* win32-nat.c (do_initial_win32_stuff): Set inferior_ptid.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 static int currently_stepping (struct thread_info *tp);
77
78 static void xdb_handle_command (char *args, int from_tty);
79
80 static int prepare_to_proceed (int);
81
82 void _initialize_infrun (void);
83
84 /* When set, stop the 'step' command if we enter a function which has
85 no line number information. The normal behavior is that we step
86 over such function. */
87 int step_stop_if_no_debug = 0;
88 static void
89 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
90 struct cmd_list_element *c, const char *value)
91 {
92 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
93 }
94
95 /* In asynchronous mode, but simulating synchronous execution. */
96
97 int sync_execution = 0;
98
99 /* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
101 running in. */
102
103 static ptid_t previous_inferior_ptid;
104
105 int debug_displaced = 0;
106 static void
107 show_debug_displaced (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
111 }
112
113 static int debug_infrun = 0;
114 static void
115 show_debug_infrun (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117 {
118 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
119 }
120
121 /* If the program uses ELF-style shared libraries, then calls to
122 functions in shared libraries go through stubs, which live in a
123 table called the PLT (Procedure Linkage Table). The first time the
124 function is called, the stub sends control to the dynamic linker,
125 which looks up the function's real address, patches the stub so
126 that future calls will go directly to the function, and then passes
127 control to the function.
128
129 If we are stepping at the source level, we don't want to see any of
130 this --- we just want to skip over the stub and the dynamic linker.
131 The simple approach is to single-step until control leaves the
132 dynamic linker.
133
134 However, on some systems (e.g., Red Hat's 5.2 distribution) the
135 dynamic linker calls functions in the shared C library, so you
136 can't tell from the PC alone whether the dynamic linker is still
137 running. In this case, we use a step-resume breakpoint to get us
138 past the dynamic linker, as if we were using "next" to step over a
139 function call.
140
141 in_solib_dynsym_resolve_code() says whether we're in the dynamic
142 linker code or not. Normally, this means we single-step. However,
143 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
144 address where we can place a step-resume breakpoint to get past the
145 linker's symbol resolution function.
146
147 in_solib_dynsym_resolve_code() can generally be implemented in a
148 pretty portable way, by comparing the PC against the address ranges
149 of the dynamic linker's sections.
150
151 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
152 it depends on internal details of the dynamic linker. It's usually
153 not too hard to figure out where to put a breakpoint, but it
154 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
155 sanity checking. If it can't figure things out, returning zero and
156 getting the (possibly confusing) stepping behavior is better than
157 signalling an error, which will obscure the change in the
158 inferior's state. */
159
160 /* This function returns TRUE if pc is the address of an instruction
161 that lies within the dynamic linker (such as the event hook, or the
162 dld itself).
163
164 This function must be used only when a dynamic linker event has
165 been caught, and the inferior is being stepped out of the hook, or
166 undefined results are guaranteed. */
167
168 #ifndef SOLIB_IN_DYNAMIC_LINKER
169 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
170 #endif
171
172
173 /* Convert the #defines into values. This is temporary until wfi control
174 flow is completely sorted out. */
175
176 #ifndef CANNOT_STEP_HW_WATCHPOINTS
177 #define CANNOT_STEP_HW_WATCHPOINTS 0
178 #else
179 #undef CANNOT_STEP_HW_WATCHPOINTS
180 #define CANNOT_STEP_HW_WATCHPOINTS 1
181 #endif
182
183 /* Tables of how to react to signals; the user sets them. */
184
185 static unsigned char *signal_stop;
186 static unsigned char *signal_print;
187 static unsigned char *signal_program;
188
189 #define SET_SIGS(nsigs,sigs,flags) \
190 do { \
191 int signum = (nsigs); \
192 while (signum-- > 0) \
193 if ((sigs)[signum]) \
194 (flags)[signum] = 1; \
195 } while (0)
196
197 #define UNSET_SIGS(nsigs,sigs,flags) \
198 do { \
199 int signum = (nsigs); \
200 while (signum-- > 0) \
201 if ((sigs)[signum]) \
202 (flags)[signum] = 0; \
203 } while (0)
204
205 /* Value to pass to target_resume() to cause all threads to resume */
206
207 #define RESUME_ALL (pid_to_ptid (-1))
208
209 /* Command list pointer for the "stop" placeholder. */
210
211 static struct cmd_list_element *stop_command;
212
213 /* Function inferior was in as of last step command. */
214
215 static struct symbol *step_start_function;
216
217 /* Nonzero if we want to give control to the user when we're notified
218 of shared library events by the dynamic linker. */
219 static int stop_on_solib_events;
220 static void
221 show_stop_on_solib_events (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
225 value);
226 }
227
228 /* Nonzero means expecting a trace trap
229 and should stop the inferior and return silently when it happens. */
230
231 int stop_after_trap;
232
233 /* Save register contents here when about to pop a stack dummy frame,
234 if-and-only-if proceed_to_finish is set.
235 Thus this contains the return value from the called function (assuming
236 values are returned in a register). */
237
238 struct regcache *stop_registers;
239
240 /* Nonzero after stop if current stack frame should be printed. */
241
242 static int stop_print_frame;
243
244 /* This is a cached copy of the pid/waitstatus of the last event
245 returned by target_wait()/deprecated_target_wait_hook(). This
246 information is returned by get_last_target_status(). */
247 static ptid_t target_last_wait_ptid;
248 static struct target_waitstatus target_last_waitstatus;
249
250 static void context_switch (ptid_t ptid);
251
252 void init_thread_stepping_state (struct thread_info *tss);
253
254 void init_infwait_state (void);
255
256 /* This is used to remember when a fork, vfork or exec event
257 was caught by a catchpoint, and thus the event is to be
258 followed at the next resume of the inferior, and not
259 immediately. */
260 static struct
261 {
262 enum target_waitkind kind;
263 struct
264 {
265 ptid_t parent_pid;
266 ptid_t child_pid;
267 }
268 fork_event;
269 char *execd_pathname;
270 }
271 pending_follow;
272
273 static const char follow_fork_mode_child[] = "child";
274 static const char follow_fork_mode_parent[] = "parent";
275
276 static const char *follow_fork_mode_kind_names[] = {
277 follow_fork_mode_child,
278 follow_fork_mode_parent,
279 NULL
280 };
281
282 static const char *follow_fork_mode_string = follow_fork_mode_parent;
283 static void
284 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
285 struct cmd_list_element *c, const char *value)
286 {
287 fprintf_filtered (file, _("\
288 Debugger response to a program call of fork or vfork is \"%s\".\n"),
289 value);
290 }
291 \f
292
293 static int
294 follow_fork (void)
295 {
296 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
297
298 return target_follow_fork (follow_child);
299 }
300
301 void
302 follow_inferior_reset_breakpoints (void)
303 {
304 struct thread_info *tp = inferior_thread ();
305
306 /* Was there a step_resume breakpoint? (There was if the user
307 did a "next" at the fork() call.) If so, explicitly reset its
308 thread number.
309
310 step_resumes are a form of bp that are made to be per-thread.
311 Since we created the step_resume bp when the parent process
312 was being debugged, and now are switching to the child process,
313 from the breakpoint package's viewpoint, that's a switch of
314 "threads". We must update the bp's notion of which thread
315 it is for, or it'll be ignored when it triggers. */
316
317 if (tp->step_resume_breakpoint)
318 breakpoint_re_set_thread (tp->step_resume_breakpoint);
319
320 /* Reinsert all breakpoints in the child. The user may have set
321 breakpoints after catching the fork, in which case those
322 were never set in the child, but only in the parent. This makes
323 sure the inserted breakpoints match the breakpoint list. */
324
325 breakpoint_re_set ();
326 insert_breakpoints ();
327 }
328
329 /* EXECD_PATHNAME is assumed to be non-NULL. */
330
331 static void
332 follow_exec (ptid_t pid, char *execd_pathname)
333 {
334 struct target_ops *tgt;
335 struct thread_info *th = inferior_thread ();
336
337 /* This is an exec event that we actually wish to pay attention to.
338 Refresh our symbol table to the newly exec'd program, remove any
339 momentary bp's, etc.
340
341 If there are breakpoints, they aren't really inserted now,
342 since the exec() transformed our inferior into a fresh set
343 of instructions.
344
345 We want to preserve symbolic breakpoints on the list, since
346 we have hopes that they can be reset after the new a.out's
347 symbol table is read.
348
349 However, any "raw" breakpoints must be removed from the list
350 (e.g., the solib bp's), since their address is probably invalid
351 now.
352
353 And, we DON'T want to call delete_breakpoints() here, since
354 that may write the bp's "shadow contents" (the instruction
355 value that was overwritten witha TRAP instruction). Since
356 we now have a new a.out, those shadow contents aren't valid. */
357 update_breakpoints_after_exec ();
358
359 /* If there was one, it's gone now. We cannot truly step-to-next
360 statement through an exec(). */
361 th->step_resume_breakpoint = NULL;
362 th->step_range_start = 0;
363 th->step_range_end = 0;
364
365 /* What is this a.out's name? */
366 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
367
368 /* We've followed the inferior through an exec. Therefore, the
369 inferior has essentially been killed & reborn. */
370
371 gdb_flush (gdb_stdout);
372
373 breakpoint_init_inferior (inf_execd);
374
375 if (gdb_sysroot && *gdb_sysroot)
376 {
377 char *name = alloca (strlen (gdb_sysroot)
378 + strlen (execd_pathname)
379 + 1);
380 strcpy (name, gdb_sysroot);
381 strcat (name, execd_pathname);
382 execd_pathname = name;
383 }
384
385 /* That a.out is now the one to use. */
386 exec_file_attach (execd_pathname, 0);
387
388 /* Reset the shared library package. This ensures that we get a
389 shlib event when the child reaches "_start", at which point the
390 dld will have had a chance to initialize the child. */
391 /* Also, loading a symbol file below may trigger symbol lookups, and
392 we don't want those to be satisfied by the libraries of the
393 previous incarnation of this process. */
394 no_shared_libraries (NULL, 0);
395
396 /* Load the main file's symbols. */
397 symbol_file_add_main (execd_pathname, 0);
398
399 #ifdef SOLIB_CREATE_INFERIOR_HOOK
400 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
401 #else
402 solib_create_inferior_hook ();
403 #endif
404
405 /* Reinsert all breakpoints. (Those which were symbolic have
406 been reset to the proper address in the new a.out, thanks
407 to symbol_file_command...) */
408 insert_breakpoints ();
409
410 /* The next resume of this inferior should bring it to the shlib
411 startup breakpoints. (If the user had also set bp's on
412 "main" from the old (parent) process, then they'll auto-
413 matically get reset there in the new process.) */
414 }
415
416 /* Non-zero if we just simulating a single-step. This is needed
417 because we cannot remove the breakpoints in the inferior process
418 until after the `wait' in `wait_for_inferior'. */
419 static int singlestep_breakpoints_inserted_p = 0;
420
421 /* The thread we inserted single-step breakpoints for. */
422 static ptid_t singlestep_ptid;
423
424 /* PC when we started this single-step. */
425 static CORE_ADDR singlestep_pc;
426
427 /* If another thread hit the singlestep breakpoint, we save the original
428 thread here so that we can resume single-stepping it later. */
429 static ptid_t saved_singlestep_ptid;
430 static int stepping_past_singlestep_breakpoint;
431
432 /* If not equal to null_ptid, this means that after stepping over breakpoint
433 is finished, we need to switch to deferred_step_ptid, and step it.
434
435 The use case is when one thread has hit a breakpoint, and then the user
436 has switched to another thread and issued 'step'. We need to step over
437 breakpoint in the thread which hit the breakpoint, but then continue
438 stepping the thread user has selected. */
439 static ptid_t deferred_step_ptid;
440 \f
441 /* Displaced stepping. */
442
443 /* In non-stop debugging mode, we must take special care to manage
444 breakpoints properly; in particular, the traditional strategy for
445 stepping a thread past a breakpoint it has hit is unsuitable.
446 'Displaced stepping' is a tactic for stepping one thread past a
447 breakpoint it has hit while ensuring that other threads running
448 concurrently will hit the breakpoint as they should.
449
450 The traditional way to step a thread T off a breakpoint in a
451 multi-threaded program in all-stop mode is as follows:
452
453 a0) Initially, all threads are stopped, and breakpoints are not
454 inserted.
455 a1) We single-step T, leaving breakpoints uninserted.
456 a2) We insert breakpoints, and resume all threads.
457
458 In non-stop debugging, however, this strategy is unsuitable: we
459 don't want to have to stop all threads in the system in order to
460 continue or step T past a breakpoint. Instead, we use displaced
461 stepping:
462
463 n0) Initially, T is stopped, other threads are running, and
464 breakpoints are inserted.
465 n1) We copy the instruction "under" the breakpoint to a separate
466 location, outside the main code stream, making any adjustments
467 to the instruction, register, and memory state as directed by
468 T's architecture.
469 n2) We single-step T over the instruction at its new location.
470 n3) We adjust the resulting register and memory state as directed
471 by T's architecture. This includes resetting T's PC to point
472 back into the main instruction stream.
473 n4) We resume T.
474
475 This approach depends on the following gdbarch methods:
476
477 - gdbarch_max_insn_length and gdbarch_displaced_step_location
478 indicate where to copy the instruction, and how much space must
479 be reserved there. We use these in step n1.
480
481 - gdbarch_displaced_step_copy_insn copies a instruction to a new
482 address, and makes any necessary adjustments to the instruction,
483 register contents, and memory. We use this in step n1.
484
485 - gdbarch_displaced_step_fixup adjusts registers and memory after
486 we have successfuly single-stepped the instruction, to yield the
487 same effect the instruction would have had if we had executed it
488 at its original address. We use this in step n3.
489
490 - gdbarch_displaced_step_free_closure provides cleanup.
491
492 The gdbarch_displaced_step_copy_insn and
493 gdbarch_displaced_step_fixup functions must be written so that
494 copying an instruction with gdbarch_displaced_step_copy_insn,
495 single-stepping across the copied instruction, and then applying
496 gdbarch_displaced_insn_fixup should have the same effects on the
497 thread's memory and registers as stepping the instruction in place
498 would have. Exactly which responsibilities fall to the copy and
499 which fall to the fixup is up to the author of those functions.
500
501 See the comments in gdbarch.sh for details.
502
503 Note that displaced stepping and software single-step cannot
504 currently be used in combination, although with some care I think
505 they could be made to. Software single-step works by placing
506 breakpoints on all possible subsequent instructions; if the
507 displaced instruction is a PC-relative jump, those breakpoints
508 could fall in very strange places --- on pages that aren't
509 executable, or at addresses that are not proper instruction
510 boundaries. (We do generally let other threads run while we wait
511 to hit the software single-step breakpoint, and they might
512 encounter such a corrupted instruction.) One way to work around
513 this would be to have gdbarch_displaced_step_copy_insn fully
514 simulate the effect of PC-relative instructions (and return NULL)
515 on architectures that use software single-stepping.
516
517 In non-stop mode, we can have independent and simultaneous step
518 requests, so more than one thread may need to simultaneously step
519 over a breakpoint. The current implementation assumes there is
520 only one scratch space per process. In this case, we have to
521 serialize access to the scratch space. If thread A wants to step
522 over a breakpoint, but we are currently waiting for some other
523 thread to complete a displaced step, we leave thread A stopped and
524 place it in the displaced_step_request_queue. Whenever a displaced
525 step finishes, we pick the next thread in the queue and start a new
526 displaced step operation on it. See displaced_step_prepare and
527 displaced_step_fixup for details. */
528
529 /* If this is not null_ptid, this is the thread carrying out a
530 displaced single-step. This thread's state will require fixing up
531 once it has completed its step. */
532 static ptid_t displaced_step_ptid;
533
534 struct displaced_step_request
535 {
536 ptid_t ptid;
537 struct displaced_step_request *next;
538 };
539
540 /* A queue of pending displaced stepping requests. */
541 struct displaced_step_request *displaced_step_request_queue;
542
543 /* The architecture the thread had when we stepped it. */
544 static struct gdbarch *displaced_step_gdbarch;
545
546 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
547 for post-step cleanup. */
548 static struct displaced_step_closure *displaced_step_closure;
549
550 /* The address of the original instruction, and the copy we made. */
551 static CORE_ADDR displaced_step_original, displaced_step_copy;
552
553 /* Saved contents of copy area. */
554 static gdb_byte *displaced_step_saved_copy;
555
556 /* When this is non-zero, we are allowed to use displaced stepping, if
557 the architecture supports it. When this is zero, we use
558 traditional the hold-and-step approach. */
559 int can_use_displaced_stepping = 1;
560 static void
561 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
562 struct cmd_list_element *c,
563 const char *value)
564 {
565 fprintf_filtered (file, _("\
566 Debugger's willingness to use displaced stepping to step over "
567 "breakpoints is %s.\n"), value);
568 }
569
570 /* Return non-zero if displaced stepping is enabled, and can be used
571 with GDBARCH. */
572 static int
573 use_displaced_stepping (struct gdbarch *gdbarch)
574 {
575 return (can_use_displaced_stepping
576 && gdbarch_displaced_step_copy_insn_p (gdbarch));
577 }
578
579 /* Clean out any stray displaced stepping state. */
580 static void
581 displaced_step_clear (void)
582 {
583 /* Indicate that there is no cleanup pending. */
584 displaced_step_ptid = null_ptid;
585
586 if (displaced_step_closure)
587 {
588 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
589 displaced_step_closure);
590 displaced_step_closure = NULL;
591 }
592 }
593
594 static void
595 cleanup_displaced_step_closure (void *ptr)
596 {
597 struct displaced_step_closure *closure = ptr;
598
599 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
600 }
601
602 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
603 void
604 displaced_step_dump_bytes (struct ui_file *file,
605 const gdb_byte *buf,
606 size_t len)
607 {
608 int i;
609
610 for (i = 0; i < len; i++)
611 fprintf_unfiltered (file, "%02x ", buf[i]);
612 fputs_unfiltered ("\n", file);
613 }
614
615 /* Prepare to single-step, using displaced stepping.
616
617 Note that we cannot use displaced stepping when we have a signal to
618 deliver. If we have a signal to deliver and an instruction to step
619 over, then after the step, there will be no indication from the
620 target whether the thread entered a signal handler or ignored the
621 signal and stepped over the instruction successfully --- both cases
622 result in a simple SIGTRAP. In the first case we mustn't do a
623 fixup, and in the second case we must --- but we can't tell which.
624 Comments in the code for 'random signals' in handle_inferior_event
625 explain how we handle this case instead.
626
627 Returns 1 if preparing was successful -- this thread is going to be
628 stepped now; or 0 if displaced stepping this thread got queued. */
629 static int
630 displaced_step_prepare (ptid_t ptid)
631 {
632 struct cleanup *old_cleanups;
633 struct regcache *regcache = get_thread_regcache (ptid);
634 struct gdbarch *gdbarch = get_regcache_arch (regcache);
635 CORE_ADDR original, copy;
636 ULONGEST len;
637 struct displaced_step_closure *closure;
638
639 /* We should never reach this function if the architecture does not
640 support displaced stepping. */
641 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
642
643 /* For the first cut, we're displaced stepping one thread at a
644 time. */
645
646 if (!ptid_equal (displaced_step_ptid, null_ptid))
647 {
648 /* Already waiting for a displaced step to finish. Defer this
649 request and place in queue. */
650 struct displaced_step_request *req, *new_req;
651
652 if (debug_displaced)
653 fprintf_unfiltered (gdb_stdlog,
654 "displaced: defering step of %s\n",
655 target_pid_to_str (ptid));
656
657 new_req = xmalloc (sizeof (*new_req));
658 new_req->ptid = ptid;
659 new_req->next = NULL;
660
661 if (displaced_step_request_queue)
662 {
663 for (req = displaced_step_request_queue;
664 req && req->next;
665 req = req->next)
666 ;
667 req->next = new_req;
668 }
669 else
670 displaced_step_request_queue = new_req;
671
672 return 0;
673 }
674 else
675 {
676 if (debug_displaced)
677 fprintf_unfiltered (gdb_stdlog,
678 "displaced: stepping %s now\n",
679 target_pid_to_str (ptid));
680 }
681
682 displaced_step_clear ();
683
684 original = regcache_read_pc (regcache);
685
686 copy = gdbarch_displaced_step_location (gdbarch);
687 len = gdbarch_max_insn_length (gdbarch);
688
689 /* Save the original contents of the copy area. */
690 displaced_step_saved_copy = xmalloc (len);
691 old_cleanups = make_cleanup (free_current_contents,
692 &displaced_step_saved_copy);
693 read_memory (copy, displaced_step_saved_copy, len);
694 if (debug_displaced)
695 {
696 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
697 paddr_nz (copy));
698 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
699 };
700
701 closure = gdbarch_displaced_step_copy_insn (gdbarch,
702 original, copy, regcache);
703
704 /* We don't support the fully-simulated case at present. */
705 gdb_assert (closure);
706
707 make_cleanup (cleanup_displaced_step_closure, closure);
708
709 /* Resume execution at the copy. */
710 regcache_write_pc (regcache, copy);
711
712 discard_cleanups (old_cleanups);
713
714 if (debug_displaced)
715 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
716 paddr_nz (copy));
717
718 /* Save the information we need to fix things up if the step
719 succeeds. */
720 displaced_step_ptid = ptid;
721 displaced_step_gdbarch = gdbarch;
722 displaced_step_closure = closure;
723 displaced_step_original = original;
724 displaced_step_copy = copy;
725 return 1;
726 }
727
728 static void
729 displaced_step_clear_cleanup (void *ignore)
730 {
731 displaced_step_clear ();
732 }
733
734 static void
735 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
736 {
737 struct cleanup *ptid_cleanup = save_inferior_ptid ();
738 inferior_ptid = ptid;
739 write_memory (memaddr, myaddr, len);
740 do_cleanups (ptid_cleanup);
741 }
742
743 static void
744 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
745 {
746 struct cleanup *old_cleanups;
747
748 /* Was this event for the pid we displaced? */
749 if (ptid_equal (displaced_step_ptid, null_ptid)
750 || ! ptid_equal (displaced_step_ptid, event_ptid))
751 return;
752
753 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
754
755 /* Restore the contents of the copy area. */
756 {
757 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
758 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
759 displaced_step_saved_copy, len);
760 if (debug_displaced)
761 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
762 paddr_nz (displaced_step_copy));
763 }
764
765 /* Did the instruction complete successfully? */
766 if (signal == TARGET_SIGNAL_TRAP)
767 {
768 /* Fix up the resulting state. */
769 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
770 displaced_step_closure,
771 displaced_step_original,
772 displaced_step_copy,
773 get_thread_regcache (displaced_step_ptid));
774 }
775 else
776 {
777 /* Since the instruction didn't complete, all we can do is
778 relocate the PC. */
779 struct regcache *regcache = get_thread_regcache (event_ptid);
780 CORE_ADDR pc = regcache_read_pc (regcache);
781 pc = displaced_step_original + (pc - displaced_step_copy);
782 regcache_write_pc (regcache, pc);
783 }
784
785 do_cleanups (old_cleanups);
786
787 /* Are there any pending displaced stepping requests? If so, run
788 one now. */
789 if (displaced_step_request_queue)
790 {
791 struct displaced_step_request *head;
792 ptid_t ptid;
793
794 head = displaced_step_request_queue;
795 ptid = head->ptid;
796 displaced_step_request_queue = head->next;
797 xfree (head);
798
799 if (debug_displaced)
800 fprintf_unfiltered (gdb_stdlog,
801 "displaced: stepping queued %s now\n",
802 target_pid_to_str (ptid));
803
804
805 displaced_step_ptid = null_ptid;
806 displaced_step_prepare (ptid);
807 target_resume (ptid, 1, TARGET_SIGNAL_0);
808 }
809 }
810
811 /* Update global variables holding ptids to hold NEW_PTID if they were
812 holding OLD_PTID. */
813 static void
814 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
815 {
816 struct displaced_step_request *it;
817
818 if (ptid_equal (inferior_ptid, old_ptid))
819 inferior_ptid = new_ptid;
820
821 if (ptid_equal (singlestep_ptid, old_ptid))
822 singlestep_ptid = new_ptid;
823
824 if (ptid_equal (displaced_step_ptid, old_ptid))
825 displaced_step_ptid = new_ptid;
826
827 if (ptid_equal (deferred_step_ptid, old_ptid))
828 deferred_step_ptid = new_ptid;
829
830 for (it = displaced_step_request_queue; it; it = it->next)
831 if (ptid_equal (it->ptid, old_ptid))
832 it->ptid = new_ptid;
833 }
834
835 \f
836 /* Resuming. */
837
838 /* Things to clean up if we QUIT out of resume (). */
839 static void
840 resume_cleanups (void *ignore)
841 {
842 normal_stop ();
843 }
844
845 static const char schedlock_off[] = "off";
846 static const char schedlock_on[] = "on";
847 static const char schedlock_step[] = "step";
848 static const char *scheduler_enums[] = {
849 schedlock_off,
850 schedlock_on,
851 schedlock_step,
852 NULL
853 };
854 static const char *scheduler_mode = schedlock_off;
855 static void
856 show_scheduler_mode (struct ui_file *file, int from_tty,
857 struct cmd_list_element *c, const char *value)
858 {
859 fprintf_filtered (file, _("\
860 Mode for locking scheduler during execution is \"%s\".\n"),
861 value);
862 }
863
864 static void
865 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
866 {
867 if (!target_can_lock_scheduler)
868 {
869 scheduler_mode = schedlock_off;
870 error (_("Target '%s' cannot support this command."), target_shortname);
871 }
872 }
873
874
875 /* Resume the inferior, but allow a QUIT. This is useful if the user
876 wants to interrupt some lengthy single-stepping operation
877 (for child processes, the SIGINT goes to the inferior, and so
878 we get a SIGINT random_signal, but for remote debugging and perhaps
879 other targets, that's not true).
880
881 STEP nonzero if we should step (zero to continue instead).
882 SIG is the signal to give the inferior (zero for none). */
883 void
884 resume (int step, enum target_signal sig)
885 {
886 int should_resume = 1;
887 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
888 struct regcache *regcache = get_current_regcache ();
889 struct gdbarch *gdbarch = get_regcache_arch (regcache);
890 struct thread_info *tp = inferior_thread ();
891 CORE_ADDR pc = regcache_read_pc (regcache);
892 QUIT;
893
894 if (debug_infrun)
895 fprintf_unfiltered (gdb_stdlog,
896 "infrun: resume (step=%d, signal=%d), "
897 "trap_expected=%d\n",
898 step, sig, tp->trap_expected);
899
900 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
901 over an instruction that causes a page fault without triggering
902 a hardware watchpoint. The kernel properly notices that it shouldn't
903 stop, because the hardware watchpoint is not triggered, but it forgets
904 the step request and continues the program normally.
905 Work around the problem by removing hardware watchpoints if a step is
906 requested, GDB will check for a hardware watchpoint trigger after the
907 step anyway. */
908 if (CANNOT_STEP_HW_WATCHPOINTS && step)
909 remove_hw_watchpoints ();
910
911
912 /* Normally, by the time we reach `resume', the breakpoints are either
913 removed or inserted, as appropriate. The exception is if we're sitting
914 at a permanent breakpoint; we need to step over it, but permanent
915 breakpoints can't be removed. So we have to test for it here. */
916 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
917 {
918 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
919 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
920 else
921 error (_("\
922 The program is stopped at a permanent breakpoint, but GDB does not know\n\
923 how to step past a permanent breakpoint on this architecture. Try using\n\
924 a command like `return' or `jump' to continue execution."));
925 }
926
927 /* If enabled, step over breakpoints by executing a copy of the
928 instruction at a different address.
929
930 We can't use displaced stepping when we have a signal to deliver;
931 the comments for displaced_step_prepare explain why. The
932 comments in the handle_inferior event for dealing with 'random
933 signals' explain what we do instead. */
934 if (use_displaced_stepping (gdbarch)
935 && tp->trap_expected
936 && sig == TARGET_SIGNAL_0)
937 {
938 if (!displaced_step_prepare (inferior_ptid))
939 {
940 /* Got placed in displaced stepping queue. Will be resumed
941 later when all the currently queued displaced stepping
942 requests finish. The thread is not executing at this point,
943 and the call to set_executing will be made later. But we
944 need to call set_running here, since from frontend point of view,
945 the thread is running. */
946 set_running (inferior_ptid, 1);
947 discard_cleanups (old_cleanups);
948 return;
949 }
950 }
951
952 if (step && gdbarch_software_single_step_p (gdbarch))
953 {
954 /* Do it the hard way, w/temp breakpoints */
955 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
956 {
957 /* ...and don't ask hardware to do it. */
958 step = 0;
959 /* and do not pull these breakpoints until after a `wait' in
960 `wait_for_inferior' */
961 singlestep_breakpoints_inserted_p = 1;
962 singlestep_ptid = inferior_ptid;
963 singlestep_pc = pc;
964 }
965 }
966
967 /* If there were any forks/vforks/execs that were caught and are
968 now to be followed, then do so. */
969 switch (pending_follow.kind)
970 {
971 case TARGET_WAITKIND_FORKED:
972 case TARGET_WAITKIND_VFORKED:
973 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
974 if (follow_fork ())
975 should_resume = 0;
976 break;
977
978 case TARGET_WAITKIND_EXECD:
979 /* follow_exec is called as soon as the exec event is seen. */
980 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
981 break;
982
983 default:
984 break;
985 }
986
987 /* Install inferior's terminal modes. */
988 target_terminal_inferior ();
989
990 if (should_resume)
991 {
992 ptid_t resume_ptid;
993
994 resume_ptid = RESUME_ALL; /* Default */
995
996 /* If STEP is set, it's a request to use hardware stepping
997 facilities. But in that case, we should never
998 use singlestep breakpoint. */
999 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1000
1001 if (singlestep_breakpoints_inserted_p
1002 && stepping_past_singlestep_breakpoint)
1003 {
1004 /* The situation here is as follows. In thread T1 we wanted to
1005 single-step. Lacking hardware single-stepping we've
1006 set breakpoint at the PC of the next instruction -- call it
1007 P. After resuming, we've hit that breakpoint in thread T2.
1008 Now we've removed original breakpoint, inserted breakpoint
1009 at P+1, and try to step to advance T2 past breakpoint.
1010 We need to step only T2, as if T1 is allowed to freely run,
1011 it can run past P, and if other threads are allowed to run,
1012 they can hit breakpoint at P+1, and nested hits of single-step
1013 breakpoints is not something we'd want -- that's complicated
1014 to support, and has no value. */
1015 resume_ptid = inferior_ptid;
1016 }
1017
1018 if ((step || singlestep_breakpoints_inserted_p)
1019 && tp->trap_expected)
1020 {
1021 /* We're allowing a thread to run past a breakpoint it has
1022 hit, by single-stepping the thread with the breakpoint
1023 removed. In which case, we need to single-step only this
1024 thread, and keep others stopped, as they can miss this
1025 breakpoint if allowed to run.
1026
1027 The current code actually removes all breakpoints when
1028 doing this, not just the one being stepped over, so if we
1029 let other threads run, we can actually miss any
1030 breakpoint, not just the one at PC. */
1031 resume_ptid = inferior_ptid;
1032 }
1033
1034 if (non_stop)
1035 {
1036 /* With non-stop mode on, threads are always handled
1037 individually. */
1038 resume_ptid = inferior_ptid;
1039 }
1040 else if ((scheduler_mode == schedlock_on)
1041 || (scheduler_mode == schedlock_step
1042 && (step || singlestep_breakpoints_inserted_p)))
1043 {
1044 /* User-settable 'scheduler' mode requires solo thread resume. */
1045 resume_ptid = inferior_ptid;
1046 }
1047
1048 if (gdbarch_cannot_step_breakpoint (gdbarch))
1049 {
1050 /* Most targets can step a breakpoint instruction, thus
1051 executing it normally. But if this one cannot, just
1052 continue and we will hit it anyway. */
1053 if (step && breakpoint_inserted_here_p (pc))
1054 step = 0;
1055 }
1056
1057 if (debug_displaced
1058 && use_displaced_stepping (gdbarch)
1059 && tp->trap_expected)
1060 {
1061 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1062 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1063 gdb_byte buf[4];
1064
1065 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1066 paddr_nz (actual_pc));
1067 read_memory (actual_pc, buf, sizeof (buf));
1068 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1069 }
1070
1071 target_resume (resume_ptid, step, sig);
1072
1073 /* Avoid confusing the next resume, if the next stop/resume
1074 happens to apply to another thread. */
1075 tp->stop_signal = TARGET_SIGNAL_0;
1076 }
1077
1078 discard_cleanups (old_cleanups);
1079 }
1080 \f
1081 /* Proceeding. */
1082
1083 /* Clear out all variables saying what to do when inferior is continued.
1084 First do this, then set the ones you want, then call `proceed'. */
1085
1086 void
1087 clear_proceed_status (void)
1088 {
1089 if (!ptid_equal (inferior_ptid, null_ptid))
1090 {
1091 struct thread_info *tp;
1092 struct inferior *inferior;
1093
1094 tp = inferior_thread ();
1095
1096 tp->trap_expected = 0;
1097 tp->step_range_start = 0;
1098 tp->step_range_end = 0;
1099 tp->step_frame_id = null_frame_id;
1100 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1101
1102 tp->stop_step = 0;
1103
1104 tp->proceed_to_finish = 0;
1105
1106 /* Discard any remaining commands or status from previous
1107 stop. */
1108 bpstat_clear (&tp->stop_bpstat);
1109
1110 inferior = current_inferior ();
1111 inferior->stop_soon = NO_STOP_QUIETLY;
1112 }
1113
1114 stop_after_trap = 0;
1115 breakpoint_proceeded = 1; /* We're about to proceed... */
1116
1117 if (stop_registers)
1118 {
1119 regcache_xfree (stop_registers);
1120 stop_registers = NULL;
1121 }
1122 }
1123
1124 /* This should be suitable for any targets that support threads. */
1125
1126 static int
1127 prepare_to_proceed (int step)
1128 {
1129 ptid_t wait_ptid;
1130 struct target_waitstatus wait_status;
1131
1132 /* Get the last target status returned by target_wait(). */
1133 get_last_target_status (&wait_ptid, &wait_status);
1134
1135 /* Make sure we were stopped at a breakpoint. */
1136 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1137 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1138 {
1139 return 0;
1140 }
1141
1142 /* Switched over from WAIT_PID. */
1143 if (!ptid_equal (wait_ptid, minus_one_ptid)
1144 && !ptid_equal (inferior_ptid, wait_ptid))
1145 {
1146 struct regcache *regcache = get_thread_regcache (wait_ptid);
1147
1148 if (breakpoint_here_p (regcache_read_pc (regcache)))
1149 {
1150 /* If stepping, remember current thread to switch back to. */
1151 if (step)
1152 deferred_step_ptid = inferior_ptid;
1153
1154 /* Switch back to WAIT_PID thread. */
1155 switch_to_thread (wait_ptid);
1156
1157 /* We return 1 to indicate that there is a breakpoint here,
1158 so we need to step over it before continuing to avoid
1159 hitting it straight away. */
1160 return 1;
1161 }
1162 }
1163
1164 return 0;
1165 }
1166
1167 /* Basic routine for continuing the program in various fashions.
1168
1169 ADDR is the address to resume at, or -1 for resume where stopped.
1170 SIGGNAL is the signal to give it, or 0 for none,
1171 or -1 for act according to how it stopped.
1172 STEP is nonzero if should trap after one instruction.
1173 -1 means return after that and print nothing.
1174 You should probably set various step_... variables
1175 before calling here, if you are stepping.
1176
1177 You should call clear_proceed_status before calling proceed. */
1178
1179 void
1180 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1181 {
1182 struct regcache *regcache = get_current_regcache ();
1183 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1184 struct thread_info *tp;
1185 CORE_ADDR pc = regcache_read_pc (regcache);
1186 int oneproc = 0;
1187 enum target_signal stop_signal;
1188
1189 if (step > 0)
1190 step_start_function = find_pc_function (pc);
1191 if (step < 0)
1192 stop_after_trap = 1;
1193
1194 if (addr == (CORE_ADDR) -1)
1195 {
1196 if (pc == stop_pc && breakpoint_here_p (pc))
1197 /* There is a breakpoint at the address we will resume at,
1198 step one instruction before inserting breakpoints so that
1199 we do not stop right away (and report a second hit at this
1200 breakpoint). */
1201 oneproc = 1;
1202 else if (gdbarch_single_step_through_delay_p (gdbarch)
1203 && gdbarch_single_step_through_delay (gdbarch,
1204 get_current_frame ()))
1205 /* We stepped onto an instruction that needs to be stepped
1206 again before re-inserting the breakpoint, do so. */
1207 oneproc = 1;
1208 }
1209 else
1210 {
1211 regcache_write_pc (regcache, addr);
1212 }
1213
1214 if (debug_infrun)
1215 fprintf_unfiltered (gdb_stdlog,
1216 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1217 paddr_nz (addr), siggnal, step);
1218
1219 if (non_stop)
1220 /* In non-stop, each thread is handled individually. The context
1221 must already be set to the right thread here. */
1222 ;
1223 else
1224 {
1225 /* In a multi-threaded task we may select another thread and
1226 then continue or step.
1227
1228 But if the old thread was stopped at a breakpoint, it will
1229 immediately cause another breakpoint stop without any
1230 execution (i.e. it will report a breakpoint hit incorrectly).
1231 So we must step over it first.
1232
1233 prepare_to_proceed checks the current thread against the
1234 thread that reported the most recent event. If a step-over
1235 is required it returns TRUE and sets the current thread to
1236 the old thread. */
1237 if (prepare_to_proceed (step))
1238 oneproc = 1;
1239 }
1240
1241 /* prepare_to_proceed may change the current thread. */
1242 tp = inferior_thread ();
1243
1244 if (oneproc)
1245 {
1246 tp->trap_expected = 1;
1247 /* If displaced stepping is enabled, we can step over the
1248 breakpoint without hitting it, so leave all breakpoints
1249 inserted. Otherwise we need to disable all breakpoints, step
1250 one instruction, and then re-add them when that step is
1251 finished. */
1252 if (!use_displaced_stepping (gdbarch))
1253 remove_breakpoints ();
1254 }
1255
1256 /* We can insert breakpoints if we're not trying to step over one,
1257 or if we are stepping over one but we're using displaced stepping
1258 to do so. */
1259 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1260 insert_breakpoints ();
1261
1262 if (!non_stop)
1263 {
1264 /* Pass the last stop signal to the thread we're resuming,
1265 irrespective of whether the current thread is the thread that
1266 got the last event or not. This was historically GDB's
1267 behaviour before keeping a stop_signal per thread. */
1268
1269 struct thread_info *last_thread;
1270 ptid_t last_ptid;
1271 struct target_waitstatus last_status;
1272
1273 get_last_target_status (&last_ptid, &last_status);
1274 if (!ptid_equal (inferior_ptid, last_ptid)
1275 && !ptid_equal (last_ptid, null_ptid)
1276 && !ptid_equal (last_ptid, minus_one_ptid))
1277 {
1278 last_thread = find_thread_pid (last_ptid);
1279 if (last_thread)
1280 {
1281 tp->stop_signal = last_thread->stop_signal;
1282 last_thread->stop_signal = TARGET_SIGNAL_0;
1283 }
1284 }
1285 }
1286
1287 if (siggnal != TARGET_SIGNAL_DEFAULT)
1288 tp->stop_signal = siggnal;
1289 /* If this signal should not be seen by program,
1290 give it zero. Used for debugging signals. */
1291 else if (!signal_program[tp->stop_signal])
1292 tp->stop_signal = TARGET_SIGNAL_0;
1293
1294 annotate_starting ();
1295
1296 /* Make sure that output from GDB appears before output from the
1297 inferior. */
1298 gdb_flush (gdb_stdout);
1299
1300 /* Refresh prev_pc value just prior to resuming. This used to be
1301 done in stop_stepping, however, setting prev_pc there did not handle
1302 scenarios such as inferior function calls or returning from
1303 a function via the return command. In those cases, the prev_pc
1304 value was not set properly for subsequent commands. The prev_pc value
1305 is used to initialize the starting line number in the ecs. With an
1306 invalid value, the gdb next command ends up stopping at the position
1307 represented by the next line table entry past our start position.
1308 On platforms that generate one line table entry per line, this
1309 is not a problem. However, on the ia64, the compiler generates
1310 extraneous line table entries that do not increase the line number.
1311 When we issue the gdb next command on the ia64 after an inferior call
1312 or a return command, we often end up a few instructions forward, still
1313 within the original line we started.
1314
1315 An attempt was made to have init_execution_control_state () refresh
1316 the prev_pc value before calculating the line number. This approach
1317 did not work because on platforms that use ptrace, the pc register
1318 cannot be read unless the inferior is stopped. At that point, we
1319 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1320 call can fail. Setting the prev_pc value here ensures the value is
1321 updated correctly when the inferior is stopped. */
1322 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1323
1324 /* Fill in with reasonable starting values. */
1325 init_thread_stepping_state (tp);
1326
1327 /* Reset to normal state. */
1328 init_infwait_state ();
1329
1330 /* Resume inferior. */
1331 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1332
1333 /* Wait for it to stop (if not standalone)
1334 and in any case decode why it stopped, and act accordingly. */
1335 /* Do this only if we are not using the event loop, or if the target
1336 does not support asynchronous execution. */
1337 if (!target_can_async_p ())
1338 {
1339 wait_for_inferior (0);
1340 normal_stop ();
1341 }
1342 }
1343 \f
1344
1345 /* Start remote-debugging of a machine over a serial link. */
1346
1347 void
1348 start_remote (int from_tty)
1349 {
1350 struct inferior *inferior;
1351 init_wait_for_inferior ();
1352
1353 inferior = current_inferior ();
1354 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1355
1356 /* Always go on waiting for the target, regardless of the mode. */
1357 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1358 indicate to wait_for_inferior that a target should timeout if
1359 nothing is returned (instead of just blocking). Because of this,
1360 targets expecting an immediate response need to, internally, set
1361 things up so that the target_wait() is forced to eventually
1362 timeout. */
1363 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1364 differentiate to its caller what the state of the target is after
1365 the initial open has been performed. Here we're assuming that
1366 the target has stopped. It should be possible to eventually have
1367 target_open() return to the caller an indication that the target
1368 is currently running and GDB state should be set to the same as
1369 for an async run. */
1370 wait_for_inferior (0);
1371
1372 /* Now that the inferior has stopped, do any bookkeeping like
1373 loading shared libraries. We want to do this before normal_stop,
1374 so that the displayed frame is up to date. */
1375 post_create_inferior (&current_target, from_tty);
1376
1377 normal_stop ();
1378 }
1379
1380 /* Initialize static vars when a new inferior begins. */
1381
1382 void
1383 init_wait_for_inferior (void)
1384 {
1385 /* These are meaningless until the first time through wait_for_inferior. */
1386
1387 breakpoint_init_inferior (inf_starting);
1388
1389 /* The first resume is not following a fork/vfork/exec. */
1390 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1391
1392 clear_proceed_status ();
1393
1394 stepping_past_singlestep_breakpoint = 0;
1395 deferred_step_ptid = null_ptid;
1396
1397 target_last_wait_ptid = minus_one_ptid;
1398
1399 previous_inferior_ptid = null_ptid;
1400 init_infwait_state ();
1401
1402 displaced_step_clear ();
1403 }
1404
1405 \f
1406 /* This enum encodes possible reasons for doing a target_wait, so that
1407 wfi can call target_wait in one place. (Ultimately the call will be
1408 moved out of the infinite loop entirely.) */
1409
1410 enum infwait_states
1411 {
1412 infwait_normal_state,
1413 infwait_thread_hop_state,
1414 infwait_step_watch_state,
1415 infwait_nonstep_watch_state
1416 };
1417
1418 /* Why did the inferior stop? Used to print the appropriate messages
1419 to the interface from within handle_inferior_event(). */
1420 enum inferior_stop_reason
1421 {
1422 /* Step, next, nexti, stepi finished. */
1423 END_STEPPING_RANGE,
1424 /* Inferior terminated by signal. */
1425 SIGNAL_EXITED,
1426 /* Inferior exited. */
1427 EXITED,
1428 /* Inferior received signal, and user asked to be notified. */
1429 SIGNAL_RECEIVED
1430 };
1431
1432 /* The PTID we'll do a target_wait on.*/
1433 ptid_t waiton_ptid;
1434
1435 /* Current inferior wait state. */
1436 enum infwait_states infwait_state;
1437
1438 /* Data to be passed around while handling an event. This data is
1439 discarded between events. */
1440 struct execution_control_state
1441 {
1442 ptid_t ptid;
1443 /* The thread that got the event, if this was a thread event; NULL
1444 otherwise. */
1445 struct thread_info *event_thread;
1446
1447 struct target_waitstatus ws;
1448 int random_signal;
1449 CORE_ADDR stop_func_start;
1450 CORE_ADDR stop_func_end;
1451 char *stop_func_name;
1452 int new_thread_event;
1453 int wait_some_more;
1454 };
1455
1456 void init_execution_control_state (struct execution_control_state *ecs);
1457
1458 void handle_inferior_event (struct execution_control_state *ecs);
1459
1460 static void step_into_function (struct execution_control_state *ecs);
1461 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1462 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1463 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1464 struct frame_id sr_id);
1465 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1466
1467 static void stop_stepping (struct execution_control_state *ecs);
1468 static void prepare_to_wait (struct execution_control_state *ecs);
1469 static void keep_going (struct execution_control_state *ecs);
1470 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1471 int stop_info);
1472
1473 /* Callback for iterate_over_threads. */
1474
1475 static int
1476 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1477 {
1478 if (is_exited (info->ptid))
1479 return 0;
1480
1481 delete_step_resume_breakpoint (info);
1482 return 0;
1483 }
1484
1485 /* In all-stop, delete the step resume breakpoint of any thread that
1486 had one. In non-stop, delete the step resume breakpoint of the
1487 thread that just stopped. */
1488
1489 static void
1490 delete_step_thread_step_resume_breakpoint (void)
1491 {
1492 if (!target_has_execution
1493 || ptid_equal (inferior_ptid, null_ptid))
1494 /* If the inferior has exited, we have already deleted the step
1495 resume breakpoints out of GDB's lists. */
1496 return;
1497
1498 if (non_stop)
1499 {
1500 /* If in non-stop mode, only delete the step-resume or
1501 longjmp-resume breakpoint of the thread that just stopped
1502 stepping. */
1503 struct thread_info *tp = inferior_thread ();
1504 delete_step_resume_breakpoint (tp);
1505 }
1506 else
1507 /* In all-stop mode, delete all step-resume and longjmp-resume
1508 breakpoints of any thread that had them. */
1509 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1510 }
1511
1512 /* A cleanup wrapper. */
1513
1514 static void
1515 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1516 {
1517 delete_step_thread_step_resume_breakpoint ();
1518 }
1519
1520 /* Wait for control to return from inferior to debugger.
1521
1522 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1523 as if they were SIGTRAP signals. This can be useful during
1524 the startup sequence on some targets such as HP/UX, where
1525 we receive an EXEC event instead of the expected SIGTRAP.
1526
1527 If inferior gets a signal, we may decide to start it up again
1528 instead of returning. That is why there is a loop in this function.
1529 When this function actually returns it means the inferior
1530 should be left stopped and GDB should read more commands. */
1531
1532 void
1533 wait_for_inferior (int treat_exec_as_sigtrap)
1534 {
1535 struct cleanup *old_cleanups;
1536 struct execution_control_state ecss;
1537 struct execution_control_state *ecs;
1538
1539 if (debug_infrun)
1540 fprintf_unfiltered
1541 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1542 treat_exec_as_sigtrap);
1543
1544 old_cleanups =
1545 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1546
1547 ecs = &ecss;
1548 memset (ecs, 0, sizeof (*ecs));
1549
1550 overlay_cache_invalid = 1;
1551
1552 /* We'll update this if & when we switch to a new thread. */
1553 previous_inferior_ptid = inferior_ptid;
1554
1555 /* We have to invalidate the registers BEFORE calling target_wait
1556 because they can be loaded from the target while in target_wait.
1557 This makes remote debugging a bit more efficient for those
1558 targets that provide critical registers as part of their normal
1559 status mechanism. */
1560
1561 registers_changed ();
1562
1563 while (1)
1564 {
1565 if (deprecated_target_wait_hook)
1566 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1567 else
1568 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1569
1570 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1571 {
1572 xfree (ecs->ws.value.execd_pathname);
1573 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1574 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1575 }
1576
1577 /* Now figure out what to do with the result of the result. */
1578 handle_inferior_event (ecs);
1579
1580 if (!ecs->wait_some_more)
1581 break;
1582 }
1583
1584 do_cleanups (old_cleanups);
1585 }
1586
1587 /* Asynchronous version of wait_for_inferior. It is called by the
1588 event loop whenever a change of state is detected on the file
1589 descriptor corresponding to the target. It can be called more than
1590 once to complete a single execution command. In such cases we need
1591 to keep the state in a global variable ECSS. If it is the last time
1592 that this function is called for a single execution command, then
1593 report to the user that the inferior has stopped, and do the
1594 necessary cleanups. */
1595
1596 void
1597 fetch_inferior_event (void *client_data)
1598 {
1599 struct execution_control_state ecss;
1600 struct execution_control_state *ecs = &ecss;
1601 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1602 int was_sync = sync_execution;
1603
1604 memset (ecs, 0, sizeof (*ecs));
1605
1606 overlay_cache_invalid = 1;
1607
1608 /* We can only rely on wait_for_more being correct before handling
1609 the event in all-stop, but previous_inferior_ptid isn't used in
1610 non-stop. */
1611 if (!ecs->wait_some_more)
1612 /* We'll update this if & when we switch to a new thread. */
1613 previous_inferior_ptid = inferior_ptid;
1614
1615 if (non_stop)
1616 /* In non-stop mode, the user/frontend should not notice a thread
1617 switch due to internal events. Make sure we reverse to the
1618 user selected thread and frame after handling the event and
1619 running any breakpoint commands. */
1620 make_cleanup_restore_current_thread ();
1621
1622 /* We have to invalidate the registers BEFORE calling target_wait
1623 because they can be loaded from the target while in target_wait.
1624 This makes remote debugging a bit more efficient for those
1625 targets that provide critical registers as part of their normal
1626 status mechanism. */
1627
1628 registers_changed ();
1629
1630 if (deprecated_target_wait_hook)
1631 ecs->ptid =
1632 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1633 else
1634 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1635
1636 if (non_stop
1637 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1638 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1639 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1640 /* In non-stop mode, each thread is handled individually. Switch
1641 early, so the global state is set correctly for this
1642 thread. */
1643 context_switch (ecs->ptid);
1644
1645 /* Now figure out what to do with the result of the result. */
1646 handle_inferior_event (ecs);
1647
1648 if (!ecs->wait_some_more)
1649 {
1650 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1651
1652 delete_step_thread_step_resume_breakpoint ();
1653
1654 /* We may not find an inferior if this was a process exit. */
1655 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
1656 normal_stop ();
1657
1658 if (target_has_execution
1659 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1660 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1661 && ecs->event_thread->step_multi
1662 && ecs->event_thread->stop_step)
1663 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1664 else
1665 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1666 }
1667
1668 /* Revert thread and frame. */
1669 do_cleanups (old_chain);
1670
1671 /* If the inferior was in sync execution mode, and now isn't,
1672 restore the prompt. */
1673 if (was_sync && !sync_execution)
1674 display_gdb_prompt (0);
1675 }
1676
1677 /* Prepare an execution control state for looping through a
1678 wait_for_inferior-type loop. */
1679
1680 void
1681 init_execution_control_state (struct execution_control_state *ecs)
1682 {
1683 ecs->random_signal = 0;
1684 }
1685
1686 /* Clear context switchable stepping state. */
1687
1688 void
1689 init_thread_stepping_state (struct thread_info *tss)
1690 {
1691 struct symtab_and_line sal;
1692
1693 tss->stepping_over_breakpoint = 0;
1694 tss->step_after_step_resume_breakpoint = 0;
1695 tss->stepping_through_solib_after_catch = 0;
1696 tss->stepping_through_solib_catchpoints = NULL;
1697
1698 sal = find_pc_line (tss->prev_pc, 0);
1699 tss->current_line = sal.line;
1700 tss->current_symtab = sal.symtab;
1701 }
1702
1703 /* Return the cached copy of the last pid/waitstatus returned by
1704 target_wait()/deprecated_target_wait_hook(). The data is actually
1705 cached by handle_inferior_event(), which gets called immediately
1706 after target_wait()/deprecated_target_wait_hook(). */
1707
1708 void
1709 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1710 {
1711 *ptidp = target_last_wait_ptid;
1712 *status = target_last_waitstatus;
1713 }
1714
1715 void
1716 nullify_last_target_wait_ptid (void)
1717 {
1718 target_last_wait_ptid = minus_one_ptid;
1719 }
1720
1721 /* Switch thread contexts. */
1722
1723 static void
1724 context_switch (ptid_t ptid)
1725 {
1726 if (debug_infrun)
1727 {
1728 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1729 target_pid_to_str (inferior_ptid));
1730 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1731 target_pid_to_str (ptid));
1732 }
1733
1734 switch_to_thread (ptid);
1735 }
1736
1737 static void
1738 adjust_pc_after_break (struct execution_control_state *ecs)
1739 {
1740 struct regcache *regcache;
1741 struct gdbarch *gdbarch;
1742 CORE_ADDR breakpoint_pc;
1743
1744 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1745 we aren't, just return.
1746
1747 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1748 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1749 implemented by software breakpoints should be handled through the normal
1750 breakpoint layer.
1751
1752 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1753 different signals (SIGILL or SIGEMT for instance), but it is less
1754 clear where the PC is pointing afterwards. It may not match
1755 gdbarch_decr_pc_after_break. I don't know any specific target that
1756 generates these signals at breakpoints (the code has been in GDB since at
1757 least 1992) so I can not guess how to handle them here.
1758
1759 In earlier versions of GDB, a target with
1760 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1761 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1762 target with both of these set in GDB history, and it seems unlikely to be
1763 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1764
1765 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1766 return;
1767
1768 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1769 return;
1770
1771 /* If this target does not decrement the PC after breakpoints, then
1772 we have nothing to do. */
1773 regcache = get_thread_regcache (ecs->ptid);
1774 gdbarch = get_regcache_arch (regcache);
1775 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1776 return;
1777
1778 /* Find the location where (if we've hit a breakpoint) the
1779 breakpoint would be. */
1780 breakpoint_pc = regcache_read_pc (regcache)
1781 - gdbarch_decr_pc_after_break (gdbarch);
1782
1783 /* Check whether there actually is a software breakpoint inserted
1784 at that location. */
1785 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1786 {
1787 /* When using hardware single-step, a SIGTRAP is reported for both
1788 a completed single-step and a software breakpoint. Need to
1789 differentiate between the two, as the latter needs adjusting
1790 but the former does not.
1791
1792 The SIGTRAP can be due to a completed hardware single-step only if
1793 - we didn't insert software single-step breakpoints
1794 - the thread to be examined is still the current thread
1795 - this thread is currently being stepped
1796
1797 If any of these events did not occur, we must have stopped due
1798 to hitting a software breakpoint, and have to back up to the
1799 breakpoint address.
1800
1801 As a special case, we could have hardware single-stepped a
1802 software breakpoint. In this case (prev_pc == breakpoint_pc),
1803 we also need to back up to the breakpoint address. */
1804
1805 if (singlestep_breakpoints_inserted_p
1806 || !ptid_equal (ecs->ptid, inferior_ptid)
1807 || !currently_stepping (ecs->event_thread)
1808 || ecs->event_thread->prev_pc == breakpoint_pc)
1809 regcache_write_pc (regcache, breakpoint_pc);
1810 }
1811 }
1812
1813 void
1814 init_infwait_state (void)
1815 {
1816 waiton_ptid = pid_to_ptid (-1);
1817 infwait_state = infwait_normal_state;
1818 }
1819
1820 void
1821 error_is_running (void)
1822 {
1823 error (_("\
1824 Cannot execute this command while the selected thread is running."));
1825 }
1826
1827 void
1828 ensure_not_running (void)
1829 {
1830 if (is_running (inferior_ptid))
1831 error_is_running ();
1832 }
1833
1834 /* Given an execution control state that has been freshly filled in
1835 by an event from the inferior, figure out what it means and take
1836 appropriate action. */
1837
1838 void
1839 handle_inferior_event (struct execution_control_state *ecs)
1840 {
1841 int sw_single_step_trap_p = 0;
1842 int stopped_by_watchpoint;
1843 int stepped_after_stopped_by_watchpoint = 0;
1844 struct symtab_and_line stop_pc_sal;
1845 enum stop_kind stop_soon;
1846
1847 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1848 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1849 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1850 {
1851 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1852 gdb_assert (inf);
1853 stop_soon = inf->stop_soon;
1854 }
1855 else
1856 stop_soon = NO_STOP_QUIETLY;
1857
1858 breakpoint_retire_moribund ();
1859
1860 /* Cache the last pid/waitstatus. */
1861 target_last_wait_ptid = ecs->ptid;
1862 target_last_waitstatus = ecs->ws;
1863
1864 /* Always clear state belonging to the previous time we stopped. */
1865 stop_stack_dummy = 0;
1866
1867 /* If it's a new process, add it to the thread database */
1868
1869 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1870 && !ptid_equal (ecs->ptid, minus_one_ptid)
1871 && !in_thread_list (ecs->ptid));
1872
1873 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1874 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1875 add_thread (ecs->ptid);
1876
1877 ecs->event_thread = find_thread_pid (ecs->ptid);
1878
1879 /* Dependent on valid ECS->EVENT_THREAD. */
1880 adjust_pc_after_break (ecs);
1881
1882 /* Dependent on the current PC value modified by adjust_pc_after_break. */
1883 reinit_frame_cache ();
1884
1885 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1886 {
1887 /* Mark the non-executing threads accordingly. */
1888 if (!non_stop
1889 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1890 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1891 set_executing (pid_to_ptid (-1), 0);
1892 else
1893 set_executing (ecs->ptid, 0);
1894 }
1895
1896 switch (infwait_state)
1897 {
1898 case infwait_thread_hop_state:
1899 if (debug_infrun)
1900 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1901 /* Cancel the waiton_ptid. */
1902 waiton_ptid = pid_to_ptid (-1);
1903 break;
1904
1905 case infwait_normal_state:
1906 if (debug_infrun)
1907 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1908 break;
1909
1910 case infwait_step_watch_state:
1911 if (debug_infrun)
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: infwait_step_watch_state\n");
1914
1915 stepped_after_stopped_by_watchpoint = 1;
1916 break;
1917
1918 case infwait_nonstep_watch_state:
1919 if (debug_infrun)
1920 fprintf_unfiltered (gdb_stdlog,
1921 "infrun: infwait_nonstep_watch_state\n");
1922 insert_breakpoints ();
1923
1924 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1925 handle things like signals arriving and other things happening
1926 in combination correctly? */
1927 stepped_after_stopped_by_watchpoint = 1;
1928 break;
1929
1930 default:
1931 internal_error (__FILE__, __LINE__, _("bad switch"));
1932 }
1933 infwait_state = infwait_normal_state;
1934
1935 switch (ecs->ws.kind)
1936 {
1937 case TARGET_WAITKIND_LOADED:
1938 if (debug_infrun)
1939 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1940 /* Ignore gracefully during startup of the inferior, as it might
1941 be the shell which has just loaded some objects, otherwise
1942 add the symbols for the newly loaded objects. Also ignore at
1943 the beginning of an attach or remote session; we will query
1944 the full list of libraries once the connection is
1945 established. */
1946 if (stop_soon == NO_STOP_QUIETLY)
1947 {
1948 /* Check for any newly added shared libraries if we're
1949 supposed to be adding them automatically. Switch
1950 terminal for any messages produced by
1951 breakpoint_re_set. */
1952 target_terminal_ours_for_output ();
1953 /* NOTE: cagney/2003-11-25: Make certain that the target
1954 stack's section table is kept up-to-date. Architectures,
1955 (e.g., PPC64), use the section table to perform
1956 operations such as address => section name and hence
1957 require the table to contain all sections (including
1958 those found in shared libraries). */
1959 /* NOTE: cagney/2003-11-25: Pass current_target and not
1960 exec_ops to SOLIB_ADD. This is because current GDB is
1961 only tooled to propagate section_table changes out from
1962 the "current_target" (see target_resize_to_sections), and
1963 not up from the exec stratum. This, of course, isn't
1964 right. "infrun.c" should only interact with the
1965 exec/process stratum, instead relying on the target stack
1966 to propagate relevant changes (stop, section table
1967 changed, ...) up to other layers. */
1968 #ifdef SOLIB_ADD
1969 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1970 #else
1971 solib_add (NULL, 0, &current_target, auto_solib_add);
1972 #endif
1973 target_terminal_inferior ();
1974
1975 /* If requested, stop when the dynamic linker notifies
1976 gdb of events. This allows the user to get control
1977 and place breakpoints in initializer routines for
1978 dynamically loaded objects (among other things). */
1979 if (stop_on_solib_events)
1980 {
1981 stop_stepping (ecs);
1982 return;
1983 }
1984
1985 /* NOTE drow/2007-05-11: This might be a good place to check
1986 for "catch load". */
1987 }
1988
1989 /* If we are skipping through a shell, or through shared library
1990 loading that we aren't interested in, resume the program. If
1991 we're running the program normally, also resume. But stop if
1992 we're attaching or setting up a remote connection. */
1993 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1994 {
1995 /* Loading of shared libraries might have changed breakpoint
1996 addresses. Make sure new breakpoints are inserted. */
1997 if (stop_soon == NO_STOP_QUIETLY
1998 && !breakpoints_always_inserted_mode ())
1999 insert_breakpoints ();
2000 resume (0, TARGET_SIGNAL_0);
2001 prepare_to_wait (ecs);
2002 return;
2003 }
2004
2005 break;
2006
2007 case TARGET_WAITKIND_SPURIOUS:
2008 if (debug_infrun)
2009 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2010 resume (0, TARGET_SIGNAL_0);
2011 prepare_to_wait (ecs);
2012 return;
2013
2014 case TARGET_WAITKIND_EXITED:
2015 if (debug_infrun)
2016 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2017 target_terminal_ours (); /* Must do this before mourn anyway */
2018 print_stop_reason (EXITED, ecs->ws.value.integer);
2019
2020 /* Record the exit code in the convenience variable $_exitcode, so
2021 that the user can inspect this again later. */
2022 set_internalvar (lookup_internalvar ("_exitcode"),
2023 value_from_longest (builtin_type_int32,
2024 (LONGEST) ecs->ws.value.integer));
2025 gdb_flush (gdb_stdout);
2026 target_mourn_inferior ();
2027 singlestep_breakpoints_inserted_p = 0;
2028 stop_print_frame = 0;
2029 stop_stepping (ecs);
2030 return;
2031
2032 case TARGET_WAITKIND_SIGNALLED:
2033 if (debug_infrun)
2034 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2035 stop_print_frame = 0;
2036 target_terminal_ours (); /* Must do this before mourn anyway */
2037
2038 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2039 reach here unless the inferior is dead. However, for years
2040 target_kill() was called here, which hints that fatal signals aren't
2041 really fatal on some systems. If that's true, then some changes
2042 may be needed. */
2043 target_mourn_inferior ();
2044
2045 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2046 singlestep_breakpoints_inserted_p = 0;
2047 stop_stepping (ecs);
2048 return;
2049
2050 /* The following are the only cases in which we keep going;
2051 the above cases end in a continue or goto. */
2052 case TARGET_WAITKIND_FORKED:
2053 case TARGET_WAITKIND_VFORKED:
2054 if (debug_infrun)
2055 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2056 pending_follow.kind = ecs->ws.kind;
2057
2058 pending_follow.fork_event.parent_pid = ecs->ptid;
2059 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2060
2061 if (!ptid_equal (ecs->ptid, inferior_ptid))
2062 {
2063 context_switch (ecs->ptid);
2064 reinit_frame_cache ();
2065 }
2066
2067 stop_pc = read_pc ();
2068
2069 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2070
2071 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2072
2073 /* If no catchpoint triggered for this, then keep going. */
2074 if (ecs->random_signal)
2075 {
2076 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2077 keep_going (ecs);
2078 return;
2079 }
2080 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2081 goto process_event_stop_test;
2082
2083 case TARGET_WAITKIND_EXECD:
2084 if (debug_infrun)
2085 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2086 pending_follow.execd_pathname =
2087 savestring (ecs->ws.value.execd_pathname,
2088 strlen (ecs->ws.value.execd_pathname));
2089
2090 if (!ptid_equal (ecs->ptid, inferior_ptid))
2091 {
2092 context_switch (ecs->ptid);
2093 reinit_frame_cache ();
2094 }
2095
2096 stop_pc = read_pc ();
2097
2098 /* This causes the eventpoints and symbol table to be reset.
2099 Must do this now, before trying to determine whether to
2100 stop. */
2101 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2102 xfree (pending_follow.execd_pathname);
2103
2104 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2105 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2106
2107 /* If no catchpoint triggered for this, then keep going. */
2108 if (ecs->random_signal)
2109 {
2110 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2111 keep_going (ecs);
2112 return;
2113 }
2114 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2115 goto process_event_stop_test;
2116
2117 /* Be careful not to try to gather much state about a thread
2118 that's in a syscall. It's frequently a losing proposition. */
2119 case TARGET_WAITKIND_SYSCALL_ENTRY:
2120 if (debug_infrun)
2121 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2122 resume (0, TARGET_SIGNAL_0);
2123 prepare_to_wait (ecs);
2124 return;
2125
2126 /* Before examining the threads further, step this thread to
2127 get it entirely out of the syscall. (We get notice of the
2128 event when the thread is just on the verge of exiting a
2129 syscall. Stepping one instruction seems to get it back
2130 into user code.) */
2131 case TARGET_WAITKIND_SYSCALL_RETURN:
2132 if (debug_infrun)
2133 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2134 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2135 prepare_to_wait (ecs);
2136 return;
2137
2138 case TARGET_WAITKIND_STOPPED:
2139 if (debug_infrun)
2140 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2141 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2142 break;
2143
2144 /* We had an event in the inferior, but we are not interested
2145 in handling it at this level. The lower layers have already
2146 done what needs to be done, if anything.
2147
2148 One of the possible circumstances for this is when the
2149 inferior produces output for the console. The inferior has
2150 not stopped, and we are ignoring the event. Another possible
2151 circumstance is any event which the lower level knows will be
2152 reported multiple times without an intervening resume. */
2153 case TARGET_WAITKIND_IGNORE:
2154 if (debug_infrun)
2155 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2156 prepare_to_wait (ecs);
2157 return;
2158 }
2159
2160 if (ecs->new_thread_event)
2161 {
2162 if (non_stop)
2163 /* Non-stop assumes that the target handles adding new threads
2164 to the thread list. */
2165 internal_error (__FILE__, __LINE__, "\
2166 targets should add new threads to the thread list themselves in non-stop mode.");
2167
2168 /* We may want to consider not doing a resume here in order to
2169 give the user a chance to play with the new thread. It might
2170 be good to make that a user-settable option. */
2171
2172 /* At this point, all threads are stopped (happens automatically
2173 in either the OS or the native code). Therefore we need to
2174 continue all threads in order to make progress. */
2175
2176 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2177 prepare_to_wait (ecs);
2178 return;
2179 }
2180
2181 /* Do we need to clean up the state of a thread that has completed a
2182 displaced single-step? (Doing so usually affects the PC, so do
2183 it here, before we set stop_pc.) */
2184 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2185 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2186
2187 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2188
2189 if (debug_infrun)
2190 {
2191 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2192 paddr_nz (stop_pc));
2193 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2194 {
2195 CORE_ADDR addr;
2196 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2197
2198 if (target_stopped_data_address (&current_target, &addr))
2199 fprintf_unfiltered (gdb_stdlog,
2200 "infrun: stopped data address = 0x%s\n",
2201 paddr_nz (addr));
2202 else
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: (no data address available)\n");
2205 }
2206 }
2207
2208 if (stepping_past_singlestep_breakpoint)
2209 {
2210 gdb_assert (singlestep_breakpoints_inserted_p);
2211 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2212 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2213
2214 stepping_past_singlestep_breakpoint = 0;
2215
2216 /* We've either finished single-stepping past the single-step
2217 breakpoint, or stopped for some other reason. It would be nice if
2218 we could tell, but we can't reliably. */
2219 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2220 {
2221 if (debug_infrun)
2222 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2223 /* Pull the single step breakpoints out of the target. */
2224 remove_single_step_breakpoints ();
2225 singlestep_breakpoints_inserted_p = 0;
2226
2227 ecs->random_signal = 0;
2228
2229 context_switch (saved_singlestep_ptid);
2230 if (deprecated_context_hook)
2231 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2232
2233 resume (1, TARGET_SIGNAL_0);
2234 prepare_to_wait (ecs);
2235 return;
2236 }
2237 }
2238
2239 stepping_past_singlestep_breakpoint = 0;
2240
2241 if (!ptid_equal (deferred_step_ptid, null_ptid))
2242 {
2243 /* In non-stop mode, there's never a deferred_step_ptid set. */
2244 gdb_assert (!non_stop);
2245
2246 /* If we stopped for some other reason than single-stepping, ignore
2247 the fact that we were supposed to switch back. */
2248 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2249 {
2250 struct thread_info *tp;
2251
2252 if (debug_infrun)
2253 fprintf_unfiltered (gdb_stdlog,
2254 "infrun: handling deferred step\n");
2255
2256 /* Pull the single step breakpoints out of the target. */
2257 if (singlestep_breakpoints_inserted_p)
2258 {
2259 remove_single_step_breakpoints ();
2260 singlestep_breakpoints_inserted_p = 0;
2261 }
2262
2263 /* Note: We do not call context_switch at this point, as the
2264 context is already set up for stepping the original thread. */
2265 switch_to_thread (deferred_step_ptid);
2266 deferred_step_ptid = null_ptid;
2267 /* Suppress spurious "Switching to ..." message. */
2268 previous_inferior_ptid = inferior_ptid;
2269
2270 resume (1, TARGET_SIGNAL_0);
2271 prepare_to_wait (ecs);
2272 return;
2273 }
2274
2275 deferred_step_ptid = null_ptid;
2276 }
2277
2278 /* See if a thread hit a thread-specific breakpoint that was meant for
2279 another thread. If so, then step that thread past the breakpoint,
2280 and continue it. */
2281
2282 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2283 {
2284 int thread_hop_needed = 0;
2285
2286 /* Check if a regular breakpoint has been hit before checking
2287 for a potential single step breakpoint. Otherwise, GDB will
2288 not see this breakpoint hit when stepping onto breakpoints. */
2289 if (regular_breakpoint_inserted_here_p (stop_pc))
2290 {
2291 ecs->random_signal = 0;
2292 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2293 thread_hop_needed = 1;
2294 }
2295 else if (singlestep_breakpoints_inserted_p)
2296 {
2297 /* We have not context switched yet, so this should be true
2298 no matter which thread hit the singlestep breakpoint. */
2299 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2300 if (debug_infrun)
2301 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2302 "trap for %s\n",
2303 target_pid_to_str (ecs->ptid));
2304
2305 ecs->random_signal = 0;
2306 /* The call to in_thread_list is necessary because PTIDs sometimes
2307 change when we go from single-threaded to multi-threaded. If
2308 the singlestep_ptid is still in the list, assume that it is
2309 really different from ecs->ptid. */
2310 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2311 && in_thread_list (singlestep_ptid))
2312 {
2313 /* If the PC of the thread we were trying to single-step
2314 has changed, discard this event (which we were going
2315 to ignore anyway), and pretend we saw that thread
2316 trap. This prevents us continuously moving the
2317 single-step breakpoint forward, one instruction at a
2318 time. If the PC has changed, then the thread we were
2319 trying to single-step has trapped or been signalled,
2320 but the event has not been reported to GDB yet.
2321
2322 There might be some cases where this loses signal
2323 information, if a signal has arrived at exactly the
2324 same time that the PC changed, but this is the best
2325 we can do with the information available. Perhaps we
2326 should arrange to report all events for all threads
2327 when they stop, or to re-poll the remote looking for
2328 this particular thread (i.e. temporarily enable
2329 schedlock). */
2330
2331 CORE_ADDR new_singlestep_pc
2332 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2333
2334 if (new_singlestep_pc != singlestep_pc)
2335 {
2336 enum target_signal stop_signal;
2337
2338 if (debug_infrun)
2339 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2340 " but expected thread advanced also\n");
2341
2342 /* The current context still belongs to
2343 singlestep_ptid. Don't swap here, since that's
2344 the context we want to use. Just fudge our
2345 state and continue. */
2346 stop_signal = ecs->event_thread->stop_signal;
2347 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2348 ecs->ptid = singlestep_ptid;
2349 ecs->event_thread = find_thread_pid (ecs->ptid);
2350 ecs->event_thread->stop_signal = stop_signal;
2351 stop_pc = new_singlestep_pc;
2352 }
2353 else
2354 {
2355 if (debug_infrun)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: unexpected thread\n");
2358
2359 thread_hop_needed = 1;
2360 stepping_past_singlestep_breakpoint = 1;
2361 saved_singlestep_ptid = singlestep_ptid;
2362 }
2363 }
2364 }
2365
2366 if (thread_hop_needed)
2367 {
2368 int remove_status = 0;
2369
2370 if (debug_infrun)
2371 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2372
2373 /* Saw a breakpoint, but it was hit by the wrong thread.
2374 Just continue. */
2375
2376 if (singlestep_breakpoints_inserted_p)
2377 {
2378 /* Pull the single step breakpoints out of the target. */
2379 remove_single_step_breakpoints ();
2380 singlestep_breakpoints_inserted_p = 0;
2381 }
2382
2383 /* If the arch can displace step, don't remove the
2384 breakpoints. */
2385 if (!use_displaced_stepping (current_gdbarch))
2386 remove_status = remove_breakpoints ();
2387
2388 /* Did we fail to remove breakpoints? If so, try
2389 to set the PC past the bp. (There's at least
2390 one situation in which we can fail to remove
2391 the bp's: On HP-UX's that use ttrace, we can't
2392 change the address space of a vforking child
2393 process until the child exits (well, okay, not
2394 then either :-) or execs. */
2395 if (remove_status != 0)
2396 error (_("Cannot step over breakpoint hit in wrong thread"));
2397 else
2398 { /* Single step */
2399 if (!ptid_equal (inferior_ptid, ecs->ptid))
2400 context_switch (ecs->ptid);
2401
2402 if (!non_stop)
2403 {
2404 /* Only need to require the next event from this
2405 thread in all-stop mode. */
2406 waiton_ptid = ecs->ptid;
2407 infwait_state = infwait_thread_hop_state;
2408 }
2409
2410 ecs->event_thread->stepping_over_breakpoint = 1;
2411 keep_going (ecs);
2412 registers_changed ();
2413 return;
2414 }
2415 }
2416 else if (singlestep_breakpoints_inserted_p)
2417 {
2418 sw_single_step_trap_p = 1;
2419 ecs->random_signal = 0;
2420 }
2421 }
2422 else
2423 ecs->random_signal = 1;
2424
2425 /* See if something interesting happened to the non-current thread. If
2426 so, then switch to that thread. */
2427 if (!ptid_equal (ecs->ptid, inferior_ptid))
2428 {
2429 if (debug_infrun)
2430 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2431
2432 context_switch (ecs->ptid);
2433
2434 if (deprecated_context_hook)
2435 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2436 }
2437
2438 if (singlestep_breakpoints_inserted_p)
2439 {
2440 /* Pull the single step breakpoints out of the target. */
2441 remove_single_step_breakpoints ();
2442 singlestep_breakpoints_inserted_p = 0;
2443 }
2444
2445 if (stepped_after_stopped_by_watchpoint)
2446 stopped_by_watchpoint = 0;
2447 else
2448 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2449
2450 /* If necessary, step over this watchpoint. We'll be back to display
2451 it in a moment. */
2452 if (stopped_by_watchpoint
2453 && (HAVE_STEPPABLE_WATCHPOINT
2454 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2455 {
2456 /* At this point, we are stopped at an instruction which has
2457 attempted to write to a piece of memory under control of
2458 a watchpoint. The instruction hasn't actually executed
2459 yet. If we were to evaluate the watchpoint expression
2460 now, we would get the old value, and therefore no change
2461 would seem to have occurred.
2462
2463 In order to make watchpoints work `right', we really need
2464 to complete the memory write, and then evaluate the
2465 watchpoint expression. We do this by single-stepping the
2466 target.
2467
2468 It may not be necessary to disable the watchpoint to stop over
2469 it. For example, the PA can (with some kernel cooperation)
2470 single step over a watchpoint without disabling the watchpoint.
2471
2472 It is far more common to need to disable a watchpoint to step
2473 the inferior over it. If we have non-steppable watchpoints,
2474 we must disable the current watchpoint; it's simplest to
2475 disable all watchpoints and breakpoints. */
2476
2477 if (!HAVE_STEPPABLE_WATCHPOINT)
2478 remove_breakpoints ();
2479 registers_changed ();
2480 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2481 waiton_ptid = ecs->ptid;
2482 if (HAVE_STEPPABLE_WATCHPOINT)
2483 infwait_state = infwait_step_watch_state;
2484 else
2485 infwait_state = infwait_nonstep_watch_state;
2486 prepare_to_wait (ecs);
2487 return;
2488 }
2489
2490 ecs->stop_func_start = 0;
2491 ecs->stop_func_end = 0;
2492 ecs->stop_func_name = 0;
2493 /* Don't care about return value; stop_func_start and stop_func_name
2494 will both be 0 if it doesn't work. */
2495 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2496 &ecs->stop_func_start, &ecs->stop_func_end);
2497 ecs->stop_func_start
2498 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2499 ecs->event_thread->stepping_over_breakpoint = 0;
2500 bpstat_clear (&ecs->event_thread->stop_bpstat);
2501 ecs->event_thread->stop_step = 0;
2502 stop_print_frame = 1;
2503 ecs->random_signal = 0;
2504 stopped_by_random_signal = 0;
2505
2506 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2507 && ecs->event_thread->trap_expected
2508 && gdbarch_single_step_through_delay_p (current_gdbarch)
2509 && currently_stepping (ecs->event_thread))
2510 {
2511 /* We're trying to step off a breakpoint. Turns out that we're
2512 also on an instruction that needs to be stepped multiple
2513 times before it's been fully executing. E.g., architectures
2514 with a delay slot. It needs to be stepped twice, once for
2515 the instruction and once for the delay slot. */
2516 int step_through_delay
2517 = gdbarch_single_step_through_delay (current_gdbarch,
2518 get_current_frame ());
2519 if (debug_infrun && step_through_delay)
2520 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2521 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2522 {
2523 /* The user issued a continue when stopped at a breakpoint.
2524 Set up for another trap and get out of here. */
2525 ecs->event_thread->stepping_over_breakpoint = 1;
2526 keep_going (ecs);
2527 return;
2528 }
2529 else if (step_through_delay)
2530 {
2531 /* The user issued a step when stopped at a breakpoint.
2532 Maybe we should stop, maybe we should not - the delay
2533 slot *might* correspond to a line of source. In any
2534 case, don't decide that here, just set
2535 ecs->stepping_over_breakpoint, making sure we
2536 single-step again before breakpoints are re-inserted. */
2537 ecs->event_thread->stepping_over_breakpoint = 1;
2538 }
2539 }
2540
2541 /* Look at the cause of the stop, and decide what to do.
2542 The alternatives are:
2543 1) stop_stepping and return; to really stop and return to the debugger,
2544 2) keep_going and return to start up again
2545 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2546 3) set ecs->random_signal to 1, and the decision between 1 and 2
2547 will be made according to the signal handling tables. */
2548
2549 /* First, distinguish signals caused by the debugger from signals
2550 that have to do with the program's own actions. Note that
2551 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2552 on the operating system version. Here we detect when a SIGILL or
2553 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2554 something similar for SIGSEGV, since a SIGSEGV will be generated
2555 when we're trying to execute a breakpoint instruction on a
2556 non-executable stack. This happens for call dummy breakpoints
2557 for architectures like SPARC that place call dummies on the
2558 stack.
2559
2560 If we're doing a displaced step past a breakpoint, then the
2561 breakpoint is always inserted at the original instruction;
2562 non-standard signals can't be explained by the breakpoint. */
2563 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2564 || (! ecs->event_thread->trap_expected
2565 && breakpoint_inserted_here_p (stop_pc)
2566 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2567 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2568 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2569 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2570 || stop_soon == STOP_QUIETLY_REMOTE)
2571 {
2572 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2573 {
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2576 stop_print_frame = 0;
2577 stop_stepping (ecs);
2578 return;
2579 }
2580
2581 /* This is originated from start_remote(), start_inferior() and
2582 shared libraries hook functions. */
2583 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2584 {
2585 if (debug_infrun)
2586 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2587 stop_stepping (ecs);
2588 return;
2589 }
2590
2591 /* This originates from attach_command(). We need to overwrite
2592 the stop_signal here, because some kernels don't ignore a
2593 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2594 See more comments in inferior.h. On the other hand, if we
2595 get a non-SIGSTOP, report it to the user - assume the backend
2596 will handle the SIGSTOP if it should show up later.
2597
2598 Also consider that the attach is complete when we see a
2599 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2600 target extended-remote report it instead of a SIGSTOP
2601 (e.g. gdbserver). We already rely on SIGTRAP being our
2602 signal, so this is no exception. */
2603 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2604 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2605 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP))
2606 {
2607 stop_stepping (ecs);
2608 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2609 return;
2610 }
2611
2612 /* See if there is a breakpoint at the current PC. */
2613 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2614
2615 /* Following in case break condition called a
2616 function. */
2617 stop_print_frame = 1;
2618
2619 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2620 at one stage in the past included checks for an inferior
2621 function call's call dummy's return breakpoint. The original
2622 comment, that went with the test, read:
2623
2624 ``End of a stack dummy. Some systems (e.g. Sony news) give
2625 another signal besides SIGTRAP, so check here as well as
2626 above.''
2627
2628 If someone ever tries to get get call dummys on a
2629 non-executable stack to work (where the target would stop
2630 with something like a SIGSEGV), then those tests might need
2631 to be re-instated. Given, however, that the tests were only
2632 enabled when momentary breakpoints were not being used, I
2633 suspect that it won't be the case.
2634
2635 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2636 be necessary for call dummies on a non-executable stack on
2637 SPARC. */
2638
2639 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2640 ecs->random_signal
2641 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2642 || ecs->event_thread->trap_expected
2643 || (ecs->event_thread->step_range_end
2644 && ecs->event_thread->step_resume_breakpoint == NULL));
2645 else
2646 {
2647 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2648 if (!ecs->random_signal)
2649 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2650 }
2651 }
2652
2653 /* When we reach this point, we've pretty much decided
2654 that the reason for stopping must've been a random
2655 (unexpected) signal. */
2656
2657 else
2658 ecs->random_signal = 1;
2659
2660 process_event_stop_test:
2661 /* For the program's own signals, act according to
2662 the signal handling tables. */
2663
2664 if (ecs->random_signal)
2665 {
2666 /* Signal not for debugging purposes. */
2667 int printed = 0;
2668
2669 if (debug_infrun)
2670 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2671 ecs->event_thread->stop_signal);
2672
2673 stopped_by_random_signal = 1;
2674
2675 if (signal_print[ecs->event_thread->stop_signal])
2676 {
2677 printed = 1;
2678 target_terminal_ours_for_output ();
2679 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
2680 }
2681 /* Always stop on signals if we're just gaining control of the
2682 program. */
2683 if (stop_soon != NO_STOP_QUIETLY
2684 || signal_stop_state (ecs->event_thread->stop_signal))
2685 {
2686 stop_stepping (ecs);
2687 return;
2688 }
2689 /* If not going to stop, give terminal back
2690 if we took it away. */
2691 else if (printed)
2692 target_terminal_inferior ();
2693
2694 /* Clear the signal if it should not be passed. */
2695 if (signal_program[ecs->event_thread->stop_signal] == 0)
2696 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2697
2698 if (ecs->event_thread->prev_pc == read_pc ()
2699 && ecs->event_thread->trap_expected
2700 && ecs->event_thread->step_resume_breakpoint == NULL)
2701 {
2702 /* We were just starting a new sequence, attempting to
2703 single-step off of a breakpoint and expecting a SIGTRAP.
2704 Instead this signal arrives. This signal will take us out
2705 of the stepping range so GDB needs to remember to, when
2706 the signal handler returns, resume stepping off that
2707 breakpoint. */
2708 /* To simplify things, "continue" is forced to use the same
2709 code paths as single-step - set a breakpoint at the
2710 signal return address and then, once hit, step off that
2711 breakpoint. */
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: signal arrived while stepping over "
2715 "breakpoint\n");
2716
2717 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2718 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2719 keep_going (ecs);
2720 return;
2721 }
2722
2723 if (ecs->event_thread->step_range_end != 0
2724 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
2725 && (ecs->event_thread->step_range_start <= stop_pc
2726 && stop_pc < ecs->event_thread->step_range_end)
2727 && frame_id_eq (get_frame_id (get_current_frame ()),
2728 ecs->event_thread->step_frame_id)
2729 && ecs->event_thread->step_resume_breakpoint == NULL)
2730 {
2731 /* The inferior is about to take a signal that will take it
2732 out of the single step range. Set a breakpoint at the
2733 current PC (which is presumably where the signal handler
2734 will eventually return) and then allow the inferior to
2735 run free.
2736
2737 Note that this is only needed for a signal delivered
2738 while in the single-step range. Nested signals aren't a
2739 problem as they eventually all return. */
2740 if (debug_infrun)
2741 fprintf_unfiltered (gdb_stdlog,
2742 "infrun: signal may take us out of "
2743 "single-step range\n");
2744
2745 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2746 keep_going (ecs);
2747 return;
2748 }
2749
2750 /* Note: step_resume_breakpoint may be non-NULL. This occures
2751 when either there's a nested signal, or when there's a
2752 pending signal enabled just as the signal handler returns
2753 (leaving the inferior at the step-resume-breakpoint without
2754 actually executing it). Either way continue until the
2755 breakpoint is really hit. */
2756 keep_going (ecs);
2757 return;
2758 }
2759
2760 /* Handle cases caused by hitting a breakpoint. */
2761 {
2762 CORE_ADDR jmp_buf_pc;
2763 struct bpstat_what what;
2764
2765 what = bpstat_what (ecs->event_thread->stop_bpstat);
2766
2767 if (what.call_dummy)
2768 {
2769 stop_stack_dummy = 1;
2770 }
2771
2772 switch (what.main_action)
2773 {
2774 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2775 /* If we hit the breakpoint at longjmp while stepping, we
2776 install a momentary breakpoint at the target of the
2777 jmp_buf. */
2778
2779 if (debug_infrun)
2780 fprintf_unfiltered (gdb_stdlog,
2781 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2782
2783 ecs->event_thread->stepping_over_breakpoint = 1;
2784
2785 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2786 || !gdbarch_get_longjmp_target (current_gdbarch,
2787 get_current_frame (), &jmp_buf_pc))
2788 {
2789 if (debug_infrun)
2790 fprintf_unfiltered (gdb_stdlog, "\
2791 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2792 keep_going (ecs);
2793 return;
2794 }
2795
2796 /* We're going to replace the current step-resume breakpoint
2797 with a longjmp-resume breakpoint. */
2798 delete_step_resume_breakpoint (ecs->event_thread);
2799
2800 /* Insert a breakpoint at resume address. */
2801 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2802
2803 keep_going (ecs);
2804 return;
2805
2806 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2807 if (debug_infrun)
2808 fprintf_unfiltered (gdb_stdlog,
2809 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2810
2811 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
2812 delete_step_resume_breakpoint (ecs->event_thread);
2813
2814 ecs->event_thread->stop_step = 1;
2815 print_stop_reason (END_STEPPING_RANGE, 0);
2816 stop_stepping (ecs);
2817 return;
2818
2819 case BPSTAT_WHAT_SINGLE:
2820 if (debug_infrun)
2821 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2822 ecs->event_thread->stepping_over_breakpoint = 1;
2823 /* Still need to check other stuff, at least the case
2824 where we are stepping and step out of the right range. */
2825 break;
2826
2827 case BPSTAT_WHAT_STOP_NOISY:
2828 if (debug_infrun)
2829 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2830 stop_print_frame = 1;
2831
2832 /* We are about to nuke the step_resume_breakpointt via the
2833 cleanup chain, so no need to worry about it here. */
2834
2835 stop_stepping (ecs);
2836 return;
2837
2838 case BPSTAT_WHAT_STOP_SILENT:
2839 if (debug_infrun)
2840 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2841 stop_print_frame = 0;
2842
2843 /* We are about to nuke the step_resume_breakpoin via the
2844 cleanup chain, so no need to worry about it here. */
2845
2846 stop_stepping (ecs);
2847 return;
2848
2849 case BPSTAT_WHAT_STEP_RESUME:
2850 if (debug_infrun)
2851 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2852
2853 delete_step_resume_breakpoint (ecs->event_thread);
2854 if (ecs->event_thread->step_after_step_resume_breakpoint)
2855 {
2856 /* Back when the step-resume breakpoint was inserted, we
2857 were trying to single-step off a breakpoint. Go back
2858 to doing that. */
2859 ecs->event_thread->step_after_step_resume_breakpoint = 0;
2860 ecs->event_thread->stepping_over_breakpoint = 1;
2861 keep_going (ecs);
2862 return;
2863 }
2864 break;
2865
2866 case BPSTAT_WHAT_CHECK_SHLIBS:
2867 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2868 {
2869 if (debug_infrun)
2870 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2871
2872 /* Check for any newly added shared libraries if we're
2873 supposed to be adding them automatically. Switch
2874 terminal for any messages produced by
2875 breakpoint_re_set. */
2876 target_terminal_ours_for_output ();
2877 /* NOTE: cagney/2003-11-25: Make certain that the target
2878 stack's section table is kept up-to-date. Architectures,
2879 (e.g., PPC64), use the section table to perform
2880 operations such as address => section name and hence
2881 require the table to contain all sections (including
2882 those found in shared libraries). */
2883 /* NOTE: cagney/2003-11-25: Pass current_target and not
2884 exec_ops to SOLIB_ADD. This is because current GDB is
2885 only tooled to propagate section_table changes out from
2886 the "current_target" (see target_resize_to_sections), and
2887 not up from the exec stratum. This, of course, isn't
2888 right. "infrun.c" should only interact with the
2889 exec/process stratum, instead relying on the target stack
2890 to propagate relevant changes (stop, section table
2891 changed, ...) up to other layers. */
2892 #ifdef SOLIB_ADD
2893 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2894 #else
2895 solib_add (NULL, 0, &current_target, auto_solib_add);
2896 #endif
2897 target_terminal_inferior ();
2898
2899 /* If requested, stop when the dynamic linker notifies
2900 gdb of events. This allows the user to get control
2901 and place breakpoints in initializer routines for
2902 dynamically loaded objects (among other things). */
2903 if (stop_on_solib_events || stop_stack_dummy)
2904 {
2905 stop_stepping (ecs);
2906 return;
2907 }
2908
2909 /* If we stopped due to an explicit catchpoint, then the
2910 (see above) call to SOLIB_ADD pulled in any symbols
2911 from a newly-loaded library, if appropriate.
2912
2913 We do want the inferior to stop, but not where it is
2914 now, which is in the dynamic linker callback. Rather,
2915 we would like it stop in the user's program, just after
2916 the call that caused this catchpoint to trigger. That
2917 gives the user a more useful vantage from which to
2918 examine their program's state. */
2919 else if (what.main_action
2920 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2921 {
2922 /* ??rehrauer: If I could figure out how to get the
2923 right return PC from here, we could just set a temp
2924 breakpoint and resume. I'm not sure we can without
2925 cracking open the dld's shared libraries and sniffing
2926 their unwind tables and text/data ranges, and that's
2927 not a terribly portable notion.
2928
2929 Until that time, we must step the inferior out of the
2930 dld callback, and also out of the dld itself (and any
2931 code or stubs in libdld.sl, such as "shl_load" and
2932 friends) until we reach non-dld code. At that point,
2933 we can stop stepping. */
2934 bpstat_get_triggered_catchpoints (ecs->event_thread->stop_bpstat,
2935 &ecs->
2936 event_thread->
2937 stepping_through_solib_catchpoints);
2938 ecs->event_thread->stepping_through_solib_after_catch = 1;
2939
2940 /* Be sure to lift all breakpoints, so the inferior does
2941 actually step past this point... */
2942 ecs->event_thread->stepping_over_breakpoint = 1;
2943 break;
2944 }
2945 else
2946 {
2947 /* We want to step over this breakpoint, then keep going. */
2948 ecs->event_thread->stepping_over_breakpoint = 1;
2949 break;
2950 }
2951 }
2952 break;
2953
2954 case BPSTAT_WHAT_LAST:
2955 /* Not a real code, but listed here to shut up gcc -Wall. */
2956
2957 case BPSTAT_WHAT_KEEP_CHECKING:
2958 break;
2959 }
2960 }
2961
2962 /* We come here if we hit a breakpoint but should not
2963 stop for it. Possibly we also were stepping
2964 and should stop for that. So fall through and
2965 test for stepping. But, if not stepping,
2966 do not stop. */
2967
2968 /* Are we stepping to get the inferior out of the dynamic linker's
2969 hook (and possibly the dld itself) after catching a shlib
2970 event? */
2971 if (ecs->event_thread->stepping_through_solib_after_catch)
2972 {
2973 #if defined(SOLIB_ADD)
2974 /* Have we reached our destination? If not, keep going. */
2975 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2976 {
2977 if (debug_infrun)
2978 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2979 ecs->event_thread->stepping_over_breakpoint = 1;
2980 keep_going (ecs);
2981 return;
2982 }
2983 #endif
2984 if (debug_infrun)
2985 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2986 /* Else, stop and report the catchpoint(s) whose triggering
2987 caused us to begin stepping. */
2988 ecs->event_thread->stepping_through_solib_after_catch = 0;
2989 bpstat_clear (&ecs->event_thread->stop_bpstat);
2990 ecs->event_thread->stop_bpstat
2991 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
2992 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
2993 stop_print_frame = 1;
2994 stop_stepping (ecs);
2995 return;
2996 }
2997
2998 if (ecs->event_thread->step_resume_breakpoint)
2999 {
3000 if (debug_infrun)
3001 fprintf_unfiltered (gdb_stdlog,
3002 "infrun: step-resume breakpoint is inserted\n");
3003
3004 /* Having a step-resume breakpoint overrides anything
3005 else having to do with stepping commands until
3006 that breakpoint is reached. */
3007 keep_going (ecs);
3008 return;
3009 }
3010
3011 if (ecs->event_thread->step_range_end == 0)
3012 {
3013 if (debug_infrun)
3014 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3015 /* Likewise if we aren't even stepping. */
3016 keep_going (ecs);
3017 return;
3018 }
3019
3020 /* If stepping through a line, keep going if still within it.
3021
3022 Note that step_range_end is the address of the first instruction
3023 beyond the step range, and NOT the address of the last instruction
3024 within it! */
3025 if (stop_pc >= ecs->event_thread->step_range_start
3026 && stop_pc < ecs->event_thread->step_range_end)
3027 {
3028 if (debug_infrun)
3029 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3030 paddr_nz (ecs->event_thread->step_range_start),
3031 paddr_nz (ecs->event_thread->step_range_end));
3032 keep_going (ecs);
3033 return;
3034 }
3035
3036 /* We stepped out of the stepping range. */
3037
3038 /* If we are stepping at the source level and entered the runtime
3039 loader dynamic symbol resolution code, we keep on single stepping
3040 until we exit the run time loader code and reach the callee's
3041 address. */
3042 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3043 && in_solib_dynsym_resolve_code (stop_pc))
3044 {
3045 CORE_ADDR pc_after_resolver =
3046 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3047
3048 if (debug_infrun)
3049 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3050
3051 if (pc_after_resolver)
3052 {
3053 /* Set up a step-resume breakpoint at the address
3054 indicated by SKIP_SOLIB_RESOLVER. */
3055 struct symtab_and_line sr_sal;
3056 init_sal (&sr_sal);
3057 sr_sal.pc = pc_after_resolver;
3058
3059 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3060 }
3061
3062 keep_going (ecs);
3063 return;
3064 }
3065
3066 if (ecs->event_thread->step_range_end != 1
3067 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3068 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3069 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3070 {
3071 if (debug_infrun)
3072 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3073 /* The inferior, while doing a "step" or "next", has ended up in
3074 a signal trampoline (either by a signal being delivered or by
3075 the signal handler returning). Just single-step until the
3076 inferior leaves the trampoline (either by calling the handler
3077 or returning). */
3078 keep_going (ecs);
3079 return;
3080 }
3081
3082 /* Check for subroutine calls. The check for the current frame
3083 equalling the step ID is not necessary - the check of the
3084 previous frame's ID is sufficient - but it is a common case and
3085 cheaper than checking the previous frame's ID.
3086
3087 NOTE: frame_id_eq will never report two invalid frame IDs as
3088 being equal, so to get into this block, both the current and
3089 previous frame must have valid frame IDs. */
3090 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3091 ecs->event_thread->step_frame_id)
3092 && frame_id_eq (frame_unwind_id (get_current_frame ()),
3093 ecs->event_thread->step_frame_id))
3094 {
3095 CORE_ADDR real_stop_pc;
3096
3097 if (debug_infrun)
3098 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3099
3100 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3101 || ((ecs->event_thread->step_range_end == 1)
3102 && in_prologue (ecs->event_thread->prev_pc,
3103 ecs->stop_func_start)))
3104 {
3105 /* I presume that step_over_calls is only 0 when we're
3106 supposed to be stepping at the assembly language level
3107 ("stepi"). Just stop. */
3108 /* Also, maybe we just did a "nexti" inside a prolog, so we
3109 thought it was a subroutine call but it was not. Stop as
3110 well. FENN */
3111 ecs->event_thread->stop_step = 1;
3112 print_stop_reason (END_STEPPING_RANGE, 0);
3113 stop_stepping (ecs);
3114 return;
3115 }
3116
3117 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3118 {
3119 /* We're doing a "next", set a breakpoint at callee's return
3120 address (the address at which the caller will
3121 resume). */
3122 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3123 keep_going (ecs);
3124 return;
3125 }
3126
3127 /* If we are in a function call trampoline (a stub between the
3128 calling routine and the real function), locate the real
3129 function. That's what tells us (a) whether we want to step
3130 into it at all, and (b) what prologue we want to run to the
3131 end of, if we do step into it. */
3132 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3133 if (real_stop_pc == 0)
3134 real_stop_pc = gdbarch_skip_trampoline_code
3135 (current_gdbarch, get_current_frame (), stop_pc);
3136 if (real_stop_pc != 0)
3137 ecs->stop_func_start = real_stop_pc;
3138
3139 if (in_solib_dynsym_resolve_code (ecs->stop_func_start))
3140 {
3141 struct symtab_and_line sr_sal;
3142 init_sal (&sr_sal);
3143 sr_sal.pc = ecs->stop_func_start;
3144
3145 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3146 keep_going (ecs);
3147 return;
3148 }
3149
3150 /* If we have line number information for the function we are
3151 thinking of stepping into, step into it.
3152
3153 If there are several symtabs at that PC (e.g. with include
3154 files), just want to know whether *any* of them have line
3155 numbers. find_pc_line handles this. */
3156 {
3157 struct symtab_and_line tmp_sal;
3158
3159 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3160 if (tmp_sal.line != 0)
3161 {
3162 step_into_function (ecs);
3163 return;
3164 }
3165 }
3166
3167 /* If we have no line number and the step-stop-if-no-debug is
3168 set, we stop the step so that the user has a chance to switch
3169 in assembly mode. */
3170 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3171 && step_stop_if_no_debug)
3172 {
3173 ecs->event_thread->stop_step = 1;
3174 print_stop_reason (END_STEPPING_RANGE, 0);
3175 stop_stepping (ecs);
3176 return;
3177 }
3178
3179 /* Set a breakpoint at callee's return address (the address at
3180 which the caller will resume). */
3181 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3182 keep_going (ecs);
3183 return;
3184 }
3185
3186 /* If we're in the return path from a shared library trampoline,
3187 we want to proceed through the trampoline when stepping. */
3188 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3189 stop_pc, ecs->stop_func_name))
3190 {
3191 /* Determine where this trampoline returns. */
3192 CORE_ADDR real_stop_pc;
3193 real_stop_pc = gdbarch_skip_trampoline_code
3194 (current_gdbarch, get_current_frame (), stop_pc);
3195
3196 if (debug_infrun)
3197 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3198
3199 /* Only proceed through if we know where it's going. */
3200 if (real_stop_pc)
3201 {
3202 /* And put the step-breakpoint there and go until there. */
3203 struct symtab_and_line sr_sal;
3204
3205 init_sal (&sr_sal); /* initialize to zeroes */
3206 sr_sal.pc = real_stop_pc;
3207 sr_sal.section = find_pc_overlay (sr_sal.pc);
3208
3209 /* Do not specify what the fp should be when we stop since
3210 on some machines the prologue is where the new fp value
3211 is established. */
3212 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3213
3214 /* Restart without fiddling with the step ranges or
3215 other state. */
3216 keep_going (ecs);
3217 return;
3218 }
3219 }
3220
3221 stop_pc_sal = find_pc_line (stop_pc, 0);
3222
3223 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3224 the trampoline processing logic, however, there are some trampolines
3225 that have no names, so we should do trampoline handling first. */
3226 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3227 && ecs->stop_func_name == NULL
3228 && stop_pc_sal.line == 0)
3229 {
3230 if (debug_infrun)
3231 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3232
3233 /* The inferior just stepped into, or returned to, an
3234 undebuggable function (where there is no debugging information
3235 and no line number corresponding to the address where the
3236 inferior stopped). Since we want to skip this kind of code,
3237 we keep going until the inferior returns from this
3238 function - unless the user has asked us not to (via
3239 set step-mode) or we no longer know how to get back
3240 to the call site. */
3241 if (step_stop_if_no_debug
3242 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3243 {
3244 /* If we have no line number and the step-stop-if-no-debug
3245 is set, we stop the step so that the user has a chance to
3246 switch in assembly mode. */
3247 ecs->event_thread->stop_step = 1;
3248 print_stop_reason (END_STEPPING_RANGE, 0);
3249 stop_stepping (ecs);
3250 return;
3251 }
3252 else
3253 {
3254 /* Set a breakpoint at callee's return address (the address
3255 at which the caller will resume). */
3256 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3257 keep_going (ecs);
3258 return;
3259 }
3260 }
3261
3262 if (ecs->event_thread->step_range_end == 1)
3263 {
3264 /* It is stepi or nexti. We always want to stop stepping after
3265 one instruction. */
3266 if (debug_infrun)
3267 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3268 ecs->event_thread->stop_step = 1;
3269 print_stop_reason (END_STEPPING_RANGE, 0);
3270 stop_stepping (ecs);
3271 return;
3272 }
3273
3274 if (stop_pc_sal.line == 0)
3275 {
3276 /* We have no line number information. That means to stop
3277 stepping (does this always happen right after one instruction,
3278 when we do "s" in a function with no line numbers,
3279 or can this happen as a result of a return or longjmp?). */
3280 if (debug_infrun)
3281 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3282 ecs->event_thread->stop_step = 1;
3283 print_stop_reason (END_STEPPING_RANGE, 0);
3284 stop_stepping (ecs);
3285 return;
3286 }
3287
3288 if ((stop_pc == stop_pc_sal.pc)
3289 && (ecs->event_thread->current_line != stop_pc_sal.line
3290 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3291 {
3292 /* We are at the start of a different line. So stop. Note that
3293 we don't stop if we step into the middle of a different line.
3294 That is said to make things like for (;;) statements work
3295 better. */
3296 if (debug_infrun)
3297 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3298 ecs->event_thread->stop_step = 1;
3299 print_stop_reason (END_STEPPING_RANGE, 0);
3300 stop_stepping (ecs);
3301 return;
3302 }
3303
3304 /* We aren't done stepping.
3305
3306 Optimize by setting the stepping range to the line.
3307 (We might not be in the original line, but if we entered a
3308 new line in mid-statement, we continue stepping. This makes
3309 things like for(;;) statements work better.) */
3310
3311 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3312 ecs->event_thread->step_range_end = stop_pc_sal.end;
3313 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3314 ecs->event_thread->current_line = stop_pc_sal.line;
3315 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3316
3317 if (debug_infrun)
3318 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3319 keep_going (ecs);
3320 }
3321
3322 /* Are we in the middle of stepping? */
3323
3324 static int
3325 currently_stepping (struct thread_info *tp)
3326 {
3327 return (((tp->step_range_end && tp->step_resume_breakpoint == NULL)
3328 || tp->trap_expected)
3329 || tp->stepping_through_solib_after_catch
3330 || bpstat_should_step ());
3331 }
3332
3333 /* Subroutine call with source code we should not step over. Do step
3334 to the first line of code in it. */
3335
3336 static void
3337 step_into_function (struct execution_control_state *ecs)
3338 {
3339 struct symtab *s;
3340 struct symtab_and_line stop_func_sal, sr_sal;
3341
3342 s = find_pc_symtab (stop_pc);
3343 if (s && s->language != language_asm)
3344 ecs->stop_func_start = gdbarch_skip_prologue
3345 (current_gdbarch, ecs->stop_func_start);
3346
3347 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3348 /* Use the step_resume_break to step until the end of the prologue,
3349 even if that involves jumps (as it seems to on the vax under
3350 4.2). */
3351 /* If the prologue ends in the middle of a source line, continue to
3352 the end of that source line (if it is still within the function).
3353 Otherwise, just go to end of prologue. */
3354 if (stop_func_sal.end
3355 && stop_func_sal.pc != ecs->stop_func_start
3356 && stop_func_sal.end < ecs->stop_func_end)
3357 ecs->stop_func_start = stop_func_sal.end;
3358
3359 /* Architectures which require breakpoint adjustment might not be able
3360 to place a breakpoint at the computed address. If so, the test
3361 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3362 ecs->stop_func_start to an address at which a breakpoint may be
3363 legitimately placed.
3364
3365 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3366 made, GDB will enter an infinite loop when stepping through
3367 optimized code consisting of VLIW instructions which contain
3368 subinstructions corresponding to different source lines. On
3369 FR-V, it's not permitted to place a breakpoint on any but the
3370 first subinstruction of a VLIW instruction. When a breakpoint is
3371 set, GDB will adjust the breakpoint address to the beginning of
3372 the VLIW instruction. Thus, we need to make the corresponding
3373 adjustment here when computing the stop address. */
3374
3375 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3376 {
3377 ecs->stop_func_start
3378 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3379 ecs->stop_func_start);
3380 }
3381
3382 if (ecs->stop_func_start == stop_pc)
3383 {
3384 /* We are already there: stop now. */
3385 ecs->event_thread->stop_step = 1;
3386 print_stop_reason (END_STEPPING_RANGE, 0);
3387 stop_stepping (ecs);
3388 return;
3389 }
3390 else
3391 {
3392 /* Put the step-breakpoint there and go until there. */
3393 init_sal (&sr_sal); /* initialize to zeroes */
3394 sr_sal.pc = ecs->stop_func_start;
3395 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3396
3397 /* Do not specify what the fp should be when we stop since on
3398 some machines the prologue is where the new fp value is
3399 established. */
3400 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3401
3402 /* And make sure stepping stops right away then. */
3403 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3404 }
3405 keep_going (ecs);
3406 }
3407
3408 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3409 This is used to both functions and to skip over code. */
3410
3411 static void
3412 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3413 struct frame_id sr_id)
3414 {
3415 /* There should never be more than one step-resume or longjmp-resume
3416 breakpoint per thread, so we should never be setting a new
3417 step_resume_breakpoint when one is already active. */
3418 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3419
3420 if (debug_infrun)
3421 fprintf_unfiltered (gdb_stdlog,
3422 "infrun: inserting step-resume breakpoint at 0x%s\n",
3423 paddr_nz (sr_sal.pc));
3424
3425 inferior_thread ()->step_resume_breakpoint
3426 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3427 }
3428
3429 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3430 to skip a potential signal handler.
3431
3432 This is called with the interrupted function's frame. The signal
3433 handler, when it returns, will resume the interrupted function at
3434 RETURN_FRAME.pc. */
3435
3436 static void
3437 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3438 {
3439 struct symtab_and_line sr_sal;
3440
3441 gdb_assert (return_frame != NULL);
3442 init_sal (&sr_sal); /* initialize to zeros */
3443
3444 sr_sal.pc = gdbarch_addr_bits_remove
3445 (current_gdbarch, get_frame_pc (return_frame));
3446 sr_sal.section = find_pc_overlay (sr_sal.pc);
3447
3448 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3449 }
3450
3451 /* Similar to insert_step_resume_breakpoint_at_frame, except
3452 but a breakpoint at the previous frame's PC. This is used to
3453 skip a function after stepping into it (for "next" or if the called
3454 function has no debugging information).
3455
3456 The current function has almost always been reached by single
3457 stepping a call or return instruction. NEXT_FRAME belongs to the
3458 current function, and the breakpoint will be set at the caller's
3459 resume address.
3460
3461 This is a separate function rather than reusing
3462 insert_step_resume_breakpoint_at_frame in order to avoid
3463 get_prev_frame, which may stop prematurely (see the implementation
3464 of frame_unwind_id for an example). */
3465
3466 static void
3467 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3468 {
3469 struct symtab_and_line sr_sal;
3470
3471 /* We shouldn't have gotten here if we don't know where the call site
3472 is. */
3473 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3474
3475 init_sal (&sr_sal); /* initialize to zeros */
3476
3477 sr_sal.pc = gdbarch_addr_bits_remove
3478 (current_gdbarch, frame_pc_unwind (next_frame));
3479 sr_sal.section = find_pc_overlay (sr_sal.pc);
3480
3481 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3482 }
3483
3484 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3485 new breakpoint at the target of a jmp_buf. The handling of
3486 longjmp-resume uses the same mechanisms used for handling
3487 "step-resume" breakpoints. */
3488
3489 static void
3490 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3491 {
3492 /* There should never be more than one step-resume or longjmp-resume
3493 breakpoint per thread, so we should never be setting a new
3494 longjmp_resume_breakpoint when one is already active. */
3495 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3496
3497 if (debug_infrun)
3498 fprintf_unfiltered (gdb_stdlog,
3499 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3500 paddr_nz (pc));
3501
3502 inferior_thread ()->step_resume_breakpoint =
3503 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3504 }
3505
3506 static void
3507 stop_stepping (struct execution_control_state *ecs)
3508 {
3509 if (debug_infrun)
3510 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3511
3512 /* Let callers know we don't want to wait for the inferior anymore. */
3513 ecs->wait_some_more = 0;
3514 }
3515
3516 /* This function handles various cases where we need to continue
3517 waiting for the inferior. */
3518 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3519
3520 static void
3521 keep_going (struct execution_control_state *ecs)
3522 {
3523 /* Save the pc before execution, to compare with pc after stop. */
3524 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3525
3526 /* If we did not do break;, it means we should keep running the
3527 inferior and not return to debugger. */
3528
3529 if (ecs->event_thread->trap_expected
3530 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3531 {
3532 /* We took a signal (which we are supposed to pass through to
3533 the inferior, else we'd not get here) and we haven't yet
3534 gotten our trap. Simply continue. */
3535 resume (currently_stepping (ecs->event_thread),
3536 ecs->event_thread->stop_signal);
3537 }
3538 else
3539 {
3540 /* Either the trap was not expected, but we are continuing
3541 anyway (the user asked that this signal be passed to the
3542 child)
3543 -- or --
3544 The signal was SIGTRAP, e.g. it was our signal, but we
3545 decided we should resume from it.
3546
3547 We're going to run this baby now!
3548
3549 Note that insert_breakpoints won't try to re-insert
3550 already inserted breakpoints. Therefore, we don't
3551 care if breakpoints were already inserted, or not. */
3552
3553 if (ecs->event_thread->stepping_over_breakpoint)
3554 {
3555 if (! use_displaced_stepping (current_gdbarch))
3556 /* Since we can't do a displaced step, we have to remove
3557 the breakpoint while we step it. To keep things
3558 simple, we remove them all. */
3559 remove_breakpoints ();
3560 }
3561 else
3562 {
3563 struct gdb_exception e;
3564 /* Stop stepping when inserting breakpoints
3565 has failed. */
3566 TRY_CATCH (e, RETURN_MASK_ERROR)
3567 {
3568 insert_breakpoints ();
3569 }
3570 if (e.reason < 0)
3571 {
3572 stop_stepping (ecs);
3573 return;
3574 }
3575 }
3576
3577 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
3578
3579 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3580 specifies that such a signal should be delivered to the
3581 target program).
3582
3583 Typically, this would occure when a user is debugging a
3584 target monitor on a simulator: the target monitor sets a
3585 breakpoint; the simulator encounters this break-point and
3586 halts the simulation handing control to GDB; GDB, noteing
3587 that the break-point isn't valid, returns control back to the
3588 simulator; the simulator then delivers the hardware
3589 equivalent of a SIGNAL_TRAP to the program being debugged. */
3590
3591 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3592 && !signal_program[ecs->event_thread->stop_signal])
3593 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3594
3595 resume (currently_stepping (ecs->event_thread),
3596 ecs->event_thread->stop_signal);
3597 }
3598
3599 prepare_to_wait (ecs);
3600 }
3601
3602 /* This function normally comes after a resume, before
3603 handle_inferior_event exits. It takes care of any last bits of
3604 housekeeping, and sets the all-important wait_some_more flag. */
3605
3606 static void
3607 prepare_to_wait (struct execution_control_state *ecs)
3608 {
3609 if (debug_infrun)
3610 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3611 if (infwait_state == infwait_normal_state)
3612 {
3613 overlay_cache_invalid = 1;
3614
3615 /* We have to invalidate the registers BEFORE calling
3616 target_wait because they can be loaded from the target while
3617 in target_wait. This makes remote debugging a bit more
3618 efficient for those targets that provide critical registers
3619 as part of their normal status mechanism. */
3620
3621 registers_changed ();
3622 waiton_ptid = pid_to_ptid (-1);
3623 }
3624 /* This is the old end of the while loop. Let everybody know we
3625 want to wait for the inferior some more and get called again
3626 soon. */
3627 ecs->wait_some_more = 1;
3628 }
3629
3630 /* Print why the inferior has stopped. We always print something when
3631 the inferior exits, or receives a signal. The rest of the cases are
3632 dealt with later on in normal_stop() and print_it_typical(). Ideally
3633 there should be a call to this function from handle_inferior_event()
3634 each time stop_stepping() is called.*/
3635 static void
3636 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3637 {
3638 switch (stop_reason)
3639 {
3640 case END_STEPPING_RANGE:
3641 /* We are done with a step/next/si/ni command. */
3642 /* For now print nothing. */
3643 /* Print a message only if not in the middle of doing a "step n"
3644 operation for n > 1 */
3645 if (!inferior_thread ()->step_multi
3646 || !inferior_thread ()->stop_step)
3647 if (ui_out_is_mi_like_p (uiout))
3648 ui_out_field_string
3649 (uiout, "reason",
3650 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3651 break;
3652 case SIGNAL_EXITED:
3653 /* The inferior was terminated by a signal. */
3654 annotate_signalled ();
3655 if (ui_out_is_mi_like_p (uiout))
3656 ui_out_field_string
3657 (uiout, "reason",
3658 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3659 ui_out_text (uiout, "\nProgram terminated with signal ");
3660 annotate_signal_name ();
3661 ui_out_field_string (uiout, "signal-name",
3662 target_signal_to_name (stop_info));
3663 annotate_signal_name_end ();
3664 ui_out_text (uiout, ", ");
3665 annotate_signal_string ();
3666 ui_out_field_string (uiout, "signal-meaning",
3667 target_signal_to_string (stop_info));
3668 annotate_signal_string_end ();
3669 ui_out_text (uiout, ".\n");
3670 ui_out_text (uiout, "The program no longer exists.\n");
3671 break;
3672 case EXITED:
3673 /* The inferior program is finished. */
3674 annotate_exited (stop_info);
3675 if (stop_info)
3676 {
3677 if (ui_out_is_mi_like_p (uiout))
3678 ui_out_field_string (uiout, "reason",
3679 async_reason_lookup (EXEC_ASYNC_EXITED));
3680 ui_out_text (uiout, "\nProgram exited with code ");
3681 ui_out_field_fmt (uiout, "exit-code", "0%o",
3682 (unsigned int) stop_info);
3683 ui_out_text (uiout, ".\n");
3684 }
3685 else
3686 {
3687 if (ui_out_is_mi_like_p (uiout))
3688 ui_out_field_string
3689 (uiout, "reason",
3690 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3691 ui_out_text (uiout, "\nProgram exited normally.\n");
3692 }
3693 /* Support the --return-child-result option. */
3694 return_child_result_value = stop_info;
3695 break;
3696 case SIGNAL_RECEIVED:
3697 /* Signal received. The signal table tells us to print about
3698 it. */
3699 annotate_signal ();
3700 ui_out_text (uiout, "\nProgram received signal ");
3701 annotate_signal_name ();
3702 if (ui_out_is_mi_like_p (uiout))
3703 ui_out_field_string
3704 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3705 ui_out_field_string (uiout, "signal-name",
3706 target_signal_to_name (stop_info));
3707 annotate_signal_name_end ();
3708 ui_out_text (uiout, ", ");
3709 annotate_signal_string ();
3710 ui_out_field_string (uiout, "signal-meaning",
3711 target_signal_to_string (stop_info));
3712 annotate_signal_string_end ();
3713 ui_out_text (uiout, ".\n");
3714 break;
3715 default:
3716 internal_error (__FILE__, __LINE__,
3717 _("print_stop_reason: unrecognized enum value"));
3718 break;
3719 }
3720 }
3721 \f
3722
3723 /* Here to return control to GDB when the inferior stops for real.
3724 Print appropriate messages, remove breakpoints, give terminal our modes.
3725
3726 STOP_PRINT_FRAME nonzero means print the executing frame
3727 (pc, function, args, file, line number and line text).
3728 BREAKPOINTS_FAILED nonzero means stop was due to error
3729 attempting to insert breakpoints. */
3730
3731 void
3732 normal_stop (void)
3733 {
3734 struct target_waitstatus last;
3735 ptid_t last_ptid;
3736
3737 get_last_target_status (&last_ptid, &last);
3738
3739 /* In non-stop mode, we don't want GDB to switch threads behind the
3740 user's back, to avoid races where the user is typing a command to
3741 apply to thread x, but GDB switches to thread y before the user
3742 finishes entering the command. */
3743
3744 /* As with the notification of thread events, we want to delay
3745 notifying the user that we've switched thread context until
3746 the inferior actually stops.
3747
3748 There's no point in saying anything if the inferior has exited.
3749 Note that SIGNALLED here means "exited with a signal", not
3750 "received a signal". */
3751 if (!non_stop
3752 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
3753 && target_has_execution
3754 && last.kind != TARGET_WAITKIND_SIGNALLED
3755 && last.kind != TARGET_WAITKIND_EXITED)
3756 {
3757 target_terminal_ours_for_output ();
3758 printf_filtered (_("[Switching to %s]\n"),
3759 target_pid_to_str (inferior_ptid));
3760 annotate_thread_changed ();
3761 previous_inferior_ptid = inferior_ptid;
3762 }
3763
3764 /* NOTE drow/2004-01-17: Is this still necessary? */
3765 /* Make sure that the current_frame's pc is correct. This
3766 is a correction for setting up the frame info before doing
3767 gdbarch_decr_pc_after_break */
3768 if (target_has_execution)
3769 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3770 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3771 frame code to check for this and sort out any resultant mess.
3772 gdbarch_decr_pc_after_break needs to just go away. */
3773 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3774
3775 if (!breakpoints_always_inserted_mode () && target_has_execution)
3776 {
3777 if (remove_breakpoints ())
3778 {
3779 target_terminal_ours_for_output ();
3780 printf_filtered (_("\
3781 Cannot remove breakpoints because program is no longer writable.\n\
3782 It might be running in another process.\n\
3783 Further execution is probably impossible.\n"));
3784 }
3785 }
3786
3787 /* If an auto-display called a function and that got a signal,
3788 delete that auto-display to avoid an infinite recursion. */
3789
3790 if (stopped_by_random_signal)
3791 disable_current_display ();
3792
3793 /* Don't print a message if in the middle of doing a "step n"
3794 operation for n > 1 */
3795 if (target_has_execution
3796 && last.kind != TARGET_WAITKIND_SIGNALLED
3797 && last.kind != TARGET_WAITKIND_EXITED
3798 && inferior_thread ()->step_multi
3799 && inferior_thread ()->stop_step)
3800 goto done;
3801
3802 target_terminal_ours ();
3803
3804 /* Set the current source location. This will also happen if we
3805 display the frame below, but the current SAL will be incorrect
3806 during a user hook-stop function. */
3807 if (target_has_stack && !stop_stack_dummy)
3808 set_current_sal_from_frame (get_current_frame (), 1);
3809
3810 if (!target_has_stack)
3811 goto done;
3812
3813 if (last.kind == TARGET_WAITKIND_SIGNALLED
3814 || last.kind == TARGET_WAITKIND_EXITED)
3815 goto done;
3816
3817 /* Select innermost stack frame - i.e., current frame is frame 0,
3818 and current location is based on that.
3819 Don't do this on return from a stack dummy routine,
3820 or if the program has exited. */
3821
3822 if (!stop_stack_dummy)
3823 {
3824 select_frame (get_current_frame ());
3825
3826 /* Print current location without a level number, if
3827 we have changed functions or hit a breakpoint.
3828 Print source line if we have one.
3829 bpstat_print() contains the logic deciding in detail
3830 what to print, based on the event(s) that just occurred. */
3831
3832 /* If --batch-silent is enabled then there's no need to print the current
3833 source location, and to try risks causing an error message about
3834 missing source files. */
3835 if (stop_print_frame && !batch_silent)
3836 {
3837 int bpstat_ret;
3838 int source_flag;
3839 int do_frame_printing = 1;
3840 struct thread_info *tp = inferior_thread ();
3841
3842 bpstat_ret = bpstat_print (tp->stop_bpstat);
3843 switch (bpstat_ret)
3844 {
3845 case PRINT_UNKNOWN:
3846 /* If we had hit a shared library event breakpoint,
3847 bpstat_print would print out this message. If we hit
3848 an OS-level shared library event, do the same
3849 thing. */
3850 if (last.kind == TARGET_WAITKIND_LOADED)
3851 {
3852 printf_filtered (_("Stopped due to shared library event\n"));
3853 source_flag = SRC_LINE; /* something bogus */
3854 do_frame_printing = 0;
3855 break;
3856 }
3857
3858 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3859 (or should) carry around the function and does (or
3860 should) use that when doing a frame comparison. */
3861 if (tp->stop_step
3862 && frame_id_eq (tp->step_frame_id,
3863 get_frame_id (get_current_frame ()))
3864 && step_start_function == find_pc_function (stop_pc))
3865 source_flag = SRC_LINE; /* finished step, just print source line */
3866 else
3867 source_flag = SRC_AND_LOC; /* print location and source line */
3868 break;
3869 case PRINT_SRC_AND_LOC:
3870 source_flag = SRC_AND_LOC; /* print location and source line */
3871 break;
3872 case PRINT_SRC_ONLY:
3873 source_flag = SRC_LINE;
3874 break;
3875 case PRINT_NOTHING:
3876 source_flag = SRC_LINE; /* something bogus */
3877 do_frame_printing = 0;
3878 break;
3879 default:
3880 internal_error (__FILE__, __LINE__, _("Unknown value."));
3881 }
3882
3883 if (ui_out_is_mi_like_p (uiout))
3884 {
3885
3886 ui_out_field_int (uiout, "thread-id",
3887 pid_to_thread_id (inferior_ptid));
3888 if (non_stop)
3889 {
3890 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
3891 (uiout, "stopped-threads");
3892 ui_out_field_int (uiout, NULL,
3893 pid_to_thread_id (inferior_ptid));
3894 do_cleanups (back_to);
3895 }
3896 else
3897 ui_out_field_string (uiout, "stopped-threads", "all");
3898 }
3899 /* The behavior of this routine with respect to the source
3900 flag is:
3901 SRC_LINE: Print only source line
3902 LOCATION: Print only location
3903 SRC_AND_LOC: Print location and source line */
3904 if (do_frame_printing)
3905 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3906
3907 /* Display the auto-display expressions. */
3908 do_displays ();
3909 }
3910 }
3911
3912 /* Save the function value return registers, if we care.
3913 We might be about to restore their previous contents. */
3914 if (inferior_thread ()->proceed_to_finish)
3915 {
3916 /* This should not be necessary. */
3917 if (stop_registers)
3918 regcache_xfree (stop_registers);
3919
3920 /* NB: The copy goes through to the target picking up the value of
3921 all the registers. */
3922 stop_registers = regcache_dup (get_current_regcache ());
3923 }
3924
3925 if (stop_stack_dummy)
3926 {
3927 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3928 ends with a setting of the current frame, so we can use that
3929 next. */
3930 frame_pop (get_current_frame ());
3931 /* Set stop_pc to what it was before we called the function.
3932 Can't rely on restore_inferior_status because that only gets
3933 called if we don't stop in the called function. */
3934 stop_pc = read_pc ();
3935 select_frame (get_current_frame ());
3936 }
3937
3938 done:
3939 annotate_stopped ();
3940 if (!suppress_stop_observer
3941 && !(target_has_execution
3942 && last.kind != TARGET_WAITKIND_SIGNALLED
3943 && last.kind != TARGET_WAITKIND_EXITED
3944 && inferior_thread ()->step_multi))
3945 {
3946 if (!ptid_equal (inferior_ptid, null_ptid))
3947 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
3948 else
3949 observer_notify_normal_stop (NULL);
3950 }
3951 if (target_has_execution
3952 && last.kind != TARGET_WAITKIND_SIGNALLED
3953 && last.kind != TARGET_WAITKIND_EXITED)
3954 {
3955 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3956 Delete any breakpoint that is to be deleted at the next stop. */
3957 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
3958
3959 if (!non_stop)
3960 set_running (pid_to_ptid (-1), 0);
3961 else
3962 set_running (inferior_ptid, 0);
3963 }
3964
3965 /* Look up the hook_stop and run it (CLI internally handles problem
3966 of stop_command's pre-hook not existing). */
3967 if (stop_command)
3968 catch_errors (hook_stop_stub, stop_command,
3969 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3970
3971 }
3972
3973 static int
3974 hook_stop_stub (void *cmd)
3975 {
3976 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3977 return (0);
3978 }
3979 \f
3980 int
3981 signal_stop_state (int signo)
3982 {
3983 return signal_stop[signo];
3984 }
3985
3986 int
3987 signal_print_state (int signo)
3988 {
3989 return signal_print[signo];
3990 }
3991
3992 int
3993 signal_pass_state (int signo)
3994 {
3995 return signal_program[signo];
3996 }
3997
3998 int
3999 signal_stop_update (int signo, int state)
4000 {
4001 int ret = signal_stop[signo];
4002 signal_stop[signo] = state;
4003 return ret;
4004 }
4005
4006 int
4007 signal_print_update (int signo, int state)
4008 {
4009 int ret = signal_print[signo];
4010 signal_print[signo] = state;
4011 return ret;
4012 }
4013
4014 int
4015 signal_pass_update (int signo, int state)
4016 {
4017 int ret = signal_program[signo];
4018 signal_program[signo] = state;
4019 return ret;
4020 }
4021
4022 static void
4023 sig_print_header (void)
4024 {
4025 printf_filtered (_("\
4026 Signal Stop\tPrint\tPass to program\tDescription\n"));
4027 }
4028
4029 static void
4030 sig_print_info (enum target_signal oursig)
4031 {
4032 char *name = target_signal_to_name (oursig);
4033 int name_padding = 13 - strlen (name);
4034
4035 if (name_padding <= 0)
4036 name_padding = 0;
4037
4038 printf_filtered ("%s", name);
4039 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4040 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4041 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4042 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4043 printf_filtered ("%s\n", target_signal_to_string (oursig));
4044 }
4045
4046 /* Specify how various signals in the inferior should be handled. */
4047
4048 static void
4049 handle_command (char *args, int from_tty)
4050 {
4051 char **argv;
4052 int digits, wordlen;
4053 int sigfirst, signum, siglast;
4054 enum target_signal oursig;
4055 int allsigs;
4056 int nsigs;
4057 unsigned char *sigs;
4058 struct cleanup *old_chain;
4059
4060 if (args == NULL)
4061 {
4062 error_no_arg (_("signal to handle"));
4063 }
4064
4065 /* Allocate and zero an array of flags for which signals to handle. */
4066
4067 nsigs = (int) TARGET_SIGNAL_LAST;
4068 sigs = (unsigned char *) alloca (nsigs);
4069 memset (sigs, 0, nsigs);
4070
4071 /* Break the command line up into args. */
4072
4073 argv = buildargv (args);
4074 if (argv == NULL)
4075 {
4076 nomem (0);
4077 }
4078 old_chain = make_cleanup_freeargv (argv);
4079
4080 /* Walk through the args, looking for signal oursigs, signal names, and
4081 actions. Signal numbers and signal names may be interspersed with
4082 actions, with the actions being performed for all signals cumulatively
4083 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4084
4085 while (*argv != NULL)
4086 {
4087 wordlen = strlen (*argv);
4088 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4089 {;
4090 }
4091 allsigs = 0;
4092 sigfirst = siglast = -1;
4093
4094 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4095 {
4096 /* Apply action to all signals except those used by the
4097 debugger. Silently skip those. */
4098 allsigs = 1;
4099 sigfirst = 0;
4100 siglast = nsigs - 1;
4101 }
4102 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4103 {
4104 SET_SIGS (nsigs, sigs, signal_stop);
4105 SET_SIGS (nsigs, sigs, signal_print);
4106 }
4107 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4108 {
4109 UNSET_SIGS (nsigs, sigs, signal_program);
4110 }
4111 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4112 {
4113 SET_SIGS (nsigs, sigs, signal_print);
4114 }
4115 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4116 {
4117 SET_SIGS (nsigs, sigs, signal_program);
4118 }
4119 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4120 {
4121 UNSET_SIGS (nsigs, sigs, signal_stop);
4122 }
4123 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4124 {
4125 SET_SIGS (nsigs, sigs, signal_program);
4126 }
4127 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4128 {
4129 UNSET_SIGS (nsigs, sigs, signal_print);
4130 UNSET_SIGS (nsigs, sigs, signal_stop);
4131 }
4132 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4133 {
4134 UNSET_SIGS (nsigs, sigs, signal_program);
4135 }
4136 else if (digits > 0)
4137 {
4138 /* It is numeric. The numeric signal refers to our own
4139 internal signal numbering from target.h, not to host/target
4140 signal number. This is a feature; users really should be
4141 using symbolic names anyway, and the common ones like
4142 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4143
4144 sigfirst = siglast = (int)
4145 target_signal_from_command (atoi (*argv));
4146 if ((*argv)[digits] == '-')
4147 {
4148 siglast = (int)
4149 target_signal_from_command (atoi ((*argv) + digits + 1));
4150 }
4151 if (sigfirst > siglast)
4152 {
4153 /* Bet he didn't figure we'd think of this case... */
4154 signum = sigfirst;
4155 sigfirst = siglast;
4156 siglast = signum;
4157 }
4158 }
4159 else
4160 {
4161 oursig = target_signal_from_name (*argv);
4162 if (oursig != TARGET_SIGNAL_UNKNOWN)
4163 {
4164 sigfirst = siglast = (int) oursig;
4165 }
4166 else
4167 {
4168 /* Not a number and not a recognized flag word => complain. */
4169 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4170 }
4171 }
4172
4173 /* If any signal numbers or symbol names were found, set flags for
4174 which signals to apply actions to. */
4175
4176 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4177 {
4178 switch ((enum target_signal) signum)
4179 {
4180 case TARGET_SIGNAL_TRAP:
4181 case TARGET_SIGNAL_INT:
4182 if (!allsigs && !sigs[signum])
4183 {
4184 if (query ("%s is used by the debugger.\n\
4185 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4186 {
4187 sigs[signum] = 1;
4188 }
4189 else
4190 {
4191 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4192 gdb_flush (gdb_stdout);
4193 }
4194 }
4195 break;
4196 case TARGET_SIGNAL_0:
4197 case TARGET_SIGNAL_DEFAULT:
4198 case TARGET_SIGNAL_UNKNOWN:
4199 /* Make sure that "all" doesn't print these. */
4200 break;
4201 default:
4202 sigs[signum] = 1;
4203 break;
4204 }
4205 }
4206
4207 argv++;
4208 }
4209
4210 target_notice_signals (inferior_ptid);
4211
4212 if (from_tty)
4213 {
4214 /* Show the results. */
4215 sig_print_header ();
4216 for (signum = 0; signum < nsigs; signum++)
4217 {
4218 if (sigs[signum])
4219 {
4220 sig_print_info (signum);
4221 }
4222 }
4223 }
4224
4225 do_cleanups (old_chain);
4226 }
4227
4228 static void
4229 xdb_handle_command (char *args, int from_tty)
4230 {
4231 char **argv;
4232 struct cleanup *old_chain;
4233
4234 /* Break the command line up into args. */
4235
4236 argv = buildargv (args);
4237 if (argv == NULL)
4238 {
4239 nomem (0);
4240 }
4241 old_chain = make_cleanup_freeargv (argv);
4242 if (argv[1] != (char *) NULL)
4243 {
4244 char *argBuf;
4245 int bufLen;
4246
4247 bufLen = strlen (argv[0]) + 20;
4248 argBuf = (char *) xmalloc (bufLen);
4249 if (argBuf)
4250 {
4251 int validFlag = 1;
4252 enum target_signal oursig;
4253
4254 oursig = target_signal_from_name (argv[0]);
4255 memset (argBuf, 0, bufLen);
4256 if (strcmp (argv[1], "Q") == 0)
4257 sprintf (argBuf, "%s %s", argv[0], "noprint");
4258 else
4259 {
4260 if (strcmp (argv[1], "s") == 0)
4261 {
4262 if (!signal_stop[oursig])
4263 sprintf (argBuf, "%s %s", argv[0], "stop");
4264 else
4265 sprintf (argBuf, "%s %s", argv[0], "nostop");
4266 }
4267 else if (strcmp (argv[1], "i") == 0)
4268 {
4269 if (!signal_program[oursig])
4270 sprintf (argBuf, "%s %s", argv[0], "pass");
4271 else
4272 sprintf (argBuf, "%s %s", argv[0], "nopass");
4273 }
4274 else if (strcmp (argv[1], "r") == 0)
4275 {
4276 if (!signal_print[oursig])
4277 sprintf (argBuf, "%s %s", argv[0], "print");
4278 else
4279 sprintf (argBuf, "%s %s", argv[0], "noprint");
4280 }
4281 else
4282 validFlag = 0;
4283 }
4284 if (validFlag)
4285 handle_command (argBuf, from_tty);
4286 else
4287 printf_filtered (_("Invalid signal handling flag.\n"));
4288 if (argBuf)
4289 xfree (argBuf);
4290 }
4291 }
4292 do_cleanups (old_chain);
4293 }
4294
4295 /* Print current contents of the tables set by the handle command.
4296 It is possible we should just be printing signals actually used
4297 by the current target (but for things to work right when switching
4298 targets, all signals should be in the signal tables). */
4299
4300 static void
4301 signals_info (char *signum_exp, int from_tty)
4302 {
4303 enum target_signal oursig;
4304 sig_print_header ();
4305
4306 if (signum_exp)
4307 {
4308 /* First see if this is a symbol name. */
4309 oursig = target_signal_from_name (signum_exp);
4310 if (oursig == TARGET_SIGNAL_UNKNOWN)
4311 {
4312 /* No, try numeric. */
4313 oursig =
4314 target_signal_from_command (parse_and_eval_long (signum_exp));
4315 }
4316 sig_print_info (oursig);
4317 return;
4318 }
4319
4320 printf_filtered ("\n");
4321 /* These ugly casts brought to you by the native VAX compiler. */
4322 for (oursig = TARGET_SIGNAL_FIRST;
4323 (int) oursig < (int) TARGET_SIGNAL_LAST;
4324 oursig = (enum target_signal) ((int) oursig + 1))
4325 {
4326 QUIT;
4327
4328 if (oursig != TARGET_SIGNAL_UNKNOWN
4329 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4330 sig_print_info (oursig);
4331 }
4332
4333 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4334 }
4335 \f
4336 struct inferior_status
4337 {
4338 enum target_signal stop_signal;
4339 CORE_ADDR stop_pc;
4340 bpstat stop_bpstat;
4341 int stop_step;
4342 int stop_stack_dummy;
4343 int stopped_by_random_signal;
4344 int stepping_over_breakpoint;
4345 CORE_ADDR step_range_start;
4346 CORE_ADDR step_range_end;
4347 struct frame_id step_frame_id;
4348 enum step_over_calls_kind step_over_calls;
4349 CORE_ADDR step_resume_break_address;
4350 int stop_after_trap;
4351 int stop_soon;
4352
4353 /* These are here because if call_function_by_hand has written some
4354 registers and then decides to call error(), we better not have changed
4355 any registers. */
4356 struct regcache *registers;
4357
4358 /* A frame unique identifier. */
4359 struct frame_id selected_frame_id;
4360
4361 int breakpoint_proceeded;
4362 int restore_stack_info;
4363 int proceed_to_finish;
4364 };
4365
4366 void
4367 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4368 LONGEST val)
4369 {
4370 int size = register_size (current_gdbarch, regno);
4371 void *buf = alloca (size);
4372 store_signed_integer (buf, size, val);
4373 regcache_raw_write (inf_status->registers, regno, buf);
4374 }
4375
4376 /* Save all of the information associated with the inferior<==>gdb
4377 connection. INF_STATUS is a pointer to a "struct inferior_status"
4378 (defined in inferior.h). */
4379
4380 struct inferior_status *
4381 save_inferior_status (int restore_stack_info)
4382 {
4383 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4384 struct thread_info *tp = inferior_thread ();
4385 struct inferior *inf = current_inferior ();
4386
4387 inf_status->stop_signal = tp->stop_signal;
4388 inf_status->stop_pc = stop_pc;
4389 inf_status->stop_step = tp->stop_step;
4390 inf_status->stop_stack_dummy = stop_stack_dummy;
4391 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4392 inf_status->stepping_over_breakpoint = tp->trap_expected;
4393 inf_status->step_range_start = tp->step_range_start;
4394 inf_status->step_range_end = tp->step_range_end;
4395 inf_status->step_frame_id = tp->step_frame_id;
4396 inf_status->step_over_calls = tp->step_over_calls;
4397 inf_status->stop_after_trap = stop_after_trap;
4398 inf_status->stop_soon = inf->stop_soon;
4399 /* Save original bpstat chain here; replace it with copy of chain.
4400 If caller's caller is walking the chain, they'll be happier if we
4401 hand them back the original chain when restore_inferior_status is
4402 called. */
4403 inf_status->stop_bpstat = tp->stop_bpstat;
4404 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4405 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4406 inf_status->restore_stack_info = restore_stack_info;
4407 inf_status->proceed_to_finish = tp->proceed_to_finish;
4408
4409 inf_status->registers = regcache_dup (get_current_regcache ());
4410
4411 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4412 return inf_status;
4413 }
4414
4415 static int
4416 restore_selected_frame (void *args)
4417 {
4418 struct frame_id *fid = (struct frame_id *) args;
4419 struct frame_info *frame;
4420
4421 frame = frame_find_by_id (*fid);
4422
4423 /* If inf_status->selected_frame_id is NULL, there was no previously
4424 selected frame. */
4425 if (frame == NULL)
4426 {
4427 warning (_("Unable to restore previously selected frame."));
4428 return 0;
4429 }
4430
4431 select_frame (frame);
4432
4433 return (1);
4434 }
4435
4436 void
4437 restore_inferior_status (struct inferior_status *inf_status)
4438 {
4439 struct thread_info *tp = inferior_thread ();
4440 struct inferior *inf = current_inferior ();
4441
4442 tp->stop_signal = inf_status->stop_signal;
4443 stop_pc = inf_status->stop_pc;
4444 tp->stop_step = inf_status->stop_step;
4445 stop_stack_dummy = inf_status->stop_stack_dummy;
4446 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4447 tp->trap_expected = inf_status->stepping_over_breakpoint;
4448 tp->step_range_start = inf_status->step_range_start;
4449 tp->step_range_end = inf_status->step_range_end;
4450 tp->step_frame_id = inf_status->step_frame_id;
4451 tp->step_over_calls = inf_status->step_over_calls;
4452 stop_after_trap = inf_status->stop_after_trap;
4453 inf->stop_soon = inf_status->stop_soon;
4454 bpstat_clear (&tp->stop_bpstat);
4455 tp->stop_bpstat = inf_status->stop_bpstat;
4456 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4457 tp->proceed_to_finish = inf_status->proceed_to_finish;
4458
4459 /* The inferior can be gone if the user types "print exit(0)"
4460 (and perhaps other times). */
4461 if (target_has_execution)
4462 /* NB: The register write goes through to the target. */
4463 regcache_cpy (get_current_regcache (), inf_status->registers);
4464 regcache_xfree (inf_status->registers);
4465
4466 /* FIXME: If we are being called after stopping in a function which
4467 is called from gdb, we should not be trying to restore the
4468 selected frame; it just prints a spurious error message (The
4469 message is useful, however, in detecting bugs in gdb (like if gdb
4470 clobbers the stack)). In fact, should we be restoring the
4471 inferior status at all in that case? . */
4472
4473 if (target_has_stack && inf_status->restore_stack_info)
4474 {
4475 /* The point of catch_errors is that if the stack is clobbered,
4476 walking the stack might encounter a garbage pointer and
4477 error() trying to dereference it. */
4478 if (catch_errors
4479 (restore_selected_frame, &inf_status->selected_frame_id,
4480 "Unable to restore previously selected frame:\n",
4481 RETURN_MASK_ERROR) == 0)
4482 /* Error in restoring the selected frame. Select the innermost
4483 frame. */
4484 select_frame (get_current_frame ());
4485
4486 }
4487
4488 xfree (inf_status);
4489 }
4490
4491 static void
4492 do_restore_inferior_status_cleanup (void *sts)
4493 {
4494 restore_inferior_status (sts);
4495 }
4496
4497 struct cleanup *
4498 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4499 {
4500 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4501 }
4502
4503 void
4504 discard_inferior_status (struct inferior_status *inf_status)
4505 {
4506 /* See save_inferior_status for info on stop_bpstat. */
4507 bpstat_clear (&inf_status->stop_bpstat);
4508 regcache_xfree (inf_status->registers);
4509 xfree (inf_status);
4510 }
4511
4512 int
4513 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4514 {
4515 struct target_waitstatus last;
4516 ptid_t last_ptid;
4517
4518 get_last_target_status (&last_ptid, &last);
4519
4520 if (last.kind != TARGET_WAITKIND_FORKED)
4521 return 0;
4522
4523 if (!ptid_equal (last_ptid, pid))
4524 return 0;
4525
4526 *child_pid = last.value.related_pid;
4527 return 1;
4528 }
4529
4530 int
4531 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4532 {
4533 struct target_waitstatus last;
4534 ptid_t last_ptid;
4535
4536 get_last_target_status (&last_ptid, &last);
4537
4538 if (last.kind != TARGET_WAITKIND_VFORKED)
4539 return 0;
4540
4541 if (!ptid_equal (last_ptid, pid))
4542 return 0;
4543
4544 *child_pid = last.value.related_pid;
4545 return 1;
4546 }
4547
4548 int
4549 inferior_has_execd (ptid_t pid, char **execd_pathname)
4550 {
4551 struct target_waitstatus last;
4552 ptid_t last_ptid;
4553
4554 get_last_target_status (&last_ptid, &last);
4555
4556 if (last.kind != TARGET_WAITKIND_EXECD)
4557 return 0;
4558
4559 if (!ptid_equal (last_ptid, pid))
4560 return 0;
4561
4562 *execd_pathname = xstrdup (last.value.execd_pathname);
4563 return 1;
4564 }
4565
4566 /* Oft used ptids */
4567 ptid_t null_ptid;
4568 ptid_t minus_one_ptid;
4569
4570 /* Create a ptid given the necessary PID, LWP, and TID components. */
4571
4572 ptid_t
4573 ptid_build (int pid, long lwp, long tid)
4574 {
4575 ptid_t ptid;
4576
4577 ptid.pid = pid;
4578 ptid.lwp = lwp;
4579 ptid.tid = tid;
4580 return ptid;
4581 }
4582
4583 /* Create a ptid from just a pid. */
4584
4585 ptid_t
4586 pid_to_ptid (int pid)
4587 {
4588 return ptid_build (pid, 0, 0);
4589 }
4590
4591 /* Fetch the pid (process id) component from a ptid. */
4592
4593 int
4594 ptid_get_pid (ptid_t ptid)
4595 {
4596 return ptid.pid;
4597 }
4598
4599 /* Fetch the lwp (lightweight process) component from a ptid. */
4600
4601 long
4602 ptid_get_lwp (ptid_t ptid)
4603 {
4604 return ptid.lwp;
4605 }
4606
4607 /* Fetch the tid (thread id) component from a ptid. */
4608
4609 long
4610 ptid_get_tid (ptid_t ptid)
4611 {
4612 return ptid.tid;
4613 }
4614
4615 /* ptid_equal() is used to test equality of two ptids. */
4616
4617 int
4618 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4619 {
4620 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4621 && ptid1.tid == ptid2.tid);
4622 }
4623
4624 /* restore_inferior_ptid() will be used by the cleanup machinery
4625 to restore the inferior_ptid value saved in a call to
4626 save_inferior_ptid(). */
4627
4628 static void
4629 restore_inferior_ptid (void *arg)
4630 {
4631 ptid_t *saved_ptid_ptr = arg;
4632 inferior_ptid = *saved_ptid_ptr;
4633 xfree (arg);
4634 }
4635
4636 /* Save the value of inferior_ptid so that it may be restored by a
4637 later call to do_cleanups(). Returns the struct cleanup pointer
4638 needed for later doing the cleanup. */
4639
4640 struct cleanup *
4641 save_inferior_ptid (void)
4642 {
4643 ptid_t *saved_ptid_ptr;
4644
4645 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4646 *saved_ptid_ptr = inferior_ptid;
4647 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4648 }
4649 \f
4650
4651 int non_stop = 0;
4652 static int non_stop_1 = 0;
4653
4654 static void
4655 set_non_stop (char *args, int from_tty,
4656 struct cmd_list_element *c)
4657 {
4658 if (target_has_execution)
4659 {
4660 non_stop_1 = non_stop;
4661 error (_("Cannot change this setting while the inferior is running."));
4662 }
4663
4664 non_stop = non_stop_1;
4665 }
4666
4667 static void
4668 show_non_stop (struct ui_file *file, int from_tty,
4669 struct cmd_list_element *c, const char *value)
4670 {
4671 fprintf_filtered (file,
4672 _("Controlling the inferior in non-stop mode is %s.\n"),
4673 value);
4674 }
4675
4676
4677 void
4678 _initialize_infrun (void)
4679 {
4680 int i;
4681 int numsigs;
4682 struct cmd_list_element *c;
4683
4684 add_info ("signals", signals_info, _("\
4685 What debugger does when program gets various signals.\n\
4686 Specify a signal as argument to print info on that signal only."));
4687 add_info_alias ("handle", "signals", 0);
4688
4689 add_com ("handle", class_run, handle_command, _("\
4690 Specify how to handle a signal.\n\
4691 Args are signals and actions to apply to those signals.\n\
4692 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4693 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4694 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4695 The special arg \"all\" is recognized to mean all signals except those\n\
4696 used by the debugger, typically SIGTRAP and SIGINT.\n\
4697 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4698 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4699 Stop means reenter debugger if this signal happens (implies print).\n\
4700 Print means print a message if this signal happens.\n\
4701 Pass means let program see this signal; otherwise program doesn't know.\n\
4702 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4703 Pass and Stop may be combined."));
4704 if (xdb_commands)
4705 {
4706 add_com ("lz", class_info, signals_info, _("\
4707 What debugger does when program gets various signals.\n\
4708 Specify a signal as argument to print info on that signal only."));
4709 add_com ("z", class_run, xdb_handle_command, _("\
4710 Specify how to handle a signal.\n\
4711 Args are signals and actions to apply to those signals.\n\
4712 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4713 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4714 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4715 The special arg \"all\" is recognized to mean all signals except those\n\
4716 used by the debugger, typically SIGTRAP and SIGINT.\n\
4717 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4718 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4719 nopass), \"Q\" (noprint)\n\
4720 Stop means reenter debugger if this signal happens (implies print).\n\
4721 Print means print a message if this signal happens.\n\
4722 Pass means let program see this signal; otherwise program doesn't know.\n\
4723 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4724 Pass and Stop may be combined."));
4725 }
4726
4727 if (!dbx_commands)
4728 stop_command = add_cmd ("stop", class_obscure,
4729 not_just_help_class_command, _("\
4730 There is no `stop' command, but you can set a hook on `stop'.\n\
4731 This allows you to set a list of commands to be run each time execution\n\
4732 of the program stops."), &cmdlist);
4733
4734 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4735 Set inferior debugging."), _("\
4736 Show inferior debugging."), _("\
4737 When non-zero, inferior specific debugging is enabled."),
4738 NULL,
4739 show_debug_infrun,
4740 &setdebuglist, &showdebuglist);
4741
4742 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4743 Set displaced stepping debugging."), _("\
4744 Show displaced stepping debugging."), _("\
4745 When non-zero, displaced stepping specific debugging is enabled."),
4746 NULL,
4747 show_debug_displaced,
4748 &setdebuglist, &showdebuglist);
4749
4750 add_setshow_boolean_cmd ("non-stop", no_class,
4751 &non_stop_1, _("\
4752 Set whether gdb controls the inferior in non-stop mode."), _("\
4753 Show whether gdb controls the inferior in non-stop mode."), _("\
4754 When debugging a multi-threaded program and this setting is\n\
4755 off (the default, also called all-stop mode), when one thread stops\n\
4756 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4757 all other threads in the program while you interact with the thread of\n\
4758 interest. When you continue or step a thread, you can allow the other\n\
4759 threads to run, or have them remain stopped, but while you inspect any\n\
4760 thread's state, all threads stop.\n\
4761 \n\
4762 In non-stop mode, when one thread stops, other threads can continue\n\
4763 to run freely. You'll be able to step each thread independently,\n\
4764 leave it stopped or free to run as needed."),
4765 set_non_stop,
4766 show_non_stop,
4767 &setlist,
4768 &showlist);
4769
4770 numsigs = (int) TARGET_SIGNAL_LAST;
4771 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4772 signal_print = (unsigned char *)
4773 xmalloc (sizeof (signal_print[0]) * numsigs);
4774 signal_program = (unsigned char *)
4775 xmalloc (sizeof (signal_program[0]) * numsigs);
4776 for (i = 0; i < numsigs; i++)
4777 {
4778 signal_stop[i] = 1;
4779 signal_print[i] = 1;
4780 signal_program[i] = 1;
4781 }
4782
4783 /* Signals caused by debugger's own actions
4784 should not be given to the program afterwards. */
4785 signal_program[TARGET_SIGNAL_TRAP] = 0;
4786 signal_program[TARGET_SIGNAL_INT] = 0;
4787
4788 /* Signals that are not errors should not normally enter the debugger. */
4789 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4790 signal_print[TARGET_SIGNAL_ALRM] = 0;
4791 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4792 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4793 signal_stop[TARGET_SIGNAL_PROF] = 0;
4794 signal_print[TARGET_SIGNAL_PROF] = 0;
4795 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4796 signal_print[TARGET_SIGNAL_CHLD] = 0;
4797 signal_stop[TARGET_SIGNAL_IO] = 0;
4798 signal_print[TARGET_SIGNAL_IO] = 0;
4799 signal_stop[TARGET_SIGNAL_POLL] = 0;
4800 signal_print[TARGET_SIGNAL_POLL] = 0;
4801 signal_stop[TARGET_SIGNAL_URG] = 0;
4802 signal_print[TARGET_SIGNAL_URG] = 0;
4803 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4804 signal_print[TARGET_SIGNAL_WINCH] = 0;
4805
4806 /* These signals are used internally by user-level thread
4807 implementations. (See signal(5) on Solaris.) Like the above
4808 signals, a healthy program receives and handles them as part of
4809 its normal operation. */
4810 signal_stop[TARGET_SIGNAL_LWP] = 0;
4811 signal_print[TARGET_SIGNAL_LWP] = 0;
4812 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4813 signal_print[TARGET_SIGNAL_WAITING] = 0;
4814 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4815 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4816
4817 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4818 &stop_on_solib_events, _("\
4819 Set stopping for shared library events."), _("\
4820 Show stopping for shared library events."), _("\
4821 If nonzero, gdb will give control to the user when the dynamic linker\n\
4822 notifies gdb of shared library events. The most common event of interest\n\
4823 to the user would be loading/unloading of a new library."),
4824 NULL,
4825 show_stop_on_solib_events,
4826 &setlist, &showlist);
4827
4828 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4829 follow_fork_mode_kind_names,
4830 &follow_fork_mode_string, _("\
4831 Set debugger response to a program call of fork or vfork."), _("\
4832 Show debugger response to a program call of fork or vfork."), _("\
4833 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4834 parent - the original process is debugged after a fork\n\
4835 child - the new process is debugged after a fork\n\
4836 The unfollowed process will continue to run.\n\
4837 By default, the debugger will follow the parent process."),
4838 NULL,
4839 show_follow_fork_mode_string,
4840 &setlist, &showlist);
4841
4842 add_setshow_enum_cmd ("scheduler-locking", class_run,
4843 scheduler_enums, &scheduler_mode, _("\
4844 Set mode for locking scheduler during execution."), _("\
4845 Show mode for locking scheduler during execution."), _("\
4846 off == no locking (threads may preempt at any time)\n\
4847 on == full locking (no thread except the current thread may run)\n\
4848 step == scheduler locked during every single-step operation.\n\
4849 In this mode, no other thread may run during a step command.\n\
4850 Other threads may run while stepping over a function call ('next')."),
4851 set_schedlock_func, /* traps on target vector */
4852 show_scheduler_mode,
4853 &setlist, &showlist);
4854
4855 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4856 Set mode of the step operation."), _("\
4857 Show mode of the step operation."), _("\
4858 When set, doing a step over a function without debug line information\n\
4859 will stop at the first instruction of that function. Otherwise, the\n\
4860 function is skipped and the step command stops at a different source line."),
4861 NULL,
4862 show_step_stop_if_no_debug,
4863 &setlist, &showlist);
4864
4865 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4866 &can_use_displaced_stepping, _("\
4867 Set debugger's willingness to use displaced stepping."), _("\
4868 Show debugger's willingness to use displaced stepping."), _("\
4869 If zero, gdb will not use displaced stepping to step over\n\
4870 breakpoints, even if such is supported by the target."),
4871 NULL,
4872 show_can_use_displaced_stepping,
4873 &maintenance_set_cmdlist,
4874 &maintenance_show_cmdlist);
4875
4876 /* ptid initializations */
4877 null_ptid = ptid_build (0, 0, 0);
4878 minus_one_ptid = ptid_build (-1, 0, 0);
4879 inferior_ptid = null_ptid;
4880 target_last_wait_ptid = minus_one_ptid;
4881 displaced_step_ptid = null_ptid;
4882
4883 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
4884 }
This page took 0.186315 seconds and 5 git commands to generate.