Push thread->control.command_interp to the struct thread_fsm
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
158
159 static ptid_t previous_inferior_ptid;
160
161 /* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166 static int detach_fork = 1;
167
168 int debug_displaced = 0;
169 static void
170 show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174 }
175
176 unsigned int debug_infrun = 0;
177 static void
178 show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182 }
183
184
185 /* Support for disabling address space randomization. */
186
187 int disable_randomization = 1;
188
189 static void
190 show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202 }
203
204 static void
205 set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207 {
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212 }
213
214 /* User interface for non-stop mode. */
215
216 int non_stop = 0;
217 static int non_stop_1 = 0;
218
219 static void
220 set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230 }
231
232 static void
233 show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239 }
240
241 /* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
245 int observer_mode = 0;
246 static int observer_mode_1 = 0;
247
248 static void
249 set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251 {
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282 }
283
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290
291 /* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297 void
298 update_observer_mode (void)
299 {
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314 }
315
316 /* Tables of how to react to signals; the user sets them. */
317
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321
322 /* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326 static unsigned char *signal_catch;
327
328 /* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331 static unsigned char *signal_pass;
332
333 #define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352 void
353 update_signals_program_target (void)
354 {
355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357
358 /* Value to pass to target_resume() to cause all threads to resume. */
359
360 #define RESUME_ALL minus_one_ptid
361
362 /* Command list pointer for the "stop" placeholder. */
363
364 static struct cmd_list_element *stop_command;
365
366 /* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
368 int stop_on_solib_events;
369
370 /* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373 static void
374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375 {
376 update_solib_breakpoints ();
377 }
378
379 static void
380 show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382 {
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385 }
386
387 /* Nonzero after stop if current stack frame should be printed. */
388
389 static int stop_print_frame;
390
391 /* This is a cached copy of the pid/waitstatus of the last event
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396
397 static void context_switch (ptid_t ptid);
398
399 void init_thread_stepping_state (struct thread_info *tss);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428 static int
429 follow_fork_inferior (int follow_child, int detach_fork)
430 {
431 int has_vforked;
432 ptid_t parent_ptid, child_ptid;
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
441 && current_ui->prompt_state == PROMPT_BLOCKED
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped. Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
480 target_terminal_ours_for_output ();
481 fprintf_filtered (gdb_stdlog,
482 _("Detaching after %s from child %s.\n"),
483 has_vforked ? "vfork" : "fork",
484 target_pid_to_str (process_ptid));
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (ptid_get_pid (child_ptid));
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
504 inferior_ptid = child_ptid;
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662 }
663
664 /* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
668 static int
669 follow_fork (void)
670 {
671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
680 struct breakpoint *exception_resume_breakpoint = NULL;
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
684 struct thread_fsm *thread_fsm = NULL;
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
736 thread_fsm = tp->thread_fsm;
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
747 delete_exception_resume_breakpoint (tp);
748 tp->thread_fsm = NULL;
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
769 tp = find_thread_ptid (parent);
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
777 /* If we followed the child, switch to it... */
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
794 tp->thread_fsm = thread_fsm;
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
804 warning (_("Not resuming: switched threads "
805 "before following fork child."));
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
825
826 return should_resume;
827 }
828
829 static void
830 follow_inferior_reset_breakpoints (void)
831 {
832 struct thread_info *tp = inferior_thread ();
833
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
847 if (tp->control.step_resume_breakpoint)
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
852
853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
854 if (tp->control.exception_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
867 }
868
869 /* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872 static int
873 proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875 {
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
890 clear_proceed_status (0);
891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
892 }
893
894 return 0;
895 }
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
920 /* follow-fork child, detach-on-fork on. */
921
922 inf->vfork_parent->pending_detach = 0;
923
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
958 target_terminal_ours_for_output ();
959
960 if (exec)
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
967 else
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1031 inferior. */
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059 }
1060
1061 /* Enum strings for "set|show follow-exec-mode". */
1062
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070 };
1071
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078 }
1079
1080 /* EXECD_PATHNAME is assumed to be non-NULL. */
1081
1082 static void
1083 follow_exec (ptid_t ptid, char *execd_pathname)
1084 {
1085 struct thread_info *th, *tmp;
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid_get_pid (ptid);
1088 ptid_t process_ptid;
1089
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1109 we now have a new a.out, those shadow contents aren't valid. */
1110
1111 mark_breakpoints_out ();
1112
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
1132 ALL_THREADS_SAFE (th, tmp)
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
1141 th->control.step_resume_breakpoint = NULL;
1142 th->control.exception_resume_breakpoint = NULL;
1143 th->control.single_step_breakpoints = NULL;
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
1146
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
1150 th->stop_requested = 0;
1151
1152 update_breakpoints_after_exec ();
1153
1154 /* What is this a.out's name? */
1155 process_ptid = pid_to_ptid (pid);
1156 printf_unfiltered (_("%s is executing new program: %s\n"),
1157 target_pid_to_str (process_ptid),
1158 execd_pathname);
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1161 inferior has essentially been killed & reborn. */
1162
1163 gdb_flush (gdb_stdout);
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 if (*gdb_sysroot != '\0')
1168 {
1169 char *name = exec_file_find (execd_pathname, NULL);
1170
1171 execd_pathname = (char *) alloca (strlen (name) + 1);
1172 strcpy (execd_pathname, name);
1173 xfree (name);
1174 }
1175
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, execd_pathname);
1197
1198 set_current_inferior (inf);
1199 set_current_program_space (inf->pspace);
1200 add_thread (ptid);
1201 }
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1215 /* That a.out is now the one to use. */
1216 exec_file_attach (execd_pathname, 0);
1217
1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219 (Position Independent Executable) main symbol file will get applied by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1221 the breakpoints with the zero displacement. */
1222
1223 symbol_file_add (execd_pathname,
1224 (inf->symfile_flags
1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1226 NULL, 0);
1227
1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229 set_initial_language ();
1230
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
1239 solib_create_inferior_hook (0);
1240
1241 jit_inferior_created_hook ();
1242
1243 breakpoint_re_set ();
1244
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1247 to symbol_file_command...). */
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1253 matically get reset there in the new process.). */
1254 }
1255
1256 /* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263 struct thread_info *step_over_queue_head;
1264
1265 /* Bit flags indicating what the thread needs to step over. */
1266
1267 enum step_over_what_flag
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
1277 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1278
1279 /* Info about an instruction that is being stepped over. */
1280
1281 struct step_over_info
1282 {
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
1287 struct address_space *aspace;
1288 CORE_ADDR address;
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
1293
1294 /* The thread's global number. */
1295 int thread;
1296 };
1297
1298 /* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322 static struct step_over_info step_over_info;
1323
1324 /* Record the address of the breakpoint/instruction we're currently
1325 stepping over. */
1326
1327 static void
1328 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
1349 step_over_info.nonsteppable_watchpoint_p = 0;
1350 step_over_info.thread = -1;
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358 {
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363 }
1364
1365 /* See infrun.h. */
1366
1367 int
1368 thread_is_stepping_over_breakpoint (int thread)
1369 {
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372 }
1373
1374 /* See infrun.h. */
1375
1376 int
1377 stepping_past_nonsteppable_watchpoint (void)
1378 {
1379 return step_over_info.nonsteppable_watchpoint_p;
1380 }
1381
1382 /* Returns true if step-over info is valid. */
1383
1384 static int
1385 step_over_info_valid_p (void)
1386 {
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
1389 }
1390
1391 \f
1392 /* Displaced stepping. */
1393
1394 /* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
1480 /* Per-inferior displaced stepping state. */
1481 struct displaced_step_inferior_state
1482 {
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511 };
1512
1513 /* The list of states of processes involved in displaced stepping
1514 presently. */
1515 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517 /* Get the displaced stepping state of process PID. */
1518
1519 static struct displaced_step_inferior_state *
1520 get_displaced_stepping_state (int pid)
1521 {
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531 }
1532
1533 /* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536 static int
1537 displaced_step_in_progress_any_inferior (void)
1538 {
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548 }
1549
1550 /* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553 static int
1554 displaced_step_in_progress_thread (ptid_t ptid)
1555 {
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563 }
1564
1565 /* Return true if process PID has a thread doing a displaced step. */
1566
1567 static int
1568 displaced_step_in_progress (int pid)
1569 {
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577 }
1578
1579 /* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583 static struct displaced_step_inferior_state *
1584 add_displaced_stepping_state (int pid)
1585 {
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
1593
1594 state = XCNEW (struct displaced_step_inferior_state);
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
1598
1599 return state;
1600 }
1601
1602 /* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606 struct displaced_step_closure*
1607 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608 {
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618 }
1619
1620 /* Remove the displaced stepping state of process PID. */
1621
1622 static void
1623 remove_displaced_stepping_state (int pid)
1624 {
1625 struct displaced_step_inferior_state *it, **prev_next_p;
1626
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643 }
1644
1645 static void
1646 infrun_inferior_exit (struct inferior *inf)
1647 {
1648 remove_displaced_stepping_state (inf->pid);
1649 }
1650
1651 /* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
1659 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1660
1661 static void
1662 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665 {
1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
1670 value, target_is_non_stop_p () ? "on" : "off");
1671 else
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
1675 }
1676
1677 /* Return non-zero if displaced stepping can/should be used to step
1678 over breakpoints of thread TP. */
1679
1680 static int
1681 use_displaced_stepping (struct thread_info *tp)
1682 {
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
1696 }
1697
1698 /* Clean out any stray displaced stepping state. */
1699 static void
1700 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1701 {
1702 /* Indicate that there is no cleanup pending. */
1703 displaced->step_ptid = null_ptid;
1704
1705 if (displaced->step_closure)
1706 {
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
1710 }
1711 }
1712
1713 static void
1714 displaced_step_clear_cleanup (void *arg)
1715 {
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
1718
1719 displaced_step_clear (state);
1720 }
1721
1722 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723 void
1724 displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727 {
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733 }
1734
1735 /* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
1751 static int
1752 displaced_step_prepare_throw (ptid_t ptid)
1753 {
1754 struct cleanup *old_cleanups, *ignore_cleanups;
1755 struct thread_info *tp = find_thread_ptid (ptid);
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1758 struct address_space *aspace = get_regcache_aspace (regcache);
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
1762 struct displaced_step_inferior_state *displaced;
1763 int status;
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
1780
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "displaced: deferring step of %s\n",
1791 target_pid_to_str (ptid));
1792
1793 thread_step_over_chain_enqueue (tp);
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
1804 displaced_step_clear (displaced);
1805
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
1809 original = regcache_read_pc (regcache);
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
1836 /* Save the original contents of the copy area. */
1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1838 ignore_cleanups = make_cleanup (free_current_contents,
1839 &displaced->step_saved_copy);
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
1846 if (debug_displaced)
1847 {
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1856 original, copy, regcache);
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
1865
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
1873
1874 make_cleanup (displaced_step_clear_cleanup, displaced);
1875
1876 /* Resume execution at the copy. */
1877 regcache_write_pc (regcache, copy);
1878
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
1882
1883 if (debug_displaced)
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
1886
1887 return 1;
1888 }
1889
1890 /* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893 static int
1894 displaced_step_prepare (ptid_t ptid)
1895 {
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
1921 warning (_("disabling displaced stepping: %s"),
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933 }
1934
1935 static void
1936 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
1938 {
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1940
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944 }
1945
1946 /* Restore the contents of the copy area for thread PTID. */
1947
1948 static void
1949 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951 {
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961 }
1962
1963 /* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969 static int
1970 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1971 {
1972 struct cleanup *old_cleanups;
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1975 int ret;
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
1979 return 0;
1980
1981 /* Was this event for the pid we displaced? */
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
1984 return 0;
1985
1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1987
1988 displaced_step_restore (displaced, displaced->step_ptid);
1989
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
1995 /* Did the instruction complete successfully? */
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
2000 {
2001 /* Fix up the resulting state. */
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
2007 ret = 1;
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
2015
2016 pc = displaced->step_original + (pc - displaced->step_copy);
2017 regcache_write_pc (regcache, pc);
2018 ret = -1;
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
2023 displaced->step_ptid = null_ptid;
2024
2025 return ret;
2026 }
2027
2028 /* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030 struct execution_control_state
2031 {
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049 };
2050
2051 /* Clear ECS and set it to point at TP. */
2052
2053 static void
2054 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055 {
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059 }
2060
2061 static void keep_going_pass_signal (struct execution_control_state *ecs);
2062 static void prepare_to_wait (struct execution_control_state *ecs);
2063 static int keep_going_stepped_thread (struct thread_info *tp);
2064 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2065
2066 /* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069 static int
2070 start_step_over (void)
2071 {
2072 struct thread_info *tp, *next;
2073
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
2080 {
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
2083 step_over_what step_what;
2084 int must_be_in_line;
2085
2086 next = thread_step_over_chain_next (tp);
2087
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2091 continue;
2092
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
2096 && !use_displaced_stepping (tp)));
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
2116 {
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
2119 "trap_expected=%d, resumed=%d, executing=%d\n",
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
2122 tp->resumed,
2123 tp->executing);
2124 }
2125
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
2137 if (!target_is_non_stop_p () && !step_what)
2138 continue;
2139
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
2143
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
2146
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
2156 if (!target_is_non_stop_p ())
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
2167 }
2168
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
2173 }
2174
2175 return 0;
2176 }
2177
2178 /* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180 static void
2181 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182 {
2183 struct displaced_step_inferior_state *displaced;
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
2194 }
2195 }
2196
2197 \f
2198 /* Resuming. */
2199
2200 /* Things to clean up if we QUIT out of resume (). */
2201 static void
2202 resume_cleanups (void *ignore)
2203 {
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
2206
2207 normal_stop ();
2208 }
2209
2210 static const char schedlock_off[] = "off";
2211 static const char schedlock_on[] = "on";
2212 static const char schedlock_step[] = "step";
2213 static const char schedlock_replay[] = "replay";
2214 static const char *const scheduler_enums[] = {
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
2218 schedlock_replay,
2219 NULL
2220 };
2221 static const char *scheduler_mode = schedlock_replay;
2222 static void
2223 show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225 {
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
2229 value);
2230 }
2231
2232 static void
2233 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2234 {
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
2240 }
2241
2242 /* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245 int sched_multi = 0;
2246
2247 /* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253 static int
2254 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255 {
2256 int hw_step = 1;
2257
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch)
2260 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2261 {
2262 hw_step = 0;
2263 }
2264 return hw_step;
2265 }
2266
2267 /* See infrun.h. */
2268
2269 ptid_t
2270 user_visible_resume_ptid (int step)
2271 {
2272 ptid_t resume_ptid;
2273
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
2281 || (scheduler_mode == schedlock_step && step))
2282 {
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
2285 resume_ptid = inferior_ptid;
2286 }
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
2305
2306 return resume_ptid;
2307 }
2308
2309 /* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315 static ptid_t
2316 internal_resume_ptid (int user_step)
2317 {
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326 }
2327
2328 /* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331 static void
2332 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333 {
2334 struct thread_info *tp = inferior_thread ();
2335
2336 /* Install inferior's terminal modes. */
2337 target_terminal_inferior ();
2338
2339 /* Avoid confusing the next resume, if the next stop/resume
2340 happens to apply to another thread. */
2341 tp->suspend.stop_signal = GDB_SIGNAL_0;
2342
2343 /* Advise target which signals may be handled silently.
2344
2345 If we have removed breakpoints because we are stepping over one
2346 in-line (in any thread), we need to receive all signals to avoid
2347 accidentally skipping a breakpoint during execution of a signal
2348 handler.
2349
2350 Likewise if we're displaced stepping, otherwise a trap for a
2351 breakpoint in a signal handler might be confused with the
2352 displaced step finishing. We don't make the displaced_step_fixup
2353 step distinguish the cases instead, because:
2354
2355 - a backtrace while stopped in the signal handler would show the
2356 scratch pad as frame older than the signal handler, instead of
2357 the real mainline code.
2358
2359 - when the thread is later resumed, the signal handler would
2360 return to the scratch pad area, which would no longer be
2361 valid. */
2362 if (step_over_info_valid_p ()
2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2364 target_pass_signals (0, NULL);
2365 else
2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367
2368 target_resume (resume_ptid, step, sig);
2369 }
2370
2371 /* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
2377 SIG is the signal to give the inferior (zero for none). */
2378 void
2379 resume (enum gdb_signal sig)
2380 {
2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2384 struct thread_info *tp = inferior_thread ();
2385 CORE_ADDR pc = regcache_read_pc (regcache);
2386 struct address_space *aspace = get_regcache_aspace (regcache);
2387 ptid_t resume_ptid;
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
2396 int step;
2397
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
2400 QUIT;
2401
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
2424 warning (_("Couldn't deliver signal %s to %s."),
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
2457 step = 0;
2458 }
2459
2460 if (debug_infrun)
2461 fprintf_unfiltered (gdb_stdlog,
2462 "infrun: resume (step=%d, signal=%s), "
2463 "trap_expected=%d, current thread [%s] at %s\n",
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
2468
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2474 {
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
2534 (overstep). */
2535 gdb_assert (!step_over_info_valid_p ());
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
2539 resume_ptid = internal_resume_ptid (user_step);
2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2541 discard_cleanups (old_cleanups);
2542 tp->resumed = 1;
2543 return;
2544 }
2545 }
2546 }
2547
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
2566 && !step_over_info_valid_p ()
2567 && sig == GDB_SIGNAL_0
2568 && !current_inferior ()->waiting_for_vfork_done)
2569 {
2570 int prepared = displaced_step_prepare (inferior_ptid);
2571
2572 if (prepared == 0)
2573 {
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
2590 regcache_read_pc (regcache), 0, tp->global_num);
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
2599
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2603
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
2608 }
2609
2610 /* Do we need to do it the hard way, w/temp breakpoints? */
2611 else if (step)
2612 step = maybe_software_singlestep (gdbarch, pc);
2613
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
2638 if (thread_has_single_step_breakpoints_set (tp)
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
2653 delete_single_step_breakpoints (tp);
2654
2655 clear_step_over_info ();
2656 tp->control.trap_expected = 0;
2657
2658 insert_breakpoints ();
2659 }
2660
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2665
2666 /* Decide the set of threads to ask the target to resume. */
2667 if (tp->control.trap_expected)
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
2678 resume_ptid = inferior_ptid;
2679 }
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
2682
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
2685 {
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
2718
2719 tp->stepped_breakpoint = 1;
2720
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
2725 step = 0;
2726 }
2727
2728 if (debug_displaced
2729 && tp->control.trap_expected
2730 && use_displaced_stepping (tp)
2731 && !step_over_info_valid_p ())
2732 {
2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
2743
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
2753
2754 do_target_resume (resume_ptid, step, sig);
2755 tp->resumed = 1;
2756 discard_cleanups (old_cleanups);
2757 }
2758 \f
2759 /* Proceeding. */
2760
2761 /* See infrun.h. */
2762
2763 /* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770 static ULONGEST current_stop_id;
2771
2772 /* See infrun.h. */
2773
2774 ULONGEST
2775 get_stop_id (void)
2776 {
2777 return current_stop_id;
2778 }
2779
2780 /* Called when we report a user visible stop. */
2781
2782 static void
2783 new_stop_id (void)
2784 {
2785 current_stop_id++;
2786 }
2787
2788 /* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
2791 static void
2792 clear_proceed_status_thread (struct thread_info *tp)
2793 {
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
2798
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
2841 tp->control.may_range_step = 0;
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2845 tp->control.step_start_function = NULL;
2846 tp->stop_requested = 0;
2847
2848 tp->control.stop_step = 0;
2849
2850 tp->control.proceed_to_finish = 0;
2851
2852 tp->control.stepping_command = 0;
2853
2854 /* Discard any remaining commands or status from previous stop. */
2855 bpstat_clear (&tp->control.stop_bpstat);
2856 }
2857
2858 void
2859 clear_proceed_status (int step)
2860 {
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
2873 if (!non_stop)
2874 {
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
2888 }
2889
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
2900
2901 inferior = current_inferior ();
2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
2903 }
2904
2905 observer_notify_about_to_proceed ();
2906 }
2907
2908 /* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
2911
2912 static int
2913 thread_still_needs_step_over_bp (struct thread_info *tp)
2914 {
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928 }
2929
2930 /* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
2934 static step_over_what
2935 thread_still_needs_step_over (struct thread_info *tp)
2936 {
2937 step_over_what what = 0;
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947 }
2948
2949 /* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952 static int
2953 schedlock_applies (struct thread_info *tp)
2954 {
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
2961 }
2962
2963 /* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
2967 or -1 for act according to how it stopped.
2968 STEP is nonzero if should trap after one instruction.
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975 void
2976 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2977 {
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
2980 struct thread_info *tp;
2981 CORE_ADDR pc;
2982 struct address_space *aspace;
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
2987 int started;
2988
2989 /* If we're stopped at a fork/vfork, follow the branch set by the
2990 "set follow-fork-mode" command; otherwise, we'll just proceed
2991 resuming the current thread. */
2992 if (!follow_fork ())
2993 {
2994 /* The target for some reason decided not to resume. */
2995 normal_stop ();
2996 if (target_can_async_p ())
2997 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2998 return;
2999 }
3000
3001 /* We'll update this if & when we switch to a new thread. */
3002 previous_inferior_ptid = inferior_ptid;
3003
3004 regcache = get_current_regcache ();
3005 gdbarch = get_regcache_arch (regcache);
3006 aspace = get_regcache_aspace (regcache);
3007 pc = regcache_read_pc (regcache);
3008 tp = inferior_thread ();
3009
3010 /* Fill in with reasonable starting values. */
3011 init_thread_stepping_state (tp);
3012
3013 gdb_assert (!thread_is_in_step_over_chain (tp));
3014
3015 if (addr == (CORE_ADDR) -1)
3016 {
3017 if (pc == stop_pc
3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3019 && execution_direction != EXEC_REVERSE)
3020 /* There is a breakpoint at the address we will resume at,
3021 step one instruction before inserting breakpoints so that
3022 we do not stop right away (and report a second hit at this
3023 breakpoint).
3024
3025 Note, we don't do this in reverse, because we won't
3026 actually be executing the breakpoint insn anyway.
3027 We'll be (un-)executing the previous instruction. */
3028 tp->stepping_over_breakpoint = 1;
3029 else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 && gdbarch_single_step_through_delay (gdbarch,
3031 get_current_frame ()))
3032 /* We stepped onto an instruction that needs to be stepped
3033 again before re-inserting the breakpoint, do so. */
3034 tp->stepping_over_breakpoint = 1;
3035 }
3036 else
3037 {
3038 regcache_write_pc (regcache, addr);
3039 }
3040
3041 if (siggnal != GDB_SIGNAL_DEFAULT)
3042 tp->suspend.stop_signal = siggnal;
3043
3044 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3045
3046 /* If an exception is thrown from this point on, make sure to
3047 propagate GDB's knowledge of the executing state to the
3048 frontend/user running state. */
3049 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3050
3051 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3052 threads (e.g., we might need to set threads stepping over
3053 breakpoints first), from the user/frontend's point of view, all
3054 threads in RESUME_PTID are now running. Unless we're calling an
3055 inferior function, as in that case we pretend the inferior
3056 doesn't run at all. */
3057 if (!tp->control.in_infcall)
3058 set_running (resume_ptid, 1);
3059
3060 if (debug_infrun)
3061 fprintf_unfiltered (gdb_stdlog,
3062 "infrun: proceed (addr=%s, signal=%s)\n",
3063 paddress (gdbarch, addr),
3064 gdb_signal_to_symbol_string (siggnal));
3065
3066 annotate_starting ();
3067
3068 /* Make sure that output from GDB appears before output from the
3069 inferior. */
3070 gdb_flush (gdb_stdout);
3071
3072 /* In a multi-threaded task we may select another thread and
3073 then continue or step.
3074
3075 But if a thread that we're resuming had stopped at a breakpoint,
3076 it will immediately cause another breakpoint stop without any
3077 execution (i.e. it will report a breakpoint hit incorrectly). So
3078 we must step over it first.
3079
3080 Look for threads other than the current (TP) that reported a
3081 breakpoint hit and haven't been resumed yet since. */
3082
3083 /* If scheduler locking applies, we can avoid iterating over all
3084 threads. */
3085 if (!non_stop && !schedlock_applies (tp))
3086 {
3087 struct thread_info *current = tp;
3088
3089 ALL_NON_EXITED_THREADS (tp)
3090 {
3091 /* Ignore the current thread here. It's handled
3092 afterwards. */
3093 if (tp == current)
3094 continue;
3095
3096 /* Ignore threads of processes we're not resuming. */
3097 if (!ptid_match (tp->ptid, resume_ptid))
3098 continue;
3099
3100 if (!thread_still_needs_step_over (tp))
3101 continue;
3102
3103 gdb_assert (!thread_is_in_step_over_chain (tp));
3104
3105 if (debug_infrun)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "infrun: need to step-over [%s] first\n",
3108 target_pid_to_str (tp->ptid));
3109
3110 thread_step_over_chain_enqueue (tp);
3111 }
3112
3113 tp = current;
3114 }
3115
3116 /* Enqueue the current thread last, so that we move all other
3117 threads over their breakpoints first. */
3118 if (tp->stepping_over_breakpoint)
3119 thread_step_over_chain_enqueue (tp);
3120
3121 /* If the thread isn't started, we'll still need to set its prev_pc,
3122 so that switch_back_to_stepped_thread knows the thread hasn't
3123 advanced. Must do this before resuming any thread, as in
3124 all-stop/remote, once we resume we can't send any other packet
3125 until the target stops again. */
3126 tp->prev_pc = regcache_read_pc (regcache);
3127
3128 started = start_step_over ();
3129
3130 if (step_over_info_valid_p ())
3131 {
3132 /* Either this thread started a new in-line step over, or some
3133 other thread was already doing one. In either case, don't
3134 resume anything else until the step-over is finished. */
3135 }
3136 else if (started && !target_is_non_stop_p ())
3137 {
3138 /* A new displaced stepping sequence was started. In all-stop,
3139 we can't talk to the target anymore until it next stops. */
3140 }
3141 else if (!non_stop && target_is_non_stop_p ())
3142 {
3143 /* In all-stop, but the target is always in non-stop mode.
3144 Start all other threads that are implicitly resumed too. */
3145 ALL_NON_EXITED_THREADS (tp)
3146 {
3147 /* Ignore threads of processes we're not resuming. */
3148 if (!ptid_match (tp->ptid, resume_ptid))
3149 continue;
3150
3151 if (tp->resumed)
3152 {
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: [%s] resumed\n",
3156 target_pid_to_str (tp->ptid));
3157 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3158 continue;
3159 }
3160
3161 if (thread_is_in_step_over_chain (tp))
3162 {
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "infrun: proceed: [%s] needs step-over\n",
3166 target_pid_to_str (tp->ptid));
3167 continue;
3168 }
3169
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: resuming %s\n",
3173 target_pid_to_str (tp->ptid));
3174
3175 reset_ecs (ecs, tp);
3176 switch_to_thread (tp->ptid);
3177 keep_going_pass_signal (ecs);
3178 if (!ecs->wait_some_more)
3179 error (_("Command aborted."));
3180 }
3181 }
3182 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3183 {
3184 /* The thread wasn't started, and isn't queued, run it now. */
3185 reset_ecs (ecs, tp);
3186 switch_to_thread (tp->ptid);
3187 keep_going_pass_signal (ecs);
3188 if (!ecs->wait_some_more)
3189 error (_("Command aborted."));
3190 }
3191
3192 discard_cleanups (old_chain);
3193
3194 /* Tell the event loop to wait for it to stop. If the target
3195 supports asynchronous execution, it'll do this from within
3196 target_resume. */
3197 if (!target_can_async_p ())
3198 mark_async_event_handler (infrun_async_inferior_event_token);
3199 }
3200 \f
3201
3202 /* Start remote-debugging of a machine over a serial link. */
3203
3204 void
3205 start_remote (int from_tty)
3206 {
3207 struct inferior *inferior;
3208
3209 inferior = current_inferior ();
3210 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3211
3212 /* Always go on waiting for the target, regardless of the mode. */
3213 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3214 indicate to wait_for_inferior that a target should timeout if
3215 nothing is returned (instead of just blocking). Because of this,
3216 targets expecting an immediate response need to, internally, set
3217 things up so that the target_wait() is forced to eventually
3218 timeout. */
3219 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3220 differentiate to its caller what the state of the target is after
3221 the initial open has been performed. Here we're assuming that
3222 the target has stopped. It should be possible to eventually have
3223 target_open() return to the caller an indication that the target
3224 is currently running and GDB state should be set to the same as
3225 for an async run. */
3226 wait_for_inferior ();
3227
3228 /* Now that the inferior has stopped, do any bookkeeping like
3229 loading shared libraries. We want to do this before normal_stop,
3230 so that the displayed frame is up to date. */
3231 post_create_inferior (&current_target, from_tty);
3232
3233 normal_stop ();
3234 }
3235
3236 /* Initialize static vars when a new inferior begins. */
3237
3238 void
3239 init_wait_for_inferior (void)
3240 {
3241 /* These are meaningless until the first time through wait_for_inferior. */
3242
3243 breakpoint_init_inferior (inf_starting);
3244
3245 clear_proceed_status (0);
3246
3247 target_last_wait_ptid = minus_one_ptid;
3248
3249 previous_inferior_ptid = inferior_ptid;
3250
3251 /* Discard any skipped inlined frames. */
3252 clear_inline_frame_state (minus_one_ptid);
3253 }
3254
3255 \f
3256
3257 static void handle_inferior_event (struct execution_control_state *ecs);
3258
3259 static void handle_step_into_function (struct gdbarch *gdbarch,
3260 struct execution_control_state *ecs);
3261 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3262 struct execution_control_state *ecs);
3263 static void handle_signal_stop (struct execution_control_state *ecs);
3264 static void check_exception_resume (struct execution_control_state *,
3265 struct frame_info *);
3266
3267 static void end_stepping_range (struct execution_control_state *ecs);
3268 static void stop_waiting (struct execution_control_state *ecs);
3269 static void keep_going (struct execution_control_state *ecs);
3270 static void process_event_stop_test (struct execution_control_state *ecs);
3271 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3272
3273 /* Callback for iterate over threads. If the thread is stopped, but
3274 the user/frontend doesn't know about that yet, go through
3275 normal_stop, as if the thread had just stopped now. ARG points at
3276 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3277 ptid_is_pid(PTID) is true, applies to all threads of the process
3278 pointed at by PTID. Otherwise, apply only to the thread pointed by
3279 PTID. */
3280
3281 static int
3282 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3283 {
3284 ptid_t ptid = * (ptid_t *) arg;
3285
3286 if ((ptid_equal (info->ptid, ptid)
3287 || ptid_equal (minus_one_ptid, ptid)
3288 || (ptid_is_pid (ptid)
3289 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3290 && is_running (info->ptid)
3291 && !is_executing (info->ptid))
3292 {
3293 struct cleanup *old_chain;
3294 struct execution_control_state ecss;
3295 struct execution_control_state *ecs = &ecss;
3296
3297 memset (ecs, 0, sizeof (*ecs));
3298
3299 old_chain = make_cleanup_restore_current_thread ();
3300
3301 overlay_cache_invalid = 1;
3302 /* Flush target cache before starting to handle each event.
3303 Target was running and cache could be stale. This is just a
3304 heuristic. Running threads may modify target memory, but we
3305 don't get any event. */
3306 target_dcache_invalidate ();
3307
3308 /* Go through handle_inferior_event/normal_stop, so we always
3309 have consistent output as if the stop event had been
3310 reported. */
3311 ecs->ptid = info->ptid;
3312 ecs->event_thread = info;
3313 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3314 ecs->ws.value.sig = GDB_SIGNAL_0;
3315
3316 handle_inferior_event (ecs);
3317
3318 if (!ecs->wait_some_more)
3319 {
3320 /* Cancel any running execution command. */
3321 thread_cancel_execution_command (info);
3322
3323 normal_stop ();
3324 }
3325
3326 do_cleanups (old_chain);
3327 }
3328
3329 return 0;
3330 }
3331
3332 /* This function is attached as a "thread_stop_requested" observer.
3333 Cleanup local state that assumed the PTID was to be resumed, and
3334 report the stop to the frontend. */
3335
3336 static void
3337 infrun_thread_stop_requested (ptid_t ptid)
3338 {
3339 struct thread_info *tp;
3340
3341 /* PTID was requested to stop. Remove matching threads from the
3342 step-over queue, so we don't try to resume them
3343 automatically. */
3344 ALL_NON_EXITED_THREADS (tp)
3345 if (ptid_match (tp->ptid, ptid))
3346 {
3347 if (thread_is_in_step_over_chain (tp))
3348 thread_step_over_chain_remove (tp);
3349 }
3350
3351 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3352 }
3353
3354 static void
3355 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3356 {
3357 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3358 nullify_last_target_wait_ptid ();
3359 }
3360
3361 /* Delete the step resume, single-step and longjmp/exception resume
3362 breakpoints of TP. */
3363
3364 static void
3365 delete_thread_infrun_breakpoints (struct thread_info *tp)
3366 {
3367 delete_step_resume_breakpoint (tp);
3368 delete_exception_resume_breakpoint (tp);
3369 delete_single_step_breakpoints (tp);
3370 }
3371
3372 /* If the target still has execution, call FUNC for each thread that
3373 just stopped. In all-stop, that's all the non-exited threads; in
3374 non-stop, that's the current thread, only. */
3375
3376 typedef void (*for_each_just_stopped_thread_callback_func)
3377 (struct thread_info *tp);
3378
3379 static void
3380 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3381 {
3382 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3383 return;
3384
3385 if (target_is_non_stop_p ())
3386 {
3387 /* If in non-stop mode, only the current thread stopped. */
3388 func (inferior_thread ());
3389 }
3390 else
3391 {
3392 struct thread_info *tp;
3393
3394 /* In all-stop mode, all threads have stopped. */
3395 ALL_NON_EXITED_THREADS (tp)
3396 {
3397 func (tp);
3398 }
3399 }
3400 }
3401
3402 /* Delete the step resume and longjmp/exception resume breakpoints of
3403 the threads that just stopped. */
3404
3405 static void
3406 delete_just_stopped_threads_infrun_breakpoints (void)
3407 {
3408 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3409 }
3410
3411 /* Delete the single-step breakpoints of the threads that just
3412 stopped. */
3413
3414 static void
3415 delete_just_stopped_threads_single_step_breakpoints (void)
3416 {
3417 for_each_just_stopped_thread (delete_single_step_breakpoints);
3418 }
3419
3420 /* A cleanup wrapper. */
3421
3422 static void
3423 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3424 {
3425 delete_just_stopped_threads_infrun_breakpoints ();
3426 }
3427
3428 /* See infrun.h. */
3429
3430 void
3431 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3432 const struct target_waitstatus *ws)
3433 {
3434 char *status_string = target_waitstatus_to_string (ws);
3435 struct ui_file *tmp_stream = mem_fileopen ();
3436 char *text;
3437
3438 /* The text is split over several lines because it was getting too long.
3439 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3440 output as a unit; we want only one timestamp printed if debug_timestamp
3441 is set. */
3442
3443 fprintf_unfiltered (tmp_stream,
3444 "infrun: target_wait (%d.%ld.%ld",
3445 ptid_get_pid (waiton_ptid),
3446 ptid_get_lwp (waiton_ptid),
3447 ptid_get_tid (waiton_ptid));
3448 if (ptid_get_pid (waiton_ptid) != -1)
3449 fprintf_unfiltered (tmp_stream,
3450 " [%s]", target_pid_to_str (waiton_ptid));
3451 fprintf_unfiltered (tmp_stream, ", status) =\n");
3452 fprintf_unfiltered (tmp_stream,
3453 "infrun: %d.%ld.%ld [%s],\n",
3454 ptid_get_pid (result_ptid),
3455 ptid_get_lwp (result_ptid),
3456 ptid_get_tid (result_ptid),
3457 target_pid_to_str (result_ptid));
3458 fprintf_unfiltered (tmp_stream,
3459 "infrun: %s\n",
3460 status_string);
3461
3462 text = ui_file_xstrdup (tmp_stream, NULL);
3463
3464 /* This uses %s in part to handle %'s in the text, but also to avoid
3465 a gcc error: the format attribute requires a string literal. */
3466 fprintf_unfiltered (gdb_stdlog, "%s", text);
3467
3468 xfree (status_string);
3469 xfree (text);
3470 ui_file_delete (tmp_stream);
3471 }
3472
3473 /* Select a thread at random, out of those which are resumed and have
3474 had events. */
3475
3476 static struct thread_info *
3477 random_pending_event_thread (ptid_t waiton_ptid)
3478 {
3479 struct thread_info *event_tp;
3480 int num_events = 0;
3481 int random_selector;
3482
3483 /* First see how many events we have. Count only resumed threads
3484 that have an event pending. */
3485 ALL_NON_EXITED_THREADS (event_tp)
3486 if (ptid_match (event_tp->ptid, waiton_ptid)
3487 && event_tp->resumed
3488 && event_tp->suspend.waitstatus_pending_p)
3489 num_events++;
3490
3491 if (num_events == 0)
3492 return NULL;
3493
3494 /* Now randomly pick a thread out of those that have had events. */
3495 random_selector = (int)
3496 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3497
3498 if (debug_infrun && num_events > 1)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Found %d events, selecting #%d\n",
3501 num_events, random_selector);
3502
3503 /* Select the Nth thread that has had an event. */
3504 ALL_NON_EXITED_THREADS (event_tp)
3505 if (ptid_match (event_tp->ptid, waiton_ptid)
3506 && event_tp->resumed
3507 && event_tp->suspend.waitstatus_pending_p)
3508 if (random_selector-- == 0)
3509 break;
3510
3511 return event_tp;
3512 }
3513
3514 /* Wrapper for target_wait that first checks whether threads have
3515 pending statuses to report before actually asking the target for
3516 more events. */
3517
3518 static ptid_t
3519 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3520 {
3521 ptid_t event_ptid;
3522 struct thread_info *tp;
3523
3524 /* First check if there is a resumed thread with a wait status
3525 pending. */
3526 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3527 {
3528 tp = random_pending_event_thread (ptid);
3529 }
3530 else
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: Waiting for specific thread %s.\n",
3535 target_pid_to_str (ptid));
3536
3537 /* We have a specific thread to check. */
3538 tp = find_thread_ptid (ptid);
3539 gdb_assert (tp != NULL);
3540 if (!tp->suspend.waitstatus_pending_p)
3541 tp = NULL;
3542 }
3543
3544 if (tp != NULL
3545 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3546 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3547 {
3548 struct regcache *regcache = get_thread_regcache (tp->ptid);
3549 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3550 CORE_ADDR pc;
3551 int discard = 0;
3552
3553 pc = regcache_read_pc (regcache);
3554
3555 if (pc != tp->suspend.stop_pc)
3556 {
3557 if (debug_infrun)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "infrun: PC of %s changed. was=%s, now=%s\n",
3560 target_pid_to_str (tp->ptid),
3561 paddress (gdbarch, tp->prev_pc),
3562 paddress (gdbarch, pc));
3563 discard = 1;
3564 }
3565 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3566 {
3567 if (debug_infrun)
3568 fprintf_unfiltered (gdb_stdlog,
3569 "infrun: previous breakpoint of %s, at %s gone\n",
3570 target_pid_to_str (tp->ptid),
3571 paddress (gdbarch, pc));
3572
3573 discard = 1;
3574 }
3575
3576 if (discard)
3577 {
3578 if (debug_infrun)
3579 fprintf_unfiltered (gdb_stdlog,
3580 "infrun: pending event of %s cancelled.\n",
3581 target_pid_to_str (tp->ptid));
3582
3583 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3584 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3585 }
3586 }
3587
3588 if (tp != NULL)
3589 {
3590 if (debug_infrun)
3591 {
3592 char *statstr;
3593
3594 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3595 fprintf_unfiltered (gdb_stdlog,
3596 "infrun: Using pending wait status %s for %s.\n",
3597 statstr,
3598 target_pid_to_str (tp->ptid));
3599 xfree (statstr);
3600 }
3601
3602 /* Now that we've selected our final event LWP, un-adjust its PC
3603 if it was a software breakpoint (and the target doesn't
3604 always adjust the PC itself). */
3605 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3606 && !target_supports_stopped_by_sw_breakpoint ())
3607 {
3608 struct regcache *regcache;
3609 struct gdbarch *gdbarch;
3610 int decr_pc;
3611
3612 regcache = get_thread_regcache (tp->ptid);
3613 gdbarch = get_regcache_arch (regcache);
3614
3615 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3616 if (decr_pc != 0)
3617 {
3618 CORE_ADDR pc;
3619
3620 pc = regcache_read_pc (regcache);
3621 regcache_write_pc (regcache, pc + decr_pc);
3622 }
3623 }
3624
3625 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3626 *status = tp->suspend.waitstatus;
3627 tp->suspend.waitstatus_pending_p = 0;
3628
3629 /* Wake up the event loop again, until all pending events are
3630 processed. */
3631 if (target_is_async_p ())
3632 mark_async_event_handler (infrun_async_inferior_event_token);
3633 return tp->ptid;
3634 }
3635
3636 /* But if we don't find one, we'll have to wait. */
3637
3638 if (deprecated_target_wait_hook)
3639 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3640 else
3641 event_ptid = target_wait (ptid, status, options);
3642
3643 return event_ptid;
3644 }
3645
3646 /* Prepare and stabilize the inferior for detaching it. E.g.,
3647 detaching while a thread is displaced stepping is a recipe for
3648 crashing it, as nothing would readjust the PC out of the scratch
3649 pad. */
3650
3651 void
3652 prepare_for_detach (void)
3653 {
3654 struct inferior *inf = current_inferior ();
3655 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3656 struct cleanup *old_chain_1;
3657 struct displaced_step_inferior_state *displaced;
3658
3659 displaced = get_displaced_stepping_state (inf->pid);
3660
3661 /* Is any thread of this process displaced stepping? If not,
3662 there's nothing else to do. */
3663 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3664 return;
3665
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog,
3668 "displaced-stepping in-process while detaching");
3669
3670 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3671 inf->detaching = 1;
3672
3673 while (!ptid_equal (displaced->step_ptid, null_ptid))
3674 {
3675 struct cleanup *old_chain_2;
3676 struct execution_control_state ecss;
3677 struct execution_control_state *ecs;
3678
3679 ecs = &ecss;
3680 memset (ecs, 0, sizeof (*ecs));
3681
3682 overlay_cache_invalid = 1;
3683 /* Flush target cache before starting to handle each event.
3684 Target was running and cache could be stale. This is just a
3685 heuristic. Running threads may modify target memory, but we
3686 don't get any event. */
3687 target_dcache_invalidate ();
3688
3689 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3690
3691 if (debug_infrun)
3692 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3693
3694 /* If an error happens while handling the event, propagate GDB's
3695 knowledge of the executing state to the frontend/user running
3696 state. */
3697 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3698 &minus_one_ptid);
3699
3700 /* Now figure out what to do with the result of the result. */
3701 handle_inferior_event (ecs);
3702
3703 /* No error, don't finish the state yet. */
3704 discard_cleanups (old_chain_2);
3705
3706 /* Breakpoints and watchpoints are not installed on the target
3707 at this point, and signals are passed directly to the
3708 inferior, so this must mean the process is gone. */
3709 if (!ecs->wait_some_more)
3710 {
3711 discard_cleanups (old_chain_1);
3712 error (_("Program exited while detaching"));
3713 }
3714 }
3715
3716 discard_cleanups (old_chain_1);
3717 }
3718
3719 /* Wait for control to return from inferior to debugger.
3720
3721 If inferior gets a signal, we may decide to start it up again
3722 instead of returning. That is why there is a loop in this function.
3723 When this function actually returns it means the inferior
3724 should be left stopped and GDB should read more commands. */
3725
3726 void
3727 wait_for_inferior (void)
3728 {
3729 struct cleanup *old_cleanups;
3730 struct cleanup *thread_state_chain;
3731
3732 if (debug_infrun)
3733 fprintf_unfiltered
3734 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3735
3736 old_cleanups
3737 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3738 NULL);
3739
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
3743 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3744
3745 while (1)
3746 {
3747 struct execution_control_state ecss;
3748 struct execution_control_state *ecs = &ecss;
3749 ptid_t waiton_ptid = minus_one_ptid;
3750
3751 memset (ecs, 0, sizeof (*ecs));
3752
3753 overlay_cache_invalid = 1;
3754
3755 /* Flush target cache before starting to handle each event.
3756 Target was running and cache could be stale. This is just a
3757 heuristic. Running threads may modify target memory, but we
3758 don't get any event. */
3759 target_dcache_invalidate ();
3760
3761 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3762
3763 if (debug_infrun)
3764 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3765
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
3768
3769 if (!ecs->wait_some_more)
3770 break;
3771 }
3772
3773 /* No error, don't finish the state yet. */
3774 discard_cleanups (thread_state_chain);
3775
3776 do_cleanups (old_cleanups);
3777 }
3778
3779 /* Cleanup that reinstalls the readline callback handler, if the
3780 target is running in the background. If while handling the target
3781 event something triggered a secondary prompt, like e.g., a
3782 pagination prompt, we'll have removed the callback handler (see
3783 gdb_readline_wrapper_line). Need to do this as we go back to the
3784 event loop, ready to process further input. Note this has no
3785 effect if the handler hasn't actually been removed, because calling
3786 rl_callback_handler_install resets the line buffer, thus losing
3787 input. */
3788
3789 static void
3790 reinstall_readline_callback_handler_cleanup (void *arg)
3791 {
3792 struct ui *ui = current_ui;
3793
3794 if (!ui->async)
3795 {
3796 /* We're not going back to the top level event loop yet. Don't
3797 install the readline callback, as it'd prep the terminal,
3798 readline-style (raw, noecho) (e.g., --batch). We'll install
3799 it the next time the prompt is displayed, when we're ready
3800 for input. */
3801 return;
3802 }
3803
3804 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3805 gdb_rl_callback_handler_reinstall ();
3806 }
3807
3808 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3809 that's just the event thread. In all-stop, that's all threads. */
3810
3811 static void
3812 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3813 {
3814 struct thread_info *thr = ecs->event_thread;
3815
3816 if (thr != NULL && thr->thread_fsm != NULL)
3817 thread_fsm_clean_up (thr->thread_fsm, thr);
3818
3819 if (!non_stop)
3820 {
3821 ALL_NON_EXITED_THREADS (thr)
3822 {
3823 if (thr->thread_fsm == NULL)
3824 continue;
3825 if (thr == ecs->event_thread)
3826 continue;
3827
3828 switch_to_thread (thr->ptid);
3829 thread_fsm_clean_up (thr->thread_fsm, thr);
3830 }
3831
3832 if (ecs->event_thread != NULL)
3833 switch_to_thread (ecs->event_thread->ptid);
3834 }
3835 }
3836
3837 /* Helper for all_uis_check_sync_execution_done that works on the
3838 current UI. */
3839
3840 static void
3841 check_curr_ui_sync_execution_done (void)
3842 {
3843 struct ui *ui = current_ui;
3844
3845 if (ui->prompt_state == PROMPT_NEEDED
3846 && ui->async
3847 && !gdb_in_secondary_prompt_p (ui))
3848 {
3849 target_terminal_ours ();
3850 observer_notify_sync_execution_done ();
3851 }
3852 }
3853
3854 /* See infrun.h. */
3855
3856 void
3857 all_uis_check_sync_execution_done (void)
3858 {
3859 struct switch_thru_all_uis state;
3860
3861 SWITCH_THRU_ALL_UIS (state)
3862 {
3863 check_curr_ui_sync_execution_done ();
3864 }
3865 }
3866
3867 /* See infrun.h. */
3868
3869 void
3870 all_uis_on_sync_execution_starting (void)
3871 {
3872 struct switch_thru_all_uis state;
3873
3874 SWITCH_THRU_ALL_UIS (state)
3875 {
3876 if (current_ui->prompt_state == PROMPT_NEEDED)
3877 async_disable_stdin ();
3878 }
3879 }
3880
3881 /* A cleanup that restores the execution direction to the value saved
3882 in *ARG. */
3883
3884 static void
3885 restore_execution_direction (void *arg)
3886 {
3887 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3888
3889 execution_direction = *save_exec_dir;
3890 }
3891
3892 /* Asynchronous version of wait_for_inferior. It is called by the
3893 event loop whenever a change of state is detected on the file
3894 descriptor corresponding to the target. It can be called more than
3895 once to complete a single execution command. In such cases we need
3896 to keep the state in a global variable ECSS. If it is the last time
3897 that this function is called for a single execution command, then
3898 report to the user that the inferior has stopped, and do the
3899 necessary cleanups. */
3900
3901 void
3902 fetch_inferior_event (void *client_data)
3903 {
3904 struct execution_control_state ecss;
3905 struct execution_control_state *ecs = &ecss;
3906 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3907 struct cleanup *ts_old_chain;
3908 enum exec_direction_kind save_exec_dir = execution_direction;
3909 int cmd_done = 0;
3910 ptid_t waiton_ptid = minus_one_ptid;
3911
3912 memset (ecs, 0, sizeof (*ecs));
3913
3914 /* Events are always processed with the main UI as current UI. This
3915 way, warnings, debug output, etc. are always consistently sent to
3916 the main console. */
3917 make_cleanup (restore_ui_cleanup, current_ui);
3918 current_ui = main_ui;
3919
3920 /* End up with readline processing input, if necessary. */
3921 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3922
3923 /* We're handling a live event, so make sure we're doing live
3924 debugging. If we're looking at traceframes while the target is
3925 running, we're going to need to get back to that mode after
3926 handling the event. */
3927 if (non_stop)
3928 {
3929 make_cleanup_restore_current_traceframe ();
3930 set_current_traceframe (-1);
3931 }
3932
3933 if (non_stop)
3934 /* In non-stop mode, the user/frontend should not notice a thread
3935 switch due to internal events. Make sure we reverse to the
3936 user selected thread and frame after handling the event and
3937 running any breakpoint commands. */
3938 make_cleanup_restore_current_thread ();
3939
3940 overlay_cache_invalid = 1;
3941 /* Flush target cache before starting to handle each event. Target
3942 was running and cache could be stale. This is just a heuristic.
3943 Running threads may modify target memory, but we don't get any
3944 event. */
3945 target_dcache_invalidate ();
3946
3947 make_cleanup (restore_execution_direction, &save_exec_dir);
3948 execution_direction = target_execution_direction ();
3949
3950 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3951 target_can_async_p () ? TARGET_WNOHANG : 0);
3952
3953 if (debug_infrun)
3954 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3955
3956 /* If an error happens while handling the event, propagate GDB's
3957 knowledge of the executing state to the frontend/user running
3958 state. */
3959 if (!target_is_non_stop_p ())
3960 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3961 else
3962 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3963
3964 /* Get executed before make_cleanup_restore_current_thread above to apply
3965 still for the thread which has thrown the exception. */
3966 make_bpstat_clear_actions_cleanup ();
3967
3968 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3969
3970 /* Now figure out what to do with the result of the result. */
3971 handle_inferior_event (ecs);
3972
3973 if (!ecs->wait_some_more)
3974 {
3975 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3976 int should_stop = 1;
3977 struct thread_info *thr = ecs->event_thread;
3978 int should_notify_stop = 1;
3979
3980 delete_just_stopped_threads_infrun_breakpoints ();
3981
3982 if (thr != NULL)
3983 {
3984 struct thread_fsm *thread_fsm = thr->thread_fsm;
3985
3986 if (thread_fsm != NULL)
3987 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3988 }
3989
3990 if (!should_stop)
3991 {
3992 keep_going (ecs);
3993 }
3994 else
3995 {
3996 clean_up_just_stopped_threads_fsms (ecs);
3997
3998 if (thr != NULL && thr->thread_fsm != NULL)
3999 {
4000 should_notify_stop
4001 = thread_fsm_should_notify_stop (thr->thread_fsm);
4002 }
4003
4004 if (should_notify_stop)
4005 {
4006 int proceeded = 0;
4007
4008 /* We may not find an inferior if this was a process exit. */
4009 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4010 proceeded = normal_stop ();
4011
4012 if (!proceeded)
4013 {
4014 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4015 cmd_done = 1;
4016 }
4017 }
4018 }
4019 }
4020
4021 /* No error, don't finish the thread states yet. */
4022 discard_cleanups (ts_old_chain);
4023
4024 /* Revert thread and frame. */
4025 do_cleanups (old_chain);
4026
4027 /* If a UI was in sync execution mode, and now isn't, restore its
4028 prompt (a synchronous execution command has finished, and we're
4029 ready for input). */
4030 all_uis_check_sync_execution_done ();
4031
4032 if (cmd_done
4033 && exec_done_display_p
4034 && (ptid_equal (inferior_ptid, null_ptid)
4035 || !is_running (inferior_ptid)))
4036 printf_unfiltered (_("completed.\n"));
4037 }
4038
4039 /* Record the frame and location we're currently stepping through. */
4040 void
4041 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4042 {
4043 struct thread_info *tp = inferior_thread ();
4044
4045 tp->control.step_frame_id = get_frame_id (frame);
4046 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4047
4048 tp->current_symtab = sal.symtab;
4049 tp->current_line = sal.line;
4050 }
4051
4052 /* Clear context switchable stepping state. */
4053
4054 void
4055 init_thread_stepping_state (struct thread_info *tss)
4056 {
4057 tss->stepped_breakpoint = 0;
4058 tss->stepping_over_breakpoint = 0;
4059 tss->stepping_over_watchpoint = 0;
4060 tss->step_after_step_resume_breakpoint = 0;
4061 }
4062
4063 /* Set the cached copy of the last ptid/waitstatus. */
4064
4065 void
4066 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4067 {
4068 target_last_wait_ptid = ptid;
4069 target_last_waitstatus = status;
4070 }
4071
4072 /* Return the cached copy of the last pid/waitstatus returned by
4073 target_wait()/deprecated_target_wait_hook(). The data is actually
4074 cached by handle_inferior_event(), which gets called immediately
4075 after target_wait()/deprecated_target_wait_hook(). */
4076
4077 void
4078 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4079 {
4080 *ptidp = target_last_wait_ptid;
4081 *status = target_last_waitstatus;
4082 }
4083
4084 void
4085 nullify_last_target_wait_ptid (void)
4086 {
4087 target_last_wait_ptid = minus_one_ptid;
4088 }
4089
4090 /* Switch thread contexts. */
4091
4092 static void
4093 context_switch (ptid_t ptid)
4094 {
4095 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4096 {
4097 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4098 target_pid_to_str (inferior_ptid));
4099 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4100 target_pid_to_str (ptid));
4101 }
4102
4103 switch_to_thread (ptid);
4104 }
4105
4106 /* If the target can't tell whether we've hit breakpoints
4107 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4108 check whether that could have been caused by a breakpoint. If so,
4109 adjust the PC, per gdbarch_decr_pc_after_break. */
4110
4111 static void
4112 adjust_pc_after_break (struct thread_info *thread,
4113 struct target_waitstatus *ws)
4114 {
4115 struct regcache *regcache;
4116 struct gdbarch *gdbarch;
4117 struct address_space *aspace;
4118 CORE_ADDR breakpoint_pc, decr_pc;
4119
4120 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4121 we aren't, just return.
4122
4123 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4124 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4125 implemented by software breakpoints should be handled through the normal
4126 breakpoint layer.
4127
4128 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4129 different signals (SIGILL or SIGEMT for instance), but it is less
4130 clear where the PC is pointing afterwards. It may not match
4131 gdbarch_decr_pc_after_break. I don't know any specific target that
4132 generates these signals at breakpoints (the code has been in GDB since at
4133 least 1992) so I can not guess how to handle them here.
4134
4135 In earlier versions of GDB, a target with
4136 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4137 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4138 target with both of these set in GDB history, and it seems unlikely to be
4139 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4140
4141 if (ws->kind != TARGET_WAITKIND_STOPPED)
4142 return;
4143
4144 if (ws->value.sig != GDB_SIGNAL_TRAP)
4145 return;
4146
4147 /* In reverse execution, when a breakpoint is hit, the instruction
4148 under it has already been de-executed. The reported PC always
4149 points at the breakpoint address, so adjusting it further would
4150 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4151 architecture:
4152
4153 B1 0x08000000 : INSN1
4154 B2 0x08000001 : INSN2
4155 0x08000002 : INSN3
4156 PC -> 0x08000003 : INSN4
4157
4158 Say you're stopped at 0x08000003 as above. Reverse continuing
4159 from that point should hit B2 as below. Reading the PC when the
4160 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4161 been de-executed already.
4162
4163 B1 0x08000000 : INSN1
4164 B2 PC -> 0x08000001 : INSN2
4165 0x08000002 : INSN3
4166 0x08000003 : INSN4
4167
4168 We can't apply the same logic as for forward execution, because
4169 we would wrongly adjust the PC to 0x08000000, since there's a
4170 breakpoint at PC - 1. We'd then report a hit on B1, although
4171 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4172 behaviour. */
4173 if (execution_direction == EXEC_REVERSE)
4174 return;
4175
4176 /* If the target can tell whether the thread hit a SW breakpoint,
4177 trust it. Targets that can tell also adjust the PC
4178 themselves. */
4179 if (target_supports_stopped_by_sw_breakpoint ())
4180 return;
4181
4182 /* Note that relying on whether a breakpoint is planted in memory to
4183 determine this can fail. E.g,. the breakpoint could have been
4184 removed since. Or the thread could have been told to step an
4185 instruction the size of a breakpoint instruction, and only
4186 _after_ was a breakpoint inserted at its address. */
4187
4188 /* If this target does not decrement the PC after breakpoints, then
4189 we have nothing to do. */
4190 regcache = get_thread_regcache (thread->ptid);
4191 gdbarch = get_regcache_arch (regcache);
4192
4193 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4194 if (decr_pc == 0)
4195 return;
4196
4197 aspace = get_regcache_aspace (regcache);
4198
4199 /* Find the location where (if we've hit a breakpoint) the
4200 breakpoint would be. */
4201 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4202
4203 /* If the target can't tell whether a software breakpoint triggered,
4204 fallback to figuring it out based on breakpoints we think were
4205 inserted in the target, and on whether the thread was stepped or
4206 continued. */
4207
4208 /* Check whether there actually is a software breakpoint inserted at
4209 that location.
4210
4211 If in non-stop mode, a race condition is possible where we've
4212 removed a breakpoint, but stop events for that breakpoint were
4213 already queued and arrive later. To suppress those spurious
4214 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4215 and retire them after a number of stop events are reported. Note
4216 this is an heuristic and can thus get confused. The real fix is
4217 to get the "stopped by SW BP and needs adjustment" info out of
4218 the target/kernel (and thus never reach here; see above). */
4219 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4220 || (target_is_non_stop_p ()
4221 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4222 {
4223 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4224
4225 if (record_full_is_used ())
4226 record_full_gdb_operation_disable_set ();
4227
4228 /* When using hardware single-step, a SIGTRAP is reported for both
4229 a completed single-step and a software breakpoint. Need to
4230 differentiate between the two, as the latter needs adjusting
4231 but the former does not.
4232
4233 The SIGTRAP can be due to a completed hardware single-step only if
4234 - we didn't insert software single-step breakpoints
4235 - this thread is currently being stepped
4236
4237 If any of these events did not occur, we must have stopped due
4238 to hitting a software breakpoint, and have to back up to the
4239 breakpoint address.
4240
4241 As a special case, we could have hardware single-stepped a
4242 software breakpoint. In this case (prev_pc == breakpoint_pc),
4243 we also need to back up to the breakpoint address. */
4244
4245 if (thread_has_single_step_breakpoints_set (thread)
4246 || !currently_stepping (thread)
4247 || (thread->stepped_breakpoint
4248 && thread->prev_pc == breakpoint_pc))
4249 regcache_write_pc (regcache, breakpoint_pc);
4250
4251 do_cleanups (old_cleanups);
4252 }
4253 }
4254
4255 static int
4256 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4257 {
4258 for (frame = get_prev_frame (frame);
4259 frame != NULL;
4260 frame = get_prev_frame (frame))
4261 {
4262 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4263 return 1;
4264 if (get_frame_type (frame) != INLINE_FRAME)
4265 break;
4266 }
4267
4268 return 0;
4269 }
4270
4271 /* Auxiliary function that handles syscall entry/return events.
4272 It returns 1 if the inferior should keep going (and GDB
4273 should ignore the event), or 0 if the event deserves to be
4274 processed. */
4275
4276 static int
4277 handle_syscall_event (struct execution_control_state *ecs)
4278 {
4279 struct regcache *regcache;
4280 int syscall_number;
4281
4282 if (!ptid_equal (ecs->ptid, inferior_ptid))
4283 context_switch (ecs->ptid);
4284
4285 regcache = get_thread_regcache (ecs->ptid);
4286 syscall_number = ecs->ws.value.syscall_number;
4287 stop_pc = regcache_read_pc (regcache);
4288
4289 if (catch_syscall_enabled () > 0
4290 && catching_syscall_number (syscall_number) > 0)
4291 {
4292 if (debug_infrun)
4293 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4294 syscall_number);
4295
4296 ecs->event_thread->control.stop_bpstat
4297 = bpstat_stop_status (get_regcache_aspace (regcache),
4298 stop_pc, ecs->ptid, &ecs->ws);
4299
4300 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4301 {
4302 /* Catchpoint hit. */
4303 return 0;
4304 }
4305 }
4306
4307 /* If no catchpoint triggered for this, then keep going. */
4308 keep_going (ecs);
4309 return 1;
4310 }
4311
4312 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4313
4314 static void
4315 fill_in_stop_func (struct gdbarch *gdbarch,
4316 struct execution_control_state *ecs)
4317 {
4318 if (!ecs->stop_func_filled_in)
4319 {
4320 /* Don't care about return value; stop_func_start and stop_func_name
4321 will both be 0 if it doesn't work. */
4322 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4323 &ecs->stop_func_start, &ecs->stop_func_end);
4324 ecs->stop_func_start
4325 += gdbarch_deprecated_function_start_offset (gdbarch);
4326
4327 if (gdbarch_skip_entrypoint_p (gdbarch))
4328 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4329 ecs->stop_func_start);
4330
4331 ecs->stop_func_filled_in = 1;
4332 }
4333 }
4334
4335
4336 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4337
4338 static enum stop_kind
4339 get_inferior_stop_soon (ptid_t ptid)
4340 {
4341 struct inferior *inf = find_inferior_ptid (ptid);
4342
4343 gdb_assert (inf != NULL);
4344 return inf->control.stop_soon;
4345 }
4346
4347 /* Wait for one event. Store the resulting waitstatus in WS, and
4348 return the event ptid. */
4349
4350 static ptid_t
4351 wait_one (struct target_waitstatus *ws)
4352 {
4353 ptid_t event_ptid;
4354 ptid_t wait_ptid = minus_one_ptid;
4355
4356 overlay_cache_invalid = 1;
4357
4358 /* Flush target cache before starting to handle each event.
4359 Target was running and cache could be stale. This is just a
4360 heuristic. Running threads may modify target memory, but we
4361 don't get any event. */
4362 target_dcache_invalidate ();
4363
4364 if (deprecated_target_wait_hook)
4365 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4366 else
4367 event_ptid = target_wait (wait_ptid, ws, 0);
4368
4369 if (debug_infrun)
4370 print_target_wait_results (wait_ptid, event_ptid, ws);
4371
4372 return event_ptid;
4373 }
4374
4375 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4376 instead of the current thread. */
4377 #define THREAD_STOPPED_BY(REASON) \
4378 static int \
4379 thread_stopped_by_ ## REASON (ptid_t ptid) \
4380 { \
4381 struct cleanup *old_chain; \
4382 int res; \
4383 \
4384 old_chain = save_inferior_ptid (); \
4385 inferior_ptid = ptid; \
4386 \
4387 res = target_stopped_by_ ## REASON (); \
4388 \
4389 do_cleanups (old_chain); \
4390 \
4391 return res; \
4392 }
4393
4394 /* Generate thread_stopped_by_watchpoint. */
4395 THREAD_STOPPED_BY (watchpoint)
4396 /* Generate thread_stopped_by_sw_breakpoint. */
4397 THREAD_STOPPED_BY (sw_breakpoint)
4398 /* Generate thread_stopped_by_hw_breakpoint. */
4399 THREAD_STOPPED_BY (hw_breakpoint)
4400
4401 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4402
4403 static void
4404 switch_to_thread_cleanup (void *ptid_p)
4405 {
4406 ptid_t ptid = *(ptid_t *) ptid_p;
4407
4408 switch_to_thread (ptid);
4409 }
4410
4411 /* Save the thread's event and stop reason to process it later. */
4412
4413 static void
4414 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4415 {
4416 struct regcache *regcache;
4417 struct address_space *aspace;
4418
4419 if (debug_infrun)
4420 {
4421 char *statstr;
4422
4423 statstr = target_waitstatus_to_string (ws);
4424 fprintf_unfiltered (gdb_stdlog,
4425 "infrun: saving status %s for %d.%ld.%ld\n",
4426 statstr,
4427 ptid_get_pid (tp->ptid),
4428 ptid_get_lwp (tp->ptid),
4429 ptid_get_tid (tp->ptid));
4430 xfree (statstr);
4431 }
4432
4433 /* Record for later. */
4434 tp->suspend.waitstatus = *ws;
4435 tp->suspend.waitstatus_pending_p = 1;
4436
4437 regcache = get_thread_regcache (tp->ptid);
4438 aspace = get_regcache_aspace (regcache);
4439
4440 if (ws->kind == TARGET_WAITKIND_STOPPED
4441 && ws->value.sig == GDB_SIGNAL_TRAP)
4442 {
4443 CORE_ADDR pc = regcache_read_pc (regcache);
4444
4445 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4446
4447 if (thread_stopped_by_watchpoint (tp->ptid))
4448 {
4449 tp->suspend.stop_reason
4450 = TARGET_STOPPED_BY_WATCHPOINT;
4451 }
4452 else if (target_supports_stopped_by_sw_breakpoint ()
4453 && thread_stopped_by_sw_breakpoint (tp->ptid))
4454 {
4455 tp->suspend.stop_reason
4456 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4457 }
4458 else if (target_supports_stopped_by_hw_breakpoint ()
4459 && thread_stopped_by_hw_breakpoint (tp->ptid))
4460 {
4461 tp->suspend.stop_reason
4462 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4463 }
4464 else if (!target_supports_stopped_by_hw_breakpoint ()
4465 && hardware_breakpoint_inserted_here_p (aspace,
4466 pc))
4467 {
4468 tp->suspend.stop_reason
4469 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4470 }
4471 else if (!target_supports_stopped_by_sw_breakpoint ()
4472 && software_breakpoint_inserted_here_p (aspace,
4473 pc))
4474 {
4475 tp->suspend.stop_reason
4476 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4477 }
4478 else if (!thread_has_single_step_breakpoints_set (tp)
4479 && currently_stepping (tp))
4480 {
4481 tp->suspend.stop_reason
4482 = TARGET_STOPPED_BY_SINGLE_STEP;
4483 }
4484 }
4485 }
4486
4487 /* A cleanup that disables thread create/exit events. */
4488
4489 static void
4490 disable_thread_events (void *arg)
4491 {
4492 target_thread_events (0);
4493 }
4494
4495 /* See infrun.h. */
4496
4497 void
4498 stop_all_threads (void)
4499 {
4500 /* We may need multiple passes to discover all threads. */
4501 int pass;
4502 int iterations = 0;
4503 ptid_t entry_ptid;
4504 struct cleanup *old_chain;
4505
4506 gdb_assert (target_is_non_stop_p ());
4507
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4510
4511 entry_ptid = inferior_ptid;
4512 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4513
4514 target_thread_events (1);
4515 make_cleanup (disable_thread_events, NULL);
4516
4517 /* Request threads to stop, and then wait for the stops. Because
4518 threads we already know about can spawn more threads while we're
4519 trying to stop them, and we only learn about new threads when we
4520 update the thread list, do this in a loop, and keep iterating
4521 until two passes find no threads that need to be stopped. */
4522 for (pass = 0; pass < 2; pass++, iterations++)
4523 {
4524 if (debug_infrun)
4525 fprintf_unfiltered (gdb_stdlog,
4526 "infrun: stop_all_threads, pass=%d, "
4527 "iterations=%d\n", pass, iterations);
4528 while (1)
4529 {
4530 ptid_t event_ptid;
4531 struct target_waitstatus ws;
4532 int need_wait = 0;
4533 struct thread_info *t;
4534
4535 update_thread_list ();
4536
4537 /* Go through all threads looking for threads that we need
4538 to tell the target to stop. */
4539 ALL_NON_EXITED_THREADS (t)
4540 {
4541 if (t->executing)
4542 {
4543 /* If already stopping, don't request a stop again.
4544 We just haven't seen the notification yet. */
4545 if (!t->stop_requested)
4546 {
4547 if (debug_infrun)
4548 fprintf_unfiltered (gdb_stdlog,
4549 "infrun: %s executing, "
4550 "need stop\n",
4551 target_pid_to_str (t->ptid));
4552 target_stop (t->ptid);
4553 t->stop_requested = 1;
4554 }
4555 else
4556 {
4557 if (debug_infrun)
4558 fprintf_unfiltered (gdb_stdlog,
4559 "infrun: %s executing, "
4560 "already stopping\n",
4561 target_pid_to_str (t->ptid));
4562 }
4563
4564 if (t->stop_requested)
4565 need_wait = 1;
4566 }
4567 else
4568 {
4569 if (debug_infrun)
4570 fprintf_unfiltered (gdb_stdlog,
4571 "infrun: %s not executing\n",
4572 target_pid_to_str (t->ptid));
4573
4574 /* The thread may be not executing, but still be
4575 resumed with a pending status to process. */
4576 t->resumed = 0;
4577 }
4578 }
4579
4580 if (!need_wait)
4581 break;
4582
4583 /* If we find new threads on the second iteration, restart
4584 over. We want to see two iterations in a row with all
4585 threads stopped. */
4586 if (pass > 0)
4587 pass = -1;
4588
4589 event_ptid = wait_one (&ws);
4590 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4591 {
4592 /* All resumed threads exited. */
4593 }
4594 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4595 || ws.kind == TARGET_WAITKIND_EXITED
4596 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4597 {
4598 if (debug_infrun)
4599 {
4600 ptid_t ptid = pid_to_ptid (ws.value.integer);
4601
4602 fprintf_unfiltered (gdb_stdlog,
4603 "infrun: %s exited while "
4604 "stopping threads\n",
4605 target_pid_to_str (ptid));
4606 }
4607 }
4608 else
4609 {
4610 struct inferior *inf;
4611
4612 t = find_thread_ptid (event_ptid);
4613 if (t == NULL)
4614 t = add_thread (event_ptid);
4615
4616 t->stop_requested = 0;
4617 t->executing = 0;
4618 t->resumed = 0;
4619 t->control.may_range_step = 0;
4620
4621 /* This may be the first time we see the inferior report
4622 a stop. */
4623 inf = find_inferior_ptid (event_ptid);
4624 if (inf->needs_setup)
4625 {
4626 switch_to_thread_no_regs (t);
4627 setup_inferior (0);
4628 }
4629
4630 if (ws.kind == TARGET_WAITKIND_STOPPED
4631 && ws.value.sig == GDB_SIGNAL_0)
4632 {
4633 /* We caught the event that we intended to catch, so
4634 there's no event pending. */
4635 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4636 t->suspend.waitstatus_pending_p = 0;
4637
4638 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4639 {
4640 /* Add it back to the step-over queue. */
4641 if (debug_infrun)
4642 {
4643 fprintf_unfiltered (gdb_stdlog,
4644 "infrun: displaced-step of %s "
4645 "canceled: adding back to the "
4646 "step-over queue\n",
4647 target_pid_to_str (t->ptid));
4648 }
4649 t->control.trap_expected = 0;
4650 thread_step_over_chain_enqueue (t);
4651 }
4652 }
4653 else
4654 {
4655 enum gdb_signal sig;
4656 struct regcache *regcache;
4657
4658 if (debug_infrun)
4659 {
4660 char *statstr;
4661
4662 statstr = target_waitstatus_to_string (&ws);
4663 fprintf_unfiltered (gdb_stdlog,
4664 "infrun: target_wait %s, saving "
4665 "status for %d.%ld.%ld\n",
4666 statstr,
4667 ptid_get_pid (t->ptid),
4668 ptid_get_lwp (t->ptid),
4669 ptid_get_tid (t->ptid));
4670 xfree (statstr);
4671 }
4672
4673 /* Record for later. */
4674 save_waitstatus (t, &ws);
4675
4676 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4677 ? ws.value.sig : GDB_SIGNAL_0);
4678
4679 if (displaced_step_fixup (t->ptid, sig) < 0)
4680 {
4681 /* Add it back to the step-over queue. */
4682 t->control.trap_expected = 0;
4683 thread_step_over_chain_enqueue (t);
4684 }
4685
4686 regcache = get_thread_regcache (t->ptid);
4687 t->suspend.stop_pc = regcache_read_pc (regcache);
4688
4689 if (debug_infrun)
4690 {
4691 fprintf_unfiltered (gdb_stdlog,
4692 "infrun: saved stop_pc=%s for %s "
4693 "(currently_stepping=%d)\n",
4694 paddress (target_gdbarch (),
4695 t->suspend.stop_pc),
4696 target_pid_to_str (t->ptid),
4697 currently_stepping (t));
4698 }
4699 }
4700 }
4701 }
4702 }
4703
4704 do_cleanups (old_chain);
4705
4706 if (debug_infrun)
4707 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4708 }
4709
4710 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4711
4712 static int
4713 handle_no_resumed (struct execution_control_state *ecs)
4714 {
4715 struct inferior *inf;
4716 struct thread_info *thread;
4717
4718 if (target_can_async_p ())
4719 {
4720 struct ui *ui;
4721 int any_sync = 0;
4722
4723 ALL_UIS (ui)
4724 {
4725 if (ui->prompt_state == PROMPT_BLOCKED)
4726 {
4727 any_sync = 1;
4728 break;
4729 }
4730 }
4731 if (!any_sync)
4732 {
4733 /* There were no unwaited-for children left in the target, but,
4734 we're not synchronously waiting for events either. Just
4735 ignore. */
4736
4737 if (debug_infrun)
4738 fprintf_unfiltered (gdb_stdlog,
4739 "infrun: TARGET_WAITKIND_NO_RESUMED "
4740 "(ignoring: bg)\n");
4741 prepare_to_wait (ecs);
4742 return 1;
4743 }
4744 }
4745
4746 /* Otherwise, if we were running a synchronous execution command, we
4747 may need to cancel it and give the user back the terminal.
4748
4749 In non-stop mode, the target can't tell whether we've already
4750 consumed previous stop events, so it can end up sending us a
4751 no-resumed event like so:
4752
4753 #0 - thread 1 is left stopped
4754
4755 #1 - thread 2 is resumed and hits breakpoint
4756 -> TARGET_WAITKIND_STOPPED
4757
4758 #2 - thread 3 is resumed and exits
4759 this is the last resumed thread, so
4760 -> TARGET_WAITKIND_NO_RESUMED
4761
4762 #3 - gdb processes stop for thread 2 and decides to re-resume
4763 it.
4764
4765 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4766 thread 2 is now resumed, so the event should be ignored.
4767
4768 IOW, if the stop for thread 2 doesn't end a foreground command,
4769 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4770 event. But it could be that the event meant that thread 2 itself
4771 (or whatever other thread was the last resumed thread) exited.
4772
4773 To address this we refresh the thread list and check whether we
4774 have resumed threads _now_. In the example above, this removes
4775 thread 3 from the thread list. If thread 2 was re-resumed, we
4776 ignore this event. If we find no thread resumed, then we cancel
4777 the synchronous command show "no unwaited-for " to the user. */
4778 update_thread_list ();
4779
4780 ALL_NON_EXITED_THREADS (thread)
4781 {
4782 if (thread->executing
4783 || thread->suspend.waitstatus_pending_p)
4784 {
4785 /* There were no unwaited-for children left in the target at
4786 some point, but there are now. Just ignore. */
4787 if (debug_infrun)
4788 fprintf_unfiltered (gdb_stdlog,
4789 "infrun: TARGET_WAITKIND_NO_RESUMED "
4790 "(ignoring: found resumed)\n");
4791 prepare_to_wait (ecs);
4792 return 1;
4793 }
4794 }
4795
4796 /* Note however that we may find no resumed thread because the whole
4797 process exited meanwhile (thus updating the thread list results
4798 in an empty thread list). In this case we know we'll be getting
4799 a process exit event shortly. */
4800 ALL_INFERIORS (inf)
4801 {
4802 if (inf->pid == 0)
4803 continue;
4804
4805 thread = any_live_thread_of_process (inf->pid);
4806 if (thread == NULL)
4807 {
4808 if (debug_infrun)
4809 fprintf_unfiltered (gdb_stdlog,
4810 "infrun: TARGET_WAITKIND_NO_RESUMED "
4811 "(expect process exit)\n");
4812 prepare_to_wait (ecs);
4813 return 1;
4814 }
4815 }
4816
4817 /* Go ahead and report the event. */
4818 return 0;
4819 }
4820
4821 /* Given an execution control state that has been freshly filled in by
4822 an event from the inferior, figure out what it means and take
4823 appropriate action.
4824
4825 The alternatives are:
4826
4827 1) stop_waiting and return; to really stop and return to the
4828 debugger.
4829
4830 2) keep_going and return; to wait for the next event (set
4831 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4832 once). */
4833
4834 static void
4835 handle_inferior_event_1 (struct execution_control_state *ecs)
4836 {
4837 enum stop_kind stop_soon;
4838
4839 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4840 {
4841 /* We had an event in the inferior, but we are not interested in
4842 handling it at this level. The lower layers have already
4843 done what needs to be done, if anything.
4844
4845 One of the possible circumstances for this is when the
4846 inferior produces output for the console. The inferior has
4847 not stopped, and we are ignoring the event. Another possible
4848 circumstance is any event which the lower level knows will be
4849 reported multiple times without an intervening resume. */
4850 if (debug_infrun)
4851 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4852 prepare_to_wait (ecs);
4853 return;
4854 }
4855
4856 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4857 {
4858 if (debug_infrun)
4859 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4860 prepare_to_wait (ecs);
4861 return;
4862 }
4863
4864 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4865 && handle_no_resumed (ecs))
4866 return;
4867
4868 /* Cache the last pid/waitstatus. */
4869 set_last_target_status (ecs->ptid, ecs->ws);
4870
4871 /* Always clear state belonging to the previous time we stopped. */
4872 stop_stack_dummy = STOP_NONE;
4873
4874 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4875 {
4876 /* No unwaited-for children left. IOW, all resumed children
4877 have exited. */
4878 if (debug_infrun)
4879 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4880
4881 stop_print_frame = 0;
4882 stop_waiting (ecs);
4883 return;
4884 }
4885
4886 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4887 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4888 {
4889 ecs->event_thread = find_thread_ptid (ecs->ptid);
4890 /* If it's a new thread, add it to the thread database. */
4891 if (ecs->event_thread == NULL)
4892 ecs->event_thread = add_thread (ecs->ptid);
4893
4894 /* Disable range stepping. If the next step request could use a
4895 range, this will be end up re-enabled then. */
4896 ecs->event_thread->control.may_range_step = 0;
4897 }
4898
4899 /* Dependent on valid ECS->EVENT_THREAD. */
4900 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4901
4902 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4903 reinit_frame_cache ();
4904
4905 breakpoint_retire_moribund ();
4906
4907 /* First, distinguish signals caused by the debugger from signals
4908 that have to do with the program's own actions. Note that
4909 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4910 on the operating system version. Here we detect when a SIGILL or
4911 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4912 something similar for SIGSEGV, since a SIGSEGV will be generated
4913 when we're trying to execute a breakpoint instruction on a
4914 non-executable stack. This happens for call dummy breakpoints
4915 for architectures like SPARC that place call dummies on the
4916 stack. */
4917 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4918 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4919 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4920 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4921 {
4922 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4923
4924 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4925 regcache_read_pc (regcache)))
4926 {
4927 if (debug_infrun)
4928 fprintf_unfiltered (gdb_stdlog,
4929 "infrun: Treating signal as SIGTRAP\n");
4930 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4931 }
4932 }
4933
4934 /* Mark the non-executing threads accordingly. In all-stop, all
4935 threads of all processes are stopped when we get any event
4936 reported. In non-stop mode, only the event thread stops. */
4937 {
4938 ptid_t mark_ptid;
4939
4940 if (!target_is_non_stop_p ())
4941 mark_ptid = minus_one_ptid;
4942 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4943 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4944 {
4945 /* If we're handling a process exit in non-stop mode, even
4946 though threads haven't been deleted yet, one would think
4947 that there is nothing to do, as threads of the dead process
4948 will be soon deleted, and threads of any other process were
4949 left running. However, on some targets, threads survive a
4950 process exit event. E.g., for the "checkpoint" command,
4951 when the current checkpoint/fork exits, linux-fork.c
4952 automatically switches to another fork from within
4953 target_mourn_inferior, by associating the same
4954 inferior/thread to another fork. We haven't mourned yet at
4955 this point, but we must mark any threads left in the
4956 process as not-executing so that finish_thread_state marks
4957 them stopped (in the user's perspective) if/when we present
4958 the stop to the user. */
4959 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4960 }
4961 else
4962 mark_ptid = ecs->ptid;
4963
4964 set_executing (mark_ptid, 0);
4965
4966 /* Likewise the resumed flag. */
4967 set_resumed (mark_ptid, 0);
4968 }
4969
4970 switch (ecs->ws.kind)
4971 {
4972 case TARGET_WAITKIND_LOADED:
4973 if (debug_infrun)
4974 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4975 if (!ptid_equal (ecs->ptid, inferior_ptid))
4976 context_switch (ecs->ptid);
4977 /* Ignore gracefully during startup of the inferior, as it might
4978 be the shell which has just loaded some objects, otherwise
4979 add the symbols for the newly loaded objects. Also ignore at
4980 the beginning of an attach or remote session; we will query
4981 the full list of libraries once the connection is
4982 established. */
4983
4984 stop_soon = get_inferior_stop_soon (ecs->ptid);
4985 if (stop_soon == NO_STOP_QUIETLY)
4986 {
4987 struct regcache *regcache;
4988
4989 regcache = get_thread_regcache (ecs->ptid);
4990
4991 handle_solib_event ();
4992
4993 ecs->event_thread->control.stop_bpstat
4994 = bpstat_stop_status (get_regcache_aspace (regcache),
4995 stop_pc, ecs->ptid, &ecs->ws);
4996
4997 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4998 {
4999 /* A catchpoint triggered. */
5000 process_event_stop_test (ecs);
5001 return;
5002 }
5003
5004 /* If requested, stop when the dynamic linker notifies
5005 gdb of events. This allows the user to get control
5006 and place breakpoints in initializer routines for
5007 dynamically loaded objects (among other things). */
5008 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5009 if (stop_on_solib_events)
5010 {
5011 /* Make sure we print "Stopped due to solib-event" in
5012 normal_stop. */
5013 stop_print_frame = 1;
5014
5015 stop_waiting (ecs);
5016 return;
5017 }
5018 }
5019
5020 /* If we are skipping through a shell, or through shared library
5021 loading that we aren't interested in, resume the program. If
5022 we're running the program normally, also resume. */
5023 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5024 {
5025 /* Loading of shared libraries might have changed breakpoint
5026 addresses. Make sure new breakpoints are inserted. */
5027 if (stop_soon == NO_STOP_QUIETLY)
5028 insert_breakpoints ();
5029 resume (GDB_SIGNAL_0);
5030 prepare_to_wait (ecs);
5031 return;
5032 }
5033
5034 /* But stop if we're attaching or setting up a remote
5035 connection. */
5036 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5037 || stop_soon == STOP_QUIETLY_REMOTE)
5038 {
5039 if (debug_infrun)
5040 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5041 stop_waiting (ecs);
5042 return;
5043 }
5044
5045 internal_error (__FILE__, __LINE__,
5046 _("unhandled stop_soon: %d"), (int) stop_soon);
5047
5048 case TARGET_WAITKIND_SPURIOUS:
5049 if (debug_infrun)
5050 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5051 if (!ptid_equal (ecs->ptid, inferior_ptid))
5052 context_switch (ecs->ptid);
5053 resume (GDB_SIGNAL_0);
5054 prepare_to_wait (ecs);
5055 return;
5056
5057 case TARGET_WAITKIND_THREAD_CREATED:
5058 if (debug_infrun)
5059 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5060 if (!ptid_equal (ecs->ptid, inferior_ptid))
5061 context_switch (ecs->ptid);
5062 if (!switch_back_to_stepped_thread (ecs))
5063 keep_going (ecs);
5064 return;
5065
5066 case TARGET_WAITKIND_EXITED:
5067 case TARGET_WAITKIND_SIGNALLED:
5068 if (debug_infrun)
5069 {
5070 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5071 fprintf_unfiltered (gdb_stdlog,
5072 "infrun: TARGET_WAITKIND_EXITED\n");
5073 else
5074 fprintf_unfiltered (gdb_stdlog,
5075 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5076 }
5077
5078 inferior_ptid = ecs->ptid;
5079 set_current_inferior (find_inferior_ptid (ecs->ptid));
5080 set_current_program_space (current_inferior ()->pspace);
5081 handle_vfork_child_exec_or_exit (0);
5082 target_terminal_ours (); /* Must do this before mourn anyway. */
5083
5084 /* Clearing any previous state of convenience variables. */
5085 clear_exit_convenience_vars ();
5086
5087 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5088 {
5089 /* Record the exit code in the convenience variable $_exitcode, so
5090 that the user can inspect this again later. */
5091 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5092 (LONGEST) ecs->ws.value.integer);
5093
5094 /* Also record this in the inferior itself. */
5095 current_inferior ()->has_exit_code = 1;
5096 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5097
5098 /* Support the --return-child-result option. */
5099 return_child_result_value = ecs->ws.value.integer;
5100
5101 observer_notify_exited (ecs->ws.value.integer);
5102 }
5103 else
5104 {
5105 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5106 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5107
5108 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5109 {
5110 /* Set the value of the internal variable $_exitsignal,
5111 which holds the signal uncaught by the inferior. */
5112 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5113 gdbarch_gdb_signal_to_target (gdbarch,
5114 ecs->ws.value.sig));
5115 }
5116 else
5117 {
5118 /* We don't have access to the target's method used for
5119 converting between signal numbers (GDB's internal
5120 representation <-> target's representation).
5121 Therefore, we cannot do a good job at displaying this
5122 information to the user. It's better to just warn
5123 her about it (if infrun debugging is enabled), and
5124 give up. */
5125 if (debug_infrun)
5126 fprintf_filtered (gdb_stdlog, _("\
5127 Cannot fill $_exitsignal with the correct signal number.\n"));
5128 }
5129
5130 observer_notify_signal_exited (ecs->ws.value.sig);
5131 }
5132
5133 gdb_flush (gdb_stdout);
5134 target_mourn_inferior ();
5135 stop_print_frame = 0;
5136 stop_waiting (ecs);
5137 return;
5138
5139 /* The following are the only cases in which we keep going;
5140 the above cases end in a continue or goto. */
5141 case TARGET_WAITKIND_FORKED:
5142 case TARGET_WAITKIND_VFORKED:
5143 if (debug_infrun)
5144 {
5145 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5146 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5147 else
5148 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5149 }
5150
5151 /* Check whether the inferior is displaced stepping. */
5152 {
5153 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5154 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5155
5156 /* If checking displaced stepping is supported, and thread
5157 ecs->ptid is displaced stepping. */
5158 if (displaced_step_in_progress_thread (ecs->ptid))
5159 {
5160 struct inferior *parent_inf
5161 = find_inferior_ptid (ecs->ptid);
5162 struct regcache *child_regcache;
5163 CORE_ADDR parent_pc;
5164
5165 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5166 indicating that the displaced stepping of syscall instruction
5167 has been done. Perform cleanup for parent process here. Note
5168 that this operation also cleans up the child process for vfork,
5169 because their pages are shared. */
5170 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5171 /* Start a new step-over in another thread if there's one
5172 that needs it. */
5173 start_step_over ();
5174
5175 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5176 {
5177 struct displaced_step_inferior_state *displaced
5178 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5179
5180 /* Restore scratch pad for child process. */
5181 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5182 }
5183
5184 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5185 the child's PC is also within the scratchpad. Set the child's PC
5186 to the parent's PC value, which has already been fixed up.
5187 FIXME: we use the parent's aspace here, although we're touching
5188 the child, because the child hasn't been added to the inferior
5189 list yet at this point. */
5190
5191 child_regcache
5192 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5193 gdbarch,
5194 parent_inf->aspace);
5195 /* Read PC value of parent process. */
5196 parent_pc = regcache_read_pc (regcache);
5197
5198 if (debug_displaced)
5199 fprintf_unfiltered (gdb_stdlog,
5200 "displaced: write child pc from %s to %s\n",
5201 paddress (gdbarch,
5202 regcache_read_pc (child_regcache)),
5203 paddress (gdbarch, parent_pc));
5204
5205 regcache_write_pc (child_regcache, parent_pc);
5206 }
5207 }
5208
5209 if (!ptid_equal (ecs->ptid, inferior_ptid))
5210 context_switch (ecs->ptid);
5211
5212 /* Immediately detach breakpoints from the child before there's
5213 any chance of letting the user delete breakpoints from the
5214 breakpoint lists. If we don't do this early, it's easy to
5215 leave left over traps in the child, vis: "break foo; catch
5216 fork; c; <fork>; del; c; <child calls foo>". We only follow
5217 the fork on the last `continue', and by that time the
5218 breakpoint at "foo" is long gone from the breakpoint table.
5219 If we vforked, then we don't need to unpatch here, since both
5220 parent and child are sharing the same memory pages; we'll
5221 need to unpatch at follow/detach time instead to be certain
5222 that new breakpoints added between catchpoint hit time and
5223 vfork follow are detached. */
5224 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5225 {
5226 /* This won't actually modify the breakpoint list, but will
5227 physically remove the breakpoints from the child. */
5228 detach_breakpoints (ecs->ws.value.related_pid);
5229 }
5230
5231 delete_just_stopped_threads_single_step_breakpoints ();
5232
5233 /* In case the event is caught by a catchpoint, remember that
5234 the event is to be followed at the next resume of the thread,
5235 and not immediately. */
5236 ecs->event_thread->pending_follow = ecs->ws;
5237
5238 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5239
5240 ecs->event_thread->control.stop_bpstat
5241 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5242 stop_pc, ecs->ptid, &ecs->ws);
5243
5244 /* If no catchpoint triggered for this, then keep going. Note
5245 that we're interested in knowing the bpstat actually causes a
5246 stop, not just if it may explain the signal. Software
5247 watchpoints, for example, always appear in the bpstat. */
5248 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5249 {
5250 ptid_t parent;
5251 ptid_t child;
5252 int should_resume;
5253 int follow_child
5254 = (follow_fork_mode_string == follow_fork_mode_child);
5255
5256 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5257
5258 should_resume = follow_fork ();
5259
5260 parent = ecs->ptid;
5261 child = ecs->ws.value.related_pid;
5262
5263 /* At this point, the parent is marked running, and the
5264 child is marked stopped. */
5265
5266 /* If not resuming the parent, mark it stopped. */
5267 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5268 set_running (parent, 0);
5269
5270 /* If resuming the child, mark it running. */
5271 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5272 set_running (child, 1);
5273
5274 /* In non-stop mode, also resume the other branch. */
5275 if (!detach_fork && (non_stop
5276 || (sched_multi && target_is_non_stop_p ())))
5277 {
5278 if (follow_child)
5279 switch_to_thread (parent);
5280 else
5281 switch_to_thread (child);
5282
5283 ecs->event_thread = inferior_thread ();
5284 ecs->ptid = inferior_ptid;
5285 keep_going (ecs);
5286 }
5287
5288 if (follow_child)
5289 switch_to_thread (child);
5290 else
5291 switch_to_thread (parent);
5292
5293 ecs->event_thread = inferior_thread ();
5294 ecs->ptid = inferior_ptid;
5295
5296 if (should_resume)
5297 keep_going (ecs);
5298 else
5299 stop_waiting (ecs);
5300 return;
5301 }
5302 process_event_stop_test (ecs);
5303 return;
5304
5305 case TARGET_WAITKIND_VFORK_DONE:
5306 /* Done with the shared memory region. Re-insert breakpoints in
5307 the parent, and keep going. */
5308
5309 if (debug_infrun)
5310 fprintf_unfiltered (gdb_stdlog,
5311 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5312
5313 if (!ptid_equal (ecs->ptid, inferior_ptid))
5314 context_switch (ecs->ptid);
5315
5316 current_inferior ()->waiting_for_vfork_done = 0;
5317 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5318 /* This also takes care of reinserting breakpoints in the
5319 previously locked inferior. */
5320 keep_going (ecs);
5321 return;
5322
5323 case TARGET_WAITKIND_EXECD:
5324 if (debug_infrun)
5325 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5326
5327 if (!ptid_equal (ecs->ptid, inferior_ptid))
5328 context_switch (ecs->ptid);
5329
5330 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5331
5332 /* Do whatever is necessary to the parent branch of the vfork. */
5333 handle_vfork_child_exec_or_exit (1);
5334
5335 /* This causes the eventpoints and symbol table to be reset.
5336 Must do this now, before trying to determine whether to
5337 stop. */
5338 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5339
5340 /* In follow_exec we may have deleted the original thread and
5341 created a new one. Make sure that the event thread is the
5342 execd thread for that case (this is a nop otherwise). */
5343 ecs->event_thread = inferior_thread ();
5344
5345 ecs->event_thread->control.stop_bpstat
5346 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5347 stop_pc, ecs->ptid, &ecs->ws);
5348
5349 /* Note that this may be referenced from inside
5350 bpstat_stop_status above, through inferior_has_execd. */
5351 xfree (ecs->ws.value.execd_pathname);
5352 ecs->ws.value.execd_pathname = NULL;
5353
5354 /* If no catchpoint triggered for this, then keep going. */
5355 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5356 {
5357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5358 keep_going (ecs);
5359 return;
5360 }
5361 process_event_stop_test (ecs);
5362 return;
5363
5364 /* Be careful not to try to gather much state about a thread
5365 that's in a syscall. It's frequently a losing proposition. */
5366 case TARGET_WAITKIND_SYSCALL_ENTRY:
5367 if (debug_infrun)
5368 fprintf_unfiltered (gdb_stdlog,
5369 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5370 /* Getting the current syscall number. */
5371 if (handle_syscall_event (ecs) == 0)
5372 process_event_stop_test (ecs);
5373 return;
5374
5375 /* Before examining the threads further, step this thread to
5376 get it entirely out of the syscall. (We get notice of the
5377 event when the thread is just on the verge of exiting a
5378 syscall. Stepping one instruction seems to get it back
5379 into user code.) */
5380 case TARGET_WAITKIND_SYSCALL_RETURN:
5381 if (debug_infrun)
5382 fprintf_unfiltered (gdb_stdlog,
5383 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5384 if (handle_syscall_event (ecs) == 0)
5385 process_event_stop_test (ecs);
5386 return;
5387
5388 case TARGET_WAITKIND_STOPPED:
5389 if (debug_infrun)
5390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5391 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5392 handle_signal_stop (ecs);
5393 return;
5394
5395 case TARGET_WAITKIND_NO_HISTORY:
5396 if (debug_infrun)
5397 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5398 /* Reverse execution: target ran out of history info. */
5399
5400 /* Switch to the stopped thread. */
5401 if (!ptid_equal (ecs->ptid, inferior_ptid))
5402 context_switch (ecs->ptid);
5403 if (debug_infrun)
5404 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5405
5406 delete_just_stopped_threads_single_step_breakpoints ();
5407 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5408 observer_notify_no_history ();
5409 stop_waiting (ecs);
5410 return;
5411 }
5412 }
5413
5414 /* A wrapper around handle_inferior_event_1, which also makes sure
5415 that all temporary struct value objects that were created during
5416 the handling of the event get deleted at the end. */
5417
5418 static void
5419 handle_inferior_event (struct execution_control_state *ecs)
5420 {
5421 struct value *mark = value_mark ();
5422
5423 handle_inferior_event_1 (ecs);
5424 /* Purge all temporary values created during the event handling,
5425 as it could be a long time before we return to the command level
5426 where such values would otherwise be purged. */
5427 value_free_to_mark (mark);
5428 }
5429
5430 /* Restart threads back to what they were trying to do back when we
5431 paused them for an in-line step-over. The EVENT_THREAD thread is
5432 ignored. */
5433
5434 static void
5435 restart_threads (struct thread_info *event_thread)
5436 {
5437 struct thread_info *tp;
5438
5439 /* In case the instruction just stepped spawned a new thread. */
5440 update_thread_list ();
5441
5442 ALL_NON_EXITED_THREADS (tp)
5443 {
5444 if (tp == event_thread)
5445 {
5446 if (debug_infrun)
5447 fprintf_unfiltered (gdb_stdlog,
5448 "infrun: restart threads: "
5449 "[%s] is event thread\n",
5450 target_pid_to_str (tp->ptid));
5451 continue;
5452 }
5453
5454 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5455 {
5456 if (debug_infrun)
5457 fprintf_unfiltered (gdb_stdlog,
5458 "infrun: restart threads: "
5459 "[%s] not meant to be running\n",
5460 target_pid_to_str (tp->ptid));
5461 continue;
5462 }
5463
5464 if (tp->resumed)
5465 {
5466 if (debug_infrun)
5467 fprintf_unfiltered (gdb_stdlog,
5468 "infrun: restart threads: [%s] resumed\n",
5469 target_pid_to_str (tp->ptid));
5470 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5471 continue;
5472 }
5473
5474 if (thread_is_in_step_over_chain (tp))
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: "
5479 "[%s] needs step-over\n",
5480 target_pid_to_str (tp->ptid));
5481 gdb_assert (!tp->resumed);
5482 continue;
5483 }
5484
5485
5486 if (tp->suspend.waitstatus_pending_p)
5487 {
5488 if (debug_infrun)
5489 fprintf_unfiltered (gdb_stdlog,
5490 "infrun: restart threads: "
5491 "[%s] has pending status\n",
5492 target_pid_to_str (tp->ptid));
5493 tp->resumed = 1;
5494 continue;
5495 }
5496
5497 /* If some thread needs to start a step-over at this point, it
5498 should still be in the step-over queue, and thus skipped
5499 above. */
5500 if (thread_still_needs_step_over (tp))
5501 {
5502 internal_error (__FILE__, __LINE__,
5503 "thread [%s] needs a step-over, but not in "
5504 "step-over queue\n",
5505 target_pid_to_str (tp->ptid));
5506 }
5507
5508 if (currently_stepping (tp))
5509 {
5510 if (debug_infrun)
5511 fprintf_unfiltered (gdb_stdlog,
5512 "infrun: restart threads: [%s] was stepping\n",
5513 target_pid_to_str (tp->ptid));
5514 keep_going_stepped_thread (tp);
5515 }
5516 else
5517 {
5518 struct execution_control_state ecss;
5519 struct execution_control_state *ecs = &ecss;
5520
5521 if (debug_infrun)
5522 fprintf_unfiltered (gdb_stdlog,
5523 "infrun: restart threads: [%s] continuing\n",
5524 target_pid_to_str (tp->ptid));
5525 reset_ecs (ecs, tp);
5526 switch_to_thread (tp->ptid);
5527 keep_going_pass_signal (ecs);
5528 }
5529 }
5530 }
5531
5532 /* Callback for iterate_over_threads. Find a resumed thread that has
5533 a pending waitstatus. */
5534
5535 static int
5536 resumed_thread_with_pending_status (struct thread_info *tp,
5537 void *arg)
5538 {
5539 return (tp->resumed
5540 && tp->suspend.waitstatus_pending_p);
5541 }
5542
5543 /* Called when we get an event that may finish an in-line or
5544 out-of-line (displaced stepping) step-over started previously.
5545 Return true if the event is processed and we should go back to the
5546 event loop; false if the caller should continue processing the
5547 event. */
5548
5549 static int
5550 finish_step_over (struct execution_control_state *ecs)
5551 {
5552 int had_step_over_info;
5553
5554 displaced_step_fixup (ecs->ptid,
5555 ecs->event_thread->suspend.stop_signal);
5556
5557 had_step_over_info = step_over_info_valid_p ();
5558
5559 if (had_step_over_info)
5560 {
5561 /* If we're stepping over a breakpoint with all threads locked,
5562 then only the thread that was stepped should be reporting
5563 back an event. */
5564 gdb_assert (ecs->event_thread->control.trap_expected);
5565
5566 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5567 clear_step_over_info ();
5568 }
5569
5570 if (!target_is_non_stop_p ())
5571 return 0;
5572
5573 /* Start a new step-over in another thread if there's one that
5574 needs it. */
5575 start_step_over ();
5576
5577 /* If we were stepping over a breakpoint before, and haven't started
5578 a new in-line step-over sequence, then restart all other threads
5579 (except the event thread). We can't do this in all-stop, as then
5580 e.g., we wouldn't be able to issue any other remote packet until
5581 these other threads stop. */
5582 if (had_step_over_info && !step_over_info_valid_p ())
5583 {
5584 struct thread_info *pending;
5585
5586 /* If we only have threads with pending statuses, the restart
5587 below won't restart any thread and so nothing re-inserts the
5588 breakpoint we just stepped over. But we need it inserted
5589 when we later process the pending events, otherwise if
5590 another thread has a pending event for this breakpoint too,
5591 we'd discard its event (because the breakpoint that
5592 originally caused the event was no longer inserted). */
5593 context_switch (ecs->ptid);
5594 insert_breakpoints ();
5595
5596 restart_threads (ecs->event_thread);
5597
5598 /* If we have events pending, go through handle_inferior_event
5599 again, picking up a pending event at random. This avoids
5600 thread starvation. */
5601
5602 /* But not if we just stepped over a watchpoint in order to let
5603 the instruction execute so we can evaluate its expression.
5604 The set of watchpoints that triggered is recorded in the
5605 breakpoint objects themselves (see bp->watchpoint_triggered).
5606 If we processed another event first, that other event could
5607 clobber this info. */
5608 if (ecs->event_thread->stepping_over_watchpoint)
5609 return 0;
5610
5611 pending = iterate_over_threads (resumed_thread_with_pending_status,
5612 NULL);
5613 if (pending != NULL)
5614 {
5615 struct thread_info *tp = ecs->event_thread;
5616 struct regcache *regcache;
5617
5618 if (debug_infrun)
5619 {
5620 fprintf_unfiltered (gdb_stdlog,
5621 "infrun: found resumed threads with "
5622 "pending events, saving status\n");
5623 }
5624
5625 gdb_assert (pending != tp);
5626
5627 /* Record the event thread's event for later. */
5628 save_waitstatus (tp, &ecs->ws);
5629 /* This was cleared early, by handle_inferior_event. Set it
5630 so this pending event is considered by
5631 do_target_wait. */
5632 tp->resumed = 1;
5633
5634 gdb_assert (!tp->executing);
5635
5636 regcache = get_thread_regcache (tp->ptid);
5637 tp->suspend.stop_pc = regcache_read_pc (regcache);
5638
5639 if (debug_infrun)
5640 {
5641 fprintf_unfiltered (gdb_stdlog,
5642 "infrun: saved stop_pc=%s for %s "
5643 "(currently_stepping=%d)\n",
5644 paddress (target_gdbarch (),
5645 tp->suspend.stop_pc),
5646 target_pid_to_str (tp->ptid),
5647 currently_stepping (tp));
5648 }
5649
5650 /* This in-line step-over finished; clear this so we won't
5651 start a new one. This is what handle_signal_stop would
5652 do, if we returned false. */
5653 tp->stepping_over_breakpoint = 0;
5654
5655 /* Wake up the event loop again. */
5656 mark_async_event_handler (infrun_async_inferior_event_token);
5657
5658 prepare_to_wait (ecs);
5659 return 1;
5660 }
5661 }
5662
5663 return 0;
5664 }
5665
5666 /* Come here when the program has stopped with a signal. */
5667
5668 static void
5669 handle_signal_stop (struct execution_control_state *ecs)
5670 {
5671 struct frame_info *frame;
5672 struct gdbarch *gdbarch;
5673 int stopped_by_watchpoint;
5674 enum stop_kind stop_soon;
5675 int random_signal;
5676
5677 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5678
5679 /* Do we need to clean up the state of a thread that has
5680 completed a displaced single-step? (Doing so usually affects
5681 the PC, so do it here, before we set stop_pc.) */
5682 if (finish_step_over (ecs))
5683 return;
5684
5685 /* If we either finished a single-step or hit a breakpoint, but
5686 the user wanted this thread to be stopped, pretend we got a
5687 SIG0 (generic unsignaled stop). */
5688 if (ecs->event_thread->stop_requested
5689 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5690 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5691
5692 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5693
5694 if (debug_infrun)
5695 {
5696 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5697 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5698 struct cleanup *old_chain = save_inferior_ptid ();
5699
5700 inferior_ptid = ecs->ptid;
5701
5702 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5703 paddress (gdbarch, stop_pc));
5704 if (target_stopped_by_watchpoint ())
5705 {
5706 CORE_ADDR addr;
5707
5708 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5709
5710 if (target_stopped_data_address (&current_target, &addr))
5711 fprintf_unfiltered (gdb_stdlog,
5712 "infrun: stopped data address = %s\n",
5713 paddress (gdbarch, addr));
5714 else
5715 fprintf_unfiltered (gdb_stdlog,
5716 "infrun: (no data address available)\n");
5717 }
5718
5719 do_cleanups (old_chain);
5720 }
5721
5722 /* This is originated from start_remote(), start_inferior() and
5723 shared libraries hook functions. */
5724 stop_soon = get_inferior_stop_soon (ecs->ptid);
5725 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5726 {
5727 if (!ptid_equal (ecs->ptid, inferior_ptid))
5728 context_switch (ecs->ptid);
5729 if (debug_infrun)
5730 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5731 stop_print_frame = 1;
5732 stop_waiting (ecs);
5733 return;
5734 }
5735
5736 /* This originates from attach_command(). We need to overwrite
5737 the stop_signal here, because some kernels don't ignore a
5738 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5739 See more comments in inferior.h. On the other hand, if we
5740 get a non-SIGSTOP, report it to the user - assume the backend
5741 will handle the SIGSTOP if it should show up later.
5742
5743 Also consider that the attach is complete when we see a
5744 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5745 target extended-remote report it instead of a SIGSTOP
5746 (e.g. gdbserver). We already rely on SIGTRAP being our
5747 signal, so this is no exception.
5748
5749 Also consider that the attach is complete when we see a
5750 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5751 the target to stop all threads of the inferior, in case the
5752 low level attach operation doesn't stop them implicitly. If
5753 they weren't stopped implicitly, then the stub will report a
5754 GDB_SIGNAL_0, meaning: stopped for no particular reason
5755 other than GDB's request. */
5756 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5757 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5758 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5759 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5760 {
5761 stop_print_frame = 1;
5762 stop_waiting (ecs);
5763 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5764 return;
5765 }
5766
5767 /* See if something interesting happened to the non-current thread. If
5768 so, then switch to that thread. */
5769 if (!ptid_equal (ecs->ptid, inferior_ptid))
5770 {
5771 if (debug_infrun)
5772 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5773
5774 context_switch (ecs->ptid);
5775
5776 if (deprecated_context_hook)
5777 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5778 }
5779
5780 /* At this point, get hold of the now-current thread's frame. */
5781 frame = get_current_frame ();
5782 gdbarch = get_frame_arch (frame);
5783
5784 /* Pull the single step breakpoints out of the target. */
5785 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5786 {
5787 struct regcache *regcache;
5788 struct address_space *aspace;
5789 CORE_ADDR pc;
5790
5791 regcache = get_thread_regcache (ecs->ptid);
5792 aspace = get_regcache_aspace (regcache);
5793 pc = regcache_read_pc (regcache);
5794
5795 /* However, before doing so, if this single-step breakpoint was
5796 actually for another thread, set this thread up for moving
5797 past it. */
5798 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5799 aspace, pc))
5800 {
5801 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5802 {
5803 if (debug_infrun)
5804 {
5805 fprintf_unfiltered (gdb_stdlog,
5806 "infrun: [%s] hit another thread's "
5807 "single-step breakpoint\n",
5808 target_pid_to_str (ecs->ptid));
5809 }
5810 ecs->hit_singlestep_breakpoint = 1;
5811 }
5812 }
5813 else
5814 {
5815 if (debug_infrun)
5816 {
5817 fprintf_unfiltered (gdb_stdlog,
5818 "infrun: [%s] hit its "
5819 "single-step breakpoint\n",
5820 target_pid_to_str (ecs->ptid));
5821 }
5822 }
5823 }
5824 delete_just_stopped_threads_single_step_breakpoints ();
5825
5826 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5827 && ecs->event_thread->control.trap_expected
5828 && ecs->event_thread->stepping_over_watchpoint)
5829 stopped_by_watchpoint = 0;
5830 else
5831 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5832
5833 /* If necessary, step over this watchpoint. We'll be back to display
5834 it in a moment. */
5835 if (stopped_by_watchpoint
5836 && (target_have_steppable_watchpoint
5837 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5838 {
5839 /* At this point, we are stopped at an instruction which has
5840 attempted to write to a piece of memory under control of
5841 a watchpoint. The instruction hasn't actually executed
5842 yet. If we were to evaluate the watchpoint expression
5843 now, we would get the old value, and therefore no change
5844 would seem to have occurred.
5845
5846 In order to make watchpoints work `right', we really need
5847 to complete the memory write, and then evaluate the
5848 watchpoint expression. We do this by single-stepping the
5849 target.
5850
5851 It may not be necessary to disable the watchpoint to step over
5852 it. For example, the PA can (with some kernel cooperation)
5853 single step over a watchpoint without disabling the watchpoint.
5854
5855 It is far more common to need to disable a watchpoint to step
5856 the inferior over it. If we have non-steppable watchpoints,
5857 we must disable the current watchpoint; it's simplest to
5858 disable all watchpoints.
5859
5860 Any breakpoint at PC must also be stepped over -- if there's
5861 one, it will have already triggered before the watchpoint
5862 triggered, and we either already reported it to the user, or
5863 it didn't cause a stop and we called keep_going. In either
5864 case, if there was a breakpoint at PC, we must be trying to
5865 step past it. */
5866 ecs->event_thread->stepping_over_watchpoint = 1;
5867 keep_going (ecs);
5868 return;
5869 }
5870
5871 ecs->event_thread->stepping_over_breakpoint = 0;
5872 ecs->event_thread->stepping_over_watchpoint = 0;
5873 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5874 ecs->event_thread->control.stop_step = 0;
5875 stop_print_frame = 1;
5876 stopped_by_random_signal = 0;
5877
5878 /* Hide inlined functions starting here, unless we just performed stepi or
5879 nexti. After stepi and nexti, always show the innermost frame (not any
5880 inline function call sites). */
5881 if (ecs->event_thread->control.step_range_end != 1)
5882 {
5883 struct address_space *aspace =
5884 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5885
5886 /* skip_inline_frames is expensive, so we avoid it if we can
5887 determine that the address is one where functions cannot have
5888 been inlined. This improves performance with inferiors that
5889 load a lot of shared libraries, because the solib event
5890 breakpoint is defined as the address of a function (i.e. not
5891 inline). Note that we have to check the previous PC as well
5892 as the current one to catch cases when we have just
5893 single-stepped off a breakpoint prior to reinstating it.
5894 Note that we're assuming that the code we single-step to is
5895 not inline, but that's not definitive: there's nothing
5896 preventing the event breakpoint function from containing
5897 inlined code, and the single-step ending up there. If the
5898 user had set a breakpoint on that inlined code, the missing
5899 skip_inline_frames call would break things. Fortunately
5900 that's an extremely unlikely scenario. */
5901 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5902 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5903 && ecs->event_thread->control.trap_expected
5904 && pc_at_non_inline_function (aspace,
5905 ecs->event_thread->prev_pc,
5906 &ecs->ws)))
5907 {
5908 skip_inline_frames (ecs->ptid);
5909
5910 /* Re-fetch current thread's frame in case that invalidated
5911 the frame cache. */
5912 frame = get_current_frame ();
5913 gdbarch = get_frame_arch (frame);
5914 }
5915 }
5916
5917 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5918 && ecs->event_thread->control.trap_expected
5919 && gdbarch_single_step_through_delay_p (gdbarch)
5920 && currently_stepping (ecs->event_thread))
5921 {
5922 /* We're trying to step off a breakpoint. Turns out that we're
5923 also on an instruction that needs to be stepped multiple
5924 times before it's been fully executing. E.g., architectures
5925 with a delay slot. It needs to be stepped twice, once for
5926 the instruction and once for the delay slot. */
5927 int step_through_delay
5928 = gdbarch_single_step_through_delay (gdbarch, frame);
5929
5930 if (debug_infrun && step_through_delay)
5931 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5932 if (ecs->event_thread->control.step_range_end == 0
5933 && step_through_delay)
5934 {
5935 /* The user issued a continue when stopped at a breakpoint.
5936 Set up for another trap and get out of here. */
5937 ecs->event_thread->stepping_over_breakpoint = 1;
5938 keep_going (ecs);
5939 return;
5940 }
5941 else if (step_through_delay)
5942 {
5943 /* The user issued a step when stopped at a breakpoint.
5944 Maybe we should stop, maybe we should not - the delay
5945 slot *might* correspond to a line of source. In any
5946 case, don't decide that here, just set
5947 ecs->stepping_over_breakpoint, making sure we
5948 single-step again before breakpoints are re-inserted. */
5949 ecs->event_thread->stepping_over_breakpoint = 1;
5950 }
5951 }
5952
5953 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5954 handles this event. */
5955 ecs->event_thread->control.stop_bpstat
5956 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5957 stop_pc, ecs->ptid, &ecs->ws);
5958
5959 /* Following in case break condition called a
5960 function. */
5961 stop_print_frame = 1;
5962
5963 /* This is where we handle "moribund" watchpoints. Unlike
5964 software breakpoints traps, hardware watchpoint traps are
5965 always distinguishable from random traps. If no high-level
5966 watchpoint is associated with the reported stop data address
5967 anymore, then the bpstat does not explain the signal ---
5968 simply make sure to ignore it if `stopped_by_watchpoint' is
5969 set. */
5970
5971 if (debug_infrun
5972 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5973 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5974 GDB_SIGNAL_TRAP)
5975 && stopped_by_watchpoint)
5976 fprintf_unfiltered (gdb_stdlog,
5977 "infrun: no user watchpoint explains "
5978 "watchpoint SIGTRAP, ignoring\n");
5979
5980 /* NOTE: cagney/2003-03-29: These checks for a random signal
5981 at one stage in the past included checks for an inferior
5982 function call's call dummy's return breakpoint. The original
5983 comment, that went with the test, read:
5984
5985 ``End of a stack dummy. Some systems (e.g. Sony news) give
5986 another signal besides SIGTRAP, so check here as well as
5987 above.''
5988
5989 If someone ever tries to get call dummys on a
5990 non-executable stack to work (where the target would stop
5991 with something like a SIGSEGV), then those tests might need
5992 to be re-instated. Given, however, that the tests were only
5993 enabled when momentary breakpoints were not being used, I
5994 suspect that it won't be the case.
5995
5996 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5997 be necessary for call dummies on a non-executable stack on
5998 SPARC. */
5999
6000 /* See if the breakpoints module can explain the signal. */
6001 random_signal
6002 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6003 ecs->event_thread->suspend.stop_signal);
6004
6005 /* Maybe this was a trap for a software breakpoint that has since
6006 been removed. */
6007 if (random_signal && target_stopped_by_sw_breakpoint ())
6008 {
6009 if (program_breakpoint_here_p (gdbarch, stop_pc))
6010 {
6011 struct regcache *regcache;
6012 int decr_pc;
6013
6014 /* Re-adjust PC to what the program would see if GDB was not
6015 debugging it. */
6016 regcache = get_thread_regcache (ecs->event_thread->ptid);
6017 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6018 if (decr_pc != 0)
6019 {
6020 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6021
6022 if (record_full_is_used ())
6023 record_full_gdb_operation_disable_set ();
6024
6025 regcache_write_pc (regcache, stop_pc + decr_pc);
6026
6027 do_cleanups (old_cleanups);
6028 }
6029 }
6030 else
6031 {
6032 /* A delayed software breakpoint event. Ignore the trap. */
6033 if (debug_infrun)
6034 fprintf_unfiltered (gdb_stdlog,
6035 "infrun: delayed software breakpoint "
6036 "trap, ignoring\n");
6037 random_signal = 0;
6038 }
6039 }
6040
6041 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6042 has since been removed. */
6043 if (random_signal && target_stopped_by_hw_breakpoint ())
6044 {
6045 /* A delayed hardware breakpoint event. Ignore the trap. */
6046 if (debug_infrun)
6047 fprintf_unfiltered (gdb_stdlog,
6048 "infrun: delayed hardware breakpoint/watchpoint "
6049 "trap, ignoring\n");
6050 random_signal = 0;
6051 }
6052
6053 /* If not, perhaps stepping/nexting can. */
6054 if (random_signal)
6055 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6056 && currently_stepping (ecs->event_thread));
6057
6058 /* Perhaps the thread hit a single-step breakpoint of _another_
6059 thread. Single-step breakpoints are transparent to the
6060 breakpoints module. */
6061 if (random_signal)
6062 random_signal = !ecs->hit_singlestep_breakpoint;
6063
6064 /* No? Perhaps we got a moribund watchpoint. */
6065 if (random_signal)
6066 random_signal = !stopped_by_watchpoint;
6067
6068 /* For the program's own signals, act according to
6069 the signal handling tables. */
6070
6071 if (random_signal)
6072 {
6073 /* Signal not for debugging purposes. */
6074 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6075 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6076
6077 if (debug_infrun)
6078 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6079 gdb_signal_to_symbol_string (stop_signal));
6080
6081 stopped_by_random_signal = 1;
6082
6083 /* Always stop on signals if we're either just gaining control
6084 of the program, or the user explicitly requested this thread
6085 to remain stopped. */
6086 if (stop_soon != NO_STOP_QUIETLY
6087 || ecs->event_thread->stop_requested
6088 || (!inf->detaching
6089 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6090 {
6091 stop_waiting (ecs);
6092 return;
6093 }
6094
6095 /* Notify observers the signal has "handle print" set. Note we
6096 returned early above if stopping; normal_stop handles the
6097 printing in that case. */
6098 if (signal_print[ecs->event_thread->suspend.stop_signal])
6099 {
6100 /* The signal table tells us to print about this signal. */
6101 target_terminal_ours_for_output ();
6102 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6103 target_terminal_inferior ();
6104 }
6105
6106 /* Clear the signal if it should not be passed. */
6107 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6108 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6109
6110 if (ecs->event_thread->prev_pc == stop_pc
6111 && ecs->event_thread->control.trap_expected
6112 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6113 {
6114 int was_in_line;
6115
6116 /* We were just starting a new sequence, attempting to
6117 single-step off of a breakpoint and expecting a SIGTRAP.
6118 Instead this signal arrives. This signal will take us out
6119 of the stepping range so GDB needs to remember to, when
6120 the signal handler returns, resume stepping off that
6121 breakpoint. */
6122 /* To simplify things, "continue" is forced to use the same
6123 code paths as single-step - set a breakpoint at the
6124 signal return address and then, once hit, step off that
6125 breakpoint. */
6126 if (debug_infrun)
6127 fprintf_unfiltered (gdb_stdlog,
6128 "infrun: signal arrived while stepping over "
6129 "breakpoint\n");
6130
6131 was_in_line = step_over_info_valid_p ();
6132 clear_step_over_info ();
6133 insert_hp_step_resume_breakpoint_at_frame (frame);
6134 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6135 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6136 ecs->event_thread->control.trap_expected = 0;
6137
6138 if (target_is_non_stop_p ())
6139 {
6140 /* Either "set non-stop" is "on", or the target is
6141 always in non-stop mode. In this case, we have a bit
6142 more work to do. Resume the current thread, and if
6143 we had paused all threads, restart them while the
6144 signal handler runs. */
6145 keep_going (ecs);
6146
6147 if (was_in_line)
6148 {
6149 restart_threads (ecs->event_thread);
6150 }
6151 else if (debug_infrun)
6152 {
6153 fprintf_unfiltered (gdb_stdlog,
6154 "infrun: no need to restart threads\n");
6155 }
6156 return;
6157 }
6158
6159 /* If we were nexting/stepping some other thread, switch to
6160 it, so that we don't continue it, losing control. */
6161 if (!switch_back_to_stepped_thread (ecs))
6162 keep_going (ecs);
6163 return;
6164 }
6165
6166 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6167 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6168 || ecs->event_thread->control.step_range_end == 1)
6169 && frame_id_eq (get_stack_frame_id (frame),
6170 ecs->event_thread->control.step_stack_frame_id)
6171 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6172 {
6173 /* The inferior is about to take a signal that will take it
6174 out of the single step range. Set a breakpoint at the
6175 current PC (which is presumably where the signal handler
6176 will eventually return) and then allow the inferior to
6177 run free.
6178
6179 Note that this is only needed for a signal delivered
6180 while in the single-step range. Nested signals aren't a
6181 problem as they eventually all return. */
6182 if (debug_infrun)
6183 fprintf_unfiltered (gdb_stdlog,
6184 "infrun: signal may take us out of "
6185 "single-step range\n");
6186
6187 clear_step_over_info ();
6188 insert_hp_step_resume_breakpoint_at_frame (frame);
6189 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6190 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6191 ecs->event_thread->control.trap_expected = 0;
6192 keep_going (ecs);
6193 return;
6194 }
6195
6196 /* Note: step_resume_breakpoint may be non-NULL. This occures
6197 when either there's a nested signal, or when there's a
6198 pending signal enabled just as the signal handler returns
6199 (leaving the inferior at the step-resume-breakpoint without
6200 actually executing it). Either way continue until the
6201 breakpoint is really hit. */
6202
6203 if (!switch_back_to_stepped_thread (ecs))
6204 {
6205 if (debug_infrun)
6206 fprintf_unfiltered (gdb_stdlog,
6207 "infrun: random signal, keep going\n");
6208
6209 keep_going (ecs);
6210 }
6211 return;
6212 }
6213
6214 process_event_stop_test (ecs);
6215 }
6216
6217 /* Come here when we've got some debug event / signal we can explain
6218 (IOW, not a random signal), and test whether it should cause a
6219 stop, or whether we should resume the inferior (transparently).
6220 E.g., could be a breakpoint whose condition evaluates false; we
6221 could be still stepping within the line; etc. */
6222
6223 static void
6224 process_event_stop_test (struct execution_control_state *ecs)
6225 {
6226 struct symtab_and_line stop_pc_sal;
6227 struct frame_info *frame;
6228 struct gdbarch *gdbarch;
6229 CORE_ADDR jmp_buf_pc;
6230 struct bpstat_what what;
6231
6232 /* Handle cases caused by hitting a breakpoint. */
6233
6234 frame = get_current_frame ();
6235 gdbarch = get_frame_arch (frame);
6236
6237 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6238
6239 if (what.call_dummy)
6240 {
6241 stop_stack_dummy = what.call_dummy;
6242 }
6243
6244 /* A few breakpoint types have callbacks associated (e.g.,
6245 bp_jit_event). Run them now. */
6246 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6247
6248 /* If we hit an internal event that triggers symbol changes, the
6249 current frame will be invalidated within bpstat_what (e.g., if we
6250 hit an internal solib event). Re-fetch it. */
6251 frame = get_current_frame ();
6252 gdbarch = get_frame_arch (frame);
6253
6254 switch (what.main_action)
6255 {
6256 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6257 /* If we hit the breakpoint at longjmp while stepping, we
6258 install a momentary breakpoint at the target of the
6259 jmp_buf. */
6260
6261 if (debug_infrun)
6262 fprintf_unfiltered (gdb_stdlog,
6263 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6264
6265 ecs->event_thread->stepping_over_breakpoint = 1;
6266
6267 if (what.is_longjmp)
6268 {
6269 struct value *arg_value;
6270
6271 /* If we set the longjmp breakpoint via a SystemTap probe,
6272 then use it to extract the arguments. The destination PC
6273 is the third argument to the probe. */
6274 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6275 if (arg_value)
6276 {
6277 jmp_buf_pc = value_as_address (arg_value);
6278 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6279 }
6280 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6281 || !gdbarch_get_longjmp_target (gdbarch,
6282 frame, &jmp_buf_pc))
6283 {
6284 if (debug_infrun)
6285 fprintf_unfiltered (gdb_stdlog,
6286 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6287 "(!gdbarch_get_longjmp_target)\n");
6288 keep_going (ecs);
6289 return;
6290 }
6291
6292 /* Insert a breakpoint at resume address. */
6293 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6294 }
6295 else
6296 check_exception_resume (ecs, frame);
6297 keep_going (ecs);
6298 return;
6299
6300 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6301 {
6302 struct frame_info *init_frame;
6303
6304 /* There are several cases to consider.
6305
6306 1. The initiating frame no longer exists. In this case we
6307 must stop, because the exception or longjmp has gone too
6308 far.
6309
6310 2. The initiating frame exists, and is the same as the
6311 current frame. We stop, because the exception or longjmp
6312 has been caught.
6313
6314 3. The initiating frame exists and is different from the
6315 current frame. This means the exception or longjmp has
6316 been caught beneath the initiating frame, so keep going.
6317
6318 4. longjmp breakpoint has been placed just to protect
6319 against stale dummy frames and user is not interested in
6320 stopping around longjmps. */
6321
6322 if (debug_infrun)
6323 fprintf_unfiltered (gdb_stdlog,
6324 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6325
6326 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6327 != NULL);
6328 delete_exception_resume_breakpoint (ecs->event_thread);
6329
6330 if (what.is_longjmp)
6331 {
6332 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6333
6334 if (!frame_id_p (ecs->event_thread->initiating_frame))
6335 {
6336 /* Case 4. */
6337 keep_going (ecs);
6338 return;
6339 }
6340 }
6341
6342 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6343
6344 if (init_frame)
6345 {
6346 struct frame_id current_id
6347 = get_frame_id (get_current_frame ());
6348 if (frame_id_eq (current_id,
6349 ecs->event_thread->initiating_frame))
6350 {
6351 /* Case 2. Fall through. */
6352 }
6353 else
6354 {
6355 /* Case 3. */
6356 keep_going (ecs);
6357 return;
6358 }
6359 }
6360
6361 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6362 exists. */
6363 delete_step_resume_breakpoint (ecs->event_thread);
6364
6365 end_stepping_range (ecs);
6366 }
6367 return;
6368
6369 case BPSTAT_WHAT_SINGLE:
6370 if (debug_infrun)
6371 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6372 ecs->event_thread->stepping_over_breakpoint = 1;
6373 /* Still need to check other stuff, at least the case where we
6374 are stepping and step out of the right range. */
6375 break;
6376
6377 case BPSTAT_WHAT_STEP_RESUME:
6378 if (debug_infrun)
6379 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6380
6381 delete_step_resume_breakpoint (ecs->event_thread);
6382 if (ecs->event_thread->control.proceed_to_finish
6383 && execution_direction == EXEC_REVERSE)
6384 {
6385 struct thread_info *tp = ecs->event_thread;
6386
6387 /* We are finishing a function in reverse, and just hit the
6388 step-resume breakpoint at the start address of the
6389 function, and we're almost there -- just need to back up
6390 by one more single-step, which should take us back to the
6391 function call. */
6392 tp->control.step_range_start = tp->control.step_range_end = 1;
6393 keep_going (ecs);
6394 return;
6395 }
6396 fill_in_stop_func (gdbarch, ecs);
6397 if (stop_pc == ecs->stop_func_start
6398 && execution_direction == EXEC_REVERSE)
6399 {
6400 /* We are stepping over a function call in reverse, and just
6401 hit the step-resume breakpoint at the start address of
6402 the function. Go back to single-stepping, which should
6403 take us back to the function call. */
6404 ecs->event_thread->stepping_over_breakpoint = 1;
6405 keep_going (ecs);
6406 return;
6407 }
6408 break;
6409
6410 case BPSTAT_WHAT_STOP_NOISY:
6411 if (debug_infrun)
6412 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6413 stop_print_frame = 1;
6414
6415 /* Assume the thread stopped for a breapoint. We'll still check
6416 whether a/the breakpoint is there when the thread is next
6417 resumed. */
6418 ecs->event_thread->stepping_over_breakpoint = 1;
6419
6420 stop_waiting (ecs);
6421 return;
6422
6423 case BPSTAT_WHAT_STOP_SILENT:
6424 if (debug_infrun)
6425 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6426 stop_print_frame = 0;
6427
6428 /* Assume the thread stopped for a breapoint. We'll still check
6429 whether a/the breakpoint is there when the thread is next
6430 resumed. */
6431 ecs->event_thread->stepping_over_breakpoint = 1;
6432 stop_waiting (ecs);
6433 return;
6434
6435 case BPSTAT_WHAT_HP_STEP_RESUME:
6436 if (debug_infrun)
6437 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6438
6439 delete_step_resume_breakpoint (ecs->event_thread);
6440 if (ecs->event_thread->step_after_step_resume_breakpoint)
6441 {
6442 /* Back when the step-resume breakpoint was inserted, we
6443 were trying to single-step off a breakpoint. Go back to
6444 doing that. */
6445 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6446 ecs->event_thread->stepping_over_breakpoint = 1;
6447 keep_going (ecs);
6448 return;
6449 }
6450 break;
6451
6452 case BPSTAT_WHAT_KEEP_CHECKING:
6453 break;
6454 }
6455
6456 /* If we stepped a permanent breakpoint and we had a high priority
6457 step-resume breakpoint for the address we stepped, but we didn't
6458 hit it, then we must have stepped into the signal handler. The
6459 step-resume was only necessary to catch the case of _not_
6460 stepping into the handler, so delete it, and fall through to
6461 checking whether the step finished. */
6462 if (ecs->event_thread->stepped_breakpoint)
6463 {
6464 struct breakpoint *sr_bp
6465 = ecs->event_thread->control.step_resume_breakpoint;
6466
6467 if (sr_bp != NULL
6468 && sr_bp->loc->permanent
6469 && sr_bp->type == bp_hp_step_resume
6470 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6471 {
6472 if (debug_infrun)
6473 fprintf_unfiltered (gdb_stdlog,
6474 "infrun: stepped permanent breakpoint, stopped in "
6475 "handler\n");
6476 delete_step_resume_breakpoint (ecs->event_thread);
6477 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6478 }
6479 }
6480
6481 /* We come here if we hit a breakpoint but should not stop for it.
6482 Possibly we also were stepping and should stop for that. So fall
6483 through and test for stepping. But, if not stepping, do not
6484 stop. */
6485
6486 /* In all-stop mode, if we're currently stepping but have stopped in
6487 some other thread, we need to switch back to the stepped thread. */
6488 if (switch_back_to_stepped_thread (ecs))
6489 return;
6490
6491 if (ecs->event_thread->control.step_resume_breakpoint)
6492 {
6493 if (debug_infrun)
6494 fprintf_unfiltered (gdb_stdlog,
6495 "infrun: step-resume breakpoint is inserted\n");
6496
6497 /* Having a step-resume breakpoint overrides anything
6498 else having to do with stepping commands until
6499 that breakpoint is reached. */
6500 keep_going (ecs);
6501 return;
6502 }
6503
6504 if (ecs->event_thread->control.step_range_end == 0)
6505 {
6506 if (debug_infrun)
6507 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6508 /* Likewise if we aren't even stepping. */
6509 keep_going (ecs);
6510 return;
6511 }
6512
6513 /* Re-fetch current thread's frame in case the code above caused
6514 the frame cache to be re-initialized, making our FRAME variable
6515 a dangling pointer. */
6516 frame = get_current_frame ();
6517 gdbarch = get_frame_arch (frame);
6518 fill_in_stop_func (gdbarch, ecs);
6519
6520 /* If stepping through a line, keep going if still within it.
6521
6522 Note that step_range_end is the address of the first instruction
6523 beyond the step range, and NOT the address of the last instruction
6524 within it!
6525
6526 Note also that during reverse execution, we may be stepping
6527 through a function epilogue and therefore must detect when
6528 the current-frame changes in the middle of a line. */
6529
6530 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6531 && (execution_direction != EXEC_REVERSE
6532 || frame_id_eq (get_frame_id (frame),
6533 ecs->event_thread->control.step_frame_id)))
6534 {
6535 if (debug_infrun)
6536 fprintf_unfiltered
6537 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6538 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6539 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6540
6541 /* Tentatively re-enable range stepping; `resume' disables it if
6542 necessary (e.g., if we're stepping over a breakpoint or we
6543 have software watchpoints). */
6544 ecs->event_thread->control.may_range_step = 1;
6545
6546 /* When stepping backward, stop at beginning of line range
6547 (unless it's the function entry point, in which case
6548 keep going back to the call point). */
6549 if (stop_pc == ecs->event_thread->control.step_range_start
6550 && stop_pc != ecs->stop_func_start
6551 && execution_direction == EXEC_REVERSE)
6552 end_stepping_range (ecs);
6553 else
6554 keep_going (ecs);
6555
6556 return;
6557 }
6558
6559 /* We stepped out of the stepping range. */
6560
6561 /* If we are stepping at the source level and entered the runtime
6562 loader dynamic symbol resolution code...
6563
6564 EXEC_FORWARD: we keep on single stepping until we exit the run
6565 time loader code and reach the callee's address.
6566
6567 EXEC_REVERSE: we've already executed the callee (backward), and
6568 the runtime loader code is handled just like any other
6569 undebuggable function call. Now we need only keep stepping
6570 backward through the trampoline code, and that's handled further
6571 down, so there is nothing for us to do here. */
6572
6573 if (execution_direction != EXEC_REVERSE
6574 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6575 && in_solib_dynsym_resolve_code (stop_pc))
6576 {
6577 CORE_ADDR pc_after_resolver =
6578 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6579
6580 if (debug_infrun)
6581 fprintf_unfiltered (gdb_stdlog,
6582 "infrun: stepped into dynsym resolve code\n");
6583
6584 if (pc_after_resolver)
6585 {
6586 /* Set up a step-resume breakpoint at the address
6587 indicated by SKIP_SOLIB_RESOLVER. */
6588 struct symtab_and_line sr_sal;
6589
6590 init_sal (&sr_sal);
6591 sr_sal.pc = pc_after_resolver;
6592 sr_sal.pspace = get_frame_program_space (frame);
6593
6594 insert_step_resume_breakpoint_at_sal (gdbarch,
6595 sr_sal, null_frame_id);
6596 }
6597
6598 keep_going (ecs);
6599 return;
6600 }
6601
6602 if (ecs->event_thread->control.step_range_end != 1
6603 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6604 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6605 && get_frame_type (frame) == SIGTRAMP_FRAME)
6606 {
6607 if (debug_infrun)
6608 fprintf_unfiltered (gdb_stdlog,
6609 "infrun: stepped into signal trampoline\n");
6610 /* The inferior, while doing a "step" or "next", has ended up in
6611 a signal trampoline (either by a signal being delivered or by
6612 the signal handler returning). Just single-step until the
6613 inferior leaves the trampoline (either by calling the handler
6614 or returning). */
6615 keep_going (ecs);
6616 return;
6617 }
6618
6619 /* If we're in the return path from a shared library trampoline,
6620 we want to proceed through the trampoline when stepping. */
6621 /* macro/2012-04-25: This needs to come before the subroutine
6622 call check below as on some targets return trampolines look
6623 like subroutine calls (MIPS16 return thunks). */
6624 if (gdbarch_in_solib_return_trampoline (gdbarch,
6625 stop_pc, ecs->stop_func_name)
6626 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6627 {
6628 /* Determine where this trampoline returns. */
6629 CORE_ADDR real_stop_pc;
6630
6631 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6632
6633 if (debug_infrun)
6634 fprintf_unfiltered (gdb_stdlog,
6635 "infrun: stepped into solib return tramp\n");
6636
6637 /* Only proceed through if we know where it's going. */
6638 if (real_stop_pc)
6639 {
6640 /* And put the step-breakpoint there and go until there. */
6641 struct symtab_and_line sr_sal;
6642
6643 init_sal (&sr_sal); /* initialize to zeroes */
6644 sr_sal.pc = real_stop_pc;
6645 sr_sal.section = find_pc_overlay (sr_sal.pc);
6646 sr_sal.pspace = get_frame_program_space (frame);
6647
6648 /* Do not specify what the fp should be when we stop since
6649 on some machines the prologue is where the new fp value
6650 is established. */
6651 insert_step_resume_breakpoint_at_sal (gdbarch,
6652 sr_sal, null_frame_id);
6653
6654 /* Restart without fiddling with the step ranges or
6655 other state. */
6656 keep_going (ecs);
6657 return;
6658 }
6659 }
6660
6661 /* Check for subroutine calls. The check for the current frame
6662 equalling the step ID is not necessary - the check of the
6663 previous frame's ID is sufficient - but it is a common case and
6664 cheaper than checking the previous frame's ID.
6665
6666 NOTE: frame_id_eq will never report two invalid frame IDs as
6667 being equal, so to get into this block, both the current and
6668 previous frame must have valid frame IDs. */
6669 /* The outer_frame_id check is a heuristic to detect stepping
6670 through startup code. If we step over an instruction which
6671 sets the stack pointer from an invalid value to a valid value,
6672 we may detect that as a subroutine call from the mythical
6673 "outermost" function. This could be fixed by marking
6674 outermost frames as !stack_p,code_p,special_p. Then the
6675 initial outermost frame, before sp was valid, would
6676 have code_addr == &_start. See the comment in frame_id_eq
6677 for more. */
6678 if (!frame_id_eq (get_stack_frame_id (frame),
6679 ecs->event_thread->control.step_stack_frame_id)
6680 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6681 ecs->event_thread->control.step_stack_frame_id)
6682 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6683 outer_frame_id)
6684 || (ecs->event_thread->control.step_start_function
6685 != find_pc_function (stop_pc)))))
6686 {
6687 CORE_ADDR real_stop_pc;
6688
6689 if (debug_infrun)
6690 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6691
6692 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6693 {
6694 /* I presume that step_over_calls is only 0 when we're
6695 supposed to be stepping at the assembly language level
6696 ("stepi"). Just stop. */
6697 /* And this works the same backward as frontward. MVS */
6698 end_stepping_range (ecs);
6699 return;
6700 }
6701
6702 /* Reverse stepping through solib trampolines. */
6703
6704 if (execution_direction == EXEC_REVERSE
6705 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6706 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6707 || (ecs->stop_func_start == 0
6708 && in_solib_dynsym_resolve_code (stop_pc))))
6709 {
6710 /* Any solib trampoline code can be handled in reverse
6711 by simply continuing to single-step. We have already
6712 executed the solib function (backwards), and a few
6713 steps will take us back through the trampoline to the
6714 caller. */
6715 keep_going (ecs);
6716 return;
6717 }
6718
6719 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6720 {
6721 /* We're doing a "next".
6722
6723 Normal (forward) execution: set a breakpoint at the
6724 callee's return address (the address at which the caller
6725 will resume).
6726
6727 Reverse (backward) execution. set the step-resume
6728 breakpoint at the start of the function that we just
6729 stepped into (backwards), and continue to there. When we
6730 get there, we'll need to single-step back to the caller. */
6731
6732 if (execution_direction == EXEC_REVERSE)
6733 {
6734 /* If we're already at the start of the function, we've either
6735 just stepped backward into a single instruction function,
6736 or stepped back out of a signal handler to the first instruction
6737 of the function. Just keep going, which will single-step back
6738 to the caller. */
6739 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6740 {
6741 struct symtab_and_line sr_sal;
6742
6743 /* Normal function call return (static or dynamic). */
6744 init_sal (&sr_sal);
6745 sr_sal.pc = ecs->stop_func_start;
6746 sr_sal.pspace = get_frame_program_space (frame);
6747 insert_step_resume_breakpoint_at_sal (gdbarch,
6748 sr_sal, null_frame_id);
6749 }
6750 }
6751 else
6752 insert_step_resume_breakpoint_at_caller (frame);
6753
6754 keep_going (ecs);
6755 return;
6756 }
6757
6758 /* If we are in a function call trampoline (a stub between the
6759 calling routine and the real function), locate the real
6760 function. That's what tells us (a) whether we want to step
6761 into it at all, and (b) what prologue we want to run to the
6762 end of, if we do step into it. */
6763 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6764 if (real_stop_pc == 0)
6765 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6766 if (real_stop_pc != 0)
6767 ecs->stop_func_start = real_stop_pc;
6768
6769 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6770 {
6771 struct symtab_and_line sr_sal;
6772
6773 init_sal (&sr_sal);
6774 sr_sal.pc = ecs->stop_func_start;
6775 sr_sal.pspace = get_frame_program_space (frame);
6776
6777 insert_step_resume_breakpoint_at_sal (gdbarch,
6778 sr_sal, null_frame_id);
6779 keep_going (ecs);
6780 return;
6781 }
6782
6783 /* If we have line number information for the function we are
6784 thinking of stepping into and the function isn't on the skip
6785 list, step into it.
6786
6787 If there are several symtabs at that PC (e.g. with include
6788 files), just want to know whether *any* of them have line
6789 numbers. find_pc_line handles this. */
6790 {
6791 struct symtab_and_line tmp_sal;
6792
6793 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6794 if (tmp_sal.line != 0
6795 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6796 &tmp_sal))
6797 {
6798 if (execution_direction == EXEC_REVERSE)
6799 handle_step_into_function_backward (gdbarch, ecs);
6800 else
6801 handle_step_into_function (gdbarch, ecs);
6802 return;
6803 }
6804 }
6805
6806 /* If we have no line number and the step-stop-if-no-debug is
6807 set, we stop the step so that the user has a chance to switch
6808 in assembly mode. */
6809 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6810 && step_stop_if_no_debug)
6811 {
6812 end_stepping_range (ecs);
6813 return;
6814 }
6815
6816 if (execution_direction == EXEC_REVERSE)
6817 {
6818 /* If we're already at the start of the function, we've either just
6819 stepped backward into a single instruction function without line
6820 number info, or stepped back out of a signal handler to the first
6821 instruction of the function without line number info. Just keep
6822 going, which will single-step back to the caller. */
6823 if (ecs->stop_func_start != stop_pc)
6824 {
6825 /* Set a breakpoint at callee's start address.
6826 From there we can step once and be back in the caller. */
6827 struct symtab_and_line sr_sal;
6828
6829 init_sal (&sr_sal);
6830 sr_sal.pc = ecs->stop_func_start;
6831 sr_sal.pspace = get_frame_program_space (frame);
6832 insert_step_resume_breakpoint_at_sal (gdbarch,
6833 sr_sal, null_frame_id);
6834 }
6835 }
6836 else
6837 /* Set a breakpoint at callee's return address (the address
6838 at which the caller will resume). */
6839 insert_step_resume_breakpoint_at_caller (frame);
6840
6841 keep_going (ecs);
6842 return;
6843 }
6844
6845 /* Reverse stepping through solib trampolines. */
6846
6847 if (execution_direction == EXEC_REVERSE
6848 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6849 {
6850 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6851 || (ecs->stop_func_start == 0
6852 && in_solib_dynsym_resolve_code (stop_pc)))
6853 {
6854 /* Any solib trampoline code can be handled in reverse
6855 by simply continuing to single-step. We have already
6856 executed the solib function (backwards), and a few
6857 steps will take us back through the trampoline to the
6858 caller. */
6859 keep_going (ecs);
6860 return;
6861 }
6862 else if (in_solib_dynsym_resolve_code (stop_pc))
6863 {
6864 /* Stepped backward into the solib dynsym resolver.
6865 Set a breakpoint at its start and continue, then
6866 one more step will take us out. */
6867 struct symtab_and_line sr_sal;
6868
6869 init_sal (&sr_sal);
6870 sr_sal.pc = ecs->stop_func_start;
6871 sr_sal.pspace = get_frame_program_space (frame);
6872 insert_step_resume_breakpoint_at_sal (gdbarch,
6873 sr_sal, null_frame_id);
6874 keep_going (ecs);
6875 return;
6876 }
6877 }
6878
6879 stop_pc_sal = find_pc_line (stop_pc, 0);
6880
6881 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6882 the trampoline processing logic, however, there are some trampolines
6883 that have no names, so we should do trampoline handling first. */
6884 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6885 && ecs->stop_func_name == NULL
6886 && stop_pc_sal.line == 0)
6887 {
6888 if (debug_infrun)
6889 fprintf_unfiltered (gdb_stdlog,
6890 "infrun: stepped into undebuggable function\n");
6891
6892 /* The inferior just stepped into, or returned to, an
6893 undebuggable function (where there is no debugging information
6894 and no line number corresponding to the address where the
6895 inferior stopped). Since we want to skip this kind of code,
6896 we keep going until the inferior returns from this
6897 function - unless the user has asked us not to (via
6898 set step-mode) or we no longer know how to get back
6899 to the call site. */
6900 if (step_stop_if_no_debug
6901 || !frame_id_p (frame_unwind_caller_id (frame)))
6902 {
6903 /* If we have no line number and the step-stop-if-no-debug
6904 is set, we stop the step so that the user has a chance to
6905 switch in assembly mode. */
6906 end_stepping_range (ecs);
6907 return;
6908 }
6909 else
6910 {
6911 /* Set a breakpoint at callee's return address (the address
6912 at which the caller will resume). */
6913 insert_step_resume_breakpoint_at_caller (frame);
6914 keep_going (ecs);
6915 return;
6916 }
6917 }
6918
6919 if (ecs->event_thread->control.step_range_end == 1)
6920 {
6921 /* It is stepi or nexti. We always want to stop stepping after
6922 one instruction. */
6923 if (debug_infrun)
6924 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6925 end_stepping_range (ecs);
6926 return;
6927 }
6928
6929 if (stop_pc_sal.line == 0)
6930 {
6931 /* We have no line number information. That means to stop
6932 stepping (does this always happen right after one instruction,
6933 when we do "s" in a function with no line numbers,
6934 or can this happen as a result of a return or longjmp?). */
6935 if (debug_infrun)
6936 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6937 end_stepping_range (ecs);
6938 return;
6939 }
6940
6941 /* Look for "calls" to inlined functions, part one. If the inline
6942 frame machinery detected some skipped call sites, we have entered
6943 a new inline function. */
6944
6945 if (frame_id_eq (get_frame_id (get_current_frame ()),
6946 ecs->event_thread->control.step_frame_id)
6947 && inline_skipped_frames (ecs->ptid))
6948 {
6949 struct symtab_and_line call_sal;
6950
6951 if (debug_infrun)
6952 fprintf_unfiltered (gdb_stdlog,
6953 "infrun: stepped into inlined function\n");
6954
6955 find_frame_sal (get_current_frame (), &call_sal);
6956
6957 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6958 {
6959 /* For "step", we're going to stop. But if the call site
6960 for this inlined function is on the same source line as
6961 we were previously stepping, go down into the function
6962 first. Otherwise stop at the call site. */
6963
6964 if (call_sal.line == ecs->event_thread->current_line
6965 && call_sal.symtab == ecs->event_thread->current_symtab)
6966 step_into_inline_frame (ecs->ptid);
6967
6968 end_stepping_range (ecs);
6969 return;
6970 }
6971 else
6972 {
6973 /* For "next", we should stop at the call site if it is on a
6974 different source line. Otherwise continue through the
6975 inlined function. */
6976 if (call_sal.line == ecs->event_thread->current_line
6977 && call_sal.symtab == ecs->event_thread->current_symtab)
6978 keep_going (ecs);
6979 else
6980 end_stepping_range (ecs);
6981 return;
6982 }
6983 }
6984
6985 /* Look for "calls" to inlined functions, part two. If we are still
6986 in the same real function we were stepping through, but we have
6987 to go further up to find the exact frame ID, we are stepping
6988 through a more inlined call beyond its call site. */
6989
6990 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6991 && !frame_id_eq (get_frame_id (get_current_frame ()),
6992 ecs->event_thread->control.step_frame_id)
6993 && stepped_in_from (get_current_frame (),
6994 ecs->event_thread->control.step_frame_id))
6995 {
6996 if (debug_infrun)
6997 fprintf_unfiltered (gdb_stdlog,
6998 "infrun: stepping through inlined function\n");
6999
7000 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
7001 keep_going (ecs);
7002 else
7003 end_stepping_range (ecs);
7004 return;
7005 }
7006
7007 if ((stop_pc == stop_pc_sal.pc)
7008 && (ecs->event_thread->current_line != stop_pc_sal.line
7009 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7010 {
7011 /* We are at the start of a different line. So stop. Note that
7012 we don't stop if we step into the middle of a different line.
7013 That is said to make things like for (;;) statements work
7014 better. */
7015 if (debug_infrun)
7016 fprintf_unfiltered (gdb_stdlog,
7017 "infrun: stepped to a different line\n");
7018 end_stepping_range (ecs);
7019 return;
7020 }
7021
7022 /* We aren't done stepping.
7023
7024 Optimize by setting the stepping range to the line.
7025 (We might not be in the original line, but if we entered a
7026 new line in mid-statement, we continue stepping. This makes
7027 things like for(;;) statements work better.) */
7028
7029 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7030 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7031 ecs->event_thread->control.may_range_step = 1;
7032 set_step_info (frame, stop_pc_sal);
7033
7034 if (debug_infrun)
7035 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7036 keep_going (ecs);
7037 }
7038
7039 /* In all-stop mode, if we're currently stepping but have stopped in
7040 some other thread, we may need to switch back to the stepped
7041 thread. Returns true we set the inferior running, false if we left
7042 it stopped (and the event needs further processing). */
7043
7044 static int
7045 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7046 {
7047 if (!target_is_non_stop_p ())
7048 {
7049 struct thread_info *tp;
7050 struct thread_info *stepping_thread;
7051
7052 /* If any thread is blocked on some internal breakpoint, and we
7053 simply need to step over that breakpoint to get it going
7054 again, do that first. */
7055
7056 /* However, if we see an event for the stepping thread, then we
7057 know all other threads have been moved past their breakpoints
7058 already. Let the caller check whether the step is finished,
7059 etc., before deciding to move it past a breakpoint. */
7060 if (ecs->event_thread->control.step_range_end != 0)
7061 return 0;
7062
7063 /* Check if the current thread is blocked on an incomplete
7064 step-over, interrupted by a random signal. */
7065 if (ecs->event_thread->control.trap_expected
7066 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7067 {
7068 if (debug_infrun)
7069 {
7070 fprintf_unfiltered (gdb_stdlog,
7071 "infrun: need to finish step-over of [%s]\n",
7072 target_pid_to_str (ecs->event_thread->ptid));
7073 }
7074 keep_going (ecs);
7075 return 1;
7076 }
7077
7078 /* Check if the current thread is blocked by a single-step
7079 breakpoint of another thread. */
7080 if (ecs->hit_singlestep_breakpoint)
7081 {
7082 if (debug_infrun)
7083 {
7084 fprintf_unfiltered (gdb_stdlog,
7085 "infrun: need to step [%s] over single-step "
7086 "breakpoint\n",
7087 target_pid_to_str (ecs->ptid));
7088 }
7089 keep_going (ecs);
7090 return 1;
7091 }
7092
7093 /* If this thread needs yet another step-over (e.g., stepping
7094 through a delay slot), do it first before moving on to
7095 another thread. */
7096 if (thread_still_needs_step_over (ecs->event_thread))
7097 {
7098 if (debug_infrun)
7099 {
7100 fprintf_unfiltered (gdb_stdlog,
7101 "infrun: thread [%s] still needs step-over\n",
7102 target_pid_to_str (ecs->event_thread->ptid));
7103 }
7104 keep_going (ecs);
7105 return 1;
7106 }
7107
7108 /* If scheduler locking applies even if not stepping, there's no
7109 need to walk over threads. Above we've checked whether the
7110 current thread is stepping. If some other thread not the
7111 event thread is stepping, then it must be that scheduler
7112 locking is not in effect. */
7113 if (schedlock_applies (ecs->event_thread))
7114 return 0;
7115
7116 /* Otherwise, we no longer expect a trap in the current thread.
7117 Clear the trap_expected flag before switching back -- this is
7118 what keep_going does as well, if we call it. */
7119 ecs->event_thread->control.trap_expected = 0;
7120
7121 /* Likewise, clear the signal if it should not be passed. */
7122 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7123 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7124
7125 /* Do all pending step-overs before actually proceeding with
7126 step/next/etc. */
7127 if (start_step_over ())
7128 {
7129 prepare_to_wait (ecs);
7130 return 1;
7131 }
7132
7133 /* Look for the stepping/nexting thread. */
7134 stepping_thread = NULL;
7135
7136 ALL_NON_EXITED_THREADS (tp)
7137 {
7138 /* Ignore threads of processes the caller is not
7139 resuming. */
7140 if (!sched_multi
7141 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7142 continue;
7143
7144 /* When stepping over a breakpoint, we lock all threads
7145 except the one that needs to move past the breakpoint.
7146 If a non-event thread has this set, the "incomplete
7147 step-over" check above should have caught it earlier. */
7148 if (tp->control.trap_expected)
7149 {
7150 internal_error (__FILE__, __LINE__,
7151 "[%s] has inconsistent state: "
7152 "trap_expected=%d\n",
7153 target_pid_to_str (tp->ptid),
7154 tp->control.trap_expected);
7155 }
7156
7157 /* Did we find the stepping thread? */
7158 if (tp->control.step_range_end)
7159 {
7160 /* Yep. There should only one though. */
7161 gdb_assert (stepping_thread == NULL);
7162
7163 /* The event thread is handled at the top, before we
7164 enter this loop. */
7165 gdb_assert (tp != ecs->event_thread);
7166
7167 /* If some thread other than the event thread is
7168 stepping, then scheduler locking can't be in effect,
7169 otherwise we wouldn't have resumed the current event
7170 thread in the first place. */
7171 gdb_assert (!schedlock_applies (tp));
7172
7173 stepping_thread = tp;
7174 }
7175 }
7176
7177 if (stepping_thread != NULL)
7178 {
7179 if (debug_infrun)
7180 fprintf_unfiltered (gdb_stdlog,
7181 "infrun: switching back to stepped thread\n");
7182
7183 if (keep_going_stepped_thread (stepping_thread))
7184 {
7185 prepare_to_wait (ecs);
7186 return 1;
7187 }
7188 }
7189 }
7190
7191 return 0;
7192 }
7193
7194 /* Set a previously stepped thread back to stepping. Returns true on
7195 success, false if the resume is not possible (e.g., the thread
7196 vanished). */
7197
7198 static int
7199 keep_going_stepped_thread (struct thread_info *tp)
7200 {
7201 struct frame_info *frame;
7202 struct execution_control_state ecss;
7203 struct execution_control_state *ecs = &ecss;
7204
7205 /* If the stepping thread exited, then don't try to switch back and
7206 resume it, which could fail in several different ways depending
7207 on the target. Instead, just keep going.
7208
7209 We can find a stepping dead thread in the thread list in two
7210 cases:
7211
7212 - The target supports thread exit events, and when the target
7213 tries to delete the thread from the thread list, inferior_ptid
7214 pointed at the exiting thread. In such case, calling
7215 delete_thread does not really remove the thread from the list;
7216 instead, the thread is left listed, with 'exited' state.
7217
7218 - The target's debug interface does not support thread exit
7219 events, and so we have no idea whatsoever if the previously
7220 stepping thread is still alive. For that reason, we need to
7221 synchronously query the target now. */
7222
7223 if (is_exited (tp->ptid)
7224 || !target_thread_alive (tp->ptid))
7225 {
7226 if (debug_infrun)
7227 fprintf_unfiltered (gdb_stdlog,
7228 "infrun: not resuming previously "
7229 "stepped thread, it has vanished\n");
7230
7231 delete_thread (tp->ptid);
7232 return 0;
7233 }
7234
7235 if (debug_infrun)
7236 fprintf_unfiltered (gdb_stdlog,
7237 "infrun: resuming previously stepped thread\n");
7238
7239 reset_ecs (ecs, tp);
7240 switch_to_thread (tp->ptid);
7241
7242 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7243 frame = get_current_frame ();
7244
7245 /* If the PC of the thread we were trying to single-step has
7246 changed, then that thread has trapped or been signaled, but the
7247 event has not been reported to GDB yet. Re-poll the target
7248 looking for this particular thread's event (i.e. temporarily
7249 enable schedlock) by:
7250
7251 - setting a break at the current PC
7252 - resuming that particular thread, only (by setting trap
7253 expected)
7254
7255 This prevents us continuously moving the single-step breakpoint
7256 forward, one instruction at a time, overstepping. */
7257
7258 if (stop_pc != tp->prev_pc)
7259 {
7260 ptid_t resume_ptid;
7261
7262 if (debug_infrun)
7263 fprintf_unfiltered (gdb_stdlog,
7264 "infrun: expected thread advanced also (%s -> %s)\n",
7265 paddress (target_gdbarch (), tp->prev_pc),
7266 paddress (target_gdbarch (), stop_pc));
7267
7268 /* Clear the info of the previous step-over, as it's no longer
7269 valid (if the thread was trying to step over a breakpoint, it
7270 has already succeeded). It's what keep_going would do too,
7271 if we called it. Do this before trying to insert the sss
7272 breakpoint, otherwise if we were previously trying to step
7273 over this exact address in another thread, the breakpoint is
7274 skipped. */
7275 clear_step_over_info ();
7276 tp->control.trap_expected = 0;
7277
7278 insert_single_step_breakpoint (get_frame_arch (frame),
7279 get_frame_address_space (frame),
7280 stop_pc);
7281
7282 tp->resumed = 1;
7283 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7284 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7285 }
7286 else
7287 {
7288 if (debug_infrun)
7289 fprintf_unfiltered (gdb_stdlog,
7290 "infrun: expected thread still hasn't advanced\n");
7291
7292 keep_going_pass_signal (ecs);
7293 }
7294 return 1;
7295 }
7296
7297 /* Is thread TP in the middle of (software or hardware)
7298 single-stepping? (Note the result of this function must never be
7299 passed directly as target_resume's STEP parameter.) */
7300
7301 static int
7302 currently_stepping (struct thread_info *tp)
7303 {
7304 return ((tp->control.step_range_end
7305 && tp->control.step_resume_breakpoint == NULL)
7306 || tp->control.trap_expected
7307 || tp->stepped_breakpoint
7308 || bpstat_should_step ());
7309 }
7310
7311 /* Inferior has stepped into a subroutine call with source code that
7312 we should not step over. Do step to the first line of code in
7313 it. */
7314
7315 static void
7316 handle_step_into_function (struct gdbarch *gdbarch,
7317 struct execution_control_state *ecs)
7318 {
7319 struct compunit_symtab *cust;
7320 struct symtab_and_line stop_func_sal, sr_sal;
7321
7322 fill_in_stop_func (gdbarch, ecs);
7323
7324 cust = find_pc_compunit_symtab (stop_pc);
7325 if (cust != NULL && compunit_language (cust) != language_asm)
7326 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7327 ecs->stop_func_start);
7328
7329 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7330 /* Use the step_resume_break to step until the end of the prologue,
7331 even if that involves jumps (as it seems to on the vax under
7332 4.2). */
7333 /* If the prologue ends in the middle of a source line, continue to
7334 the end of that source line (if it is still within the function).
7335 Otherwise, just go to end of prologue. */
7336 if (stop_func_sal.end
7337 && stop_func_sal.pc != ecs->stop_func_start
7338 && stop_func_sal.end < ecs->stop_func_end)
7339 ecs->stop_func_start = stop_func_sal.end;
7340
7341 /* Architectures which require breakpoint adjustment might not be able
7342 to place a breakpoint at the computed address. If so, the test
7343 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7344 ecs->stop_func_start to an address at which a breakpoint may be
7345 legitimately placed.
7346
7347 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7348 made, GDB will enter an infinite loop when stepping through
7349 optimized code consisting of VLIW instructions which contain
7350 subinstructions corresponding to different source lines. On
7351 FR-V, it's not permitted to place a breakpoint on any but the
7352 first subinstruction of a VLIW instruction. When a breakpoint is
7353 set, GDB will adjust the breakpoint address to the beginning of
7354 the VLIW instruction. Thus, we need to make the corresponding
7355 adjustment here when computing the stop address. */
7356
7357 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7358 {
7359 ecs->stop_func_start
7360 = gdbarch_adjust_breakpoint_address (gdbarch,
7361 ecs->stop_func_start);
7362 }
7363
7364 if (ecs->stop_func_start == stop_pc)
7365 {
7366 /* We are already there: stop now. */
7367 end_stepping_range (ecs);
7368 return;
7369 }
7370 else
7371 {
7372 /* Put the step-breakpoint there and go until there. */
7373 init_sal (&sr_sal); /* initialize to zeroes */
7374 sr_sal.pc = ecs->stop_func_start;
7375 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7376 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7377
7378 /* Do not specify what the fp should be when we stop since on
7379 some machines the prologue is where the new fp value is
7380 established. */
7381 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7382
7383 /* And make sure stepping stops right away then. */
7384 ecs->event_thread->control.step_range_end
7385 = ecs->event_thread->control.step_range_start;
7386 }
7387 keep_going (ecs);
7388 }
7389
7390 /* Inferior has stepped backward into a subroutine call with source
7391 code that we should not step over. Do step to the beginning of the
7392 last line of code in it. */
7393
7394 static void
7395 handle_step_into_function_backward (struct gdbarch *gdbarch,
7396 struct execution_control_state *ecs)
7397 {
7398 struct compunit_symtab *cust;
7399 struct symtab_and_line stop_func_sal;
7400
7401 fill_in_stop_func (gdbarch, ecs);
7402
7403 cust = find_pc_compunit_symtab (stop_pc);
7404 if (cust != NULL && compunit_language (cust) != language_asm)
7405 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7406 ecs->stop_func_start);
7407
7408 stop_func_sal = find_pc_line (stop_pc, 0);
7409
7410 /* OK, we're just going to keep stepping here. */
7411 if (stop_func_sal.pc == stop_pc)
7412 {
7413 /* We're there already. Just stop stepping now. */
7414 end_stepping_range (ecs);
7415 }
7416 else
7417 {
7418 /* Else just reset the step range and keep going.
7419 No step-resume breakpoint, they don't work for
7420 epilogues, which can have multiple entry paths. */
7421 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7422 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7423 keep_going (ecs);
7424 }
7425 return;
7426 }
7427
7428 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7429 This is used to both functions and to skip over code. */
7430
7431 static void
7432 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7433 struct symtab_and_line sr_sal,
7434 struct frame_id sr_id,
7435 enum bptype sr_type)
7436 {
7437 /* There should never be more than one step-resume or longjmp-resume
7438 breakpoint per thread, so we should never be setting a new
7439 step_resume_breakpoint when one is already active. */
7440 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7441 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7442
7443 if (debug_infrun)
7444 fprintf_unfiltered (gdb_stdlog,
7445 "infrun: inserting step-resume breakpoint at %s\n",
7446 paddress (gdbarch, sr_sal.pc));
7447
7448 inferior_thread ()->control.step_resume_breakpoint
7449 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7450 }
7451
7452 void
7453 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7454 struct symtab_and_line sr_sal,
7455 struct frame_id sr_id)
7456 {
7457 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7458 sr_sal, sr_id,
7459 bp_step_resume);
7460 }
7461
7462 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7463 This is used to skip a potential signal handler.
7464
7465 This is called with the interrupted function's frame. The signal
7466 handler, when it returns, will resume the interrupted function at
7467 RETURN_FRAME.pc. */
7468
7469 static void
7470 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7471 {
7472 struct symtab_and_line sr_sal;
7473 struct gdbarch *gdbarch;
7474
7475 gdb_assert (return_frame != NULL);
7476 init_sal (&sr_sal); /* initialize to zeros */
7477
7478 gdbarch = get_frame_arch (return_frame);
7479 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7480 sr_sal.section = find_pc_overlay (sr_sal.pc);
7481 sr_sal.pspace = get_frame_program_space (return_frame);
7482
7483 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7484 get_stack_frame_id (return_frame),
7485 bp_hp_step_resume);
7486 }
7487
7488 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7489 is used to skip a function after stepping into it (for "next" or if
7490 the called function has no debugging information).
7491
7492 The current function has almost always been reached by single
7493 stepping a call or return instruction. NEXT_FRAME belongs to the
7494 current function, and the breakpoint will be set at the caller's
7495 resume address.
7496
7497 This is a separate function rather than reusing
7498 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7499 get_prev_frame, which may stop prematurely (see the implementation
7500 of frame_unwind_caller_id for an example). */
7501
7502 static void
7503 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7504 {
7505 struct symtab_and_line sr_sal;
7506 struct gdbarch *gdbarch;
7507
7508 /* We shouldn't have gotten here if we don't know where the call site
7509 is. */
7510 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7511
7512 init_sal (&sr_sal); /* initialize to zeros */
7513
7514 gdbarch = frame_unwind_caller_arch (next_frame);
7515 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7516 frame_unwind_caller_pc (next_frame));
7517 sr_sal.section = find_pc_overlay (sr_sal.pc);
7518 sr_sal.pspace = frame_unwind_program_space (next_frame);
7519
7520 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7521 frame_unwind_caller_id (next_frame));
7522 }
7523
7524 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7525 new breakpoint at the target of a jmp_buf. The handling of
7526 longjmp-resume uses the same mechanisms used for handling
7527 "step-resume" breakpoints. */
7528
7529 static void
7530 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7531 {
7532 /* There should never be more than one longjmp-resume breakpoint per
7533 thread, so we should never be setting a new
7534 longjmp_resume_breakpoint when one is already active. */
7535 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7536
7537 if (debug_infrun)
7538 fprintf_unfiltered (gdb_stdlog,
7539 "infrun: inserting longjmp-resume breakpoint at %s\n",
7540 paddress (gdbarch, pc));
7541
7542 inferior_thread ()->control.exception_resume_breakpoint =
7543 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7544 }
7545
7546 /* Insert an exception resume breakpoint. TP is the thread throwing
7547 the exception. The block B is the block of the unwinder debug hook
7548 function. FRAME is the frame corresponding to the call to this
7549 function. SYM is the symbol of the function argument holding the
7550 target PC of the exception. */
7551
7552 static void
7553 insert_exception_resume_breakpoint (struct thread_info *tp,
7554 const struct block *b,
7555 struct frame_info *frame,
7556 struct symbol *sym)
7557 {
7558 TRY
7559 {
7560 struct block_symbol vsym;
7561 struct value *value;
7562 CORE_ADDR handler;
7563 struct breakpoint *bp;
7564
7565 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7566 value = read_var_value (vsym.symbol, vsym.block, frame);
7567 /* If the value was optimized out, revert to the old behavior. */
7568 if (! value_optimized_out (value))
7569 {
7570 handler = value_as_address (value);
7571
7572 if (debug_infrun)
7573 fprintf_unfiltered (gdb_stdlog,
7574 "infrun: exception resume at %lx\n",
7575 (unsigned long) handler);
7576
7577 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7578 handler, bp_exception_resume);
7579
7580 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7581 frame = NULL;
7582
7583 bp->thread = tp->global_num;
7584 inferior_thread ()->control.exception_resume_breakpoint = bp;
7585 }
7586 }
7587 CATCH (e, RETURN_MASK_ERROR)
7588 {
7589 /* We want to ignore errors here. */
7590 }
7591 END_CATCH
7592 }
7593
7594 /* A helper for check_exception_resume that sets an
7595 exception-breakpoint based on a SystemTap probe. */
7596
7597 static void
7598 insert_exception_resume_from_probe (struct thread_info *tp,
7599 const struct bound_probe *probe,
7600 struct frame_info *frame)
7601 {
7602 struct value *arg_value;
7603 CORE_ADDR handler;
7604 struct breakpoint *bp;
7605
7606 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7607 if (!arg_value)
7608 return;
7609
7610 handler = value_as_address (arg_value);
7611
7612 if (debug_infrun)
7613 fprintf_unfiltered (gdb_stdlog,
7614 "infrun: exception resume at %s\n",
7615 paddress (get_objfile_arch (probe->objfile),
7616 handler));
7617
7618 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7619 handler, bp_exception_resume);
7620 bp->thread = tp->global_num;
7621 inferior_thread ()->control.exception_resume_breakpoint = bp;
7622 }
7623
7624 /* This is called when an exception has been intercepted. Check to
7625 see whether the exception's destination is of interest, and if so,
7626 set an exception resume breakpoint there. */
7627
7628 static void
7629 check_exception_resume (struct execution_control_state *ecs,
7630 struct frame_info *frame)
7631 {
7632 struct bound_probe probe;
7633 struct symbol *func;
7634
7635 /* First see if this exception unwinding breakpoint was set via a
7636 SystemTap probe point. If so, the probe has two arguments: the
7637 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7638 set a breakpoint there. */
7639 probe = find_probe_by_pc (get_frame_pc (frame));
7640 if (probe.probe)
7641 {
7642 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7643 return;
7644 }
7645
7646 func = get_frame_function (frame);
7647 if (!func)
7648 return;
7649
7650 TRY
7651 {
7652 const struct block *b;
7653 struct block_iterator iter;
7654 struct symbol *sym;
7655 int argno = 0;
7656
7657 /* The exception breakpoint is a thread-specific breakpoint on
7658 the unwinder's debug hook, declared as:
7659
7660 void _Unwind_DebugHook (void *cfa, void *handler);
7661
7662 The CFA argument indicates the frame to which control is
7663 about to be transferred. HANDLER is the destination PC.
7664
7665 We ignore the CFA and set a temporary breakpoint at HANDLER.
7666 This is not extremely efficient but it avoids issues in gdb
7667 with computing the DWARF CFA, and it also works even in weird
7668 cases such as throwing an exception from inside a signal
7669 handler. */
7670
7671 b = SYMBOL_BLOCK_VALUE (func);
7672 ALL_BLOCK_SYMBOLS (b, iter, sym)
7673 {
7674 if (!SYMBOL_IS_ARGUMENT (sym))
7675 continue;
7676
7677 if (argno == 0)
7678 ++argno;
7679 else
7680 {
7681 insert_exception_resume_breakpoint (ecs->event_thread,
7682 b, frame, sym);
7683 break;
7684 }
7685 }
7686 }
7687 CATCH (e, RETURN_MASK_ERROR)
7688 {
7689 }
7690 END_CATCH
7691 }
7692
7693 static void
7694 stop_waiting (struct execution_control_state *ecs)
7695 {
7696 if (debug_infrun)
7697 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7698
7699 clear_step_over_info ();
7700
7701 /* Let callers know we don't want to wait for the inferior anymore. */
7702 ecs->wait_some_more = 0;
7703
7704 /* If all-stop, but the target is always in non-stop mode, stop all
7705 threads now that we're presenting the stop to the user. */
7706 if (!non_stop && target_is_non_stop_p ())
7707 stop_all_threads ();
7708 }
7709
7710 /* Like keep_going, but passes the signal to the inferior, even if the
7711 signal is set to nopass. */
7712
7713 static void
7714 keep_going_pass_signal (struct execution_control_state *ecs)
7715 {
7716 /* Make sure normal_stop is called if we get a QUIT handled before
7717 reaching resume. */
7718 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7719
7720 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7721 gdb_assert (!ecs->event_thread->resumed);
7722
7723 /* Save the pc before execution, to compare with pc after stop. */
7724 ecs->event_thread->prev_pc
7725 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7726
7727 if (ecs->event_thread->control.trap_expected)
7728 {
7729 struct thread_info *tp = ecs->event_thread;
7730
7731 if (debug_infrun)
7732 fprintf_unfiltered (gdb_stdlog,
7733 "infrun: %s has trap_expected set, "
7734 "resuming to collect trap\n",
7735 target_pid_to_str (tp->ptid));
7736
7737 /* We haven't yet gotten our trap, and either: intercepted a
7738 non-signal event (e.g., a fork); or took a signal which we
7739 are supposed to pass through to the inferior. Simply
7740 continue. */
7741 discard_cleanups (old_cleanups);
7742 resume (ecs->event_thread->suspend.stop_signal);
7743 }
7744 else if (step_over_info_valid_p ())
7745 {
7746 /* Another thread is stepping over a breakpoint in-line. If
7747 this thread needs a step-over too, queue the request. In
7748 either case, this resume must be deferred for later. */
7749 struct thread_info *tp = ecs->event_thread;
7750
7751 if (ecs->hit_singlestep_breakpoint
7752 || thread_still_needs_step_over (tp))
7753 {
7754 if (debug_infrun)
7755 fprintf_unfiltered (gdb_stdlog,
7756 "infrun: step-over already in progress: "
7757 "step-over for %s deferred\n",
7758 target_pid_to_str (tp->ptid));
7759 thread_step_over_chain_enqueue (tp);
7760 }
7761 else
7762 {
7763 if (debug_infrun)
7764 fprintf_unfiltered (gdb_stdlog,
7765 "infrun: step-over in progress: "
7766 "resume of %s deferred\n",
7767 target_pid_to_str (tp->ptid));
7768 }
7769
7770 discard_cleanups (old_cleanups);
7771 }
7772 else
7773 {
7774 struct regcache *regcache = get_current_regcache ();
7775 int remove_bp;
7776 int remove_wps;
7777 step_over_what step_what;
7778
7779 /* Either the trap was not expected, but we are continuing
7780 anyway (if we got a signal, the user asked it be passed to
7781 the child)
7782 -- or --
7783 We got our expected trap, but decided we should resume from
7784 it.
7785
7786 We're going to run this baby now!
7787
7788 Note that insert_breakpoints won't try to re-insert
7789 already inserted breakpoints. Therefore, we don't
7790 care if breakpoints were already inserted, or not. */
7791
7792 /* If we need to step over a breakpoint, and we're not using
7793 displaced stepping to do so, insert all breakpoints
7794 (watchpoints, etc.) but the one we're stepping over, step one
7795 instruction, and then re-insert the breakpoint when that step
7796 is finished. */
7797
7798 step_what = thread_still_needs_step_over (ecs->event_thread);
7799
7800 remove_bp = (ecs->hit_singlestep_breakpoint
7801 || (step_what & STEP_OVER_BREAKPOINT));
7802 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7803
7804 /* We can't use displaced stepping if we need to step past a
7805 watchpoint. The instruction copied to the scratch pad would
7806 still trigger the watchpoint. */
7807 if (remove_bp
7808 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7809 {
7810 set_step_over_info (get_regcache_aspace (regcache),
7811 regcache_read_pc (regcache), remove_wps,
7812 ecs->event_thread->global_num);
7813 }
7814 else if (remove_wps)
7815 set_step_over_info (NULL, 0, remove_wps, -1);
7816
7817 /* If we now need to do an in-line step-over, we need to stop
7818 all other threads. Note this must be done before
7819 insert_breakpoints below, because that removes the breakpoint
7820 we're about to step over, otherwise other threads could miss
7821 it. */
7822 if (step_over_info_valid_p () && target_is_non_stop_p ())
7823 stop_all_threads ();
7824
7825 /* Stop stepping if inserting breakpoints fails. */
7826 TRY
7827 {
7828 insert_breakpoints ();
7829 }
7830 CATCH (e, RETURN_MASK_ERROR)
7831 {
7832 exception_print (gdb_stderr, e);
7833 stop_waiting (ecs);
7834 discard_cleanups (old_cleanups);
7835 return;
7836 }
7837 END_CATCH
7838
7839 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7840
7841 discard_cleanups (old_cleanups);
7842 resume (ecs->event_thread->suspend.stop_signal);
7843 }
7844
7845 prepare_to_wait (ecs);
7846 }
7847
7848 /* Called when we should continue running the inferior, because the
7849 current event doesn't cause a user visible stop. This does the
7850 resuming part; waiting for the next event is done elsewhere. */
7851
7852 static void
7853 keep_going (struct execution_control_state *ecs)
7854 {
7855 if (ecs->event_thread->control.trap_expected
7856 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7857 ecs->event_thread->control.trap_expected = 0;
7858
7859 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7860 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7861 keep_going_pass_signal (ecs);
7862 }
7863
7864 /* This function normally comes after a resume, before
7865 handle_inferior_event exits. It takes care of any last bits of
7866 housekeeping, and sets the all-important wait_some_more flag. */
7867
7868 static void
7869 prepare_to_wait (struct execution_control_state *ecs)
7870 {
7871 if (debug_infrun)
7872 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7873
7874 ecs->wait_some_more = 1;
7875
7876 if (!target_is_async_p ())
7877 mark_infrun_async_event_handler ();
7878 }
7879
7880 /* We are done with the step range of a step/next/si/ni command.
7881 Called once for each n of a "step n" operation. */
7882
7883 static void
7884 end_stepping_range (struct execution_control_state *ecs)
7885 {
7886 ecs->event_thread->control.stop_step = 1;
7887 stop_waiting (ecs);
7888 }
7889
7890 /* Several print_*_reason functions to print why the inferior has stopped.
7891 We always print something when the inferior exits, or receives a signal.
7892 The rest of the cases are dealt with later on in normal_stop and
7893 print_it_typical. Ideally there should be a call to one of these
7894 print_*_reason functions functions from handle_inferior_event each time
7895 stop_waiting is called.
7896
7897 Note that we don't call these directly, instead we delegate that to
7898 the interpreters, through observers. Interpreters then call these
7899 with whatever uiout is right. */
7900
7901 void
7902 print_end_stepping_range_reason (struct ui_out *uiout)
7903 {
7904 /* For CLI-like interpreters, print nothing. */
7905
7906 if (ui_out_is_mi_like_p (uiout))
7907 {
7908 ui_out_field_string (uiout, "reason",
7909 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7910 }
7911 }
7912
7913 void
7914 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7915 {
7916 annotate_signalled ();
7917 if (ui_out_is_mi_like_p (uiout))
7918 ui_out_field_string
7919 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7920 ui_out_text (uiout, "\nProgram terminated with signal ");
7921 annotate_signal_name ();
7922 ui_out_field_string (uiout, "signal-name",
7923 gdb_signal_to_name (siggnal));
7924 annotate_signal_name_end ();
7925 ui_out_text (uiout, ", ");
7926 annotate_signal_string ();
7927 ui_out_field_string (uiout, "signal-meaning",
7928 gdb_signal_to_string (siggnal));
7929 annotate_signal_string_end ();
7930 ui_out_text (uiout, ".\n");
7931 ui_out_text (uiout, "The program no longer exists.\n");
7932 }
7933
7934 void
7935 print_exited_reason (struct ui_out *uiout, int exitstatus)
7936 {
7937 struct inferior *inf = current_inferior ();
7938 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7939
7940 annotate_exited (exitstatus);
7941 if (exitstatus)
7942 {
7943 if (ui_out_is_mi_like_p (uiout))
7944 ui_out_field_string (uiout, "reason",
7945 async_reason_lookup (EXEC_ASYNC_EXITED));
7946 ui_out_text (uiout, "[Inferior ");
7947 ui_out_text (uiout, plongest (inf->num));
7948 ui_out_text (uiout, " (");
7949 ui_out_text (uiout, pidstr);
7950 ui_out_text (uiout, ") exited with code ");
7951 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7952 ui_out_text (uiout, "]\n");
7953 }
7954 else
7955 {
7956 if (ui_out_is_mi_like_p (uiout))
7957 ui_out_field_string
7958 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7959 ui_out_text (uiout, "[Inferior ");
7960 ui_out_text (uiout, plongest (inf->num));
7961 ui_out_text (uiout, " (");
7962 ui_out_text (uiout, pidstr);
7963 ui_out_text (uiout, ") exited normally]\n");
7964 }
7965 }
7966
7967 /* Some targets/architectures can do extra processing/display of
7968 segmentation faults. E.g., Intel MPX boundary faults.
7969 Call the architecture dependent function to handle the fault. */
7970
7971 static void
7972 handle_segmentation_fault (struct ui_out *uiout)
7973 {
7974 struct regcache *regcache = get_current_regcache ();
7975 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7976
7977 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7978 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7979 }
7980
7981 void
7982 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7983 {
7984 struct thread_info *thr = inferior_thread ();
7985
7986 annotate_signal ();
7987
7988 if (ui_out_is_mi_like_p (uiout))
7989 ;
7990 else if (show_thread_that_caused_stop ())
7991 {
7992 const char *name;
7993
7994 ui_out_text (uiout, "\nThread ");
7995 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7996
7997 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7998 if (name != NULL)
7999 {
8000 ui_out_text (uiout, " \"");
8001 ui_out_field_fmt (uiout, "name", "%s", name);
8002 ui_out_text (uiout, "\"");
8003 }
8004 }
8005 else
8006 ui_out_text (uiout, "\nProgram");
8007
8008 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
8009 ui_out_text (uiout, " stopped");
8010 else
8011 {
8012 ui_out_text (uiout, " received signal ");
8013 annotate_signal_name ();
8014 if (ui_out_is_mi_like_p (uiout))
8015 ui_out_field_string
8016 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8017 ui_out_field_string (uiout, "signal-name",
8018 gdb_signal_to_name (siggnal));
8019 annotate_signal_name_end ();
8020 ui_out_text (uiout, ", ");
8021 annotate_signal_string ();
8022 ui_out_field_string (uiout, "signal-meaning",
8023 gdb_signal_to_string (siggnal));
8024
8025 if (siggnal == GDB_SIGNAL_SEGV)
8026 handle_segmentation_fault (uiout);
8027
8028 annotate_signal_string_end ();
8029 }
8030 ui_out_text (uiout, ".\n");
8031 }
8032
8033 void
8034 print_no_history_reason (struct ui_out *uiout)
8035 {
8036 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
8037 }
8038
8039 /* Print current location without a level number, if we have changed
8040 functions or hit a breakpoint. Print source line if we have one.
8041 bpstat_print contains the logic deciding in detail what to print,
8042 based on the event(s) that just occurred. */
8043
8044 static void
8045 print_stop_location (struct target_waitstatus *ws)
8046 {
8047 int bpstat_ret;
8048 enum print_what source_flag;
8049 int do_frame_printing = 1;
8050 struct thread_info *tp = inferior_thread ();
8051
8052 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8053 switch (bpstat_ret)
8054 {
8055 case PRINT_UNKNOWN:
8056 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8057 should) carry around the function and does (or should) use
8058 that when doing a frame comparison. */
8059 if (tp->control.stop_step
8060 && frame_id_eq (tp->control.step_frame_id,
8061 get_frame_id (get_current_frame ()))
8062 && tp->control.step_start_function == find_pc_function (stop_pc))
8063 {
8064 /* Finished step, just print source line. */
8065 source_flag = SRC_LINE;
8066 }
8067 else
8068 {
8069 /* Print location and source line. */
8070 source_flag = SRC_AND_LOC;
8071 }
8072 break;
8073 case PRINT_SRC_AND_LOC:
8074 /* Print location and source line. */
8075 source_flag = SRC_AND_LOC;
8076 break;
8077 case PRINT_SRC_ONLY:
8078 source_flag = SRC_LINE;
8079 break;
8080 case PRINT_NOTHING:
8081 /* Something bogus. */
8082 source_flag = SRC_LINE;
8083 do_frame_printing = 0;
8084 break;
8085 default:
8086 internal_error (__FILE__, __LINE__, _("Unknown value."));
8087 }
8088
8089 /* The behavior of this routine with respect to the source
8090 flag is:
8091 SRC_LINE: Print only source line
8092 LOCATION: Print only location
8093 SRC_AND_LOC: Print location and source line. */
8094 if (do_frame_printing)
8095 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8096 }
8097
8098 /* Cleanup that restores a previous current uiout. */
8099
8100 static void
8101 restore_current_uiout_cleanup (void *arg)
8102 {
8103 struct ui_out *saved_uiout = (struct ui_out *) arg;
8104
8105 current_uiout = saved_uiout;
8106 }
8107
8108 /* See infrun.h. */
8109
8110 void
8111 print_stop_event (struct ui_out *uiout)
8112 {
8113 struct cleanup *old_chain;
8114 struct target_waitstatus last;
8115 ptid_t last_ptid;
8116 struct thread_info *tp;
8117
8118 get_last_target_status (&last_ptid, &last);
8119
8120 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
8121 current_uiout = uiout;
8122
8123 print_stop_location (&last);
8124
8125 /* Display the auto-display expressions. */
8126 do_displays ();
8127
8128 do_cleanups (old_chain);
8129
8130 tp = inferior_thread ();
8131 if (tp->thread_fsm != NULL
8132 && thread_fsm_finished_p (tp->thread_fsm))
8133 {
8134 struct return_value_info *rv;
8135
8136 rv = thread_fsm_return_value (tp->thread_fsm);
8137 if (rv != NULL)
8138 print_return_value (uiout, rv);
8139 }
8140 }
8141
8142 /* See infrun.h. */
8143
8144 void
8145 maybe_remove_breakpoints (void)
8146 {
8147 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8148 {
8149 if (remove_breakpoints ())
8150 {
8151 target_terminal_ours_for_output ();
8152 printf_filtered (_("Cannot remove breakpoints because "
8153 "program is no longer writable.\nFurther "
8154 "execution is probably impossible.\n"));
8155 }
8156 }
8157 }
8158
8159 /* The execution context that just caused a normal stop. */
8160
8161 struct stop_context
8162 {
8163 /* The stop ID. */
8164 ULONGEST stop_id;
8165
8166 /* The event PTID. */
8167
8168 ptid_t ptid;
8169
8170 /* If stopp for a thread event, this is the thread that caused the
8171 stop. */
8172 struct thread_info *thread;
8173
8174 /* The inferior that caused the stop. */
8175 int inf_num;
8176 };
8177
8178 /* Returns a new stop context. If stopped for a thread event, this
8179 takes a strong reference to the thread. */
8180
8181 static struct stop_context *
8182 save_stop_context (void)
8183 {
8184 struct stop_context *sc = XNEW (struct stop_context);
8185
8186 sc->stop_id = get_stop_id ();
8187 sc->ptid = inferior_ptid;
8188 sc->inf_num = current_inferior ()->num;
8189
8190 if (!ptid_equal (inferior_ptid, null_ptid))
8191 {
8192 /* Take a strong reference so that the thread can't be deleted
8193 yet. */
8194 sc->thread = inferior_thread ();
8195 sc->thread->refcount++;
8196 }
8197 else
8198 sc->thread = NULL;
8199
8200 return sc;
8201 }
8202
8203 /* Release a stop context previously created with save_stop_context.
8204 Releases the strong reference to the thread as well. */
8205
8206 static void
8207 release_stop_context_cleanup (void *arg)
8208 {
8209 struct stop_context *sc = (struct stop_context *) arg;
8210
8211 if (sc->thread != NULL)
8212 sc->thread->refcount--;
8213 xfree (sc);
8214 }
8215
8216 /* Return true if the current context no longer matches the saved stop
8217 context. */
8218
8219 static int
8220 stop_context_changed (struct stop_context *prev)
8221 {
8222 if (!ptid_equal (prev->ptid, inferior_ptid))
8223 return 1;
8224 if (prev->inf_num != current_inferior ()->num)
8225 return 1;
8226 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8227 return 1;
8228 if (get_stop_id () != prev->stop_id)
8229 return 1;
8230 return 0;
8231 }
8232
8233 /* See infrun.h. */
8234
8235 int
8236 normal_stop (void)
8237 {
8238 struct target_waitstatus last;
8239 ptid_t last_ptid;
8240 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8241 ptid_t pid_ptid;
8242 struct switch_thru_all_uis state;
8243
8244 get_last_target_status (&last_ptid, &last);
8245
8246 new_stop_id ();
8247
8248 /* If an exception is thrown from this point on, make sure to
8249 propagate GDB's knowledge of the executing state to the
8250 frontend/user running state. A QUIT is an easy exception to see
8251 here, so do this before any filtered output. */
8252 if (!non_stop)
8253 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8254 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8255 || last.kind == TARGET_WAITKIND_EXITED)
8256 {
8257 /* On some targets, we may still have live threads in the
8258 inferior when we get a process exit event. E.g., for
8259 "checkpoint", when the current checkpoint/fork exits,
8260 linux-fork.c automatically switches to another fork from
8261 within target_mourn_inferior. */
8262 if (!ptid_equal (inferior_ptid, null_ptid))
8263 {
8264 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8265 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8266 }
8267 }
8268 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8269 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8270
8271 /* As we're presenting a stop, and potentially removing breakpoints,
8272 update the thread list so we can tell whether there are threads
8273 running on the target. With target remote, for example, we can
8274 only learn about new threads when we explicitly update the thread
8275 list. Do this before notifying the interpreters about signal
8276 stops, end of stepping ranges, etc., so that the "new thread"
8277 output is emitted before e.g., "Program received signal FOO",
8278 instead of after. */
8279 update_thread_list ();
8280
8281 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8282 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8283
8284 /* As with the notification of thread events, we want to delay
8285 notifying the user that we've switched thread context until
8286 the inferior actually stops.
8287
8288 There's no point in saying anything if the inferior has exited.
8289 Note that SIGNALLED here means "exited with a signal", not
8290 "received a signal".
8291
8292 Also skip saying anything in non-stop mode. In that mode, as we
8293 don't want GDB to switch threads behind the user's back, to avoid
8294 races where the user is typing a command to apply to thread x,
8295 but GDB switches to thread y before the user finishes entering
8296 the command, fetch_inferior_event installs a cleanup to restore
8297 the current thread back to the thread the user had selected right
8298 after this event is handled, so we're not really switching, only
8299 informing of a stop. */
8300 if (!non_stop
8301 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8302 && target_has_execution
8303 && last.kind != TARGET_WAITKIND_SIGNALLED
8304 && last.kind != TARGET_WAITKIND_EXITED
8305 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8306 {
8307 SWITCH_THRU_ALL_UIS (state)
8308 {
8309 target_terminal_ours_for_output ();
8310 printf_filtered (_("[Switching to %s]\n"),
8311 target_pid_to_str (inferior_ptid));
8312 annotate_thread_changed ();
8313 }
8314 previous_inferior_ptid = inferior_ptid;
8315 }
8316
8317 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8318 {
8319 SWITCH_THRU_ALL_UIS (state)
8320 if (current_ui->prompt_state == PROMPT_BLOCKED)
8321 {
8322 target_terminal_ours_for_output ();
8323 printf_filtered (_("No unwaited-for children left.\n"));
8324 }
8325 }
8326
8327 /* Note: this depends on the update_thread_list call above. */
8328 maybe_remove_breakpoints ();
8329
8330 /* If an auto-display called a function and that got a signal,
8331 delete that auto-display to avoid an infinite recursion. */
8332
8333 if (stopped_by_random_signal)
8334 disable_current_display ();
8335
8336 SWITCH_THRU_ALL_UIS (state)
8337 {
8338 async_enable_stdin ();
8339 }
8340
8341 /* Let the user/frontend see the threads as stopped. */
8342 do_cleanups (old_chain);
8343
8344 /* Select innermost stack frame - i.e., current frame is frame 0,
8345 and current location is based on that. Handle the case where the
8346 dummy call is returning after being stopped. E.g. the dummy call
8347 previously hit a breakpoint. (If the dummy call returns
8348 normally, we won't reach here.) Do this before the stop hook is
8349 run, so that it doesn't get to see the temporary dummy frame,
8350 which is not where we'll present the stop. */
8351 if (has_stack_frames ())
8352 {
8353 if (stop_stack_dummy == STOP_STACK_DUMMY)
8354 {
8355 /* Pop the empty frame that contains the stack dummy. This
8356 also restores inferior state prior to the call (struct
8357 infcall_suspend_state). */
8358 struct frame_info *frame = get_current_frame ();
8359
8360 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8361 frame_pop (frame);
8362 /* frame_pop calls reinit_frame_cache as the last thing it
8363 does which means there's now no selected frame. */
8364 }
8365
8366 select_frame (get_current_frame ());
8367
8368 /* Set the current source location. */
8369 set_current_sal_from_frame (get_current_frame ());
8370 }
8371
8372 /* Look up the hook_stop and run it (CLI internally handles problem
8373 of stop_command's pre-hook not existing). */
8374 if (stop_command != NULL)
8375 {
8376 struct stop_context *saved_context = save_stop_context ();
8377 struct cleanup *old_chain
8378 = make_cleanup (release_stop_context_cleanup, saved_context);
8379
8380 catch_errors (hook_stop_stub, stop_command,
8381 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8382
8383 /* If the stop hook resumes the target, then there's no point in
8384 trying to notify about the previous stop; its context is
8385 gone. Likewise if the command switches thread or inferior --
8386 the observers would print a stop for the wrong
8387 thread/inferior. */
8388 if (stop_context_changed (saved_context))
8389 {
8390 do_cleanups (old_chain);
8391 return 1;
8392 }
8393 do_cleanups (old_chain);
8394 }
8395
8396 /* Notify observers about the stop. This is where the interpreters
8397 print the stop event. */
8398 if (!ptid_equal (inferior_ptid, null_ptid))
8399 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8400 stop_print_frame);
8401 else
8402 observer_notify_normal_stop (NULL, stop_print_frame);
8403
8404 annotate_stopped ();
8405
8406 if (target_has_execution)
8407 {
8408 if (last.kind != TARGET_WAITKIND_SIGNALLED
8409 && last.kind != TARGET_WAITKIND_EXITED)
8410 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8411 Delete any breakpoint that is to be deleted at the next stop. */
8412 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8413 }
8414
8415 /* Try to get rid of automatically added inferiors that are no
8416 longer needed. Keeping those around slows down things linearly.
8417 Note that this never removes the current inferior. */
8418 prune_inferiors ();
8419
8420 return 0;
8421 }
8422
8423 static int
8424 hook_stop_stub (void *cmd)
8425 {
8426 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8427 return (0);
8428 }
8429 \f
8430 int
8431 signal_stop_state (int signo)
8432 {
8433 return signal_stop[signo];
8434 }
8435
8436 int
8437 signal_print_state (int signo)
8438 {
8439 return signal_print[signo];
8440 }
8441
8442 int
8443 signal_pass_state (int signo)
8444 {
8445 return signal_program[signo];
8446 }
8447
8448 static void
8449 signal_cache_update (int signo)
8450 {
8451 if (signo == -1)
8452 {
8453 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8454 signal_cache_update (signo);
8455
8456 return;
8457 }
8458
8459 signal_pass[signo] = (signal_stop[signo] == 0
8460 && signal_print[signo] == 0
8461 && signal_program[signo] == 1
8462 && signal_catch[signo] == 0);
8463 }
8464
8465 int
8466 signal_stop_update (int signo, int state)
8467 {
8468 int ret = signal_stop[signo];
8469
8470 signal_stop[signo] = state;
8471 signal_cache_update (signo);
8472 return ret;
8473 }
8474
8475 int
8476 signal_print_update (int signo, int state)
8477 {
8478 int ret = signal_print[signo];
8479
8480 signal_print[signo] = state;
8481 signal_cache_update (signo);
8482 return ret;
8483 }
8484
8485 int
8486 signal_pass_update (int signo, int state)
8487 {
8488 int ret = signal_program[signo];
8489
8490 signal_program[signo] = state;
8491 signal_cache_update (signo);
8492 return ret;
8493 }
8494
8495 /* Update the global 'signal_catch' from INFO and notify the
8496 target. */
8497
8498 void
8499 signal_catch_update (const unsigned int *info)
8500 {
8501 int i;
8502
8503 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8504 signal_catch[i] = info[i] > 0;
8505 signal_cache_update (-1);
8506 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8507 }
8508
8509 static void
8510 sig_print_header (void)
8511 {
8512 printf_filtered (_("Signal Stop\tPrint\tPass "
8513 "to program\tDescription\n"));
8514 }
8515
8516 static void
8517 sig_print_info (enum gdb_signal oursig)
8518 {
8519 const char *name = gdb_signal_to_name (oursig);
8520 int name_padding = 13 - strlen (name);
8521
8522 if (name_padding <= 0)
8523 name_padding = 0;
8524
8525 printf_filtered ("%s", name);
8526 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8527 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8528 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8529 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8530 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8531 }
8532
8533 /* Specify how various signals in the inferior should be handled. */
8534
8535 static void
8536 handle_command (char *args, int from_tty)
8537 {
8538 char **argv;
8539 int digits, wordlen;
8540 int sigfirst, signum, siglast;
8541 enum gdb_signal oursig;
8542 int allsigs;
8543 int nsigs;
8544 unsigned char *sigs;
8545 struct cleanup *old_chain;
8546
8547 if (args == NULL)
8548 {
8549 error_no_arg (_("signal to handle"));
8550 }
8551
8552 /* Allocate and zero an array of flags for which signals to handle. */
8553
8554 nsigs = (int) GDB_SIGNAL_LAST;
8555 sigs = (unsigned char *) alloca (nsigs);
8556 memset (sigs, 0, nsigs);
8557
8558 /* Break the command line up into args. */
8559
8560 argv = gdb_buildargv (args);
8561 old_chain = make_cleanup_freeargv (argv);
8562
8563 /* Walk through the args, looking for signal oursigs, signal names, and
8564 actions. Signal numbers and signal names may be interspersed with
8565 actions, with the actions being performed for all signals cumulatively
8566 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8567
8568 while (*argv != NULL)
8569 {
8570 wordlen = strlen (*argv);
8571 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8572 {;
8573 }
8574 allsigs = 0;
8575 sigfirst = siglast = -1;
8576
8577 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8578 {
8579 /* Apply action to all signals except those used by the
8580 debugger. Silently skip those. */
8581 allsigs = 1;
8582 sigfirst = 0;
8583 siglast = nsigs - 1;
8584 }
8585 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8586 {
8587 SET_SIGS (nsigs, sigs, signal_stop);
8588 SET_SIGS (nsigs, sigs, signal_print);
8589 }
8590 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8591 {
8592 UNSET_SIGS (nsigs, sigs, signal_program);
8593 }
8594 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8595 {
8596 SET_SIGS (nsigs, sigs, signal_print);
8597 }
8598 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8599 {
8600 SET_SIGS (nsigs, sigs, signal_program);
8601 }
8602 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8603 {
8604 UNSET_SIGS (nsigs, sigs, signal_stop);
8605 }
8606 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8607 {
8608 SET_SIGS (nsigs, sigs, signal_program);
8609 }
8610 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8611 {
8612 UNSET_SIGS (nsigs, sigs, signal_print);
8613 UNSET_SIGS (nsigs, sigs, signal_stop);
8614 }
8615 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8616 {
8617 UNSET_SIGS (nsigs, sigs, signal_program);
8618 }
8619 else if (digits > 0)
8620 {
8621 /* It is numeric. The numeric signal refers to our own
8622 internal signal numbering from target.h, not to host/target
8623 signal number. This is a feature; users really should be
8624 using symbolic names anyway, and the common ones like
8625 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8626
8627 sigfirst = siglast = (int)
8628 gdb_signal_from_command (atoi (*argv));
8629 if ((*argv)[digits] == '-')
8630 {
8631 siglast = (int)
8632 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8633 }
8634 if (sigfirst > siglast)
8635 {
8636 /* Bet he didn't figure we'd think of this case... */
8637 signum = sigfirst;
8638 sigfirst = siglast;
8639 siglast = signum;
8640 }
8641 }
8642 else
8643 {
8644 oursig = gdb_signal_from_name (*argv);
8645 if (oursig != GDB_SIGNAL_UNKNOWN)
8646 {
8647 sigfirst = siglast = (int) oursig;
8648 }
8649 else
8650 {
8651 /* Not a number and not a recognized flag word => complain. */
8652 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8653 }
8654 }
8655
8656 /* If any signal numbers or symbol names were found, set flags for
8657 which signals to apply actions to. */
8658
8659 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8660 {
8661 switch ((enum gdb_signal) signum)
8662 {
8663 case GDB_SIGNAL_TRAP:
8664 case GDB_SIGNAL_INT:
8665 if (!allsigs && !sigs[signum])
8666 {
8667 if (query (_("%s is used by the debugger.\n\
8668 Are you sure you want to change it? "),
8669 gdb_signal_to_name ((enum gdb_signal) signum)))
8670 {
8671 sigs[signum] = 1;
8672 }
8673 else
8674 {
8675 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8676 gdb_flush (gdb_stdout);
8677 }
8678 }
8679 break;
8680 case GDB_SIGNAL_0:
8681 case GDB_SIGNAL_DEFAULT:
8682 case GDB_SIGNAL_UNKNOWN:
8683 /* Make sure that "all" doesn't print these. */
8684 break;
8685 default:
8686 sigs[signum] = 1;
8687 break;
8688 }
8689 }
8690
8691 argv++;
8692 }
8693
8694 for (signum = 0; signum < nsigs; signum++)
8695 if (sigs[signum])
8696 {
8697 signal_cache_update (-1);
8698 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8699 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8700
8701 if (from_tty)
8702 {
8703 /* Show the results. */
8704 sig_print_header ();
8705 for (; signum < nsigs; signum++)
8706 if (sigs[signum])
8707 sig_print_info ((enum gdb_signal) signum);
8708 }
8709
8710 break;
8711 }
8712
8713 do_cleanups (old_chain);
8714 }
8715
8716 /* Complete the "handle" command. */
8717
8718 static VEC (char_ptr) *
8719 handle_completer (struct cmd_list_element *ignore,
8720 const char *text, const char *word)
8721 {
8722 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8723 static const char * const keywords[] =
8724 {
8725 "all",
8726 "stop",
8727 "ignore",
8728 "print",
8729 "pass",
8730 "nostop",
8731 "noignore",
8732 "noprint",
8733 "nopass",
8734 NULL,
8735 };
8736
8737 vec_signals = signal_completer (ignore, text, word);
8738 vec_keywords = complete_on_enum (keywords, word, word);
8739
8740 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8741 VEC_free (char_ptr, vec_signals);
8742 VEC_free (char_ptr, vec_keywords);
8743 return return_val;
8744 }
8745
8746 enum gdb_signal
8747 gdb_signal_from_command (int num)
8748 {
8749 if (num >= 1 && num <= 15)
8750 return (enum gdb_signal) num;
8751 error (_("Only signals 1-15 are valid as numeric signals.\n\
8752 Use \"info signals\" for a list of symbolic signals."));
8753 }
8754
8755 /* Print current contents of the tables set by the handle command.
8756 It is possible we should just be printing signals actually used
8757 by the current target (but for things to work right when switching
8758 targets, all signals should be in the signal tables). */
8759
8760 static void
8761 signals_info (char *signum_exp, int from_tty)
8762 {
8763 enum gdb_signal oursig;
8764
8765 sig_print_header ();
8766
8767 if (signum_exp)
8768 {
8769 /* First see if this is a symbol name. */
8770 oursig = gdb_signal_from_name (signum_exp);
8771 if (oursig == GDB_SIGNAL_UNKNOWN)
8772 {
8773 /* No, try numeric. */
8774 oursig =
8775 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8776 }
8777 sig_print_info (oursig);
8778 return;
8779 }
8780
8781 printf_filtered ("\n");
8782 /* These ugly casts brought to you by the native VAX compiler. */
8783 for (oursig = GDB_SIGNAL_FIRST;
8784 (int) oursig < (int) GDB_SIGNAL_LAST;
8785 oursig = (enum gdb_signal) ((int) oursig + 1))
8786 {
8787 QUIT;
8788
8789 if (oursig != GDB_SIGNAL_UNKNOWN
8790 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8791 sig_print_info (oursig);
8792 }
8793
8794 printf_filtered (_("\nUse the \"handle\" command "
8795 "to change these tables.\n"));
8796 }
8797
8798 /* The $_siginfo convenience variable is a bit special. We don't know
8799 for sure the type of the value until we actually have a chance to
8800 fetch the data. The type can change depending on gdbarch, so it is
8801 also dependent on which thread you have selected.
8802
8803 1. making $_siginfo be an internalvar that creates a new value on
8804 access.
8805
8806 2. making the value of $_siginfo be an lval_computed value. */
8807
8808 /* This function implements the lval_computed support for reading a
8809 $_siginfo value. */
8810
8811 static void
8812 siginfo_value_read (struct value *v)
8813 {
8814 LONGEST transferred;
8815
8816 /* If we can access registers, so can we access $_siginfo. Likewise
8817 vice versa. */
8818 validate_registers_access ();
8819
8820 transferred =
8821 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8822 NULL,
8823 value_contents_all_raw (v),
8824 value_offset (v),
8825 TYPE_LENGTH (value_type (v)));
8826
8827 if (transferred != TYPE_LENGTH (value_type (v)))
8828 error (_("Unable to read siginfo"));
8829 }
8830
8831 /* This function implements the lval_computed support for writing a
8832 $_siginfo value. */
8833
8834 static void
8835 siginfo_value_write (struct value *v, struct value *fromval)
8836 {
8837 LONGEST transferred;
8838
8839 /* If we can access registers, so can we access $_siginfo. Likewise
8840 vice versa. */
8841 validate_registers_access ();
8842
8843 transferred = target_write (&current_target,
8844 TARGET_OBJECT_SIGNAL_INFO,
8845 NULL,
8846 value_contents_all_raw (fromval),
8847 value_offset (v),
8848 TYPE_LENGTH (value_type (fromval)));
8849
8850 if (transferred != TYPE_LENGTH (value_type (fromval)))
8851 error (_("Unable to write siginfo"));
8852 }
8853
8854 static const struct lval_funcs siginfo_value_funcs =
8855 {
8856 siginfo_value_read,
8857 siginfo_value_write
8858 };
8859
8860 /* Return a new value with the correct type for the siginfo object of
8861 the current thread using architecture GDBARCH. Return a void value
8862 if there's no object available. */
8863
8864 static struct value *
8865 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8866 void *ignore)
8867 {
8868 if (target_has_stack
8869 && !ptid_equal (inferior_ptid, null_ptid)
8870 && gdbarch_get_siginfo_type_p (gdbarch))
8871 {
8872 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8873
8874 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8875 }
8876
8877 return allocate_value (builtin_type (gdbarch)->builtin_void);
8878 }
8879
8880 \f
8881 /* infcall_suspend_state contains state about the program itself like its
8882 registers and any signal it received when it last stopped.
8883 This state must be restored regardless of how the inferior function call
8884 ends (either successfully, or after it hits a breakpoint or signal)
8885 if the program is to properly continue where it left off. */
8886
8887 struct infcall_suspend_state
8888 {
8889 struct thread_suspend_state thread_suspend;
8890
8891 /* Other fields: */
8892 CORE_ADDR stop_pc;
8893 struct regcache *registers;
8894
8895 /* Format of SIGINFO_DATA or NULL if it is not present. */
8896 struct gdbarch *siginfo_gdbarch;
8897
8898 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8899 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8900 content would be invalid. */
8901 gdb_byte *siginfo_data;
8902 };
8903
8904 struct infcall_suspend_state *
8905 save_infcall_suspend_state (void)
8906 {
8907 struct infcall_suspend_state *inf_state;
8908 struct thread_info *tp = inferior_thread ();
8909 struct regcache *regcache = get_current_regcache ();
8910 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8911 gdb_byte *siginfo_data = NULL;
8912
8913 if (gdbarch_get_siginfo_type_p (gdbarch))
8914 {
8915 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8916 size_t len = TYPE_LENGTH (type);
8917 struct cleanup *back_to;
8918
8919 siginfo_data = (gdb_byte *) xmalloc (len);
8920 back_to = make_cleanup (xfree, siginfo_data);
8921
8922 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8923 siginfo_data, 0, len) == len)
8924 discard_cleanups (back_to);
8925 else
8926 {
8927 /* Errors ignored. */
8928 do_cleanups (back_to);
8929 siginfo_data = NULL;
8930 }
8931 }
8932
8933 inf_state = XCNEW (struct infcall_suspend_state);
8934
8935 if (siginfo_data)
8936 {
8937 inf_state->siginfo_gdbarch = gdbarch;
8938 inf_state->siginfo_data = siginfo_data;
8939 }
8940
8941 inf_state->thread_suspend = tp->suspend;
8942
8943 /* run_inferior_call will not use the signal due to its `proceed' call with
8944 GDB_SIGNAL_0 anyway. */
8945 tp->suspend.stop_signal = GDB_SIGNAL_0;
8946
8947 inf_state->stop_pc = stop_pc;
8948
8949 inf_state->registers = regcache_dup (regcache);
8950
8951 return inf_state;
8952 }
8953
8954 /* Restore inferior session state to INF_STATE. */
8955
8956 void
8957 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8958 {
8959 struct thread_info *tp = inferior_thread ();
8960 struct regcache *regcache = get_current_regcache ();
8961 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8962
8963 tp->suspend = inf_state->thread_suspend;
8964
8965 stop_pc = inf_state->stop_pc;
8966
8967 if (inf_state->siginfo_gdbarch == gdbarch)
8968 {
8969 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8970
8971 /* Errors ignored. */
8972 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8973 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8974 }
8975
8976 /* The inferior can be gone if the user types "print exit(0)"
8977 (and perhaps other times). */
8978 if (target_has_execution)
8979 /* NB: The register write goes through to the target. */
8980 regcache_cpy (regcache, inf_state->registers);
8981
8982 discard_infcall_suspend_state (inf_state);
8983 }
8984
8985 static void
8986 do_restore_infcall_suspend_state_cleanup (void *state)
8987 {
8988 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8989 }
8990
8991 struct cleanup *
8992 make_cleanup_restore_infcall_suspend_state
8993 (struct infcall_suspend_state *inf_state)
8994 {
8995 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8996 }
8997
8998 void
8999 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9000 {
9001 regcache_xfree (inf_state->registers);
9002 xfree (inf_state->siginfo_data);
9003 xfree (inf_state);
9004 }
9005
9006 struct regcache *
9007 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9008 {
9009 return inf_state->registers;
9010 }
9011
9012 /* infcall_control_state contains state regarding gdb's control of the
9013 inferior itself like stepping control. It also contains session state like
9014 the user's currently selected frame. */
9015
9016 struct infcall_control_state
9017 {
9018 struct thread_control_state thread_control;
9019 struct inferior_control_state inferior_control;
9020
9021 /* Other fields: */
9022 enum stop_stack_kind stop_stack_dummy;
9023 int stopped_by_random_signal;
9024
9025 /* ID if the selected frame when the inferior function call was made. */
9026 struct frame_id selected_frame_id;
9027 };
9028
9029 /* Save all of the information associated with the inferior<==>gdb
9030 connection. */
9031
9032 struct infcall_control_state *
9033 save_infcall_control_state (void)
9034 {
9035 struct infcall_control_state *inf_status =
9036 XNEW (struct infcall_control_state);
9037 struct thread_info *tp = inferior_thread ();
9038 struct inferior *inf = current_inferior ();
9039
9040 inf_status->thread_control = tp->control;
9041 inf_status->inferior_control = inf->control;
9042
9043 tp->control.step_resume_breakpoint = NULL;
9044 tp->control.exception_resume_breakpoint = NULL;
9045
9046 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9047 chain. If caller's caller is walking the chain, they'll be happier if we
9048 hand them back the original chain when restore_infcall_control_state is
9049 called. */
9050 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9051
9052 /* Other fields: */
9053 inf_status->stop_stack_dummy = stop_stack_dummy;
9054 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9055
9056 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9057
9058 return inf_status;
9059 }
9060
9061 static int
9062 restore_selected_frame (void *args)
9063 {
9064 struct frame_id *fid = (struct frame_id *) args;
9065 struct frame_info *frame;
9066
9067 frame = frame_find_by_id (*fid);
9068
9069 /* If inf_status->selected_frame_id is NULL, there was no previously
9070 selected frame. */
9071 if (frame == NULL)
9072 {
9073 warning (_("Unable to restore previously selected frame."));
9074 return 0;
9075 }
9076
9077 select_frame (frame);
9078
9079 return (1);
9080 }
9081
9082 /* Restore inferior session state to INF_STATUS. */
9083
9084 void
9085 restore_infcall_control_state (struct infcall_control_state *inf_status)
9086 {
9087 struct thread_info *tp = inferior_thread ();
9088 struct inferior *inf = current_inferior ();
9089
9090 if (tp->control.step_resume_breakpoint)
9091 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9092
9093 if (tp->control.exception_resume_breakpoint)
9094 tp->control.exception_resume_breakpoint->disposition
9095 = disp_del_at_next_stop;
9096
9097 /* Handle the bpstat_copy of the chain. */
9098 bpstat_clear (&tp->control.stop_bpstat);
9099
9100 tp->control = inf_status->thread_control;
9101 inf->control = inf_status->inferior_control;
9102
9103 /* Other fields: */
9104 stop_stack_dummy = inf_status->stop_stack_dummy;
9105 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9106
9107 if (target_has_stack)
9108 {
9109 /* The point of catch_errors is that if the stack is clobbered,
9110 walking the stack might encounter a garbage pointer and
9111 error() trying to dereference it. */
9112 if (catch_errors
9113 (restore_selected_frame, &inf_status->selected_frame_id,
9114 "Unable to restore previously selected frame:\n",
9115 RETURN_MASK_ERROR) == 0)
9116 /* Error in restoring the selected frame. Select the innermost
9117 frame. */
9118 select_frame (get_current_frame ());
9119 }
9120
9121 xfree (inf_status);
9122 }
9123
9124 static void
9125 do_restore_infcall_control_state_cleanup (void *sts)
9126 {
9127 restore_infcall_control_state ((struct infcall_control_state *) sts);
9128 }
9129
9130 struct cleanup *
9131 make_cleanup_restore_infcall_control_state
9132 (struct infcall_control_state *inf_status)
9133 {
9134 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9135 }
9136
9137 void
9138 discard_infcall_control_state (struct infcall_control_state *inf_status)
9139 {
9140 if (inf_status->thread_control.step_resume_breakpoint)
9141 inf_status->thread_control.step_resume_breakpoint->disposition
9142 = disp_del_at_next_stop;
9143
9144 if (inf_status->thread_control.exception_resume_breakpoint)
9145 inf_status->thread_control.exception_resume_breakpoint->disposition
9146 = disp_del_at_next_stop;
9147
9148 /* See save_infcall_control_state for info on stop_bpstat. */
9149 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9150
9151 xfree (inf_status);
9152 }
9153 \f
9154 /* restore_inferior_ptid() will be used by the cleanup machinery
9155 to restore the inferior_ptid value saved in a call to
9156 save_inferior_ptid(). */
9157
9158 static void
9159 restore_inferior_ptid (void *arg)
9160 {
9161 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9162
9163 inferior_ptid = *saved_ptid_ptr;
9164 xfree (arg);
9165 }
9166
9167 /* Save the value of inferior_ptid so that it may be restored by a
9168 later call to do_cleanups(). Returns the struct cleanup pointer
9169 needed for later doing the cleanup. */
9170
9171 struct cleanup *
9172 save_inferior_ptid (void)
9173 {
9174 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9175
9176 *saved_ptid_ptr = inferior_ptid;
9177 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9178 }
9179
9180 /* See infrun.h. */
9181
9182 void
9183 clear_exit_convenience_vars (void)
9184 {
9185 clear_internalvar (lookup_internalvar ("_exitsignal"));
9186 clear_internalvar (lookup_internalvar ("_exitcode"));
9187 }
9188 \f
9189
9190 /* User interface for reverse debugging:
9191 Set exec-direction / show exec-direction commands
9192 (returns error unless target implements to_set_exec_direction method). */
9193
9194 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9195 static const char exec_forward[] = "forward";
9196 static const char exec_reverse[] = "reverse";
9197 static const char *exec_direction = exec_forward;
9198 static const char *const exec_direction_names[] = {
9199 exec_forward,
9200 exec_reverse,
9201 NULL
9202 };
9203
9204 static void
9205 set_exec_direction_func (char *args, int from_tty,
9206 struct cmd_list_element *cmd)
9207 {
9208 if (target_can_execute_reverse)
9209 {
9210 if (!strcmp (exec_direction, exec_forward))
9211 execution_direction = EXEC_FORWARD;
9212 else if (!strcmp (exec_direction, exec_reverse))
9213 execution_direction = EXEC_REVERSE;
9214 }
9215 else
9216 {
9217 exec_direction = exec_forward;
9218 error (_("Target does not support this operation."));
9219 }
9220 }
9221
9222 static void
9223 show_exec_direction_func (struct ui_file *out, int from_tty,
9224 struct cmd_list_element *cmd, const char *value)
9225 {
9226 switch (execution_direction) {
9227 case EXEC_FORWARD:
9228 fprintf_filtered (out, _("Forward.\n"));
9229 break;
9230 case EXEC_REVERSE:
9231 fprintf_filtered (out, _("Reverse.\n"));
9232 break;
9233 default:
9234 internal_error (__FILE__, __LINE__,
9235 _("bogus execution_direction value: %d"),
9236 (int) execution_direction);
9237 }
9238 }
9239
9240 static void
9241 show_schedule_multiple (struct ui_file *file, int from_tty,
9242 struct cmd_list_element *c, const char *value)
9243 {
9244 fprintf_filtered (file, _("Resuming the execution of threads "
9245 "of all processes is %s.\n"), value);
9246 }
9247
9248 /* Implementation of `siginfo' variable. */
9249
9250 static const struct internalvar_funcs siginfo_funcs =
9251 {
9252 siginfo_make_value,
9253 NULL,
9254 NULL
9255 };
9256
9257 /* Callback for infrun's target events source. This is marked when a
9258 thread has a pending status to process. */
9259
9260 static void
9261 infrun_async_inferior_event_handler (gdb_client_data data)
9262 {
9263 inferior_event_handler (INF_REG_EVENT, NULL);
9264 }
9265
9266 void
9267 _initialize_infrun (void)
9268 {
9269 int i;
9270 int numsigs;
9271 struct cmd_list_element *c;
9272
9273 /* Register extra event sources in the event loop. */
9274 infrun_async_inferior_event_token
9275 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9276
9277 add_info ("signals", signals_info, _("\
9278 What debugger does when program gets various signals.\n\
9279 Specify a signal as argument to print info on that signal only."));
9280 add_info_alias ("handle", "signals", 0);
9281
9282 c = add_com ("handle", class_run, handle_command, _("\
9283 Specify how to handle signals.\n\
9284 Usage: handle SIGNAL [ACTIONS]\n\
9285 Args are signals and actions to apply to those signals.\n\
9286 If no actions are specified, the current settings for the specified signals\n\
9287 will be displayed instead.\n\
9288 \n\
9289 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9290 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9291 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9292 The special arg \"all\" is recognized to mean all signals except those\n\
9293 used by the debugger, typically SIGTRAP and SIGINT.\n\
9294 \n\
9295 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9296 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9297 Stop means reenter debugger if this signal happens (implies print).\n\
9298 Print means print a message if this signal happens.\n\
9299 Pass means let program see this signal; otherwise program doesn't know.\n\
9300 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9301 Pass and Stop may be combined.\n\
9302 \n\
9303 Multiple signals may be specified. Signal numbers and signal names\n\
9304 may be interspersed with actions, with the actions being performed for\n\
9305 all signals cumulatively specified."));
9306 set_cmd_completer (c, handle_completer);
9307
9308 if (!dbx_commands)
9309 stop_command = add_cmd ("stop", class_obscure,
9310 not_just_help_class_command, _("\
9311 There is no `stop' command, but you can set a hook on `stop'.\n\
9312 This allows you to set a list of commands to be run each time execution\n\
9313 of the program stops."), &cmdlist);
9314
9315 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9316 Set inferior debugging."), _("\
9317 Show inferior debugging."), _("\
9318 When non-zero, inferior specific debugging is enabled."),
9319 NULL,
9320 show_debug_infrun,
9321 &setdebuglist, &showdebuglist);
9322
9323 add_setshow_boolean_cmd ("displaced", class_maintenance,
9324 &debug_displaced, _("\
9325 Set displaced stepping debugging."), _("\
9326 Show displaced stepping debugging."), _("\
9327 When non-zero, displaced stepping specific debugging is enabled."),
9328 NULL,
9329 show_debug_displaced,
9330 &setdebuglist, &showdebuglist);
9331
9332 add_setshow_boolean_cmd ("non-stop", no_class,
9333 &non_stop_1, _("\
9334 Set whether gdb controls the inferior in non-stop mode."), _("\
9335 Show whether gdb controls the inferior in non-stop mode."), _("\
9336 When debugging a multi-threaded program and this setting is\n\
9337 off (the default, also called all-stop mode), when one thread stops\n\
9338 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9339 all other threads in the program while you interact with the thread of\n\
9340 interest. When you continue or step a thread, you can allow the other\n\
9341 threads to run, or have them remain stopped, but while you inspect any\n\
9342 thread's state, all threads stop.\n\
9343 \n\
9344 In non-stop mode, when one thread stops, other threads can continue\n\
9345 to run freely. You'll be able to step each thread independently,\n\
9346 leave it stopped or free to run as needed."),
9347 set_non_stop,
9348 show_non_stop,
9349 &setlist,
9350 &showlist);
9351
9352 numsigs = (int) GDB_SIGNAL_LAST;
9353 signal_stop = XNEWVEC (unsigned char, numsigs);
9354 signal_print = XNEWVEC (unsigned char, numsigs);
9355 signal_program = XNEWVEC (unsigned char, numsigs);
9356 signal_catch = XNEWVEC (unsigned char, numsigs);
9357 signal_pass = XNEWVEC (unsigned char, numsigs);
9358 for (i = 0; i < numsigs; i++)
9359 {
9360 signal_stop[i] = 1;
9361 signal_print[i] = 1;
9362 signal_program[i] = 1;
9363 signal_catch[i] = 0;
9364 }
9365
9366 /* Signals caused by debugger's own actions should not be given to
9367 the program afterwards.
9368
9369 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9370 explicitly specifies that it should be delivered to the target
9371 program. Typically, that would occur when a user is debugging a
9372 target monitor on a simulator: the target monitor sets a
9373 breakpoint; the simulator encounters this breakpoint and halts
9374 the simulation handing control to GDB; GDB, noting that the stop
9375 address doesn't map to any known breakpoint, returns control back
9376 to the simulator; the simulator then delivers the hardware
9377 equivalent of a GDB_SIGNAL_TRAP to the program being
9378 debugged. */
9379 signal_program[GDB_SIGNAL_TRAP] = 0;
9380 signal_program[GDB_SIGNAL_INT] = 0;
9381
9382 /* Signals that are not errors should not normally enter the debugger. */
9383 signal_stop[GDB_SIGNAL_ALRM] = 0;
9384 signal_print[GDB_SIGNAL_ALRM] = 0;
9385 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9386 signal_print[GDB_SIGNAL_VTALRM] = 0;
9387 signal_stop[GDB_SIGNAL_PROF] = 0;
9388 signal_print[GDB_SIGNAL_PROF] = 0;
9389 signal_stop[GDB_SIGNAL_CHLD] = 0;
9390 signal_print[GDB_SIGNAL_CHLD] = 0;
9391 signal_stop[GDB_SIGNAL_IO] = 0;
9392 signal_print[GDB_SIGNAL_IO] = 0;
9393 signal_stop[GDB_SIGNAL_POLL] = 0;
9394 signal_print[GDB_SIGNAL_POLL] = 0;
9395 signal_stop[GDB_SIGNAL_URG] = 0;
9396 signal_print[GDB_SIGNAL_URG] = 0;
9397 signal_stop[GDB_SIGNAL_WINCH] = 0;
9398 signal_print[GDB_SIGNAL_WINCH] = 0;
9399 signal_stop[GDB_SIGNAL_PRIO] = 0;
9400 signal_print[GDB_SIGNAL_PRIO] = 0;
9401
9402 /* These signals are used internally by user-level thread
9403 implementations. (See signal(5) on Solaris.) Like the above
9404 signals, a healthy program receives and handles them as part of
9405 its normal operation. */
9406 signal_stop[GDB_SIGNAL_LWP] = 0;
9407 signal_print[GDB_SIGNAL_LWP] = 0;
9408 signal_stop[GDB_SIGNAL_WAITING] = 0;
9409 signal_print[GDB_SIGNAL_WAITING] = 0;
9410 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9411 signal_print[GDB_SIGNAL_CANCEL] = 0;
9412
9413 /* Update cached state. */
9414 signal_cache_update (-1);
9415
9416 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9417 &stop_on_solib_events, _("\
9418 Set stopping for shared library events."), _("\
9419 Show stopping for shared library events."), _("\
9420 If nonzero, gdb will give control to the user when the dynamic linker\n\
9421 notifies gdb of shared library events. The most common event of interest\n\
9422 to the user would be loading/unloading of a new library."),
9423 set_stop_on_solib_events,
9424 show_stop_on_solib_events,
9425 &setlist, &showlist);
9426
9427 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9428 follow_fork_mode_kind_names,
9429 &follow_fork_mode_string, _("\
9430 Set debugger response to a program call of fork or vfork."), _("\
9431 Show debugger response to a program call of fork or vfork."), _("\
9432 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9433 parent - the original process is debugged after a fork\n\
9434 child - the new process is debugged after a fork\n\
9435 The unfollowed process will continue to run.\n\
9436 By default, the debugger will follow the parent process."),
9437 NULL,
9438 show_follow_fork_mode_string,
9439 &setlist, &showlist);
9440
9441 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9442 follow_exec_mode_names,
9443 &follow_exec_mode_string, _("\
9444 Set debugger response to a program call of exec."), _("\
9445 Show debugger response to a program call of exec."), _("\
9446 An exec call replaces the program image of a process.\n\
9447 \n\
9448 follow-exec-mode can be:\n\
9449 \n\
9450 new - the debugger creates a new inferior and rebinds the process\n\
9451 to this new inferior. The program the process was running before\n\
9452 the exec call can be restarted afterwards by restarting the original\n\
9453 inferior.\n\
9454 \n\
9455 same - the debugger keeps the process bound to the same inferior.\n\
9456 The new executable image replaces the previous executable loaded in\n\
9457 the inferior. Restarting the inferior after the exec call restarts\n\
9458 the executable the process was running after the exec call.\n\
9459 \n\
9460 By default, the debugger will use the same inferior."),
9461 NULL,
9462 show_follow_exec_mode_string,
9463 &setlist, &showlist);
9464
9465 add_setshow_enum_cmd ("scheduler-locking", class_run,
9466 scheduler_enums, &scheduler_mode, _("\
9467 Set mode for locking scheduler during execution."), _("\
9468 Show mode for locking scheduler during execution."), _("\
9469 off == no locking (threads may preempt at any time)\n\
9470 on == full locking (no thread except the current thread may run)\n\
9471 This applies to both normal execution and replay mode.\n\
9472 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9473 In this mode, other threads may run during other commands.\n\
9474 This applies to both normal execution and replay mode.\n\
9475 replay == scheduler locked in replay mode and unlocked during normal execution."),
9476 set_schedlock_func, /* traps on target vector */
9477 show_scheduler_mode,
9478 &setlist, &showlist);
9479
9480 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9481 Set mode for resuming threads of all processes."), _("\
9482 Show mode for resuming threads of all processes."), _("\
9483 When on, execution commands (such as 'continue' or 'next') resume all\n\
9484 threads of all processes. When off (which is the default), execution\n\
9485 commands only resume the threads of the current process. The set of\n\
9486 threads that are resumed is further refined by the scheduler-locking\n\
9487 mode (see help set scheduler-locking)."),
9488 NULL,
9489 show_schedule_multiple,
9490 &setlist, &showlist);
9491
9492 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9493 Set mode of the step operation."), _("\
9494 Show mode of the step operation."), _("\
9495 When set, doing a step over a function without debug line information\n\
9496 will stop at the first instruction of that function. Otherwise, the\n\
9497 function is skipped and the step command stops at a different source line."),
9498 NULL,
9499 show_step_stop_if_no_debug,
9500 &setlist, &showlist);
9501
9502 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9503 &can_use_displaced_stepping, _("\
9504 Set debugger's willingness to use displaced stepping."), _("\
9505 Show debugger's willingness to use displaced stepping."), _("\
9506 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9507 supported by the target architecture. If off, gdb will not use displaced\n\
9508 stepping to step over breakpoints, even if such is supported by the target\n\
9509 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9510 if the target architecture supports it and non-stop mode is active, but will not\n\
9511 use it in all-stop mode (see help set non-stop)."),
9512 NULL,
9513 show_can_use_displaced_stepping,
9514 &setlist, &showlist);
9515
9516 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9517 &exec_direction, _("Set direction of execution.\n\
9518 Options are 'forward' or 'reverse'."),
9519 _("Show direction of execution (forward/reverse)."),
9520 _("Tells gdb whether to execute forward or backward."),
9521 set_exec_direction_func, show_exec_direction_func,
9522 &setlist, &showlist);
9523
9524 /* Set/show detach-on-fork: user-settable mode. */
9525
9526 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9527 Set whether gdb will detach the child of a fork."), _("\
9528 Show whether gdb will detach the child of a fork."), _("\
9529 Tells gdb whether to detach the child of a fork."),
9530 NULL, NULL, &setlist, &showlist);
9531
9532 /* Set/show disable address space randomization mode. */
9533
9534 add_setshow_boolean_cmd ("disable-randomization", class_support,
9535 &disable_randomization, _("\
9536 Set disabling of debuggee's virtual address space randomization."), _("\
9537 Show disabling of debuggee's virtual address space randomization."), _("\
9538 When this mode is on (which is the default), randomization of the virtual\n\
9539 address space is disabled. Standalone programs run with the randomization\n\
9540 enabled by default on some platforms."),
9541 &set_disable_randomization,
9542 &show_disable_randomization,
9543 &setlist, &showlist);
9544
9545 /* ptid initializations */
9546 inferior_ptid = null_ptid;
9547 target_last_wait_ptid = minus_one_ptid;
9548
9549 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9550 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9551 observer_attach_thread_exit (infrun_thread_thread_exit);
9552 observer_attach_inferior_exit (infrun_inferior_exit);
9553
9554 /* Explicitly create without lookup, since that tries to create a
9555 value with a void typed value, and when we get here, gdbarch
9556 isn't initialized yet. At this point, we're quite sure there
9557 isn't another convenience variable of the same name. */
9558 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9559
9560 add_setshow_boolean_cmd ("observer", no_class,
9561 &observer_mode_1, _("\
9562 Set whether gdb controls the inferior in observer mode."), _("\
9563 Show whether gdb controls the inferior in observer mode."), _("\
9564 In observer mode, GDB can get data from the inferior, but not\n\
9565 affect its execution. Registers and memory may not be changed,\n\
9566 breakpoints may not be set, and the program cannot be interrupted\n\
9567 or signalled."),
9568 set_observer_mode,
9569 show_observer_mode,
9570 &setlist,
9571 &showlist);
9572 }
This page took 0.311489 seconds and 5 git commands to generate.