2011-09-02 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "dictionary.h"
49 #include "block.h"
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52 #include "event-top.h"
53 #include "record.h"
54 #include "inline-frame.h"
55 #include "jit.h"
56 #include "tracepoint.h"
57 #include "continuations.h"
58 #include "interps.h"
59
60 /* Prototypes for local functions */
61
62 static void signals_info (char *, int);
63
64 static void handle_command (char *, int);
65
66 static void sig_print_info (enum target_signal);
67
68 static void sig_print_header (void);
69
70 static void resume_cleanups (void *);
71
72 static int hook_stop_stub (void *);
73
74 static int restore_selected_frame (void *);
75
76 static int follow_fork (void);
77
78 static void set_schedlock_func (char *args, int from_tty,
79 struct cmd_list_element *c);
80
81 static int currently_stepping (struct thread_info *tp);
82
83 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
84 void *data);
85
86 static void xdb_handle_command (char *args, int from_tty);
87
88 static int prepare_to_proceed (int);
89
90 static void print_exited_reason (int exitstatus);
91
92 static void print_signal_exited_reason (enum target_signal siggnal);
93
94 static void print_no_history_reason (void);
95
96 static void print_signal_received_reason (enum target_signal siggnal);
97
98 static void print_end_stepping_range_reason (void);
99
100 void _initialize_infrun (void);
101
102 void nullify_last_target_wait_ptid (void);
103
104 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
105
106 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
107
108 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
109
110 /* When set, stop the 'step' command if we enter a function which has
111 no line number information. The normal behavior is that we step
112 over such function. */
113 int step_stop_if_no_debug = 0;
114 static void
115 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117 {
118 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
119 }
120
121 /* In asynchronous mode, but simulating synchronous execution. */
122
123 int sync_execution = 0;
124
125 /* wait_for_inferior and normal_stop use this to notify the user
126 when the inferior stopped in a different thread than it had been
127 running in. */
128
129 static ptid_t previous_inferior_ptid;
130
131 /* Default behavior is to detach newly forked processes (legacy). */
132 int detach_fork = 1;
133
134 int debug_displaced = 0;
135 static void
136 show_debug_displaced (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
140 }
141
142 int debug_infrun = 0;
143 static void
144 show_debug_infrun (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
148 }
149
150 /* If the program uses ELF-style shared libraries, then calls to
151 functions in shared libraries go through stubs, which live in a
152 table called the PLT (Procedure Linkage Table). The first time the
153 function is called, the stub sends control to the dynamic linker,
154 which looks up the function's real address, patches the stub so
155 that future calls will go directly to the function, and then passes
156 control to the function.
157
158 If we are stepping at the source level, we don't want to see any of
159 this --- we just want to skip over the stub and the dynamic linker.
160 The simple approach is to single-step until control leaves the
161 dynamic linker.
162
163 However, on some systems (e.g., Red Hat's 5.2 distribution) the
164 dynamic linker calls functions in the shared C library, so you
165 can't tell from the PC alone whether the dynamic linker is still
166 running. In this case, we use a step-resume breakpoint to get us
167 past the dynamic linker, as if we were using "next" to step over a
168 function call.
169
170 in_solib_dynsym_resolve_code() says whether we're in the dynamic
171 linker code or not. Normally, this means we single-step. However,
172 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
173 address where we can place a step-resume breakpoint to get past the
174 linker's symbol resolution function.
175
176 in_solib_dynsym_resolve_code() can generally be implemented in a
177 pretty portable way, by comparing the PC against the address ranges
178 of the dynamic linker's sections.
179
180 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
181 it depends on internal details of the dynamic linker. It's usually
182 not too hard to figure out where to put a breakpoint, but it
183 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
184 sanity checking. If it can't figure things out, returning zero and
185 getting the (possibly confusing) stepping behavior is better than
186 signalling an error, which will obscure the change in the
187 inferior's state. */
188
189 /* This function returns TRUE if pc is the address of an instruction
190 that lies within the dynamic linker (such as the event hook, or the
191 dld itself).
192
193 This function must be used only when a dynamic linker event has
194 been caught, and the inferior is being stepped out of the hook, or
195 undefined results are guaranteed. */
196
197 #ifndef SOLIB_IN_DYNAMIC_LINKER
198 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
199 #endif
200
201 /* "Observer mode" is somewhat like a more extreme version of
202 non-stop, in which all GDB operations that might affect the
203 target's execution have been disabled. */
204
205 static int non_stop_1 = 0;
206
207 int observer_mode = 0;
208 static int observer_mode_1 = 0;
209
210 static void
211 set_observer_mode (char *args, int from_tty,
212 struct cmd_list_element *c)
213 {
214 extern int pagination_enabled;
215
216 if (target_has_execution)
217 {
218 observer_mode_1 = observer_mode;
219 error (_("Cannot change this setting while the inferior is running."));
220 }
221
222 observer_mode = observer_mode_1;
223
224 may_write_registers = !observer_mode;
225 may_write_memory = !observer_mode;
226 may_insert_breakpoints = !observer_mode;
227 may_insert_tracepoints = !observer_mode;
228 /* We can insert fast tracepoints in or out of observer mode,
229 but enable them if we're going into this mode. */
230 if (observer_mode)
231 may_insert_fast_tracepoints = 1;
232 may_stop = !observer_mode;
233 update_target_permissions ();
234
235 /* Going *into* observer mode we must force non-stop, then
236 going out we leave it that way. */
237 if (observer_mode)
238 {
239 target_async_permitted = 1;
240 pagination_enabled = 0;
241 non_stop = non_stop_1 = 1;
242 }
243
244 if (from_tty)
245 printf_filtered (_("Observer mode is now %s.\n"),
246 (observer_mode ? "on" : "off"));
247 }
248
249 static void
250 show_observer_mode (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
252 {
253 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
254 }
255
256 /* This updates the value of observer mode based on changes in
257 permissions. Note that we are deliberately ignoring the values of
258 may-write-registers and may-write-memory, since the user may have
259 reason to enable these during a session, for instance to turn on a
260 debugging-related global. */
261
262 void
263 update_observer_mode (void)
264 {
265 int newval;
266
267 newval = (!may_insert_breakpoints
268 && !may_insert_tracepoints
269 && may_insert_fast_tracepoints
270 && !may_stop
271 && non_stop);
272
273 /* Let the user know if things change. */
274 if (newval != observer_mode)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (newval ? "on" : "off"));
277
278 observer_mode = observer_mode_1 = newval;
279 }
280
281 /* Tables of how to react to signals; the user sets them. */
282
283 static unsigned char *signal_stop;
284 static unsigned char *signal_print;
285 static unsigned char *signal_program;
286
287 /* Table of signals that the target may silently handle.
288 This is automatically determined from the flags above,
289 and simply cached here. */
290 static unsigned char *signal_pass;
291
292 #define SET_SIGS(nsigs,sigs,flags) \
293 do { \
294 int signum = (nsigs); \
295 while (signum-- > 0) \
296 if ((sigs)[signum]) \
297 (flags)[signum] = 1; \
298 } while (0)
299
300 #define UNSET_SIGS(nsigs,sigs,flags) \
301 do { \
302 int signum = (nsigs); \
303 while (signum-- > 0) \
304 if ((sigs)[signum]) \
305 (flags)[signum] = 0; \
306 } while (0)
307
308 /* Value to pass to target_resume() to cause all threads to resume. */
309
310 #define RESUME_ALL minus_one_ptid
311
312 /* Command list pointer for the "stop" placeholder. */
313
314 static struct cmd_list_element *stop_command;
315
316 /* Function inferior was in as of last step command. */
317
318 static struct symbol *step_start_function;
319
320 /* Nonzero if we want to give control to the user when we're notified
321 of shared library events by the dynamic linker. */
322 int stop_on_solib_events;
323 static void
324 show_stop_on_solib_events (struct ui_file *file, int from_tty,
325 struct cmd_list_element *c, const char *value)
326 {
327 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
328 value);
329 }
330
331 /* Nonzero means expecting a trace trap
332 and should stop the inferior and return silently when it happens. */
333
334 int stop_after_trap;
335
336 /* Save register contents here when executing a "finish" command or are
337 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
338 Thus this contains the return value from the called function (assuming
339 values are returned in a register). */
340
341 struct regcache *stop_registers;
342
343 /* Nonzero after stop if current stack frame should be printed. */
344
345 static int stop_print_frame;
346
347 /* This is a cached copy of the pid/waitstatus of the last event
348 returned by target_wait()/deprecated_target_wait_hook(). This
349 information is returned by get_last_target_status(). */
350 static ptid_t target_last_wait_ptid;
351 static struct target_waitstatus target_last_waitstatus;
352
353 static void context_switch (ptid_t ptid);
354
355 void init_thread_stepping_state (struct thread_info *tss);
356
357 void init_infwait_state (void);
358
359 static const char follow_fork_mode_child[] = "child";
360 static const char follow_fork_mode_parent[] = "parent";
361
362 static const char *follow_fork_mode_kind_names[] = {
363 follow_fork_mode_child,
364 follow_fork_mode_parent,
365 NULL
366 };
367
368 static const char *follow_fork_mode_string = follow_fork_mode_parent;
369 static void
370 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
371 struct cmd_list_element *c, const char *value)
372 {
373 fprintf_filtered (file,
374 _("Debugger response to a program "
375 "call of fork or vfork is \"%s\".\n"),
376 value);
377 }
378 \f
379
380 /* Tell the target to follow the fork we're stopped at. Returns true
381 if the inferior should be resumed; false, if the target for some
382 reason decided it's best not to resume. */
383
384 static int
385 follow_fork (void)
386 {
387 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
388 int should_resume = 1;
389 struct thread_info *tp;
390
391 /* Copy user stepping state to the new inferior thread. FIXME: the
392 followed fork child thread should have a copy of most of the
393 parent thread structure's run control related fields, not just these.
394 Initialized to avoid "may be used uninitialized" warnings from gcc. */
395 struct breakpoint *step_resume_breakpoint = NULL;
396 struct breakpoint *exception_resume_breakpoint = NULL;
397 CORE_ADDR step_range_start = 0;
398 CORE_ADDR step_range_end = 0;
399 struct frame_id step_frame_id = { 0 };
400
401 if (!non_stop)
402 {
403 ptid_t wait_ptid;
404 struct target_waitstatus wait_status;
405
406 /* Get the last target status returned by target_wait(). */
407 get_last_target_status (&wait_ptid, &wait_status);
408
409 /* If not stopped at a fork event, then there's nothing else to
410 do. */
411 if (wait_status.kind != TARGET_WAITKIND_FORKED
412 && wait_status.kind != TARGET_WAITKIND_VFORKED)
413 return 1;
414
415 /* Check if we switched over from WAIT_PTID, since the event was
416 reported. */
417 if (!ptid_equal (wait_ptid, minus_one_ptid)
418 && !ptid_equal (inferior_ptid, wait_ptid))
419 {
420 /* We did. Switch back to WAIT_PTID thread, to tell the
421 target to follow it (in either direction). We'll
422 afterwards refuse to resume, and inform the user what
423 happened. */
424 switch_to_thread (wait_ptid);
425 should_resume = 0;
426 }
427 }
428
429 tp = inferior_thread ();
430
431 /* If there were any forks/vforks that were caught and are now to be
432 followed, then do so now. */
433 switch (tp->pending_follow.kind)
434 {
435 case TARGET_WAITKIND_FORKED:
436 case TARGET_WAITKIND_VFORKED:
437 {
438 ptid_t parent, child;
439
440 /* If the user did a next/step, etc, over a fork call,
441 preserve the stepping state in the fork child. */
442 if (follow_child && should_resume)
443 {
444 step_resume_breakpoint = clone_momentary_breakpoint
445 (tp->control.step_resume_breakpoint);
446 step_range_start = tp->control.step_range_start;
447 step_range_end = tp->control.step_range_end;
448 step_frame_id = tp->control.step_frame_id;
449 exception_resume_breakpoint
450 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
451
452 /* For now, delete the parent's sr breakpoint, otherwise,
453 parent/child sr breakpoints are considered duplicates,
454 and the child version will not be installed. Remove
455 this when the breakpoints module becomes aware of
456 inferiors and address spaces. */
457 delete_step_resume_breakpoint (tp);
458 tp->control.step_range_start = 0;
459 tp->control.step_range_end = 0;
460 tp->control.step_frame_id = null_frame_id;
461 delete_exception_resume_breakpoint (tp);
462 }
463
464 parent = inferior_ptid;
465 child = tp->pending_follow.value.related_pid;
466
467 /* Tell the target to do whatever is necessary to follow
468 either parent or child. */
469 if (target_follow_fork (follow_child))
470 {
471 /* Target refused to follow, or there's some other reason
472 we shouldn't resume. */
473 should_resume = 0;
474 }
475 else
476 {
477 /* This pending follow fork event is now handled, one way
478 or another. The previous selected thread may be gone
479 from the lists by now, but if it is still around, need
480 to clear the pending follow request. */
481 tp = find_thread_ptid (parent);
482 if (tp)
483 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
484
485 /* This makes sure we don't try to apply the "Switched
486 over from WAIT_PID" logic above. */
487 nullify_last_target_wait_ptid ();
488
489 /* If we followed the child, switch to it... */
490 if (follow_child)
491 {
492 switch_to_thread (child);
493
494 /* ... and preserve the stepping state, in case the
495 user was stepping over the fork call. */
496 if (should_resume)
497 {
498 tp = inferior_thread ();
499 tp->control.step_resume_breakpoint
500 = step_resume_breakpoint;
501 tp->control.step_range_start = step_range_start;
502 tp->control.step_range_end = step_range_end;
503 tp->control.step_frame_id = step_frame_id;
504 tp->control.exception_resume_breakpoint
505 = exception_resume_breakpoint;
506 }
507 else
508 {
509 /* If we get here, it was because we're trying to
510 resume from a fork catchpoint, but, the user
511 has switched threads away from the thread that
512 forked. In that case, the resume command
513 issued is most likely not applicable to the
514 child, so just warn, and refuse to resume. */
515 warning (_("Not resuming: switched threads "
516 "before following fork child.\n"));
517 }
518
519 /* Reset breakpoints in the child as appropriate. */
520 follow_inferior_reset_breakpoints ();
521 }
522 else
523 switch_to_thread (parent);
524 }
525 }
526 break;
527 case TARGET_WAITKIND_SPURIOUS:
528 /* Nothing to follow. */
529 break;
530 default:
531 internal_error (__FILE__, __LINE__,
532 "Unexpected pending_follow.kind %d\n",
533 tp->pending_follow.kind);
534 break;
535 }
536
537 return should_resume;
538 }
539
540 void
541 follow_inferior_reset_breakpoints (void)
542 {
543 struct thread_info *tp = inferior_thread ();
544
545 /* Was there a step_resume breakpoint? (There was if the user
546 did a "next" at the fork() call.) If so, explicitly reset its
547 thread number.
548
549 step_resumes are a form of bp that are made to be per-thread.
550 Since we created the step_resume bp when the parent process
551 was being debugged, and now are switching to the child process,
552 from the breakpoint package's viewpoint, that's a switch of
553 "threads". We must update the bp's notion of which thread
554 it is for, or it'll be ignored when it triggers. */
555
556 if (tp->control.step_resume_breakpoint)
557 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
558
559 if (tp->control.exception_resume_breakpoint)
560 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
561
562 /* Reinsert all breakpoints in the child. The user may have set
563 breakpoints after catching the fork, in which case those
564 were never set in the child, but only in the parent. This makes
565 sure the inserted breakpoints match the breakpoint list. */
566
567 breakpoint_re_set ();
568 insert_breakpoints ();
569 }
570
571 /* The child has exited or execed: resume threads of the parent the
572 user wanted to be executing. */
573
574 static int
575 proceed_after_vfork_done (struct thread_info *thread,
576 void *arg)
577 {
578 int pid = * (int *) arg;
579
580 if (ptid_get_pid (thread->ptid) == pid
581 && is_running (thread->ptid)
582 && !is_executing (thread->ptid)
583 && !thread->stop_requested
584 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
585 {
586 if (debug_infrun)
587 fprintf_unfiltered (gdb_stdlog,
588 "infrun: resuming vfork parent thread %s\n",
589 target_pid_to_str (thread->ptid));
590
591 switch_to_thread (thread->ptid);
592 clear_proceed_status ();
593 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
594 }
595
596 return 0;
597 }
598
599 /* Called whenever we notice an exec or exit event, to handle
600 detaching or resuming a vfork parent. */
601
602 static void
603 handle_vfork_child_exec_or_exit (int exec)
604 {
605 struct inferior *inf = current_inferior ();
606
607 if (inf->vfork_parent)
608 {
609 int resume_parent = -1;
610
611 /* This exec or exit marks the end of the shared memory region
612 between the parent and the child. If the user wanted to
613 detach from the parent, now is the time. */
614
615 if (inf->vfork_parent->pending_detach)
616 {
617 struct thread_info *tp;
618 struct cleanup *old_chain;
619 struct program_space *pspace;
620 struct address_space *aspace;
621
622 /* follow-fork child, detach-on-fork on. */
623
624 old_chain = make_cleanup_restore_current_thread ();
625
626 /* We're letting loose of the parent. */
627 tp = any_live_thread_of_process (inf->vfork_parent->pid);
628 switch_to_thread (tp->ptid);
629
630 /* We're about to detach from the parent, which implicitly
631 removes breakpoints from its address space. There's a
632 catch here: we want to reuse the spaces for the child,
633 but, parent/child are still sharing the pspace at this
634 point, although the exec in reality makes the kernel give
635 the child a fresh set of new pages. The problem here is
636 that the breakpoints module being unaware of this, would
637 likely chose the child process to write to the parent
638 address space. Swapping the child temporarily away from
639 the spaces has the desired effect. Yes, this is "sort
640 of" a hack. */
641
642 pspace = inf->pspace;
643 aspace = inf->aspace;
644 inf->aspace = NULL;
645 inf->pspace = NULL;
646
647 if (debug_infrun || info_verbose)
648 {
649 target_terminal_ours ();
650
651 if (exec)
652 fprintf_filtered (gdb_stdlog,
653 "Detaching vfork parent process "
654 "%d after child exec.\n",
655 inf->vfork_parent->pid);
656 else
657 fprintf_filtered (gdb_stdlog,
658 "Detaching vfork parent process "
659 "%d after child exit.\n",
660 inf->vfork_parent->pid);
661 }
662
663 target_detach (NULL, 0);
664
665 /* Put it back. */
666 inf->pspace = pspace;
667 inf->aspace = aspace;
668
669 do_cleanups (old_chain);
670 }
671 else if (exec)
672 {
673 /* We're staying attached to the parent, so, really give the
674 child a new address space. */
675 inf->pspace = add_program_space (maybe_new_address_space ());
676 inf->aspace = inf->pspace->aspace;
677 inf->removable = 1;
678 set_current_program_space (inf->pspace);
679
680 resume_parent = inf->vfork_parent->pid;
681
682 /* Break the bonds. */
683 inf->vfork_parent->vfork_child = NULL;
684 }
685 else
686 {
687 struct cleanup *old_chain;
688 struct program_space *pspace;
689
690 /* If this is a vfork child exiting, then the pspace and
691 aspaces were shared with the parent. Since we're
692 reporting the process exit, we'll be mourning all that is
693 found in the address space, and switching to null_ptid,
694 preparing to start a new inferior. But, since we don't
695 want to clobber the parent's address/program spaces, we
696 go ahead and create a new one for this exiting
697 inferior. */
698
699 /* Switch to null_ptid, so that clone_program_space doesn't want
700 to read the selected frame of a dead process. */
701 old_chain = save_inferior_ptid ();
702 inferior_ptid = null_ptid;
703
704 /* This inferior is dead, so avoid giving the breakpoints
705 module the option to write through to it (cloning a
706 program space resets breakpoints). */
707 inf->aspace = NULL;
708 inf->pspace = NULL;
709 pspace = add_program_space (maybe_new_address_space ());
710 set_current_program_space (pspace);
711 inf->removable = 1;
712 clone_program_space (pspace, inf->vfork_parent->pspace);
713 inf->pspace = pspace;
714 inf->aspace = pspace->aspace;
715
716 /* Put back inferior_ptid. We'll continue mourning this
717 inferior. */
718 do_cleanups (old_chain);
719
720 resume_parent = inf->vfork_parent->pid;
721 /* Break the bonds. */
722 inf->vfork_parent->vfork_child = NULL;
723 }
724
725 inf->vfork_parent = NULL;
726
727 gdb_assert (current_program_space == inf->pspace);
728
729 if (non_stop && resume_parent != -1)
730 {
731 /* If the user wanted the parent to be running, let it go
732 free now. */
733 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
734
735 if (debug_infrun)
736 fprintf_unfiltered (gdb_stdlog,
737 "infrun: resuming vfork parent process %d\n",
738 resume_parent);
739
740 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
741
742 do_cleanups (old_chain);
743 }
744 }
745 }
746
747 /* Enum strings for "set|show displaced-stepping". */
748
749 static const char follow_exec_mode_new[] = "new";
750 static const char follow_exec_mode_same[] = "same";
751 static const char *follow_exec_mode_names[] =
752 {
753 follow_exec_mode_new,
754 follow_exec_mode_same,
755 NULL,
756 };
757
758 static const char *follow_exec_mode_string = follow_exec_mode_same;
759 static void
760 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
761 struct cmd_list_element *c, const char *value)
762 {
763 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
764 }
765
766 /* EXECD_PATHNAME is assumed to be non-NULL. */
767
768 static void
769 follow_exec (ptid_t pid, char *execd_pathname)
770 {
771 struct thread_info *th = inferior_thread ();
772 struct inferior *inf = current_inferior ();
773
774 /* This is an exec event that we actually wish to pay attention to.
775 Refresh our symbol table to the newly exec'd program, remove any
776 momentary bp's, etc.
777
778 If there are breakpoints, they aren't really inserted now,
779 since the exec() transformed our inferior into a fresh set
780 of instructions.
781
782 We want to preserve symbolic breakpoints on the list, since
783 we have hopes that they can be reset after the new a.out's
784 symbol table is read.
785
786 However, any "raw" breakpoints must be removed from the list
787 (e.g., the solib bp's), since their address is probably invalid
788 now.
789
790 And, we DON'T want to call delete_breakpoints() here, since
791 that may write the bp's "shadow contents" (the instruction
792 value that was overwritten witha TRAP instruction). Since
793 we now have a new a.out, those shadow contents aren't valid. */
794
795 mark_breakpoints_out ();
796
797 update_breakpoints_after_exec ();
798
799 /* If there was one, it's gone now. We cannot truly step-to-next
800 statement through an exec(). */
801 th->control.step_resume_breakpoint = NULL;
802 th->control.exception_resume_breakpoint = NULL;
803 th->control.step_range_start = 0;
804 th->control.step_range_end = 0;
805
806 /* The target reports the exec event to the main thread, even if
807 some other thread does the exec, and even if the main thread was
808 already stopped --- if debugging in non-stop mode, it's possible
809 the user had the main thread held stopped in the previous image
810 --- release it now. This is the same behavior as step-over-exec
811 with scheduler-locking on in all-stop mode. */
812 th->stop_requested = 0;
813
814 /* What is this a.out's name? */
815 printf_unfiltered (_("%s is executing new program: %s\n"),
816 target_pid_to_str (inferior_ptid),
817 execd_pathname);
818
819 /* We've followed the inferior through an exec. Therefore, the
820 inferior has essentially been killed & reborn. */
821
822 gdb_flush (gdb_stdout);
823
824 breakpoint_init_inferior (inf_execd);
825
826 if (gdb_sysroot && *gdb_sysroot)
827 {
828 char *name = alloca (strlen (gdb_sysroot)
829 + strlen (execd_pathname)
830 + 1);
831
832 strcpy (name, gdb_sysroot);
833 strcat (name, execd_pathname);
834 execd_pathname = name;
835 }
836
837 /* Reset the shared library package. This ensures that we get a
838 shlib event when the child reaches "_start", at which point the
839 dld will have had a chance to initialize the child. */
840 /* Also, loading a symbol file below may trigger symbol lookups, and
841 we don't want those to be satisfied by the libraries of the
842 previous incarnation of this process. */
843 no_shared_libraries (NULL, 0);
844
845 if (follow_exec_mode_string == follow_exec_mode_new)
846 {
847 struct program_space *pspace;
848
849 /* The user wants to keep the old inferior and program spaces
850 around. Create a new fresh one, and switch to it. */
851
852 inf = add_inferior (current_inferior ()->pid);
853 pspace = add_program_space (maybe_new_address_space ());
854 inf->pspace = pspace;
855 inf->aspace = pspace->aspace;
856
857 exit_inferior_num_silent (current_inferior ()->num);
858
859 set_current_inferior (inf);
860 set_current_program_space (pspace);
861 }
862
863 gdb_assert (current_program_space == inf->pspace);
864
865 /* That a.out is now the one to use. */
866 exec_file_attach (execd_pathname, 0);
867
868 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
869 (Position Independent Executable) main symbol file will get applied by
870 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
871 the breakpoints with the zero displacement. */
872
873 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
874 NULL, 0);
875
876 set_initial_language ();
877
878 #ifdef SOLIB_CREATE_INFERIOR_HOOK
879 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
880 #else
881 solib_create_inferior_hook (0);
882 #endif
883
884 jit_inferior_created_hook ();
885
886 breakpoint_re_set ();
887
888 /* Reinsert all breakpoints. (Those which were symbolic have
889 been reset to the proper address in the new a.out, thanks
890 to symbol_file_command...). */
891 insert_breakpoints ();
892
893 /* The next resume of this inferior should bring it to the shlib
894 startup breakpoints. (If the user had also set bp's on
895 "main" from the old (parent) process, then they'll auto-
896 matically get reset there in the new process.). */
897 }
898
899 /* Non-zero if we just simulating a single-step. This is needed
900 because we cannot remove the breakpoints in the inferior process
901 until after the `wait' in `wait_for_inferior'. */
902 static int singlestep_breakpoints_inserted_p = 0;
903
904 /* The thread we inserted single-step breakpoints for. */
905 static ptid_t singlestep_ptid;
906
907 /* PC when we started this single-step. */
908 static CORE_ADDR singlestep_pc;
909
910 /* If another thread hit the singlestep breakpoint, we save the original
911 thread here so that we can resume single-stepping it later. */
912 static ptid_t saved_singlestep_ptid;
913 static int stepping_past_singlestep_breakpoint;
914
915 /* If not equal to null_ptid, this means that after stepping over breakpoint
916 is finished, we need to switch to deferred_step_ptid, and step it.
917
918 The use case is when one thread has hit a breakpoint, and then the user
919 has switched to another thread and issued 'step'. We need to step over
920 breakpoint in the thread which hit the breakpoint, but then continue
921 stepping the thread user has selected. */
922 static ptid_t deferred_step_ptid;
923 \f
924 /* Displaced stepping. */
925
926 /* In non-stop debugging mode, we must take special care to manage
927 breakpoints properly; in particular, the traditional strategy for
928 stepping a thread past a breakpoint it has hit is unsuitable.
929 'Displaced stepping' is a tactic for stepping one thread past a
930 breakpoint it has hit while ensuring that other threads running
931 concurrently will hit the breakpoint as they should.
932
933 The traditional way to step a thread T off a breakpoint in a
934 multi-threaded program in all-stop mode is as follows:
935
936 a0) Initially, all threads are stopped, and breakpoints are not
937 inserted.
938 a1) We single-step T, leaving breakpoints uninserted.
939 a2) We insert breakpoints, and resume all threads.
940
941 In non-stop debugging, however, this strategy is unsuitable: we
942 don't want to have to stop all threads in the system in order to
943 continue or step T past a breakpoint. Instead, we use displaced
944 stepping:
945
946 n0) Initially, T is stopped, other threads are running, and
947 breakpoints are inserted.
948 n1) We copy the instruction "under" the breakpoint to a separate
949 location, outside the main code stream, making any adjustments
950 to the instruction, register, and memory state as directed by
951 T's architecture.
952 n2) We single-step T over the instruction at its new location.
953 n3) We adjust the resulting register and memory state as directed
954 by T's architecture. This includes resetting T's PC to point
955 back into the main instruction stream.
956 n4) We resume T.
957
958 This approach depends on the following gdbarch methods:
959
960 - gdbarch_max_insn_length and gdbarch_displaced_step_location
961 indicate where to copy the instruction, and how much space must
962 be reserved there. We use these in step n1.
963
964 - gdbarch_displaced_step_copy_insn copies a instruction to a new
965 address, and makes any necessary adjustments to the instruction,
966 register contents, and memory. We use this in step n1.
967
968 - gdbarch_displaced_step_fixup adjusts registers and memory after
969 we have successfuly single-stepped the instruction, to yield the
970 same effect the instruction would have had if we had executed it
971 at its original address. We use this in step n3.
972
973 - gdbarch_displaced_step_free_closure provides cleanup.
974
975 The gdbarch_displaced_step_copy_insn and
976 gdbarch_displaced_step_fixup functions must be written so that
977 copying an instruction with gdbarch_displaced_step_copy_insn,
978 single-stepping across the copied instruction, and then applying
979 gdbarch_displaced_insn_fixup should have the same effects on the
980 thread's memory and registers as stepping the instruction in place
981 would have. Exactly which responsibilities fall to the copy and
982 which fall to the fixup is up to the author of those functions.
983
984 See the comments in gdbarch.sh for details.
985
986 Note that displaced stepping and software single-step cannot
987 currently be used in combination, although with some care I think
988 they could be made to. Software single-step works by placing
989 breakpoints on all possible subsequent instructions; if the
990 displaced instruction is a PC-relative jump, those breakpoints
991 could fall in very strange places --- on pages that aren't
992 executable, or at addresses that are not proper instruction
993 boundaries. (We do generally let other threads run while we wait
994 to hit the software single-step breakpoint, and they might
995 encounter such a corrupted instruction.) One way to work around
996 this would be to have gdbarch_displaced_step_copy_insn fully
997 simulate the effect of PC-relative instructions (and return NULL)
998 on architectures that use software single-stepping.
999
1000 In non-stop mode, we can have independent and simultaneous step
1001 requests, so more than one thread may need to simultaneously step
1002 over a breakpoint. The current implementation assumes there is
1003 only one scratch space per process. In this case, we have to
1004 serialize access to the scratch space. If thread A wants to step
1005 over a breakpoint, but we are currently waiting for some other
1006 thread to complete a displaced step, we leave thread A stopped and
1007 place it in the displaced_step_request_queue. Whenever a displaced
1008 step finishes, we pick the next thread in the queue and start a new
1009 displaced step operation on it. See displaced_step_prepare and
1010 displaced_step_fixup for details. */
1011
1012 struct displaced_step_request
1013 {
1014 ptid_t ptid;
1015 struct displaced_step_request *next;
1016 };
1017
1018 /* Per-inferior displaced stepping state. */
1019 struct displaced_step_inferior_state
1020 {
1021 /* Pointer to next in linked list. */
1022 struct displaced_step_inferior_state *next;
1023
1024 /* The process this displaced step state refers to. */
1025 int pid;
1026
1027 /* A queue of pending displaced stepping requests. One entry per
1028 thread that needs to do a displaced step. */
1029 struct displaced_step_request *step_request_queue;
1030
1031 /* If this is not null_ptid, this is the thread carrying out a
1032 displaced single-step in process PID. This thread's state will
1033 require fixing up once it has completed its step. */
1034 ptid_t step_ptid;
1035
1036 /* The architecture the thread had when we stepped it. */
1037 struct gdbarch *step_gdbarch;
1038
1039 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1040 for post-step cleanup. */
1041 struct displaced_step_closure *step_closure;
1042
1043 /* The address of the original instruction, and the copy we
1044 made. */
1045 CORE_ADDR step_original, step_copy;
1046
1047 /* Saved contents of copy area. */
1048 gdb_byte *step_saved_copy;
1049 };
1050
1051 /* The list of states of processes involved in displaced stepping
1052 presently. */
1053 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1054
1055 /* Get the displaced stepping state of process PID. */
1056
1057 static struct displaced_step_inferior_state *
1058 get_displaced_stepping_state (int pid)
1059 {
1060 struct displaced_step_inferior_state *state;
1061
1062 for (state = displaced_step_inferior_states;
1063 state != NULL;
1064 state = state->next)
1065 if (state->pid == pid)
1066 return state;
1067
1068 return NULL;
1069 }
1070
1071 /* Add a new displaced stepping state for process PID to the displaced
1072 stepping state list, or return a pointer to an already existing
1073 entry, if it already exists. Never returns NULL. */
1074
1075 static struct displaced_step_inferior_state *
1076 add_displaced_stepping_state (int pid)
1077 {
1078 struct displaced_step_inferior_state *state;
1079
1080 for (state = displaced_step_inferior_states;
1081 state != NULL;
1082 state = state->next)
1083 if (state->pid == pid)
1084 return state;
1085
1086 state = xcalloc (1, sizeof (*state));
1087 state->pid = pid;
1088 state->next = displaced_step_inferior_states;
1089 displaced_step_inferior_states = state;
1090
1091 return state;
1092 }
1093
1094 /* If inferior is in displaced stepping, and ADDR equals to starting address
1095 of copy area, return corresponding displaced_step_closure. Otherwise,
1096 return NULL. */
1097
1098 struct displaced_step_closure*
1099 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1100 {
1101 struct displaced_step_inferior_state *displaced
1102 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1103
1104 /* If checking the mode of displaced instruction in copy area. */
1105 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1106 && (displaced->step_copy == addr))
1107 return displaced->step_closure;
1108
1109 return NULL;
1110 }
1111
1112 /* Remove the displaced stepping state of process PID. */
1113
1114 static void
1115 remove_displaced_stepping_state (int pid)
1116 {
1117 struct displaced_step_inferior_state *it, **prev_next_p;
1118
1119 gdb_assert (pid != 0);
1120
1121 it = displaced_step_inferior_states;
1122 prev_next_p = &displaced_step_inferior_states;
1123 while (it)
1124 {
1125 if (it->pid == pid)
1126 {
1127 *prev_next_p = it->next;
1128 xfree (it);
1129 return;
1130 }
1131
1132 prev_next_p = &it->next;
1133 it = *prev_next_p;
1134 }
1135 }
1136
1137 static void
1138 infrun_inferior_exit (struct inferior *inf)
1139 {
1140 remove_displaced_stepping_state (inf->pid);
1141 }
1142
1143 /* Enum strings for "set|show displaced-stepping". */
1144
1145 static const char can_use_displaced_stepping_auto[] = "auto";
1146 static const char can_use_displaced_stepping_on[] = "on";
1147 static const char can_use_displaced_stepping_off[] = "off";
1148 static const char *can_use_displaced_stepping_enum[] =
1149 {
1150 can_use_displaced_stepping_auto,
1151 can_use_displaced_stepping_on,
1152 can_use_displaced_stepping_off,
1153 NULL,
1154 };
1155
1156 /* If ON, and the architecture supports it, GDB will use displaced
1157 stepping to step over breakpoints. If OFF, or if the architecture
1158 doesn't support it, GDB will instead use the traditional
1159 hold-and-step approach. If AUTO (which is the default), GDB will
1160 decide which technique to use to step over breakpoints depending on
1161 which of all-stop or non-stop mode is active --- displaced stepping
1162 in non-stop mode; hold-and-step in all-stop mode. */
1163
1164 static const char *can_use_displaced_stepping =
1165 can_use_displaced_stepping_auto;
1166
1167 static void
1168 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1169 struct cmd_list_element *c,
1170 const char *value)
1171 {
1172 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1173 fprintf_filtered (file,
1174 _("Debugger's willingness to use displaced stepping "
1175 "to step over breakpoints is %s (currently %s).\n"),
1176 value, non_stop ? "on" : "off");
1177 else
1178 fprintf_filtered (file,
1179 _("Debugger's willingness to use displaced stepping "
1180 "to step over breakpoints is %s.\n"), value);
1181 }
1182
1183 /* Return non-zero if displaced stepping can/should be used to step
1184 over breakpoints. */
1185
1186 static int
1187 use_displaced_stepping (struct gdbarch *gdbarch)
1188 {
1189 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1190 && non_stop)
1191 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1192 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1193 && !RECORD_IS_USED);
1194 }
1195
1196 /* Clean out any stray displaced stepping state. */
1197 static void
1198 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1199 {
1200 /* Indicate that there is no cleanup pending. */
1201 displaced->step_ptid = null_ptid;
1202
1203 if (displaced->step_closure)
1204 {
1205 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1206 displaced->step_closure);
1207 displaced->step_closure = NULL;
1208 }
1209 }
1210
1211 static void
1212 displaced_step_clear_cleanup (void *arg)
1213 {
1214 struct displaced_step_inferior_state *state = arg;
1215
1216 displaced_step_clear (state);
1217 }
1218
1219 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1220 void
1221 displaced_step_dump_bytes (struct ui_file *file,
1222 const gdb_byte *buf,
1223 size_t len)
1224 {
1225 int i;
1226
1227 for (i = 0; i < len; i++)
1228 fprintf_unfiltered (file, "%02x ", buf[i]);
1229 fputs_unfiltered ("\n", file);
1230 }
1231
1232 /* Prepare to single-step, using displaced stepping.
1233
1234 Note that we cannot use displaced stepping when we have a signal to
1235 deliver. If we have a signal to deliver and an instruction to step
1236 over, then after the step, there will be no indication from the
1237 target whether the thread entered a signal handler or ignored the
1238 signal and stepped over the instruction successfully --- both cases
1239 result in a simple SIGTRAP. In the first case we mustn't do a
1240 fixup, and in the second case we must --- but we can't tell which.
1241 Comments in the code for 'random signals' in handle_inferior_event
1242 explain how we handle this case instead.
1243
1244 Returns 1 if preparing was successful -- this thread is going to be
1245 stepped now; or 0 if displaced stepping this thread got queued. */
1246 static int
1247 displaced_step_prepare (ptid_t ptid)
1248 {
1249 struct cleanup *old_cleanups, *ignore_cleanups;
1250 struct regcache *regcache = get_thread_regcache (ptid);
1251 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1252 CORE_ADDR original, copy;
1253 ULONGEST len;
1254 struct displaced_step_closure *closure;
1255 struct displaced_step_inferior_state *displaced;
1256
1257 /* We should never reach this function if the architecture does not
1258 support displaced stepping. */
1259 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1260
1261 /* We have to displaced step one thread at a time, as we only have
1262 access to a single scratch space per inferior. */
1263
1264 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1265
1266 if (!ptid_equal (displaced->step_ptid, null_ptid))
1267 {
1268 /* Already waiting for a displaced step to finish. Defer this
1269 request and place in queue. */
1270 struct displaced_step_request *req, *new_req;
1271
1272 if (debug_displaced)
1273 fprintf_unfiltered (gdb_stdlog,
1274 "displaced: defering step of %s\n",
1275 target_pid_to_str (ptid));
1276
1277 new_req = xmalloc (sizeof (*new_req));
1278 new_req->ptid = ptid;
1279 new_req->next = NULL;
1280
1281 if (displaced->step_request_queue)
1282 {
1283 for (req = displaced->step_request_queue;
1284 req && req->next;
1285 req = req->next)
1286 ;
1287 req->next = new_req;
1288 }
1289 else
1290 displaced->step_request_queue = new_req;
1291
1292 return 0;
1293 }
1294 else
1295 {
1296 if (debug_displaced)
1297 fprintf_unfiltered (gdb_stdlog,
1298 "displaced: stepping %s now\n",
1299 target_pid_to_str (ptid));
1300 }
1301
1302 displaced_step_clear (displaced);
1303
1304 old_cleanups = save_inferior_ptid ();
1305 inferior_ptid = ptid;
1306
1307 original = regcache_read_pc (regcache);
1308
1309 copy = gdbarch_displaced_step_location (gdbarch);
1310 len = gdbarch_max_insn_length (gdbarch);
1311
1312 /* Save the original contents of the copy area. */
1313 displaced->step_saved_copy = xmalloc (len);
1314 ignore_cleanups = make_cleanup (free_current_contents,
1315 &displaced->step_saved_copy);
1316 read_memory (copy, displaced->step_saved_copy, len);
1317 if (debug_displaced)
1318 {
1319 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1320 paddress (gdbarch, copy));
1321 displaced_step_dump_bytes (gdb_stdlog,
1322 displaced->step_saved_copy,
1323 len);
1324 };
1325
1326 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1327 original, copy, regcache);
1328
1329 /* We don't support the fully-simulated case at present. */
1330 gdb_assert (closure);
1331
1332 /* Save the information we need to fix things up if the step
1333 succeeds. */
1334 displaced->step_ptid = ptid;
1335 displaced->step_gdbarch = gdbarch;
1336 displaced->step_closure = closure;
1337 displaced->step_original = original;
1338 displaced->step_copy = copy;
1339
1340 make_cleanup (displaced_step_clear_cleanup, displaced);
1341
1342 /* Resume execution at the copy. */
1343 regcache_write_pc (regcache, copy);
1344
1345 discard_cleanups (ignore_cleanups);
1346
1347 do_cleanups (old_cleanups);
1348
1349 if (debug_displaced)
1350 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1351 paddress (gdbarch, copy));
1352
1353 return 1;
1354 }
1355
1356 static void
1357 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1358 const gdb_byte *myaddr, int len)
1359 {
1360 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1361
1362 inferior_ptid = ptid;
1363 write_memory (memaddr, myaddr, len);
1364 do_cleanups (ptid_cleanup);
1365 }
1366
1367 static void
1368 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1369 {
1370 struct cleanup *old_cleanups;
1371 struct displaced_step_inferior_state *displaced
1372 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1373
1374 /* Was any thread of this process doing a displaced step? */
1375 if (displaced == NULL)
1376 return;
1377
1378 /* Was this event for the pid we displaced? */
1379 if (ptid_equal (displaced->step_ptid, null_ptid)
1380 || ! ptid_equal (displaced->step_ptid, event_ptid))
1381 return;
1382
1383 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1384
1385 /* Restore the contents of the copy area. */
1386 {
1387 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1388
1389 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1390 displaced->step_saved_copy, len);
1391 if (debug_displaced)
1392 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1393 paddress (displaced->step_gdbarch,
1394 displaced->step_copy));
1395 }
1396
1397 /* Did the instruction complete successfully? */
1398 if (signal == TARGET_SIGNAL_TRAP)
1399 {
1400 /* Fix up the resulting state. */
1401 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1402 displaced->step_closure,
1403 displaced->step_original,
1404 displaced->step_copy,
1405 get_thread_regcache (displaced->step_ptid));
1406 }
1407 else
1408 {
1409 /* Since the instruction didn't complete, all we can do is
1410 relocate the PC. */
1411 struct regcache *regcache = get_thread_regcache (event_ptid);
1412 CORE_ADDR pc = regcache_read_pc (regcache);
1413
1414 pc = displaced->step_original + (pc - displaced->step_copy);
1415 regcache_write_pc (regcache, pc);
1416 }
1417
1418 do_cleanups (old_cleanups);
1419
1420 displaced->step_ptid = null_ptid;
1421
1422 /* Are there any pending displaced stepping requests? If so, run
1423 one now. Leave the state object around, since we're likely to
1424 need it again soon. */
1425 while (displaced->step_request_queue)
1426 {
1427 struct displaced_step_request *head;
1428 ptid_t ptid;
1429 struct regcache *regcache;
1430 struct gdbarch *gdbarch;
1431 CORE_ADDR actual_pc;
1432 struct address_space *aspace;
1433
1434 head = displaced->step_request_queue;
1435 ptid = head->ptid;
1436 displaced->step_request_queue = head->next;
1437 xfree (head);
1438
1439 context_switch (ptid);
1440
1441 regcache = get_thread_regcache (ptid);
1442 actual_pc = regcache_read_pc (regcache);
1443 aspace = get_regcache_aspace (regcache);
1444
1445 if (breakpoint_here_p (aspace, actual_pc))
1446 {
1447 if (debug_displaced)
1448 fprintf_unfiltered (gdb_stdlog,
1449 "displaced: stepping queued %s now\n",
1450 target_pid_to_str (ptid));
1451
1452 displaced_step_prepare (ptid);
1453
1454 gdbarch = get_regcache_arch (regcache);
1455
1456 if (debug_displaced)
1457 {
1458 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1459 gdb_byte buf[4];
1460
1461 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1462 paddress (gdbarch, actual_pc));
1463 read_memory (actual_pc, buf, sizeof (buf));
1464 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1465 }
1466
1467 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1468 displaced->step_closure))
1469 target_resume (ptid, 1, TARGET_SIGNAL_0);
1470 else
1471 target_resume (ptid, 0, TARGET_SIGNAL_0);
1472
1473 /* Done, we're stepping a thread. */
1474 break;
1475 }
1476 else
1477 {
1478 int step;
1479 struct thread_info *tp = inferior_thread ();
1480
1481 /* The breakpoint we were sitting under has since been
1482 removed. */
1483 tp->control.trap_expected = 0;
1484
1485 /* Go back to what we were trying to do. */
1486 step = currently_stepping (tp);
1487
1488 if (debug_displaced)
1489 fprintf_unfiltered (gdb_stdlog,
1490 "breakpoint is gone %s: step(%d)\n",
1491 target_pid_to_str (tp->ptid), step);
1492
1493 target_resume (ptid, step, TARGET_SIGNAL_0);
1494 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1495
1496 /* This request was discarded. See if there's any other
1497 thread waiting for its turn. */
1498 }
1499 }
1500 }
1501
1502 /* Update global variables holding ptids to hold NEW_PTID if they were
1503 holding OLD_PTID. */
1504 static void
1505 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1506 {
1507 struct displaced_step_request *it;
1508 struct displaced_step_inferior_state *displaced;
1509
1510 if (ptid_equal (inferior_ptid, old_ptid))
1511 inferior_ptid = new_ptid;
1512
1513 if (ptid_equal (singlestep_ptid, old_ptid))
1514 singlestep_ptid = new_ptid;
1515
1516 if (ptid_equal (deferred_step_ptid, old_ptid))
1517 deferred_step_ptid = new_ptid;
1518
1519 for (displaced = displaced_step_inferior_states;
1520 displaced;
1521 displaced = displaced->next)
1522 {
1523 if (ptid_equal (displaced->step_ptid, old_ptid))
1524 displaced->step_ptid = new_ptid;
1525
1526 for (it = displaced->step_request_queue; it; it = it->next)
1527 if (ptid_equal (it->ptid, old_ptid))
1528 it->ptid = new_ptid;
1529 }
1530 }
1531
1532 \f
1533 /* Resuming. */
1534
1535 /* Things to clean up if we QUIT out of resume (). */
1536 static void
1537 resume_cleanups (void *ignore)
1538 {
1539 normal_stop ();
1540 }
1541
1542 static const char schedlock_off[] = "off";
1543 static const char schedlock_on[] = "on";
1544 static const char schedlock_step[] = "step";
1545 static const char *scheduler_enums[] = {
1546 schedlock_off,
1547 schedlock_on,
1548 schedlock_step,
1549 NULL
1550 };
1551 static const char *scheduler_mode = schedlock_off;
1552 static void
1553 show_scheduler_mode (struct ui_file *file, int from_tty,
1554 struct cmd_list_element *c, const char *value)
1555 {
1556 fprintf_filtered (file,
1557 _("Mode for locking scheduler "
1558 "during execution is \"%s\".\n"),
1559 value);
1560 }
1561
1562 static void
1563 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1564 {
1565 if (!target_can_lock_scheduler)
1566 {
1567 scheduler_mode = schedlock_off;
1568 error (_("Target '%s' cannot support this command."), target_shortname);
1569 }
1570 }
1571
1572 /* True if execution commands resume all threads of all processes by
1573 default; otherwise, resume only threads of the current inferior
1574 process. */
1575 int sched_multi = 0;
1576
1577 /* Try to setup for software single stepping over the specified location.
1578 Return 1 if target_resume() should use hardware single step.
1579
1580 GDBARCH the current gdbarch.
1581 PC the location to step over. */
1582
1583 static int
1584 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1585 {
1586 int hw_step = 1;
1587
1588 if (execution_direction == EXEC_FORWARD
1589 && gdbarch_software_single_step_p (gdbarch)
1590 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1591 {
1592 hw_step = 0;
1593 /* Do not pull these breakpoints until after a `wait' in
1594 `wait_for_inferior'. */
1595 singlestep_breakpoints_inserted_p = 1;
1596 singlestep_ptid = inferior_ptid;
1597 singlestep_pc = pc;
1598 }
1599 return hw_step;
1600 }
1601
1602 /* Return a ptid representing the set of threads that we will proceed,
1603 in the perspective of the user/frontend. We may actually resume
1604 fewer threads at first, e.g., if a thread is stopped at a
1605 breakpoint that needs stepping-off, but that should not be visible
1606 to the user/frontend, and neither should the frontend/user be
1607 allowed to proceed any of the threads that happen to be stopped for
1608 internal run control handling, if a previous command wanted them
1609 resumed. */
1610
1611 ptid_t
1612 user_visible_resume_ptid (int step)
1613 {
1614 /* By default, resume all threads of all processes. */
1615 ptid_t resume_ptid = RESUME_ALL;
1616
1617 /* Maybe resume only all threads of the current process. */
1618 if (!sched_multi && target_supports_multi_process ())
1619 {
1620 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1621 }
1622
1623 /* Maybe resume a single thread after all. */
1624 if (non_stop)
1625 {
1626 /* With non-stop mode on, threads are always handled
1627 individually. */
1628 resume_ptid = inferior_ptid;
1629 }
1630 else if ((scheduler_mode == schedlock_on)
1631 || (scheduler_mode == schedlock_step
1632 && (step || singlestep_breakpoints_inserted_p)))
1633 {
1634 /* User-settable 'scheduler' mode requires solo thread resume. */
1635 resume_ptid = inferior_ptid;
1636 }
1637
1638 return resume_ptid;
1639 }
1640
1641 /* Resume the inferior, but allow a QUIT. This is useful if the user
1642 wants to interrupt some lengthy single-stepping operation
1643 (for child processes, the SIGINT goes to the inferior, and so
1644 we get a SIGINT random_signal, but for remote debugging and perhaps
1645 other targets, that's not true).
1646
1647 STEP nonzero if we should step (zero to continue instead).
1648 SIG is the signal to give the inferior (zero for none). */
1649 void
1650 resume (int step, enum target_signal sig)
1651 {
1652 int should_resume = 1;
1653 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1654 struct regcache *regcache = get_current_regcache ();
1655 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1656 struct thread_info *tp = inferior_thread ();
1657 CORE_ADDR pc = regcache_read_pc (regcache);
1658 struct address_space *aspace = get_regcache_aspace (regcache);
1659
1660 QUIT;
1661
1662 if (current_inferior ()->waiting_for_vfork_done)
1663 {
1664 /* Don't try to single-step a vfork parent that is waiting for
1665 the child to get out of the shared memory region (by exec'ing
1666 or exiting). This is particularly important on software
1667 single-step archs, as the child process would trip on the
1668 software single step breakpoint inserted for the parent
1669 process. Since the parent will not actually execute any
1670 instruction until the child is out of the shared region (such
1671 are vfork's semantics), it is safe to simply continue it.
1672 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1673 the parent, and tell it to `keep_going', which automatically
1674 re-sets it stepping. */
1675 if (debug_infrun)
1676 fprintf_unfiltered (gdb_stdlog,
1677 "infrun: resume : clear step\n");
1678 step = 0;
1679 }
1680
1681 if (debug_infrun)
1682 fprintf_unfiltered (gdb_stdlog,
1683 "infrun: resume (step=%d, signal=%d), "
1684 "trap_expected=%d, current thread [%s] at %s\n",
1685 step, sig, tp->control.trap_expected,
1686 target_pid_to_str (inferior_ptid),
1687 paddress (gdbarch, pc));
1688
1689 /* Normally, by the time we reach `resume', the breakpoints are either
1690 removed or inserted, as appropriate. The exception is if we're sitting
1691 at a permanent breakpoint; we need to step over it, but permanent
1692 breakpoints can't be removed. So we have to test for it here. */
1693 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1694 {
1695 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1696 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1697 else
1698 error (_("\
1699 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1700 how to step past a permanent breakpoint on this architecture. Try using\n\
1701 a command like `return' or `jump' to continue execution."));
1702 }
1703
1704 /* If enabled, step over breakpoints by executing a copy of the
1705 instruction at a different address.
1706
1707 We can't use displaced stepping when we have a signal to deliver;
1708 the comments for displaced_step_prepare explain why. The
1709 comments in the handle_inferior event for dealing with 'random
1710 signals' explain what we do instead.
1711
1712 We can't use displaced stepping when we are waiting for vfork_done
1713 event, displaced stepping breaks the vfork child similarly as single
1714 step software breakpoint. */
1715 if (use_displaced_stepping (gdbarch)
1716 && (tp->control.trap_expected
1717 || (step && gdbarch_software_single_step_p (gdbarch)))
1718 && sig == TARGET_SIGNAL_0
1719 && !current_inferior ()->waiting_for_vfork_done)
1720 {
1721 struct displaced_step_inferior_state *displaced;
1722
1723 if (!displaced_step_prepare (inferior_ptid))
1724 {
1725 /* Got placed in displaced stepping queue. Will be resumed
1726 later when all the currently queued displaced stepping
1727 requests finish. The thread is not executing at this point,
1728 and the call to set_executing will be made later. But we
1729 need to call set_running here, since from frontend point of view,
1730 the thread is running. */
1731 set_running (inferior_ptid, 1);
1732 discard_cleanups (old_cleanups);
1733 return;
1734 }
1735
1736 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1737 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1738 displaced->step_closure);
1739 }
1740
1741 /* Do we need to do it the hard way, w/temp breakpoints? */
1742 else if (step)
1743 step = maybe_software_singlestep (gdbarch, pc);
1744
1745 /* Currently, our software single-step implementation leads to different
1746 results than hardware single-stepping in one situation: when stepping
1747 into delivering a signal which has an associated signal handler,
1748 hardware single-step will stop at the first instruction of the handler,
1749 while software single-step will simply skip execution of the handler.
1750
1751 For now, this difference in behavior is accepted since there is no
1752 easy way to actually implement single-stepping into a signal handler
1753 without kernel support.
1754
1755 However, there is one scenario where this difference leads to follow-on
1756 problems: if we're stepping off a breakpoint by removing all breakpoints
1757 and then single-stepping. In this case, the software single-step
1758 behavior means that even if there is a *breakpoint* in the signal
1759 handler, GDB still would not stop.
1760
1761 Fortunately, we can at least fix this particular issue. We detect
1762 here the case where we are about to deliver a signal while software
1763 single-stepping with breakpoints removed. In this situation, we
1764 revert the decisions to remove all breakpoints and insert single-
1765 step breakpoints, and instead we install a step-resume breakpoint
1766 at the current address, deliver the signal without stepping, and
1767 once we arrive back at the step-resume breakpoint, actually step
1768 over the breakpoint we originally wanted to step over. */
1769 if (singlestep_breakpoints_inserted_p
1770 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1771 {
1772 /* If we have nested signals or a pending signal is delivered
1773 immediately after a handler returns, might might already have
1774 a step-resume breakpoint set on the earlier handler. We cannot
1775 set another step-resume breakpoint; just continue on until the
1776 original breakpoint is hit. */
1777 if (tp->control.step_resume_breakpoint == NULL)
1778 {
1779 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1780 tp->step_after_step_resume_breakpoint = 1;
1781 }
1782
1783 remove_single_step_breakpoints ();
1784 singlestep_breakpoints_inserted_p = 0;
1785
1786 insert_breakpoints ();
1787 tp->control.trap_expected = 0;
1788 }
1789
1790 if (should_resume)
1791 {
1792 ptid_t resume_ptid;
1793
1794 /* If STEP is set, it's a request to use hardware stepping
1795 facilities. But in that case, we should never
1796 use singlestep breakpoint. */
1797 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1798
1799 /* Decide the set of threads to ask the target to resume. Start
1800 by assuming everything will be resumed, than narrow the set
1801 by applying increasingly restricting conditions. */
1802 resume_ptid = user_visible_resume_ptid (step);
1803
1804 /* Maybe resume a single thread after all. */
1805 if (singlestep_breakpoints_inserted_p
1806 && stepping_past_singlestep_breakpoint)
1807 {
1808 /* The situation here is as follows. In thread T1 we wanted to
1809 single-step. Lacking hardware single-stepping we've
1810 set breakpoint at the PC of the next instruction -- call it
1811 P. After resuming, we've hit that breakpoint in thread T2.
1812 Now we've removed original breakpoint, inserted breakpoint
1813 at P+1, and try to step to advance T2 past breakpoint.
1814 We need to step only T2, as if T1 is allowed to freely run,
1815 it can run past P, and if other threads are allowed to run,
1816 they can hit breakpoint at P+1, and nested hits of single-step
1817 breakpoints is not something we'd want -- that's complicated
1818 to support, and has no value. */
1819 resume_ptid = inferior_ptid;
1820 }
1821 else if ((step || singlestep_breakpoints_inserted_p)
1822 && tp->control.trap_expected)
1823 {
1824 /* We're allowing a thread to run past a breakpoint it has
1825 hit, by single-stepping the thread with the breakpoint
1826 removed. In which case, we need to single-step only this
1827 thread, and keep others stopped, as they can miss this
1828 breakpoint if allowed to run.
1829
1830 The current code actually removes all breakpoints when
1831 doing this, not just the one being stepped over, so if we
1832 let other threads run, we can actually miss any
1833 breakpoint, not just the one at PC. */
1834 resume_ptid = inferior_ptid;
1835 }
1836
1837 if (gdbarch_cannot_step_breakpoint (gdbarch))
1838 {
1839 /* Most targets can step a breakpoint instruction, thus
1840 executing it normally. But if this one cannot, just
1841 continue and we will hit it anyway. */
1842 if (step && breakpoint_inserted_here_p (aspace, pc))
1843 step = 0;
1844 }
1845
1846 if (debug_displaced
1847 && use_displaced_stepping (gdbarch)
1848 && tp->control.trap_expected)
1849 {
1850 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1851 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1852 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1853 gdb_byte buf[4];
1854
1855 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1856 paddress (resume_gdbarch, actual_pc));
1857 read_memory (actual_pc, buf, sizeof (buf));
1858 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1859 }
1860
1861 /* Install inferior's terminal modes. */
1862 target_terminal_inferior ();
1863
1864 /* Avoid confusing the next resume, if the next stop/resume
1865 happens to apply to another thread. */
1866 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1867
1868 /* Advise target which signals may be handled silently. If we have
1869 removed breakpoints because we are stepping over one (which can
1870 happen only if we are not using displaced stepping), we need to
1871 receive all signals to avoid accidentally skipping a breakpoint
1872 during execution of a signal handler. */
1873 if ((step || singlestep_breakpoints_inserted_p)
1874 && tp->control.trap_expected
1875 && !use_displaced_stepping (gdbarch))
1876 target_pass_signals (0, NULL);
1877 else
1878 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1879
1880 target_resume (resume_ptid, step, sig);
1881 }
1882
1883 discard_cleanups (old_cleanups);
1884 }
1885 \f
1886 /* Proceeding. */
1887
1888 /* Clear out all variables saying what to do when inferior is continued.
1889 First do this, then set the ones you want, then call `proceed'. */
1890
1891 static void
1892 clear_proceed_status_thread (struct thread_info *tp)
1893 {
1894 if (debug_infrun)
1895 fprintf_unfiltered (gdb_stdlog,
1896 "infrun: clear_proceed_status_thread (%s)\n",
1897 target_pid_to_str (tp->ptid));
1898
1899 tp->control.trap_expected = 0;
1900 tp->control.step_range_start = 0;
1901 tp->control.step_range_end = 0;
1902 tp->control.step_frame_id = null_frame_id;
1903 tp->control.step_stack_frame_id = null_frame_id;
1904 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1905 tp->stop_requested = 0;
1906
1907 tp->control.stop_step = 0;
1908
1909 tp->control.proceed_to_finish = 0;
1910
1911 /* Discard any remaining commands or status from previous stop. */
1912 bpstat_clear (&tp->control.stop_bpstat);
1913 }
1914
1915 static int
1916 clear_proceed_status_callback (struct thread_info *tp, void *data)
1917 {
1918 if (is_exited (tp->ptid))
1919 return 0;
1920
1921 clear_proceed_status_thread (tp);
1922 return 0;
1923 }
1924
1925 void
1926 clear_proceed_status (void)
1927 {
1928 if (!non_stop)
1929 {
1930 /* In all-stop mode, delete the per-thread status of all
1931 threads, even if inferior_ptid is null_ptid, there may be
1932 threads on the list. E.g., we may be launching a new
1933 process, while selecting the executable. */
1934 iterate_over_threads (clear_proceed_status_callback, NULL);
1935 }
1936
1937 if (!ptid_equal (inferior_ptid, null_ptid))
1938 {
1939 struct inferior *inferior;
1940
1941 if (non_stop)
1942 {
1943 /* If in non-stop mode, only delete the per-thread status of
1944 the current thread. */
1945 clear_proceed_status_thread (inferior_thread ());
1946 }
1947
1948 inferior = current_inferior ();
1949 inferior->control.stop_soon = NO_STOP_QUIETLY;
1950 }
1951
1952 stop_after_trap = 0;
1953
1954 observer_notify_about_to_proceed ();
1955
1956 if (stop_registers)
1957 {
1958 regcache_xfree (stop_registers);
1959 stop_registers = NULL;
1960 }
1961 }
1962
1963 /* Check the current thread against the thread that reported the most recent
1964 event. If a step-over is required return TRUE and set the current thread
1965 to the old thread. Otherwise return FALSE.
1966
1967 This should be suitable for any targets that support threads. */
1968
1969 static int
1970 prepare_to_proceed (int step)
1971 {
1972 ptid_t wait_ptid;
1973 struct target_waitstatus wait_status;
1974 int schedlock_enabled;
1975
1976 /* With non-stop mode on, threads are always handled individually. */
1977 gdb_assert (! non_stop);
1978
1979 /* Get the last target status returned by target_wait(). */
1980 get_last_target_status (&wait_ptid, &wait_status);
1981
1982 /* Make sure we were stopped at a breakpoint. */
1983 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1984 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1985 && wait_status.value.sig != TARGET_SIGNAL_ILL
1986 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1987 && wait_status.value.sig != TARGET_SIGNAL_EMT))
1988 {
1989 return 0;
1990 }
1991
1992 schedlock_enabled = (scheduler_mode == schedlock_on
1993 || (scheduler_mode == schedlock_step
1994 && step));
1995
1996 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1997 if (schedlock_enabled)
1998 return 0;
1999
2000 /* Don't switch over if we're about to resume some other process
2001 other than WAIT_PTID's, and schedule-multiple is off. */
2002 if (!sched_multi
2003 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2004 return 0;
2005
2006 /* Switched over from WAIT_PID. */
2007 if (!ptid_equal (wait_ptid, minus_one_ptid)
2008 && !ptid_equal (inferior_ptid, wait_ptid))
2009 {
2010 struct regcache *regcache = get_thread_regcache (wait_ptid);
2011
2012 if (breakpoint_here_p (get_regcache_aspace (regcache),
2013 regcache_read_pc (regcache)))
2014 {
2015 /* If stepping, remember current thread to switch back to. */
2016 if (step)
2017 deferred_step_ptid = inferior_ptid;
2018
2019 /* Switch back to WAIT_PID thread. */
2020 switch_to_thread (wait_ptid);
2021
2022 if (debug_infrun)
2023 fprintf_unfiltered (gdb_stdlog,
2024 "infrun: prepare_to_proceed (step=%d), "
2025 "switched to [%s]\n",
2026 step, target_pid_to_str (inferior_ptid));
2027
2028 /* We return 1 to indicate that there is a breakpoint here,
2029 so we need to step over it before continuing to avoid
2030 hitting it straight away. */
2031 return 1;
2032 }
2033 }
2034
2035 return 0;
2036 }
2037
2038 /* Basic routine for continuing the program in various fashions.
2039
2040 ADDR is the address to resume at, or -1 for resume where stopped.
2041 SIGGNAL is the signal to give it, or 0 for none,
2042 or -1 for act according to how it stopped.
2043 STEP is nonzero if should trap after one instruction.
2044 -1 means return after that and print nothing.
2045 You should probably set various step_... variables
2046 before calling here, if you are stepping.
2047
2048 You should call clear_proceed_status before calling proceed. */
2049
2050 void
2051 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2052 {
2053 struct regcache *regcache;
2054 struct gdbarch *gdbarch;
2055 struct thread_info *tp;
2056 CORE_ADDR pc;
2057 struct address_space *aspace;
2058 int oneproc = 0;
2059
2060 /* If we're stopped at a fork/vfork, follow the branch set by the
2061 "set follow-fork-mode" command; otherwise, we'll just proceed
2062 resuming the current thread. */
2063 if (!follow_fork ())
2064 {
2065 /* The target for some reason decided not to resume. */
2066 normal_stop ();
2067 if (target_can_async_p ())
2068 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2069 return;
2070 }
2071
2072 /* We'll update this if & when we switch to a new thread. */
2073 previous_inferior_ptid = inferior_ptid;
2074
2075 regcache = get_current_regcache ();
2076 gdbarch = get_regcache_arch (regcache);
2077 aspace = get_regcache_aspace (regcache);
2078 pc = regcache_read_pc (regcache);
2079
2080 if (step > 0)
2081 step_start_function = find_pc_function (pc);
2082 if (step < 0)
2083 stop_after_trap = 1;
2084
2085 if (addr == (CORE_ADDR) -1)
2086 {
2087 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2088 && execution_direction != EXEC_REVERSE)
2089 /* There is a breakpoint at the address we will resume at,
2090 step one instruction before inserting breakpoints so that
2091 we do not stop right away (and report a second hit at this
2092 breakpoint).
2093
2094 Note, we don't do this in reverse, because we won't
2095 actually be executing the breakpoint insn anyway.
2096 We'll be (un-)executing the previous instruction. */
2097
2098 oneproc = 1;
2099 else if (gdbarch_single_step_through_delay_p (gdbarch)
2100 && gdbarch_single_step_through_delay (gdbarch,
2101 get_current_frame ()))
2102 /* We stepped onto an instruction that needs to be stepped
2103 again before re-inserting the breakpoint, do so. */
2104 oneproc = 1;
2105 }
2106 else
2107 {
2108 regcache_write_pc (regcache, addr);
2109 }
2110
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog,
2113 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2114 paddress (gdbarch, addr), siggnal, step);
2115
2116 if (non_stop)
2117 /* In non-stop, each thread is handled individually. The context
2118 must already be set to the right thread here. */
2119 ;
2120 else
2121 {
2122 /* In a multi-threaded task we may select another thread and
2123 then continue or step.
2124
2125 But if the old thread was stopped at a breakpoint, it will
2126 immediately cause another breakpoint stop without any
2127 execution (i.e. it will report a breakpoint hit incorrectly).
2128 So we must step over it first.
2129
2130 prepare_to_proceed checks the current thread against the
2131 thread that reported the most recent event. If a step-over
2132 is required it returns TRUE and sets the current thread to
2133 the old thread. */
2134 if (prepare_to_proceed (step))
2135 oneproc = 1;
2136 }
2137
2138 /* prepare_to_proceed may change the current thread. */
2139 tp = inferior_thread ();
2140
2141 if (oneproc)
2142 {
2143 tp->control.trap_expected = 1;
2144 /* If displaced stepping is enabled, we can step over the
2145 breakpoint without hitting it, so leave all breakpoints
2146 inserted. Otherwise we need to disable all breakpoints, step
2147 one instruction, and then re-add them when that step is
2148 finished. */
2149 if (!use_displaced_stepping (gdbarch))
2150 remove_breakpoints ();
2151 }
2152
2153 /* We can insert breakpoints if we're not trying to step over one,
2154 or if we are stepping over one but we're using displaced stepping
2155 to do so. */
2156 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2157 insert_breakpoints ();
2158
2159 if (!non_stop)
2160 {
2161 /* Pass the last stop signal to the thread we're resuming,
2162 irrespective of whether the current thread is the thread that
2163 got the last event or not. This was historically GDB's
2164 behaviour before keeping a stop_signal per thread. */
2165
2166 struct thread_info *last_thread;
2167 ptid_t last_ptid;
2168 struct target_waitstatus last_status;
2169
2170 get_last_target_status (&last_ptid, &last_status);
2171 if (!ptid_equal (inferior_ptid, last_ptid)
2172 && !ptid_equal (last_ptid, null_ptid)
2173 && !ptid_equal (last_ptid, minus_one_ptid))
2174 {
2175 last_thread = find_thread_ptid (last_ptid);
2176 if (last_thread)
2177 {
2178 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2179 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2180 }
2181 }
2182 }
2183
2184 if (siggnal != TARGET_SIGNAL_DEFAULT)
2185 tp->suspend.stop_signal = siggnal;
2186 /* If this signal should not be seen by program,
2187 give it zero. Used for debugging signals. */
2188 else if (!signal_program[tp->suspend.stop_signal])
2189 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2190
2191 annotate_starting ();
2192
2193 /* Make sure that output from GDB appears before output from the
2194 inferior. */
2195 gdb_flush (gdb_stdout);
2196
2197 /* Refresh prev_pc value just prior to resuming. This used to be
2198 done in stop_stepping, however, setting prev_pc there did not handle
2199 scenarios such as inferior function calls or returning from
2200 a function via the return command. In those cases, the prev_pc
2201 value was not set properly for subsequent commands. The prev_pc value
2202 is used to initialize the starting line number in the ecs. With an
2203 invalid value, the gdb next command ends up stopping at the position
2204 represented by the next line table entry past our start position.
2205 On platforms that generate one line table entry per line, this
2206 is not a problem. However, on the ia64, the compiler generates
2207 extraneous line table entries that do not increase the line number.
2208 When we issue the gdb next command on the ia64 after an inferior call
2209 or a return command, we often end up a few instructions forward, still
2210 within the original line we started.
2211
2212 An attempt was made to refresh the prev_pc at the same time the
2213 execution_control_state is initialized (for instance, just before
2214 waiting for an inferior event). But this approach did not work
2215 because of platforms that use ptrace, where the pc register cannot
2216 be read unless the inferior is stopped. At that point, we are not
2217 guaranteed the inferior is stopped and so the regcache_read_pc() call
2218 can fail. Setting the prev_pc value here ensures the value is updated
2219 correctly when the inferior is stopped. */
2220 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2221
2222 /* Fill in with reasonable starting values. */
2223 init_thread_stepping_state (tp);
2224
2225 /* Reset to normal state. */
2226 init_infwait_state ();
2227
2228 /* Resume inferior. */
2229 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2230
2231 /* Wait for it to stop (if not standalone)
2232 and in any case decode why it stopped, and act accordingly. */
2233 /* Do this only if we are not using the event loop, or if the target
2234 does not support asynchronous execution. */
2235 if (!target_can_async_p ())
2236 {
2237 wait_for_inferior ();
2238 normal_stop ();
2239 }
2240 }
2241 \f
2242
2243 /* Start remote-debugging of a machine over a serial link. */
2244
2245 void
2246 start_remote (int from_tty)
2247 {
2248 struct inferior *inferior;
2249
2250 inferior = current_inferior ();
2251 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2252
2253 /* Always go on waiting for the target, regardless of the mode. */
2254 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2255 indicate to wait_for_inferior that a target should timeout if
2256 nothing is returned (instead of just blocking). Because of this,
2257 targets expecting an immediate response need to, internally, set
2258 things up so that the target_wait() is forced to eventually
2259 timeout. */
2260 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2261 differentiate to its caller what the state of the target is after
2262 the initial open has been performed. Here we're assuming that
2263 the target has stopped. It should be possible to eventually have
2264 target_open() return to the caller an indication that the target
2265 is currently running and GDB state should be set to the same as
2266 for an async run. */
2267 wait_for_inferior ();
2268
2269 /* Now that the inferior has stopped, do any bookkeeping like
2270 loading shared libraries. We want to do this before normal_stop,
2271 so that the displayed frame is up to date. */
2272 post_create_inferior (&current_target, from_tty);
2273
2274 normal_stop ();
2275 }
2276
2277 /* Initialize static vars when a new inferior begins. */
2278
2279 void
2280 init_wait_for_inferior (void)
2281 {
2282 /* These are meaningless until the first time through wait_for_inferior. */
2283
2284 breakpoint_init_inferior (inf_starting);
2285
2286 clear_proceed_status ();
2287
2288 stepping_past_singlestep_breakpoint = 0;
2289 deferred_step_ptid = null_ptid;
2290
2291 target_last_wait_ptid = minus_one_ptid;
2292
2293 previous_inferior_ptid = inferior_ptid;
2294 init_infwait_state ();
2295
2296 /* Discard any skipped inlined frames. */
2297 clear_inline_frame_state (minus_one_ptid);
2298 }
2299
2300 \f
2301 /* This enum encodes possible reasons for doing a target_wait, so that
2302 wfi can call target_wait in one place. (Ultimately the call will be
2303 moved out of the infinite loop entirely.) */
2304
2305 enum infwait_states
2306 {
2307 infwait_normal_state,
2308 infwait_thread_hop_state,
2309 infwait_step_watch_state,
2310 infwait_nonstep_watch_state
2311 };
2312
2313 /* The PTID we'll do a target_wait on.*/
2314 ptid_t waiton_ptid;
2315
2316 /* Current inferior wait state. */
2317 enum infwait_states infwait_state;
2318
2319 /* Data to be passed around while handling an event. This data is
2320 discarded between events. */
2321 struct execution_control_state
2322 {
2323 ptid_t ptid;
2324 /* The thread that got the event, if this was a thread event; NULL
2325 otherwise. */
2326 struct thread_info *event_thread;
2327
2328 struct target_waitstatus ws;
2329 int random_signal;
2330 int stop_func_filled_in;
2331 CORE_ADDR stop_func_start;
2332 CORE_ADDR stop_func_end;
2333 char *stop_func_name;
2334 int new_thread_event;
2335 int wait_some_more;
2336 };
2337
2338 static void handle_inferior_event (struct execution_control_state *ecs);
2339
2340 static void handle_step_into_function (struct gdbarch *gdbarch,
2341 struct execution_control_state *ecs);
2342 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2343 struct execution_control_state *ecs);
2344 static void check_exception_resume (struct execution_control_state *,
2345 struct frame_info *, struct symbol *);
2346
2347 static void stop_stepping (struct execution_control_state *ecs);
2348 static void prepare_to_wait (struct execution_control_state *ecs);
2349 static void keep_going (struct execution_control_state *ecs);
2350
2351 /* Callback for iterate over threads. If the thread is stopped, but
2352 the user/frontend doesn't know about that yet, go through
2353 normal_stop, as if the thread had just stopped now. ARG points at
2354 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2355 ptid_is_pid(PTID) is true, applies to all threads of the process
2356 pointed at by PTID. Otherwise, apply only to the thread pointed by
2357 PTID. */
2358
2359 static int
2360 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2361 {
2362 ptid_t ptid = * (ptid_t *) arg;
2363
2364 if ((ptid_equal (info->ptid, ptid)
2365 || ptid_equal (minus_one_ptid, ptid)
2366 || (ptid_is_pid (ptid)
2367 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2368 && is_running (info->ptid)
2369 && !is_executing (info->ptid))
2370 {
2371 struct cleanup *old_chain;
2372 struct execution_control_state ecss;
2373 struct execution_control_state *ecs = &ecss;
2374
2375 memset (ecs, 0, sizeof (*ecs));
2376
2377 old_chain = make_cleanup_restore_current_thread ();
2378
2379 switch_to_thread (info->ptid);
2380
2381 /* Go through handle_inferior_event/normal_stop, so we always
2382 have consistent output as if the stop event had been
2383 reported. */
2384 ecs->ptid = info->ptid;
2385 ecs->event_thread = find_thread_ptid (info->ptid);
2386 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2387 ecs->ws.value.sig = TARGET_SIGNAL_0;
2388
2389 handle_inferior_event (ecs);
2390
2391 if (!ecs->wait_some_more)
2392 {
2393 struct thread_info *tp;
2394
2395 normal_stop ();
2396
2397 /* Finish off the continuations. */
2398 tp = inferior_thread ();
2399 do_all_intermediate_continuations_thread (tp, 1);
2400 do_all_continuations_thread (tp, 1);
2401 }
2402
2403 do_cleanups (old_chain);
2404 }
2405
2406 return 0;
2407 }
2408
2409 /* This function is attached as a "thread_stop_requested" observer.
2410 Cleanup local state that assumed the PTID was to be resumed, and
2411 report the stop to the frontend. */
2412
2413 static void
2414 infrun_thread_stop_requested (ptid_t ptid)
2415 {
2416 struct displaced_step_inferior_state *displaced;
2417
2418 /* PTID was requested to stop. Remove it from the displaced
2419 stepping queue, so we don't try to resume it automatically. */
2420
2421 for (displaced = displaced_step_inferior_states;
2422 displaced;
2423 displaced = displaced->next)
2424 {
2425 struct displaced_step_request *it, **prev_next_p;
2426
2427 it = displaced->step_request_queue;
2428 prev_next_p = &displaced->step_request_queue;
2429 while (it)
2430 {
2431 if (ptid_match (it->ptid, ptid))
2432 {
2433 *prev_next_p = it->next;
2434 it->next = NULL;
2435 xfree (it);
2436 }
2437 else
2438 {
2439 prev_next_p = &it->next;
2440 }
2441
2442 it = *prev_next_p;
2443 }
2444 }
2445
2446 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2447 }
2448
2449 static void
2450 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2451 {
2452 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2453 nullify_last_target_wait_ptid ();
2454 }
2455
2456 /* Callback for iterate_over_threads. */
2457
2458 static int
2459 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2460 {
2461 if (is_exited (info->ptid))
2462 return 0;
2463
2464 delete_step_resume_breakpoint (info);
2465 delete_exception_resume_breakpoint (info);
2466 return 0;
2467 }
2468
2469 /* In all-stop, delete the step resume breakpoint of any thread that
2470 had one. In non-stop, delete the step resume breakpoint of the
2471 thread that just stopped. */
2472
2473 static void
2474 delete_step_thread_step_resume_breakpoint (void)
2475 {
2476 if (!target_has_execution
2477 || ptid_equal (inferior_ptid, null_ptid))
2478 /* If the inferior has exited, we have already deleted the step
2479 resume breakpoints out of GDB's lists. */
2480 return;
2481
2482 if (non_stop)
2483 {
2484 /* If in non-stop mode, only delete the step-resume or
2485 longjmp-resume breakpoint of the thread that just stopped
2486 stepping. */
2487 struct thread_info *tp = inferior_thread ();
2488
2489 delete_step_resume_breakpoint (tp);
2490 delete_exception_resume_breakpoint (tp);
2491 }
2492 else
2493 /* In all-stop mode, delete all step-resume and longjmp-resume
2494 breakpoints of any thread that had them. */
2495 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2496 }
2497
2498 /* A cleanup wrapper. */
2499
2500 static void
2501 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2502 {
2503 delete_step_thread_step_resume_breakpoint ();
2504 }
2505
2506 /* Pretty print the results of target_wait, for debugging purposes. */
2507
2508 static void
2509 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2510 const struct target_waitstatus *ws)
2511 {
2512 char *status_string = target_waitstatus_to_string (ws);
2513 struct ui_file *tmp_stream = mem_fileopen ();
2514 char *text;
2515
2516 /* The text is split over several lines because it was getting too long.
2517 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2518 output as a unit; we want only one timestamp printed if debug_timestamp
2519 is set. */
2520
2521 fprintf_unfiltered (tmp_stream,
2522 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2523 if (PIDGET (waiton_ptid) != -1)
2524 fprintf_unfiltered (tmp_stream,
2525 " [%s]", target_pid_to_str (waiton_ptid));
2526 fprintf_unfiltered (tmp_stream, ", status) =\n");
2527 fprintf_unfiltered (tmp_stream,
2528 "infrun: %d [%s],\n",
2529 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2530 fprintf_unfiltered (tmp_stream,
2531 "infrun: %s\n",
2532 status_string);
2533
2534 text = ui_file_xstrdup (tmp_stream, NULL);
2535
2536 /* This uses %s in part to handle %'s in the text, but also to avoid
2537 a gcc error: the format attribute requires a string literal. */
2538 fprintf_unfiltered (gdb_stdlog, "%s", text);
2539
2540 xfree (status_string);
2541 xfree (text);
2542 ui_file_delete (tmp_stream);
2543 }
2544
2545 /* Prepare and stabilize the inferior for detaching it. E.g.,
2546 detaching while a thread is displaced stepping is a recipe for
2547 crashing it, as nothing would readjust the PC out of the scratch
2548 pad. */
2549
2550 void
2551 prepare_for_detach (void)
2552 {
2553 struct inferior *inf = current_inferior ();
2554 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2555 struct cleanup *old_chain_1;
2556 struct displaced_step_inferior_state *displaced;
2557
2558 displaced = get_displaced_stepping_state (inf->pid);
2559
2560 /* Is any thread of this process displaced stepping? If not,
2561 there's nothing else to do. */
2562 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2563 return;
2564
2565 if (debug_infrun)
2566 fprintf_unfiltered (gdb_stdlog,
2567 "displaced-stepping in-process while detaching");
2568
2569 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2570 inf->detaching = 1;
2571
2572 while (!ptid_equal (displaced->step_ptid, null_ptid))
2573 {
2574 struct cleanup *old_chain_2;
2575 struct execution_control_state ecss;
2576 struct execution_control_state *ecs;
2577
2578 ecs = &ecss;
2579 memset (ecs, 0, sizeof (*ecs));
2580
2581 overlay_cache_invalid = 1;
2582
2583 /* We have to invalidate the registers BEFORE calling
2584 target_wait because they can be loaded from the target while
2585 in target_wait. This makes remote debugging a bit more
2586 efficient for those targets that provide critical registers
2587 as part of their normal status mechanism. */
2588
2589 registers_changed ();
2590
2591 if (deprecated_target_wait_hook)
2592 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2593 else
2594 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2595
2596 if (debug_infrun)
2597 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2598
2599 /* If an error happens while handling the event, propagate GDB's
2600 knowledge of the executing state to the frontend/user running
2601 state. */
2602 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2603 &minus_one_ptid);
2604
2605 /* In non-stop mode, each thread is handled individually.
2606 Switch early, so the global state is set correctly for this
2607 thread. */
2608 if (non_stop
2609 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2610 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2611 context_switch (ecs->ptid);
2612
2613 /* Now figure out what to do with the result of the result. */
2614 handle_inferior_event (ecs);
2615
2616 /* No error, don't finish the state yet. */
2617 discard_cleanups (old_chain_2);
2618
2619 /* Breakpoints and watchpoints are not installed on the target
2620 at this point, and signals are passed directly to the
2621 inferior, so this must mean the process is gone. */
2622 if (!ecs->wait_some_more)
2623 {
2624 discard_cleanups (old_chain_1);
2625 error (_("Program exited while detaching"));
2626 }
2627 }
2628
2629 discard_cleanups (old_chain_1);
2630 }
2631
2632 /* Wait for control to return from inferior to debugger.
2633
2634 If inferior gets a signal, we may decide to start it up again
2635 instead of returning. That is why there is a loop in this function.
2636 When this function actually returns it means the inferior
2637 should be left stopped and GDB should read more commands. */
2638
2639 void
2640 wait_for_inferior (void)
2641 {
2642 struct cleanup *old_cleanups;
2643 struct execution_control_state ecss;
2644 struct execution_control_state *ecs;
2645
2646 if (debug_infrun)
2647 fprintf_unfiltered
2648 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2649
2650 old_cleanups =
2651 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2652
2653 ecs = &ecss;
2654 memset (ecs, 0, sizeof (*ecs));
2655
2656 while (1)
2657 {
2658 struct cleanup *old_chain;
2659
2660 /* We have to invalidate the registers BEFORE calling target_wait
2661 because they can be loaded from the target while in target_wait.
2662 This makes remote debugging a bit more efficient for those
2663 targets that provide critical registers as part of their normal
2664 status mechanism. */
2665
2666 overlay_cache_invalid = 1;
2667 registers_changed ();
2668
2669 if (deprecated_target_wait_hook)
2670 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2671 else
2672 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2673
2674 if (debug_infrun)
2675 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2676
2677 /* If an error happens while handling the event, propagate GDB's
2678 knowledge of the executing state to the frontend/user running
2679 state. */
2680 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2681
2682 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2683 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2684 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2685
2686 /* Now figure out what to do with the result of the result. */
2687 handle_inferior_event (ecs);
2688
2689 /* No error, don't finish the state yet. */
2690 discard_cleanups (old_chain);
2691
2692 if (!ecs->wait_some_more)
2693 break;
2694 }
2695
2696 do_cleanups (old_cleanups);
2697 }
2698
2699 /* Asynchronous version of wait_for_inferior. It is called by the
2700 event loop whenever a change of state is detected on the file
2701 descriptor corresponding to the target. It can be called more than
2702 once to complete a single execution command. In such cases we need
2703 to keep the state in a global variable ECSS. If it is the last time
2704 that this function is called for a single execution command, then
2705 report to the user that the inferior has stopped, and do the
2706 necessary cleanups. */
2707
2708 void
2709 fetch_inferior_event (void *client_data)
2710 {
2711 struct execution_control_state ecss;
2712 struct execution_control_state *ecs = &ecss;
2713 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2714 struct cleanup *ts_old_chain;
2715 int was_sync = sync_execution;
2716
2717 memset (ecs, 0, sizeof (*ecs));
2718
2719 /* We're handling a live event, so make sure we're doing live
2720 debugging. If we're looking at traceframes while the target is
2721 running, we're going to need to get back to that mode after
2722 handling the event. */
2723 if (non_stop)
2724 {
2725 make_cleanup_restore_current_traceframe ();
2726 set_current_traceframe (-1);
2727 }
2728
2729 if (non_stop)
2730 /* In non-stop mode, the user/frontend should not notice a thread
2731 switch due to internal events. Make sure we reverse to the
2732 user selected thread and frame after handling the event and
2733 running any breakpoint commands. */
2734 make_cleanup_restore_current_thread ();
2735
2736 /* We have to invalidate the registers BEFORE calling target_wait
2737 because they can be loaded from the target while in target_wait.
2738 This makes remote debugging a bit more efficient for those
2739 targets that provide critical registers as part of their normal
2740 status mechanism. */
2741
2742 overlay_cache_invalid = 1;
2743
2744 /* But don't do it if the current thread is already stopped (hence
2745 this is either a delayed event that will result in
2746 TARGET_WAITKIND_IGNORE, or it's an event for another thread (and
2747 we always clear the register and frame caches when the user
2748 switches threads anyway). If we didn't do this, a spurious
2749 delayed event in all-stop mode would make the user lose the
2750 selected frame. */
2751 if (non_stop || is_executing (inferior_ptid))
2752 registers_changed ();
2753
2754 make_cleanup_restore_integer (&execution_direction);
2755 execution_direction = target_execution_direction ();
2756
2757 if (deprecated_target_wait_hook)
2758 ecs->ptid =
2759 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2760 else
2761 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2762
2763 if (debug_infrun)
2764 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2765
2766 if (non_stop
2767 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2768 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2769 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2770 /* In non-stop mode, each thread is handled individually. Switch
2771 early, so the global state is set correctly for this
2772 thread. */
2773 context_switch (ecs->ptid);
2774
2775 /* If an error happens while handling the event, propagate GDB's
2776 knowledge of the executing state to the frontend/user running
2777 state. */
2778 if (!non_stop)
2779 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2780 else
2781 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2782
2783 /* Get executed before make_cleanup_restore_current_thread above to apply
2784 still for the thread which has thrown the exception. */
2785 make_bpstat_clear_actions_cleanup ();
2786
2787 /* Now figure out what to do with the result of the result. */
2788 handle_inferior_event (ecs);
2789
2790 if (!ecs->wait_some_more)
2791 {
2792 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2793
2794 delete_step_thread_step_resume_breakpoint ();
2795
2796 /* We may not find an inferior if this was a process exit. */
2797 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2798 normal_stop ();
2799
2800 if (target_has_execution
2801 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2802 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2803 && ecs->event_thread->step_multi
2804 && ecs->event_thread->control.stop_step)
2805 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2806 else
2807 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2808 }
2809
2810 /* No error, don't finish the thread states yet. */
2811 discard_cleanups (ts_old_chain);
2812
2813 /* Revert thread and frame. */
2814 do_cleanups (old_chain);
2815
2816 /* If the inferior was in sync execution mode, and now isn't,
2817 restore the prompt. */
2818 if (interpreter_async && was_sync && !sync_execution)
2819 display_gdb_prompt (0);
2820 }
2821
2822 /* Record the frame and location we're currently stepping through. */
2823 void
2824 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2825 {
2826 struct thread_info *tp = inferior_thread ();
2827
2828 tp->control.step_frame_id = get_frame_id (frame);
2829 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2830
2831 tp->current_symtab = sal.symtab;
2832 tp->current_line = sal.line;
2833 }
2834
2835 /* Clear context switchable stepping state. */
2836
2837 void
2838 init_thread_stepping_state (struct thread_info *tss)
2839 {
2840 tss->stepping_over_breakpoint = 0;
2841 tss->step_after_step_resume_breakpoint = 0;
2842 tss->stepping_through_solib_after_catch = 0;
2843 tss->stepping_through_solib_catchpoints = NULL;
2844 }
2845
2846 /* Return the cached copy of the last pid/waitstatus returned by
2847 target_wait()/deprecated_target_wait_hook(). The data is actually
2848 cached by handle_inferior_event(), which gets called immediately
2849 after target_wait()/deprecated_target_wait_hook(). */
2850
2851 void
2852 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2853 {
2854 *ptidp = target_last_wait_ptid;
2855 *status = target_last_waitstatus;
2856 }
2857
2858 void
2859 nullify_last_target_wait_ptid (void)
2860 {
2861 target_last_wait_ptid = minus_one_ptid;
2862 }
2863
2864 /* Switch thread contexts. */
2865
2866 static void
2867 context_switch (ptid_t ptid)
2868 {
2869 if (debug_infrun)
2870 {
2871 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2872 target_pid_to_str (inferior_ptid));
2873 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2874 target_pid_to_str (ptid));
2875 }
2876
2877 switch_to_thread (ptid);
2878 }
2879
2880 static void
2881 adjust_pc_after_break (struct execution_control_state *ecs)
2882 {
2883 struct regcache *regcache;
2884 struct gdbarch *gdbarch;
2885 struct address_space *aspace;
2886 CORE_ADDR breakpoint_pc;
2887
2888 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2889 we aren't, just return.
2890
2891 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2892 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2893 implemented by software breakpoints should be handled through the normal
2894 breakpoint layer.
2895
2896 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2897 different signals (SIGILL or SIGEMT for instance), but it is less
2898 clear where the PC is pointing afterwards. It may not match
2899 gdbarch_decr_pc_after_break. I don't know any specific target that
2900 generates these signals at breakpoints (the code has been in GDB since at
2901 least 1992) so I can not guess how to handle them here.
2902
2903 In earlier versions of GDB, a target with
2904 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2905 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2906 target with both of these set in GDB history, and it seems unlikely to be
2907 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2908
2909 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2910 return;
2911
2912 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2913 return;
2914
2915 /* In reverse execution, when a breakpoint is hit, the instruction
2916 under it has already been de-executed. The reported PC always
2917 points at the breakpoint address, so adjusting it further would
2918 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2919 architecture:
2920
2921 B1 0x08000000 : INSN1
2922 B2 0x08000001 : INSN2
2923 0x08000002 : INSN3
2924 PC -> 0x08000003 : INSN4
2925
2926 Say you're stopped at 0x08000003 as above. Reverse continuing
2927 from that point should hit B2 as below. Reading the PC when the
2928 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2929 been de-executed already.
2930
2931 B1 0x08000000 : INSN1
2932 B2 PC -> 0x08000001 : INSN2
2933 0x08000002 : INSN3
2934 0x08000003 : INSN4
2935
2936 We can't apply the same logic as for forward execution, because
2937 we would wrongly adjust the PC to 0x08000000, since there's a
2938 breakpoint at PC - 1. We'd then report a hit on B1, although
2939 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2940 behaviour. */
2941 if (execution_direction == EXEC_REVERSE)
2942 return;
2943
2944 /* If this target does not decrement the PC after breakpoints, then
2945 we have nothing to do. */
2946 regcache = get_thread_regcache (ecs->ptid);
2947 gdbarch = get_regcache_arch (regcache);
2948 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2949 return;
2950
2951 aspace = get_regcache_aspace (regcache);
2952
2953 /* Find the location where (if we've hit a breakpoint) the
2954 breakpoint would be. */
2955 breakpoint_pc = regcache_read_pc (regcache)
2956 - gdbarch_decr_pc_after_break (gdbarch);
2957
2958 /* Check whether there actually is a software breakpoint inserted at
2959 that location.
2960
2961 If in non-stop mode, a race condition is possible where we've
2962 removed a breakpoint, but stop events for that breakpoint were
2963 already queued and arrive later. To suppress those spurious
2964 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2965 and retire them after a number of stop events are reported. */
2966 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2967 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2968 {
2969 struct cleanup *old_cleanups = NULL;
2970
2971 if (RECORD_IS_USED)
2972 old_cleanups = record_gdb_operation_disable_set ();
2973
2974 /* When using hardware single-step, a SIGTRAP is reported for both
2975 a completed single-step and a software breakpoint. Need to
2976 differentiate between the two, as the latter needs adjusting
2977 but the former does not.
2978
2979 The SIGTRAP can be due to a completed hardware single-step only if
2980 - we didn't insert software single-step breakpoints
2981 - the thread to be examined is still the current thread
2982 - this thread is currently being stepped
2983
2984 If any of these events did not occur, we must have stopped due
2985 to hitting a software breakpoint, and have to back up to the
2986 breakpoint address.
2987
2988 As a special case, we could have hardware single-stepped a
2989 software breakpoint. In this case (prev_pc == breakpoint_pc),
2990 we also need to back up to the breakpoint address. */
2991
2992 if (singlestep_breakpoints_inserted_p
2993 || !ptid_equal (ecs->ptid, inferior_ptid)
2994 || !currently_stepping (ecs->event_thread)
2995 || ecs->event_thread->prev_pc == breakpoint_pc)
2996 regcache_write_pc (regcache, breakpoint_pc);
2997
2998 if (RECORD_IS_USED)
2999 do_cleanups (old_cleanups);
3000 }
3001 }
3002
3003 void
3004 init_infwait_state (void)
3005 {
3006 waiton_ptid = pid_to_ptid (-1);
3007 infwait_state = infwait_normal_state;
3008 }
3009
3010 void
3011 error_is_running (void)
3012 {
3013 error (_("Cannot execute this command while "
3014 "the selected thread is running."));
3015 }
3016
3017 void
3018 ensure_not_running (void)
3019 {
3020 if (is_running (inferior_ptid))
3021 error_is_running ();
3022 }
3023
3024 static int
3025 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3026 {
3027 for (frame = get_prev_frame (frame);
3028 frame != NULL;
3029 frame = get_prev_frame (frame))
3030 {
3031 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3032 return 1;
3033 if (get_frame_type (frame) != INLINE_FRAME)
3034 break;
3035 }
3036
3037 return 0;
3038 }
3039
3040 /* Auxiliary function that handles syscall entry/return events.
3041 It returns 1 if the inferior should keep going (and GDB
3042 should ignore the event), or 0 if the event deserves to be
3043 processed. */
3044
3045 static int
3046 handle_syscall_event (struct execution_control_state *ecs)
3047 {
3048 struct regcache *regcache;
3049 struct gdbarch *gdbarch;
3050 int syscall_number;
3051
3052 if (!ptid_equal (ecs->ptid, inferior_ptid))
3053 context_switch (ecs->ptid);
3054
3055 regcache = get_thread_regcache (ecs->ptid);
3056 gdbarch = get_regcache_arch (regcache);
3057 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3058 stop_pc = regcache_read_pc (regcache);
3059
3060 target_last_waitstatus.value.syscall_number = syscall_number;
3061
3062 if (catch_syscall_enabled () > 0
3063 && catching_syscall_number (syscall_number) > 0)
3064 {
3065 if (debug_infrun)
3066 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3067 syscall_number);
3068
3069 ecs->event_thread->control.stop_bpstat
3070 = bpstat_stop_status (get_regcache_aspace (regcache),
3071 stop_pc, ecs->ptid);
3072 ecs->random_signal
3073 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3074
3075 if (!ecs->random_signal)
3076 {
3077 /* Catchpoint hit. */
3078 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3079 return 0;
3080 }
3081 }
3082
3083 /* If no catchpoint triggered for this, then keep going. */
3084 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3085 keep_going (ecs);
3086 return 1;
3087 }
3088
3089 /* Clear the supplied execution_control_state's stop_func_* fields. */
3090
3091 static void
3092 clear_stop_func (struct execution_control_state *ecs)
3093 {
3094 ecs->stop_func_filled_in = 0;
3095 ecs->stop_func_start = 0;
3096 ecs->stop_func_end = 0;
3097 ecs->stop_func_name = NULL;
3098 }
3099
3100 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3101
3102 static void
3103 fill_in_stop_func (struct gdbarch *gdbarch,
3104 struct execution_control_state *ecs)
3105 {
3106 if (!ecs->stop_func_filled_in)
3107 {
3108 /* Don't care about return value; stop_func_start and stop_func_name
3109 will both be 0 if it doesn't work. */
3110 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3111 &ecs->stop_func_start, &ecs->stop_func_end);
3112 ecs->stop_func_start
3113 += gdbarch_deprecated_function_start_offset (gdbarch);
3114
3115 ecs->stop_func_filled_in = 1;
3116 }
3117 }
3118
3119 /* Given an execution control state that has been freshly filled in
3120 by an event from the inferior, figure out what it means and take
3121 appropriate action. */
3122
3123 static void
3124 handle_inferior_event (struct execution_control_state *ecs)
3125 {
3126 struct frame_info *frame;
3127 struct gdbarch *gdbarch;
3128 int stopped_by_watchpoint;
3129 int stepped_after_stopped_by_watchpoint = 0;
3130 struct symtab_and_line stop_pc_sal;
3131 enum stop_kind stop_soon;
3132
3133 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3134 {
3135 /* We had an event in the inferior, but we are not interested in
3136 handling it at this level. The lower layers have already
3137 done what needs to be done, if anything.
3138
3139 One of the possible circumstances for this is when the
3140 inferior produces output for the console. The inferior has
3141 not stopped, and we are ignoring the event. Another possible
3142 circumstance is any event which the lower level knows will be
3143 reported multiple times without an intervening resume. */
3144 if (debug_infrun)
3145 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3146 prepare_to_wait (ecs);
3147 return;
3148 }
3149
3150 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3151 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3152 {
3153 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3154
3155 gdb_assert (inf);
3156 stop_soon = inf->control.stop_soon;
3157 }
3158 else
3159 stop_soon = NO_STOP_QUIETLY;
3160
3161 /* Cache the last pid/waitstatus. */
3162 target_last_wait_ptid = ecs->ptid;
3163 target_last_waitstatus = ecs->ws;
3164
3165 /* Always clear state belonging to the previous time we stopped. */
3166 stop_stack_dummy = STOP_NONE;
3167
3168 /* If it's a new process, add it to the thread database. */
3169
3170 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3171 && !ptid_equal (ecs->ptid, minus_one_ptid)
3172 && !in_thread_list (ecs->ptid));
3173
3174 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3175 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3176 add_thread (ecs->ptid);
3177
3178 ecs->event_thread = find_thread_ptid (ecs->ptid);
3179
3180 /* Dependent on valid ECS->EVENT_THREAD. */
3181 adjust_pc_after_break (ecs);
3182
3183 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3184 reinit_frame_cache ();
3185
3186 breakpoint_retire_moribund ();
3187
3188 /* First, distinguish signals caused by the debugger from signals
3189 that have to do with the program's own actions. Note that
3190 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3191 on the operating system version. Here we detect when a SIGILL or
3192 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3193 something similar for SIGSEGV, since a SIGSEGV will be generated
3194 when we're trying to execute a breakpoint instruction on a
3195 non-executable stack. This happens for call dummy breakpoints
3196 for architectures like SPARC that place call dummies on the
3197 stack. */
3198 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3199 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3200 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3201 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3202 {
3203 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3204
3205 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3206 regcache_read_pc (regcache)))
3207 {
3208 if (debug_infrun)
3209 fprintf_unfiltered (gdb_stdlog,
3210 "infrun: Treating signal as SIGTRAP\n");
3211 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3212 }
3213 }
3214
3215 /* Mark the non-executing threads accordingly. In all-stop, all
3216 threads of all processes are stopped when we get any event
3217 reported. In non-stop mode, only the event thread stops. If
3218 we're handling a process exit in non-stop mode, there's nothing
3219 to do, as threads of the dead process are gone, and threads of
3220 any other process were left running. */
3221 if (!non_stop)
3222 set_executing (minus_one_ptid, 0);
3223 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3224 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3225 set_executing (inferior_ptid, 0);
3226
3227 switch (infwait_state)
3228 {
3229 case infwait_thread_hop_state:
3230 if (debug_infrun)
3231 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3232 break;
3233
3234 case infwait_normal_state:
3235 if (debug_infrun)
3236 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3237 break;
3238
3239 case infwait_step_watch_state:
3240 if (debug_infrun)
3241 fprintf_unfiltered (gdb_stdlog,
3242 "infrun: infwait_step_watch_state\n");
3243
3244 stepped_after_stopped_by_watchpoint = 1;
3245 break;
3246
3247 case infwait_nonstep_watch_state:
3248 if (debug_infrun)
3249 fprintf_unfiltered (gdb_stdlog,
3250 "infrun: infwait_nonstep_watch_state\n");
3251 insert_breakpoints ();
3252
3253 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3254 handle things like signals arriving and other things happening
3255 in combination correctly? */
3256 stepped_after_stopped_by_watchpoint = 1;
3257 break;
3258
3259 default:
3260 internal_error (__FILE__, __LINE__, _("bad switch"));
3261 }
3262
3263 infwait_state = infwait_normal_state;
3264 waiton_ptid = pid_to_ptid (-1);
3265
3266 switch (ecs->ws.kind)
3267 {
3268 case TARGET_WAITKIND_LOADED:
3269 if (debug_infrun)
3270 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3271 /* Ignore gracefully during startup of the inferior, as it might
3272 be the shell which has just loaded some objects, otherwise
3273 add the symbols for the newly loaded objects. Also ignore at
3274 the beginning of an attach or remote session; we will query
3275 the full list of libraries once the connection is
3276 established. */
3277 if (stop_soon == NO_STOP_QUIETLY)
3278 {
3279 /* Check for any newly added shared libraries if we're
3280 supposed to be adding them automatically. Switch
3281 terminal for any messages produced by
3282 breakpoint_re_set. */
3283 target_terminal_ours_for_output ();
3284 /* NOTE: cagney/2003-11-25: Make certain that the target
3285 stack's section table is kept up-to-date. Architectures,
3286 (e.g., PPC64), use the section table to perform
3287 operations such as address => section name and hence
3288 require the table to contain all sections (including
3289 those found in shared libraries). */
3290 #ifdef SOLIB_ADD
3291 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3292 #else
3293 solib_add (NULL, 0, &current_target, auto_solib_add);
3294 #endif
3295 target_terminal_inferior ();
3296
3297 /* If requested, stop when the dynamic linker notifies
3298 gdb of events. This allows the user to get control
3299 and place breakpoints in initializer routines for
3300 dynamically loaded objects (among other things). */
3301 if (stop_on_solib_events)
3302 {
3303 /* Make sure we print "Stopped due to solib-event" in
3304 normal_stop. */
3305 stop_print_frame = 1;
3306
3307 stop_stepping (ecs);
3308 return;
3309 }
3310
3311 /* NOTE drow/2007-05-11: This might be a good place to check
3312 for "catch load". */
3313 }
3314
3315 /* If we are skipping through a shell, or through shared library
3316 loading that we aren't interested in, resume the program. If
3317 we're running the program normally, also resume. But stop if
3318 we're attaching or setting up a remote connection. */
3319 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3320 {
3321 /* Loading of shared libraries might have changed breakpoint
3322 addresses. Make sure new breakpoints are inserted. */
3323 if (stop_soon == NO_STOP_QUIETLY
3324 && !breakpoints_always_inserted_mode ())
3325 insert_breakpoints ();
3326 resume (0, TARGET_SIGNAL_0);
3327 prepare_to_wait (ecs);
3328 return;
3329 }
3330
3331 break;
3332
3333 case TARGET_WAITKIND_SPURIOUS:
3334 if (debug_infrun)
3335 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3336 resume (0, TARGET_SIGNAL_0);
3337 prepare_to_wait (ecs);
3338 return;
3339
3340 case TARGET_WAITKIND_EXITED:
3341 if (debug_infrun)
3342 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3343 inferior_ptid = ecs->ptid;
3344 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3345 set_current_program_space (current_inferior ()->pspace);
3346 handle_vfork_child_exec_or_exit (0);
3347 target_terminal_ours (); /* Must do this before mourn anyway. */
3348 print_exited_reason (ecs->ws.value.integer);
3349
3350 /* Record the exit code in the convenience variable $_exitcode, so
3351 that the user can inspect this again later. */
3352 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3353 (LONGEST) ecs->ws.value.integer);
3354
3355 /* Also record this in the inferior itself. */
3356 current_inferior ()->has_exit_code = 1;
3357 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3358
3359 gdb_flush (gdb_stdout);
3360 target_mourn_inferior ();
3361 singlestep_breakpoints_inserted_p = 0;
3362 cancel_single_step_breakpoints ();
3363 stop_print_frame = 0;
3364 stop_stepping (ecs);
3365 return;
3366
3367 case TARGET_WAITKIND_SIGNALLED:
3368 if (debug_infrun)
3369 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3370 inferior_ptid = ecs->ptid;
3371 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3372 set_current_program_space (current_inferior ()->pspace);
3373 handle_vfork_child_exec_or_exit (0);
3374 stop_print_frame = 0;
3375 target_terminal_ours (); /* Must do this before mourn anyway. */
3376
3377 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3378 reach here unless the inferior is dead. However, for years
3379 target_kill() was called here, which hints that fatal signals aren't
3380 really fatal on some systems. If that's true, then some changes
3381 may be needed. */
3382 target_mourn_inferior ();
3383
3384 print_signal_exited_reason (ecs->ws.value.sig);
3385 singlestep_breakpoints_inserted_p = 0;
3386 cancel_single_step_breakpoints ();
3387 stop_stepping (ecs);
3388 return;
3389
3390 /* The following are the only cases in which we keep going;
3391 the above cases end in a continue or goto. */
3392 case TARGET_WAITKIND_FORKED:
3393 case TARGET_WAITKIND_VFORKED:
3394 if (debug_infrun)
3395 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3396
3397 if (!ptid_equal (ecs->ptid, inferior_ptid))
3398 {
3399 context_switch (ecs->ptid);
3400 reinit_frame_cache ();
3401 }
3402
3403 /* Immediately detach breakpoints from the child before there's
3404 any chance of letting the user delete breakpoints from the
3405 breakpoint lists. If we don't do this early, it's easy to
3406 leave left over traps in the child, vis: "break foo; catch
3407 fork; c; <fork>; del; c; <child calls foo>". We only follow
3408 the fork on the last `continue', and by that time the
3409 breakpoint at "foo" is long gone from the breakpoint table.
3410 If we vforked, then we don't need to unpatch here, since both
3411 parent and child are sharing the same memory pages; we'll
3412 need to unpatch at follow/detach time instead to be certain
3413 that new breakpoints added between catchpoint hit time and
3414 vfork follow are detached. */
3415 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3416 {
3417 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3418
3419 /* This won't actually modify the breakpoint list, but will
3420 physically remove the breakpoints from the child. */
3421 detach_breakpoints (child_pid);
3422 }
3423
3424 if (singlestep_breakpoints_inserted_p)
3425 {
3426 /* Pull the single step breakpoints out of the target. */
3427 remove_single_step_breakpoints ();
3428 singlestep_breakpoints_inserted_p = 0;
3429 }
3430
3431 /* In case the event is caught by a catchpoint, remember that
3432 the event is to be followed at the next resume of the thread,
3433 and not immediately. */
3434 ecs->event_thread->pending_follow = ecs->ws;
3435
3436 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3437
3438 ecs->event_thread->control.stop_bpstat
3439 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3440 stop_pc, ecs->ptid);
3441
3442 /* Note that we're interested in knowing the bpstat actually
3443 causes a stop, not just if it may explain the signal.
3444 Software watchpoints, for example, always appear in the
3445 bpstat. */
3446 ecs->random_signal
3447 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3448
3449 /* If no catchpoint triggered for this, then keep going. */
3450 if (ecs->random_signal)
3451 {
3452 ptid_t parent;
3453 ptid_t child;
3454 int should_resume;
3455 int follow_child
3456 = (follow_fork_mode_string == follow_fork_mode_child);
3457
3458 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3459
3460 should_resume = follow_fork ();
3461
3462 parent = ecs->ptid;
3463 child = ecs->ws.value.related_pid;
3464
3465 /* In non-stop mode, also resume the other branch. */
3466 if (non_stop && !detach_fork)
3467 {
3468 if (follow_child)
3469 switch_to_thread (parent);
3470 else
3471 switch_to_thread (child);
3472
3473 ecs->event_thread = inferior_thread ();
3474 ecs->ptid = inferior_ptid;
3475 keep_going (ecs);
3476 }
3477
3478 if (follow_child)
3479 switch_to_thread (child);
3480 else
3481 switch_to_thread (parent);
3482
3483 ecs->event_thread = inferior_thread ();
3484 ecs->ptid = inferior_ptid;
3485
3486 if (should_resume)
3487 keep_going (ecs);
3488 else
3489 stop_stepping (ecs);
3490 return;
3491 }
3492 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3493 goto process_event_stop_test;
3494
3495 case TARGET_WAITKIND_VFORK_DONE:
3496 /* Done with the shared memory region. Re-insert breakpoints in
3497 the parent, and keep going. */
3498
3499 if (debug_infrun)
3500 fprintf_unfiltered (gdb_stdlog,
3501 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3502
3503 if (!ptid_equal (ecs->ptid, inferior_ptid))
3504 context_switch (ecs->ptid);
3505
3506 current_inferior ()->waiting_for_vfork_done = 0;
3507 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3508 /* This also takes care of reinserting breakpoints in the
3509 previously locked inferior. */
3510 keep_going (ecs);
3511 return;
3512
3513 case TARGET_WAITKIND_EXECD:
3514 if (debug_infrun)
3515 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3516
3517 if (!ptid_equal (ecs->ptid, inferior_ptid))
3518 {
3519 context_switch (ecs->ptid);
3520 reinit_frame_cache ();
3521 }
3522
3523 singlestep_breakpoints_inserted_p = 0;
3524 cancel_single_step_breakpoints ();
3525
3526 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3527
3528 /* Do whatever is necessary to the parent branch of the vfork. */
3529 handle_vfork_child_exec_or_exit (1);
3530
3531 /* This causes the eventpoints and symbol table to be reset.
3532 Must do this now, before trying to determine whether to
3533 stop. */
3534 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3535
3536 ecs->event_thread->control.stop_bpstat
3537 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3538 stop_pc, ecs->ptid);
3539 ecs->random_signal
3540 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3541
3542 /* Note that this may be referenced from inside
3543 bpstat_stop_status above, through inferior_has_execd. */
3544 xfree (ecs->ws.value.execd_pathname);
3545 ecs->ws.value.execd_pathname = NULL;
3546
3547 /* If no catchpoint triggered for this, then keep going. */
3548 if (ecs->random_signal)
3549 {
3550 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3551 keep_going (ecs);
3552 return;
3553 }
3554 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3555 goto process_event_stop_test;
3556
3557 /* Be careful not to try to gather much state about a thread
3558 that's in a syscall. It's frequently a losing proposition. */
3559 case TARGET_WAITKIND_SYSCALL_ENTRY:
3560 if (debug_infrun)
3561 fprintf_unfiltered (gdb_stdlog,
3562 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3563 /* Getting the current syscall number. */
3564 if (handle_syscall_event (ecs) != 0)
3565 return;
3566 goto process_event_stop_test;
3567
3568 /* Before examining the threads further, step this thread to
3569 get it entirely out of the syscall. (We get notice of the
3570 event when the thread is just on the verge of exiting a
3571 syscall. Stepping one instruction seems to get it back
3572 into user code.) */
3573 case TARGET_WAITKIND_SYSCALL_RETURN:
3574 if (debug_infrun)
3575 fprintf_unfiltered (gdb_stdlog,
3576 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3577 if (handle_syscall_event (ecs) != 0)
3578 return;
3579 goto process_event_stop_test;
3580
3581 case TARGET_WAITKIND_STOPPED:
3582 if (debug_infrun)
3583 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3584 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3585 break;
3586
3587 case TARGET_WAITKIND_NO_HISTORY:
3588 /* Reverse execution: target ran out of history info. */
3589 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3590 print_no_history_reason ();
3591 stop_stepping (ecs);
3592 return;
3593 }
3594
3595 if (ecs->new_thread_event)
3596 {
3597 if (non_stop)
3598 /* Non-stop assumes that the target handles adding new threads
3599 to the thread list. */
3600 internal_error (__FILE__, __LINE__,
3601 "targets should add new threads to the thread "
3602 "list themselves in non-stop mode.");
3603
3604 /* We may want to consider not doing a resume here in order to
3605 give the user a chance to play with the new thread. It might
3606 be good to make that a user-settable option. */
3607
3608 /* At this point, all threads are stopped (happens automatically
3609 in either the OS or the native code). Therefore we need to
3610 continue all threads in order to make progress. */
3611
3612 if (!ptid_equal (ecs->ptid, inferior_ptid))
3613 context_switch (ecs->ptid);
3614 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3615 prepare_to_wait (ecs);
3616 return;
3617 }
3618
3619 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3620 {
3621 /* Do we need to clean up the state of a thread that has
3622 completed a displaced single-step? (Doing so usually affects
3623 the PC, so do it here, before we set stop_pc.) */
3624 displaced_step_fixup (ecs->ptid,
3625 ecs->event_thread->suspend.stop_signal);
3626
3627 /* If we either finished a single-step or hit a breakpoint, but
3628 the user wanted this thread to be stopped, pretend we got a
3629 SIG0 (generic unsignaled stop). */
3630
3631 if (ecs->event_thread->stop_requested
3632 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3633 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3634 }
3635
3636 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3637
3638 if (debug_infrun)
3639 {
3640 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3641 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3642 struct cleanup *old_chain = save_inferior_ptid ();
3643
3644 inferior_ptid = ecs->ptid;
3645
3646 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3647 paddress (gdbarch, stop_pc));
3648 if (target_stopped_by_watchpoint ())
3649 {
3650 CORE_ADDR addr;
3651
3652 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3653
3654 if (target_stopped_data_address (&current_target, &addr))
3655 fprintf_unfiltered (gdb_stdlog,
3656 "infrun: stopped data address = %s\n",
3657 paddress (gdbarch, addr));
3658 else
3659 fprintf_unfiltered (gdb_stdlog,
3660 "infrun: (no data address available)\n");
3661 }
3662
3663 do_cleanups (old_chain);
3664 }
3665
3666 if (stepping_past_singlestep_breakpoint)
3667 {
3668 gdb_assert (singlestep_breakpoints_inserted_p);
3669 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3670 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3671
3672 stepping_past_singlestep_breakpoint = 0;
3673
3674 /* We've either finished single-stepping past the single-step
3675 breakpoint, or stopped for some other reason. It would be nice if
3676 we could tell, but we can't reliably. */
3677 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3678 {
3679 if (debug_infrun)
3680 fprintf_unfiltered (gdb_stdlog,
3681 "infrun: stepping_past_"
3682 "singlestep_breakpoint\n");
3683 /* Pull the single step breakpoints out of the target. */
3684 remove_single_step_breakpoints ();
3685 singlestep_breakpoints_inserted_p = 0;
3686
3687 ecs->random_signal = 0;
3688 ecs->event_thread->control.trap_expected = 0;
3689
3690 context_switch (saved_singlestep_ptid);
3691 if (deprecated_context_hook)
3692 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3693
3694 resume (1, TARGET_SIGNAL_0);
3695 prepare_to_wait (ecs);
3696 return;
3697 }
3698 }
3699
3700 if (!ptid_equal (deferred_step_ptid, null_ptid))
3701 {
3702 /* In non-stop mode, there's never a deferred_step_ptid set. */
3703 gdb_assert (!non_stop);
3704
3705 /* If we stopped for some other reason than single-stepping, ignore
3706 the fact that we were supposed to switch back. */
3707 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3708 {
3709 if (debug_infrun)
3710 fprintf_unfiltered (gdb_stdlog,
3711 "infrun: handling deferred step\n");
3712
3713 /* Pull the single step breakpoints out of the target. */
3714 if (singlestep_breakpoints_inserted_p)
3715 {
3716 remove_single_step_breakpoints ();
3717 singlestep_breakpoints_inserted_p = 0;
3718 }
3719
3720 ecs->event_thread->control.trap_expected = 0;
3721
3722 /* Note: We do not call context_switch at this point, as the
3723 context is already set up for stepping the original thread. */
3724 switch_to_thread (deferred_step_ptid);
3725 deferred_step_ptid = null_ptid;
3726 /* Suppress spurious "Switching to ..." message. */
3727 previous_inferior_ptid = inferior_ptid;
3728
3729 resume (1, TARGET_SIGNAL_0);
3730 prepare_to_wait (ecs);
3731 return;
3732 }
3733
3734 deferred_step_ptid = null_ptid;
3735 }
3736
3737 /* See if a thread hit a thread-specific breakpoint that was meant for
3738 another thread. If so, then step that thread past the breakpoint,
3739 and continue it. */
3740
3741 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3742 {
3743 int thread_hop_needed = 0;
3744 struct address_space *aspace =
3745 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3746
3747 /* Check if a regular breakpoint has been hit before checking
3748 for a potential single step breakpoint. Otherwise, GDB will
3749 not see this breakpoint hit when stepping onto breakpoints. */
3750 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3751 {
3752 ecs->random_signal = 0;
3753 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3754 thread_hop_needed = 1;
3755 }
3756 else if (singlestep_breakpoints_inserted_p)
3757 {
3758 /* We have not context switched yet, so this should be true
3759 no matter which thread hit the singlestep breakpoint. */
3760 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3761 if (debug_infrun)
3762 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3763 "trap for %s\n",
3764 target_pid_to_str (ecs->ptid));
3765
3766 ecs->random_signal = 0;
3767 /* The call to in_thread_list is necessary because PTIDs sometimes
3768 change when we go from single-threaded to multi-threaded. If
3769 the singlestep_ptid is still in the list, assume that it is
3770 really different from ecs->ptid. */
3771 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3772 && in_thread_list (singlestep_ptid))
3773 {
3774 /* If the PC of the thread we were trying to single-step
3775 has changed, discard this event (which we were going
3776 to ignore anyway), and pretend we saw that thread
3777 trap. This prevents us continuously moving the
3778 single-step breakpoint forward, one instruction at a
3779 time. If the PC has changed, then the thread we were
3780 trying to single-step has trapped or been signalled,
3781 but the event has not been reported to GDB yet.
3782
3783 There might be some cases where this loses signal
3784 information, if a signal has arrived at exactly the
3785 same time that the PC changed, but this is the best
3786 we can do with the information available. Perhaps we
3787 should arrange to report all events for all threads
3788 when they stop, or to re-poll the remote looking for
3789 this particular thread (i.e. temporarily enable
3790 schedlock). */
3791
3792 CORE_ADDR new_singlestep_pc
3793 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3794
3795 if (new_singlestep_pc != singlestep_pc)
3796 {
3797 enum target_signal stop_signal;
3798
3799 if (debug_infrun)
3800 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3801 " but expected thread advanced also\n");
3802
3803 /* The current context still belongs to
3804 singlestep_ptid. Don't swap here, since that's
3805 the context we want to use. Just fudge our
3806 state and continue. */
3807 stop_signal = ecs->event_thread->suspend.stop_signal;
3808 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3809 ecs->ptid = singlestep_ptid;
3810 ecs->event_thread = find_thread_ptid (ecs->ptid);
3811 ecs->event_thread->suspend.stop_signal = stop_signal;
3812 stop_pc = new_singlestep_pc;
3813 }
3814 else
3815 {
3816 if (debug_infrun)
3817 fprintf_unfiltered (gdb_stdlog,
3818 "infrun: unexpected thread\n");
3819
3820 thread_hop_needed = 1;
3821 stepping_past_singlestep_breakpoint = 1;
3822 saved_singlestep_ptid = singlestep_ptid;
3823 }
3824 }
3825 }
3826
3827 if (thread_hop_needed)
3828 {
3829 struct regcache *thread_regcache;
3830 int remove_status = 0;
3831
3832 if (debug_infrun)
3833 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3834
3835 /* Switch context before touching inferior memory, the
3836 previous thread may have exited. */
3837 if (!ptid_equal (inferior_ptid, ecs->ptid))
3838 context_switch (ecs->ptid);
3839
3840 /* Saw a breakpoint, but it was hit by the wrong thread.
3841 Just continue. */
3842
3843 if (singlestep_breakpoints_inserted_p)
3844 {
3845 /* Pull the single step breakpoints out of the target. */
3846 remove_single_step_breakpoints ();
3847 singlestep_breakpoints_inserted_p = 0;
3848 }
3849
3850 /* If the arch can displace step, don't remove the
3851 breakpoints. */
3852 thread_regcache = get_thread_regcache (ecs->ptid);
3853 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3854 remove_status = remove_breakpoints ();
3855
3856 /* Did we fail to remove breakpoints? If so, try
3857 to set the PC past the bp. (There's at least
3858 one situation in which we can fail to remove
3859 the bp's: On HP-UX's that use ttrace, we can't
3860 change the address space of a vforking child
3861 process until the child exits (well, okay, not
3862 then either :-) or execs. */
3863 if (remove_status != 0)
3864 error (_("Cannot step over breakpoint hit in wrong thread"));
3865 else
3866 { /* Single step */
3867 if (!non_stop)
3868 {
3869 /* Only need to require the next event from this
3870 thread in all-stop mode. */
3871 waiton_ptid = ecs->ptid;
3872 infwait_state = infwait_thread_hop_state;
3873 }
3874
3875 ecs->event_thread->stepping_over_breakpoint = 1;
3876 keep_going (ecs);
3877 return;
3878 }
3879 }
3880 else if (singlestep_breakpoints_inserted_p)
3881 {
3882 ecs->random_signal = 0;
3883 }
3884 }
3885 else
3886 ecs->random_signal = 1;
3887
3888 /* See if something interesting happened to the non-current thread. If
3889 so, then switch to that thread. */
3890 if (!ptid_equal (ecs->ptid, inferior_ptid))
3891 {
3892 if (debug_infrun)
3893 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3894
3895 context_switch (ecs->ptid);
3896
3897 if (deprecated_context_hook)
3898 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3899 }
3900
3901 /* At this point, get hold of the now-current thread's frame. */
3902 frame = get_current_frame ();
3903 gdbarch = get_frame_arch (frame);
3904
3905 if (singlestep_breakpoints_inserted_p)
3906 {
3907 /* Pull the single step breakpoints out of the target. */
3908 remove_single_step_breakpoints ();
3909 singlestep_breakpoints_inserted_p = 0;
3910 }
3911
3912 if (stepped_after_stopped_by_watchpoint)
3913 stopped_by_watchpoint = 0;
3914 else
3915 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3916
3917 /* If necessary, step over this watchpoint. We'll be back to display
3918 it in a moment. */
3919 if (stopped_by_watchpoint
3920 && (target_have_steppable_watchpoint
3921 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3922 {
3923 /* At this point, we are stopped at an instruction which has
3924 attempted to write to a piece of memory under control of
3925 a watchpoint. The instruction hasn't actually executed
3926 yet. If we were to evaluate the watchpoint expression
3927 now, we would get the old value, and therefore no change
3928 would seem to have occurred.
3929
3930 In order to make watchpoints work `right', we really need
3931 to complete the memory write, and then evaluate the
3932 watchpoint expression. We do this by single-stepping the
3933 target.
3934
3935 It may not be necessary to disable the watchpoint to stop over
3936 it. For example, the PA can (with some kernel cooperation)
3937 single step over a watchpoint without disabling the watchpoint.
3938
3939 It is far more common to need to disable a watchpoint to step
3940 the inferior over it. If we have non-steppable watchpoints,
3941 we must disable the current watchpoint; it's simplest to
3942 disable all watchpoints and breakpoints. */
3943 int hw_step = 1;
3944
3945 if (!target_have_steppable_watchpoint)
3946 {
3947 remove_breakpoints ();
3948 /* See comment in resume why we need to stop bypassing signals
3949 while breakpoints have been removed. */
3950 target_pass_signals (0, NULL);
3951 }
3952 /* Single step */
3953 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3954 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3955 waiton_ptid = ecs->ptid;
3956 if (target_have_steppable_watchpoint)
3957 infwait_state = infwait_step_watch_state;
3958 else
3959 infwait_state = infwait_nonstep_watch_state;
3960 prepare_to_wait (ecs);
3961 return;
3962 }
3963
3964 clear_stop_func (ecs);
3965 ecs->event_thread->stepping_over_breakpoint = 0;
3966 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3967 ecs->event_thread->control.stop_step = 0;
3968 stop_print_frame = 1;
3969 ecs->random_signal = 0;
3970 stopped_by_random_signal = 0;
3971
3972 /* Hide inlined functions starting here, unless we just performed stepi or
3973 nexti. After stepi and nexti, always show the innermost frame (not any
3974 inline function call sites). */
3975 if (ecs->event_thread->control.step_range_end != 1)
3976 skip_inline_frames (ecs->ptid);
3977
3978 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3979 && ecs->event_thread->control.trap_expected
3980 && gdbarch_single_step_through_delay_p (gdbarch)
3981 && currently_stepping (ecs->event_thread))
3982 {
3983 /* We're trying to step off a breakpoint. Turns out that we're
3984 also on an instruction that needs to be stepped multiple
3985 times before it's been fully executing. E.g., architectures
3986 with a delay slot. It needs to be stepped twice, once for
3987 the instruction and once for the delay slot. */
3988 int step_through_delay
3989 = gdbarch_single_step_through_delay (gdbarch, frame);
3990
3991 if (debug_infrun && step_through_delay)
3992 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3993 if (ecs->event_thread->control.step_range_end == 0
3994 && step_through_delay)
3995 {
3996 /* The user issued a continue when stopped at a breakpoint.
3997 Set up for another trap and get out of here. */
3998 ecs->event_thread->stepping_over_breakpoint = 1;
3999 keep_going (ecs);
4000 return;
4001 }
4002 else if (step_through_delay)
4003 {
4004 /* The user issued a step when stopped at a breakpoint.
4005 Maybe we should stop, maybe we should not - the delay
4006 slot *might* correspond to a line of source. In any
4007 case, don't decide that here, just set
4008 ecs->stepping_over_breakpoint, making sure we
4009 single-step again before breakpoints are re-inserted. */
4010 ecs->event_thread->stepping_over_breakpoint = 1;
4011 }
4012 }
4013
4014 /* Look at the cause of the stop, and decide what to do.
4015 The alternatives are:
4016 1) stop_stepping and return; to really stop and return to the debugger,
4017 2) keep_going and return to start up again
4018 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4019 3) set ecs->random_signal to 1, and the decision between 1 and 2
4020 will be made according to the signal handling tables. */
4021
4022 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4023 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4024 || stop_soon == STOP_QUIETLY_REMOTE)
4025 {
4026 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4027 && stop_after_trap)
4028 {
4029 if (debug_infrun)
4030 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4031 stop_print_frame = 0;
4032 stop_stepping (ecs);
4033 return;
4034 }
4035
4036 /* This is originated from start_remote(), start_inferior() and
4037 shared libraries hook functions. */
4038 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4039 {
4040 if (debug_infrun)
4041 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4042 stop_stepping (ecs);
4043 return;
4044 }
4045
4046 /* This originates from attach_command(). We need to overwrite
4047 the stop_signal here, because some kernels don't ignore a
4048 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4049 See more comments in inferior.h. On the other hand, if we
4050 get a non-SIGSTOP, report it to the user - assume the backend
4051 will handle the SIGSTOP if it should show up later.
4052
4053 Also consider that the attach is complete when we see a
4054 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4055 target extended-remote report it instead of a SIGSTOP
4056 (e.g. gdbserver). We already rely on SIGTRAP being our
4057 signal, so this is no exception.
4058
4059 Also consider that the attach is complete when we see a
4060 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4061 the target to stop all threads of the inferior, in case the
4062 low level attach operation doesn't stop them implicitly. If
4063 they weren't stopped implicitly, then the stub will report a
4064 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4065 other than GDB's request. */
4066 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4067 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4068 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4069 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4070 {
4071 stop_stepping (ecs);
4072 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4073 return;
4074 }
4075
4076 /* See if there is a breakpoint at the current PC. */
4077 ecs->event_thread->control.stop_bpstat
4078 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4079 stop_pc, ecs->ptid);
4080
4081 /* Following in case break condition called a
4082 function. */
4083 stop_print_frame = 1;
4084
4085 /* This is where we handle "moribund" watchpoints. Unlike
4086 software breakpoints traps, hardware watchpoint traps are
4087 always distinguishable from random traps. If no high-level
4088 watchpoint is associated with the reported stop data address
4089 anymore, then the bpstat does not explain the signal ---
4090 simply make sure to ignore it if `stopped_by_watchpoint' is
4091 set. */
4092
4093 if (debug_infrun
4094 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4095 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4096 && stopped_by_watchpoint)
4097 fprintf_unfiltered (gdb_stdlog,
4098 "infrun: no user watchpoint explains "
4099 "watchpoint SIGTRAP, ignoring\n");
4100
4101 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4102 at one stage in the past included checks for an inferior
4103 function call's call dummy's return breakpoint. The original
4104 comment, that went with the test, read:
4105
4106 ``End of a stack dummy. Some systems (e.g. Sony news) give
4107 another signal besides SIGTRAP, so check here as well as
4108 above.''
4109
4110 If someone ever tries to get call dummys on a
4111 non-executable stack to work (where the target would stop
4112 with something like a SIGSEGV), then those tests might need
4113 to be re-instated. Given, however, that the tests were only
4114 enabled when momentary breakpoints were not being used, I
4115 suspect that it won't be the case.
4116
4117 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4118 be necessary for call dummies on a non-executable stack on
4119 SPARC. */
4120
4121 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4122 ecs->random_signal
4123 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4124 || stopped_by_watchpoint
4125 || ecs->event_thread->control.trap_expected
4126 || (ecs->event_thread->control.step_range_end
4127 && (ecs->event_thread->control.step_resume_breakpoint
4128 == NULL)));
4129 else
4130 {
4131 ecs->random_signal = !bpstat_explains_signal
4132 (ecs->event_thread->control.stop_bpstat);
4133 if (!ecs->random_signal)
4134 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4135 }
4136 }
4137
4138 /* When we reach this point, we've pretty much decided
4139 that the reason for stopping must've been a random
4140 (unexpected) signal. */
4141
4142 else
4143 ecs->random_signal = 1;
4144
4145 process_event_stop_test:
4146
4147 /* Re-fetch current thread's frame in case we did a
4148 "goto process_event_stop_test" above. */
4149 frame = get_current_frame ();
4150 gdbarch = get_frame_arch (frame);
4151
4152 /* For the program's own signals, act according to
4153 the signal handling tables. */
4154
4155 if (ecs->random_signal)
4156 {
4157 /* Signal not for debugging purposes. */
4158 int printed = 0;
4159 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4160
4161 if (debug_infrun)
4162 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4163 ecs->event_thread->suspend.stop_signal);
4164
4165 stopped_by_random_signal = 1;
4166
4167 if (signal_print[ecs->event_thread->suspend.stop_signal])
4168 {
4169 printed = 1;
4170 target_terminal_ours_for_output ();
4171 print_signal_received_reason
4172 (ecs->event_thread->suspend.stop_signal);
4173 }
4174 /* Always stop on signals if we're either just gaining control
4175 of the program, or the user explicitly requested this thread
4176 to remain stopped. */
4177 if (stop_soon != NO_STOP_QUIETLY
4178 || ecs->event_thread->stop_requested
4179 || (!inf->detaching
4180 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4181 {
4182 stop_stepping (ecs);
4183 return;
4184 }
4185 /* If not going to stop, give terminal back
4186 if we took it away. */
4187 else if (printed)
4188 target_terminal_inferior ();
4189
4190 /* Clear the signal if it should not be passed. */
4191 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4192 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4193
4194 if (ecs->event_thread->prev_pc == stop_pc
4195 && ecs->event_thread->control.trap_expected
4196 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4197 {
4198 /* We were just starting a new sequence, attempting to
4199 single-step off of a breakpoint and expecting a SIGTRAP.
4200 Instead this signal arrives. This signal will take us out
4201 of the stepping range so GDB needs to remember to, when
4202 the signal handler returns, resume stepping off that
4203 breakpoint. */
4204 /* To simplify things, "continue" is forced to use the same
4205 code paths as single-step - set a breakpoint at the
4206 signal return address and then, once hit, step off that
4207 breakpoint. */
4208 if (debug_infrun)
4209 fprintf_unfiltered (gdb_stdlog,
4210 "infrun: signal arrived while stepping over "
4211 "breakpoint\n");
4212
4213 insert_hp_step_resume_breakpoint_at_frame (frame);
4214 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4215 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4216 ecs->event_thread->control.trap_expected = 0;
4217 keep_going (ecs);
4218 return;
4219 }
4220
4221 if (ecs->event_thread->control.step_range_end != 0
4222 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4223 && (ecs->event_thread->control.step_range_start <= stop_pc
4224 && stop_pc < ecs->event_thread->control.step_range_end)
4225 && frame_id_eq (get_stack_frame_id (frame),
4226 ecs->event_thread->control.step_stack_frame_id)
4227 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4228 {
4229 /* The inferior is about to take a signal that will take it
4230 out of the single step range. Set a breakpoint at the
4231 current PC (which is presumably where the signal handler
4232 will eventually return) and then allow the inferior to
4233 run free.
4234
4235 Note that this is only needed for a signal delivered
4236 while in the single-step range. Nested signals aren't a
4237 problem as they eventually all return. */
4238 if (debug_infrun)
4239 fprintf_unfiltered (gdb_stdlog,
4240 "infrun: signal may take us out of "
4241 "single-step range\n");
4242
4243 insert_hp_step_resume_breakpoint_at_frame (frame);
4244 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4245 ecs->event_thread->control.trap_expected = 0;
4246 keep_going (ecs);
4247 return;
4248 }
4249
4250 /* Note: step_resume_breakpoint may be non-NULL. This occures
4251 when either there's a nested signal, or when there's a
4252 pending signal enabled just as the signal handler returns
4253 (leaving the inferior at the step-resume-breakpoint without
4254 actually executing it). Either way continue until the
4255 breakpoint is really hit. */
4256 keep_going (ecs);
4257 return;
4258 }
4259
4260 /* Handle cases caused by hitting a breakpoint. */
4261 {
4262 CORE_ADDR jmp_buf_pc;
4263 struct bpstat_what what;
4264
4265 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4266
4267 if (what.call_dummy)
4268 {
4269 stop_stack_dummy = what.call_dummy;
4270 }
4271
4272 /* If we hit an internal event that triggers symbol changes, the
4273 current frame will be invalidated within bpstat_what (e.g., if
4274 we hit an internal solib event). Re-fetch it. */
4275 frame = get_current_frame ();
4276 gdbarch = get_frame_arch (frame);
4277
4278 switch (what.main_action)
4279 {
4280 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4281 /* If we hit the breakpoint at longjmp while stepping, we
4282 install a momentary breakpoint at the target of the
4283 jmp_buf. */
4284
4285 if (debug_infrun)
4286 fprintf_unfiltered (gdb_stdlog,
4287 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4288
4289 ecs->event_thread->stepping_over_breakpoint = 1;
4290
4291 if (what.is_longjmp)
4292 {
4293 if (!gdbarch_get_longjmp_target_p (gdbarch)
4294 || !gdbarch_get_longjmp_target (gdbarch,
4295 frame, &jmp_buf_pc))
4296 {
4297 if (debug_infrun)
4298 fprintf_unfiltered (gdb_stdlog,
4299 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4300 "(!gdbarch_get_longjmp_target)\n");
4301 keep_going (ecs);
4302 return;
4303 }
4304
4305 /* We're going to replace the current step-resume breakpoint
4306 with a longjmp-resume breakpoint. */
4307 delete_step_resume_breakpoint (ecs->event_thread);
4308
4309 /* Insert a breakpoint at resume address. */
4310 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4311 }
4312 else
4313 {
4314 struct symbol *func = get_frame_function (frame);
4315
4316 if (func)
4317 check_exception_resume (ecs, frame, func);
4318 }
4319 keep_going (ecs);
4320 return;
4321
4322 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4323 if (debug_infrun)
4324 fprintf_unfiltered (gdb_stdlog,
4325 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4326
4327 if (what.is_longjmp)
4328 {
4329 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4330 != NULL);
4331 delete_step_resume_breakpoint (ecs->event_thread);
4332 }
4333 else
4334 {
4335 /* There are several cases to consider.
4336
4337 1. The initiating frame no longer exists. In this case
4338 we must stop, because the exception has gone too far.
4339
4340 2. The initiating frame exists, and is the same as the
4341 current frame. We stop, because the exception has been
4342 caught.
4343
4344 3. The initiating frame exists and is different from
4345 the current frame. This means the exception has been
4346 caught beneath the initiating frame, so keep going. */
4347 struct frame_info *init_frame
4348 = frame_find_by_id (ecs->event_thread->initiating_frame);
4349
4350 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4351 != NULL);
4352 delete_exception_resume_breakpoint (ecs->event_thread);
4353
4354 if (init_frame)
4355 {
4356 struct frame_id current_id
4357 = get_frame_id (get_current_frame ());
4358 if (frame_id_eq (current_id,
4359 ecs->event_thread->initiating_frame))
4360 {
4361 /* Case 2. Fall through. */
4362 }
4363 else
4364 {
4365 /* Case 3. */
4366 keep_going (ecs);
4367 return;
4368 }
4369 }
4370
4371 /* For Cases 1 and 2, remove the step-resume breakpoint,
4372 if it exists. */
4373 delete_step_resume_breakpoint (ecs->event_thread);
4374 }
4375
4376 ecs->event_thread->control.stop_step = 1;
4377 print_end_stepping_range_reason ();
4378 stop_stepping (ecs);
4379 return;
4380
4381 case BPSTAT_WHAT_SINGLE:
4382 if (debug_infrun)
4383 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4384 ecs->event_thread->stepping_over_breakpoint = 1;
4385 /* Still need to check other stuff, at least the case
4386 where we are stepping and step out of the right range. */
4387 break;
4388
4389 case BPSTAT_WHAT_STEP_RESUME:
4390 if (debug_infrun)
4391 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4392
4393 delete_step_resume_breakpoint (ecs->event_thread);
4394 if (ecs->event_thread->control.proceed_to_finish
4395 && execution_direction == EXEC_REVERSE)
4396 {
4397 struct thread_info *tp = ecs->event_thread;
4398
4399 /* We are finishing a function in reverse, and just hit
4400 the step-resume breakpoint at the start address of the
4401 function, and we're almost there -- just need to back
4402 up by one more single-step, which should take us back
4403 to the function call. */
4404 tp->control.step_range_start = tp->control.step_range_end = 1;
4405 keep_going (ecs);
4406 return;
4407 }
4408 fill_in_stop_func (gdbarch, ecs);
4409 if (stop_pc == ecs->stop_func_start
4410 && execution_direction == EXEC_REVERSE)
4411 {
4412 /* We are stepping over a function call in reverse, and
4413 just hit the step-resume breakpoint at the start
4414 address of the function. Go back to single-stepping,
4415 which should take us back to the function call. */
4416 ecs->event_thread->stepping_over_breakpoint = 1;
4417 keep_going (ecs);
4418 return;
4419 }
4420 break;
4421
4422 case BPSTAT_WHAT_STOP_NOISY:
4423 if (debug_infrun)
4424 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4425 stop_print_frame = 1;
4426
4427 /* We are about to nuke the step_resume_breakpointt via the
4428 cleanup chain, so no need to worry about it here. */
4429
4430 stop_stepping (ecs);
4431 return;
4432
4433 case BPSTAT_WHAT_STOP_SILENT:
4434 if (debug_infrun)
4435 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4436 stop_print_frame = 0;
4437
4438 /* We are about to nuke the step_resume_breakpoin via the
4439 cleanup chain, so no need to worry about it here. */
4440
4441 stop_stepping (ecs);
4442 return;
4443
4444 case BPSTAT_WHAT_HP_STEP_RESUME:
4445 if (debug_infrun)
4446 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4447
4448 delete_step_resume_breakpoint (ecs->event_thread);
4449 if (ecs->event_thread->step_after_step_resume_breakpoint)
4450 {
4451 /* Back when the step-resume breakpoint was inserted, we
4452 were trying to single-step off a breakpoint. Go back
4453 to doing that. */
4454 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4455 ecs->event_thread->stepping_over_breakpoint = 1;
4456 keep_going (ecs);
4457 return;
4458 }
4459 break;
4460
4461 case BPSTAT_WHAT_KEEP_CHECKING:
4462 break;
4463 }
4464 }
4465
4466 /* We come here if we hit a breakpoint but should not
4467 stop for it. Possibly we also were stepping
4468 and should stop for that. So fall through and
4469 test for stepping. But, if not stepping,
4470 do not stop. */
4471
4472 /* In all-stop mode, if we're currently stepping but have stopped in
4473 some other thread, we need to switch back to the stepped thread. */
4474 if (!non_stop)
4475 {
4476 struct thread_info *tp;
4477
4478 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4479 ecs->event_thread);
4480 if (tp)
4481 {
4482 /* However, if the current thread is blocked on some internal
4483 breakpoint, and we simply need to step over that breakpoint
4484 to get it going again, do that first. */
4485 if ((ecs->event_thread->control.trap_expected
4486 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4487 || ecs->event_thread->stepping_over_breakpoint)
4488 {
4489 keep_going (ecs);
4490 return;
4491 }
4492
4493 /* If the stepping thread exited, then don't try to switch
4494 back and resume it, which could fail in several different
4495 ways depending on the target. Instead, just keep going.
4496
4497 We can find a stepping dead thread in the thread list in
4498 two cases:
4499
4500 - The target supports thread exit events, and when the
4501 target tries to delete the thread from the thread list,
4502 inferior_ptid pointed at the exiting thread. In such
4503 case, calling delete_thread does not really remove the
4504 thread from the list; instead, the thread is left listed,
4505 with 'exited' state.
4506
4507 - The target's debug interface does not support thread
4508 exit events, and so we have no idea whatsoever if the
4509 previously stepping thread is still alive. For that
4510 reason, we need to synchronously query the target
4511 now. */
4512 if (is_exited (tp->ptid)
4513 || !target_thread_alive (tp->ptid))
4514 {
4515 if (debug_infrun)
4516 fprintf_unfiltered (gdb_stdlog,
4517 "infrun: not switching back to "
4518 "stepped thread, it has vanished\n");
4519
4520 delete_thread (tp->ptid);
4521 keep_going (ecs);
4522 return;
4523 }
4524
4525 /* Otherwise, we no longer expect a trap in the current thread.
4526 Clear the trap_expected flag before switching back -- this is
4527 what keep_going would do as well, if we called it. */
4528 ecs->event_thread->control.trap_expected = 0;
4529
4530 if (debug_infrun)
4531 fprintf_unfiltered (gdb_stdlog,
4532 "infrun: switching back to stepped thread\n");
4533
4534 ecs->event_thread = tp;
4535 ecs->ptid = tp->ptid;
4536 context_switch (ecs->ptid);
4537 keep_going (ecs);
4538 return;
4539 }
4540 }
4541
4542 /* Are we stepping to get the inferior out of the dynamic linker's
4543 hook (and possibly the dld itself) after catching a shlib
4544 event? */
4545 if (ecs->event_thread->stepping_through_solib_after_catch)
4546 {
4547 #if defined(SOLIB_ADD)
4548 /* Have we reached our destination? If not, keep going. */
4549 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4550 {
4551 if (debug_infrun)
4552 fprintf_unfiltered (gdb_stdlog,
4553 "infrun: stepping in dynamic linker\n");
4554 ecs->event_thread->stepping_over_breakpoint = 1;
4555 keep_going (ecs);
4556 return;
4557 }
4558 #endif
4559 if (debug_infrun)
4560 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4561 /* Else, stop and report the catchpoint(s) whose triggering
4562 caused us to begin stepping. */
4563 ecs->event_thread->stepping_through_solib_after_catch = 0;
4564 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4565 ecs->event_thread->control.stop_bpstat
4566 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4567 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4568 stop_print_frame = 1;
4569 stop_stepping (ecs);
4570 return;
4571 }
4572
4573 if (ecs->event_thread->control.step_resume_breakpoint)
4574 {
4575 if (debug_infrun)
4576 fprintf_unfiltered (gdb_stdlog,
4577 "infrun: step-resume breakpoint is inserted\n");
4578
4579 /* Having a step-resume breakpoint overrides anything
4580 else having to do with stepping commands until
4581 that breakpoint is reached. */
4582 keep_going (ecs);
4583 return;
4584 }
4585
4586 if (ecs->event_thread->control.step_range_end == 0)
4587 {
4588 if (debug_infrun)
4589 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4590 /* Likewise if we aren't even stepping. */
4591 keep_going (ecs);
4592 return;
4593 }
4594
4595 /* Re-fetch current thread's frame in case the code above caused
4596 the frame cache to be re-initialized, making our FRAME variable
4597 a dangling pointer. */
4598 frame = get_current_frame ();
4599 gdbarch = get_frame_arch (frame);
4600 fill_in_stop_func (gdbarch, ecs);
4601
4602 /* If stepping through a line, keep going if still within it.
4603
4604 Note that step_range_end is the address of the first instruction
4605 beyond the step range, and NOT the address of the last instruction
4606 within it!
4607
4608 Note also that during reverse execution, we may be stepping
4609 through a function epilogue and therefore must detect when
4610 the current-frame changes in the middle of a line. */
4611
4612 if (stop_pc >= ecs->event_thread->control.step_range_start
4613 && stop_pc < ecs->event_thread->control.step_range_end
4614 && (execution_direction != EXEC_REVERSE
4615 || frame_id_eq (get_frame_id (frame),
4616 ecs->event_thread->control.step_frame_id)))
4617 {
4618 if (debug_infrun)
4619 fprintf_unfiltered
4620 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4621 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4622 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4623
4624 /* When stepping backward, stop at beginning of line range
4625 (unless it's the function entry point, in which case
4626 keep going back to the call point). */
4627 if (stop_pc == ecs->event_thread->control.step_range_start
4628 && stop_pc != ecs->stop_func_start
4629 && execution_direction == EXEC_REVERSE)
4630 {
4631 ecs->event_thread->control.stop_step = 1;
4632 print_end_stepping_range_reason ();
4633 stop_stepping (ecs);
4634 }
4635 else
4636 keep_going (ecs);
4637
4638 return;
4639 }
4640
4641 /* We stepped out of the stepping range. */
4642
4643 /* If we are stepping at the source level and entered the runtime
4644 loader dynamic symbol resolution code...
4645
4646 EXEC_FORWARD: we keep on single stepping until we exit the run
4647 time loader code and reach the callee's address.
4648
4649 EXEC_REVERSE: we've already executed the callee (backward), and
4650 the runtime loader code is handled just like any other
4651 undebuggable function call. Now we need only keep stepping
4652 backward through the trampoline code, and that's handled further
4653 down, so there is nothing for us to do here. */
4654
4655 if (execution_direction != EXEC_REVERSE
4656 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4657 && in_solib_dynsym_resolve_code (stop_pc))
4658 {
4659 CORE_ADDR pc_after_resolver =
4660 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4661
4662 if (debug_infrun)
4663 fprintf_unfiltered (gdb_stdlog,
4664 "infrun: stepped into dynsym resolve code\n");
4665
4666 if (pc_after_resolver)
4667 {
4668 /* Set up a step-resume breakpoint at the address
4669 indicated by SKIP_SOLIB_RESOLVER. */
4670 struct symtab_and_line sr_sal;
4671
4672 init_sal (&sr_sal);
4673 sr_sal.pc = pc_after_resolver;
4674 sr_sal.pspace = get_frame_program_space (frame);
4675
4676 insert_step_resume_breakpoint_at_sal (gdbarch,
4677 sr_sal, null_frame_id);
4678 }
4679
4680 keep_going (ecs);
4681 return;
4682 }
4683
4684 if (ecs->event_thread->control.step_range_end != 1
4685 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4686 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4687 && get_frame_type (frame) == SIGTRAMP_FRAME)
4688 {
4689 if (debug_infrun)
4690 fprintf_unfiltered (gdb_stdlog,
4691 "infrun: stepped into signal trampoline\n");
4692 /* The inferior, while doing a "step" or "next", has ended up in
4693 a signal trampoline (either by a signal being delivered or by
4694 the signal handler returning). Just single-step until the
4695 inferior leaves the trampoline (either by calling the handler
4696 or returning). */
4697 keep_going (ecs);
4698 return;
4699 }
4700
4701 /* Check for subroutine calls. The check for the current frame
4702 equalling the step ID is not necessary - the check of the
4703 previous frame's ID is sufficient - but it is a common case and
4704 cheaper than checking the previous frame's ID.
4705
4706 NOTE: frame_id_eq will never report two invalid frame IDs as
4707 being equal, so to get into this block, both the current and
4708 previous frame must have valid frame IDs. */
4709 /* The outer_frame_id check is a heuristic to detect stepping
4710 through startup code. If we step over an instruction which
4711 sets the stack pointer from an invalid value to a valid value,
4712 we may detect that as a subroutine call from the mythical
4713 "outermost" function. This could be fixed by marking
4714 outermost frames as !stack_p,code_p,special_p. Then the
4715 initial outermost frame, before sp was valid, would
4716 have code_addr == &_start. See the comment in frame_id_eq
4717 for more. */
4718 if (!frame_id_eq (get_stack_frame_id (frame),
4719 ecs->event_thread->control.step_stack_frame_id)
4720 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4721 ecs->event_thread->control.step_stack_frame_id)
4722 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4723 outer_frame_id)
4724 || step_start_function != find_pc_function (stop_pc))))
4725 {
4726 CORE_ADDR real_stop_pc;
4727
4728 if (debug_infrun)
4729 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4730
4731 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4732 || ((ecs->event_thread->control.step_range_end == 1)
4733 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4734 ecs->stop_func_start)))
4735 {
4736 /* I presume that step_over_calls is only 0 when we're
4737 supposed to be stepping at the assembly language level
4738 ("stepi"). Just stop. */
4739 /* Also, maybe we just did a "nexti" inside a prolog, so we
4740 thought it was a subroutine call but it was not. Stop as
4741 well. FENN */
4742 /* And this works the same backward as frontward. MVS */
4743 ecs->event_thread->control.stop_step = 1;
4744 print_end_stepping_range_reason ();
4745 stop_stepping (ecs);
4746 return;
4747 }
4748
4749 /* Reverse stepping through solib trampolines. */
4750
4751 if (execution_direction == EXEC_REVERSE
4752 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4753 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4754 || (ecs->stop_func_start == 0
4755 && in_solib_dynsym_resolve_code (stop_pc))))
4756 {
4757 /* Any solib trampoline code can be handled in reverse
4758 by simply continuing to single-step. We have already
4759 executed the solib function (backwards), and a few
4760 steps will take us back through the trampoline to the
4761 caller. */
4762 keep_going (ecs);
4763 return;
4764 }
4765
4766 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4767 {
4768 /* We're doing a "next".
4769
4770 Normal (forward) execution: set a breakpoint at the
4771 callee's return address (the address at which the caller
4772 will resume).
4773
4774 Reverse (backward) execution. set the step-resume
4775 breakpoint at the start of the function that we just
4776 stepped into (backwards), and continue to there. When we
4777 get there, we'll need to single-step back to the caller. */
4778
4779 if (execution_direction == EXEC_REVERSE)
4780 {
4781 struct symtab_and_line sr_sal;
4782
4783 /* Normal function call return (static or dynamic). */
4784 init_sal (&sr_sal);
4785 sr_sal.pc = ecs->stop_func_start;
4786 sr_sal.pspace = get_frame_program_space (frame);
4787 insert_step_resume_breakpoint_at_sal (gdbarch,
4788 sr_sal, null_frame_id);
4789 }
4790 else
4791 insert_step_resume_breakpoint_at_caller (frame);
4792
4793 keep_going (ecs);
4794 return;
4795 }
4796
4797 /* If we are in a function call trampoline (a stub between the
4798 calling routine and the real function), locate the real
4799 function. That's what tells us (a) whether we want to step
4800 into it at all, and (b) what prologue we want to run to the
4801 end of, if we do step into it. */
4802 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4803 if (real_stop_pc == 0)
4804 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4805 if (real_stop_pc != 0)
4806 ecs->stop_func_start = real_stop_pc;
4807
4808 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4809 {
4810 struct symtab_and_line sr_sal;
4811
4812 init_sal (&sr_sal);
4813 sr_sal.pc = ecs->stop_func_start;
4814 sr_sal.pspace = get_frame_program_space (frame);
4815
4816 insert_step_resume_breakpoint_at_sal (gdbarch,
4817 sr_sal, null_frame_id);
4818 keep_going (ecs);
4819 return;
4820 }
4821
4822 /* If we have line number information for the function we are
4823 thinking of stepping into, step into it.
4824
4825 If there are several symtabs at that PC (e.g. with include
4826 files), just want to know whether *any* of them have line
4827 numbers. find_pc_line handles this. */
4828 {
4829 struct symtab_and_line tmp_sal;
4830
4831 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4832 if (tmp_sal.line != 0)
4833 {
4834 if (execution_direction == EXEC_REVERSE)
4835 handle_step_into_function_backward (gdbarch, ecs);
4836 else
4837 handle_step_into_function (gdbarch, ecs);
4838 return;
4839 }
4840 }
4841
4842 /* If we have no line number and the step-stop-if-no-debug is
4843 set, we stop the step so that the user has a chance to switch
4844 in assembly mode. */
4845 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4846 && step_stop_if_no_debug)
4847 {
4848 ecs->event_thread->control.stop_step = 1;
4849 print_end_stepping_range_reason ();
4850 stop_stepping (ecs);
4851 return;
4852 }
4853
4854 if (execution_direction == EXEC_REVERSE)
4855 {
4856 /* Set a breakpoint at callee's start address.
4857 From there we can step once and be back in the caller. */
4858 struct symtab_and_line sr_sal;
4859
4860 init_sal (&sr_sal);
4861 sr_sal.pc = ecs->stop_func_start;
4862 sr_sal.pspace = get_frame_program_space (frame);
4863 insert_step_resume_breakpoint_at_sal (gdbarch,
4864 sr_sal, null_frame_id);
4865 }
4866 else
4867 /* Set a breakpoint at callee's return address (the address
4868 at which the caller will resume). */
4869 insert_step_resume_breakpoint_at_caller (frame);
4870
4871 keep_going (ecs);
4872 return;
4873 }
4874
4875 /* Reverse stepping through solib trampolines. */
4876
4877 if (execution_direction == EXEC_REVERSE
4878 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4879 {
4880 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4881 || (ecs->stop_func_start == 0
4882 && in_solib_dynsym_resolve_code (stop_pc)))
4883 {
4884 /* Any solib trampoline code can be handled in reverse
4885 by simply continuing to single-step. We have already
4886 executed the solib function (backwards), and a few
4887 steps will take us back through the trampoline to the
4888 caller. */
4889 keep_going (ecs);
4890 return;
4891 }
4892 else if (in_solib_dynsym_resolve_code (stop_pc))
4893 {
4894 /* Stepped backward into the solib dynsym resolver.
4895 Set a breakpoint at its start and continue, then
4896 one more step will take us out. */
4897 struct symtab_and_line sr_sal;
4898
4899 init_sal (&sr_sal);
4900 sr_sal.pc = ecs->stop_func_start;
4901 sr_sal.pspace = get_frame_program_space (frame);
4902 insert_step_resume_breakpoint_at_sal (gdbarch,
4903 sr_sal, null_frame_id);
4904 keep_going (ecs);
4905 return;
4906 }
4907 }
4908
4909 /* If we're in the return path from a shared library trampoline,
4910 we want to proceed through the trampoline when stepping. */
4911 if (gdbarch_in_solib_return_trampoline (gdbarch,
4912 stop_pc, ecs->stop_func_name))
4913 {
4914 /* Determine where this trampoline returns. */
4915 CORE_ADDR real_stop_pc;
4916
4917 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4918
4919 if (debug_infrun)
4920 fprintf_unfiltered (gdb_stdlog,
4921 "infrun: stepped into solib return tramp\n");
4922
4923 /* Only proceed through if we know where it's going. */
4924 if (real_stop_pc)
4925 {
4926 /* And put the step-breakpoint there and go until there. */
4927 struct symtab_and_line sr_sal;
4928
4929 init_sal (&sr_sal); /* initialize to zeroes */
4930 sr_sal.pc = real_stop_pc;
4931 sr_sal.section = find_pc_overlay (sr_sal.pc);
4932 sr_sal.pspace = get_frame_program_space (frame);
4933
4934 /* Do not specify what the fp should be when we stop since
4935 on some machines the prologue is where the new fp value
4936 is established. */
4937 insert_step_resume_breakpoint_at_sal (gdbarch,
4938 sr_sal, null_frame_id);
4939
4940 /* Restart without fiddling with the step ranges or
4941 other state. */
4942 keep_going (ecs);
4943 return;
4944 }
4945 }
4946
4947 stop_pc_sal = find_pc_line (stop_pc, 0);
4948
4949 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4950 the trampoline processing logic, however, there are some trampolines
4951 that have no names, so we should do trampoline handling first. */
4952 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4953 && ecs->stop_func_name == NULL
4954 && stop_pc_sal.line == 0)
4955 {
4956 if (debug_infrun)
4957 fprintf_unfiltered (gdb_stdlog,
4958 "infrun: stepped into undebuggable function\n");
4959
4960 /* The inferior just stepped into, or returned to, an
4961 undebuggable function (where there is no debugging information
4962 and no line number corresponding to the address where the
4963 inferior stopped). Since we want to skip this kind of code,
4964 we keep going until the inferior returns from this
4965 function - unless the user has asked us not to (via
4966 set step-mode) or we no longer know how to get back
4967 to the call site. */
4968 if (step_stop_if_no_debug
4969 || !frame_id_p (frame_unwind_caller_id (frame)))
4970 {
4971 /* If we have no line number and the step-stop-if-no-debug
4972 is set, we stop the step so that the user has a chance to
4973 switch in assembly mode. */
4974 ecs->event_thread->control.stop_step = 1;
4975 print_end_stepping_range_reason ();
4976 stop_stepping (ecs);
4977 return;
4978 }
4979 else
4980 {
4981 /* Set a breakpoint at callee's return address (the address
4982 at which the caller will resume). */
4983 insert_step_resume_breakpoint_at_caller (frame);
4984 keep_going (ecs);
4985 return;
4986 }
4987 }
4988
4989 if (ecs->event_thread->control.step_range_end == 1)
4990 {
4991 /* It is stepi or nexti. We always want to stop stepping after
4992 one instruction. */
4993 if (debug_infrun)
4994 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4995 ecs->event_thread->control.stop_step = 1;
4996 print_end_stepping_range_reason ();
4997 stop_stepping (ecs);
4998 return;
4999 }
5000
5001 if (stop_pc_sal.line == 0)
5002 {
5003 /* We have no line number information. That means to stop
5004 stepping (does this always happen right after one instruction,
5005 when we do "s" in a function with no line numbers,
5006 or can this happen as a result of a return or longjmp?). */
5007 if (debug_infrun)
5008 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5009 ecs->event_thread->control.stop_step = 1;
5010 print_end_stepping_range_reason ();
5011 stop_stepping (ecs);
5012 return;
5013 }
5014
5015 /* Look for "calls" to inlined functions, part one. If the inline
5016 frame machinery detected some skipped call sites, we have entered
5017 a new inline function. */
5018
5019 if (frame_id_eq (get_frame_id (get_current_frame ()),
5020 ecs->event_thread->control.step_frame_id)
5021 && inline_skipped_frames (ecs->ptid))
5022 {
5023 struct symtab_and_line call_sal;
5024
5025 if (debug_infrun)
5026 fprintf_unfiltered (gdb_stdlog,
5027 "infrun: stepped into inlined function\n");
5028
5029 find_frame_sal (get_current_frame (), &call_sal);
5030
5031 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5032 {
5033 /* For "step", we're going to stop. But if the call site
5034 for this inlined function is on the same source line as
5035 we were previously stepping, go down into the function
5036 first. Otherwise stop at the call site. */
5037
5038 if (call_sal.line == ecs->event_thread->current_line
5039 && call_sal.symtab == ecs->event_thread->current_symtab)
5040 step_into_inline_frame (ecs->ptid);
5041
5042 ecs->event_thread->control.stop_step = 1;
5043 print_end_stepping_range_reason ();
5044 stop_stepping (ecs);
5045 return;
5046 }
5047 else
5048 {
5049 /* For "next", we should stop at the call site if it is on a
5050 different source line. Otherwise continue through the
5051 inlined function. */
5052 if (call_sal.line == ecs->event_thread->current_line
5053 && call_sal.symtab == ecs->event_thread->current_symtab)
5054 keep_going (ecs);
5055 else
5056 {
5057 ecs->event_thread->control.stop_step = 1;
5058 print_end_stepping_range_reason ();
5059 stop_stepping (ecs);
5060 }
5061 return;
5062 }
5063 }
5064
5065 /* Look for "calls" to inlined functions, part two. If we are still
5066 in the same real function we were stepping through, but we have
5067 to go further up to find the exact frame ID, we are stepping
5068 through a more inlined call beyond its call site. */
5069
5070 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5071 && !frame_id_eq (get_frame_id (get_current_frame ()),
5072 ecs->event_thread->control.step_frame_id)
5073 && stepped_in_from (get_current_frame (),
5074 ecs->event_thread->control.step_frame_id))
5075 {
5076 if (debug_infrun)
5077 fprintf_unfiltered (gdb_stdlog,
5078 "infrun: stepping through inlined function\n");
5079
5080 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5081 keep_going (ecs);
5082 else
5083 {
5084 ecs->event_thread->control.stop_step = 1;
5085 print_end_stepping_range_reason ();
5086 stop_stepping (ecs);
5087 }
5088 return;
5089 }
5090
5091 if ((stop_pc == stop_pc_sal.pc)
5092 && (ecs->event_thread->current_line != stop_pc_sal.line
5093 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5094 {
5095 /* We are at the start of a different line. So stop. Note that
5096 we don't stop if we step into the middle of a different line.
5097 That is said to make things like for (;;) statements work
5098 better. */
5099 if (debug_infrun)
5100 fprintf_unfiltered (gdb_stdlog,
5101 "infrun: stepped to a different line\n");
5102 ecs->event_thread->control.stop_step = 1;
5103 print_end_stepping_range_reason ();
5104 stop_stepping (ecs);
5105 return;
5106 }
5107
5108 /* We aren't done stepping.
5109
5110 Optimize by setting the stepping range to the line.
5111 (We might not be in the original line, but if we entered a
5112 new line in mid-statement, we continue stepping. This makes
5113 things like for(;;) statements work better.) */
5114
5115 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5116 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5117 set_step_info (frame, stop_pc_sal);
5118
5119 if (debug_infrun)
5120 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5121 keep_going (ecs);
5122 }
5123
5124 /* Is thread TP in the middle of single-stepping? */
5125
5126 static int
5127 currently_stepping (struct thread_info *tp)
5128 {
5129 return ((tp->control.step_range_end
5130 && tp->control.step_resume_breakpoint == NULL)
5131 || tp->control.trap_expected
5132 || tp->stepping_through_solib_after_catch
5133 || bpstat_should_step ());
5134 }
5135
5136 /* Returns true if any thread *but* the one passed in "data" is in the
5137 middle of stepping or of handling a "next". */
5138
5139 static int
5140 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5141 {
5142 if (tp == data)
5143 return 0;
5144
5145 return (tp->control.step_range_end
5146 || tp->control.trap_expected
5147 || tp->stepping_through_solib_after_catch);
5148 }
5149
5150 /* Inferior has stepped into a subroutine call with source code that
5151 we should not step over. Do step to the first line of code in
5152 it. */
5153
5154 static void
5155 handle_step_into_function (struct gdbarch *gdbarch,
5156 struct execution_control_state *ecs)
5157 {
5158 struct symtab *s;
5159 struct symtab_and_line stop_func_sal, sr_sal;
5160
5161 fill_in_stop_func (gdbarch, ecs);
5162
5163 s = find_pc_symtab (stop_pc);
5164 if (s && s->language != language_asm)
5165 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5166 ecs->stop_func_start);
5167
5168 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5169 /* Use the step_resume_break to step until the end of the prologue,
5170 even if that involves jumps (as it seems to on the vax under
5171 4.2). */
5172 /* If the prologue ends in the middle of a source line, continue to
5173 the end of that source line (if it is still within the function).
5174 Otherwise, just go to end of prologue. */
5175 if (stop_func_sal.end
5176 && stop_func_sal.pc != ecs->stop_func_start
5177 && stop_func_sal.end < ecs->stop_func_end)
5178 ecs->stop_func_start = stop_func_sal.end;
5179
5180 /* Architectures which require breakpoint adjustment might not be able
5181 to place a breakpoint at the computed address. If so, the test
5182 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5183 ecs->stop_func_start to an address at which a breakpoint may be
5184 legitimately placed.
5185
5186 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5187 made, GDB will enter an infinite loop when stepping through
5188 optimized code consisting of VLIW instructions which contain
5189 subinstructions corresponding to different source lines. On
5190 FR-V, it's not permitted to place a breakpoint on any but the
5191 first subinstruction of a VLIW instruction. When a breakpoint is
5192 set, GDB will adjust the breakpoint address to the beginning of
5193 the VLIW instruction. Thus, we need to make the corresponding
5194 adjustment here when computing the stop address. */
5195
5196 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5197 {
5198 ecs->stop_func_start
5199 = gdbarch_adjust_breakpoint_address (gdbarch,
5200 ecs->stop_func_start);
5201 }
5202
5203 if (ecs->stop_func_start == stop_pc)
5204 {
5205 /* We are already there: stop now. */
5206 ecs->event_thread->control.stop_step = 1;
5207 print_end_stepping_range_reason ();
5208 stop_stepping (ecs);
5209 return;
5210 }
5211 else
5212 {
5213 /* Put the step-breakpoint there and go until there. */
5214 init_sal (&sr_sal); /* initialize to zeroes */
5215 sr_sal.pc = ecs->stop_func_start;
5216 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5217 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5218
5219 /* Do not specify what the fp should be when we stop since on
5220 some machines the prologue is where the new fp value is
5221 established. */
5222 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5223
5224 /* And make sure stepping stops right away then. */
5225 ecs->event_thread->control.step_range_end
5226 = ecs->event_thread->control.step_range_start;
5227 }
5228 keep_going (ecs);
5229 }
5230
5231 /* Inferior has stepped backward into a subroutine call with source
5232 code that we should not step over. Do step to the beginning of the
5233 last line of code in it. */
5234
5235 static void
5236 handle_step_into_function_backward (struct gdbarch *gdbarch,
5237 struct execution_control_state *ecs)
5238 {
5239 struct symtab *s;
5240 struct symtab_and_line stop_func_sal;
5241
5242 fill_in_stop_func (gdbarch, ecs);
5243
5244 s = find_pc_symtab (stop_pc);
5245 if (s && s->language != language_asm)
5246 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5247 ecs->stop_func_start);
5248
5249 stop_func_sal = find_pc_line (stop_pc, 0);
5250
5251 /* OK, we're just going to keep stepping here. */
5252 if (stop_func_sal.pc == stop_pc)
5253 {
5254 /* We're there already. Just stop stepping now. */
5255 ecs->event_thread->control.stop_step = 1;
5256 print_end_stepping_range_reason ();
5257 stop_stepping (ecs);
5258 }
5259 else
5260 {
5261 /* Else just reset the step range and keep going.
5262 No step-resume breakpoint, they don't work for
5263 epilogues, which can have multiple entry paths. */
5264 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5265 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5266 keep_going (ecs);
5267 }
5268 return;
5269 }
5270
5271 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5272 This is used to both functions and to skip over code. */
5273
5274 static void
5275 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5276 struct symtab_and_line sr_sal,
5277 struct frame_id sr_id,
5278 enum bptype sr_type)
5279 {
5280 /* There should never be more than one step-resume or longjmp-resume
5281 breakpoint per thread, so we should never be setting a new
5282 step_resume_breakpoint when one is already active. */
5283 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5284 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5285
5286 if (debug_infrun)
5287 fprintf_unfiltered (gdb_stdlog,
5288 "infrun: inserting step-resume breakpoint at %s\n",
5289 paddress (gdbarch, sr_sal.pc));
5290
5291 inferior_thread ()->control.step_resume_breakpoint
5292 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5293 }
5294
5295 void
5296 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5297 struct symtab_and_line sr_sal,
5298 struct frame_id sr_id)
5299 {
5300 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5301 sr_sal, sr_id,
5302 bp_step_resume);
5303 }
5304
5305 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5306 This is used to skip a potential signal handler.
5307
5308 This is called with the interrupted function's frame. The signal
5309 handler, when it returns, will resume the interrupted function at
5310 RETURN_FRAME.pc. */
5311
5312 static void
5313 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5314 {
5315 struct symtab_and_line sr_sal;
5316 struct gdbarch *gdbarch;
5317
5318 gdb_assert (return_frame != NULL);
5319 init_sal (&sr_sal); /* initialize to zeros */
5320
5321 gdbarch = get_frame_arch (return_frame);
5322 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5323 sr_sal.section = find_pc_overlay (sr_sal.pc);
5324 sr_sal.pspace = get_frame_program_space (return_frame);
5325
5326 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5327 get_stack_frame_id (return_frame),
5328 bp_hp_step_resume);
5329 }
5330
5331 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5332 is used to skip a function after stepping into it (for "next" or if
5333 the called function has no debugging information).
5334
5335 The current function has almost always been reached by single
5336 stepping a call or return instruction. NEXT_FRAME belongs to the
5337 current function, and the breakpoint will be set at the caller's
5338 resume address.
5339
5340 This is a separate function rather than reusing
5341 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5342 get_prev_frame, which may stop prematurely (see the implementation
5343 of frame_unwind_caller_id for an example). */
5344
5345 static void
5346 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5347 {
5348 struct symtab_and_line sr_sal;
5349 struct gdbarch *gdbarch;
5350
5351 /* We shouldn't have gotten here if we don't know where the call site
5352 is. */
5353 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5354
5355 init_sal (&sr_sal); /* initialize to zeros */
5356
5357 gdbarch = frame_unwind_caller_arch (next_frame);
5358 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5359 frame_unwind_caller_pc (next_frame));
5360 sr_sal.section = find_pc_overlay (sr_sal.pc);
5361 sr_sal.pspace = frame_unwind_program_space (next_frame);
5362
5363 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5364 frame_unwind_caller_id (next_frame));
5365 }
5366
5367 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5368 new breakpoint at the target of a jmp_buf. The handling of
5369 longjmp-resume uses the same mechanisms used for handling
5370 "step-resume" breakpoints. */
5371
5372 static void
5373 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5374 {
5375 /* There should never be more than one step-resume or longjmp-resume
5376 breakpoint per thread, so we should never be setting a new
5377 longjmp_resume_breakpoint when one is already active. */
5378 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5379
5380 if (debug_infrun)
5381 fprintf_unfiltered (gdb_stdlog,
5382 "infrun: inserting longjmp-resume breakpoint at %s\n",
5383 paddress (gdbarch, pc));
5384
5385 inferior_thread ()->control.step_resume_breakpoint =
5386 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5387 }
5388
5389 /* Insert an exception resume breakpoint. TP is the thread throwing
5390 the exception. The block B is the block of the unwinder debug hook
5391 function. FRAME is the frame corresponding to the call to this
5392 function. SYM is the symbol of the function argument holding the
5393 target PC of the exception. */
5394
5395 static void
5396 insert_exception_resume_breakpoint (struct thread_info *tp,
5397 struct block *b,
5398 struct frame_info *frame,
5399 struct symbol *sym)
5400 {
5401 struct gdb_exception e;
5402
5403 /* We want to ignore errors here. */
5404 TRY_CATCH (e, RETURN_MASK_ERROR)
5405 {
5406 struct symbol *vsym;
5407 struct value *value;
5408 CORE_ADDR handler;
5409 struct breakpoint *bp;
5410
5411 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5412 value = read_var_value (vsym, frame);
5413 /* If the value was optimized out, revert to the old behavior. */
5414 if (! value_optimized_out (value))
5415 {
5416 handler = value_as_address (value);
5417
5418 if (debug_infrun)
5419 fprintf_unfiltered (gdb_stdlog,
5420 "infrun: exception resume at %lx\n",
5421 (unsigned long) handler);
5422
5423 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5424 handler, bp_exception_resume);
5425 bp->thread = tp->num;
5426 inferior_thread ()->control.exception_resume_breakpoint = bp;
5427 }
5428 }
5429 }
5430
5431 /* This is called when an exception has been intercepted. Check to
5432 see whether the exception's destination is of interest, and if so,
5433 set an exception resume breakpoint there. */
5434
5435 static void
5436 check_exception_resume (struct execution_control_state *ecs,
5437 struct frame_info *frame, struct symbol *func)
5438 {
5439 struct gdb_exception e;
5440
5441 TRY_CATCH (e, RETURN_MASK_ERROR)
5442 {
5443 struct block *b;
5444 struct dict_iterator iter;
5445 struct symbol *sym;
5446 int argno = 0;
5447
5448 /* The exception breakpoint is a thread-specific breakpoint on
5449 the unwinder's debug hook, declared as:
5450
5451 void _Unwind_DebugHook (void *cfa, void *handler);
5452
5453 The CFA argument indicates the frame to which control is
5454 about to be transferred. HANDLER is the destination PC.
5455
5456 We ignore the CFA and set a temporary breakpoint at HANDLER.
5457 This is not extremely efficient but it avoids issues in gdb
5458 with computing the DWARF CFA, and it also works even in weird
5459 cases such as throwing an exception from inside a signal
5460 handler. */
5461
5462 b = SYMBOL_BLOCK_VALUE (func);
5463 ALL_BLOCK_SYMBOLS (b, iter, sym)
5464 {
5465 if (!SYMBOL_IS_ARGUMENT (sym))
5466 continue;
5467
5468 if (argno == 0)
5469 ++argno;
5470 else
5471 {
5472 insert_exception_resume_breakpoint (ecs->event_thread,
5473 b, frame, sym);
5474 break;
5475 }
5476 }
5477 }
5478 }
5479
5480 static void
5481 stop_stepping (struct execution_control_state *ecs)
5482 {
5483 if (debug_infrun)
5484 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5485
5486 /* Let callers know we don't want to wait for the inferior anymore. */
5487 ecs->wait_some_more = 0;
5488 }
5489
5490 /* This function handles various cases where we need to continue
5491 waiting for the inferior. */
5492 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5493
5494 static void
5495 keep_going (struct execution_control_state *ecs)
5496 {
5497 /* Make sure normal_stop is called if we get a QUIT handled before
5498 reaching resume. */
5499 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5500
5501 /* Save the pc before execution, to compare with pc after stop. */
5502 ecs->event_thread->prev_pc
5503 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5504
5505 /* If we did not do break;, it means we should keep running the
5506 inferior and not return to debugger. */
5507
5508 if (ecs->event_thread->control.trap_expected
5509 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5510 {
5511 /* We took a signal (which we are supposed to pass through to
5512 the inferior, else we'd not get here) and we haven't yet
5513 gotten our trap. Simply continue. */
5514
5515 discard_cleanups (old_cleanups);
5516 resume (currently_stepping (ecs->event_thread),
5517 ecs->event_thread->suspend.stop_signal);
5518 }
5519 else
5520 {
5521 /* Either the trap was not expected, but we are continuing
5522 anyway (the user asked that this signal be passed to the
5523 child)
5524 -- or --
5525 The signal was SIGTRAP, e.g. it was our signal, but we
5526 decided we should resume from it.
5527
5528 We're going to run this baby now!
5529
5530 Note that insert_breakpoints won't try to re-insert
5531 already inserted breakpoints. Therefore, we don't
5532 care if breakpoints were already inserted, or not. */
5533
5534 if (ecs->event_thread->stepping_over_breakpoint)
5535 {
5536 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5537
5538 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5539 /* Since we can't do a displaced step, we have to remove
5540 the breakpoint while we step it. To keep things
5541 simple, we remove them all. */
5542 remove_breakpoints ();
5543 }
5544 else
5545 {
5546 struct gdb_exception e;
5547
5548 /* Stop stepping when inserting breakpoints
5549 has failed. */
5550 TRY_CATCH (e, RETURN_MASK_ERROR)
5551 {
5552 insert_breakpoints ();
5553 }
5554 if (e.reason < 0)
5555 {
5556 exception_print (gdb_stderr, e);
5557 stop_stepping (ecs);
5558 return;
5559 }
5560 }
5561
5562 ecs->event_thread->control.trap_expected
5563 = ecs->event_thread->stepping_over_breakpoint;
5564
5565 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5566 specifies that such a signal should be delivered to the
5567 target program).
5568
5569 Typically, this would occure when a user is debugging a
5570 target monitor on a simulator: the target monitor sets a
5571 breakpoint; the simulator encounters this break-point and
5572 halts the simulation handing control to GDB; GDB, noteing
5573 that the break-point isn't valid, returns control back to the
5574 simulator; the simulator then delivers the hardware
5575 equivalent of a SIGNAL_TRAP to the program being debugged. */
5576
5577 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5578 && !signal_program[ecs->event_thread->suspend.stop_signal])
5579 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5580
5581 discard_cleanups (old_cleanups);
5582 resume (currently_stepping (ecs->event_thread),
5583 ecs->event_thread->suspend.stop_signal);
5584 }
5585
5586 prepare_to_wait (ecs);
5587 }
5588
5589 /* This function normally comes after a resume, before
5590 handle_inferior_event exits. It takes care of any last bits of
5591 housekeeping, and sets the all-important wait_some_more flag. */
5592
5593 static void
5594 prepare_to_wait (struct execution_control_state *ecs)
5595 {
5596 if (debug_infrun)
5597 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5598
5599 /* This is the old end of the while loop. Let everybody know we
5600 want to wait for the inferior some more and get called again
5601 soon. */
5602 ecs->wait_some_more = 1;
5603 }
5604
5605 /* Several print_*_reason functions to print why the inferior has stopped.
5606 We always print something when the inferior exits, or receives a signal.
5607 The rest of the cases are dealt with later on in normal_stop and
5608 print_it_typical. Ideally there should be a call to one of these
5609 print_*_reason functions functions from handle_inferior_event each time
5610 stop_stepping is called. */
5611
5612 /* Print why the inferior has stopped.
5613 We are done with a step/next/si/ni command, print why the inferior has
5614 stopped. For now print nothing. Print a message only if not in the middle
5615 of doing a "step n" operation for n > 1. */
5616
5617 static void
5618 print_end_stepping_range_reason (void)
5619 {
5620 if ((!inferior_thread ()->step_multi
5621 || !inferior_thread ()->control.stop_step)
5622 && ui_out_is_mi_like_p (current_uiout))
5623 ui_out_field_string (current_uiout, "reason",
5624 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5625 }
5626
5627 /* The inferior was terminated by a signal, print why it stopped. */
5628
5629 static void
5630 print_signal_exited_reason (enum target_signal siggnal)
5631 {
5632 struct ui_out *uiout = current_uiout;
5633
5634 annotate_signalled ();
5635 if (ui_out_is_mi_like_p (uiout))
5636 ui_out_field_string
5637 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5638 ui_out_text (uiout, "\nProgram terminated with signal ");
5639 annotate_signal_name ();
5640 ui_out_field_string (uiout, "signal-name",
5641 target_signal_to_name (siggnal));
5642 annotate_signal_name_end ();
5643 ui_out_text (uiout, ", ");
5644 annotate_signal_string ();
5645 ui_out_field_string (uiout, "signal-meaning",
5646 target_signal_to_string (siggnal));
5647 annotate_signal_string_end ();
5648 ui_out_text (uiout, ".\n");
5649 ui_out_text (uiout, "The program no longer exists.\n");
5650 }
5651
5652 /* The inferior program is finished, print why it stopped. */
5653
5654 static void
5655 print_exited_reason (int exitstatus)
5656 {
5657 struct inferior *inf = current_inferior ();
5658 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5659 struct ui_out *uiout = current_uiout;
5660
5661 annotate_exited (exitstatus);
5662 if (exitstatus)
5663 {
5664 if (ui_out_is_mi_like_p (uiout))
5665 ui_out_field_string (uiout, "reason",
5666 async_reason_lookup (EXEC_ASYNC_EXITED));
5667 ui_out_text (uiout, "[Inferior ");
5668 ui_out_text (uiout, plongest (inf->num));
5669 ui_out_text (uiout, " (");
5670 ui_out_text (uiout, pidstr);
5671 ui_out_text (uiout, ") exited with code ");
5672 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5673 ui_out_text (uiout, "]\n");
5674 }
5675 else
5676 {
5677 if (ui_out_is_mi_like_p (uiout))
5678 ui_out_field_string
5679 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5680 ui_out_text (uiout, "[Inferior ");
5681 ui_out_text (uiout, plongest (inf->num));
5682 ui_out_text (uiout, " (");
5683 ui_out_text (uiout, pidstr);
5684 ui_out_text (uiout, ") exited normally]\n");
5685 }
5686 /* Support the --return-child-result option. */
5687 return_child_result_value = exitstatus;
5688 }
5689
5690 /* Signal received, print why the inferior has stopped. The signal table
5691 tells us to print about it. */
5692
5693 static void
5694 print_signal_received_reason (enum target_signal siggnal)
5695 {
5696 struct ui_out *uiout = current_uiout;
5697
5698 annotate_signal ();
5699
5700 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5701 {
5702 struct thread_info *t = inferior_thread ();
5703
5704 ui_out_text (uiout, "\n[");
5705 ui_out_field_string (uiout, "thread-name",
5706 target_pid_to_str (t->ptid));
5707 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5708 ui_out_text (uiout, " stopped");
5709 }
5710 else
5711 {
5712 ui_out_text (uiout, "\nProgram received signal ");
5713 annotate_signal_name ();
5714 if (ui_out_is_mi_like_p (uiout))
5715 ui_out_field_string
5716 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5717 ui_out_field_string (uiout, "signal-name",
5718 target_signal_to_name (siggnal));
5719 annotate_signal_name_end ();
5720 ui_out_text (uiout, ", ");
5721 annotate_signal_string ();
5722 ui_out_field_string (uiout, "signal-meaning",
5723 target_signal_to_string (siggnal));
5724 annotate_signal_string_end ();
5725 }
5726 ui_out_text (uiout, ".\n");
5727 }
5728
5729 /* Reverse execution: target ran out of history info, print why the inferior
5730 has stopped. */
5731
5732 static void
5733 print_no_history_reason (void)
5734 {
5735 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5736 }
5737
5738 /* Here to return control to GDB when the inferior stops for real.
5739 Print appropriate messages, remove breakpoints, give terminal our modes.
5740
5741 STOP_PRINT_FRAME nonzero means print the executing frame
5742 (pc, function, args, file, line number and line text).
5743 BREAKPOINTS_FAILED nonzero means stop was due to error
5744 attempting to insert breakpoints. */
5745
5746 void
5747 normal_stop (void)
5748 {
5749 struct target_waitstatus last;
5750 ptid_t last_ptid;
5751 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5752
5753 get_last_target_status (&last_ptid, &last);
5754
5755 /* If an exception is thrown from this point on, make sure to
5756 propagate GDB's knowledge of the executing state to the
5757 frontend/user running state. A QUIT is an easy exception to see
5758 here, so do this before any filtered output. */
5759 if (!non_stop)
5760 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5761 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5762 && last.kind != TARGET_WAITKIND_EXITED)
5763 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5764
5765 /* In non-stop mode, we don't want GDB to switch threads behind the
5766 user's back, to avoid races where the user is typing a command to
5767 apply to thread x, but GDB switches to thread y before the user
5768 finishes entering the command. */
5769
5770 /* As with the notification of thread events, we want to delay
5771 notifying the user that we've switched thread context until
5772 the inferior actually stops.
5773
5774 There's no point in saying anything if the inferior has exited.
5775 Note that SIGNALLED here means "exited with a signal", not
5776 "received a signal". */
5777 if (!non_stop
5778 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5779 && target_has_execution
5780 && last.kind != TARGET_WAITKIND_SIGNALLED
5781 && last.kind != TARGET_WAITKIND_EXITED)
5782 {
5783 target_terminal_ours_for_output ();
5784 printf_filtered (_("[Switching to %s]\n"),
5785 target_pid_to_str (inferior_ptid));
5786 annotate_thread_changed ();
5787 previous_inferior_ptid = inferior_ptid;
5788 }
5789
5790 if (!breakpoints_always_inserted_mode () && target_has_execution)
5791 {
5792 if (remove_breakpoints ())
5793 {
5794 target_terminal_ours_for_output ();
5795 printf_filtered (_("Cannot remove breakpoints because "
5796 "program is no longer writable.\nFurther "
5797 "execution is probably impossible.\n"));
5798 }
5799 }
5800
5801 /* If an auto-display called a function and that got a signal,
5802 delete that auto-display to avoid an infinite recursion. */
5803
5804 if (stopped_by_random_signal)
5805 disable_current_display ();
5806
5807 /* Don't print a message if in the middle of doing a "step n"
5808 operation for n > 1 */
5809 if (target_has_execution
5810 && last.kind != TARGET_WAITKIND_SIGNALLED
5811 && last.kind != TARGET_WAITKIND_EXITED
5812 && inferior_thread ()->step_multi
5813 && inferior_thread ()->control.stop_step)
5814 goto done;
5815
5816 target_terminal_ours ();
5817
5818 /* Set the current source location. This will also happen if we
5819 display the frame below, but the current SAL will be incorrect
5820 during a user hook-stop function. */
5821 if (has_stack_frames () && !stop_stack_dummy)
5822 set_current_sal_from_frame (get_current_frame (), 1);
5823
5824 /* Let the user/frontend see the threads as stopped. */
5825 do_cleanups (old_chain);
5826
5827 /* Look up the hook_stop and run it (CLI internally handles problem
5828 of stop_command's pre-hook not existing). */
5829 if (stop_command)
5830 catch_errors (hook_stop_stub, stop_command,
5831 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5832
5833 if (!has_stack_frames ())
5834 goto done;
5835
5836 if (last.kind == TARGET_WAITKIND_SIGNALLED
5837 || last.kind == TARGET_WAITKIND_EXITED)
5838 goto done;
5839
5840 /* Select innermost stack frame - i.e., current frame is frame 0,
5841 and current location is based on that.
5842 Don't do this on return from a stack dummy routine,
5843 or if the program has exited. */
5844
5845 if (!stop_stack_dummy)
5846 {
5847 select_frame (get_current_frame ());
5848
5849 /* Print current location without a level number, if
5850 we have changed functions or hit a breakpoint.
5851 Print source line if we have one.
5852 bpstat_print() contains the logic deciding in detail
5853 what to print, based on the event(s) that just occurred. */
5854
5855 /* If --batch-silent is enabled then there's no need to print the current
5856 source location, and to try risks causing an error message about
5857 missing source files. */
5858 if (stop_print_frame && !batch_silent)
5859 {
5860 int bpstat_ret;
5861 int source_flag;
5862 int do_frame_printing = 1;
5863 struct thread_info *tp = inferior_thread ();
5864
5865 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5866 switch (bpstat_ret)
5867 {
5868 case PRINT_UNKNOWN:
5869 /* If we had hit a shared library event breakpoint,
5870 bpstat_print would print out this message. If we hit
5871 an OS-level shared library event, do the same
5872 thing. */
5873 if (last.kind == TARGET_WAITKIND_LOADED)
5874 {
5875 printf_filtered (_("Stopped due to shared library event\n"));
5876 source_flag = SRC_LINE; /* something bogus */
5877 do_frame_printing = 0;
5878 break;
5879 }
5880
5881 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5882 (or should) carry around the function and does (or
5883 should) use that when doing a frame comparison. */
5884 if (tp->control.stop_step
5885 && frame_id_eq (tp->control.step_frame_id,
5886 get_frame_id (get_current_frame ()))
5887 && step_start_function == find_pc_function (stop_pc))
5888 source_flag = SRC_LINE; /* Finished step, just
5889 print source line. */
5890 else
5891 source_flag = SRC_AND_LOC; /* Print location and
5892 source line. */
5893 break;
5894 case PRINT_SRC_AND_LOC:
5895 source_flag = SRC_AND_LOC; /* Print location and
5896 source line. */
5897 break;
5898 case PRINT_SRC_ONLY:
5899 source_flag = SRC_LINE;
5900 break;
5901 case PRINT_NOTHING:
5902 source_flag = SRC_LINE; /* something bogus */
5903 do_frame_printing = 0;
5904 break;
5905 default:
5906 internal_error (__FILE__, __LINE__, _("Unknown value."));
5907 }
5908
5909 /* The behavior of this routine with respect to the source
5910 flag is:
5911 SRC_LINE: Print only source line
5912 LOCATION: Print only location
5913 SRC_AND_LOC: Print location and source line. */
5914 if (do_frame_printing)
5915 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5916
5917 /* Display the auto-display expressions. */
5918 do_displays ();
5919 }
5920 }
5921
5922 /* Save the function value return registers, if we care.
5923 We might be about to restore their previous contents. */
5924 if (inferior_thread ()->control.proceed_to_finish
5925 && execution_direction != EXEC_REVERSE)
5926 {
5927 /* This should not be necessary. */
5928 if (stop_registers)
5929 regcache_xfree (stop_registers);
5930
5931 /* NB: The copy goes through to the target picking up the value of
5932 all the registers. */
5933 stop_registers = regcache_dup (get_current_regcache ());
5934 }
5935
5936 if (stop_stack_dummy == STOP_STACK_DUMMY)
5937 {
5938 /* Pop the empty frame that contains the stack dummy.
5939 This also restores inferior state prior to the call
5940 (struct infcall_suspend_state). */
5941 struct frame_info *frame = get_current_frame ();
5942
5943 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5944 frame_pop (frame);
5945 /* frame_pop() calls reinit_frame_cache as the last thing it
5946 does which means there's currently no selected frame. We
5947 don't need to re-establish a selected frame if the dummy call
5948 returns normally, that will be done by
5949 restore_infcall_control_state. However, we do have to handle
5950 the case where the dummy call is returning after being
5951 stopped (e.g. the dummy call previously hit a breakpoint).
5952 We can't know which case we have so just always re-establish
5953 a selected frame here. */
5954 select_frame (get_current_frame ());
5955 }
5956
5957 done:
5958 annotate_stopped ();
5959
5960 /* Suppress the stop observer if we're in the middle of:
5961
5962 - a step n (n > 1), as there still more steps to be done.
5963
5964 - a "finish" command, as the observer will be called in
5965 finish_command_continuation, so it can include the inferior
5966 function's return value.
5967
5968 - calling an inferior function, as we pretend we inferior didn't
5969 run at all. The return value of the call is handled by the
5970 expression evaluator, through call_function_by_hand. */
5971
5972 if (!target_has_execution
5973 || last.kind == TARGET_WAITKIND_SIGNALLED
5974 || last.kind == TARGET_WAITKIND_EXITED
5975 || (!inferior_thread ()->step_multi
5976 && !(inferior_thread ()->control.stop_bpstat
5977 && inferior_thread ()->control.proceed_to_finish)
5978 && !inferior_thread ()->control.in_infcall))
5979 {
5980 if (!ptid_equal (inferior_ptid, null_ptid))
5981 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
5982 stop_print_frame);
5983 else
5984 observer_notify_normal_stop (NULL, stop_print_frame);
5985 }
5986
5987 if (target_has_execution)
5988 {
5989 if (last.kind != TARGET_WAITKIND_SIGNALLED
5990 && last.kind != TARGET_WAITKIND_EXITED)
5991 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5992 Delete any breakpoint that is to be deleted at the next stop. */
5993 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
5994 }
5995
5996 /* Try to get rid of automatically added inferiors that are no
5997 longer needed. Keeping those around slows down things linearly.
5998 Note that this never removes the current inferior. */
5999 prune_inferiors ();
6000 }
6001
6002 static int
6003 hook_stop_stub (void *cmd)
6004 {
6005 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6006 return (0);
6007 }
6008 \f
6009 int
6010 signal_stop_state (int signo)
6011 {
6012 return signal_stop[signo];
6013 }
6014
6015 int
6016 signal_print_state (int signo)
6017 {
6018 return signal_print[signo];
6019 }
6020
6021 int
6022 signal_pass_state (int signo)
6023 {
6024 return signal_program[signo];
6025 }
6026
6027 static void
6028 signal_cache_update (int signo)
6029 {
6030 if (signo == -1)
6031 {
6032 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6033 signal_cache_update (signo);
6034
6035 return;
6036 }
6037
6038 signal_pass[signo] = (signal_stop[signo] == 0
6039 && signal_print[signo] == 0
6040 && signal_program[signo] == 1);
6041 }
6042
6043 int
6044 signal_stop_update (int signo, int state)
6045 {
6046 int ret = signal_stop[signo];
6047
6048 signal_stop[signo] = state;
6049 signal_cache_update (signo);
6050 return ret;
6051 }
6052
6053 int
6054 signal_print_update (int signo, int state)
6055 {
6056 int ret = signal_print[signo];
6057
6058 signal_print[signo] = state;
6059 signal_cache_update (signo);
6060 return ret;
6061 }
6062
6063 int
6064 signal_pass_update (int signo, int state)
6065 {
6066 int ret = signal_program[signo];
6067
6068 signal_program[signo] = state;
6069 signal_cache_update (signo);
6070 return ret;
6071 }
6072
6073 static void
6074 sig_print_header (void)
6075 {
6076 printf_filtered (_("Signal Stop\tPrint\tPass "
6077 "to program\tDescription\n"));
6078 }
6079
6080 static void
6081 sig_print_info (enum target_signal oursig)
6082 {
6083 const char *name = target_signal_to_name (oursig);
6084 int name_padding = 13 - strlen (name);
6085
6086 if (name_padding <= 0)
6087 name_padding = 0;
6088
6089 printf_filtered ("%s", name);
6090 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6091 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6092 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6093 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6094 printf_filtered ("%s\n", target_signal_to_string (oursig));
6095 }
6096
6097 /* Specify how various signals in the inferior should be handled. */
6098
6099 static void
6100 handle_command (char *args, int from_tty)
6101 {
6102 char **argv;
6103 int digits, wordlen;
6104 int sigfirst, signum, siglast;
6105 enum target_signal oursig;
6106 int allsigs;
6107 int nsigs;
6108 unsigned char *sigs;
6109 struct cleanup *old_chain;
6110
6111 if (args == NULL)
6112 {
6113 error_no_arg (_("signal to handle"));
6114 }
6115
6116 /* Allocate and zero an array of flags for which signals to handle. */
6117
6118 nsigs = (int) TARGET_SIGNAL_LAST;
6119 sigs = (unsigned char *) alloca (nsigs);
6120 memset (sigs, 0, nsigs);
6121
6122 /* Break the command line up into args. */
6123
6124 argv = gdb_buildargv (args);
6125 old_chain = make_cleanup_freeargv (argv);
6126
6127 /* Walk through the args, looking for signal oursigs, signal names, and
6128 actions. Signal numbers and signal names may be interspersed with
6129 actions, with the actions being performed for all signals cumulatively
6130 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6131
6132 while (*argv != NULL)
6133 {
6134 wordlen = strlen (*argv);
6135 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6136 {;
6137 }
6138 allsigs = 0;
6139 sigfirst = siglast = -1;
6140
6141 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6142 {
6143 /* Apply action to all signals except those used by the
6144 debugger. Silently skip those. */
6145 allsigs = 1;
6146 sigfirst = 0;
6147 siglast = nsigs - 1;
6148 }
6149 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6150 {
6151 SET_SIGS (nsigs, sigs, signal_stop);
6152 SET_SIGS (nsigs, sigs, signal_print);
6153 }
6154 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6155 {
6156 UNSET_SIGS (nsigs, sigs, signal_program);
6157 }
6158 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6159 {
6160 SET_SIGS (nsigs, sigs, signal_print);
6161 }
6162 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6163 {
6164 SET_SIGS (nsigs, sigs, signal_program);
6165 }
6166 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6167 {
6168 UNSET_SIGS (nsigs, sigs, signal_stop);
6169 }
6170 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6171 {
6172 SET_SIGS (nsigs, sigs, signal_program);
6173 }
6174 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6175 {
6176 UNSET_SIGS (nsigs, sigs, signal_print);
6177 UNSET_SIGS (nsigs, sigs, signal_stop);
6178 }
6179 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6180 {
6181 UNSET_SIGS (nsigs, sigs, signal_program);
6182 }
6183 else if (digits > 0)
6184 {
6185 /* It is numeric. The numeric signal refers to our own
6186 internal signal numbering from target.h, not to host/target
6187 signal number. This is a feature; users really should be
6188 using symbolic names anyway, and the common ones like
6189 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6190
6191 sigfirst = siglast = (int)
6192 target_signal_from_command (atoi (*argv));
6193 if ((*argv)[digits] == '-')
6194 {
6195 siglast = (int)
6196 target_signal_from_command (atoi ((*argv) + digits + 1));
6197 }
6198 if (sigfirst > siglast)
6199 {
6200 /* Bet he didn't figure we'd think of this case... */
6201 signum = sigfirst;
6202 sigfirst = siglast;
6203 siglast = signum;
6204 }
6205 }
6206 else
6207 {
6208 oursig = target_signal_from_name (*argv);
6209 if (oursig != TARGET_SIGNAL_UNKNOWN)
6210 {
6211 sigfirst = siglast = (int) oursig;
6212 }
6213 else
6214 {
6215 /* Not a number and not a recognized flag word => complain. */
6216 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6217 }
6218 }
6219
6220 /* If any signal numbers or symbol names were found, set flags for
6221 which signals to apply actions to. */
6222
6223 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6224 {
6225 switch ((enum target_signal) signum)
6226 {
6227 case TARGET_SIGNAL_TRAP:
6228 case TARGET_SIGNAL_INT:
6229 if (!allsigs && !sigs[signum])
6230 {
6231 if (query (_("%s is used by the debugger.\n\
6232 Are you sure you want to change it? "),
6233 target_signal_to_name ((enum target_signal) signum)))
6234 {
6235 sigs[signum] = 1;
6236 }
6237 else
6238 {
6239 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6240 gdb_flush (gdb_stdout);
6241 }
6242 }
6243 break;
6244 case TARGET_SIGNAL_0:
6245 case TARGET_SIGNAL_DEFAULT:
6246 case TARGET_SIGNAL_UNKNOWN:
6247 /* Make sure that "all" doesn't print these. */
6248 break;
6249 default:
6250 sigs[signum] = 1;
6251 break;
6252 }
6253 }
6254
6255 argv++;
6256 }
6257
6258 for (signum = 0; signum < nsigs; signum++)
6259 if (sigs[signum])
6260 {
6261 signal_cache_update (-1);
6262 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6263
6264 if (from_tty)
6265 {
6266 /* Show the results. */
6267 sig_print_header ();
6268 for (; signum < nsigs; signum++)
6269 if (sigs[signum])
6270 sig_print_info (signum);
6271 }
6272
6273 break;
6274 }
6275
6276 do_cleanups (old_chain);
6277 }
6278
6279 static void
6280 xdb_handle_command (char *args, int from_tty)
6281 {
6282 char **argv;
6283 struct cleanup *old_chain;
6284
6285 if (args == NULL)
6286 error_no_arg (_("xdb command"));
6287
6288 /* Break the command line up into args. */
6289
6290 argv = gdb_buildargv (args);
6291 old_chain = make_cleanup_freeargv (argv);
6292 if (argv[1] != (char *) NULL)
6293 {
6294 char *argBuf;
6295 int bufLen;
6296
6297 bufLen = strlen (argv[0]) + 20;
6298 argBuf = (char *) xmalloc (bufLen);
6299 if (argBuf)
6300 {
6301 int validFlag = 1;
6302 enum target_signal oursig;
6303
6304 oursig = target_signal_from_name (argv[0]);
6305 memset (argBuf, 0, bufLen);
6306 if (strcmp (argv[1], "Q") == 0)
6307 sprintf (argBuf, "%s %s", argv[0], "noprint");
6308 else
6309 {
6310 if (strcmp (argv[1], "s") == 0)
6311 {
6312 if (!signal_stop[oursig])
6313 sprintf (argBuf, "%s %s", argv[0], "stop");
6314 else
6315 sprintf (argBuf, "%s %s", argv[0], "nostop");
6316 }
6317 else if (strcmp (argv[1], "i") == 0)
6318 {
6319 if (!signal_program[oursig])
6320 sprintf (argBuf, "%s %s", argv[0], "pass");
6321 else
6322 sprintf (argBuf, "%s %s", argv[0], "nopass");
6323 }
6324 else if (strcmp (argv[1], "r") == 0)
6325 {
6326 if (!signal_print[oursig])
6327 sprintf (argBuf, "%s %s", argv[0], "print");
6328 else
6329 sprintf (argBuf, "%s %s", argv[0], "noprint");
6330 }
6331 else
6332 validFlag = 0;
6333 }
6334 if (validFlag)
6335 handle_command (argBuf, from_tty);
6336 else
6337 printf_filtered (_("Invalid signal handling flag.\n"));
6338 if (argBuf)
6339 xfree (argBuf);
6340 }
6341 }
6342 do_cleanups (old_chain);
6343 }
6344
6345 /* Print current contents of the tables set by the handle command.
6346 It is possible we should just be printing signals actually used
6347 by the current target (but for things to work right when switching
6348 targets, all signals should be in the signal tables). */
6349
6350 static void
6351 signals_info (char *signum_exp, int from_tty)
6352 {
6353 enum target_signal oursig;
6354
6355 sig_print_header ();
6356
6357 if (signum_exp)
6358 {
6359 /* First see if this is a symbol name. */
6360 oursig = target_signal_from_name (signum_exp);
6361 if (oursig == TARGET_SIGNAL_UNKNOWN)
6362 {
6363 /* No, try numeric. */
6364 oursig =
6365 target_signal_from_command (parse_and_eval_long (signum_exp));
6366 }
6367 sig_print_info (oursig);
6368 return;
6369 }
6370
6371 printf_filtered ("\n");
6372 /* These ugly casts brought to you by the native VAX compiler. */
6373 for (oursig = TARGET_SIGNAL_FIRST;
6374 (int) oursig < (int) TARGET_SIGNAL_LAST;
6375 oursig = (enum target_signal) ((int) oursig + 1))
6376 {
6377 QUIT;
6378
6379 if (oursig != TARGET_SIGNAL_UNKNOWN
6380 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6381 sig_print_info (oursig);
6382 }
6383
6384 printf_filtered (_("\nUse the \"handle\" command "
6385 "to change these tables.\n"));
6386 }
6387
6388 /* Check if it makes sense to read $_siginfo from the current thread
6389 at this point. If not, throw an error. */
6390
6391 static void
6392 validate_siginfo_access (void)
6393 {
6394 /* No current inferior, no siginfo. */
6395 if (ptid_equal (inferior_ptid, null_ptid))
6396 error (_("No thread selected."));
6397
6398 /* Don't try to read from a dead thread. */
6399 if (is_exited (inferior_ptid))
6400 error (_("The current thread has terminated"));
6401
6402 /* ... or from a spinning thread. */
6403 if (is_running (inferior_ptid))
6404 error (_("Selected thread is running."));
6405 }
6406
6407 /* The $_siginfo convenience variable is a bit special. We don't know
6408 for sure the type of the value until we actually have a chance to
6409 fetch the data. The type can change depending on gdbarch, so it is
6410 also dependent on which thread you have selected.
6411
6412 1. making $_siginfo be an internalvar that creates a new value on
6413 access.
6414
6415 2. making the value of $_siginfo be an lval_computed value. */
6416
6417 /* This function implements the lval_computed support for reading a
6418 $_siginfo value. */
6419
6420 static void
6421 siginfo_value_read (struct value *v)
6422 {
6423 LONGEST transferred;
6424
6425 validate_siginfo_access ();
6426
6427 transferred =
6428 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6429 NULL,
6430 value_contents_all_raw (v),
6431 value_offset (v),
6432 TYPE_LENGTH (value_type (v)));
6433
6434 if (transferred != TYPE_LENGTH (value_type (v)))
6435 error (_("Unable to read siginfo"));
6436 }
6437
6438 /* This function implements the lval_computed support for writing a
6439 $_siginfo value. */
6440
6441 static void
6442 siginfo_value_write (struct value *v, struct value *fromval)
6443 {
6444 LONGEST transferred;
6445
6446 validate_siginfo_access ();
6447
6448 transferred = target_write (&current_target,
6449 TARGET_OBJECT_SIGNAL_INFO,
6450 NULL,
6451 value_contents_all_raw (fromval),
6452 value_offset (v),
6453 TYPE_LENGTH (value_type (fromval)));
6454
6455 if (transferred != TYPE_LENGTH (value_type (fromval)))
6456 error (_("Unable to write siginfo"));
6457 }
6458
6459 static const struct lval_funcs siginfo_value_funcs =
6460 {
6461 siginfo_value_read,
6462 siginfo_value_write
6463 };
6464
6465 /* Return a new value with the correct type for the siginfo object of
6466 the current thread using architecture GDBARCH. Return a void value
6467 if there's no object available. */
6468
6469 static struct value *
6470 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6471 {
6472 if (target_has_stack
6473 && !ptid_equal (inferior_ptid, null_ptid)
6474 && gdbarch_get_siginfo_type_p (gdbarch))
6475 {
6476 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6477
6478 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6479 }
6480
6481 return allocate_value (builtin_type (gdbarch)->builtin_void);
6482 }
6483
6484 \f
6485 /* infcall_suspend_state contains state about the program itself like its
6486 registers and any signal it received when it last stopped.
6487 This state must be restored regardless of how the inferior function call
6488 ends (either successfully, or after it hits a breakpoint or signal)
6489 if the program is to properly continue where it left off. */
6490
6491 struct infcall_suspend_state
6492 {
6493 struct thread_suspend_state thread_suspend;
6494 struct inferior_suspend_state inferior_suspend;
6495
6496 /* Other fields: */
6497 CORE_ADDR stop_pc;
6498 struct regcache *registers;
6499
6500 /* Format of SIGINFO_DATA or NULL if it is not present. */
6501 struct gdbarch *siginfo_gdbarch;
6502
6503 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6504 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6505 content would be invalid. */
6506 gdb_byte *siginfo_data;
6507 };
6508
6509 struct infcall_suspend_state *
6510 save_infcall_suspend_state (void)
6511 {
6512 struct infcall_suspend_state *inf_state;
6513 struct thread_info *tp = inferior_thread ();
6514 struct inferior *inf = current_inferior ();
6515 struct regcache *regcache = get_current_regcache ();
6516 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6517 gdb_byte *siginfo_data = NULL;
6518
6519 if (gdbarch_get_siginfo_type_p (gdbarch))
6520 {
6521 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6522 size_t len = TYPE_LENGTH (type);
6523 struct cleanup *back_to;
6524
6525 siginfo_data = xmalloc (len);
6526 back_to = make_cleanup (xfree, siginfo_data);
6527
6528 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6529 siginfo_data, 0, len) == len)
6530 discard_cleanups (back_to);
6531 else
6532 {
6533 /* Errors ignored. */
6534 do_cleanups (back_to);
6535 siginfo_data = NULL;
6536 }
6537 }
6538
6539 inf_state = XZALLOC (struct infcall_suspend_state);
6540
6541 if (siginfo_data)
6542 {
6543 inf_state->siginfo_gdbarch = gdbarch;
6544 inf_state->siginfo_data = siginfo_data;
6545 }
6546
6547 inf_state->thread_suspend = tp->suspend;
6548 inf_state->inferior_suspend = inf->suspend;
6549
6550 /* run_inferior_call will not use the signal due to its `proceed' call with
6551 TARGET_SIGNAL_0 anyway. */
6552 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6553
6554 inf_state->stop_pc = stop_pc;
6555
6556 inf_state->registers = regcache_dup (regcache);
6557
6558 return inf_state;
6559 }
6560
6561 /* Restore inferior session state to INF_STATE. */
6562
6563 void
6564 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6565 {
6566 struct thread_info *tp = inferior_thread ();
6567 struct inferior *inf = current_inferior ();
6568 struct regcache *regcache = get_current_regcache ();
6569 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6570
6571 tp->suspend = inf_state->thread_suspend;
6572 inf->suspend = inf_state->inferior_suspend;
6573
6574 stop_pc = inf_state->stop_pc;
6575
6576 if (inf_state->siginfo_gdbarch == gdbarch)
6577 {
6578 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6579 size_t len = TYPE_LENGTH (type);
6580
6581 /* Errors ignored. */
6582 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6583 inf_state->siginfo_data, 0, len);
6584 }
6585
6586 /* The inferior can be gone if the user types "print exit(0)"
6587 (and perhaps other times). */
6588 if (target_has_execution)
6589 /* NB: The register write goes through to the target. */
6590 regcache_cpy (regcache, inf_state->registers);
6591
6592 discard_infcall_suspend_state (inf_state);
6593 }
6594
6595 static void
6596 do_restore_infcall_suspend_state_cleanup (void *state)
6597 {
6598 restore_infcall_suspend_state (state);
6599 }
6600
6601 struct cleanup *
6602 make_cleanup_restore_infcall_suspend_state
6603 (struct infcall_suspend_state *inf_state)
6604 {
6605 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6606 }
6607
6608 void
6609 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6610 {
6611 regcache_xfree (inf_state->registers);
6612 xfree (inf_state->siginfo_data);
6613 xfree (inf_state);
6614 }
6615
6616 struct regcache *
6617 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6618 {
6619 return inf_state->registers;
6620 }
6621
6622 /* infcall_control_state contains state regarding gdb's control of the
6623 inferior itself like stepping control. It also contains session state like
6624 the user's currently selected frame. */
6625
6626 struct infcall_control_state
6627 {
6628 struct thread_control_state thread_control;
6629 struct inferior_control_state inferior_control;
6630
6631 /* Other fields: */
6632 enum stop_stack_kind stop_stack_dummy;
6633 int stopped_by_random_signal;
6634 int stop_after_trap;
6635
6636 /* ID if the selected frame when the inferior function call was made. */
6637 struct frame_id selected_frame_id;
6638 };
6639
6640 /* Save all of the information associated with the inferior<==>gdb
6641 connection. */
6642
6643 struct infcall_control_state *
6644 save_infcall_control_state (void)
6645 {
6646 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6647 struct thread_info *tp = inferior_thread ();
6648 struct inferior *inf = current_inferior ();
6649
6650 inf_status->thread_control = tp->control;
6651 inf_status->inferior_control = inf->control;
6652
6653 tp->control.step_resume_breakpoint = NULL;
6654 tp->control.exception_resume_breakpoint = NULL;
6655
6656 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6657 chain. If caller's caller is walking the chain, they'll be happier if we
6658 hand them back the original chain when restore_infcall_control_state is
6659 called. */
6660 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6661
6662 /* Other fields: */
6663 inf_status->stop_stack_dummy = stop_stack_dummy;
6664 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6665 inf_status->stop_after_trap = stop_after_trap;
6666
6667 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6668
6669 return inf_status;
6670 }
6671
6672 static int
6673 restore_selected_frame (void *args)
6674 {
6675 struct frame_id *fid = (struct frame_id *) args;
6676 struct frame_info *frame;
6677
6678 frame = frame_find_by_id (*fid);
6679
6680 /* If inf_status->selected_frame_id is NULL, there was no previously
6681 selected frame. */
6682 if (frame == NULL)
6683 {
6684 warning (_("Unable to restore previously selected frame."));
6685 return 0;
6686 }
6687
6688 select_frame (frame);
6689
6690 return (1);
6691 }
6692
6693 /* Restore inferior session state to INF_STATUS. */
6694
6695 void
6696 restore_infcall_control_state (struct infcall_control_state *inf_status)
6697 {
6698 struct thread_info *tp = inferior_thread ();
6699 struct inferior *inf = current_inferior ();
6700
6701 if (tp->control.step_resume_breakpoint)
6702 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6703
6704 if (tp->control.exception_resume_breakpoint)
6705 tp->control.exception_resume_breakpoint->disposition
6706 = disp_del_at_next_stop;
6707
6708 /* Handle the bpstat_copy of the chain. */
6709 bpstat_clear (&tp->control.stop_bpstat);
6710
6711 tp->control = inf_status->thread_control;
6712 inf->control = inf_status->inferior_control;
6713
6714 /* Other fields: */
6715 stop_stack_dummy = inf_status->stop_stack_dummy;
6716 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6717 stop_after_trap = inf_status->stop_after_trap;
6718
6719 if (target_has_stack)
6720 {
6721 /* The point of catch_errors is that if the stack is clobbered,
6722 walking the stack might encounter a garbage pointer and
6723 error() trying to dereference it. */
6724 if (catch_errors
6725 (restore_selected_frame, &inf_status->selected_frame_id,
6726 "Unable to restore previously selected frame:\n",
6727 RETURN_MASK_ERROR) == 0)
6728 /* Error in restoring the selected frame. Select the innermost
6729 frame. */
6730 select_frame (get_current_frame ());
6731 }
6732
6733 xfree (inf_status);
6734 }
6735
6736 static void
6737 do_restore_infcall_control_state_cleanup (void *sts)
6738 {
6739 restore_infcall_control_state (sts);
6740 }
6741
6742 struct cleanup *
6743 make_cleanup_restore_infcall_control_state
6744 (struct infcall_control_state *inf_status)
6745 {
6746 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6747 }
6748
6749 void
6750 discard_infcall_control_state (struct infcall_control_state *inf_status)
6751 {
6752 if (inf_status->thread_control.step_resume_breakpoint)
6753 inf_status->thread_control.step_resume_breakpoint->disposition
6754 = disp_del_at_next_stop;
6755
6756 if (inf_status->thread_control.exception_resume_breakpoint)
6757 inf_status->thread_control.exception_resume_breakpoint->disposition
6758 = disp_del_at_next_stop;
6759
6760 /* See save_infcall_control_state for info on stop_bpstat. */
6761 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6762
6763 xfree (inf_status);
6764 }
6765 \f
6766 int
6767 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6768 {
6769 struct target_waitstatus last;
6770 ptid_t last_ptid;
6771
6772 get_last_target_status (&last_ptid, &last);
6773
6774 if (last.kind != TARGET_WAITKIND_FORKED)
6775 return 0;
6776
6777 if (!ptid_equal (last_ptid, pid))
6778 return 0;
6779
6780 *child_pid = last.value.related_pid;
6781 return 1;
6782 }
6783
6784 int
6785 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6786 {
6787 struct target_waitstatus last;
6788 ptid_t last_ptid;
6789
6790 get_last_target_status (&last_ptid, &last);
6791
6792 if (last.kind != TARGET_WAITKIND_VFORKED)
6793 return 0;
6794
6795 if (!ptid_equal (last_ptid, pid))
6796 return 0;
6797
6798 *child_pid = last.value.related_pid;
6799 return 1;
6800 }
6801
6802 int
6803 inferior_has_execd (ptid_t pid, char **execd_pathname)
6804 {
6805 struct target_waitstatus last;
6806 ptid_t last_ptid;
6807
6808 get_last_target_status (&last_ptid, &last);
6809
6810 if (last.kind != TARGET_WAITKIND_EXECD)
6811 return 0;
6812
6813 if (!ptid_equal (last_ptid, pid))
6814 return 0;
6815
6816 *execd_pathname = xstrdup (last.value.execd_pathname);
6817 return 1;
6818 }
6819
6820 int
6821 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6822 {
6823 struct target_waitstatus last;
6824 ptid_t last_ptid;
6825
6826 get_last_target_status (&last_ptid, &last);
6827
6828 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6829 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6830 return 0;
6831
6832 if (!ptid_equal (last_ptid, pid))
6833 return 0;
6834
6835 *syscall_number = last.value.syscall_number;
6836 return 1;
6837 }
6838
6839 int
6840 ptid_match (ptid_t ptid, ptid_t filter)
6841 {
6842 if (ptid_equal (filter, minus_one_ptid))
6843 return 1;
6844 if (ptid_is_pid (filter)
6845 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6846 return 1;
6847 else if (ptid_equal (ptid, filter))
6848 return 1;
6849
6850 return 0;
6851 }
6852
6853 /* restore_inferior_ptid() will be used by the cleanup machinery
6854 to restore the inferior_ptid value saved in a call to
6855 save_inferior_ptid(). */
6856
6857 static void
6858 restore_inferior_ptid (void *arg)
6859 {
6860 ptid_t *saved_ptid_ptr = arg;
6861
6862 inferior_ptid = *saved_ptid_ptr;
6863 xfree (arg);
6864 }
6865
6866 /* Save the value of inferior_ptid so that it may be restored by a
6867 later call to do_cleanups(). Returns the struct cleanup pointer
6868 needed for later doing the cleanup. */
6869
6870 struct cleanup *
6871 save_inferior_ptid (void)
6872 {
6873 ptid_t *saved_ptid_ptr;
6874
6875 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6876 *saved_ptid_ptr = inferior_ptid;
6877 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6878 }
6879 \f
6880
6881 /* User interface for reverse debugging:
6882 Set exec-direction / show exec-direction commands
6883 (returns error unless target implements to_set_exec_direction method). */
6884
6885 int execution_direction = EXEC_FORWARD;
6886 static const char exec_forward[] = "forward";
6887 static const char exec_reverse[] = "reverse";
6888 static const char *exec_direction = exec_forward;
6889 static const char *exec_direction_names[] = {
6890 exec_forward,
6891 exec_reverse,
6892 NULL
6893 };
6894
6895 static void
6896 set_exec_direction_func (char *args, int from_tty,
6897 struct cmd_list_element *cmd)
6898 {
6899 if (target_can_execute_reverse)
6900 {
6901 if (!strcmp (exec_direction, exec_forward))
6902 execution_direction = EXEC_FORWARD;
6903 else if (!strcmp (exec_direction, exec_reverse))
6904 execution_direction = EXEC_REVERSE;
6905 }
6906 else
6907 {
6908 exec_direction = exec_forward;
6909 error (_("Target does not support this operation."));
6910 }
6911 }
6912
6913 static void
6914 show_exec_direction_func (struct ui_file *out, int from_tty,
6915 struct cmd_list_element *cmd, const char *value)
6916 {
6917 switch (execution_direction) {
6918 case EXEC_FORWARD:
6919 fprintf_filtered (out, _("Forward.\n"));
6920 break;
6921 case EXEC_REVERSE:
6922 fprintf_filtered (out, _("Reverse.\n"));
6923 break;
6924 default:
6925 internal_error (__FILE__, __LINE__,
6926 _("bogus execution_direction value: %d"),
6927 (int) execution_direction);
6928 }
6929 }
6930
6931 /* User interface for non-stop mode. */
6932
6933 int non_stop = 0;
6934
6935 static void
6936 set_non_stop (char *args, int from_tty,
6937 struct cmd_list_element *c)
6938 {
6939 if (target_has_execution)
6940 {
6941 non_stop_1 = non_stop;
6942 error (_("Cannot change this setting while the inferior is running."));
6943 }
6944
6945 non_stop = non_stop_1;
6946 }
6947
6948 static void
6949 show_non_stop (struct ui_file *file, int from_tty,
6950 struct cmd_list_element *c, const char *value)
6951 {
6952 fprintf_filtered (file,
6953 _("Controlling the inferior in non-stop mode is %s.\n"),
6954 value);
6955 }
6956
6957 static void
6958 show_schedule_multiple (struct ui_file *file, int from_tty,
6959 struct cmd_list_element *c, const char *value)
6960 {
6961 fprintf_filtered (file, _("Resuming the execution of threads "
6962 "of all processes is %s.\n"), value);
6963 }
6964
6965 void
6966 _initialize_infrun (void)
6967 {
6968 int i;
6969 int numsigs;
6970
6971 add_info ("signals", signals_info, _("\
6972 What debugger does when program gets various signals.\n\
6973 Specify a signal as argument to print info on that signal only."));
6974 add_info_alias ("handle", "signals", 0);
6975
6976 add_com ("handle", class_run, handle_command, _("\
6977 Specify how to handle a signal.\n\
6978 Args are signals and actions to apply to those signals.\n\
6979 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6980 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6981 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6982 The special arg \"all\" is recognized to mean all signals except those\n\
6983 used by the debugger, typically SIGTRAP and SIGINT.\n\
6984 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6985 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6986 Stop means reenter debugger if this signal happens (implies print).\n\
6987 Print means print a message if this signal happens.\n\
6988 Pass means let program see this signal; otherwise program doesn't know.\n\
6989 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6990 Pass and Stop may be combined."));
6991 if (xdb_commands)
6992 {
6993 add_com ("lz", class_info, signals_info, _("\
6994 What debugger does when program gets various signals.\n\
6995 Specify a signal as argument to print info on that signal only."));
6996 add_com ("z", class_run, xdb_handle_command, _("\
6997 Specify how to handle a signal.\n\
6998 Args are signals and actions to apply to those signals.\n\
6999 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7000 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7001 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7002 The special arg \"all\" is recognized to mean all signals except those\n\
7003 used by the debugger, typically SIGTRAP and SIGINT.\n\
7004 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7005 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7006 nopass), \"Q\" (noprint)\n\
7007 Stop means reenter debugger if this signal happens (implies print).\n\
7008 Print means print a message if this signal happens.\n\
7009 Pass means let program see this signal; otherwise program doesn't know.\n\
7010 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7011 Pass and Stop may be combined."));
7012 }
7013
7014 if (!dbx_commands)
7015 stop_command = add_cmd ("stop", class_obscure,
7016 not_just_help_class_command, _("\
7017 There is no `stop' command, but you can set a hook on `stop'.\n\
7018 This allows you to set a list of commands to be run each time execution\n\
7019 of the program stops."), &cmdlist);
7020
7021 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7022 Set inferior debugging."), _("\
7023 Show inferior debugging."), _("\
7024 When non-zero, inferior specific debugging is enabled."),
7025 NULL,
7026 show_debug_infrun,
7027 &setdebuglist, &showdebuglist);
7028
7029 add_setshow_boolean_cmd ("displaced", class_maintenance,
7030 &debug_displaced, _("\
7031 Set displaced stepping debugging."), _("\
7032 Show displaced stepping debugging."), _("\
7033 When non-zero, displaced stepping specific debugging is enabled."),
7034 NULL,
7035 show_debug_displaced,
7036 &setdebuglist, &showdebuglist);
7037
7038 add_setshow_boolean_cmd ("non-stop", no_class,
7039 &non_stop_1, _("\
7040 Set whether gdb controls the inferior in non-stop mode."), _("\
7041 Show whether gdb controls the inferior in non-stop mode."), _("\
7042 When debugging a multi-threaded program and this setting is\n\
7043 off (the default, also called all-stop mode), when one thread stops\n\
7044 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7045 all other threads in the program while you interact with the thread of\n\
7046 interest. When you continue or step a thread, you can allow the other\n\
7047 threads to run, or have them remain stopped, but while you inspect any\n\
7048 thread's state, all threads stop.\n\
7049 \n\
7050 In non-stop mode, when one thread stops, other threads can continue\n\
7051 to run freely. You'll be able to step each thread independently,\n\
7052 leave it stopped or free to run as needed."),
7053 set_non_stop,
7054 show_non_stop,
7055 &setlist,
7056 &showlist);
7057
7058 numsigs = (int) TARGET_SIGNAL_LAST;
7059 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7060 signal_print = (unsigned char *)
7061 xmalloc (sizeof (signal_print[0]) * numsigs);
7062 signal_program = (unsigned char *)
7063 xmalloc (sizeof (signal_program[0]) * numsigs);
7064 signal_pass = (unsigned char *)
7065 xmalloc (sizeof (signal_program[0]) * numsigs);
7066 for (i = 0; i < numsigs; i++)
7067 {
7068 signal_stop[i] = 1;
7069 signal_print[i] = 1;
7070 signal_program[i] = 1;
7071 }
7072
7073 /* Signals caused by debugger's own actions
7074 should not be given to the program afterwards. */
7075 signal_program[TARGET_SIGNAL_TRAP] = 0;
7076 signal_program[TARGET_SIGNAL_INT] = 0;
7077
7078 /* Signals that are not errors should not normally enter the debugger. */
7079 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7080 signal_print[TARGET_SIGNAL_ALRM] = 0;
7081 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7082 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7083 signal_stop[TARGET_SIGNAL_PROF] = 0;
7084 signal_print[TARGET_SIGNAL_PROF] = 0;
7085 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7086 signal_print[TARGET_SIGNAL_CHLD] = 0;
7087 signal_stop[TARGET_SIGNAL_IO] = 0;
7088 signal_print[TARGET_SIGNAL_IO] = 0;
7089 signal_stop[TARGET_SIGNAL_POLL] = 0;
7090 signal_print[TARGET_SIGNAL_POLL] = 0;
7091 signal_stop[TARGET_SIGNAL_URG] = 0;
7092 signal_print[TARGET_SIGNAL_URG] = 0;
7093 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7094 signal_print[TARGET_SIGNAL_WINCH] = 0;
7095 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7096 signal_print[TARGET_SIGNAL_PRIO] = 0;
7097
7098 /* These signals are used internally by user-level thread
7099 implementations. (See signal(5) on Solaris.) Like the above
7100 signals, a healthy program receives and handles them as part of
7101 its normal operation. */
7102 signal_stop[TARGET_SIGNAL_LWP] = 0;
7103 signal_print[TARGET_SIGNAL_LWP] = 0;
7104 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7105 signal_print[TARGET_SIGNAL_WAITING] = 0;
7106 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7107 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7108
7109 /* Update cached state. */
7110 signal_cache_update (-1);
7111
7112 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7113 &stop_on_solib_events, _("\
7114 Set stopping for shared library events."), _("\
7115 Show stopping for shared library events."), _("\
7116 If nonzero, gdb will give control to the user when the dynamic linker\n\
7117 notifies gdb of shared library events. The most common event of interest\n\
7118 to the user would be loading/unloading of a new library."),
7119 NULL,
7120 show_stop_on_solib_events,
7121 &setlist, &showlist);
7122
7123 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7124 follow_fork_mode_kind_names,
7125 &follow_fork_mode_string, _("\
7126 Set debugger response to a program call of fork or vfork."), _("\
7127 Show debugger response to a program call of fork or vfork."), _("\
7128 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7129 parent - the original process is debugged after a fork\n\
7130 child - the new process is debugged after a fork\n\
7131 The unfollowed process will continue to run.\n\
7132 By default, the debugger will follow the parent process."),
7133 NULL,
7134 show_follow_fork_mode_string,
7135 &setlist, &showlist);
7136
7137 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7138 follow_exec_mode_names,
7139 &follow_exec_mode_string, _("\
7140 Set debugger response to a program call of exec."), _("\
7141 Show debugger response to a program call of exec."), _("\
7142 An exec call replaces the program image of a process.\n\
7143 \n\
7144 follow-exec-mode can be:\n\
7145 \n\
7146 new - the debugger creates a new inferior and rebinds the process\n\
7147 to this new inferior. The program the process was running before\n\
7148 the exec call can be restarted afterwards by restarting the original\n\
7149 inferior.\n\
7150 \n\
7151 same - the debugger keeps the process bound to the same inferior.\n\
7152 The new executable image replaces the previous executable loaded in\n\
7153 the inferior. Restarting the inferior after the exec call restarts\n\
7154 the executable the process was running after the exec call.\n\
7155 \n\
7156 By default, the debugger will use the same inferior."),
7157 NULL,
7158 show_follow_exec_mode_string,
7159 &setlist, &showlist);
7160
7161 add_setshow_enum_cmd ("scheduler-locking", class_run,
7162 scheduler_enums, &scheduler_mode, _("\
7163 Set mode for locking scheduler during execution."), _("\
7164 Show mode for locking scheduler during execution."), _("\
7165 off == no locking (threads may preempt at any time)\n\
7166 on == full locking (no thread except the current thread may run)\n\
7167 step == scheduler locked during every single-step operation.\n\
7168 In this mode, no other thread may run during a step command.\n\
7169 Other threads may run while stepping over a function call ('next')."),
7170 set_schedlock_func, /* traps on target vector */
7171 show_scheduler_mode,
7172 &setlist, &showlist);
7173
7174 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7175 Set mode for resuming threads of all processes."), _("\
7176 Show mode for resuming threads of all processes."), _("\
7177 When on, execution commands (such as 'continue' or 'next') resume all\n\
7178 threads of all processes. When off (which is the default), execution\n\
7179 commands only resume the threads of the current process. The set of\n\
7180 threads that are resumed is further refined by the scheduler-locking\n\
7181 mode (see help set scheduler-locking)."),
7182 NULL,
7183 show_schedule_multiple,
7184 &setlist, &showlist);
7185
7186 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7187 Set mode of the step operation."), _("\
7188 Show mode of the step operation."), _("\
7189 When set, doing a step over a function without debug line information\n\
7190 will stop at the first instruction of that function. Otherwise, the\n\
7191 function is skipped and the step command stops at a different source line."),
7192 NULL,
7193 show_step_stop_if_no_debug,
7194 &setlist, &showlist);
7195
7196 add_setshow_enum_cmd ("displaced-stepping", class_run,
7197 can_use_displaced_stepping_enum,
7198 &can_use_displaced_stepping, _("\
7199 Set debugger's willingness to use displaced stepping."), _("\
7200 Show debugger's willingness to use displaced stepping."), _("\
7201 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7202 supported by the target architecture. If off, gdb will not use displaced\n\
7203 stepping to step over breakpoints, even if such is supported by the target\n\
7204 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7205 if the target architecture supports it and non-stop mode is active, but will not\n\
7206 use it in all-stop mode (see help set non-stop)."),
7207 NULL,
7208 show_can_use_displaced_stepping,
7209 &setlist, &showlist);
7210
7211 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7212 &exec_direction, _("Set direction of execution.\n\
7213 Options are 'forward' or 'reverse'."),
7214 _("Show direction of execution (forward/reverse)."),
7215 _("Tells gdb whether to execute forward or backward."),
7216 set_exec_direction_func, show_exec_direction_func,
7217 &setlist, &showlist);
7218
7219 /* Set/show detach-on-fork: user-settable mode. */
7220
7221 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7222 Set whether gdb will detach the child of a fork."), _("\
7223 Show whether gdb will detach the child of a fork."), _("\
7224 Tells gdb whether to detach the child of a fork."),
7225 NULL, NULL, &setlist, &showlist);
7226
7227 /* ptid initializations */
7228 inferior_ptid = null_ptid;
7229 target_last_wait_ptid = minus_one_ptid;
7230
7231 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7232 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7233 observer_attach_thread_exit (infrun_thread_thread_exit);
7234 observer_attach_inferior_exit (infrun_inferior_exit);
7235
7236 /* Explicitly create without lookup, since that tries to create a
7237 value with a void typed value, and when we get here, gdbarch
7238 isn't initialized yet. At this point, we're quite sure there
7239 isn't another convenience variable of the same name. */
7240 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7241
7242 add_setshow_boolean_cmd ("observer", no_class,
7243 &observer_mode_1, _("\
7244 Set whether gdb controls the inferior in observer mode."), _("\
7245 Show whether gdb controls the inferior in observer mode."), _("\
7246 In observer mode, GDB can get data from the inferior, but not\n\
7247 affect its execution. Registers and memory may not be changed,\n\
7248 breakpoints may not be set, and the program cannot be interrupted\n\
7249 or signalled."),
7250 set_observer_mode,
7251 show_observer_mode,
7252 &setlist,
7253 &showlist);
7254 }
This page took 0.168214 seconds and 5 git commands to generate.