace = inf->pspace->aspace;
679 inf->removable = 1;
680 set_current_program_space (inf->pspace);
681
682 resume_parent = inf->vfork_parent->pid;
683
684 /* Break the bonds. */
685 inf->vfork_parent->vfork_child = NULL;
686 }
687 else
688 {
689 struct cleanup *old_chain;
690 struct program_space *pspace;
691
692 /* If this is a vfork child exiting, then the pspace and
693 aspaces were shared with the parent. Since we're
694 reporting the process exit, we'll be mourning all that is
695 found in the address space, and switching to null_ptid,
696 preparing to start a new inferior. But, since we don't
697 want to clobber the parent's address/program spaces, we
698 go ahead and create a new one for this exiting
699 inferior. */
700
701 /* Switch to null_ptid, so that clone_program_space doesn't want
702 to read the selected frame of a dead process. */
703 old_chain = save_inferior_ptid ();
704 inferior_ptid = null_ptid;
705
706 /* This inferior is dead, so avoid giving the breakpoints
707 module the option to write through to it (cloning a
708 program space resets breakpoints). */
709 inf->aspace = NULL;
710 inf->pspace = NULL;
711 pspace = add_program_space (maybe_new_address_space ());
712 set_current_program_space (pspace);
713 inf->removable = 1;
714 clone_program_space (pspace, inf->vfork_parent->pspace);
715 inf->pspace = pspace;
716 inf->aspace = pspace->aspace;
717
718 /* Put back inferior_ptid. We'll continue mourning this
719 inferior. */
720 do_cleanups (old_chain);
721
722 resume_parent = inf->vfork_parent->pid;
723 /* Break the bonds. */
724 inf->vfork_parent->vfork_child = NULL;
725 }
726
727 inf->vfork_parent = NULL;
728
729 gdb_assert (current_program_space == inf->pspace);
730
731 if (non_stop && resume_parent != -1)
732 {
733 /* If the user wanted the parent to be running, let it go
734 free now. */
735 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
736
737 if (debug_infrun)
738 fprintf_unfiltered (gdb_stdlog,
739 "infrun: resuming vfork parent process %d\n",
740 resume_parent);
741
742 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
743
744 do_cleanups (old_chain);
745 }
746 }
747 }
748
749 /* Enum strings for "set|show displaced-stepping". */
750
751 static const char follow_exec_mode_new[] = "new";
752 static const char follow_exec_mode_same[] = "same";
753 static const char *follow_exec_mode_names[] =
754 {
755 follow_exec_mode_new,
756 follow_exec_mode_same,
757 NULL,
758 };
759
760 static const char *follow_exec_mode_string = follow_exec_mode_same;
761 static void
762 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
763 struct cmd_list_element *c, const char *value)
764 {
765 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
766 }
767
768 /* EXECD_PATHNAME is assumed to be non-NULL. */
769
770 static void
771 follow_exec (ptid_t pid, char *execd_pathname)
772 {
773 struct thread_info *th = inferior_thread ();
774 struct inferior *inf = current_inferior ();
775
776 /* This is an exec event that we actually wish to pay attention to.
777 Refresh our symbol table to the newly exec'd program, remove any
778 momentary bp's, etc.
779
780 If there are breakpoints, they aren't really inserted now,
781 since the exec() transformed our inferior into a fresh set
782 of instructions.
783
784 We want to preserve symbolic breakpoints on the list, since
785 we have hopes that they can be reset after the new a.out's
786 symbol table is read.
787
788 However, any "raw" breakpoints must be removed from the list
789 (e.g., the solib bp's), since their address is probably invalid
790 now.
791
792 And, we DON'T want to call delete_breakpoints() here, since
793 that may write the bp's "shadow contents" (the instruction
794 value that was overwritten witha TRAP instruction). Since
795 we now have a new a.out, those shadow contents aren't valid. */
796
797 mark_breakpoints_out ();
798
799 update_breakpoints_after_exec ();
800
801 /* If there was one, it's gone now. We cannot truly step-to-next
802 statement through an exec(). */
803 th->control.step_resume_breakpoint = NULL;
804 th->control.exception_resume_breakpoint = NULL;
805 th->control.step_range_start = 0;
806 th->control.step_range_end = 0;
807
808 /* The target reports the exec event to the main thread, even if
809 some other thread does the exec, and even if the main thread was
810 already stopped --- if debugging in non-stop mode, it's possible
811 the user had the main thread held stopped in the previous image
812 --- release it now. This is the same behavior as step-over-exec
813 with scheduler-locking on in all-stop mode. */
814 th->stop_requested = 0;
815
816 /* What is this a.out's name? */
817 printf_unfiltered (_("%s is executing new program: %s\n"),
818 target_pid_to_str (inferior_ptid),
819 execd_pathname);
820
821 /* We've followed the inferior through an exec. Therefore, the
822 inferior has essentially been killed & reborn. */
823
824 gdb_flush (gdb_stdout);
825
826 breakpoint_init_inferior (inf_execd);
827
828 if (gdb_sysroot && *gdb_sysroot)
829 {
830 char *name = alloca (strlen (gdb_sysroot)
831 + strlen (execd_pathname)
832 + 1);
833
834 strcpy (name, gdb_sysroot);
835 strcat (name, execd_pathname);
836 execd_pathname = name;
837 }
838
839 /* Reset the shared library package. This ensures that we get a
840 shlib event when the child reaches "_start", at which point the
841 dld will have had a chance to initialize the child. */
842 /* Also, loading a symbol file below may trigger symbol lookups, and
843 we don't want those to be satisfied by the libraries of the
844 previous incarnation of this process. */
845 no_shared_libraries (NULL, 0);
846
847 if (follow_exec_mode_string == follow_exec_mode_new)
848 {
849 struct program_space *pspace;
850
851 /* The user wants to keep the old inferior and program spaces
852 around. Create a new fresh one, and switch to it. */
853
854 inf = add_inferior (current_inferior ()->pid);
855 pspace = add_program_space (maybe_new_address_space ());
856 inf->pspace = pspace;
857 inf->aspace = pspace->aspace;
858
859 exit_inferior_num_silent (current_inferior ()->num);
860
861 set_current_inferior (inf);
862 set_current_program_space (pspace);
863 }
864
865 gdb_assert (current_program_space == inf->pspace);
866
867 /* That a.out is now the one to use. */
868 exec_file_attach (execd_pathname, 0);
869
870 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
871 (Position Independent Executable) main symbol file will get applied by
872 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
873 the breakpoints with the zero displacement. */
874
875 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
876 NULL, 0);
877
878 set_initial_language ();
879
880 #ifdef SOLIB_CREATE_INFERIOR_HOOK
881 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
882 #else
883 solib_create_inferior_hook (0);
884 #endif
885
886 jit_inferior_created_hook ();
887
888 breakpoint_re_set ();
889
890 /* Reinsert all breakpoints. (Those which were symbolic have
891 been reset to the proper address in the new a.out, thanks
892 to symbol_file_command...). */
893 insert_breakpoints ();
894
895 /* The next resume of this inferior should bring it to the shlib
896 startup breakpoints. (If the user had also set bp's on
897 "main" from the old (parent) process, then they'll auto-
898 matically get reset there in the new process.). */
899 }
900
901 /* Non-zero if we just simulating a single-step. This is needed
902 because we cannot remove the breakpoints in the inferior process
903 until after the `wait' in `wait_for_inferior'. */
904 static int singlestep_breakpoints_inserted_p = 0;
905
906 /* The thread we inserted single-step breakpoints for. */
907 static ptid_t singlestep_ptid;
908
909 /* PC when we started this single-step. */
910 static CORE_ADDR singlestep_pc;
911
912 /* If another thread hit the singlestep breakpoint, we save the original
913 thread here so that we can resume single-stepping it later. */
914 static ptid_t saved_singlestep_ptid;
915 static int stepping_past_singlestep_breakpoint;
916
917 /* If not equal to null_ptid, this means that after stepping over breakpoint
918 is finished, we need to switch to deferred_step_ptid, and step it.
919
920 The use case is when one thread has hit a breakpoint, and then the user
921 has switched to another thread and issued 'step'. We need to step over
922 breakpoint in the thread which hit the breakpoint, but then continue
923 stepping the thread user has selected. */
924 static ptid_t deferred_step_ptid;
925 \f
926 /* Displaced stepping. */
927
928 /* In non-stop debugging mode, we must take special care to manage
929 breakpoints properly; in particular, the traditional strategy for
930 stepping a thread past a breakpoint it has hit is unsuitable.
931 'Displaced stepping' is a tactic for stepping one thread past a
932 breakpoint it has hit while ensuring that other threads running
933 concurrently will hit the breakpoint as they should.
934
935 The traditional way to step a thread T off a breakpoint in a
936 multi-threaded program in all-stop mode is as follows:
937
938 a0) Initially, all threads are stopped, and breakpoints are not
939 inserted.
940 a1) We single-step T, leaving breakpoints uninserted.
941 a2) We insert breakpoints, and resume all threads.
942
943 In non-stop debugging, however, this strategy is unsuitable: we
944 don't want to have to stop all threads in the system in order to
945 continue or step T past a breakpoint. Instead, we use displaced
946 stepping:
947
948 n0) Initially, T is stopped, other threads are running, and
949 breakpoints are inserted.
950 n1) We copy the instruction "under" the breakpoint to a separate
951 location, outside the main code stream, making any adjustments
952 to the instruction, register, and memory state as directed by
953 T's architecture.
954 n2) We single-step T over the instruction at its new location.
955 n3) We adjust the resulting register and memory state as directed
956 by T's architecture. This includes resetting T's PC to point
957 back into the main instruction stream.
958 n4) We resume T.
959
960 This approach depends on the following gdbarch methods:
961
962 - gdbarch_max_insn_length and gdbarch_displaced_step_location
963 indicate where to copy the instruction, and how much space must
964 be reserved there. We use these in step n1.
965
966 - gdbarch_displaced_step_copy_insn copies a instruction to a new
967 address, and makes any necessary adjustments to the instruction,
968 register contents, and memory. We use this in step n1.
969
970 - gdbarch_displaced_step_fixup adjusts registers and memory after
971 we have successfuly single-stepped the instruction, to yield the
972 same effect the instruction would have had if we had executed it
973 at its original address. We use this in step n3.
974
975 - gdbarch_displaced_step_free_closure provides cleanup.
976
977 The gdbarch_displaced_step_copy_insn and
978 gdbarch_displaced_step_fixup functions must be written so that
979 copying an instruction with gdbarch_displaced_step_copy_insn,
980 single-stepping across the copied instruction, and then applying
981 gdbarch_displaced_insn_fixup should have the same effects on the
982 thread's memory and registers as stepping the instruction in place
983 would have. Exactly which responsibilities fall to the copy and
984 which fall to the fixup is up to the author of those functions.
985
986 See the comments in gdbarch.sh for details.
987
988 Note that displaced stepping and software single-step cannot
989 currently be used in combination, although with some care I think
990 they could be made to. Software single-step works by placing
991 breakpoints on all possible subsequent instructions; if the
992 displaced instruction is a PC-relative jump, those breakpoints
993 could fall in very strange places --- on pages that aren't
994 executable, or at addresses that are not proper instruction
995 boundaries. (We do generally let other threads run while we wait
996 to hit the software single-step breakpoint, and they might
997 encounter such a corrupted instruction.) One way to work around
998 this would be to have gdbarch_displaced_step_copy_insn fully
999 simulate the effect of PC-relative instructions (and return NULL)
1000 on architectures that use software single-stepping.
1001
1002 In non-stop mode, we can have independent and simultaneous step
1003 requests, so more than one thread may need to simultaneously step
1004 over a breakpoint. The current implementation assumes there is
1005 only one scratch space per process. In this case, we have to
1006 serialize access to the scratch space. If thread A wants to step
1007 over a breakpoint, but we are currently waiting for some other
1008 thread to complete a displaced step, we leave thread A stopped and
1009 place it in the displaced_step_request_queue. Whenever a displaced
1010 step finishes, we pick the next thread in the queue and start a new
1011 displaced step operation on it. See displaced_step_prepare and
1012 displaced_step_fixup for details. */
1013
1014 struct displaced_step_request
1015 {
1016 ptid_t ptid;
1017 struct displaced_step_request *next;
1018 };
1019
1020 /* Per-inferior displaced stepping state. */
1021 struct displaced_step_inferior_state
1022 {
1023 /* Pointer to next in linked list. */
1024 struct displaced_step_inferior_state *next;
1025
1026 /* The process this displaced step state refers to. */
1027 int pid;
1028
1029 /* A queue of pending displaced stepping requests. One entry per
1030 thread that needs to do a displaced step. */
1031 struct displaced_step_request *step_request_queue;
1032
1033 /* If this is not null_ptid, this is the thread carrying out a
1034 displaced single-step in process PID. This thread's state will
1035 require fixing up once it has completed its step. */
1036 ptid_t step_ptid;
1037
1038 /* The architecture the thread had when we stepped it. */
1039 struct gdbarch *step_gdbarch;
1040
1041 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1042 for post-step cleanup. */
1043 struct displaced_step_closure *step_closure;
1044
1045 /* The address of the original instruction, and the copy we
1046 made. */
1047 CORE_ADDR step_original, step_copy;
1048
1049 /* Saved contents of copy area. */
1050 gdb_byte *step_saved_copy;
1051 };
1052
1053 /* The list of states of processes involved in displaced stepping
1054 presently. */
1055 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1056
1057 /* Get the displaced stepping state of process PID. */
1058
1059 static struct displaced_step_inferior_state *
1060 get_displaced_stepping_state (int pid)
1061 {
1062 struct displaced_step_inferior_state *state;
1063
1064 for (state = displaced_step_inferior_states;
1065 state != NULL;
1066 state = state->next)
1067 if (state->pid == pid)
1068 return state;
1069
1070 return NULL;
1071 }
1072
1073 /* Add a new displaced stepping state for process PID to the displaced
1074 stepping state list, or return a pointer to an already existing
1075 entry, if it already exists. Never returns NULL. */
1076
1077 static struct displaced_step_inferior_state *
1078 add_displaced_stepping_state (int pid)
1079 {
1080 struct displaced_step_inferior_state *state;
1081
1082 for (state = displaced_step_inferior_states;
1083 state != NULL;
1084 state = state->next)
1085 if (state->pid == pid)
1086 return state;
1087
1088 state = xcalloc (1, sizeof (*state));
1089 state->pid = pid;
1090 state->next = displaced_step_inferior_states;
1091 displaced_step_inferior_states = state;
1092
1093 return state;
1094 }
1095
1096 /* If inferior is in displaced stepping, and ADDR equals to starting address
1097 of copy area, return corresponding displaced_step_closure. Otherwise,
1098 return NULL. */
1099
1100 struct displaced_step_closure*
1101 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1102 {
1103 struct displaced_step_inferior_state *displaced
1104 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1105
1106 /* If checking the mode of displaced instruction in copy area. */
1107 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1108 && (displaced->step_copy == addr))
1109 return displaced->step_closure;
1110
1111 return NULL;
1112 }
1113
1114 /* Remove the displaced stepping state of process PID. */
1115
1116 static void
1117 remove_displaced_stepping_state (int pid)
1118 {
1119 struct displaced_step_inferior_state *it, **prev_next_p;
1120
1121 gdb_assert (pid != 0);
1122
1123 it = displaced_step_inferior_states;
1124 prev_next_p = &displaced_step_inferior_states;
1125 while (it)
1126 {
1127 if (it->pid == pid)
1128 {
1129 *prev_next_p = it->next;
1130 xfree (it);
1131 return;
1132 }
1133
1134 prev_next_p = &it->next;
1135 it = *prev_next_p;
1136 }
1137 }
1138
1139 static void
1140 infrun_inferior_exit (struct inferior *inf)
1141 {
1142 remove_displaced_stepping_state (inf->pid);
1143 }
1144
1145 /* Enum strings for "set|show displaced-stepping". */
1146
1147 static const char can_use_displaced_stepping_auto[] = "auto";
1148 static const char can_use_displaced_stepping_on[] = "on";
1149 static const char can_use_displaced_stepping_off[] = "off";
1150 static const char *can_use_displaced_stepping_enum[] =
1151 {
1152 can_use_displaced_stepping_auto,
1153 can_use_displaced_stepping_on,
1154 can_use_displaced_stepping_off,
1155 NULL,
1156 };
1157
1158 /* If ON, and the architecture supports it, GDB will use displaced
1159 stepping to step over breakpoints. If OFF, or if the architecture
1160 doesn't support it, GDB will instead use the traditional
1161 hold-and-step approach. If AUTO (which is the default), GDB will
1162 decide which technique to use to step over breakpoints depending on
1163 which of all-stop or non-stop mode is active --- displaced stepping
1164 in non-stop mode; hold-and-step in all-stop mode. */
1165
1166 static const char *can_use_displaced_stepping =
1167 can_use_displaced_stepping_auto;
1168
1169 static void
1170 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1171 struct cmd_list_element *c,
1172 const char *value)
1173 {
1174 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1175 fprintf_filtered (file,
1176 _("Debugger's willingness to use displaced stepping "
1177 "to step over breakpoints is %s (currently %s).\n"),
1178 value, non_stop ? "on" : "off");
1179 else
1180 fprintf_filtered (file,
1181 _("Debugger's willingness to use displaced stepping "
1182 "to step over breakpoints is %s.\n"), value);
1183 }
1184
1185 /* Return non-zero if displaced stepping can/should be used to step
1186 over breakpoints. */
1187
1188 static int
1189 use_displaced_stepping (struct gdbarch *gdbarch)
1190 {
1191 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1192 && non_stop)
1193 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1194 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1195 && !RECORD_IS_USED);
1196 }
1197
1198 /* Clean out any stray displaced stepping state. */
1199 static void
1200 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1201 {
1202 /* Indicate that there is no cleanup pending. */
1203 displaced->step_ptid = null_ptid;
1204
1205 if (displaced->step_closure)
1206 {
1207 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1208 displaced->step_closure);
1209 displaced->step_closure = NULL;
1210 }
1211 }
1212
1213 static void
1214 displaced_step_clear_cleanup (void *arg)
1215 {
1216 struct displaced_step_inferior_state *state = arg;
1217
1218 displaced_step_clear (state);
1219 }
1220
1221 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1222 void
1223 displaced_step_dump_bytes (struct ui_file *file,
1224 const gdb_byte *buf,
1225 size_t len)
1226 {
1227 int i;
1228
1229 for (i = 0; i < len; i++)
1230 fprintf_unfiltered (file, "%02x ", buf[i]);
1231 fputs_unfiltered ("\n", file);
1232 }
1233
1234 /* Prepare to single-step, using displaced stepping.
1235
1236 Note that we cannot use displaced stepping when we have a signal to
1237 deliver. If we have a signal to deliver and an instruction to step
1238 over, then after the step, there will be no indication from the
1239 target whether the thread entered a signal handler or ignored the
1240 signal and stepped over the instruction successfully --- both cases
1241 result in a simple SIGTRAP. In the first case we mustn't do a
1242 fixup, and in the second case we must --- but we can't tell which.
1243 Comments in the code for 'random signals' in handle_inferior_event
1244 explain how we handle this case instead.
1245
1246 Returns 1 if preparing was successful -- this thread is going to be
1247 stepped now; or 0 if displaced stepping this thread got queued. */
1248 static int
1249 displaced_step_prepare (ptid_t ptid)
1250 {
1251 struct cleanup *old_cleanups, *ignore_cleanups;
1252 struct regcache *regcache = get_thread_regcache (ptid);
1253 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1254 CORE_ADDR original, copy;
1255 ULONGEST len;
1256 struct displaced_step_closure *closure;
1257 struct displaced_step_inferior_state *displaced;
1258
1259 /* We should never reach this function if the architecture does not
1260 support displaced stepping. */
1261 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1262
1263 /* We have to displaced step one thread at a time, as we only have
1264 access to a single scratch space per inferior. */
1265
1266 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1267
1268 if (!ptid_equal (displaced->step_ptid, null_ptid))
1269 {
1270 /* Already waiting for a displaced step to finish. Defer this
1271 request and place in queue. */
1272 struct displaced_step_request *req, *new_req;
1273
1274 if (debug_displaced)
1275 fprintf_unfiltered (gdb_stdlog,
1276 "displaced: defering step of %s\n",
1277 target_pid_to_str (ptid));
1278
1279 new_req = xmalloc (sizeof (*new_req));
1280 new_req->ptid = ptid;
1281 new_req->next = NULL;
1282
1283 if (displaced->step_request_queue)
1284 {
1285 for (req = displaced->step_request_queue;
1286 req && req->next;
1287 req = req->next)
1288 ;
1289 req->next = new_req;
1290 }
1291 else
1292 displaced->step_request_queue = new_req;
1293
1294 return 0;
1295 }
1296 else
1297 {
1298 if (debug_displaced)
1299 fprintf_unfiltered (gdb_stdlog,
1300 "displaced: stepping %s now\n",
1301 target_pid_to_str (ptid));
1302 }
1303
1304 displaced_step_clear (displaced);
1305
1306 old_cleanups = save_inferior_ptid ();
1307 inferior_ptid = ptid;
1308
1309 original = regcache_read_pc (regcache);
1310
1311 copy = gdbarch_displaced_step_location (gdbarch);
1312 len = gdbarch_max_insn_length (gdbarch);
1313
1314 /* Save the original contents of the copy area. */
1315 displaced->step_saved_copy = xmalloc (len);
1316 ignore_cleanups = make_cleanup (free_current_contents,
1317 &displaced->step_saved_copy);
1318 read_memory (copy, displaced->step_saved_copy, len);
1319 if (debug_displaced)
1320 {
1321 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1322 paddress (gdbarch, copy));
1323 displaced_step_dump_bytes (gdb_stdlog,
1324 displaced->step_saved_copy,
1325 len);
1326 };
1327
1328 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1329 original, copy, regcache);
1330
1331 /* We don't support the fully-simulated case at present. */
1332 gdb_assert (closure);
1333
1334 /* Save the information we need to fix things up if the step
1335 succeeds. */
1336 displaced->step_ptid = ptid;
1337 displaced->step_gdbarch = gdbarch;
1338 displaced->step_closure = closure;
1339 displaced->step_original = original;
1340 displaced->step_copy = copy;
1341
1342 make_cleanup (displaced_step_clear_cleanup, displaced);
1343
1344 /* Resume execution at the copy. */
1345 regcache_write_pc (regcache, copy);
1346
1347 discard_cleanups (ignore_cleanups);
1348
1349 do_cleanups (old_cleanups);
1350
1351 if (debug_displaced)
1352 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1353 paddress (gdbarch, copy));
1354
1355 return 1;
1356 }
1357
1358 static void
1359 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1360 const gdb_byte *myaddr, int len)
1361 {
1362 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1363
1364 inferior_ptid = ptid;
1365 write_memory (memaddr, myaddr, len);
1366 do_cleanups (ptid_cleanup);
1367 }
1368
1369 static void
1370 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1371 {
1372 struct cleanup *old_cleanups;
1373 struct displaced_step_inferior_state *displaced
1374 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1375
1376 /* Was any thread of this process doing a displaced step? */
1377 if (displaced == NULL)
1378 return;
1379
1380 /* Was this event for the pid we displaced? */
1381 if (ptid_equal (displaced->step_ptid, null_ptid)
1382 || ! ptid_equal (displaced->step_ptid, event_ptid))
1383 return;
1384
1385 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1386
1387 /* Restore the contents of the copy area. */
1388 {
1389 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1390
1391 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1392 displaced->step_saved_copy, len);
1393 if (debug_displaced)
1394 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1395 paddress (displaced->step_gdbarch,
1396 displaced->step_copy));
1397 }
1398
1399 /* Did the instruction complete successfully? */
1400 if (signal == TARGET_SIGNAL_TRAP)
1401 {
1402 /* Fix up the resulting state. */
1403 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1404 displaced->step_closure,
1405 displaced->step_original,
1406 displaced->step_copy,
1407 get_thread_regcache (displaced->step_ptid));
1408 }
1409 else
1410 {
1411 /* Since the instruction didn't complete, all we can do is
1412 relocate the PC. */
1413 struct regcache *regcache = get_thread_regcache (event_ptid);
1414 CORE_ADDR pc = regcache_read_pc (regcache);
1415
1416 pc = displaced->step_original + (pc - displaced->step_copy);
1417 regcache_write_pc (regcache, pc);
1418 }
1419
1420 do_cleanups (old_cleanups);
1421
1422 displaced->step_ptid = null_ptid;
1423
1424 /* Are there any pending displaced stepping requests? If so, run
1425 one now. Leave the state object around, since we're likely to
1426 need it again soon. */
1427 while (displaced->step_request_queue)
1428 {
1429 struct displaced_step_request *head;
1430 ptid_t ptid;
1431 struct regcache *regcache;
1432 struct gdbarch *gdbarch;
1433 CORE_ADDR actual_pc;
1434 struct address_space *aspace;
1435
1436 head = displaced->step_request_queue;
1437 ptid = head->ptid;
1438 displaced->step_request_queue = head->next;
1439 xfree (head);
1440
1441 context_switch (ptid);
1442
1443 regcache = get_thread_regcache (ptid);
1444 actual_pc = regcache_read_pc (regcache);
1445 aspace = get_regcache_aspace (regcache);
1446
1447 if (breakpoint_here_p (aspace, actual_pc))
1448 {
1449 if (debug_displaced)
1450 fprintf_unfiltered (gdb_stdlog,
1451 "displaced: stepping queued %s now\n",
1452 target_pid_to_str (ptid));
1453
1454 displaced_step_prepare (ptid);
1455
1456 gdbarch = get_regcache_arch (regcache);
1457
1458 if (debug_displaced)
1459 {
1460 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1461 gdb_byte buf[4];
1462
1463 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1464 paddress (gdbarch, actual_pc));
1465 read_memory (actual_pc, buf, sizeof (buf));
1466 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1467 }
1468
1469 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1470 displaced->step_closure))
1471 target_resume (ptid, 1, TARGET_SIGNAL_0);
1472 else
1473 target_resume (ptid, 0, TARGET_SIGNAL_0);
1474
1475 /* Done, we're stepping a thread. */
1476 break;
1477 }
1478 else
1479 {
1480 int step;
1481 struct thread_info *tp = inferior_thread ();
1482
1483 /* The breakpoint we were sitting under has since been
1484 removed. */
1485 tp->control.trap_expected = 0;
1486
1487 /* Go back to what we were trying to do. */
1488 step = currently_stepping (tp);
1489
1490 if (debug_displaced)
1491 fprintf_unfiltered (gdb_stdlog,
1492 "breakpoint is gone %s: step(%d)\n",
1493 target_pid_to_str (tp->ptid), step);
1494
1495 target_resume (ptid, step, TARGET_SIGNAL_0);
1496 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1497
1498 /* This request was discarded. See if there's any other
1499 thread waiting for its turn. */
1500 }
1501 }
1502 }
1503
1504 /* Update global variables holding ptids to hold NEW_PTID if they were
1505 holding OLD_PTID. */
1506 static void
1507 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1508 {
1509 struct displaced_step_request *it;
1510 struct displaced_step_inferior_state *displaced;
1511
1512 if (ptid_equal (inferior_ptid, old_ptid))
1513 inferior_ptid = new_ptid;
1514
1515 if (ptid_equal (singlestep_ptid, old_ptid))
1516 singlestep_ptid = new_ptid;
1517
1518 if (ptid_equal (deferred_step_ptid, old_ptid))
1519 deferred_step_ptid = new_ptid;
1520
1521 for (displaced = displaced_step_inferior_states;
1522 displaced;
1523 displaced = displaced->next)
1524 {
1525 if (ptid_equal (displaced->step_ptid, old_ptid))
1526 displaced->step_ptid = new_ptid;
1527
1528 for (it = displaced->step_request_queue; it; it = it->next)
1529 if (ptid_equal (it->ptid, old_ptid))
1530 it->ptid = new_ptid;
1531 }
1532 }
1533
1534 \f
1535 /* Resuming. */
1536
1537 /* Things to clean up if we QUIT out of resume (). */
1538 static void
1539 resume_cleanups (void *ignore)
1540 {
1541 normal_stop ();
1542 }
1543
1544 static const char schedlock_off[] = "off";
1545 static const char schedlock_on[] = "on";
1546 static const char schedlock_step[] = "step";
1547 static const char *scheduler_enums[] = {
1548 schedlock_off,
1549 schedlock_on,
1550 schedlock_step,
1551 NULL
1552 };
1553 static const char *scheduler_mode = schedlock_off;
1554 static void
1555 show_scheduler_mode (struct ui_file *file, int from_tty,
1556 struct cmd_list_element *c, const char *value)
1557 {
1558 fprintf_filtered (file,
1559 _("Mode for locking scheduler "
1560 "during execution is \"%s\".\n"),
1561 value);
1562 }
1563
1564 static void
1565 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1566 {
1567 if (!target_can_lock_scheduler)
1568 {
1569 scheduler_mode = schedlock_off;
1570 error (_("Target '%s' cannot support this command."), target_shortname);
1571 }
1572 }
1573
1574 /* True if execution commands resume all threads of all processes by
1575 default; otherwise, resume only threads of the current inferior
1576 process. */
1577 int sched_multi = 0;
1578
1579 /* Try to setup for software single stepping over the specified location.
1580 Return 1 if target_resume() should use hardware single step.
1581
1582 GDBARCH the current gdbarch.
1583 PC the location to step over. */
1584
1585 static int
1586 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1587 {
1588 int hw_step = 1;
1589
1590 if (execution_direction == EXEC_FORWARD
1591 && gdbarch_software_single_step_p (gdbarch)
1592 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1593 {
1594 hw_step = 0;
1595 /* Do not pull these breakpoints until after a `wait' in
1596 `wait_for_inferior'. */
1597 singlestep_breakpoints_inserted_p = 1;
1598 singlestep_ptid = inferior_ptid;
1599 singlestep_pc = pc;
1600 }
1601 return hw_step;
1602 }
1603
1604 /* Resume the inferior, but allow a QUIT. This is useful if the user
1605 wants to interrupt some lengthy single-stepping operation
1606 (for child processes, the SIGINT goes to the inferior, and so
1607 we get a SIGINT random_signal, but for remote debugging and perhaps
1608 other targets, that's not true).
1609
1610 STEP nonzero if we should step (zero to continue instead).
1611 SIG is the signal to give the inferior (zero for none). */
1612 void
1613 resume (int step, enum target_signal sig)
1614 {
1615 int should_resume = 1;
1616 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1617 struct regcache *regcache = get_current_regcache ();
1618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1619 struct thread_info *tp = inferior_thread ();
1620 CORE_ADDR pc = regcache_read_pc (regcache);
1621 struct address_space *aspace = get_regcache_aspace (regcache);
1622
1623 QUIT;
1624
1625 if (current_inferior ()->waiting_for_vfork_done)
1626 {
1627 /* Don't try to single-step a vfork parent that is waiting for
1628 the child to get out of the shared memory region (by exec'ing
1629 or exiting). This is particularly important on software
1630 single-step archs, as the child process would trip on the
1631 software single step breakpoint inserted for the parent
1632 process. Since the parent will not actually execute any
1633 instruction until the child is out of the shared region (such
1634 are vfork's semantics), it is safe to simply continue it.
1635 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1636 the parent, and tell it to `keep_going', which automatically
1637 re-sets it stepping. */
1638 if (debug_infrun)
1639 fprintf_unfiltered (gdb_stdlog,
1640 "infrun: resume : clear step\n");
1641 step = 0;
1642 }
1643
1644 if (debug_infrun)
1645 fprintf_unfiltered (gdb_stdlog,
1646 "infrun: resume (step=%d, signal=%d), "
1647 "trap_expected=%d, current thread [%s] at %s\n",
1648 step, sig, tp->control.trap_expected,
1649 target_pid_to_str (inferior_ptid),
1650 paddress (gdbarch, pc));
1651
1652 /* Normally, by the time we reach `resume', the breakpoints are either
1653 removed or inserted, as appropriate. The exception is if we're sitting
1654 at a permanent breakpoint; we need to step over it, but permanent
1655 breakpoints can't be removed. So we have to test for it here. */
1656 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1657 {
1658 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1659 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1660 else
1661 error (_("\
1662 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1663 how to step past a permanent breakpoint on this architecture. Try using\n\
1664 a command like `return' or `jump' to continue execution."));
1665 }
1666
1667 /* If enabled, step over breakpoints by executing a copy of the
1668 instruction at a different address.
1669
1670 We can't use displaced stepping when we have a signal to deliver;
1671 the comments for displaced_step_prepare explain why. The
1672 comments in the handle_inferior event for dealing with 'random
1673 signals' explain what we do instead.
1674
1675 We can't use displaced stepping when we are waiting for vfork_done
1676 event, displaced stepping breaks the vfork child similarly as single
1677 step software breakpoint. */
1678 if (use_displaced_stepping (gdbarch)
1679 && (tp->control.trap_expected
1680 || (step && gdbarch_software_single_step_p (gdbarch)))
1681 && sig == TARGET_SIGNAL_0
1682 && !current_inferior ()->waiting_for_vfork_done)
1683 {
1684 struct displaced_step_inferior_state *displaced;
1685
1686 if (!displaced_step_prepare (inferior_ptid))
1687 {
1688 /* Got placed in displaced stepping queue. Will be resumed
1689 later when all the currently queued displaced stepping
1690 requests finish. The thread is not executing at this point,
1691 and the call to set_executing will be made later. But we
1692 need to call set_running here, since from frontend point of view,
1693 the thread is running. */
1694 set_running (inferior_ptid, 1);
1695 discard_cleanups (old_cleanups);
1696 return;
1697 }
1698
1699 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1700 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1701 displaced->step_closure);
1702 }
1703
1704 /* Do we need to do it the hard way, w/temp breakpoints? */
1705 else if (step)
1706 step = maybe_software_singlestep (gdbarch, pc);
1707
1708 /* Currently, our software single-step implementation leads to different
1709 results than hardware single-stepping in one situation: when stepping
1710 into delivering a signal which has an associated signal handler,
1711 hardware single-step will stop at the first instruction of the handler,
1712 while software single-step will simply skip execution of the handler.
1713
1714 For now, this difference in behavior is accepted since there is no
1715 easy way to actually implement single-stepping into a signal handler
1716 without kernel support.
1717
1718 However, there is one scenario where this difference leads to follow-on
1719 problems: if we're stepping off a breakpoint by removing all breakpoints
1720 and then single-stepping. In this case, the software single-step
1721 behavior means that even if there is a *breakpoint* in the signal
1722 handler, GDB still would not stop.
1723
1724 Fortunately, we can at least fix this particular issue. We detect
1725 here the case where we are about to deliver a signal while software
1726 single-stepping with breakpoints removed. In this situation, we
1727 revert the decisions to remove all breakpoints and insert single-
1728 step breakpoints, and instead we install a step-resume breakpoint
1729 at the current address, deliver the signal without stepping, and
1730 once we arrive back at the step-resume breakpoint, actually step
1731 over the breakpoint we originally wanted to step over. */
1732 if (singlestep_breakpoints_inserted_p
1733 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1734 {
1735 /* If we have nested signals or a pending signal is delivered
1736 immediately after a handler returns, might might already have
1737 a step-resume breakpoint set on the earlier handler. We cannot
1738 set another step-resume breakpoint; just continue on until the
1739 original breakpoint is hit. */
1740 if (tp->control.step_resume_breakpoint == NULL)
1741 {
1742 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1743 tp->step_after_step_resume_breakpoint = 1;
1744 }
1745
1746 remove_single_step_breakpoints ();
1747 singlestep_breakpoints_inserted_p = 0;
1748
1749 insert_breakpoints ();
1750 tp->control.trap_expected = 0;
1751 }
1752
1753 if (should_resume)
1754 {
1755 ptid_t resume_ptid;
1756
1757 /* If STEP is set, it's a request to use hardware stepping
1758 facilities. But in that case, we should never
1759 use singlestep breakpoint. */
1760 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1761
1762 /* Decide the set of threads to ask the target to resume. Start
1763 by assuming everything will be resumed, than narrow the set
1764 by applying increasingly restricting conditions. */
1765
1766 /* By default, resume all threads of all processes. */
1767 resume_ptid = RESUME_ALL;
1768
1769 /* Maybe resume only all threads of the current process. */
1770 if (!sched_multi && target_supports_multi_process ())
1771 {
1772 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1773 }
1774
1775 /* Maybe resume a single thread after all. */
1776 if (singlestep_breakpoints_inserted_p
1777 && stepping_past_singlestep_breakpoint)
1778 {
1779 /* The situation here is as follows. In thread T1 we wanted to
1780 single-step. Lacking hardware single-stepping we've
1781 set breakpoint at the PC of the next instruction -- call it
1782 P. After resuming, we've hit that breakpoint in thread T2.
1783 Now we've removed original breakpoint, inserted breakpoint
1784 at P+1, and try to step to advance T2 past breakpoint.
1785 We need to step only T2, as if T1 is allowed to freely run,
1786 it can run past P, and if other threads are allowed to run,
1787 they can hit breakpoint at P+1, and nested hits of single-step
1788 breakpoints is not something we'd want -- that's complicated
1789 to support, and has no value. */
1790 resume_ptid = inferior_ptid;
1791 }
1792 else if ((step || singlestep_breakpoints_inserted_p)
1793 && tp->control.trap_expected)
1794 {
1795 /* We're allowing a thread to run past a breakpoint it has
1796 hit, by single-stepping the thread with the breakpoint
1797 removed. In which case, we need to single-step only this
1798 thread, and keep others stopped, as they can miss this
1799 breakpoint if allowed to run.
1800
1801 The current code actually removes all breakpoints when
1802 doing this, not just the one being stepped over, so if we
1803 let other threads run, we can actually miss any
1804 breakpoint, not just the one at PC. */
1805 resume_ptid = inferior_ptid;
1806 }
1807 else if (non_stop)
1808 {
1809 /* With non-stop mode on, threads are always handled
1810 individually. */
1811 resume_ptid = inferior_ptid;
1812 }
1813 else if ((scheduler_mode == schedlock_on)
1814 || (scheduler_mode == schedlock_step
1815 && (step || singlestep_breakpoints_inserted_p)))
1816 {
1817 /* User-settable 'scheduler' mode requires solo thread resume. */
1818 resume_ptid = inferior_ptid;
1819 }
1820
1821 if (gdbarch_cannot_step_breakpoint (gdbarch))
1822 {
1823 /* Most targets can step a breakpoint instruction, thus
1824 executing it normally. But if this one cannot, just
1825 continue and we will hit it anyway. */
1826 if (step && breakpoint_inserted_here_p (aspace, pc))
1827 step = 0;
1828 }
1829
1830 if (debug_displaced
1831 && use_displaced_stepping (gdbarch)
1832 && tp->control.trap_expected)
1833 {
1834 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1835 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1836 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1837 gdb_byte buf[4];
1838
1839 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1840 paddress (resume_gdbarch, actual_pc));
1841 read_memory (actual_pc, buf, sizeof (buf));
1842 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1843 }
1844
1845 /* Install inferior's terminal modes. */
1846 target_terminal_inferior ();
1847
1848 /* Avoid confusing the next resume, if the next stop/resume
1849 happens to apply to another thread. */
1850 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1851
1852 /* Advise target which signals may be handled silently. If we have
1853 removed breakpoints because we are stepping over one (which can
1854 happen only if we are not using displaced stepping), we need to
1855 receive all signals to avoid accidentally skipping a breakpoint
1856 during execution of a signal handler. */
1857 if ((step || singlestep_breakpoints_inserted_p)
1858 && tp->control.trap_expected
1859 && !use_displaced_stepping (gdbarch))
1860 target_pass_signals (0, NULL);
1861 else
1862 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1863
1864 target_resume (resume_ptid, step, sig);
1865 }
1866
1867 discard_cleanups (old_cleanups);
1868 }
1869 \f
1870 /* Proceeding. */
1871
1872 /* Clear out all variables saying what to do when inferior is continued.
1873 First do this, then set the ones you want, then call `proceed'. */
1874
1875 static void
1876 clear_proceed_status_thread (struct thread_info *tp)
1877 {
1878 if (debug_infrun)
1879 fprintf_unfiltered (gdb_stdlog,
1880 "infrun: clear_proceed_status_thread (%s)\n",
1881 target_pid_to_str (tp->ptid));
1882
1883 tp->control.trap_expected = 0;
1884 tp->control.step_range_start = 0;
1885 tp->control.step_range_end = 0;
1886 tp->control.step_frame_id = null_frame_id;
1887 tp->control.step_stack_frame_id = null_frame_id;
1888 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1889 tp->stop_requested = 0;
1890
1891 tp->control.stop_step = 0;
1892
1893 tp->control.proceed_to_finish = 0;
1894
1895 /* Discard any remaining commands or status from previous stop. */
1896 bpstat_clear (&tp->control.stop_bpstat);
1897 }
1898
1899 static int
1900 clear_proceed_status_callback (struct thread_info *tp, void *data)
1901 {
1902 if (is_exited (tp->ptid))
1903 return 0;
1904
1905 clear_proceed_status_thread (tp);
1906 return 0;
1907 }
1908
1909 void
1910 clear_proceed_status (void)
1911 {
1912 if (!non_stop)
1913 {
1914 /* In all-stop mode, delete the per-thread status of all
1915 threads, even if inferior_ptid is null_ptid, there may be
1916 threads on the list. E.g., we may be launching a new
1917 process, while selecting the executable. */
1918 iterate_over_threads (clear_proceed_status_callback, NULL);
1919 }
1920
1921 if (!ptid_equal (inferior_ptid, null_ptid))
1922 {
1923 struct inferior *inferior;
1924
1925 if (non_stop)
1926 {
1927 /* If in non-stop mode, only delete the per-thread status of
1928 the current thread. */
1929 clear_proceed_status_thread (inferior_thread ());
1930 }
1931
1932 inferior = current_inferior ();
1933 inferior->control.stop_soon = NO_STOP_QUIETLY;
1934 }
1935
1936 stop_after_trap = 0;
1937
1938 observer_notify_about_to_proceed ();
1939
1940 if (stop_registers)
1941 {
1942 regcache_xfree (stop_registers);
1943 stop_registers = NULL;
1944 }
1945 }
1946
1947 /* Check the current thread against the thread that reported the most recent
1948 event. If a step-over is required return TRUE and set the current thread
1949 to the old thread. Otherwise return FALSE.
1950
1951 This should be suitable for any targets that support threads. */
1952
1953 static int
1954 prepare_to_proceed (int step)
1955 {
1956 ptid_t wait_ptid;
1957 struct target_waitstatus wait_status;
1958 int schedlock_enabled;
1959
1960 /* With non-stop mode on, threads are always handled individually. */
1961 gdb_assert (! non_stop);
1962
1963 /* Get the last target status returned by target_wait(). */
1964 get_last_target_status (&wait_ptid, &wait_status);
1965
1966 /* Make sure we were stopped at a breakpoint. */
1967 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1968 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1969 && wait_status.value.sig != TARGET_SIGNAL_ILL
1970 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1971 && wait_status.value.sig != TARGET_SIGNAL_EMT))
1972 {
1973 return 0;
1974 }
1975
1976 schedlock_enabled = (scheduler_mode == schedlock_on
1977 || (scheduler_mode == schedlock_step
1978 && step));
1979
1980 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1981 if (schedlock_enabled)
1982 return 0;
1983
1984 /* Don't switch over if we're about to resume some other process
1985 other than WAIT_PTID's, and schedule-multiple is off. */
1986 if (!sched_multi
1987 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1988 return 0;
1989
1990 /* Switched over from WAIT_PID. */
1991 if (!ptid_equal (wait_ptid, minus_one_ptid)
1992 && !ptid_equal (inferior_ptid, wait_ptid))
1993 {
1994 struct regcache *regcache = get_thread_regcache (wait_ptid);
1995
1996 if (breakpoint_here_p (get_regcache_aspace (regcache),
1997 regcache_read_pc (regcache)))
1998 {
1999 /* If stepping, remember current thread to switch back to. */
2000 if (step)
2001 deferred_step_ptid = inferior_ptid;
2002
2003 /* Switch back to WAIT_PID thread. */
2004 switch_to_thread (wait_ptid);
2005
2006 if (debug_infrun)
2007 fprintf_unfiltered (gdb_stdlog,
2008 "infrun: prepare_to_proceed (step=%d), "
2009 "switched to [%s]\n",
2010 step, target_pid_to_str (inferior_ptid));
2011
2012 /* We return 1 to indicate that there is a breakpoint here,
2013 so we need to step over it before continuing to avoid
2014 hitting it straight away. */
2015 return 1;
2016 }
2017 }
2018
2019 return 0;
2020 }
2021
2022 /* Basic routine for continuing the program in various fashions.
2023
2024 ADDR is the address to resume at, or -1 for resume where stopped.
2025 SIGGNAL is the signal to give it, or 0 for none,
2026 or -1 for act according to how it stopped.
2027 STEP is nonzero if should trap after one instruction.
2028 -1 means return after that and print nothing.
2029 You should probably set various step_... variables
2030 before calling here, if you are stepping.
2031
2032 You should call clear_proceed_status before calling proceed. */
2033
2034 void
2035 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2036 {
2037 struct regcache *regcache;
2038 struct gdbarch *gdbarch;
2039 struct thread_info *tp;
2040 CORE_ADDR pc;
2041 struct address_space *aspace;
2042 int oneproc = 0;
2043
2044 /* If we're stopped at a fork/vfork, follow the branch set by the
2045 "set follow-fork-mode" command; otherwise, we'll just proceed
2046 resuming the current thread. */
2047 if (!follow_fork ())
2048 {
2049 /* The target for some reason decided not to resume. */
2050 normal_stop ();
2051 return;
2052 }
2053
2054 regcache = get_current_regcache ();
2055 gdbarch = get_regcache_arch (regcache);
2056 aspace = get_regcache_aspace (regcache);
2057 pc = regcache_read_pc (regcache);
2058
2059 if (step > 0)
2060 step_start_function = find_pc_function (pc);
2061 if (step < 0)
2062 stop_after_trap = 1;
2063
2064 if (addr == (CORE_ADDR) -1)
2065 {
2066 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2067 && execution_direction != EXEC_REVERSE)
2068 /* There is a breakpoint at the address we will resume at,
2069 step one instruction before inserting breakpoints so that
2070 we do not stop right away (and report a second hit at this
2071 breakpoint).
2072
2073 Note, we don't do this in reverse, because we won't
2074 actually be executing the breakpoint insn anyway.
2075 We'll be (un-)executing the previous instruction. */
2076
2077 oneproc = 1;
2078 else if (gdbarch_single_step_through_delay_p (gdbarch)
2079 && gdbarch_single_step_through_delay (gdbarch,
2080 get_current_frame ()))
2081 /* We stepped onto an instruction that needs to be stepped
2082 again before re-inserting the breakpoint, do so. */
2083 oneproc = 1;
2084 }
2085 else
2086 {
2087 regcache_write_pc (regcache, addr);
2088 }
2089
2090 if (debug_infrun)
2091 fprintf_unfiltered (gdb_stdlog,
2092 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2093 paddress (gdbarch, addr), siggnal, step);
2094
2095 if (non_stop)
2096 /* In non-stop, each thread is handled individually. The context
2097 must already be set to the right thread here. */
2098 ;
2099 else
2100 {
2101 /* In a multi-threaded task we may select another thread and
2102 then continue or step.
2103
2104 But if the old thread was stopped at a breakpoint, it will
2105 immediately cause another breakpoint stop without any
2106 execution (i.e. it will report a breakpoint hit incorrectly).
2107 So we must step over it first.
2108
2109 prepare_to_proceed checks the current thread against the
2110 thread that reported the most recent event. If a step-over
2111 is required it returns TRUE and sets the current thread to
2112 the old thread. */
2113 if (prepare_to_proceed (step))
2114 oneproc = 1;
2115 }
2116
2117 /* prepare_to_proceed may change the current thread. */
2118 tp = inferior_thread ();
2119
2120 if (oneproc)
2121 {
2122 tp->control.trap_expected = 1;
2123 /* If displaced stepping is enabled, we can step over the
2124 breakpoint without hitting it, so leave all breakpoints
2125 inserted. Otherwise we need to disable all breakpoints, step
2126 one instruction, and then re-add them when that step is
2127 finished. */
2128 if (!use_displaced_stepping (gdbarch))
2129 remove_breakpoints ();
2130 }
2131
2132 /* We can insert breakpoints if we're not trying to step over one,
2133 or if we are stepping over one but we're using displaced stepping
2134 to do so. */
2135 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2136 insert_breakpoints ();
2137
2138 if (!non_stop)
2139 {
2140 /* Pass the last stop signal to the thread we're resuming,
2141 irrespective of whether the current thread is the thread that
2142 got the last event or not. This was historically GDB's
2143 behaviour before keeping a stop_signal per thread. */
2144
2145 struct thread_info *last_thread;
2146 ptid_t last_ptid;
2147 struct target_waitstatus last_status;
2148
2149 get_last_target_status (&last_ptid, &last_status);
2150 if (!ptid_equal (inferior_ptid, last_ptid)
2151 && !ptid_equal (last_ptid, null_ptid)
2152 && !ptid_equal (last_ptid, minus_one_ptid))
2153 {
2154 last_thread = find_thread_ptid (last_ptid);
2155 if (last_thread)
2156 {
2157 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2158 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2159 }
2160 }
2161 }
2162
2163 if (siggnal != TARGET_SIGNAL_DEFAULT)
2164 tp->suspend.stop_signal = siggnal;
2165 /* If this signal should not be seen by program,
2166 give it zero. Used for debugging signals. */
2167 else if (!signal_program[tp->suspend.stop_signal])
2168 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2169
2170 annotate_starting ();
2171
2172 /* Make sure that output from GDB appears before output from the
2173 inferior. */
2174 gdb_flush (gdb_stdout);
2175
2176 /* Refresh prev_pc value just prior to resuming. This used to be
2177 done in stop_stepping, however, setting prev_pc there did not handle
2178 scenarios such as inferior function calls or returning from
2179 a function via the return command. In those cases, the prev_pc
2180 value was not set properly for subsequent commands. The prev_pc value
2181 is used to initialize the starting line number in the ecs. With an
2182 invalid value, the gdb next command ends up stopping at the position
2183 represented by the next line table entry past our start position.
2184 On platforms that generate one line table entry per line, this
2185 is not a problem. However, on the ia64, the compiler generates
2186 extraneous line table entries that do not increase the line number.
2187 When we issue the gdb next command on the ia64 after an inferior call
2188 or a return command, we often end up a few instructions forward, still
2189 within the original line we started.
2190
2191 An attempt was made to refresh the prev_pc at the same time the
2192 execution_control_state is initialized (for instance, just before
2193 waiting for an inferior event). But this approach did not work
2194 because of platforms that use ptrace, where the pc register cannot
2195 be read unless the inferior is stopped. At that point, we are not
2196 guaranteed the inferior is stopped and so the regcache_read_pc() call
2197 can fail. Setting the prev_pc value here ensures the value is updated
2198 correctly when the inferior is stopped. */
2199 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2200
2201 /* Fill in with reasonable starting values. */
2202 init_thread_stepping_state (tp);
2203
2204 /* Reset to normal state. */
2205 init_infwait_state ();
2206
2207 /* Resume inferior. */
2208 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2209
2210 /* Wait for it to stop (if not standalone)
2211 and in any case decode why it stopped, and act accordingly. */
2212 /* Do this only if we are not using the event loop, or if the target
2213 does not support asynchronous execution. */
2214 if (!target_can_async_p ())
2215 {
2216 wait_for_inferior ();
2217 normal_stop ();
2218 }
2219 }
2220 \f
2221
2222 /* Start remote-debugging of a machine over a serial link. */
2223
2224 void
2225 start_remote (int from_tty)
2226 {
2227 struct inferior *inferior;
2228
2229 init_wait_for_inferior ();
2230 inferior = current_inferior ();
2231 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2232
2233 /* Always go on waiting for the target, regardless of the mode. */
2234 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2235 indicate to wait_for_inferior that a target should timeout if
2236 nothing is returned (instead of just blocking). Because of this,
2237 targets expecting an immediate response need to, internally, set
2238 things up so that the target_wait() is forced to eventually
2239 timeout. */
2240 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2241 differentiate to its caller what the state of the target is after
2242 the initial open has been performed. Here we're assuming that
2243 the target has stopped. It should be possible to eventually have
2244 target_open() return to the caller an indication that the target
2245 is currently running and GDB state should be set to the same as
2246 for an async run. */
2247 wait_for_inferior ();
2248
2249 /* Now that the inferior has stopped, do any bookkeeping like
2250 loading shared libraries. We want to do this before normal_stop,
2251 so that the displayed frame is up to date. */
2252 post_create_inferior (&current_target, from_tty);
2253
2254 normal_stop ();
2255 }
2256
2257 /* Initialize static vars when a new inferior begins. */
2258
2259 void
2260 init_wait_for_inferior (void)
2261 {
2262 /* These are meaningless until the first time through wait_for_inferior. */
2263
2264 breakpoint_init_inferior (inf_starting);
2265
2266 clear_proceed_status ();
2267
2268 stepping_past_singlestep_breakpoint = 0;
2269 deferred_step_ptid = null_ptid;
2270
2271 target_last_wait_ptid = minus_one_ptid;
2272
2273 previous_inferior_ptid = null_ptid;
2274 init_infwait_state ();
2275
2276 /* Discard any skipped inlined frames. */
2277 clear_inline_frame_state (minus_one_ptid);
2278 }
2279
2280 \f
2281 /* This enum encodes possible reasons for doing a target_wait, so that
2282 wfi can call target_wait in one place. (Ultimately the call will be
2283 moved out of the infinite loop entirely.) */
2284
2285 enum infwait_states
2286 {
2287 infwait_normal_state,
2288 infwait_thread_hop_state,
2289 infwait_step_watch_state,
2290 infwait_nonstep_watch_state
2291 };
2292
2293 /* The PTID we'll do a target_wait on.*/
2294 ptid_t waiton_ptid;
2295
2296 /* Current inferior wait state. */
2297 enum infwait_states infwait_state;
2298
2299 /* Data to be passed around while handling an event. This data is
2300 discarded between events. */
2301 struct execution_control_state
2302 {
2303 ptid_t ptid;
2304 /* The thread that got the event, if this was a thread event; NULL
2305 otherwise. */
2306 struct thread_info *event_thread;
2307
2308 struct target_waitstatus ws;
2309 int random_signal;
2310 CORE_ADDR stop_func_start;
2311 CORE_ADDR stop_func_end;
2312 char *stop_func_name;
2313 int new_thread_event;
2314 int wait_some_more;
2315 };
2316
2317 static void handle_inferior_event (struct execution_control_state *ecs);
2318
2319 static void handle_step_into_function (struct gdbarch *gdbarch,
2320 struct execution_control_state *ecs);
2321 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2322 struct execution_control_state *ecs);
2323 static void check_exception_resume (struct execution_control_state *,
2324 struct frame_info *, struct symbol *);
2325
2326 static void stop_stepping (struct execution_control_state *ecs);
2327 static void prepare_to_wait (struct execution_control_state *ecs);
2328 static void keep_going (struct execution_control_state *ecs);
2329
2330 /* Callback for iterate over threads. If the thread is stopped, but
2331 the user/frontend doesn't know about that yet, go through
2332 normal_stop, as if the thread had just stopped now. ARG points at
2333 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2334 ptid_is_pid(PTID) is true, applies to all threads of the process
2335 pointed at by PTID. Otherwise, apply only to the thread pointed by
2336 PTID. */
2337
2338 static int
2339 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2340 {
2341 ptid_t ptid = * (ptid_t *) arg;
2342
2343 if ((ptid_equal (info->ptid, ptid)
2344 || ptid_equal (minus_one_ptid, ptid)
2345 || (ptid_is_pid (ptid)
2346 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2347 && is_running (info->ptid)
2348 && !is_executing (info->ptid))
2349 {
2350 struct cleanup *old_chain;
2351 struct execution_control_state ecss;
2352 struct execution_control_state *ecs = &ecss;
2353
2354 memset (ecs, 0, sizeof (*ecs));
2355
2356 old_chain = make_cleanup_restore_current_thread ();
2357
2358 switch_to_thread (info->ptid);
2359
2360 /* Go through handle_inferior_event/normal_stop, so we always
2361 have consistent output as if the stop event had been
2362 reported. */
2363 ecs->ptid = info->ptid;
2364 ecs->event_thread = find_thread_ptid (info->ptid);
2365 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2366 ecs->ws.value.sig = TARGET_SIGNAL_0;
2367
2368 handle_inferior_event (ecs);
2369
2370 if (!ecs->wait_some_more)
2371 {
2372 struct thread_info *tp;
2373
2374 normal_stop ();
2375
2376 /* Finish off the continuations. The continations
2377 themselves are responsible for realising the thread
2378 didn't finish what it was supposed to do. */
2379 tp = inferior_thread ();
2380 do_all_intermediate_continuations_thread (tp);
2381 do_all_continuations_thread (tp);
2382 }
2383
2384 do_cleanups (old_chain);
2385 }
2386
2387 return 0;
2388 }
2389
2390 /* This function is attached as a "thread_stop_requested" observer.
2391 Cleanup local state that assumed the PTID was to be resumed, and
2392 report the stop to the frontend. */
2393
2394 static void
2395 infrun_thread_stop_requested (ptid_t ptid)
2396 {
2397 struct displaced_step_inferior_state *displaced;
2398
2399 /* PTID was requested to stop. Remove it from the displaced
2400 stepping queue, so we don't try to resume it automatically. */
2401
2402 for (displaced = displaced_step_inferior_states;
2403 displaced;
2404 displaced = displaced->next)
2405 {
2406 struct displaced_step_request *it, **prev_next_p;
2407
2408 it = displaced->step_request_queue;
2409 prev_next_p = &displaced->step_request_queue;
2410 while (it)
2411 {
2412 if (ptid_match (it->ptid, ptid))
2413 {
2414 *prev_next_p = it->next;
2415 it->next = NULL;
2416 xfree (it);
2417 }
2418 else
2419 {
2420 prev_next_p = &it->next;
2421 }
2422
2423 it = *prev_next_p;
2424 }
2425 }
2426
2427 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2428 }
2429
2430 static void
2431 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2432 {
2433 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2434 nullify_last_target_wait_ptid ();
2435 }
2436
2437 /* Callback for iterate_over_threads. */
2438
2439 static int
2440 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2441 {
2442 if (is_exited (info->ptid))
2443 return 0;
2444
2445 delete_step_resume_breakpoint (info);
2446 delete_exception_resume_breakpoint (info);
2447 return 0;
2448 }
2449
2450 /* In all-stop, delete the step resume breakpoint of any thread that
2451 had one. In non-stop, delete the step resume breakpoint of the
2452 thread that just stopped. */
2453
2454 static void
2455 delete_step_thread_step_resume_breakpoint (void)
2456 {
2457 if (!target_has_execution
2458 || ptid_equal (inferior_ptid, null_ptid))
2459 /* If the inferior has exited, we have already deleted the step
2460 resume breakpoints out of GDB's lists. */
2461 return;
2462
2463 if (non_stop)
2464 {
2465 /* If in non-stop mode, only delete the step-resume or
2466 longjmp-resume breakpoint of the thread that just stopped
2467 stepping. */
2468 struct thread_info *tp = inferior_thread ();
2469
2470 delete_step_resume_breakpoint (tp);
2471 delete_exception_resume_breakpoint (tp);
2472 }
2473 else
2474 /* In all-stop mode, delete all step-resume and longjmp-resume
2475 breakpoints of any thread that had them. */
2476 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2477 }
2478
2479 /* A cleanup wrapper. */
2480
2481 static void
2482 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2483 {
2484 delete_step_thread_step_resume_breakpoint ();
2485 }
2486
2487 /* Pretty print the results of target_wait, for debugging purposes. */
2488
2489 static void
2490 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2491 const struct target_waitstatus *ws)
2492 {
2493 char *status_string = target_waitstatus_to_string (ws);
2494 struct ui_file *tmp_stream = mem_fileopen ();
2495 char *text;
2496
2497 /* The text is split over several lines because it was getting too long.
2498 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2499 output as a unit; we want only one timestamp printed if debug_timestamp
2500 is set. */
2501
2502 fprintf_unfiltered (tmp_stream,
2503 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2504 if (PIDGET (waiton_ptid) != -1)
2505 fprintf_unfiltered (tmp_stream,
2506 " [%s]", target_pid_to_str (waiton_ptid));
2507 fprintf_unfiltered (tmp_stream, ", status) =\n");
2508 fprintf_unfiltered (tmp_stream,
2509 "infrun: %d [%s],\n",
2510 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2511 fprintf_unfiltered (tmp_stream,
2512 "infrun: %s\n",
2513 status_string);
2514
2515 text = ui_file_xstrdup (tmp_stream, NULL);
2516
2517 /* This uses %s in part to handle %'s in the text, but also to avoid
2518 a gcc error: the format attribute requires a string literal. */
2519 fprintf_unfiltered (gdb_stdlog, "%s", text);
2520
2521 xfree (status_string);
2522 xfree (text);
2523 ui_file_delete (tmp_stream);
2524 }
2525
2526 /* Prepare and stabilize the inferior for detaching it. E.g.,
2527 detaching while a thread is displaced stepping is a recipe for
2528 crashing it, as nothing would readjust the PC out of the scratch
2529 pad. */
2530
2531 void
2532 prepare_for_detach (void)
2533 {
2534 struct inferior *inf = current_inferior ();
2535 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2536 struct cleanup *old_chain_1;
2537 struct displaced_step_inferior_state *displaced;
2538
2539 displaced = get_displaced_stepping_state (inf->pid);
2540
2541 /* Is any thread of this process displaced stepping? If not,
2542 there's nothing else to do. */
2543 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2544 return;
2545
2546 if (debug_infrun)
2547 fprintf_unfiltered (gdb_stdlog,
2548 "displaced-stepping in-process while detaching");
2549
2550 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2551 inf->detaching = 1;
2552
2553 while (!ptid_equal (displaced->step_ptid, null_ptid))
2554 {
2555 struct cleanup *old_chain_2;
2556 struct execution_control_state ecss;
2557 struct execution_control_state *ecs;
2558
2559 ecs = &ecss;
2560 memset (ecs, 0, sizeof (*ecs));
2561
2562 overlay_cache_invalid = 1;
2563
2564 /* We have to invalidate the registers BEFORE calling
2565 target_wait because they can be loaded from the target while
2566 in target_wait. This makes remote debugging a bit more
2567 efficient for those targets that provide critical registers
2568 as part of their normal status mechanism. */
2569
2570 registers_changed ();
2571
2572 if (deprecated_target_wait_hook)
2573 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2574 else
2575 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2576
2577 if (debug_infrun)
2578 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2579
2580 /* If an error happens while handling the event, propagate GDB's
2581 knowledge of the executing state to the frontend/user running
2582 state. */
2583 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2584 &minus_one_ptid);
2585
2586 /* In non-stop mode, each thread is handled individually.
2587 Switch early, so the global state is set correctly for this
2588 thread. */
2589 if (non_stop
2590 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2591 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2592 context_switch (ecs->ptid);
2593
2594 /* Now figure out what to do with the result of the result. */
2595 handle_inferior_event (ecs);
2596
2597 /* No error, don't finish the state yet. */
2598 discard_cleanups (old_chain_2);
2599
2600 /* Breakpoints and watchpoints are not installed on the target
2601 at this point, and signals are passed directly to the
2602 inferior, so this must mean the process is gone. */
2603 if (!ecs->wait_some_more)
2604 {
2605 discard_cleanups (old_chain_1);
2606 error (_("Program exited while detaching"));
2607 }
2608 }
2609
2610 discard_cleanups (old_chain_1);
2611 }
2612
2613 /* Wait for control to return from inferior to debugger.
2614
2615 If inferior gets a signal, we may decide to start it up again
2616 instead of returning. That is why there is a loop in this function.
2617 When this function actually returns it means the inferior
2618 should be left stopped and GDB should read more commands. */
2619
2620 void
2621 wait_for_inferior (void)
2622 {
2623 struct cleanup *old_cleanups;
2624 struct execution_control_state ecss;
2625 struct execution_control_state *ecs;
2626
2627 if (debug_infrun)
2628 fprintf_unfiltered
2629 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2630
2631 old_cleanups =
2632 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2633
2634 ecs = &ecss;
2635 memset (ecs, 0, sizeof (*ecs));
2636
2637 /* We'll update this if & when we switch to a new thread. */
2638 previous_inferior_ptid = inferior_ptid;
2639
2640 while (1)
2641 {
2642 struct cleanup *old_chain;
2643
2644 /* We have to invalidate the registers BEFORE calling target_wait
2645 because they can be loaded from the target while in target_wait.
2646 This makes remote debugging a bit more efficient for those
2647 targets that provide critical registers as part of their normal
2648 status mechanism. */
2649
2650 overlay_cache_invalid = 1;
2651 registers_changed ();
2652
2653 if (deprecated_target_wait_hook)
2654 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2655 else
2656 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2657
2658 if (debug_infrun)
2659 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2660
2661 /* If an error happens while handling the event, propagate GDB's
2662 knowledge of the executing state to the frontend/user running
2663 state. */
2664 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2665
2666 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2667 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2668 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2669
2670 /* Now figure out what to do with the result of the result. */
2671 handle_inferior_event (ecs);
2672
2673 /* No error, don't finish the state yet. */
2674 discard_cleanups (old_chain);
2675
2676 if (!ecs->wait_some_more)
2677 break;
2678 }
2679
2680 do_cleanups (old_cleanups);
2681 }
2682
2683 /* Asynchronous version of wait_for_inferior. It is called by the
2684 event loop whenever a change of state is detected on the file
2685 descriptor corresponding to the target. It can be called more than
2686 once to complete a single execution command. In such cases we need
2687 to keep the state in a global variable ECSS. If it is the last time
2688 that this function is called for a single execution command, then
2689 report to the user that the inferior has stopped, and do the
2690 necessary cleanups. */
2691
2692 void
2693 fetch_inferior_event (void *client_data)
2694 {
2695 struct execution_control_state ecss;
2696 struct execution_control_state *ecs = &ecss;
2697 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2698 struct cleanup *ts_old_chain;
2699 int was_sync = sync_execution;
2700
2701 memset (ecs, 0, sizeof (*ecs));
2702
2703 /* We'll update this if & when we switch to a new thread. */
2704 previous_inferior_ptid = inferior_ptid;
2705
2706 /* We're handling a live event, so make sure we're doing live
2707 debugging. If we're looking at traceframes while the target is
2708 running, we're going to need to get back to that mode after
2709 handling the event. */
2710 if (non_stop)
2711 {
2712 make_cleanup_restore_current_traceframe ();
2713 set_current_traceframe (-1);
2714 }
2715
2716 if (non_stop)
2717 /* In non-stop mode, the user/frontend should not notice a thread
2718 switch due to internal events. Make sure we reverse to the
2719 user selected thread and frame after handling the event and
2720 running any breakpoint commands. */
2721 make_cleanup_restore_current_thread ();
2722
2723 /* We have to invalidate the registers BEFORE calling target_wait
2724 because they can be loaded from the target while in target_wait.
2725 This makes remote debugging a bit more efficient for those
2726 targets that provide critical registers as part of their normal
2727 status mechanism. */
2728
2729 overlay_cache_invalid = 1;
2730 registers_changed ();
2731
2732 if (deprecated_target_wait_hook)
2733 ecs->ptid =
2734 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2735 else
2736 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2737
2738 if (debug_infrun)
2739 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2740
2741 if (non_stop
2742 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2743 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2744 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2745 /* In non-stop mode, each thread is handled individually. Switch
2746 early, so the global state is set correctly for this
2747 thread. */
2748 context_switch (ecs->ptid);
2749
2750 /* If an error happens while handling the event, propagate GDB's
2751 knowledge of the executing state to the frontend/user running
2752 state. */
2753 if (!non_stop)
2754 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2755 else
2756 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2757
2758 /* Now figure out what to do with the result of the result. */
2759 handle_inferior_event (ecs);
2760
2761 if (!ecs->wait_some_more)
2762 {
2763 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2764
2765 delete_step_thread_step_resume_breakpoint ();
2766
2767 /* We may not find an inferior if this was a process exit. */
2768 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2769 normal_stop ();
2770
2771 if (target_has_execution
2772 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2773 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2774 && ecs->event_thread->step_multi
2775 && ecs->event_thread->control.stop_step)
2776 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2777 else
2778 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2779 }
2780
2781 /* No error, don't finish the thread states yet. */
2782 discard_cleanups (ts_old_chain);
2783
2784 /* Revert thread and frame. */
2785 do_cleanups (old_chain);
2786
2787 /* If the inferior was in sync execution mode, and now isn't,
2788 restore the prompt. */
2789 if (was_sync && !sync_execution)
2790 display_gdb_prompt (0);
2791 }
2792
2793 /* Record the frame and location we're currently stepping through. */
2794 void
2795 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2796 {
2797 struct thread_info *tp = inferior_thread ();
2798
2799 tp->control.step_frame_id = get_frame_id (frame);
2800 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2801
2802 tp->current_symtab = sal.symtab;
2803 tp->current_line = sal.line;
2804 }
2805
2806 /* Clear context switchable stepping state. */
2807
2808 void
2809 init_thread_stepping_state (struct thread_info *tss)
2810 {
2811 tss->stepping_over_breakpoint = 0;
2812 tss->step_after_step_resume_breakpoint = 0;
2813 tss->stepping_through_solib_after_catch = 0;
2814 tss->stepping_through_solib_catchpoints = NULL;
2815 }
2816
2817 /* Return the cached copy of the last pid/waitstatus returned by
2818 target_wait()/deprecated_target_wait_hook(). The data is actually
2819 cached by handle_inferior_event(), which gets called immediately
2820 after target_wait()/deprecated_target_wait_hook(). */
2821
2822 void
2823 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2824 {
2825 *ptidp = target_last_wait_ptid;
2826 *status = target_last_waitstatus;
2827 }
2828
2829 void
2830 nullify_last_target_wait_ptid (void)
2831 {
2832 target_last_wait_ptid = minus_one_ptid;
2833 }
2834
2835 /* Switch thread contexts. */
2836
2837 static void
2838 context_switch (ptid_t ptid)
2839 {
2840 if (debug_infrun)
2841 {
2842 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2843 target_pid_to_str (inferior_ptid));
2844 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2845 target_pid_to_str (ptid));
2846 }
2847
2848 switch_to_thread (ptid);
2849 }
2850
2851 static void
2852 adjust_pc_after_break (struct execution_control_state *ecs)
2853 {
2854 struct regcache *regcache;
2855 struct gdbarch *gdbarch;
2856 struct address_space *aspace;
2857 CORE_ADDR breakpoint_pc;
2858
2859 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2860 we aren't, just return.
2861
2862 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2863 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2864 implemented by software breakpoints should be handled through the normal
2865 breakpoint layer.
2866
2867 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2868 different signals (SIGILL or SIGEMT for instance), but it is less
2869 clear where the PC is pointing afterwards. It may not match
2870 gdbarch_decr_pc_after_break. I don't know any specific target that
2871 generates these signals at breakpoints (the code has been in GDB since at
2872 least 1992) so I can not guess how to handle them here.
2873
2874 In earlier versions of GDB, a target with
2875 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2876 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2877 target with both of these set in GDB history, and it seems unlikely to be
2878 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2879
2880 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2881 return;
2882
2883 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2884 return;
2885
2886 /* In reverse execution, when a breakpoint is hit, the instruction
2887 under it has already been de-executed. The reported PC always
2888 points at the breakpoint address, so adjusting it further would
2889 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2890 architecture:
2891
2892 B1 0x08000000 : INSN1
2893 B2 0x08000001 : INSN2
2894 0x08000002 : INSN3
2895 PC -> 0x08000003 : INSN4
2896
2897 Say you're stopped at 0x08000003 as above. Reverse continuing
2898 from that point should hit B2 as below. Reading the PC when the
2899 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2900 been de-executed already.
2901
2902 B1 0x08000000 : INSN1
2903 B2 PC -> 0x08000001 : INSN2
2904 0x08000002 : INSN3
2905 0x08000003 : INSN4
2906
2907 We can't apply the same logic as for forward execution, because
2908 we would wrongly adjust the PC to 0x08000000, since there's a
2909 breakpoint at PC - 1. We'd then report a hit on B1, although
2910 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2911 behaviour. */
2912 if (execution_direction == EXEC_REVERSE)
2913 return;
2914
2915 /* If this target does not decrement the PC after breakpoints, then
2916 we have nothing to do. */
2917 regcache = get_thread_regcache (ecs->ptid);
2918 gdbarch = get_regcache_arch (regcache);
2919 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2920 return;
2921
2922 aspace = get_regcache_aspace (regcache);
2923
2924 /* Find the location where (if we've hit a breakpoint) the
2925 breakpoint would be. */
2926 breakpoint_pc = regcache_read_pc (regcache)
2927 - gdbarch_decr_pc_after_break (gdbarch);
2928
2929 /* Check whether there actually is a software breakpoint inserted at
2930 that location.
2931
2932 If in non-stop mode, a race condition is possible where we've
2933 removed a breakpoint, but stop events for that breakpoint were
2934 already queued and arrive later. To suppress those spurious
2935 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2936 and retire them after a number of stop events are reported. */
2937 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2938 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2939 {
2940 struct cleanup *old_cleanups = NULL;
2941
2942 if (RECORD_IS_USED)
2943 old_cleanups = record_gdb_operation_disable_set ();
2944
2945 /* When using hardware single-step, a SIGTRAP is reported for both
2946 a completed single-step and a software breakpoint. Need to
2947 differentiate between the two, as the latter needs adjusting
2948 but the former does not.
2949
2950 The SIGTRAP can be due to a completed hardware single-step only if
2951 - we didn't insert software single-step breakpoints
2952 - the thread to be examined is still the current thread
2953 - this thread is currently being stepped
2954
2955 If any of these events did not occur, we must have stopped due
2956 to hitting a software breakpoint, and have to back up to the
2957 breakpoint address.
2958
2959 As a special case, we could have hardware single-stepped a
2960 software breakpoint. In this case (prev_pc == breakpoint_pc),
2961 we also need to back up to the breakpoint address. */
2962
2963 if (singlestep_breakpoints_inserted_p
2964 || !ptid_equal (ecs->ptid, inferior_ptid)
2965 || !currently_stepping (ecs->event_thread)
2966 || ecs->event_thread->prev_pc == breakpoint_pc)
2967 regcache_write_pc (regcache, breakpoint_pc);
2968
2969 if (RECORD_IS_USED)
2970 do_cleanups (old_cleanups);
2971 }
2972 }
2973
2974 void
2975 init_infwait_state (void)
2976 {
2977 waiton_ptid = pid_to_ptid (-1);
2978 infwait_state = infwait_normal_state;
2979 }
2980
2981 void
2982 error_is_running (void)
2983 {
2984 error (_("Cannot execute this command while "
2985 "the selected thread is running."));
2986 }
2987
2988 void
2989 ensure_not_running (void)
2990 {
2991 if (is_running (inferior_ptid))
2992 error_is_running ();
2993 }
2994
2995 static int
2996 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2997 {
2998 for (frame = get_prev_frame (frame);
2999 frame != NULL;
3000 frame = get_prev_frame (frame))
3001 {
3002 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3003 return 1;
3004 if (get_frame_type (frame) != INLINE_FRAME)
3005 break;
3006 }
3007
3008 return 0;
3009 }
3010
3011 /* Auxiliary function that handles syscall entry/return events.
3012 It returns 1 if the inferior should keep going (and GDB
3013 should ignore the event), or 0 if the event deserves to be
3014 processed. */
3015
3016 static int
3017 handle_syscall_event (struct execution_control_state *ecs)
3018 {
3019 struct regcache *regcache;
3020 struct gdbarch *gdbarch;
3021 int syscall_number;
3022
3023 if (!ptid_equal (ecs->ptid, inferior_ptid))
3024 context_switch (ecs->ptid);
3025
3026 regcache = get_thread_regcache (ecs->ptid);
3027 gdbarch = get_regcache_arch (regcache);
3028 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3029 stop_pc = regcache_read_pc (regcache);
3030
3031 target_last_waitstatus.value.syscall_number = syscall_number;
3032
3033 if (catch_syscall_enabled () > 0
3034 && catching_syscall_number (syscall_number) > 0)
3035 {
3036 if (debug_infrun)
3037 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3038 syscall_number);
3039
3040 ecs->event_thread->control.stop_bpstat
3041 = bpstat_stop_status (get_regcache_aspace (regcache),
3042 stop_pc, ecs->ptid);
3043 ecs->random_signal
3044 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3045
3046 if (!ecs->random_signal)
3047 {
3048 /* Catchpoint hit. */
3049 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3050 return 0;
3051 }
3052 }
3053
3054 /* If no catchpoint triggered for this, then keep going. */
3055 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3056 keep_going (ecs);
3057 return 1;
3058 }
3059
3060 /* Given an execution control state that has been freshly filled in
3061 by an event from the inferior, figure out what it means and take
3062 appropriate action. */
3063
3064 static void
3065 handle_inferior_event (struct execution_control_state *ecs)
3066 {
3067 struct frame_info *frame;
3068 struct gdbarch *gdbarch;
3069 int sw_single_step_trap_p = 0;
3070 int stopped_by_watchpoint;
3071 int stepped_after_stopped_by_watchpoint = 0;
3072 struct symtab_and_line stop_pc_sal;
3073 enum stop_kind stop_soon;
3074
3075 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3076 {
3077 /* We had an event in the inferior, but we are not interested in
3078 handling it at this level. The lower layers have already
3079 done what needs to be done, if anything.
3080
3081 One of the possible circumstances for this is when the
3082 inferior produces output for the console. The inferior has
3083 not stopped, and we are ignoring the event. Another possible
3084 circumstance is any event which the lower level knows will be
3085 reported multiple times without an intervening resume. */
3086 if (debug_infrun)
3087 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3088 prepare_to_wait (ecs);
3089 return;
3090 }
3091
3092 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3093 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3094 {
3095 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3096
3097 gdb_assert (inf);
3098 stop_soon = inf->control.stop_soon;
3099 }
3100 else
3101 stop_soon = NO_STOP_QUIETLY;
3102
3103 /* Cache the last pid/waitstatus. */
3104 target_last_wait_ptid = ecs->ptid;
3105 target_last_waitstatus = ecs->ws;
3106
3107 /* Always clear state belonging to the previous time we stopped. */
3108 stop_stack_dummy = STOP_NONE;
3109
3110 /* If it's a new process, add it to the thread database. */
3111
3112 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3113 && !ptid_equal (ecs->ptid, minus_one_ptid)
3114 && !in_thread_list (ecs->ptid));
3115
3116 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3117 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3118 add_thread (ecs->ptid);
3119
3120 ecs->event_thread = find_thread_ptid (ecs->ptid);
3121
3122 /* Dependent on valid ECS->EVENT_THREAD. */
3123 adjust_pc_after_break (ecs);
3124
3125 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3126 reinit_frame_cache ();
3127
3128 breakpoint_retire_moribund ();
3129
3130 /* First, distinguish signals caused by the debugger from signals
3131 that have to do with the program's own actions. Note that
3132 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3133 on the operating system version. Here we detect when a SIGILL or
3134 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3135 something similar for SIGSEGV, since a SIGSEGV will be generated
3136 when we're trying to execute a breakpoint instruction on a
3137 non-executable stack. This happens for call dummy breakpoints
3138 for architectures like SPARC that place call dummies on the
3139 stack. */
3140 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3141 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3142 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3143 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3144 {
3145 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3146
3147 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3148 regcache_read_pc (regcache)))
3149 {
3150 if (debug_infrun)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "infrun: Treating signal as SIGTRAP\n");
3153 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3154 }
3155 }
3156
3157 /* Mark the non-executing threads accordingly. In all-stop, all
3158 threads of all processes are stopped when we get any event
3159 reported. In non-stop mode, only the event thread stops. If
3160 we're handling a process exit in non-stop mode, there's nothing
3161 to do, as threads of the dead process are gone, and threads of
3162 any other process were left running. */
3163 if (!non_stop)
3164 set_executing (minus_one_ptid, 0);
3165 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3166 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3167 set_executing (inferior_ptid, 0);
3168
3169 switch (infwait_state)
3170 {
3171 case infwait_thread_hop_state:
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3174 break;
3175
3176 case infwait_normal_state:
3177 if (debug_infrun)
3178 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3179 break;
3180
3181 case infwait_step_watch_state:
3182 if (debug_infrun)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "infrun: infwait_step_watch_state\n");
3185
3186 stepped_after_stopped_by_watchpoint = 1;
3187 break;
3188
3189 case infwait_nonstep_watch_state:
3190 if (debug_infrun)
3191 fprintf_unfiltered (gdb_stdlog,
3192 "infrun: infwait_nonstep_watch_state\n");
3193 insert_breakpoints ();
3194
3195 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3196 handle things like signals arriving and other things happening
3197 in combination correctly? */
3198 stepped_after_stopped_by_watchpoint = 1;
3199 break;
3200
3201 default:
3202 internal_error (__FILE__, __LINE__, _("bad switch"));
3203 }
3204
3205 infwait_state = infwait_normal_state;
3206 waiton_ptid = pid_to_ptid (-1);
3207
3208 switch (ecs->ws.kind)
3209 {
3210 case TARGET_WAITKIND_LOADED:
3211 if (debug_infrun)
3212 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3213 /* Ignore gracefully during startup of the inferior, as it might
3214 be the shell which has just loaded some objects, otherwise
3215 add the symbols for the newly loaded objects. Also ignore at
3216 the beginning of an attach or remote session; we will query
3217 the full list of libraries once the connection is
3218 established. */
3219 if (stop_soon == NO_STOP_QUIETLY)
3220 {
3221 /* Check for any newly added shared libraries if we're
3222 supposed to be adding them automatically. Switch
3223 terminal for any messages produced by
3224 breakpoint_re_set. */
3225 target_terminal_ours_for_output ();
3226 /* NOTE: cagney/2003-11-25: Make certain that the target
3227 stack's section table is kept up-to-date. Architectures,
3228 (e.g., PPC64), use the section table to perform
3229 operations such as address => section name and hence
3230 require the table to contain all sections (including
3231 those found in shared libraries). */
3232 #ifdef SOLIB_ADD
3233 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3234 #else
3235 solib_add (NULL, 0, &current_target, auto_solib_add);
3236 #endif
3237 target_terminal_inferior ();
3238
3239 /* If requested, stop when the dynamic linker notifies
3240 gdb of events. This allows the user to get control
3241 and place breakpoints in initializer routines for
3242 dynamically loaded objects (among other things). */
3243 if (stop_on_solib_events)
3244 {
3245 /* Make sure we print "Stopped due to solib-event" in
3246 normal_stop. */
3247 stop_print_frame = 1;
3248
3249 stop_stepping (ecs);
3250 return;
3251 }
3252
3253 /* NOTE drow/2007-05-11: This might be a good place to check
3254 for "catch load". */
3255 }
3256
3257 /* If we are skipping through a shell, or through shared library
3258 loading that we aren't interested in, resume the program. If
3259 we're running the program normally, also resume. But stop if
3260 we're attaching or setting up a remote connection. */
3261 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3262 {
3263 /* Loading of shared libraries might have changed breakpoint
3264 addresses. Make sure new breakpoints are inserted. */
3265 if (stop_soon == NO_STOP_QUIETLY
3266 && !breakpoints_always_inserted_mode ())
3267 insert_breakpoints ();
3268 resume (0, TARGET_SIGNAL_0);
3269 prepare_to_wait (ecs);
3270 return;
3271 }
3272
3273 break;
3274
3275 case TARGET_WAITKIND_SPURIOUS:
3276 if (debug_infrun)
3277 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3278 resume (0, TARGET_SIGNAL_0);
3279 prepare_to_wait (ecs);
3280 return;
3281
3282 case TARGET_WAITKIND_EXITED:
3283 if (debug_infrun)
3284 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3285 inferior_ptid = ecs->ptid;
3286 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3287 set_current_program_space (current_inferior ()->pspace);
3288 handle_vfork_child_exec_or_exit (0);
3289 target_terminal_ours (); /* Must do this before mourn anyway. */
3290 print_exited_reason (ecs->ws.value.integer);
3291
3292 /* Record the exit code in the convenience variable $_exitcode, so
3293 that the user can inspect this again later. */
3294 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3295 (LONGEST) ecs->ws.value.integer);
3296 gdb_flush (gdb_stdout);
3297 target_mourn_inferior ();
3298 singlestep_breakpoints_inserted_p = 0;
3299 cancel_single_step_breakpoints ();
3300 stop_print_frame = 0;
3301 stop_stepping (ecs);
3302 return;
3303
3304 case TARGET_WAITKIND_SIGNALLED:
3305 if (debug_infrun)
3306 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3307 inferior_ptid = ecs->ptid;
3308 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3309 set_current_program_space (current_inferior ()->pspace);
3310 handle_vfork_child_exec_or_exit (0);
3311 stop_print_frame = 0;
3312 target_terminal_ours (); /* Must do this before mourn anyway. */
3313
3314 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3315 reach here unless the inferior is dead. However, for years
3316 target_kill() was called here, which hints that fatal signals aren't
3317 really fatal on some systems. If that's true, then some changes
3318 may be needed. */
3319 target_mourn_inferior ();
3320
3321 print_signal_exited_reason (ecs->ws.value.sig);
3322 singlestep_breakpoints_inserted_p = 0;
3323 cancel_single_step_breakpoints ();
3324 stop_stepping (ecs);
3325 return;
3326
3327 /* The following are the only cases in which we keep going;
3328 the above cases end in a continue or goto. */
3329 case TARGET_WAITKIND_FORKED:
3330 case TARGET_WAITKIND_VFORKED:
3331 if (debug_infrun)
3332 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3333
3334 if (!ptid_equal (ecs->ptid, inferior_ptid))
3335 {
3336 context_switch (ecs->ptid);
3337 reinit_frame_cache ();
3338 }
3339
3340 /* Immediately detach breakpoints from the child before there's
3341 any chance of letting the user delete breakpoints from the
3342 breakpoint lists. If we don't do this early, it's easy to
3343 leave left over traps in the child, vis: "break foo; catch
3344 fork; c; <fork>; del; c; <child calls foo>". We only follow
3345 the fork on the last `continue', and by that time the
3346 breakpoint at "foo" is long gone from the breakpoint table.
3347 If we vforked, then we don't need to unpatch here, since both
3348 parent and child are sharing the same memory pages; we'll
3349 need to unpatch at follow/detach time instead to be certain
3350 that new breakpoints added between catchpoint hit time and
3351 vfork follow are detached. */
3352 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3353 {
3354 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3355
3356 /* This won't actually modify the breakpoint list, but will
3357 physically remove the breakpoints from the child. */
3358 detach_breakpoints (child_pid);
3359 }
3360
3361 if (singlestep_breakpoints_inserted_p)
3362 {
3363 /* Pull the single step breakpoints out of the target. */
3364 remove_single_step_breakpoints ();
3365 singlestep_breakpoints_inserted_p = 0;
3366 }
3367
3368 /* In case the event is caught by a catchpoint, remember that
3369 the event is to be followed at the next resume of the thread,
3370 and not immediately. */
3371 ecs->event_thread->pending_follow = ecs->ws;
3372
3373 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3374
3375 ecs->event_thread->control.stop_bpstat
3376 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3377 stop_pc, ecs->ptid);
3378
3379 /* Note that we're interested in knowing the bpstat actually
3380 causes a stop, not just if it may explain the signal.
3381 Software watchpoints, for example, always appear in the
3382 bpstat. */
3383 ecs->random_signal
3384 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3385
3386 /* If no catchpoint triggered for this, then keep going. */
3387 if (ecs->random_signal)
3388 {
3389 ptid_t parent;
3390 ptid_t child;
3391 int should_resume;
3392 int follow_child
3393 = (follow_fork_mode_string == follow_fork_mode_child);
3394
3395 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3396
3397 should_resume = follow_fork ();
3398
3399 parent = ecs->ptid;
3400 child = ecs->ws.value.related_pid;
3401
3402 /* In non-stop mode, also resume the other branch. */
3403 if (non_stop && !detach_fork)
3404 {
3405 if (follow_child)
3406 switch_to_thread (parent);
3407 else
3408 switch_to_thread (child);
3409
3410 ecs->event_thread = inferior_thread ();
3411 ecs->ptid = inferior_ptid;
3412 keep_going (ecs);
3413 }
3414
3415 if (follow_child)
3416 switch_to_thread (child);
3417 else
3418 switch_to_thread (parent);
3419
3420 ecs->event_thread = inferior_thread ();
3421 ecs->ptid = inferior_ptid;
3422
3423 if (should_resume)
3424 keep_going (ecs);
3425 else
3426 stop_stepping (ecs);
3427 return;
3428 }
3429 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3430 goto process_event_stop_test;
3431
3432 case TARGET_WAITKIND_VFORK_DONE:
3433 /* Done with the shared memory region. Re-insert breakpoints in
3434 the parent, and keep going. */
3435
3436 if (debug_infrun)
3437 fprintf_unfiltered (gdb_stdlog,
3438 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3439
3440 if (!ptid_equal (ecs->ptid, inferior_ptid))
3441 context_switch (ecs->ptid);
3442
3443 current_inferior ()->waiting_for_vfork_done = 0;
3444 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3445 /* This also takes care of reinserting breakpoints in the
3446 previously locked inferior. */
3447 keep_going (ecs);
3448 return;
3449
3450 case TARGET_WAITKIND_EXECD:
3451 if (debug_infrun)
3452 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3453
3454 if (!ptid_equal (ecs->ptid, inferior_ptid))
3455 {
3456 context_switch (ecs->ptid);
3457 reinit_frame_cache ();
3458 }
3459
3460 singlestep_breakpoints_inserted_p = 0;
3461 cancel_single_step_breakpoints ();
3462
3463 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3464
3465 /* Do whatever is necessary to the parent branch of the vfork. */
3466 handle_vfork_child_exec_or_exit (1);
3467
3468 /* This causes the eventpoints and symbol table to be reset.
3469 Must do this now, before trying to determine whether to
3470 stop. */
3471 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3472
3473 ecs->event_thread->control.stop_bpstat
3474 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3475 stop_pc, ecs->ptid);
3476 ecs->random_signal
3477 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3478
3479 /* Note that this may be referenced from inside
3480 bpstat_stop_status above, through inferior_has_execd. */
3481 xfree (ecs->ws.value.execd_pathname);
3482 ecs->ws.value.execd_pathname = NULL;
3483
3484 /* If no catchpoint triggered for this, then keep going. */
3485 if (ecs->random_signal)
3486 {
3487 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3488 keep_going (ecs);
3489 return;
3490 }
3491 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3492 goto process_event_stop_test;
3493
3494 /* Be careful not to try to gather much state about a thread
3495 that's in a syscall. It's frequently a losing proposition. */
3496 case TARGET_WAITKIND_SYSCALL_ENTRY:
3497 if (debug_infrun)
3498 fprintf_unfiltered (gdb_stdlog,
3499 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3500 /* Getting the current syscall number. */
3501 if (handle_syscall_event (ecs) != 0)
3502 return;
3503 goto process_event_stop_test;
3504
3505 /* Before examining the threads further, step this thread to
3506 get it entirely out of the syscall. (We get notice of the
3507 event when the thread is just on the verge of exiting a
3508 syscall. Stepping one instruction seems to get it back
3509 into user code.) */
3510 case TARGET_WAITKIND_SYSCALL_RETURN:
3511 if (debug_infrun)
3512 fprintf_unfiltered (gdb_stdlog,
3513 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3514 if (handle_syscall_event (ecs) != 0)
3515 return;
3516 goto process_event_stop_test;
3517
3518 case TARGET_WAITKIND_STOPPED:
3519 if (debug_infrun)
3520 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3521 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3522 break;
3523
3524 case TARGET_WAITKIND_NO_HISTORY:
3525 /* Reverse execution: target ran out of history info. */
3526 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3527 print_no_history_reason ();
3528 stop_stepping (ecs);
3529 return;
3530 }
3531
3532 if (ecs->new_thread_event)
3533 {
3534 if (non_stop)
3535 /* Non-stop assumes that the target handles adding new threads
3536 to the thread list. */
3537 internal_error (__FILE__, __LINE__,
3538 "targets should add new threads to the thread "
3539 "list themselves in non-stop mode.");
3540
3541 /* We may want to consider not doing a resume here in order to
3542 give the user a chance to play with the new thread. It might
3543 be good to make that a user-settable option. */
3544
3545 /* At this point, all threads are stopped (happens automatically
3546 in either the OS or the native code). Therefore we need to
3547 continue all threads in order to make progress. */
3548
3549 if (!ptid_equal (ecs->ptid, inferior_ptid))
3550 context_switch (ecs->ptid);
3551 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3552 prepare_to_wait (ecs);
3553 return;
3554 }
3555
3556 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3557 {
3558 /* Do we need to clean up the state of a thread that has
3559 completed a displaced single-step? (Doing so usually affects
3560 the PC, so do it here, before we set stop_pc.) */
3561 displaced_step_fixup (ecs->ptid,
3562 ecs->event_thread->suspend.stop_signal);
3563
3564 /* If we either finished a single-step or hit a breakpoint, but
3565 the user wanted this thread to be stopped, pretend we got a
3566 SIG0 (generic unsignaled stop). */
3567
3568 if (ecs->event_thread->stop_requested
3569 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3570 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3571 }
3572
3573 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3574
3575 if (debug_infrun)
3576 {
3577 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3578 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3579 struct cleanup *old_chain = save_inferior_ptid ();
3580
3581 inferior_ptid = ecs->ptid;
3582
3583 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3584 paddress (gdbarch, stop_pc));
3585 if (target_stopped_by_watchpoint ())
3586 {
3587 CORE_ADDR addr;
3588
3589 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3590
3591 if (target_stopped_data_address (&current_target, &addr))
3592 fprintf_unfiltered (gdb_stdlog,
3593 "infrun: stopped data address = %s\n",
3594 paddress (gdbarch, addr));
3595 else
3596 fprintf_unfiltered (gdb_stdlog,
3597 "infrun: (no data address available)\n");
3598 }
3599
3600 do_cleanups (old_chain);
3601 }
3602
3603 if (stepping_past_singlestep_breakpoint)
3604 {
3605 gdb_assert (singlestep_breakpoints_inserted_p);
3606 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3607 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3608
3609 stepping_past_singlestep_breakpoint = 0;
3610
3611 /* We've either finished single-stepping past the single-step
3612 breakpoint, or stopped for some other reason. It would be nice if
3613 we could tell, but we can't reliably. */
3614 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3615 {
3616 if (debug_infrun)
3617 fprintf_unfiltered (gdb_stdlog,
3618 "infrun: stepping_past_"
3619 "singlestep_breakpoint\n");
3620 /* Pull the single step breakpoints out of the target. */
3621 remove_single_step_breakpoints ();
3622 singlestep_breakpoints_inserted_p = 0;
3623
3624 ecs->random_signal = 0;
3625 ecs->event_thread->control.trap_expected = 0;
3626
3627 context_switch (saved_singlestep_ptid);
3628 if (deprecated_context_hook)
3629 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3630
3631 resume (1, TARGET_SIGNAL_0);
3632 prepare_to_wait (ecs);
3633 return;
3634 }
3635 }
3636
3637 if (!ptid_equal (deferred_step_ptid, null_ptid))
3638 {
3639 /* In non-stop mode, there's never a deferred_step_ptid set. */
3640 gdb_assert (!non_stop);
3641
3642 /* If we stopped for some other reason than single-stepping, ignore
3643 the fact that we were supposed to switch back. */
3644 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3645 {
3646 if (debug_infrun)
3647 fprintf_unfiltered (gdb_stdlog,
3648 "infrun: handling deferred step\n");
3649
3650 /* Pull the single step breakpoints out of the target. */
3651 if (singlestep_breakpoints_inserted_p)
3652 {
3653 remove_single_step_breakpoints ();
3654 singlestep_breakpoints_inserted_p = 0;
3655 }
3656
3657 ecs->event_thread->control.trap_expected = 0;
3658
3659 /* Note: We do not call context_switch at this point, as the
3660 context is already set up for stepping the original thread. */
3661 switch_to_thread (deferred_step_ptid);
3662 deferred_step_ptid = null_ptid;
3663 /* Suppress spurious "Switching to ..." message. */
3664 previous_inferior_ptid = inferior_ptid;
3665
3666 resume (1, TARGET_SIGNAL_0);
3667 prepare_to_wait (ecs);
3668 return;
3669 }
3670
3671 deferred_step_ptid = null_ptid;
3672 }
3673
3674 /* See if a thread hit a thread-specific breakpoint that was meant for
3675 another thread. If so, then step that thread past the breakpoint,
3676 and continue it. */
3677
3678 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3679 {
3680 int thread_hop_needed = 0;
3681 struct address_space *aspace =
3682 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3683
3684 /* Check if a regular breakpoint has been hit before checking
3685 for a potential single step breakpoint. Otherwise, GDB will
3686 not see this breakpoint hit when stepping onto breakpoints. */
3687 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3688 {
3689 ecs->random_signal = 0;
3690 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3691 thread_hop_needed = 1;
3692 }
3693 else if (singlestep_breakpoints_inserted_p)
3694 {
3695 /* We have not context switched yet, so this should be true
3696 no matter which thread hit the singlestep breakpoint. */
3697 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3698 if (debug_infrun)
3699 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3700 "trap for %s\n",
3701 target_pid_to_str (ecs->ptid));
3702
3703 ecs->random_signal = 0;
3704 /* The call to in_thread_list is necessary because PTIDs sometimes
3705 change when we go from single-threaded to multi-threaded. If
3706 the singlestep_ptid is still in the list, assume that it is
3707 really different from ecs->ptid. */
3708 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3709 && in_thread_list (singlestep_ptid))
3710 {
3711 /* If the PC of the thread we were trying to single-step
3712 has changed, discard this event (which we were going
3713 to ignore anyway), and pretend we saw that thread
3714 trap. This prevents us continuously moving the
3715 single-step breakpoint forward, one instruction at a
3716 time. If the PC has changed, then the thread we were
3717 trying to single-step has trapped or been signalled,
3718 but the event has not been reported to GDB yet.
3719
3720 There might be some cases where this loses signal
3721 information, if a signal has arrived at exactly the
3722 same time that the PC changed, but this is the best
3723 we can do with the information available. Perhaps we
3724 should arrange to report all events for all threads
3725 when they stop, or to re-poll the remote looking for
3726 this particular thread (i.e. temporarily enable
3727 schedlock). */
3728
3729 CORE_ADDR new_singlestep_pc
3730 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3731
3732 if (new_singlestep_pc != singlestep_pc)
3733 {
3734 enum target_signal stop_signal;
3735
3736 if (debug_infrun)
3737 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3738 " but expected thread advanced also\n");
3739
3740 /* The current context still belongs to
3741 singlestep_ptid. Don't swap here, since that's
3742 the context we want to use. Just fudge our
3743 state and continue. */
3744 stop_signal = ecs->event_thread->suspend.stop_signal;
3745 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3746 ecs->ptid = singlestep_ptid;
3747 ecs->event_thread = find_thread_ptid (ecs->ptid);
3748 ecs->event_thread->suspend.stop_signal = stop_signal;
3749 stop_pc = new_singlestep_pc;
3750 }
3751 else
3752 {
3753 if (debug_infrun)
3754 fprintf_unfiltered (gdb_stdlog,
3755 "infrun: unexpected thread\n");
3756
3757 thread_hop_needed = 1;
3758 stepping_past_singlestep_breakpoint = 1;
3759 saved_singlestep_ptid = singlestep_ptid;
3760 }
3761 }
3762 }
3763
3764 if (thread_hop_needed)
3765 {
3766 struct regcache *thread_regcache;
3767 int remove_status = 0;
3768
3769 if (debug_infrun)
3770 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3771
3772 /* Switch context before touching inferior memory, the
3773 previous thread may have exited. */
3774 if (!ptid_equal (inferior_ptid, ecs->ptid))
3775 context_switch (ecs->ptid);
3776
3777 /* Saw a breakpoint, but it was hit by the wrong thread.
3778 Just continue. */
3779
3780 if (singlestep_breakpoints_inserted_p)
3781 {
3782 /* Pull the single step breakpoints out of the target. */
3783 remove_single_step_breakpoints ();
3784 singlestep_breakpoints_inserted_p = 0;
3785 }
3786
3787 /* If the arch can displace step, don't remove the
3788 breakpoints. */
3789 thread_regcache = get_thread_regcache (ecs->ptid);
3790 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3791 remove_status = remove_breakpoints ();
3792
3793 /* Did we fail to remove breakpoints? If so, try
3794 to set the PC past the bp. (There's at least
3795 one situation in which we can fail to remove
3796 the bp's: On HP-UX's that use ttrace, we can't
3797 change the address space of a vforking child
3798 process until the child exits (well, okay, not
3799 then either :-) or execs. */
3800 if (remove_status != 0)
3801 error (_("Cannot step over breakpoint hit in wrong thread"));
3802 else
3803 { /* Single step */
3804 if (!non_stop)
3805 {
3806 /* Only need to require the next event from this
3807 thread in all-stop mode. */
3808 waiton_ptid = ecs->ptid;
3809 infwait_state = infwait_thread_hop_state;
3810 }
3811
3812 ecs->event_thread->stepping_over_breakpoint = 1;
3813 keep_going (ecs);
3814 return;
3815 }
3816 }
3817 else if (singlestep_breakpoints_inserted_p)
3818 {
3819 sw_single_step_trap_p = 1;
3820 ecs->random_signal = 0;
3821 }
3822 }
3823 else
3824 ecs->random_signal = 1;
3825
3826 /* See if something interesting happened to the non-current thread. If
3827 so, then switch to that thread. */
3828 if (!ptid_equal (ecs->ptid, inferior_ptid))
3829 {
3830 if (debug_infrun)
3831 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3832
3833 context_switch (ecs->ptid);
3834
3835 if (deprecated_context_hook)
3836 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3837 }
3838
3839 /* At this point, get hold of the now-current thread's frame. */
3840 frame = get_current_frame ();
3841 gdbarch = get_frame_arch (frame);
3842
3843 if (singlestep_breakpoints_inserted_p)
3844 {
3845 /* Pull the single step breakpoints out of the target. */
3846 remove_single_step_breakpoints ();
3847 singlestep_breakpoints_inserted_p = 0;
3848 }
3849
3850 if (stepped_after_stopped_by_watchpoint)
3851 stopped_by_watchpoint = 0;
3852 else
3853 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3854
3855 /* If necessary, step over this watchpoint. We'll be back to display
3856 it in a moment. */
3857 if (stopped_by_watchpoint
3858 && (target_have_steppable_watchpoint
3859 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3860 {
3861 /* At this point, we are stopped at an instruction which has
3862 attempted to write to a piece of memory under control of
3863 a watchpoint. The instruction hasn't actually executed
3864 yet. If we were to evaluate the watchpoint expression
3865 now, we would get the old value, and therefore no change
3866 would seem to have occurred.
3867
3868 In order to make watchpoints work `right', we really need
3869 to complete the memory write, and then evaluate the
3870 watchpoint expression. We do this by single-stepping the
3871 target.
3872
3873 It may not be necessary to disable the watchpoint to stop over
3874 it. For example, the PA can (with some kernel cooperation)
3875 single step over a watchpoint without disabling the watchpoint.
3876
3877 It is far more common to need to disable a watchpoint to step
3878 the inferior over it. If we have non-steppable watchpoints,
3879 we must disable the current watchpoint; it's simplest to
3880 disable all watchpoints and breakpoints. */
3881 int hw_step = 1;
3882
3883 if (!target_have_steppable_watchpoint)
3884 {
3885 remove_breakpoints ();
3886 /* See comment in resume why we need to stop bypassing signals
3887 while breakpoints have been removed. */
3888 target_pass_signals (0, NULL);
3889 }
3890 /* Single step */
3891 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3892 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3893 waiton_ptid = ecs->ptid;
3894 if (target_have_steppable_watchpoint)
3895 infwait_state = infwait_step_watch_state;
3896 else
3897 infwait_state = infwait_nonstep_watch_state;
3898 prepare_to_wait (ecs);
3899 return;
3900 }
3901
3902 ecs->stop_func_start = 0;
3903 ecs->stop_func_end = 0;
3904 ecs->stop_func_name = 0;
3905 /* Don't care about return value; stop_func_start and stop_func_name
3906 will both be 0 if it doesn't work. */
3907 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3908 &ecs->stop_func_start, &ecs->stop_func_end);
3909 ecs->stop_func_start
3910 += gdbarch_deprecated_function_start_offset (gdbarch);
3911 ecs->event_thread->stepping_over_breakpoint = 0;
3912 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3913 ecs->event_thread->control.stop_step = 0;
3914 stop_print_frame = 1;
3915 ecs->random_signal = 0;
3916 stopped_by_random_signal = 0;
3917
3918 /* Hide inlined functions starting here, unless we just performed stepi or
3919 nexti. After stepi and nexti, always show the innermost frame (not any
3920 inline function call sites). */
3921 if (ecs->event_thread->control.step_range_end != 1)
3922 skip_inline_frames (ecs->ptid);
3923
3924 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3925 && ecs->event_thread->control.trap_expected
3926 && gdbarch_single_step_through_delay_p (gdbarch)
3927 && currently_stepping (ecs->event_thread))
3928 {
3929 /* We're trying to step off a breakpoint. Turns out that we're
3930 also on an instruction that needs to be stepped multiple
3931 times before it's been fully executing. E.g., architectures
3932 with a delay slot. It needs to be stepped twice, once for
3933 the instruction and once for the delay slot. */
3934 int step_through_delay
3935 = gdbarch_single_step_through_delay (gdbarch, frame);
3936
3937 if (debug_infrun && step_through_delay)
3938 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3939 if (ecs->event_thread->control.step_range_end == 0
3940 && step_through_delay)
3941 {
3942 /* The user issued a continue when stopped at a breakpoint.
3943 Set up for another trap and get out of here. */
3944 ecs->event_thread->stepping_over_breakpoint = 1;
3945 keep_going (ecs);
3946 return;
3947 }
3948 else if (step_through_delay)
3949 {
3950 /* The user issued a step when stopped at a breakpoint.
3951 Maybe we should stop, maybe we should not - the delay
3952 slot *might* correspond to a line of source. In any
3953 case, don't decide that here, just set
3954 ecs->stepping_over_breakpoint, making sure we
3955 single-step again before breakpoints are re-inserted. */
3956 ecs->event_thread->stepping_over_breakpoint = 1;
3957 }
3958 }
3959
3960 /* Look at the cause of the stop, and decide what to do.
3961 The alternatives are:
3962 1) stop_stepping and return; to really stop and return to the debugger,
3963 2) keep_going and return to start up again
3964 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3965 3) set ecs->random_signal to 1, and the decision between 1 and 2
3966 will be made according to the signal handling tables. */
3967
3968 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3969 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3970 || stop_soon == STOP_QUIETLY_REMOTE)
3971 {
3972 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3973 && stop_after_trap)
3974 {
3975 if (debug_infrun)
3976 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3977 stop_print_frame = 0;
3978 stop_stepping (ecs);
3979 return;
3980 }
3981
3982 /* This is originated from start_remote(), start_inferior() and
3983 shared libraries hook functions. */
3984 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3985 {
3986 if (debug_infrun)
3987 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3988 stop_stepping (ecs);
3989 return;
3990 }
3991
3992 /* This originates from attach_command(). We need to overwrite
3993 the stop_signal here, because some kernels don't ignore a
3994 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3995 See more comments in inferior.h. On the other hand, if we
3996 get a non-SIGSTOP, report it to the user - assume the backend
3997 will handle the SIGSTOP if it should show up later.
3998
3999 Also consider that the attach is complete when we see a
4000 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4001 target extended-remote report it instead of a SIGSTOP
4002 (e.g. gdbserver). We already rely on SIGTRAP being our
4003 signal, so this is no exception.
4004
4005 Also consider that the attach is complete when we see a
4006 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4007 the target to stop all threads of the inferior, in case the
4008 low level attach operation doesn't stop them implicitly. If
4009 they weren't stopped implicitly, then the stub will report a
4010 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4011 other than GDB's request. */
4012 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4013 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4014 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4015 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4016 {
4017 stop_stepping (ecs);
4018 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4019 return;
4020 }
4021
4022 /* See if there is a breakpoint at the current PC. */
4023 ecs->event_thread->control.stop_bpstat
4024 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4025 stop_pc, ecs->ptid);
4026
4027 /* Following in case break condition called a
4028 function. */
4029 stop_print_frame = 1;
4030
4031 /* This is where we handle "moribund" watchpoints. Unlike
4032 software breakpoints traps, hardware watchpoint traps are
4033 always distinguishable from random traps. If no high-level
4034 watchpoint is associated with the reported stop data address
4035 anymore, then the bpstat does not explain the signal ---
4036 simply make sure to ignore it if `stopped_by_watchpoint' is
4037 set. */
4038
4039 if (debug_infrun
4040 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4041 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4042 && stopped_by_watchpoint)
4043 fprintf_unfiltered (gdb_stdlog,
4044 "infrun: no user watchpoint explains "
4045 "watchpoint SIGTRAP, ignoring\n");
4046
4047 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4048 at one stage in the past included checks for an inferior
4049 function call's call dummy's return breakpoint. The original
4050 comment, that went with the test, read:
4051
4052 ``End of a stack dummy. Some systems (e.g. Sony news) give
4053 another signal besides SIGTRAP, so check here as well as
4054 above.''
4055
4056 If someone ever tries to get call dummys on a
4057 non-executable stack to work (where the target would stop
4058 with something like a SIGSEGV), then those tests might need
4059 to be re-instated. Given, however, that the tests were only
4060 enabled when momentary breakpoints were not being used, I
4061 suspect that it won't be the case.
4062
4063 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4064 be necessary for call dummies on a non-executable stack on
4065 SPARC. */
4066
4067 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4068 ecs->random_signal
4069 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4070 || stopped_by_watchpoint
4071 || ecs->event_thread->control.trap_expected
4072 || (ecs->event_thread->control.step_range_end
4073 && (ecs->event_thread->control.step_resume_breakpoint
4074 == NULL)));
4075 else
4076 {
4077 ecs->random_signal = !bpstat_explains_signal
4078 (ecs->event_thread->control.stop_bpstat);
4079 if (!ecs->random_signal)
4080 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4081 }
4082 }
4083
4084 /* When we reach this point, we've pretty much decided
4085 that the reason for stopping must've been a random
4086 (unexpected) signal. */
4087
4088 else
4089 ecs->random_signal = 1;
4090
4091 process_event_stop_test:
4092
4093 /* Re-fetch current thread's frame in case we did a
4094 "goto process_event_stop_test" above. */
4095 frame = get_current_frame ();
4096 gdbarch = get_frame_arch (frame);
4097
4098 /* For the program's own signals, act according to
4099 the signal handling tables. */
4100
4101 if (ecs->random_signal)
4102 {
4103 /* Signal not for debugging purposes. */
4104 int printed = 0;
4105 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4106
4107 if (debug_infrun)
4108 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4109 ecs->event_thread->suspend.stop_signal);
4110
4111 stopped_by_random_signal = 1;
4112
4113 if (signal_print[ecs->event_thread->suspend.stop_signal])
4114 {
4115 printed = 1;
4116 target_terminal_ours_for_output ();
4117 print_signal_received_reason
4118 (ecs->event_thread->suspend.stop_signal);
4119 }
4120 /* Always stop on signals if we're either just gaining control
4121 of the program, or the user explicitly requested this thread
4122 to remain stopped. */
4123 if (stop_soon != NO_STOP_QUIETLY
4124 || ecs->event_thread->stop_requested
4125 || (!inf->detaching
4126 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4127 {
4128 stop_stepping (ecs);
4129 return;
4130 }
4131 /* If not going to stop, give terminal back
4132 if we took it away. */
4133 else if (printed)
4134 target_terminal_inferior ();
4135
4136 /* Clear the signal if it should not be passed. */
4137 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4138 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4139
4140 if (ecs->event_thread->prev_pc == stop_pc
4141 && ecs->event_thread->control.trap_expected
4142 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4143 {
4144 /* We were just starting a new sequence, attempting to
4145 single-step off of a breakpoint and expecting a SIGTRAP.
4146 Instead this signal arrives. This signal will take us out
4147 of the stepping range so GDB needs to remember to, when
4148 the signal handler returns, resume stepping off that
4149 breakpoint. */
4150 /* To simplify things, "continue" is forced to use the same
4151 code paths as single-step - set a breakpoint at the
4152 signal return address and then, once hit, step off that
4153 breakpoint. */
4154 if (debug_infrun)
4155 fprintf_unfiltered (gdb_stdlog,
4156 "infrun: signal arrived while stepping over "
4157 "breakpoint\n");
4158
4159 insert_step_resume_breakpoint_at_frame (frame);
4160 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4161 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4162 ecs->event_thread->control.trap_expected = 0;
4163 keep_going (ecs);
4164 return;
4165 }
4166
4167 if (ecs->event_thread->control.step_range_end != 0
4168 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4169 && (ecs->event_thread->control.step_range_start <= stop_pc
4170 && stop_pc < ecs->event_thread->control.step_range_end)
4171 && frame_id_eq (get_stack_frame_id (frame),
4172 ecs->event_thread->control.step_stack_frame_id)
4173 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4174 {
4175 /* The inferior is about to take a signal that will take it
4176 out of the single step range. Set a breakpoint at the
4177 current PC (which is presumably where the signal handler
4178 will eventually return) and then allow the inferior to
4179 run free.
4180
4181 Note that this is only needed for a signal delivered
4182 while in the single-step range. Nested signals aren't a
4183 problem as they eventually all return. */
4184 if (debug_infrun)
4185 fprintf_unfiltered (gdb_stdlog,
4186 "infrun: signal may take us out of "
4187 "single-step range\n");
4188
4189 insert_step_resume_breakpoint_at_frame (frame);
4190 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4191 ecs->event_thread->control.trap_expected = 0;
4192 keep_going (ecs);
4193 return;
4194 }
4195
4196 /* Note: step_resume_breakpoint may be non-NULL. This occures
4197 when either there's a nested signal, or when there's a
4198 pending signal enabled just as the signal handler returns
4199 (leaving the inferior at the step-resume-breakpoint without
4200 actually executing it). Either way continue until the
4201 breakpoint is really hit. */
4202 keep_going (ecs);
4203 return;
4204 }
4205
4206 /* Handle cases caused by hitting a breakpoint. */
4207 {
4208 CORE_ADDR jmp_buf_pc;
4209 struct bpstat_what what;
4210
4211 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4212
4213 if (what.call_dummy)
4214 {
4215 stop_stack_dummy = what.call_dummy;
4216 }
4217
4218 /* If we hit an internal event that triggers symbol changes, the
4219 current frame will be invalidated within bpstat_what (e.g., if
4220 we hit an internal solib event). Re-fetch it. */
4221 frame = get_current_frame ();
4222 gdbarch = get_frame_arch (frame);
4223
4224 switch (what.main_action)
4225 {
4226 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4227 /* If we hit the breakpoint at longjmp while stepping, we
4228 install a momentary breakpoint at the target of the
4229 jmp_buf. */
4230
4231 if (debug_infrun)
4232 fprintf_unfiltered (gdb_stdlog,
4233 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4234
4235 ecs->event_thread->stepping_over_breakpoint = 1;
4236
4237 if (what.is_longjmp)
4238 {
4239 if (!gdbarch_get_longjmp_target_p (gdbarch)
4240 || !gdbarch_get_longjmp_target (gdbarch,
4241 frame, &jmp_buf_pc))
4242 {
4243 if (debug_infrun)
4244 fprintf_unfiltered (gdb_stdlog,
4245 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4246 "(!gdbarch_get_longjmp_target)\n");
4247 keep_going (ecs);
4248 return;
4249 }
4250
4251 /* We're going to replace the current step-resume breakpoint
4252 with a longjmp-resume breakpoint. */
4253 delete_step_resume_breakpoint (ecs->event_thread);
4254
4255 /* Insert a breakpoint at resume address. */
4256 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4257 }
4258 else
4259 {
4260 struct symbol *func = get_frame_function (frame);
4261
4262 if (func)
4263 check_exception_resume (ecs, frame, func);
4264 }
4265 keep_going (ecs);
4266 return;
4267
4268 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4269 if (debug_infrun)
4270 fprintf_unfiltered (gdb_stdlog,
4271 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4272
4273 if (what.is_longjmp)
4274 {
4275 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4276 != NULL);
4277 delete_step_resume_breakpoint (ecs->event_thread);
4278 }
4279 else
4280 {
4281 /* There are several cases to consider.
4282
4283 1. The initiating frame no longer exists. In this case
4284 we must stop, because the exception has gone too far.
4285
4286 2. The initiating frame exists, and is the same as the
4287 current frame. We stop, because the exception has been
4288 caught.
4289
4290 3. The initiating frame exists and is different from
4291 the current frame. This means the exception has been
4292 caught beneath the initiating frame, so keep going. */
4293 struct frame_info *init_frame
4294 = frame_find_by_id (ecs->event_thread->initiating_frame);
4295
4296 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4297 != NULL);
4298 delete_exception_resume_breakpoint (ecs->event_thread);
4299
4300 if (init_frame)
4301 {
4302 struct frame_id current_id
4303 = get_frame_id (get_current_frame ());
4304 if (frame_id_eq (current_id,
4305 ecs->event_thread->initiating_frame))
4306 {
4307 /* Case 2. Fall through. */
4308 }
4309 else
4310 {
4311 /* Case 3. */
4312 keep_going (ecs);
4313 return;
4314 }
4315 }
4316
4317 /* For Cases 1 and 2, remove the step-resume breakpoint,
4318 if it exists. */
4319 delete_step_resume_breakpoint (ecs->event_thread);
4320 }
4321
4322 ecs->event_thread->control.stop_step = 1;
4323 print_end_stepping_range_reason ();
4324 stop_stepping (ecs);
4325 return;
4326
4327 case BPSTAT_WHAT_SINGLE:
4328 if (debug_infrun)
4329 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4330 ecs->event_thread->stepping_over_breakpoint = 1;
4331 /* Still need to check other stuff, at least the case
4332 where we are stepping and step out of the right range. */
4333 break;
4334
4335 case BPSTAT_WHAT_STOP_NOISY:
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4338 stop_print_frame = 1;
4339
4340 /* We are about to nuke the step_resume_breakpointt via the
4341 cleanup chain, so no need to worry about it here. */
4342
4343 stop_stepping (ecs);
4344 return;
4345
4346 case BPSTAT_WHAT_STOP_SILENT:
4347 if (debug_infrun)
4348 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4349 stop_print_frame = 0;
4350
4351 /* We are about to nuke the step_resume_breakpoin via the
4352 cleanup chain, so no need to worry about it here. */
4353
4354 stop_stepping (ecs);
4355 return;
4356
4357 case BPSTAT_WHAT_STEP_RESUME:
4358 if (debug_infrun)
4359 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4360
4361 delete_step_resume_breakpoint (ecs->event_thread);
4362 if (ecs->event_thread->step_after_step_resume_breakpoint)
4363 {
4364 /* Back when the step-resume breakpoint was inserted, we
4365 were trying to single-step off a breakpoint. Go back
4366 to doing that. */
4367 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4368 ecs->event_thread->stepping_over_breakpoint = 1;
4369 keep_going (ecs);
4370 return;
4371 }
4372 if (stop_pc == ecs->stop_func_start
4373 && execution_direction == EXEC_REVERSE)
4374 {
4375 /* We are stepping over a function call in reverse, and
4376 just hit the step-resume breakpoint at the start
4377 address of the function. Go back to single-stepping,
4378 which should take us back to the function call. */
4379 ecs->event_thread->stepping_over_breakpoint = 1;
4380 keep_going (ecs);
4381 return;
4382 }
4383 break;
4384
4385 case BPSTAT_WHAT_KEEP_CHECKING:
4386 break;
4387 }
4388 }
4389
4390 /* We come here if we hit a breakpoint but should not
4391 stop for it. Possibly we also were stepping
4392 and should stop for that. So fall through and
4393 test for stepping. But, if not stepping,
4394 do not stop. */
4395
4396 /* In all-stop mode, if we're currently stepping but have stopped in
4397 some other thread, we need to switch back to the stepped thread. */
4398 if (!non_stop)
4399 {
4400 struct thread_info *tp;
4401
4402 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4403 ecs->event_thread);
4404 if (tp)
4405 {
4406 /* However, if the current thread is blocked on some internal
4407 breakpoint, and we simply need to step over that breakpoint
4408 to get it going again, do that first. */
4409 if ((ecs->event_thread->control.trap_expected
4410 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4411 || ecs->event_thread->stepping_over_breakpoint)
4412 {
4413 keep_going (ecs);
4414 return;
4415 }
4416
4417 /* If the stepping thread exited, then don't try to switch
4418 back and resume it, which could fail in several different
4419 ways depending on the target. Instead, just keep going.
4420
4421 We can find a stepping dead thread in the thread list in
4422 two cases:
4423
4424 - The target supports thread exit events, and when the
4425 target tries to delete the thread from the thread list,
4426 inferior_ptid pointed at the exiting thread. In such
4427 case, calling delete_thread does not really remove the
4428 thread from the list; instead, the thread is left listed,
4429 with 'exited' state.
4430
4431 - The target's debug interface does not support thread
4432 exit events, and so we have no idea whatsoever if the
4433 previously stepping thread is still alive. For that
4434 reason, we need to synchronously query the target
4435 now. */
4436 if (is_exited (tp->ptid)
4437 || !target_thread_alive (tp->ptid))
4438 {
4439 if (debug_infrun)
4440 fprintf_unfiltered (gdb_stdlog,
4441 "infrun: not switching back to "
4442 "stepped thread, it has vanished\n");
4443
4444 delete_thread (tp->ptid);
4445 keep_going (ecs);
4446 return;
4447 }
4448
4449 /* Otherwise, we no longer expect a trap in the current thread.
4450 Clear the trap_expected flag before switching back -- this is
4451 what keep_going would do as well, if we called it. */
4452 ecs->event_thread->control.trap_expected = 0;
4453
4454 if (debug_infrun)
4455 fprintf_unfiltered (gdb_stdlog,
4456 "infrun: switching back to stepped thread\n");
4457
4458 ecs->event_thread = tp;
4459 ecs->ptid = tp->ptid;
4460 context_switch (ecs->ptid);
4461 keep_going (ecs);
4462 return;
4463 }
4464 }
4465
4466 /* Are we stepping to get the inferior out of the dynamic linker's
4467 hook (and possibly the dld itself) after catching a shlib
4468 event? */
4469 if (ecs->event_thread->stepping_through_solib_after_catch)
4470 {
4471 #if defined(SOLIB_ADD)
4472 /* Have we reached our destination? If not, keep going. */
4473 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4474 {
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog,
4477 "infrun: stepping in dynamic linker\n");
4478 ecs->event_thread->stepping_over_breakpoint = 1;
4479 keep_going (ecs);
4480 return;
4481 }
4482 #endif
4483 if (debug_infrun)
4484 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4485 /* Else, stop and report the catchpoint(s) whose triggering
4486 caused us to begin stepping. */
4487 ecs->event_thread->stepping_through_solib_after_catch = 0;
4488 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4489 ecs->event_thread->control.stop_bpstat
4490 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4491 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4492 stop_print_frame = 1;
4493 stop_stepping (ecs);
4494 return;
4495 }
4496
4497 if (ecs->event_thread->control.step_resume_breakpoint)
4498 {
4499 if (debug_infrun)
4500 fprintf_unfiltered (gdb_stdlog,
4501 "infrun: step-resume breakpoint is inserted\n");
4502
4503 /* Having a step-resume breakpoint overrides anything
4504 else having to do with stepping commands until
4505 that breakpoint is reached. */
4506 keep_going (ecs);
4507 return;
4508 }
4509
4510 if (ecs->event_thread->control.step_range_end == 0)
4511 {
4512 if (debug_infrun)
4513 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4514 /* Likewise if we aren't even stepping. */
4515 keep_going (ecs);
4516 return;
4517 }
4518
4519 /* Re-fetch current thread's frame in case the code above caused
4520 the frame cache to be re-initialized, making our FRAME variable
4521 a dangling pointer. */
4522 frame = get_current_frame ();
4523 gdbarch = get_frame_arch (frame);
4524
4525 /* If stepping through a line, keep going if still within it.
4526
4527 Note that step_range_end is the address of the first instruction
4528 beyond the step range, and NOT the address of the last instruction
4529 within it!
4530
4531 Note also that during reverse execution, we may be stepping
4532 through a function epilogue and therefore must detect when
4533 the current-frame changes in the middle of a line. */
4534
4535 if (stop_pc >= ecs->event_thread->control.step_range_start
4536 && stop_pc < ecs->event_thread->control.step_range_end
4537 && (execution_direction != EXEC_REVERSE
4538 || frame_id_eq (get_frame_id (frame),
4539 ecs->event_thread->control.step_frame_id)))
4540 {
4541 if (debug_infrun)
4542 fprintf_unfiltered
4543 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4544 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4545 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4546
4547 /* When stepping backward, stop at beginning of line range
4548 (unless it's the function entry point, in which case
4549 keep going back to the call point). */
4550 if (stop_pc == ecs->event_thread->control.step_range_start
4551 && stop_pc != ecs->stop_func_start
4552 && execution_direction == EXEC_REVERSE)
4553 {
4554 ecs->event_thread->control.stop_step = 1;
4555 print_end_stepping_range_reason ();
4556 stop_stepping (ecs);
4557 }
4558 else
4559 keep_going (ecs);
4560
4561 return;
4562 }
4563
4564 /* We stepped out of the stepping range. */
4565
4566 /* If we are stepping at the source level and entered the runtime
4567 loader dynamic symbol resolution code...
4568
4569 EXEC_FORWARD: we keep on single stepping until we exit the run
4570 time loader code and reach the callee's address.
4571
4572 EXEC_REVERSE: we've already executed the callee (backward), and
4573 the runtime loader code is handled just like any other
4574 undebuggable function call. Now we need only keep stepping
4575 backward through the trampoline code, and that's handled further
4576 down, so there is nothing for us to do here. */
4577
4578 if (execution_direction != EXEC_REVERSE
4579 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4580 && in_solib_dynsym_resolve_code (stop_pc))
4581 {
4582 CORE_ADDR pc_after_resolver =
4583 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4584
4585 if (debug_infrun)
4586 fprintf_unfiltered (gdb_stdlog,
4587 "infrun: stepped into dynsym resolve code\n");
4588
4589 if (pc_after_resolver)
4590 {
4591 /* Set up a step-resume breakpoint at the address
4592 indicated by SKIP_SOLIB_RESOLVER. */
4593 struct symtab_and_line sr_sal;
4594
4595 init_sal (&sr_sal);
4596 sr_sal.pc = pc_after_resolver;
4597 sr_sal.pspace = get_frame_program_space (frame);
4598
4599 insert_step_resume_breakpoint_at_sal (gdbarch,
4600 sr_sal, null_frame_id);
4601 }
4602
4603 keep_going (ecs);
4604 return;
4605 }
4606
4607 if (ecs->event_thread->control.step_range_end != 1
4608 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4609 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4610 && get_frame_type (frame) == SIGTRAMP_FRAME)
4611 {
4612 if (debug_infrun)
4613 fprintf_unfiltered (gdb_stdlog,
4614 "infrun: stepped into signal trampoline\n");
4615 /* The inferior, while doing a "step" or "next", has ended up in
4616 a signal trampoline (either by a signal being delivered or by
4617 the signal handler returning). Just single-step until the
4618 inferior leaves the trampoline (either by calling the handler
4619 or returning). */
4620 keep_going (ecs);
4621 return;
4622 }
4623
4624 /* Check for subroutine calls. The check for the current frame
4625 equalling the step ID is not necessary - the check of the
4626 previous frame's ID is sufficient - but it is a common case and
4627 cheaper than checking the previous frame's ID.
4628
4629 NOTE: frame_id_eq will never report two invalid frame IDs as
4630 being equal, so to get into this block, both the current and
4631 previous frame must have valid frame IDs. */
4632 /* The outer_frame_id check is a heuristic to detect stepping
4633 through startup code. If we step over an instruction which
4634 sets the stack pointer from an invalid value to a valid value,
4635 we may detect that as a subroutine call from the mythical
4636 "outermost" function. This could be fixed by marking
4637 outermost frames as !stack_p,code_p,special_p. Then the
4638 initial outermost frame, before sp was valid, would
4639 have code_addr == &_start. See the comment in frame_id_eq
4640 for more. */
4641 if (!frame_id_eq (get_stack_frame_id (frame),
4642 ecs->event_thread->control.step_stack_frame_id)
4643 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4644 ecs->event_thread->control.step_stack_frame_id)
4645 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4646 outer_frame_id)
4647 || step_start_function != find_pc_function (stop_pc))))
4648 {
4649 CORE_ADDR real_stop_pc;
4650
4651 if (debug_infrun)
4652 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4653
4654 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4655 || ((ecs->event_thread->control.step_range_end == 1)
4656 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4657 ecs->stop_func_start)))
4658 {
4659 /* I presume that step_over_calls is only 0 when we're
4660 supposed to be stepping at the assembly language level
4661 ("stepi"). Just stop. */
4662 /* Also, maybe we just did a "nexti" inside a prolog, so we
4663 thought it was a subroutine call but it was not. Stop as
4664 well. FENN */
4665 /* And this works the same backward as frontward. MVS */
4666 ecs->event_thread->control.stop_step = 1;
4667 print_end_stepping_range_reason ();
4668 stop_stepping (ecs);
4669 return;
4670 }
4671
4672 /* Reverse stepping through solib trampolines. */
4673
4674 if (execution_direction == EXEC_REVERSE
4675 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4676 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4677 || (ecs->stop_func_start == 0
4678 && in_solib_dynsym_resolve_code (stop_pc))))
4679 {
4680 /* Any solib trampoline code can be handled in reverse
4681 by simply continuing to single-step. We have already
4682 executed the solib function (backwards), and a few
4683 steps will take us back through the trampoline to the
4684 caller. */
4685 keep_going (ecs);
4686 return;
4687 }
4688
4689 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4690 {
4691 /* We're doing a "next".
4692
4693 Normal (forward) execution: set a breakpoint at the
4694 callee's return address (the address at which the caller
4695 will resume).
4696
4697 Reverse (backward) execution. set the step-resume
4698 breakpoint at the start of the function that we just
4699 stepped into (backwards), and continue to there. When we
4700 get there, we'll need to single-step back to the caller. */
4701
4702 if (execution_direction == EXEC_REVERSE)
4703 {
4704 struct symtab_and_line sr_sal;
4705
4706 /* Normal function call return (static or dynamic). */
4707 init_sal (&sr_sal);
4708 sr_sal.pc = ecs->stop_func_start;
4709 sr_sal.pspace = get_frame_program_space (frame);
4710 insert_step_resume_breakpoint_at_sal (gdbarch,
4711 sr_sal, null_frame_id);
4712 }
4713 else
4714 insert_step_resume_breakpoint_at_caller (frame);
4715
4716 keep_going (ecs);
4717 return;
4718 }
4719
4720 /* If we are in a function call trampoline (a stub between the
4721 calling routine and the real function), locate the real
4722 function. That's what tells us (a) whether we want to step
4723 into it at all, and (b) what prologue we want to run to the
4724 end of, if we do step into it. */
4725 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4726 if (real_stop_pc == 0)
4727 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4728 if (real_stop_pc != 0)
4729 ecs->stop_func_start = real_stop_pc;
4730
4731 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4732 {
4733 struct symtab_and_line sr_sal;
4734
4735 init_sal (&sr_sal);
4736 sr_sal.pc = ecs->stop_func_start;
4737 sr_sal.pspace = get_frame_program_space (frame);
4738
4739 insert_step_resume_breakpoint_at_sal (gdbarch,
4740 sr_sal, null_frame_id);
4741 keep_going (ecs);
4742 return;
4743 }
4744
4745 /* If we have line number information for the function we are
4746 thinking of stepping into, step into it.
4747
4748 If there are several symtabs at that PC (e.g. with include
4749 files), just want to know whether *any* of them have line
4750 numbers. find_pc_line handles this. */
4751 {
4752 struct symtab_and_line tmp_sal;
4753
4754 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4755 if (tmp_sal.line != 0)
4756 {
4757 if (execution_direction == EXEC_REVERSE)
4758 handle_step_into_function_backward (gdbarch, ecs);
4759 else
4760 handle_step_into_function (gdbarch, ecs);
4761 return;
4762 }
4763 }
4764
4765 /* If we have no line number and the step-stop-if-no-debug is
4766 set, we stop the step so that the user has a chance to switch
4767 in assembly mode. */
4768 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4769 && step_stop_if_no_debug)
4770 {
4771 ecs->event_thread->control.stop_step = 1;
4772 print_end_stepping_range_reason ();
4773 stop_stepping (ecs);
4774 return;
4775 }
4776
4777 if (execution_direction == EXEC_REVERSE)
4778 {
4779 /* Set a breakpoint at callee's start address.
4780 From there we can step once and be back in the caller. */
4781 struct symtab_and_line sr_sal;
4782
4783 init_sal (&sr_sal);
4784 sr_sal.pc = ecs->stop_func_start;
4785 sr_sal.pspace = get_frame_program_space (frame);
4786 insert_step_resume_breakpoint_at_sal (gdbarch,
4787 sr_sal, null_frame_id);
4788 }
4789 else
4790 /* Set a breakpoint at callee's return address (the address
4791 at which the caller will resume). */
4792 insert_step_resume_breakpoint_at_caller (frame);
4793
4794 keep_going (ecs);
4795 return;
4796 }
4797
4798 /* Reverse stepping through solib trampolines. */
4799
4800 if (execution_direction == EXEC_REVERSE
4801 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4802 {
4803 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4804 || (ecs->stop_func_start == 0
4805 && in_solib_dynsym_resolve_code (stop_pc)))
4806 {
4807 /* Any solib trampoline code can be handled in reverse
4808 by simply continuing to single-step. We have already
4809 executed the solib function (backwards), and a few
4810 steps will take us back through the trampoline to the
4811 caller. */
4812 keep_going (ecs);
4813 return;
4814 }
4815 else if (in_solib_dynsym_resolve_code (stop_pc))
4816 {
4817 /* Stepped backward into the solib dynsym resolver.
4818 Set a breakpoint at its start and continue, then
4819 one more step will take us out. */
4820 struct symtab_and_line sr_sal;
4821
4822 init_sal (&sr_sal);
4823 sr_sal.pc = ecs->stop_func_start;
4824 sr_sal.pspace = get_frame_program_space (frame);
4825 insert_step_resume_breakpoint_at_sal (gdbarch,
4826 sr_sal, null_frame_id);
4827 keep_going (ecs);
4828 return;
4829 }
4830 }
4831
4832 /* If we're in the return path from a shared library trampoline,
4833 we want to proceed through the trampoline when stepping. */
4834 if (gdbarch_in_solib_return_trampoline (gdbarch,
4835 stop_pc, ecs->stop_func_name))
4836 {
4837 /* Determine where this trampoline returns. */
4838 CORE_ADDR real_stop_pc;
4839
4840 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4841
4842 if (debug_infrun)
4843 fprintf_unfiltered (gdb_stdlog,
4844 "infrun: stepped into solib return tramp\n");
4845
4846 /* Only proceed through if we know where it's going. */
4847 if (real_stop_pc)
4848 {
4849 /* And put the step-breakpoint there and go until there. */
4850 struct symtab_and_line sr_sal;
4851
4852 init_sal (&sr_sal); /* initialize to zeroes */
4853 sr_sal.pc = real_stop_pc;
4854 sr_sal.section = find_pc_overlay (sr_sal.pc);
4855 sr_sal.pspace = get_frame_program_space (frame);
4856
4857 /* Do not specify what the fp should be when we stop since
4858 on some machines the prologue is where the new fp value
4859 is established. */
4860 insert_step_resume_breakpoint_at_sal (gdbarch,
4861 sr_sal, null_frame_id);
4862
4863 /* Restart without fiddling with the step ranges or
4864 other state. */
4865 keep_going (ecs);
4866 return;
4867 }
4868 }
4869
4870 stop_pc_sal = find_pc_line (stop_pc, 0);
4871
4872 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4873 the trampoline processing logic, however, there are some trampolines
4874 that have no names, so we should do trampoline handling first. */
4875 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4876 && ecs->stop_func_name == NULL
4877 && stop_pc_sal.line == 0)
4878 {
4879 if (debug_infrun)
4880 fprintf_unfiltered (gdb_stdlog,
4881 "infrun: stepped into undebuggable function\n");
4882
4883 /* The inferior just stepped into, or returned to, an
4884 undebuggable function (where there is no debugging information
4885 and no line number corresponding to the address where the
4886 inferior stopped). Since we want to skip this kind of code,
4887 we keep going until the inferior returns from this
4888 function - unless the user has asked us not to (via
4889 set step-mode) or we no longer know how to get back
4890 to the call site. */
4891 if (step_stop_if_no_debug
4892 || !frame_id_p (frame_unwind_caller_id (frame)))
4893 {
4894 /* If we have no line number and the step-stop-if-no-debug
4895 is set, we stop the step so that the user has a chance to
4896 switch in assembly mode. */
4897 ecs->event_thread->control.stop_step = 1;
4898 print_end_stepping_range_reason ();
4899 stop_stepping (ecs);
4900 return;
4901 }
4902 else
4903 {
4904 /* Set a breakpoint at callee's return address (the address
4905 at which the caller will resume). */
4906 insert_step_resume_breakpoint_at_caller (frame);
4907 keep_going (ecs);
4908 return;
4909 }
4910 }
4911
4912 if (ecs->event_thread->control.step_range_end == 1)
4913 {
4914 /* It is stepi or nexti. We always want to stop stepping after
4915 one instruction. */
4916 if (debug_infrun)
4917 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4918 ecs->event_thread->control.stop_step = 1;
4919 print_end_stepping_range_reason ();
4920 stop_stepping (ecs);
4921 return;
4922 }
4923
4924 if (stop_pc_sal.line == 0)
4925 {
4926 /* We have no line number information. That means to stop
4927 stepping (does this always happen right after one instruction,
4928 when we do "s" in a function with no line numbers,
4929 or can this happen as a result of a return or longjmp?). */
4930 if (debug_infrun)
4931 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4932 ecs->event_thread->control.stop_step = 1;
4933 print_end_stepping_range_reason ();
4934 stop_stepping (ecs);
4935 return;
4936 }
4937
4938 /* Look for "calls" to inlined functions, part one. If the inline
4939 frame machinery detected some skipped call sites, we have entered
4940 a new inline function. */
4941
4942 if (frame_id_eq (get_frame_id (get_current_frame ()),
4943 ecs->event_thread->control.step_frame_id)
4944 && inline_skipped_frames (ecs->ptid))
4945 {
4946 struct symtab_and_line call_sal;
4947
4948 if (debug_infrun)
4949 fprintf_unfiltered (gdb_stdlog,
4950 "infrun: stepped into inlined function\n");
4951
4952 find_frame_sal (get_current_frame (), &call_sal);
4953
4954 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
4955 {
4956 /* For "step", we're going to stop. But if the call site
4957 for this inlined function is on the same source line as
4958 we were previously stepping, go down into the function
4959 first. Otherwise stop at the call site. */
4960
4961 if (call_sal.line == ecs->event_thread->current_line
4962 && call_sal.symtab == ecs->event_thread->current_symtab)
4963 step_into_inline_frame (ecs->ptid);
4964
4965 ecs->event_thread->control.stop_step = 1;
4966 print_end_stepping_range_reason ();
4967 stop_stepping (ecs);
4968 return;
4969 }
4970 else
4971 {
4972 /* For "next", we should stop at the call site if it is on a
4973 different source line. Otherwise continue through the
4974 inlined function. */
4975 if (call_sal.line == ecs->event_thread->current_line
4976 && call_sal.symtab == ecs->event_thread->current_symtab)
4977 keep_going (ecs);
4978 else
4979 {
4980 ecs->event_thread->control.stop_step = 1;
4981 print_end_stepping_range_reason ();
4982 stop_stepping (ecs);
4983 }
4984 return;
4985 }
4986 }
4987
4988 /* Look for "calls" to inlined functions, part two. If we are still
4989 in the same real function we were stepping through, but we have
4990 to go further up to find the exact frame ID, we are stepping
4991 through a more inlined call beyond its call site. */
4992
4993 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4994 && !frame_id_eq (get_frame_id (get_current_frame ()),
4995 ecs->event_thread->control.step_frame_id)
4996 && stepped_in_from (get_current_frame (),
4997 ecs->event_thread->control.step_frame_id))
4998 {
4999 if (debug_infrun)
5000 fprintf_unfiltered (gdb_stdlog,
5001 "infrun: stepping through inlined function\n");
5002
5003 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5004 keep_going (ecs);
5005 else
5006 {
5007 ecs->event_thread->control.stop_step = 1;
5008 print_end_stepping_range_reason ();
5009 stop_stepping (ecs);
5010 }
5011 return;
5012 }
5013
5014 if ((stop_pc == stop_pc_sal.pc)
5015 && (ecs->event_thread->current_line != stop_pc_sal.line
5016 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5017 {
5018 /* We are at the start of a different line. So stop. Note that
5019 we don't stop if we step into the middle of a different line.
5020 That is said to make things like for (;;) statements work
5021 better. */
5022 if (debug_infrun)
5023 fprintf_unfiltered (gdb_stdlog,
5024 "infrun: stepped to a different line\n");
5025 ecs->event_thread->control.stop_step = 1;
5026 print_end_stepping_range_reason ();
5027 stop_stepping (ecs);
5028 return;
5029 }
5030
5031 /* We aren't done stepping.
5032
5033 Optimize by setting the stepping range to the line.
5034 (We might not be in the original line, but if we entered a
5035 new line in mid-statement, we continue stepping. This makes
5036 things like for(;;) statements work better.) */
5037
5038 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5039 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5040 set_step_info (frame, stop_pc_sal);
5041
5042 if (debug_infrun)
5043 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5044 keep_going (ecs);
5045 }
5046
5047 /* Is thread TP in the middle of single-stepping? */
5048
5049 static int
5050 currently_stepping (struct thread_info *tp)
5051 {
5052 return ((tp->control.step_range_end
5053 && tp->control.step_resume_breakpoint == NULL)
5054 || tp->control.trap_expected
5055 || tp->stepping_through_solib_after_catch
5056 || bpstat_should_step ());
5057 }
5058
5059 /* Returns true if any thread *but* the one passed in "data" is in the
5060 middle of stepping or of handling a "next". */
5061
5062 static int
5063 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5064 {
5065 if (tp == data)
5066 return 0;
5067
5068 return (tp->control.step_range_end
5069 || tp->control.trap_expected
5070 || tp->stepping_through_solib_after_catch);
5071 }
5072
5073 /* Inferior has stepped into a subroutine call with source code that
5074 we should not step over. Do step to the first line of code in
5075 it. */
5076
5077 static void
5078 handle_step_into_function (struct gdbarch *gdbarch,
5079 struct execution_control_state *ecs)
5080 {
5081 struct symtab *s;
5082 struct symtab_and_line stop_func_sal, sr_sal;
5083
5084 s = find_pc_symtab (stop_pc);
5085 if (s && s->language != language_asm)
5086 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5087 ecs->stop_func_start);
5088
5089 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5090 /* Use the step_resume_break to step until the end of the prologue,
5091 even if that involves jumps (as it seems to on the vax under
5092 4.2). */
5093 /* If the prologue ends in the middle of a source line, continue to
5094 the end of that source line (if it is still within the function).
5095 Otherwise, just go to end of prologue. */
5096 if (stop_func_sal.end
5097 && stop_func_sal.pc != ecs->stop_func_start
5098 && stop_func_sal.end < ecs->stop_func_end)
5099 ecs->stop_func_start = stop_func_sal.end;
5100
5101 /* Architectures which require breakpoint adjustment might not be able
5102 to place a breakpoint at the computed address. If so, the test
5103 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5104 ecs->stop_func_start to an address at which a breakpoint may be
5105 legitimately placed.
5106
5107 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5108 made, GDB will enter an infinite loop when stepping through
5109 optimized code consisting of VLIW instructions which contain
5110 subinstructions corresponding to different source lines. On
5111 FR-V, it's not permitted to place a breakpoint on any but the
5112 first subinstruction of a VLIW instruction. When a breakpoint is
5113 set, GDB will adjust the breakpoint address to the beginning of
5114 the VLIW instruction. Thus, we need to make the corresponding
5115 adjustment here when computing the stop address. */
5116
5117 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5118 {
5119 ecs->stop_func_start
5120 = gdbarch_adjust_breakpoint_address (gdbarch,
5121 ecs->stop_func_start);
5122 }
5123
5124 if (ecs->stop_func_start == stop_pc)
5125 {
5126 /* We are already there: stop now. */
5127 ecs->event_thread->control.stop_step = 1;
5128 print_end_stepping_range_reason ();
5129 stop_stepping (ecs);
5130 return;
5131 }
5132 else
5133 {
5134 /* Put the step-breakpoint there and go until there. */
5135 init_sal (&sr_sal); /* initialize to zeroes */
5136 sr_sal.pc = ecs->stop_func_start;
5137 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5138 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5139
5140 /* Do not specify what the fp should be when we stop since on
5141 some machines the prologue is where the new fp value is
5142 established. */
5143 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5144
5145 /* And make sure stepping stops right away then. */
5146 ecs->event_thread->control.step_range_end
5147 = ecs->event_thread->control.step_range_start;
5148 }
5149 keep_going (ecs);
5150 }
5151
5152 /* Inferior has stepped backward into a subroutine call with source
5153 code that we should not step over. Do step to the beginning of the
5154 last line of code in it. */
5155
5156 static void
5157 handle_step_into_function_backward (struct gdbarch *gdbarch,
5158 struct execution_control_state *ecs)
5159 {
5160 struct symtab *s;
5161 struct symtab_and_line stop_func_sal;
5162
5163 s = find_pc_symtab (stop_pc);
5164 if (s && s->language != language_asm)
5165 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5166 ecs->stop_func_start);
5167
5168 stop_func_sal = find_pc_line (stop_pc, 0);
5169
5170 /* OK, we're just going to keep stepping here. */
5171 if (stop_func_sal.pc == stop_pc)
5172 {
5173 /* We're there already. Just stop stepping now. */
5174 ecs->event_thread->control.stop_step = 1;
5175 print_end_stepping_range_reason ();
5176 stop_stepping (ecs);
5177 }
5178 else
5179 {
5180 /* Else just reset the step range and keep going.
5181 No step-resume breakpoint, they don't work for
5182 epilogues, which can have multiple entry paths. */
5183 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5184 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5185 keep_going (ecs);
5186 }
5187 return;
5188 }
5189
5190 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5191 This is used to both functions and to skip over code. */
5192
5193 static void
5194 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5195 struct symtab_and_line sr_sal,
5196 struct frame_id sr_id)
5197 {
5198 /* There should never be more than one step-resume or longjmp-resume
5199 breakpoint per thread, so we should never be setting a new
5200 step_resume_breakpoint when one is already active. */
5201 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5202
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog,
5205 "infrun: inserting step-resume breakpoint at %s\n",
5206 paddress (gdbarch, sr_sal.pc));
5207
5208 inferior_thread ()->control.step_resume_breakpoint
5209 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
5210 }
5211
5212 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
5213 to skip a potential signal handler.
5214
5215 This is called with the interrupted function's frame. The signal
5216 handler, when it returns, will resume the interrupted function at
5217 RETURN_FRAME.pc. */
5218
5219 static void
5220 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5221 {
5222 struct symtab_and_line sr_sal;
5223 struct gdbarch *gdbarch;
5224
5225 gdb_assert (return_frame != NULL);
5226 init_sal (&sr_sal); /* initialize to zeros */
5227
5228 gdbarch = get_frame_arch (return_frame);
5229 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5230 sr_sal.section = find_pc_overlay (sr_sal.pc);
5231 sr_sal.pspace = get_frame_program_space (return_frame);
5232
5233 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5234 get_stack_frame_id (return_frame));
5235 }
5236
5237 /* Similar to insert_step_resume_breakpoint_at_frame, except
5238 but a breakpoint at the previous frame's PC. This is used to
5239 skip a function after stepping into it (for "next" or if the called
5240 function has no debugging information).
5241
5242 The current function has almost always been reached by single
5243 stepping a call or return instruction. NEXT_FRAME belongs to the
5244 current function, and the breakpoint will be set at the caller's
5245 resume address.
5246
5247 This is a separate function rather than reusing
5248 insert_step_resume_breakpoint_at_frame in order to avoid
5249 get_prev_frame, which may stop prematurely (see the implementation
5250 of frame_unwind_caller_id for an example). */
5251
5252 static void
5253 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5254 {
5255 struct symtab_and_line sr_sal;
5256 struct gdbarch *gdbarch;
5257
5258 /* We shouldn't have gotten here if we don't know where the call site
5259 is. */
5260 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5261
5262 init_sal (&sr_sal); /* initialize to zeros */
5263
5264 gdbarch = frame_unwind_caller_arch (next_frame);
5265 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5266 frame_unwind_caller_pc (next_frame));
5267 sr_sal.section = find_pc_overlay (sr_sal.pc);
5268 sr_sal.pspace = frame_unwind_program_space (next_frame);
5269
5270 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5271 frame_unwind_caller_id (next_frame));
5272 }
5273
5274 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5275 new breakpoint at the target of a jmp_buf. The handling of
5276 longjmp-resume uses the same mechanisms used for handling
5277 "step-resume" breakpoints. */
5278
5279 static void
5280 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5281 {
5282 /* There should never be more than one step-resume or longjmp-resume
5283 breakpoint per thread, so we should never be setting a new
5284 longjmp_resume_breakpoint when one is already active. */
5285 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5286
5287 if (debug_infrun)
5288 fprintf_unfiltered (gdb_stdlog,
5289 "infrun: inserting longjmp-resume breakpoint at %s\n",
5290 paddress (gdbarch, pc));
5291
5292 inferior_thread ()->control.step_resume_breakpoint =
5293 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5294 }
5295
5296 /* Insert an exception resume breakpoint. TP is the thread throwing
5297 the exception. The block B is the block of the unwinder debug hook
5298 function. FRAME is the frame corresponding to the call to this
5299 function. SYM is the symbol of the function argument holding the
5300 target PC of the exception. */
5301
5302 static void
5303 insert_exception_resume_breakpoint (struct thread_info *tp,
5304 struct block *b,
5305 struct frame_info *frame,
5306 struct symbol *sym)
5307 {
5308 struct gdb_exception e;
5309
5310 /* We want to ignore errors here. */
5311 TRY_CATCH (e, RETURN_MASK_ERROR)
5312 {
5313 struct symbol *vsym;
5314 struct value *value;
5315 CORE_ADDR handler;
5316 struct breakpoint *bp;
5317
5318 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5319 value = read_var_value (vsym, frame);
5320 /* If the value was optimized out, revert to the old behavior. */
5321 if (! value_optimized_out (value))
5322 {
5323 handler = value_as_address (value);
5324
5325 if (debug_infrun)
5326 fprintf_unfiltered (gdb_stdlog,
5327 "infrun: exception resume at %lx\n",
5328 (unsigned long) handler);
5329
5330 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5331 handler, bp_exception_resume);
5332 bp->thread = tp->num;
5333 inferior_thread ()->control.exception_resume_breakpoint = bp;
5334 }
5335 }
5336 }
5337
5338 /* This is called when an exception has been intercepted. Check to
5339 see whether the exception's destination is of interest, and if so,
5340 set an exception resume breakpoint there. */
5341
5342 static void
5343 check_exception_resume (struct execution_control_state *ecs,
5344 struct frame_info *frame, struct symbol *func)
5345 {
5346 struct gdb_exception e;
5347
5348 TRY_CATCH (e, RETURN_MASK_ERROR)
5349 {
5350 struct block *b;
5351 struct dict_iterator iter;
5352 struct symbol *sym;
5353 int argno = 0;
5354
5355 /* The exception breakpoint is a thread-specific breakpoint on
5356 the unwinder's debug hook, declared as:
5357
5358 void _Unwind_DebugHook (void *cfa, void *handler);
5359
5360 The CFA argument indicates the frame to which control is
5361 about to be transferred. HANDLER is the destination PC.
5362
5363 We ignore the CFA and set a temporary breakpoint at HANDLER.
5364 This is not extremely efficient but it avoids issues in gdb
5365 with computing the DWARF CFA, and it also works even in weird
5366 cases such as throwing an exception from inside a signal
5367 handler. */
5368
5369 b = SYMBOL_BLOCK_VALUE (func);
5370 ALL_BLOCK_SYMBOLS (b, iter, sym)
5371 {
5372 if (!SYMBOL_IS_ARGUMENT (sym))
5373 continue;
5374
5375 if (argno == 0)
5376 ++argno;
5377 else
5378 {
5379 insert_exception_resume_breakpoint (ecs->event_thread,
5380 b, frame, sym);
5381 break;
5382 }
5383 }
5384 }
5385 }
5386
5387 static void
5388 stop_stepping (struct execution_control_state *ecs)
5389 {
5390 if (debug_infrun)
5391 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5392
5393 /* Let callers know we don't want to wait for the inferior anymore. */
5394 ecs->wait_some_more = 0;
5395 }
5396
5397 /* This function handles various cases where we need to continue
5398 waiting for the inferior. */
5399 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5400
5401 static void
5402 keep_going (struct execution_control_state *ecs)
5403 {
5404 /* Make sure normal_stop is called if we get a QUIT handled before
5405 reaching resume. */
5406 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5407
5408 /* Save the pc before execution, to compare with pc after stop. */
5409 ecs->event_thread->prev_pc
5410 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5411
5412 /* If we did not do break;, it means we should keep running the
5413 inferior and not return to debugger. */
5414
5415 if (ecs->event_thread->control.trap_expected
5416 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5417 {
5418 /* We took a signal (which we are supposed to pass through to
5419 the inferior, else we'd not get here) and we haven't yet
5420 gotten our trap. Simply continue. */
5421
5422 discard_cleanups (old_cleanups);
5423 resume (currently_stepping (ecs->event_thread),
5424 ecs->event_thread->suspend.stop_signal);
5425 }
5426 else
5427 {
5428 /* Either the trap was not expected, but we are continuing
5429 anyway (the user asked that this signal be passed to the
5430 child)
5431 -- or --
5432 The signal was SIGTRAP, e.g. it was our signal, but we
5433 decided we should resume from it.
5434
5435 We're going to run this baby now!
5436
5437 Note that insert_breakpoints won't try to re-insert
5438 already inserted breakpoints. Therefore, we don't
5439 care if breakpoints were already inserted, or not. */
5440
5441 if (ecs->event_thread->stepping_over_breakpoint)
5442 {
5443 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5444
5445 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5446 /* Since we can't do a displaced step, we have to remove
5447 the breakpoint while we step it. To keep things
5448 simple, we remove them all. */
5449 remove_breakpoints ();
5450 }
5451 else
5452 {
5453 struct gdb_exception e;
5454
5455 /* Stop stepping when inserting breakpoints
5456 has failed. */
5457 TRY_CATCH (e, RETURN_MASK_ERROR)
5458 {
5459 insert_breakpoints ();
5460 }
5461 if (e.reason < 0)
5462 {
5463 exception_print (gdb_stderr, e);
5464 stop_stepping (ecs);
5465 return;
5466 }
5467 }
5468
5469 ecs->event_thread->control.trap_expected
5470 = ecs->event_thread->stepping_over_breakpoint;
5471
5472 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5473 specifies that such a signal should be delivered to the
5474 target program).
5475
5476 Typically, this would occure when a user is debugging a
5477 target monitor on a simulator: the target monitor sets a
5478 breakpoint; the simulator encounters this break-point and
5479 halts the simulation handing control to GDB; GDB, noteing
5480 that the break-point isn't valid, returns control back to the
5481 simulator; the simulator then delivers the hardware
5482 equivalent of a SIGNAL_TRAP to the program being debugged. */
5483
5484 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5485 && !signal_program[ecs->event_thread->suspend.stop_signal])
5486 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5487
5488 discard_cleanups (old_cleanups);
5489 resume (currently_stepping (ecs->event_thread),
5490 ecs->event_thread->suspend.stop_signal);
5491 }
5492
5493 prepare_to_wait (ecs);
5494 }
5495
5496 /* This function normally comes after a resume, before
5497 handle_inferior_event exits. It takes care of any last bits of
5498 housekeeping, and sets the all-important wait_some_more flag. */
5499
5500 static void
5501 prepare_to_wait (struct execution_control_state *ecs)
5502 {
5503 if (debug_infrun)
5504 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5505
5506 /* This is the old end of the while loop. Let everybody know we
5507 want to wait for the inferior some more and get called again
5508 soon. */
5509 ecs->wait_some_more = 1;
5510 }
5511
5512 /* Several print_*_reason functions to print why the inferior has stopped.
5513 We always print something when the inferior exits, or receives a signal.
5514 The rest of the cases are dealt with later on in normal_stop and
5515 print_it_typical. Ideally there should be a call to one of these
5516 print_*_reason functions functions from handle_inferior_event each time
5517 stop_stepping is called. */
5518
5519 /* Print why the inferior has stopped.
5520 We are done with a step/next/si/ni command, print why the inferior has
5521 stopped. For now print nothing. Print a message only if not in the middle
5522 of doing a "step n" operation for n > 1. */
5523
5524 static void
5525 print_end_stepping_range_reason (void)
5526 {
5527 if ((!inferior_thread ()->step_multi
5528 || !inferior_thread ()->control.stop_step)
5529 && ui_out_is_mi_like_p (uiout))
5530 ui_out_field_string (uiout, "reason",
5531 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5532 }
5533
5534 /* The inferior was terminated by a signal, print why it stopped. */
5535
5536 static void
5537 print_signal_exited_reason (enum target_signal siggnal)
5538 {
5539 annotate_signalled ();
5540 if (ui_out_is_mi_like_p (uiout))
5541 ui_out_field_string
5542 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5543 ui_out_text (uiout, "\nProgram terminated with signal ");
5544 annotate_signal_name ();
5545 ui_out_field_string (uiout, "signal-name",
5546 target_signal_to_name (siggnal));
5547 annotate_signal_name_end ();
5548 ui_out_text (uiout, ", ");
5549 annotate_signal_string ();
5550 ui_out_field_string (uiout, "signal-meaning",
5551 target_signal_to_string (siggnal));
5552 annotate_signal_string_end ();
5553 ui_out_text (uiout, ".\n");
5554 ui_out_text (uiout, "The program no longer exists.\n");
5555 }
5556
5557 /* The inferior program is finished, print why it stopped. */
5558
5559 static void
5560 print_exited_reason (int exitstatus)
5561 {
5562 struct inferior *inf = current_inferior ();
5563 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5564
5565 annotate_exited (exitstatus);
5566 if (exitstatus)
5567 {
5568 if (ui_out_is_mi_like_p (uiout))
5569 ui_out_field_string (uiout, "reason",
5570 async_reason_lookup (EXEC_ASYNC_EXITED));
5571 ui_out_text (uiout, "[Inferior ");
5572 ui_out_text (uiout, plongest (inf->num));
5573 ui_out_text (uiout, " (");
5574 ui_out_text (uiout, pidstr);
5575 ui_out_text (uiout, ") exited with code ");
5576 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5577 ui_out_text (uiout, "]\n");
5578 }
5579 else
5580 {
5581 if (ui_out_is_mi_like_p (uiout))
5582 ui_out_field_string
5583 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5584 ui_out_text (uiout, "[Inferior ");
5585 ui_out_text (uiout, plongest (inf->num));
5586 ui_out_text (uiout, " (");
5587 ui_out_text (uiout, pidstr);
5588 ui_out_text (uiout, ") exited normally]\n");
5589 }
5590 /* Support the --return-child-result option. */
5591 return_child_result_value = exitstatus;
5592 }
5593
5594 /* Signal received, print why the inferior has stopped. The signal table
5595 tells us to print about it. */
5596
5597 static void
5598 print_signal_received_reason (enum target_signal siggnal)
5599 {
5600 annotate_signal ();
5601
5602 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5603 {
5604 struct thread_info *t = inferior_thread ();
5605
5606 ui_out_text (uiout, "\n[");
5607 ui_out_field_string (uiout, "thread-name",
5608 target_pid_to_str (t->ptid));
5609 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5610 ui_out_text (uiout, " stopped");
5611 }
5612 else
5613 {
5614 ui_out_text (uiout, "\nProgram received signal ");
5615 annotate_signal_name ();
5616 if (ui_out_is_mi_like_p (uiout))
5617 ui_out_field_string
5618 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5619 ui_out_field_string (uiout, "signal-name",
5620 target_signal_to_name (siggnal));
5621 annotate_signal_name_end ();
5622 ui_out_text (uiout, ", ");
5623 annotate_signal_string ();
5624 ui_out_field_string (uiout, "signal-meaning",
5625 target_signal_to_string (siggnal));
5626 annotate_signal_string_end ();
5627 }
5628 ui_out_text (uiout, ".\n");
5629 }
5630
5631 /* Reverse execution: target ran out of history info, print why the inferior
5632 has stopped. */
5633
5634 static void
5635 print_no_history_reason (void)
5636 {
5637 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5638 }
5639
5640 /* Here to return control to GDB when the inferior stops for real.
5641 Print appropriate messages, remove breakpoints, give terminal our modes.
5642
5643 STOP_PRINT_FRAME nonzero means print the executing frame
5644 (pc, function, args, file, line number and line text).
5645 BREAKPOINTS_FAILED nonzero means stop was due to error
5646 attempting to insert breakpoints. */
5647
5648 void
5649 normal_stop (void)
5650 {
5651 struct target_waitstatus last;
5652 ptid_t last_ptid;
5653 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5654
5655 get_last_target_status (&last_ptid, &last);
5656
5657 /* If an exception is thrown from this point on, make sure to
5658 propagate GDB's knowledge of the executing state to the
5659 frontend/user running state. A QUIT is an easy exception to see
5660 here, so do this before any filtered output. */
5661 if (!non_stop)
5662 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5663 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5664 && last.kind != TARGET_WAITKIND_EXITED)
5665 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5666
5667 /* In non-stop mode, we don't want GDB to switch threads behind the
5668 user's back, to avoid races where the user is typing a command to
5669 apply to thread x, but GDB switches to thread y before the user
5670 finishes entering the command. */
5671
5672 /* As with the notification of thread events, we want to delay
5673 notifying the user that we've switched thread context until
5674 the inferior actually stops.
5675
5676 There's no point in saying anything if the inferior has exited.
5677 Note that SIGNALLED here means "exited with a signal", not
5678 "received a signal". */
5679 if (!non_stop
5680 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5681 && target_has_execution
5682 && last.kind != TARGET_WAITKIND_SIGNALLED
5683 && last.kind != TARGET_WAITKIND_EXITED)
5684 {
5685 target_terminal_ours_for_output ();
5686 printf_filtered (_("[Switching to %s]\n"),
5687 target_pid_to_str (inferior_ptid));
5688 annotate_thread_changed ();
5689 previous_inferior_ptid = inferior_ptid;
5690 }
5691
5692 if (!breakpoints_always_inserted_mode () && target_has_execution)
5693 {
5694 if (remove_breakpoints ())
5695 {
5696 target_terminal_ours_for_output ();
5697 printf_filtered (_("Cannot remove breakpoints because "
5698 "program is no longer writable.\nFurther "
5699 "execution is probably impossible.\n"));
5700 }
5701 }
5702
5703 /* If an auto-display called a function and that got a signal,
5704 delete that auto-display to avoid an infinite recursion. */
5705
5706 if (stopped_by_random_signal)
5707 disable_current_display ();
5708
5709 /* Don't print a message if in the middle of doing a "step n"
5710 operation for n > 1 */
5711 if (target_has_execution
5712 && last.kind != TARGET_WAITKIND_SIGNALLED
5713 && last.kind != TARGET_WAITKIND_EXITED
5714 && inferior_thread ()->step_multi
5715 && inferior_thread ()->control.stop_step)
5716 goto done;
5717
5718 target_terminal_ours ();
5719
5720 /* Set the current source location. This will also happen if we
5721 display the frame below, but the current SAL will be incorrect
5722 during a user hook-stop function. */
5723 if (has_stack_frames () && !stop_stack_dummy)
5724 set_current_sal_from_frame (get_current_frame (), 1);
5725
5726 /* Let the user/frontend see the threads as stopped. */
5727 do_cleanups (old_chain);
5728
5729 /* Look up the hook_stop and run it (CLI internally handles problem
5730 of stop_command's pre-hook not existing). */
5731 if (stop_command)
5732 catch_errors (hook_stop_stub, stop_command,
5733 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5734
5735 if (!has_stack_frames ())
5736 goto done;
5737
5738 if (last.kind == TARGET_WAITKIND_SIGNALLED
5739 || last.kind == TARGET_WAITKIND_EXITED)
5740 goto done;
5741
5742 /* Select innermost stack frame - i.e., current frame is frame 0,
5743 and current location is based on that.
5744 Don't do this on return from a stack dummy routine,
5745 or if the program has exited. */
5746
5747 if (!stop_stack_dummy)
5748 {
5749 select_frame (get_current_frame ());
5750
5751 /* Print current location without a level number, if
5752 we have changed functions or hit a breakpoint.
5753 Print source line if we have one.
5754 bpstat_print() contains the logic deciding in detail
5755 what to print, based on the event(s) that just occurred. */
5756
5757 /* If --batch-silent is enabled then there's no need to print the current
5758 source location, and to try risks causing an error message about
5759 missing source files. */
5760 if (stop_print_frame && !batch_silent)
5761 {
5762 int bpstat_ret;
5763 int source_flag;
5764 int do_frame_printing = 1;
5765 struct thread_info *tp = inferior_thread ();
5766
5767 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5768 switch (bpstat_ret)
5769 {
5770 case PRINT_UNKNOWN:
5771 /* If we had hit a shared library event breakpoint,
5772 bpstat_print would print out this message. If we hit
5773 an OS-level shared library event, do the same
5774 thing. */
5775 if (last.kind == TARGET_WAITKIND_LOADED)
5776 {
5777 printf_filtered (_("Stopped due to shared library event\n"));
5778 source_flag = SRC_LINE; /* something bogus */
5779 do_frame_printing = 0;
5780 break;
5781 }
5782
5783 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5784 (or should) carry around the function and does (or
5785 should) use that when doing a frame comparison. */
5786 if (tp->control.stop_step
5787 && frame_id_eq (tp->control.step_frame_id,
5788 get_frame_id (get_current_frame ()))
5789 && step_start_function == find_pc_function (stop_pc))
5790 source_flag = SRC_LINE; /* Finished step, just
5791 print source line. */
5792 else
5793 source_flag = SRC_AND_LOC; /* Print location and
5794 source line. */
5795 break;
5796 case PRINT_SRC_AND_LOC:
5797 source_flag = SRC_AND_LOC; /* Print location and
5798 source line. */
5799 break;
5800 case PRINT_SRC_ONLY:
5801 source_flag = SRC_LINE;
5802 break;
5803 case PRINT_NOTHING:
5804 source_flag = SRC_LINE; /* something bogus */
5805 do_frame_printing = 0;
5806 break;
5807 default:
5808 internal_error (__FILE__, __LINE__, _("Unknown value."));
5809 }
5810
5811 /* The behavior of this routine with respect to the source
5812 flag is:
5813 SRC_LINE: Print only source line
5814 LOCATION: Print only location
5815 SRC_AND_LOC: Print location and source line. */
5816 if (do_frame_printing)
5817 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5818
5819 /* Display the auto-display expressions. */
5820 do_displays ();
5821 }
5822 }
5823
5824 /* Save the function value return registers, if we care.
5825 We might be about to restore their previous contents. */
5826 if (inferior_thread ()->control.proceed_to_finish)
5827 {
5828 /* This should not be necessary. */
5829 if (stop_registers)
5830 regcache_xfree (stop_registers);
5831
5832 /* NB: The copy goes through to the target picking up the value of
5833 all the registers. */
5834 stop_registers = regcache_dup (get_current_regcache ());
5835 }
5836
5837 if (stop_stack_dummy == STOP_STACK_DUMMY)
5838 {
5839 /* Pop the empty frame that contains the stack dummy.
5840 This also restores inferior state prior to the call
5841 (struct infcall_suspend_state). */
5842 struct frame_info *frame = get_current_frame ();
5843
5844 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5845 frame_pop (frame);
5846 /* frame_pop() calls reinit_frame_cache as the last thing it
5847 does which means there's currently no selected frame. We
5848 don't need to re-establish a selected frame if the dummy call
5849 returns normally, that will be done by
5850 restore_infcall_control_state. However, we do have to handle
5851 the case where the dummy call is returning after being
5852 stopped (e.g. the dummy call previously hit a breakpoint).
5853 We can't know which case we have so just always re-establish
5854 a selected frame here. */
5855 select_frame (get_current_frame ());
5856 }
5857
5858 done:
5859 annotate_stopped ();
5860
5861 /* Suppress the stop observer if we're in the middle of:
5862
5863 - a step n (n > 1), as there still more steps to be done.
5864
5865 - a "finish" command, as the observer will be called in
5866 finish_command_continuation, so it can include the inferior
5867 function's return value.
5868
5869 - calling an inferior function, as we pretend we inferior didn't
5870 run at all. The return value of the call is handled by the
5871 expression evaluator, through call_function_by_hand. */
5872
5873 if (!target_has_execution
5874 || last.kind == TARGET_WAITKIND_SIGNALLED
5875 || last.kind == TARGET_WAITKIND_EXITED
5876 || (!inferior_thread ()->step_multi
5877 && !(inferior_thread ()->control.stop_bpstat
5878 && inferior_thread ()->control.proceed_to_finish)
5879 && !inferior_thread ()->control.in_infcall))
5880 {
5881 if (!ptid_equal (inferior_ptid, null_ptid))
5882 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
5883 stop_print_frame);
5884 else
5885 observer_notify_normal_stop (NULL, stop_print_frame);
5886 }
5887
5888 if (target_has_execution)
5889 {
5890 if (last.kind != TARGET_WAITKIND_SIGNALLED
5891 && last.kind != TARGET_WAITKIND_EXITED)
5892 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5893 Delete any breakpoint that is to be deleted at the next stop. */
5894 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
5895 }
5896
5897 /* Try to get rid of automatically added inferiors that are no
5898 longer needed. Keeping those around slows down things linearly.
5899 Note that this never removes the current inferior. */
5900 prune_inferiors ();
5901 }
5902
5903 static int
5904 hook_stop_stub (void *cmd)
5905 {
5906 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5907 return (0);
5908 }
5909 \f
5910 int
5911 signal_stop_state (int signo)
5912 {
5913 return signal_stop[signo];
5914 }
5915
5916 int
5917 signal_print_state (int signo)
5918 {
5919 return signal_print[signo];
5920 }
5921
5922 int
5923 signal_pass_state (int signo)
5924 {
5925 return signal_program[signo];
5926 }
5927
5928 static void
5929 signal_cache_update (int signo)
5930 {
5931 if (signo == -1)
5932 {
5933 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
5934 signal_cache_update (signo);
5935
5936 return;
5937 }
5938
5939 signal_pass[signo] = (signal_stop[signo] == 0
5940 && signal_print[signo] == 0
5941 && signal_program[signo] == 1);
5942 }
5943
5944 int
5945 signal_stop_update (int signo, int state)
5946 {
5947 int ret = signal_stop[signo];
5948
5949 signal_stop[signo] = state;
5950 signal_cache_update (signo);
5951 return ret;
5952 }
5953
5954 int
5955 signal_print_update (int signo, int state)
5956 {
5957 int ret = signal_print[signo];
5958
5959 signal_print[signo] = state;
5960 signal_cache_update (signo);
5961 return ret;
5962 }
5963
5964 int
5965 signal_pass_update (int signo, int state)
5966 {
5967 int ret = signal_program[signo];
5968
5969 signal_program[signo] = state;
5970 signal_cache_update (signo);
5971 return ret;
5972 }
5973
5974 static void
5975 sig_print_header (void)
5976 {
5977 printf_filtered (_("Signal Stop\tPrint\tPass "
5978 "to program\tDescription\n"));
5979 }
5980
5981 static void
5982 sig_print_info (enum target_signal oursig)
5983 {
5984 const char *name = target_signal_to_name (oursig);
5985 int name_padding = 13 - strlen (name);
5986
5987 if (name_padding <= 0)
5988 name_padding = 0;
5989
5990 printf_filtered ("%s", name);
5991 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
5992 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5993 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5994 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5995 printf_filtered ("%s\n", target_signal_to_string (oursig));
5996 }
5997
5998 /* Specify how various signals in the inferior should be handled. */
5999
6000 static void
6001 handle_command (char *args, int from_tty)
6002 {
6003 char **argv;
6004 int digits, wordlen;
6005 int sigfirst, signum, siglast;
6006 enum target_signal oursig;
6007 int allsigs;
6008 int nsigs;
6009 unsigned char *sigs;
6010 struct cleanup *old_chain;
6011
6012 if (args == NULL)
6013 {
6014 error_no_arg (_("signal to handle"));
6015 }
6016
6017 /* Allocate and zero an array of flags for which signals to handle. */
6018
6019 nsigs = (int) TARGET_SIGNAL_LAST;
6020 sigs = (unsigned char *) alloca (nsigs);
6021 memset (sigs, 0, nsigs);
6022
6023 /* Break the command line up into args. */
6024
6025 argv = gdb_buildargv (args);
6026 old_chain = make_cleanup_freeargv (argv);
6027
6028 /* Walk through the args, looking for signal oursigs, signal names, and
6029 actions. Signal numbers and signal names may be interspersed with
6030 actions, with the actions being performed for all signals cumulatively
6031 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6032
6033 while (*argv != NULL)
6034 {
6035 wordlen = strlen (*argv);
6036 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6037 {;
6038 }
6039 allsigs = 0;
6040 sigfirst = siglast = -1;
6041
6042 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6043 {
6044 /* Apply action to all signals except those used by the
6045 debugger. Silently skip those. */
6046 allsigs = 1;
6047 sigfirst = 0;
6048 siglast = nsigs - 1;
6049 }
6050 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6051 {
6052 SET_SIGS (nsigs, sigs, signal_stop);
6053 SET_SIGS (nsigs, sigs, signal_print);
6054 }
6055 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6056 {
6057 UNSET_SIGS (nsigs, sigs, signal_program);
6058 }
6059 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6060 {
6061 SET_SIGS (nsigs, sigs, signal_print);
6062 }
6063 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6064 {
6065 SET_SIGS (nsigs, sigs, signal_program);
6066 }
6067 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6068 {
6069 UNSET_SIGS (nsigs, sigs, signal_stop);
6070 }
6071 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6072 {
6073 SET_SIGS (nsigs, sigs, signal_program);
6074 }
6075 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6076 {
6077 UNSET_SIGS (nsigs, sigs, signal_print);
6078 UNSET_SIGS (nsigs, sigs, signal_stop);
6079 }
6080 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6081 {
6082 UNSET_SIGS (nsigs, sigs, signal_program);
6083 }
6084 else if (digits > 0)
6085 {
6086 /* It is numeric. The numeric signal refers to our own
6087 internal signal numbering from target.h, not to host/target
6088 signal number. This is a feature; users really should be
6089 using symbolic names anyway, and the common ones like
6090 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6091
6092 sigfirst = siglast = (int)
6093 target_signal_from_command (atoi (*argv));
6094 if ((*argv)[digits] == '-')
6095 {
6096 siglast = (int)
6097 target_signal_from_command (atoi ((*argv) + digits + 1));
6098 }
6099 if (sigfirst > siglast)
6100 {
6101 /* Bet he didn't figure we'd think of this case... */
6102 signum = sigfirst;
6103 sigfirst = siglast;
6104 siglast = signum;
6105 }
6106 }
6107 else
6108 {
6109 oursig = target_signal_from_name (*argv);
6110 if (oursig != TARGET_SIGNAL_UNKNOWN)
6111 {
6112 sigfirst = siglast = (int) oursig;
6113 }
6114 else
6115 {
6116 /* Not a number and not a recognized flag word => complain. */
6117 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6118 }
6119 }
6120
6121 /* If any signal numbers or symbol names were found, set flags for
6122 which signals to apply actions to. */
6123
6124 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6125 {
6126 switch ((enum target_signal) signum)
6127 {
6128 case TARGET_SIGNAL_TRAP:
6129 case TARGET_SIGNAL_INT:
6130 if (!allsigs && !sigs[signum])
6131 {
6132 if (query (_("%s is used by the debugger.\n\
6133 Are you sure you want to change it? "),
6134 target_signal_to_name ((enum target_signal) signum)))
6135 {
6136 sigs[signum] = 1;
6137 }
6138 else
6139 {
6140 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6141 gdb_flush (gdb_stdout);
6142 }
6143 }
6144 break;
6145 case TARGET_SIGNAL_0:
6146 case TARGET_SIGNAL_DEFAULT:
6147 case TARGET_SIGNAL_UNKNOWN:
6148 /* Make sure that "all" doesn't print these. */
6149 break;
6150 default:
6151 sigs[signum] = 1;
6152 break;
6153 }
6154 }
6155
6156 argv++;
6157 }
6158
6159 for (signum = 0; signum < nsigs; signum++)
6160 if (sigs[signum])
6161 {
6162 signal_cache_update (-1);
6163 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6164
6165 if (from_tty)
6166 {
6167 /* Show the results. */
6168 sig_print_header ();
6169 for (; signum < nsigs; signum++)
6170 if (sigs[signum])
6171 sig_print_info (signum);
6172 }
6173
6174 break;
6175 }
6176
6177 do_cleanups (old_chain);
6178 }
6179
6180 static void
6181 xdb_handle_command (char *args, int from_tty)
6182 {
6183 char **argv;
6184 struct cleanup *old_chain;
6185
6186 if (args == NULL)
6187 error_no_arg (_("xdb command"));
6188
6189 /* Break the command line up into args. */
6190
6191 argv = gdb_buildargv (args);
6192 old_chain = make_cleanup_freeargv (argv);
6193 if (argv[1] != (char *) NULL)
6194 {
6195 char *argBuf;
6196 int bufLen;
6197
6198 bufLen = strlen (argv[0]) + 20;
6199 argBuf = (char *) xmalloc (bufLen);
6200 if (argBuf)
6201 {
6202 int validFlag = 1;
6203 enum target_signal oursig;
6204
6205 oursig = target_signal_from_name (argv[0]);
6206 memset (argBuf, 0, bufLen);
6207 if (strcmp (argv[1], "Q") == 0)
6208 sprintf (argBuf, "%s %s", argv[0], "noprint");
6209 else
6210 {
6211 if (strcmp (argv[1], "s") == 0)
6212 {
6213 if (!signal_stop[oursig])
6214 sprintf (argBuf, "%s %s", argv[0], "stop");
6215 else
6216 sprintf (argBuf, "%s %s", argv[0], "nostop");
6217 }
6218 else if (strcmp (argv[1], "i") == 0)
6219 {
6220 if (!signal_program[oursig])
6221 sprintf (argBuf, "%s %s", argv[0], "pass");
6222 else
6223 sprintf (argBuf, "%s %s", argv[0], "nopass");
6224 }
6225 else if (strcmp (argv[1], "r") == 0)
6226 {
6227 if (!signal_print[oursig])
6228 sprintf (argBuf, "%s %s", argv[0], "print");
6229 else
6230 sprintf (argBuf, "%s %s", argv[0], "noprint");
6231 }
6232 else
6233 validFlag = 0;
6234 }
6235 if (validFlag)
6236 handle_command (argBuf, from_tty);
6237 else
6238 printf_filtered (_("Invalid signal handling flag.\n"));
6239 if (argBuf)
6240 xfree (argBuf);
6241 }
6242 }
6243 do_cleanups (old_chain);
6244 }
6245
6246 /* Print current contents of the tables set by the handle command.
6247 It is possible we should just be printing signals actually used
6248 by the current target (but for things to work right when switching
6249 targets, all signals should be in the signal tables). */
6250
6251 static void
6252 signals_info (char *signum_exp, int from_tty)
6253 {
6254 enum target_signal oursig;
6255
6256 sig_print_header ();
6257
6258 if (signum_exp)
6259 {
6260 /* First see if this is a symbol name. */
6261 oursig = target_signal_from_name (signum_exp);
6262 if (oursig == TARGET_SIGNAL_UNKNOWN)
6263 {
6264 /* No, try numeric. */
6265 oursig =
6266 target_signal_from_command (parse_and_eval_long (signum_exp));
6267 }
6268 sig_print_info (oursig);
6269 return;
6270 }
6271
6272 printf_filtered ("\n");
6273 /* These ugly casts brought to you by the native VAX compiler. */
6274 for (oursig = TARGET_SIGNAL_FIRST;
6275 (int) oursig < (int) TARGET_SIGNAL_LAST;
6276 oursig = (enum target_signal) ((int) oursig + 1))
6277 {
6278 QUIT;
6279
6280 if (oursig != TARGET_SIGNAL_UNKNOWN
6281 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6282 sig_print_info (oursig);
6283 }
6284
6285 printf_filtered (_("\nUse the \"handle\" command "
6286 "to change these tables.\n"));
6287 }
6288
6289 /* The $_siginfo convenience variable is a bit special. We don't know
6290 for sure the type of the value until we actually have a chance to
6291 fetch the data. The type can change depending on gdbarch, so it is
6292 also dependent on which thread you have selected.
6293
6294 1. making $_siginfo be an internalvar that creates a new value on
6295 access.
6296
6297 2. making the value of $_siginfo be an lval_computed value. */
6298
6299 /* This function implements the lval_computed support for reading a
6300 $_siginfo value. */
6301
6302 static void
6303 siginfo_value_read (struct value *v)
6304 {
6305 LONGEST transferred;
6306
6307 transferred =
6308 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6309 NULL,
6310 value_contents_all_raw (v),
6311 value_offset (v),
6312 TYPE_LENGTH (value_type (v)));
6313
6314 if (transferred != TYPE_LENGTH (value_type (v)))
6315 error (_("Unable to read siginfo"));
6316 }
6317
6318 /* This function implements the lval_computed support for writing a
6319 $_siginfo value. */
6320
6321 static void
6322 siginfo_value_write (struct value *v, struct value *fromval)
6323 {
6324 LONGEST transferred;
6325
6326 transferred = target_write (&current_target,
6327 TARGET_OBJECT_SIGNAL_INFO,
6328 NULL,
6329 value_contents_all_raw (fromval),
6330 value_offset (v),
6331 TYPE_LENGTH (value_type (fromval)));
6332
6333 if (transferred != TYPE_LENGTH (value_type (fromval)))
6334 error (_("Unable to write siginfo"));
6335 }
6336
6337 static struct lval_funcs siginfo_value_funcs =
6338 {
6339 siginfo_value_read,
6340 siginfo_value_write
6341 };
6342
6343 /* Return a new value with the correct type for the siginfo object of
6344 the current thread using architecture GDBARCH. Return a void value
6345 if there's no object available. */
6346
6347 static struct value *
6348 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6349 {
6350 if (target_has_stack
6351 && !ptid_equal (inferior_ptid, null_ptid)
6352 && gdbarch_get_siginfo_type_p (gdbarch))
6353 {
6354 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6355
6356 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6357 }
6358
6359 return allocate_value (builtin_type (gdbarch)->builtin_void);
6360 }
6361
6362 \f
6363 /* infcall_suspend_state contains state about the program itself like its
6364 registers and any signal it received when it last stopped.
6365 This state must be restored regardless of how the inferior function call
6366 ends (either successfully, or after it hits a breakpoint or signal)
6367 if the program is to properly continue where it left off. */
6368
6369 struct infcall_suspend_state
6370 {
6371 struct thread_suspend_state thread_suspend;
6372 struct inferior_suspend_state inferior_suspend;
6373
6374 /* Other fields: */
6375 CORE_ADDR stop_pc;
6376 struct regcache *registers;
6377
6378 /* Format of SIGINFO_DATA or NULL if it is not present. */
6379 struct gdbarch *siginfo_gdbarch;
6380
6381 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6382 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6383 content would be invalid. */
6384 gdb_byte *siginfo_data;
6385 };
6386
6387 struct infcall_suspend_state *
6388 save_infcall_suspend_state (void)
6389 {
6390 struct infcall_suspend_state *inf_state;
6391 struct thread_info *tp = inferior_thread ();
6392 struct inferior *inf = current_inferior ();
6393 struct regcache *regcache = get_current_regcache ();
6394 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6395 gdb_byte *siginfo_data = NULL;
6396
6397 if (gdbarch_get_siginfo_type_p (gdbarch))
6398 {
6399 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6400 size_t len = TYPE_LENGTH (type);
6401 struct cleanup *back_to;
6402
6403 siginfo_data = xmalloc (len);
6404 back_to = make_cleanup (xfree, siginfo_data);
6405
6406 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6407 siginfo_data, 0, len) == len)
6408 discard_cleanups (back_to);
6409 else
6410 {
6411 /* Errors ignored. */
6412 do_cleanups (back_to);
6413 siginfo_data = NULL;
6414 }
6415 }
6416
6417 inf_state = XZALLOC (struct infcall_suspend_state);
6418
6419 if (siginfo_data)
6420 {
6421 inf_state->siginfo_gdbarch = gdbarch;
6422 inf_state->siginfo_data = siginfo_data;
6423 }
6424
6425 inf_state->thread_suspend = tp->suspend;
6426 inf_state->inferior_suspend = inf->suspend;
6427
6428 /* run_inferior_call will not use the signal due to its `proceed' call with
6429 TARGET_SIGNAL_0 anyway. */
6430 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6431
6432 inf_state->stop_pc = stop_pc;
6433
6434 inf_state->registers = regcache_dup (regcache);
6435
6436 return inf_state;
6437 }
6438
6439 /* Restore inferior session state to INF_STATE. */
6440
6441 void
6442 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6443 {
6444 struct thread_info *tp = inferior_thread ();
6445 struct inferior *inf = current_inferior ();
6446 struct regcache *regcache = get_current_regcache ();
6447 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6448
6449 tp->suspend = inf_state->thread_suspend;
6450 inf->suspend = inf_state->inferior_suspend;
6451
6452 stop_pc = inf_state->stop_pc;
6453
6454 if (inf_state->siginfo_gdbarch == gdbarch)
6455 {
6456 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6457 size_t len = TYPE_LENGTH (type);
6458
6459 /* Errors ignored. */
6460 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6461 inf_state->siginfo_data, 0, len);
6462 }
6463
6464 /* The inferior can be gone if the user types "print exit(0)"
6465 (and perhaps other times). */
6466 if (target_has_execution)
6467 /* NB: The register write goes through to the target. */
6468 regcache_cpy (regcache, inf_state->registers);
6469
6470 discard_infcall_suspend_state (inf_state);
6471 }
6472
6473 static void
6474 do_restore_infcall_suspend_state_cleanup (void *state)
6475 {
6476 restore_infcall_suspend_state (state);
6477 }
6478
6479 struct cleanup *
6480 make_cleanup_restore_infcall_suspend_state
6481 (struct infcall_suspend_state *inf_state)
6482 {
6483 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6484 }
6485
6486 void
6487 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6488 {
6489 regcache_xfree (inf_state->registers);
6490 xfree (inf_state->siginfo_data);
6491 xfree (inf_state);
6492 }
6493
6494 struct regcache *
6495 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6496 {
6497 return inf_state->registers;
6498 }
6499
6500 /* infcall_control_state contains state regarding gdb's control of the
6501 inferior itself like stepping control. It also contains session state like
6502 the user's currently selected frame. */
6503
6504 struct infcall_control_state
6505 {
6506 struct thread_control_state thread_control;
6507 struct inferior_control_state inferior_control;
6508
6509 /* Other fields: */
6510 enum stop_stack_kind stop_stack_dummy;
6511 int stopped_by_random_signal;
6512 int stop_after_trap;
6513
6514 /* ID if the selected frame when the inferior function call was made. */
6515 struct frame_id selected_frame_id;
6516 };
6517
6518 /* Save all of the information associated with the inferior<==>gdb
6519 connection. */
6520
6521 struct infcall_control_state *
6522 save_infcall_control_state (void)
6523 {
6524 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6525 struct thread_info *tp = inferior_thread ();
6526 struct inferior *inf = current_inferior ();
6527
6528 inf_status->thread_control = tp->control;
6529 inf_status->inferior_control = inf->control;
6530
6531 tp->control.step_resume_breakpoint = NULL;
6532 tp->control.exception_resume_breakpoint = NULL;
6533
6534 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6535 chain. If caller's caller is walking the chain, they'll be happier if we
6536 hand them back the original chain when restore_infcall_control_state is
6537 called. */
6538 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6539
6540 /* Other fields: */
6541 inf_status->stop_stack_dummy = stop_stack_dummy;
6542 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6543 inf_status->stop_after_trap = stop_after_trap;
6544
6545 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6546
6547 return inf_status;
6548 }
6549
6550 static int
6551 restore_selected_frame (void *args)
6552 {
6553 struct frame_id *fid = (struct frame_id *) args;
6554 struct frame_info *frame;
6555
6556 frame = frame_find_by_id (*fid);
6557
6558 /* If inf_status->selected_frame_id is NULL, there was no previously
6559 selected frame. */
6560 if (frame == NULL)
6561 {
6562 warning (_("Unable to restore previously selected frame."));
6563 return 0;
6564 }
6565
6566 select_frame (frame);
6567
6568 return (1);
6569 }
6570
6571 /* Restore inferior session state to INF_STATUS. */
6572
6573 void
6574 restore_infcall_control_state (struct infcall_control_state *inf_status)
6575 {
6576 struct thread_info *tp = inferior_thread ();
6577 struct inferior *inf = current_inferior ();
6578
6579 if (tp->control.step_resume_breakpoint)
6580 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6581
6582 if (tp->control.exception_resume_breakpoint)
6583 tp->control.exception_resume_breakpoint->disposition
6584 = disp_del_at_next_stop;
6585
6586 /* Handle the bpstat_copy of the chain. */
6587 bpstat_clear (&tp->control.stop_bpstat);
6588
6589 tp->control = inf_status->thread_control;
6590 inf->control = inf_status->inferior_control;
6591
6592 /* Other fields: */
6593 stop_stack_dummy = inf_status->stop_stack_dummy;
6594 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6595 stop_after_trap = inf_status->stop_after_trap;
6596
6597 if (target_has_stack)
6598 {
6599 /* The point of catch_errors is that if the stack is clobbered,
6600 walking the stack might encounter a garbage pointer and
6601 error() trying to dereference it. */
6602 if (catch_errors
6603 (restore_selected_frame, &inf_status->selected_frame_id,
6604 "Unable to restore previously selected frame:\n",
6605 RETURN_MASK_ERROR) == 0)
6606 /* Error in restoring the selected frame. Select the innermost
6607 frame. */
6608 select_frame (get_current_frame ());
6609 }
6610
6611 xfree (inf_status);
6612 }
6613
6614 static void
6615 do_restore_infcall_control_state_cleanup (void *sts)
6616 {
6617 restore_infcall_control_state (sts);
6618 }
6619
6620 struct cleanup *
6621 make_cleanup_restore_infcall_control_state
6622 (struct infcall_control_state *inf_status)
6623 {
6624 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6625 }
6626
6627 void
6628 discard_infcall_control_state (struct infcall_control_state *inf_status)
6629 {
6630 if (inf_status->thread_control.step_resume_breakpoint)
6631 inf_status->thread_control.step_resume_breakpoint->disposition
6632 = disp_del_at_next_stop;
6633
6634 if (inf_status->thread_control.exception_resume_breakpoint)
6635 inf_status->thread_control.exception_resume_breakpoint->disposition
6636 = disp_del_at_next_stop;
6637
6638 /* See save_infcall_control_state for info on stop_bpstat. */
6639 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6640
6641 xfree (inf_status);
6642 }
6643 \f
6644 int
6645 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6646 {
6647 struct target_waitstatus last;
6648 ptid_t last_ptid;
6649
6650 get_last_target_status (&last_ptid, &last);
6651
6652 if (last.kind != TARGET_WAITKIND_FORKED)
6653 return 0;
6654
6655 if (!ptid_equal (last_ptid, pid))
6656 return 0;
6657
6658 *child_pid = last.value.related_pid;
6659 return 1;
6660 }
6661
6662 int
6663 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6664 {
6665 struct target_waitstatus last;
6666 ptid_t last_ptid;
6667
6668 get_last_target_status (&last_ptid, &last);
6669
6670 if (last.kind != TARGET_WAITKIND_VFORKED)
6671 return 0;
6672
6673 if (!ptid_equal (last_ptid, pid))
6674 return 0;
6675
6676 *child_pid = last.value.related_pid;
6677 return 1;
6678 }
6679
6680 int
6681 inferior_has_execd (ptid_t pid, char **execd_pathname)
6682 {
6683 struct target_waitstatus last;
6684 ptid_t last_ptid;
6685
6686 get_last_target_status (&last_ptid, &last);
6687
6688 if (last.kind != TARGET_WAITKIND_EXECD)
6689 return 0;
6690
6691 if (!ptid_equal (last_ptid, pid))
6692 return 0;
6693
6694 *execd_pathname = xstrdup (last.value.execd_pathname);
6695 return 1;
6696 }
6697
6698 int
6699 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6700 {
6701 struct target_waitstatus last;
6702 ptid_t last_ptid;
6703
6704 get_last_target_status (&last_ptid, &last);
6705
6706 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6707 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6708 return 0;
6709
6710 if (!ptid_equal (last_ptid, pid))
6711 return 0;
6712
6713 *syscall_number = last.value.syscall_number;
6714 return 1;
6715 }
6716
6717 /* Oft used ptids */
6718 ptid_t null_ptid;
6719 ptid_t minus_one_ptid;
6720
6721 /* Create a ptid given the necessary PID, LWP, and TID components. */
6722
6723 ptid_t
6724 ptid_build (int pid, long lwp, long tid)
6725 {
6726 ptid_t ptid;
6727
6728 ptid.pid = pid;
6729 ptid.lwp = lwp;
6730 ptid.tid = tid;
6731 return ptid;
6732 }
6733
6734 /* Create a ptid from just a pid. */
6735
6736 ptid_t
6737 pid_to_ptid (int pid)
6738 {
6739 return ptid_build (pid, 0, 0);
6740 }
6741
6742 /* Fetch the pid (process id) component from a ptid. */
6743
6744 int
6745 ptid_get_pid (ptid_t ptid)
6746 {
6747 return ptid.pid;
6748 }
6749
6750 /* Fetch the lwp (lightweight process) component from a ptid. */
6751
6752 long
6753 ptid_get_lwp (ptid_t ptid)
6754 {
6755 return ptid.lwp;
6756 }
6757
6758 /* Fetch the tid (thread id) component from a ptid. */
6759
6760 long
6761 ptid_get_tid (ptid_t ptid)
6762 {
6763 return ptid.tid;
6764 }
6765
6766 /* ptid_equal() is used to test equality of two ptids. */
6767
6768 int
6769 ptid_equal (ptid_t ptid1, ptid_t ptid2)
6770 {
6771 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
6772 && ptid1.tid == ptid2.tid);
6773 }
6774
6775 /* Returns true if PTID represents a process. */
6776
6777 int
6778 ptid_is_pid (ptid_t ptid)
6779 {
6780 if (ptid_equal (minus_one_ptid, ptid))
6781 return 0;
6782 if (ptid_equal (null_ptid, ptid))
6783 return 0;
6784
6785 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6786 }
6787
6788 int
6789 ptid_match (ptid_t ptid, ptid_t filter)
6790 {
6791 if (ptid_equal (filter, minus_one_ptid))
6792 return 1;
6793 if (ptid_is_pid (filter)
6794 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6795 return 1;
6796 else if (ptid_equal (ptid, filter))
6797 return 1;
6798
6799 return 0;
6800 }
6801
6802 /* restore_inferior_ptid() will be used by the cleanup machinery
6803 to restore the inferior_ptid value saved in a call to
6804 save_inferior_ptid(). */
6805
6806 static void
6807 restore_inferior_ptid (void *arg)
6808 {
6809 ptid_t *saved_ptid_ptr = arg;
6810
6811 inferior_ptid = *saved_ptid_ptr;
6812 xfree (arg);
6813 }
6814
6815 /* Save the value of inferior_ptid so that it may be restored by a
6816 later call to do_cleanups(). Returns the struct cleanup pointer
6817 needed for later doing the cleanup. */
6818
6819 struct cleanup *
6820 save_inferior_ptid (void)
6821 {
6822 ptid_t *saved_ptid_ptr;
6823
6824 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6825 *saved_ptid_ptr = inferior_ptid;
6826 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6827 }
6828 \f
6829
6830 /* User interface for reverse debugging:
6831 Set exec-direction / show exec-direction commands
6832 (returns error unless target implements to_set_exec_direction method). */
6833
6834 enum exec_direction_kind execution_direction = EXEC_FORWARD;
6835 static const char exec_forward[] = "forward";
6836 static const char exec_reverse[] = "reverse";
6837 static const char *exec_direction = exec_forward;
6838 static const char *exec_direction_names[] = {
6839 exec_forward,
6840 exec_reverse,
6841 NULL
6842 };
6843
6844 static void
6845 set_exec_direction_func (char *args, int from_tty,
6846 struct cmd_list_element *cmd)
6847 {
6848 if (target_can_execute_reverse)
6849 {
6850 if (!strcmp (exec_direction, exec_forward))
6851 execution_direction = EXEC_FORWARD;
6852 else if (!strcmp (exec_direction, exec_reverse))
6853 execution_direction = EXEC_REVERSE;
6854 }
6855 else
6856 {
6857 exec_direction = exec_forward;
6858 error (_("Target does not support this operation."));
6859 }
6860 }
6861
6862 static void
6863 show_exec_direction_func (struct ui_file *out, int from_tty,
6864 struct cmd_list_element *cmd, const char *value)
6865 {
6866 switch (execution_direction) {
6867 case EXEC_FORWARD:
6868 fprintf_filtered (out, _("Forward.\n"));
6869 break;
6870 case EXEC_REVERSE:
6871 fprintf_filtered (out, _("Reverse.\n"));
6872 break;
6873 case EXEC_ERROR:
6874 default:
6875 fprintf_filtered (out, _("Forward (target `%s' does not "
6876 "support exec-direction).\n"),
6877 target_shortname);
6878 break;
6879 }
6880 }
6881
6882 /* User interface for non-stop mode. */
6883
6884 int non_stop = 0;
6885
6886 static void
6887 set_non_stop (char *args, int from_tty,
6888 struct cmd_list_element *c)
6889 {
6890 if (target_has_execution)
6891 {
6892 non_stop_1 = non_stop;
6893 error (_("Cannot change this setting while the inferior is running."));
6894 }
6895
6896 non_stop = non_stop_1;
6897 }
6898
6899 static void
6900 show_non_stop (struct ui_file *file, int from_tty,
6901 struct cmd_list_element *c, const char *value)
6902 {
6903 fprintf_filtered (file,
6904 _("Controlling the inferior in non-stop mode is %s.\n"),
6905 value);
6906 }
6907
6908 static void
6909 show_schedule_multiple (struct ui_file *file, int from_tty,
6910 struct cmd_list_element *c, const char *value)
6911 {
6912 fprintf_filtered (file, _("Resuming the execution of threads "
6913 "of all processes is %s.\n"), value);
6914 }
6915
6916 void
6917 _initialize_infrun (void)
6918 {
6919 int i;
6920 int numsigs;
6921
6922 add_info ("signals", signals_info, _("\
6923 What debugger does when program gets various signals.\n\
6924 Specify a signal as argument to print info on that signal only."));
6925 add_info_alias ("handle", "signals", 0);
6926
6927 add_com ("handle", class_run, handle_command, _("\
6928 Specify how to handle a signal.\n\
6929 Args are signals and actions to apply to those signals.\n\
6930 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6931 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6932 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6933 The special arg \"all\" is recognized to mean all signals except those\n\
6934 used by the debugger, typically SIGTRAP and SIGINT.\n\
6935 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6936 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6937 Stop means reenter debugger if this signal happens (implies print).\n\
6938 Print means print a message if this signal happens.\n\
6939 Pass means let program see this signal; otherwise program doesn't know.\n\
6940 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6941 Pass and Stop may be combined."));
6942 if (xdb_commands)
6943 {
6944 add_com ("lz", class_info, signals_info, _("\
6945 What debugger does when program gets various signals.\n\
6946 Specify a signal as argument to print info on that signal only."));
6947 add_com ("z", class_run, xdb_handle_command, _("\
6948 Specify how to handle a signal.\n\
6949 Args are signals and actions to apply to those signals.\n\
6950 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6951 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6952 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6953 The special arg \"all\" is recognized to mean all signals except those\n\
6954 used by the debugger, typically SIGTRAP and SIGINT.\n\
6955 Recognized actions include \"s\" (toggles between stop and nostop),\n\
6956 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6957 nopass), \"Q\" (noprint)\n\
6958 Stop means reenter debugger if this signal happens (implies print).\n\
6959 Print means print a message if this signal happens.\n\
6960 Pass means let program see this signal; otherwise program doesn't know.\n\
6961 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6962 Pass and Stop may be combined."));
6963 }
6964
6965 if (!dbx_commands)
6966 stop_command = add_cmd ("stop", class_obscure,
6967 not_just_help_class_command, _("\
6968 There is no `stop' command, but you can set a hook on `stop'.\n\
6969 This allows you to set a list of commands to be run each time execution\n\
6970 of the program stops."), &cmdlist);
6971
6972 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6973 Set inferior debugging."), _("\
6974 Show inferior debugging."), _("\
6975 When non-zero, inferior specific debugging is enabled."),
6976 NULL,
6977 show_debug_infrun,
6978 &setdebuglist, &showdebuglist);
6979
6980 add_setshow_boolean_cmd ("displaced", class_maintenance,
6981 &debug_displaced, _("\
6982 Set displaced stepping debugging."), _("\
6983 Show displaced stepping debugging."), _("\
6984 When non-zero, displaced stepping specific debugging is enabled."),
6985 NULL,
6986 show_debug_displaced,
6987 &setdebuglist, &showdebuglist);
6988
6989 add_setshow_boolean_cmd ("non-stop", no_class,
6990 &non_stop_1, _("\
6991 Set whether gdb controls the inferior in non-stop mode."), _("\
6992 Show whether gdb controls the inferior in non-stop mode."), _("\
6993 When debugging a multi-threaded program and this setting is\n\
6994 off (the default, also called all-stop mode), when one thread stops\n\
6995 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6996 all other threads in the program while you interact with the thread of\n\
6997 interest. When you continue or step a thread, you can allow the other\n\
6998 threads to run, or have them remain stopped, but while you inspect any\n\
6999 thread's state, all threads stop.\n\
7000 \n\
7001 In non-stop mode, when one thread stops, other threads can continue\n\
7002 to run freely. You'll be able to step each thread independently,\n\
7003 leave it stopped or free to run as needed."),
7004 set_non_stop,
7005 show_non_stop,
7006 &setlist,
7007 &showlist);
7008
7009 numsigs = (int) TARGET_SIGNAL_LAST;
7010 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7011 signal_print = (unsigned char *)
7012 xmalloc (sizeof (signal_print[0]) * numsigs);
7013 signal_program = (unsigned char *)
7014 xmalloc (sizeof (signal_program[0]) * numsigs);
7015 signal_pass = (unsigned char *)
7016 xmalloc (sizeof (signal_program[0]) * numsigs);
7017 for (i = 0; i < numsigs; i++)
7018 {
7019 signal_stop[i] = 1;
7020 signal_print[i] = 1;
7021 signal_program[i] = 1;
7022 }
7023
7024 /* Signals caused by debugger's own actions
7025 should not be given to the program afterwards. */
7026 signal_program[TARGET_SIGNAL_TRAP] = 0;
7027 signal_program[TARGET_SIGNAL_INT] = 0;
7028
7029 /* Signals that are not errors should not normally enter the debugger. */
7030 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7031 signal_print[TARGET_SIGNAL_ALRM] = 0;
7032 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7033 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7034 signal_stop[TARGET_SIGNAL_PROF] = 0;
7035 signal_print[TARGET_SIGNAL_PROF] = 0;
7036 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7037 signal_print[TARGET_SIGNAL_CHLD] = 0;
7038 signal_stop[TARGET_SIGNAL_IO] = 0;
7039 signal_print[TARGET_SIGNAL_IO] = 0;
7040 signal_stop[TARGET_SIGNAL_POLL] = 0;
7041 signal_print[TARGET_SIGNAL_POLL] = 0;
7042 signal_stop[TARGET_SIGNAL_URG] = 0;
7043 signal_print[TARGET_SIGNAL_URG] = 0;
7044 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7045 signal_print[TARGET_SIGNAL_WINCH] = 0;
7046 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7047 signal_print[TARGET_SIGNAL_PRIO] = 0;
7048
7049 /* These signals are used internally by user-level thread
7050 implementations. (See signal(5) on Solaris.) Like the above
7051 signals, a healthy program receives and handles them as part of
7052 its normal operation. */
7053 signal_stop[TARGET_SIGNAL_LWP] = 0;
7054 signal_print[TARGET_SIGNAL_LWP] = 0;
7055 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7056 signal_print[TARGET_SIGNAL_WAITING] = 0;
7057 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7058 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7059
7060 /* Update cached state. */
7061 signal_cache_update (-1);
7062
7063 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7064 &stop_on_solib_events, _("\
7065 Set stopping for shared library events."), _("\
7066 Show stopping for shared library events."), _("\
7067 If nonzero, gdb will give control to the user when the dynamic linker\n\
7068 notifies gdb of shared library events. The most common event of interest\n\
7069 to the user would be loading/unloading of a new library."),
7070 NULL,
7071 show_stop_on_solib_events,
7072 &setlist, &showlist);
7073
7074 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7075 follow_fork_mode_kind_names,
7076 &follow_fork_mode_string, _("\
7077 Set debugger response to a program call of fork or vfork."), _("\
7078 Show debugger response to a program call of fork or vfork."), _("\
7079 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7080 parent - the original process is debugged after a fork\n\
7081 child - the new process is debugged after a fork\n\
7082 The unfollowed process will continue to run.\n\
7083 By default, the debugger will follow the parent process."),
7084 NULL,
7085 show_follow_fork_mode_string,
7086 &setlist, &showlist);
7087
7088 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7089 follow_exec_mode_names,
7090 &follow_exec_mode_string, _("\
7091 Set debugger response to a program call of exec."), _("\
7092 Show debugger response to a program call of exec."), _("\
7093 An exec call replaces the program image of a process.\n\
7094 \n\
7095 follow-exec-mode can be:\n\
7096 \n\
7097 new - the debugger creates a new inferior and rebinds the process\n\
7098 to this new inferior. The program the process was running before\n\
7099 the exec call can be restarted afterwards by restarting the original\n\
7100 inferior.\n\
7101 \n\
7102 same - the debugger keeps the process bound to the same inferior.\n\
7103 The new executable image replaces the previous executable loaded in\n\
7104 the inferior. Restarting the inferior after the exec call restarts\n\
7105 the executable the process was running after the exec call.\n\
7106 \n\
7107 By default, the debugger will use the same inferior."),
7108 NULL,
7109 show_follow_exec_mode_string,
7110 &setlist, &showlist);
7111
7112 add_setshow_enum_cmd ("scheduler-locking", class_run,
7113 scheduler_enums, &scheduler_mode, _("\
7114 Set mode for locking scheduler during execution."), _("\
7115 Show mode for locking scheduler during execution."), _("\
7116 off == no locking (threads may preempt at any time)\n\
7117 on == full locking (no thread except the current thread may run)\n\
7118 step == scheduler locked during every single-step operation.\n\
7119 In this mode, no other thread may run during a step command.\n\
7120 Other threads may run while stepping over a function call ('next')."),
7121 set_schedlock_func, /* traps on target vector */
7122 show_scheduler_mode,
7123 &setlist, &showlist);
7124
7125 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7126 Set mode for resuming threads of all processes."), _("\
7127 Show mode for resuming threads of all processes."), _("\
7128 When on, execution commands (such as 'continue' or 'next') resume all\n\
7129 threads of all processes. When off (which is the default), execution\n\
7130 commands only resume the threads of the current process. The set of\n\
7131 threads that are resumed is further refined by the scheduler-locking\n\
7132 mode (see help set scheduler-locking)."),
7133 NULL,
7134 show_schedule_multiple,
7135 &setlist, &showlist);
7136
7137 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7138 Set mode of the step operation."), _("\
7139 Show mode of the step operation."), _("\
7140 When set, doing a step over a function without debug line information\n\
7141 will stop at the first instruction of that function. Otherwise, the\n\
7142 function is skipped and the step command stops at a different source line."),
7143 NULL,
7144 show_step_stop_if_no_debug,
7145 &setlist, &showlist);
7146
7147 add_setshow_enum_cmd ("displaced-stepping", class_run,
7148 can_use_displaced_stepping_enum,
7149 &can_use_displaced_stepping, _("\
7150 Set debugger's willingness to use displaced stepping."), _("\
7151 Show debugger's willingness to use displaced stepping."), _("\
7152 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7153 supported by the target architecture. If off, gdb will not use displaced\n\
7154 stepping to step over breakpoints, even if such is supported by the target\n\
7155 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7156 if the target architecture supports it and non-stop mode is active, but will not\n\
7157 use it in all-stop mode (see help set non-stop)."),
7158 NULL,
7159 show_can_use_displaced_stepping,
7160 &setlist, &showlist);
7161
7162 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7163 &exec_direction, _("Set direction of execution.\n\
7164 Options are 'forward' or 'reverse'."),
7165 _("Show direction of execution (forward/reverse)."),
7166 _("Tells gdb whether to execute forward or backward."),
7167 set_exec_direction_func, show_exec_direction_func,
7168 &setlist, &showlist);
7169
7170 /* Set/show detach-on-fork: user-settable mode. */
7171
7172 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7173 Set whether gdb will detach the child of a fork."), _("\
7174 Show whether gdb will detach the child of a fork."), _("\
7175 Tells gdb whether to detach the child of a fork."),
7176 NULL, NULL, &setlist, &showlist);
7177
7178 /* ptid initializations */
7179 null_ptid = ptid_build (0, 0, 0);
7180 minus_one_ptid = ptid_build (-1, 0, 0);
7181 inferior_ptid = null_ptid;
7182 target_last_wait_ptid = minus_one_ptid;
7183
7184 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7185 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7186 observer_attach_thread_exit (infrun_thread_thread_exit);
7187 observer_attach_inferior_exit (infrun_inferior_exit);
7188
7189 /* Explicitly create without lookup, since that tries to create a
7190 value with a void typed value, and when we get here, gdbarch
7191 isn't initialized yet. At this point, we're quite sure there
7192 isn't another convenience variable of the same name. */
7193 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7194
7195 add_setshow_boolean_cmd ("observer", no_class,
7196 &observer_mode_1, _("\
7197 Set whether gdb controls the inferior in observer mode."), _("\
7198 Show whether gdb controls the inferior in observer mode."), _("\
7199 In observer mode, GDB can get data from the inferior, but not\n\
7200 affect its execution. Registers and memory may not be changed,\n\
7201 breakpoints may not be set, and the program cannot be interrupted\n\
7202 or signalled."),
7203 set_observer_mode,
7204 show_observer_mode,
7205 &setlist,
7206 &showlist);
7207 }
This page took 0.336643 seconds and 5 git commands to generate.