* thread-db.c (check_event): Don't report an error if we encounter
[deliverable/binutils-gdb.git] / gdb / infttrace.c
1 /* Low level Unix child interface to ttrace, for GDB when running under HP-UX.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
3 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdb_string.h"
28 #include "gdb_wait.h"
29 #include "command.h"
30
31 /* Some hackery to work around a use of the #define name NO_FLAGS
32 * in both gdb and HPUX (bfd.h and /usr/include/machine/vmparam.h).
33 */
34 #ifdef NO_FLAGS
35 #define INFTTRACE_TEMP_HACK NO_FLAGS
36 #undef NO_FLAGS
37 #endif
38
39 #ifdef USG
40 #include <sys/types.h>
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/dir.h>
45 #include <signal.h>
46 #include <sys/ioctl.h>
47
48 #include <sys/ttrace.h>
49 #include <sys/mman.h>
50
51 #ifndef NO_PTRACE_H
52 #ifdef PTRACE_IN_WRONG_PLACE
53 #include <ptrace.h>
54 #else
55 #include <sys/ptrace.h>
56 #endif
57 #endif /* NO_PTRACE_H */
58
59 /* Second half of the hackery above. Non-ANSI C, so
60 * we can't use "#error", alas.
61 */
62 #ifdef NO_FLAGS
63 #if (NO_FLAGS != INFTTRACE_TEMP_HACK )
64 /* #error "Hackery to remove warning didn't work right" */
65 #else
66 /* Ok, new def'n of NO_FLAGS is same as old one; no action needed. */
67 #endif
68 #else
69 /* #error "Didn't get expected re-definition of NO_FLAGS" */
70 #define NO_FLAGS INFTTRACE_TEMP_HACK
71 #endif
72
73 #if !defined (PT_SETTRC)
74 #define PT_SETTRC 0 /* Make process traceable by parent */
75 #endif
76 #if !defined (PT_READ_I)
77 #define PT_READ_I 1 /* Read word from text space */
78 #endif
79 #if !defined (PT_READ_D)
80 #define PT_READ_D 2 /* Read word from data space */
81 #endif
82 #if !defined (PT_READ_U)
83 #define PT_READ_U 3 /* Read word from kernel user struct */
84 #endif
85 #if !defined (PT_WRITE_I)
86 #define PT_WRITE_I 4 /* Write word to text space */
87 #endif
88 #if !defined (PT_WRITE_D)
89 #define PT_WRITE_D 5 /* Write word to data space */
90 #endif
91 #if !defined (PT_WRITE_U)
92 #define PT_WRITE_U 6 /* Write word to kernel user struct */
93 #endif
94 #if !defined (PT_CONTINUE)
95 #define PT_CONTINUE 7 /* Continue after signal */
96 #endif
97 #if !defined (PT_STEP)
98 #define PT_STEP 9 /* Set flag for single stepping */
99 #endif
100 #if !defined (PT_KILL)
101 #define PT_KILL 8 /* Send child a SIGKILL signal */
102 #endif
103
104 #ifndef PT_ATTACH
105 #define PT_ATTACH PTRACE_ATTACH
106 #endif
107 #ifndef PT_DETACH
108 #define PT_DETACH PTRACE_DETACH
109 #endif
110
111 #include "gdbcore.h"
112 #ifndef NO_SYS_FILE
113 #include <sys/file.h>
114 #endif
115
116 /* This semaphore is used to coordinate the child and parent processes
117 after a fork(), and before an exec() by the child. See parent_attach_all
118 for details.
119 */
120 typedef struct
121 {
122 int parent_channel[2]; /* Parent "talks" to [1], child "listens" to [0] */
123 int child_channel[2]; /* Child "talks" to [1], parent "listens" to [0] */
124 }
125 startup_semaphore_t;
126
127 #define SEM_TALK (1)
128 #define SEM_LISTEN (0)
129
130 static startup_semaphore_t startup_semaphore;
131
132 /* See can_touch_threads_of_process for details. */
133 static int vforking_child_pid = 0;
134 static int vfork_in_flight = 0;
135
136 /* To support PREPARE_TO_PROCEED (hppa_prepare_to_proceed).
137 */
138 static pid_t old_gdb_pid = 0;
139 static pid_t reported_pid = 0;
140 static int reported_bpt = 0;
141
142 /* 1 if ok as results of a ttrace or ttrace_wait call, 0 otherwise.
143 */
144 #define TT_OK( _status, _errno ) \
145 (((_status) == 1) && ((_errno) == 0))
146
147 #define TTRACE_ARG_TYPE uint64_t
148
149 /* When supplied as the "addr" operand, ttrace interprets this
150 to mean, "from the current address".
151 */
152 #define TT_USE_CURRENT_PC ((TTRACE_ARG_TYPE) TT_NOPC)
153
154 /* When supplied as the "addr", "data" or "addr2" operand for most
155 requests, ttrace interprets this to mean, "pay no heed to this
156 argument".
157 */
158 #define TT_NIL ((TTRACE_ARG_TYPE) TT_NULLARG)
159
160 /* This is capable of holding the value of a 32-bit register. The
161 value is always left-aligned in the buffer; i.e., [0] contains
162 the most-significant byte of the register's value, and [sizeof(reg)]
163 contains the least-significant value.
164
165 ??rehrauer: Yes, this assumes that an int is 32-bits on HP-UX, and
166 that registers are 32-bits on HP-UX. The latter assumption changes
167 with PA2.0.
168 */
169 typedef int register_value_t;
170
171 /********************************************************************
172
173 How this works:
174
175 1. Thread numbers
176
177 The rest of GDB sees threads as being things with different
178 "pid" (process id) values. See "thread.c" for details. The
179 separate threads will be seen and reacted to if infttrace passes
180 back different pid values (for _events_). See wait_for_inferior
181 in inftarg.c.
182
183 So infttrace is going to use thread ids externally, pretending
184 they are process ids, and keep track internally so that it can
185 use the real process id (and thread id) when calling ttrace.
186
187 The data structure that supports this is a linked list of the
188 current threads. Since at some date infttrace will have to
189 deal with multiple processes, each list element records its
190 corresponding pid, rather than having a single global.
191
192 Note that the list is only approximately current; that's ok, as
193 it's up to date when we need it (we hope!). Also, it can contain
194 dead threads, as there's no harm if it does.
195
196 The approach taken here is to bury the translation from external
197 to internal inside "call_ttrace" and a few other places.
198
199 There are some wrinkles:
200
201 o When GDB forks itself to create the debug target process,
202 there's only a pid of 0 around in the child, so the
203 TT_PROC_SETTRC operation uses a more direct call to ttrace;
204 Similiarly, the initial setting of the event mask happens
205 early as well, and so is also special-cased, and an attach
206 uses a real pid;
207
208 o We define an unthreaded application as having a "pseudo"
209 thread;
210
211 o To keep from confusing the rest of GDB, we don't switch
212 the PID for the pseudo thread to a TID. A table will help:
213
214 Rest of GDB sees these PIDs: pid tid1 tid2 tid3 ...
215
216 Our thread list stores: pid pid pid pid ...
217 tid0 tid1 tid2 tid3
218
219 Ttrace sees these TIDS: tid0 tid1 tid2 tid3 ...
220
221 Both pid and tid0 will map to tid0, as there are infttrace.c-internal
222 calls to ttrace using tid0.
223
224 2. Step and Continue
225
226 Since we're implementing the "stop the world" model, sub-model
227 "other threads run during step", we have some stuff to do:
228
229 o User steps require continuing all threads other than the
230 one the user is stepping;
231
232 o Internal debugger steps (such as over a breakpoint or watchpoint,
233 but not out of a library load thunk) require stepping only
234 the selected thread; this means that we have to report the
235 step finish on that thread, which can lead to complications;
236
237 o When a thread is created, it is created running, rather
238 than stopped--so we have to stop it.
239
240 The OS doesn't guarantee the stopped thread list will be stable,
241 no does it guarantee where on the stopped thread list a thread
242 that is single-stepped will wind up: it's possible that it will
243 be off the list for a while, it's possible the step will complete
244 and it will be re-posted to the end...
245
246 This means we have to scan the stopped thread list, build up
247 a work-list, and then run down the work list; we can't do the
248 step/continue during the scan.
249
250 3. Buffering events
251
252 Then there's the issue of waiting for an event. We do this by
253 noticing how many events are reported at the end of each wait.
254 From then on, we "fake" all resumes and steps, returning instantly,
255 and don't do another wait. Once all pending events are reported,
256 we can really resume again.
257
258 To keep this hidden, all the routines which know about tids and
259 pids or real events and simulated ones are static (file-local).
260
261 This code can make lots of calls to ttrace, in particular it
262 can spin down the list of thread states more than once. If this
263 becomes a performance hit, the spin could be done once and the
264 various "tsp" blocks saved, keeping all later spins in this
265 process.
266
267 The O/S doesn't promise to keep the list straight, and so we must
268 re-scan a lot. By observation, it looks like a single-step/wait
269 puts the stepped thread at the end of the list but doesn't change
270 it otherwise.
271
272 ****************************************************************
273 */
274
275 /* Uncomment these to turn on various debugging output */
276 /* #define THREAD_DEBUG */
277 /* #define WAIT_BUFFER_DEBUG */
278 /* #define PARANOIA */
279
280
281 #define INFTTRACE_ALL_THREADS (-1)
282 #define INFTTRACE_STEP (1)
283 #define INFTTRACE_CONTINUE (0)
284
285 /* FIX: this is used in inftarg.c/child_wait, in a hack.
286 */
287 extern int not_same_real_pid;
288
289 /* This is used to count buffered events.
290 */
291 static unsigned int more_events_left = 0;
292
293 /* Process state.
294 */
295 typedef enum process_state_enum
296 {
297 STOPPED,
298 FAKE_STEPPING,
299 FAKE_CONTINUE, /* For later use */
300 RUNNING,
301 FORKING,
302 VFORKING
303 }
304 process_state_t;
305
306 static process_state_t process_state = STOPPED;
307
308 /* User-specified stepping modality.
309 */
310 typedef enum stepping_mode_enum
311 {
312 DO_DEFAULT, /* ...which is a continue! */
313 DO_STEP,
314 DO_CONTINUE
315 }
316 stepping_mode_t;
317
318 /* Action to take on an attach, depends on
319 * what kind (user command, fork, vfork).
320 *
321 * At the moment, this is either:
322 *
323 * o continue with a SIGTRAP signal, or
324 *
325 * o leave stopped.
326 */
327 typedef enum attach_continue_enum
328 {
329 DO_ATTACH_CONTINUE,
330 DONT_ATTACH_CONTINUE
331 }
332 attach_continue_t;
333
334 /* This flag is true if we are doing a step-over-bpt
335 * with buffered events. We will have to be sure to
336 * report the right thread, as otherwise the spaghetti
337 * code in "infrun.c/wait_for_inferior" will get
338 * confused.
339 */
340 static int doing_fake_step = 0;
341 static lwpid_t fake_step_tid = 0;
342 \f
343
344 /****************************************************
345 * Thread information structure routines and types. *
346 ****************************************************
347 */
348 typedef
349 struct thread_info_struct
350 {
351 int am_pseudo; /* This is a pseudo-thread for the process. */
352 int pid; /* Process ID */
353 lwpid_t tid; /* Thread ID */
354 int handled; /* 1 if a buffered event was handled. */
355 int seen; /* 1 if this thread was seen on a traverse. */
356 int terminated; /* 1 if thread has terminated. */
357 int have_signal; /* 1 if signal to be sent */
358 enum target_signal signal_value; /* Signal to send */
359 int have_start; /* 1 if alternate starting address */
360 stepping_mode_t stepping_mode; /* Whether to step or continue */
361 CORE_ADDR start; /* Where to start */
362 int have_state; /* 1 if the event state has been set */
363 ttstate_t last_stop_state; /* The most recently-waited event for this thread. */
364 struct thread_info_struct
365 *next; /* All threads are linked via this field. */
366 struct thread_info_struct
367 *next_pseudo; /* All pseudo-threads are linked via this field. */
368 }
369 thread_info;
370
371 typedef
372 struct thread_info_header_struct
373 {
374 int count;
375 thread_info *head;
376 thread_info *head_pseudo;
377
378 }
379 thread_info_header;
380
381 static thread_info_header thread_head =
382 {0, NULL, NULL};
383 static thread_info_header deleted_threads =
384 {0, NULL, NULL};
385
386 static saved_real_pid = 0;
387 \f
388
389 /*************************************************
390 * Debugging support functions *
391 *************************************************
392 */
393 CORE_ADDR
394 get_raw_pc (lwpid_t ttid)
395 {
396 unsigned long pc_val;
397 int offset;
398 int res;
399
400 offset = register_addr (PC_REGNUM, U_REGS_OFFSET);
401 res = read_from_register_save_state (
402 ttid,
403 (TTRACE_ARG_TYPE) offset,
404 (char *) &pc_val,
405 sizeof (pc_val));
406 if (res <= 0)
407 {
408 return (CORE_ADDR) pc_val;
409 }
410 else
411 {
412 return (CORE_ADDR) 0;
413 }
414 }
415
416 static char *
417 get_printable_name_of_stepping_mode (stepping_mode_t mode)
418 {
419 switch (mode)
420 {
421 case DO_DEFAULT:
422 return "DO_DEFAULT";
423 case DO_STEP:
424 return "DO_STEP";
425 case DO_CONTINUE:
426 return "DO_CONTINUE";
427 default:
428 return "?unknown mode?";
429 }
430 }
431
432 /* This function returns a pointer to a string describing the
433 * ttrace event being reported.
434 */
435 char *
436 get_printable_name_of_ttrace_event (ttevents_t event)
437 {
438 /* This enumeration is "gappy", so don't use a table. */
439 switch (event)
440 {
441
442 case TTEVT_NONE:
443 return "TTEVT_NONE";
444 case TTEVT_SIGNAL:
445 return "TTEVT_SIGNAL";
446 case TTEVT_FORK:
447 return "TTEVT_FORK";
448 case TTEVT_EXEC:
449 return "TTEVT_EXEC";
450 case TTEVT_EXIT:
451 return "TTEVT_EXIT";
452 case TTEVT_VFORK:
453 return "TTEVT_VFORK";
454 case TTEVT_SYSCALL_RETURN:
455 return "TTEVT_SYSCALL_RETURN";
456 case TTEVT_LWP_CREATE:
457 return "TTEVT_LWP_CREATE";
458 case TTEVT_LWP_TERMINATE:
459 return "TTEVT_LWP_TERMINATE";
460 case TTEVT_LWP_EXIT:
461 return "TTEVT_LWP_EXIT";
462 case TTEVT_LWP_ABORT_SYSCALL:
463 return "TTEVT_LWP_ABORT_SYSCALL";
464 case TTEVT_SYSCALL_ENTRY:
465 return "TTEVT_SYSCALL_ENTRY";
466 case TTEVT_SYSCALL_RESTART:
467 return "TTEVT_SYSCALL_RESTART";
468 default:
469 return "?new event?";
470 }
471 }
472 \f
473
474 /* This function translates the ttrace request enumeration into
475 * a character string that is its printable (aka "human readable")
476 * name.
477 */
478 char *
479 get_printable_name_of_ttrace_request (ttreq_t request)
480 {
481 if (!IS_TTRACE_REQ (request))
482 return "?bad req?";
483
484 /* This enumeration is "gappy", so don't use a table. */
485 switch (request)
486 {
487 case TT_PROC_SETTRC:
488 return "TT_PROC_SETTRC";
489 case TT_PROC_ATTACH:
490 return "TT_PROC_ATTACH";
491 case TT_PROC_DETACH:
492 return "TT_PROC_DETACH";
493 case TT_PROC_RDTEXT:
494 return "TT_PROC_RDTEXT";
495 case TT_PROC_WRTEXT:
496 return "TT_PROC_WRTEXT";
497 case TT_PROC_RDDATA:
498 return "TT_PROC_RDDATA";
499 case TT_PROC_WRDATA:
500 return "TT_PROC_WRDATA";
501 case TT_PROC_STOP:
502 return "TT_PROC_STOP";
503 case TT_PROC_CONTINUE:
504 return "TT_PROC_CONTINUE";
505 case TT_PROC_GET_PATHNAME:
506 return "TT_PROC_GET_PATHNAME";
507 case TT_PROC_GET_EVENT_MASK:
508 return "TT_PROC_GET_EVENT_MASK";
509 case TT_PROC_SET_EVENT_MASK:
510 return "TT_PROC_SET_EVENT_MASK";
511 case TT_PROC_GET_FIRST_LWP_STATE:
512 return "TT_PROC_GET_FIRST_LWP_STATE";
513 case TT_PROC_GET_NEXT_LWP_STATE:
514 return "TT_PROC_GET_NEXT_LWP_STATE";
515 case TT_PROC_EXIT:
516 return "TT_PROC_EXIT";
517 case TT_PROC_GET_MPROTECT:
518 return "TT_PROC_GET_MPROTECT";
519 case TT_PROC_SET_MPROTECT:
520 return "TT_PROC_SET_MPROTECT";
521 case TT_PROC_SET_SCBM:
522 return "TT_PROC_SET_SCBM";
523 case TT_LWP_STOP:
524 return "TT_LWP_STOP";
525 case TT_LWP_CONTINUE:
526 return "TT_LWP_CONTINUE";
527 case TT_LWP_SINGLE:
528 return "TT_LWP_SINGLE";
529 case TT_LWP_RUREGS:
530 return "TT_LWP_RUREGS";
531 case TT_LWP_WUREGS:
532 return "TT_LWP_WUREGS";
533 case TT_LWP_GET_EVENT_MASK:
534 return "TT_LWP_GET_EVENT_MASK";
535 case TT_LWP_SET_EVENT_MASK:
536 return "TT_LWP_SET_EVENT_MASK";
537 case TT_LWP_GET_STATE:
538 return "TT_LWP_GET_STATE";
539 default:
540 return "?new req?";
541 }
542 }
543 \f
544
545 /* This function translates the process state enumeration into
546 * a character string that is its printable (aka "human readable")
547 * name.
548 */
549 static char *
550 get_printable_name_of_process_state (process_state_t process_state)
551 {
552 switch (process_state)
553 {
554 case STOPPED:
555 return "STOPPED";
556 case FAKE_STEPPING:
557 return "FAKE_STEPPING";
558 case RUNNING:
559 return "RUNNING";
560 case FORKING:
561 return "FORKING";
562 case VFORKING:
563 return "VFORKING";
564 default:
565 return "?some unknown state?";
566 }
567 }
568
569 /* Set a ttrace thread state to a safe, initial state.
570 */
571 static void
572 clear_ttstate_t (ttstate_t *tts)
573 {
574 tts->tts_pid = 0;
575 tts->tts_lwpid = 0;
576 tts->tts_user_tid = 0;
577 tts->tts_event = TTEVT_NONE;
578 }
579
580 /* Copy ttrace thread state TTS_FROM into TTS_TO.
581 */
582 static void
583 copy_ttstate_t (ttstate_t *tts_to, ttstate_t *tts_from)
584 {
585 memcpy ((char *) tts_to, (char *) tts_from, sizeof (*tts_to));
586 }
587
588 /* Are there any live threads we know about?
589 */
590 static int
591 any_thread_records (void)
592 {
593 return (thread_head.count > 0);
594 }
595
596 /* Create, fill in and link in a thread descriptor.
597 */
598 static thread_info *
599 create_thread_info (int pid, lwpid_t tid)
600 {
601 thread_info *new_p;
602 thread_info *p;
603 int thread_count_of_pid;
604
605 new_p = xmalloc (sizeof (thread_info));
606 new_p->pid = pid;
607 new_p->tid = tid;
608 new_p->have_signal = 0;
609 new_p->have_start = 0;
610 new_p->have_state = 0;
611 clear_ttstate_t (&new_p->last_stop_state);
612 new_p->am_pseudo = 0;
613 new_p->handled = 0;
614 new_p->seen = 0;
615 new_p->terminated = 0;
616 new_p->next = NULL;
617 new_p->next_pseudo = NULL;
618 new_p->stepping_mode = DO_DEFAULT;
619
620 if (0 == thread_head.count)
621 {
622 #ifdef THREAD_DEBUG
623 if (debug_on)
624 printf ("First thread, pid %d tid %d!\n", pid, tid);
625 #endif
626 saved_real_pid = inferior_pid;
627 }
628 else
629 {
630 #ifdef THREAD_DEBUG
631 if (debug_on)
632 printf ("Subsequent thread, pid %d tid %d\n", pid, tid);
633 #endif
634 }
635
636 /* Another day, another thread...
637 */
638 thread_head.count++;
639
640 /* The new thread always goes at the head of the list.
641 */
642 new_p->next = thread_head.head;
643 thread_head.head = new_p;
644
645 /* Is this the "pseudo" thread of a process? It is if there's
646 * no other thread for this process on the list. (Note that this
647 * accomodates multiple processes, such as we see even for simple
648 * cases like forking "non-threaded" programs.)
649 */
650 p = thread_head.head;
651 thread_count_of_pid = 0;
652 while (p)
653 {
654 if (p->pid == new_p->pid)
655 thread_count_of_pid++;
656 p = p->next;
657 }
658
659 /* Did we see any other threads for this pid? (Recall that we just
660 * added this thread to the list...)
661 */
662 if (thread_count_of_pid == 1)
663 {
664 new_p->am_pseudo = 1;
665 new_p->next_pseudo = thread_head.head_pseudo;
666 thread_head.head_pseudo = new_p;
667 }
668
669 return new_p;
670 }
671
672 /* Get rid of our thread info.
673 */
674 static void
675 clear_thread_info (void)
676 {
677 thread_info *p;
678 thread_info *q;
679
680 #ifdef THREAD_DEBUG
681 if (debug_on)
682 printf ("Clearing all thread info\n");
683 #endif
684
685 p = thread_head.head;
686 while (p)
687 {
688 q = p;
689 p = p->next;
690 xfree (q);
691 }
692
693 thread_head.head = NULL;
694 thread_head.head_pseudo = NULL;
695 thread_head.count = 0;
696
697 p = deleted_threads.head;
698 while (p)
699 {
700 q = p;
701 p = p->next;
702 xfree (q);
703 }
704
705 deleted_threads.head = NULL;
706 deleted_threads.head_pseudo = NULL;
707 deleted_threads.count = 0;
708
709 /* No threads, so can't have pending events.
710 */
711 more_events_left = 0;
712 }
713
714 /* Given a tid, find the thread block for it.
715 */
716 static thread_info *
717 find_thread_info (lwpid_t tid)
718 {
719 thread_info *p;
720
721 for (p = thread_head.head; p; p = p->next)
722 {
723 if (p->tid == tid)
724 {
725 return p;
726 }
727 }
728
729 for (p = deleted_threads.head; p; p = p->next)
730 {
731 if (p->tid == tid)
732 {
733 return p;
734 }
735 }
736
737 return NULL;
738 }
739
740 /* For any but the pseudo thread, this maps to the
741 * thread ID. For the pseudo thread, if you pass either
742 * the thread id or the PID, you get the pseudo thread ID.
743 *
744 * We have to be prepared for core gdb to ask about
745 * deleted threads. We do the map, but we don't like it.
746 */
747 static lwpid_t
748 map_from_gdb_tid (lwpid_t gdb_tid)
749 {
750 thread_info *p;
751
752 /* First assume gdb_tid really is a tid, and try to find a
753 * matching entry on the threads list.
754 */
755 for (p = thread_head.head; p; p = p->next)
756 {
757 if (p->tid == gdb_tid)
758 return gdb_tid;
759 }
760
761 /* It doesn't appear to be a tid; perhaps it's really a pid?
762 * Try to find a "pseudo" thread entry on the threads list.
763 */
764 for (p = thread_head.head_pseudo; p != NULL; p = p->next_pseudo)
765 {
766 if (p->pid == gdb_tid)
767 return p->tid;
768 }
769
770 /* Perhaps it's the tid of a deleted thread we may still
771 * have some knowledge of?
772 */
773 for (p = deleted_threads.head; p; p = p->next)
774 {
775 if (p->tid == gdb_tid)
776 return gdb_tid;
777 }
778
779 /* Or perhaps it's the pid of a deleted process we may still
780 * have knowledge of?
781 */
782 for (p = deleted_threads.head_pseudo; p != NULL; p = p->next_pseudo)
783 {
784 if (p->pid == gdb_tid)
785 return p->tid;
786 }
787
788 return 0; /* Error? */
789 }
790
791 /* Map the other way: from a real tid to the
792 * "pid" known by core gdb. This tid may be
793 * for a thread that just got deleted, so we
794 * also need to consider deleted threads.
795 */
796 static lwpid_t
797 map_to_gdb_tid (lwpid_t real_tid)
798 {
799 thread_info *p;
800
801 for (p = thread_head.head; p; p = p->next)
802 {
803 if (p->tid == real_tid)
804 {
805 if (p->am_pseudo)
806 return p->pid;
807 else
808 return real_tid;
809 }
810 }
811
812 for (p = deleted_threads.head; p; p = p->next)
813 {
814 if (p->tid == real_tid)
815 if (p->am_pseudo)
816 return p->pid; /* Error? */
817 else
818 return real_tid;
819 }
820
821 return 0; /* Error? Never heard of this thread! */
822 }
823
824 /* Do any threads have saved signals?
825 */
826 static int
827 saved_signals_exist (void)
828 {
829 thread_info *p;
830
831 for (p = thread_head.head; p; p = p->next)
832 {
833 if (p->have_signal)
834 {
835 return 1;
836 }
837 }
838
839 return 0;
840 }
841
842 /* Is this the tid for the zero-th thread?
843 */
844 static int
845 is_pseudo_thread (lwpid_t tid)
846 {
847 thread_info *p = find_thread_info (tid);
848 if (NULL == p || p->terminated)
849 return 0;
850 else
851 return p->am_pseudo;
852 }
853
854 /* Is this thread terminated?
855 */
856 static int
857 is_terminated (lwpid_t tid)
858 {
859 thread_info *p = find_thread_info (tid);
860
861 if (NULL != p)
862 return p->terminated;
863
864 return 0;
865 }
866
867 /* Is this pid a real PID or a TID?
868 */
869 static int
870 is_process_id (int pid)
871 {
872 lwpid_t tid;
873 thread_info *tinfo;
874 pid_t this_pid;
875 int this_pid_count;
876
877 /* What does PID really represent?
878 */
879 tid = map_from_gdb_tid (pid);
880 if (tid <= 0)
881 return 0; /* Actually, is probably an error... */
882
883 tinfo = find_thread_info (tid);
884
885 /* Does it appear to be a true thread?
886 */
887 if (!tinfo->am_pseudo)
888 return 0;
889
890 /* Else, it looks like it may be a process. See if there's any other
891 * threads with the same process ID, though. If there are, then TID
892 * just happens to be the first thread of several for this process.
893 */
894 this_pid = tinfo->pid;
895 this_pid_count = 0;
896 for (tinfo = thread_head.head; tinfo; tinfo = tinfo->next)
897 {
898 if (tinfo->pid == this_pid)
899 this_pid_count++;
900 }
901
902 return (this_pid_count == 1);
903 }
904
905
906 /* Add a thread to our info. Prevent duplicate entries.
907 */
908 static thread_info *
909 add_tthread (int pid, lwpid_t tid)
910 {
911 thread_info *p;
912
913 p = find_thread_info (tid);
914 if (NULL == p)
915 p = create_thread_info (pid, tid);
916
917 return p;
918 }
919
920 /* Notice that a thread was deleted.
921 */
922 static void
923 del_tthread (lwpid_t tid)
924 {
925 thread_info *p;
926 thread_info *chase;
927
928 if (thread_head.count <= 0)
929 {
930 error ("Internal error in thread database.");
931 return;
932 }
933
934 chase = NULL;
935 for (p = thread_head.head; p; p = p->next)
936 {
937 if (p->tid == tid)
938 {
939
940 #ifdef THREAD_DEBUG
941 if (debug_on)
942 printf ("Delete here: %d \n", tid);
943 #endif
944
945 if (p->am_pseudo)
946 {
947 /*
948 * Deleting a main thread is ok if we're doing
949 * a parent-follow on a child; this is odd but
950 * not wrong. It apparently _doesn't_ happen
951 * on the child-follow, as we don't just delete
952 * the pseudo while keeping the rest of the
953 * threads around--instead, we clear out the whole
954 * thread list at once.
955 */
956 thread_info *q;
957 thread_info *q_chase;
958
959 q_chase = NULL;
960 for (q = thread_head.head_pseudo; q; q = q->next)
961 {
962 if (q == p)
963 {
964 /* Remove from pseudo list.
965 */
966 if (q_chase == NULL)
967 thread_head.head_pseudo = p->next_pseudo;
968 else
969 q_chase->next = p->next_pseudo;
970 }
971 else
972 q_chase = q;
973 }
974 }
975
976 /* Remove from live list.
977 */
978 thread_head.count--;
979
980 if (NULL == chase)
981 thread_head.head = p->next;
982 else
983 chase->next = p->next;
984
985 /* Add to deleted thread list.
986 */
987 p->next = deleted_threads.head;
988 deleted_threads.head = p;
989 deleted_threads.count++;
990 if (p->am_pseudo)
991 {
992 p->next_pseudo = deleted_threads.head_pseudo;
993 deleted_threads.head_pseudo = p;
994 }
995 p->terminated = 1;
996
997 return;
998 }
999
1000 else
1001 chase = p;
1002 }
1003 }
1004
1005 /* Get the pid for this tid. (Has to be a real TID!).
1006 */
1007 static int
1008 get_pid_for (lwpid_t tid)
1009 {
1010 thread_info *p;
1011
1012 for (p = thread_head.head; p; p = p->next)
1013 {
1014 if (p->tid == tid)
1015 {
1016 return p->pid;
1017 }
1018 }
1019
1020 for (p = deleted_threads.head; p; p = p->next)
1021 {
1022 if (p->tid == tid)
1023 {
1024 return p->pid;
1025 }
1026 }
1027
1028 return 0;
1029 }
1030
1031 /* Note that this thread's current event has been handled.
1032 */
1033 static void
1034 set_handled (int pid, lwpid_t tid)
1035 {
1036 thread_info *p;
1037
1038 p = find_thread_info (tid);
1039 if (NULL == p)
1040 p = add_tthread (pid, tid);
1041
1042 p->handled = 1;
1043 }
1044
1045 /* Was this thread's current event handled?
1046 */
1047 static int
1048 was_handled (lwpid_t tid)
1049 {
1050 thread_info *p;
1051
1052 p = find_thread_info (tid);
1053 if (NULL != p)
1054 return p->handled;
1055
1056 return 0; /* New threads have not been handled */
1057 }
1058
1059 /* Set this thread to unhandled.
1060 */
1061 static void
1062 clear_handled (lwpid_t tid)
1063 {
1064 thread_info *p;
1065
1066 #ifdef WAIT_BUFFER_DEBUG
1067 if (debug_on)
1068 printf ("clear_handled %d\n", (int) tid);
1069 #endif
1070
1071 p = find_thread_info (tid);
1072 if (p == NULL)
1073 error ("Internal error: No thread state to clear?");
1074
1075 p->handled = 0;
1076 }
1077
1078 /* Set all threads to unhandled.
1079 */
1080 static void
1081 clear_all_handled (void)
1082 {
1083 thread_info *p;
1084
1085 #ifdef WAIT_BUFFER_DEBUG
1086 if (debug_on)
1087 printf ("clear_all_handled\n");
1088 #endif
1089
1090 for (p = thread_head.head; p; p = p->next)
1091 {
1092 p->handled = 0;
1093 }
1094
1095 for (p = deleted_threads.head; p; p = p->next)
1096 {
1097 p->handled = 0;
1098 }
1099 }
1100
1101 /* Set this thread to default stepping mode.
1102 */
1103 static void
1104 clear_stepping_mode (lwpid_t tid)
1105 {
1106 thread_info *p;
1107
1108 #ifdef WAIT_BUFFER_DEBUG
1109 if (debug_on)
1110 printf ("clear_stepping_mode %d\n", (int) tid);
1111 #endif
1112
1113 p = find_thread_info (tid);
1114 if (p == NULL)
1115 error ("Internal error: No thread state to clear?");
1116
1117 p->stepping_mode = DO_DEFAULT;
1118 }
1119
1120 /* Set all threads to do default continue on resume.
1121 */
1122 static void
1123 clear_all_stepping_mode (void)
1124 {
1125 thread_info *p;
1126
1127 #ifdef WAIT_BUFFER_DEBUG
1128 if (debug_on)
1129 printf ("clear_all_stepping_mode\n");
1130 #endif
1131
1132 for (p = thread_head.head; p; p = p->next)
1133 {
1134 p->stepping_mode = DO_DEFAULT;
1135 }
1136
1137 for (p = deleted_threads.head; p; p = p->next)
1138 {
1139 p->stepping_mode = DO_DEFAULT;
1140 }
1141 }
1142
1143 /* Set all threads to unseen on this pass.
1144 */
1145 static void
1146 set_all_unseen (void)
1147 {
1148 thread_info *p;
1149
1150 for (p = thread_head.head; p; p = p->next)
1151 {
1152 p->seen = 0;
1153 }
1154 }
1155
1156 #if (defined( THREAD_DEBUG ) || defined( PARANOIA ))
1157 /* debugging routine.
1158 */
1159 static void
1160 print_tthread (thread_info *p)
1161 {
1162 printf (" Thread pid %d, tid %d", p->pid, p->tid);
1163 if (p->have_state)
1164 printf (", event is %s",
1165 get_printable_name_of_ttrace_event (p->last_stop_state.tts_event));
1166
1167 if (p->am_pseudo)
1168 printf (", pseudo thread");
1169
1170 if (p->have_signal)
1171 printf (", have signal 0x%x", p->signal_value);
1172
1173 if (p->have_start)
1174 printf (", have start at 0x%x", p->start);
1175
1176 printf (", step is %s", get_printable_name_of_stepping_mode (p->stepping_mode));
1177
1178 if (p->handled)
1179 printf (", handled");
1180 else
1181 printf (", not handled");
1182
1183 if (p->seen)
1184 printf (", seen");
1185 else
1186 printf (", not seen");
1187
1188 printf ("\n");
1189 }
1190
1191 static void
1192 print_tthreads (void)
1193 {
1194 thread_info *p;
1195
1196 if (thread_head.count == 0)
1197 printf ("Thread list is empty\n");
1198 else
1199 {
1200 printf ("Thread list has ");
1201 if (thread_head.count == 1)
1202 printf ("1 entry:\n");
1203 else
1204 printf ("%d entries:\n", thread_head.count);
1205 for (p = thread_head.head; p; p = p->next)
1206 {
1207 print_tthread (p);
1208 }
1209 }
1210
1211 if (deleted_threads.count == 0)
1212 printf ("Deleted thread list is empty\n");
1213 else
1214 {
1215 printf ("Deleted thread list has ");
1216 if (deleted_threads.count == 1)
1217 printf ("1 entry:\n");
1218 else
1219 printf ("%d entries:\n", deleted_threads.count);
1220
1221 for (p = deleted_threads.head; p; p = p->next)
1222 {
1223 print_tthread (p);
1224 }
1225 }
1226 }
1227 #endif
1228
1229 /* Update the thread list based on the "seen" bits.
1230 */
1231 static void
1232 update_thread_list (void)
1233 {
1234 thread_info *p;
1235 thread_info *chase;
1236
1237 chase = NULL;
1238 for (p = thread_head.head; p; p = p->next)
1239 {
1240 /* Is this an "unseen" thread which really happens to be a process?
1241 If so, is it inferior_pid and is a vfork in flight? If yes to
1242 all, then DON'T REMOVE IT! We're in the midst of moving a vfork
1243 operation, which is a multiple step thing, to the point where we
1244 can touch the parent again. We've most likely stopped to examine
1245 the child at a late stage in the vfork, and if we're not following
1246 the child, we'd best not treat the parent as a dead "thread"...
1247 */
1248 if ((!p->seen) && p->am_pseudo && vfork_in_flight
1249 && (p->pid != vforking_child_pid))
1250 p->seen = 1;
1251
1252 if (!p->seen)
1253 {
1254 /* Remove this one
1255 */
1256
1257 #ifdef THREAD_DEBUG
1258 if (debug_on)
1259 printf ("Delete unseen thread: %d \n", p->tid);
1260 #endif
1261 del_tthread (p->tid);
1262 }
1263 }
1264 }
1265 \f
1266
1267
1268 /************************************************
1269 * O/S call wrappers *
1270 ************************************************
1271 */
1272
1273 /* This function simply calls ttrace with the given arguments.
1274 * It exists so that all calls to ttrace are isolated. All
1275 * parameters should be as specified by "man 2 ttrace".
1276 *
1277 * No other "raw" calls to ttrace should exist in this module.
1278 */
1279 static int
1280 call_real_ttrace (ttreq_t request, pid_t pid, lwpid_t tid, TTRACE_ARG_TYPE addr,
1281 TTRACE_ARG_TYPE data, TTRACE_ARG_TYPE addr2)
1282 {
1283 int tt_status;
1284
1285 errno = 0;
1286 tt_status = ttrace (request, pid, tid, addr, data, addr2);
1287
1288 #ifdef THREAD_DEBUG
1289 if (errno)
1290 {
1291 /* Don't bother for a known benign error: if you ask for the
1292 * first thread state, but there is only one thread and it's
1293 * not stopped, ttrace complains.
1294 *
1295 * We have this inside the #ifdef because our caller will do
1296 * this check for real.
1297 */
1298 if (request != TT_PROC_GET_FIRST_LWP_STATE
1299 || errno != EPROTO)
1300 {
1301 if (debug_on)
1302 printf ("TT fail for %s, with pid %d, tid %d, status %d \n",
1303 get_printable_name_of_ttrace_request (request),
1304 pid, tid, tt_status);
1305 }
1306 }
1307 #endif
1308
1309 #if 0
1310 /* ??rehrauer: It would probably be most robust to catch and report
1311 * failed requests here. However, some clients of this interface
1312 * seem to expect to catch & deal with them, so we'd best not.
1313 */
1314 if (errno)
1315 {
1316 strcpy (reason_for_failure, "ttrace (");
1317 strcat (reason_for_failure, get_printable_name_of_ttrace_request (request));
1318 strcat (reason_for_failure, ")");
1319 printf ("ttrace error, errno = %d\n", errno);
1320 perror_with_name (reason_for_failure);
1321 }
1322 #endif
1323
1324 return tt_status;
1325 }
1326 \f
1327
1328 /* This function simply calls ttrace_wait with the given arguments.
1329 * It exists so that all calls to ttrace_wait are isolated.
1330 *
1331 * No "raw" calls to ttrace_wait should exist elsewhere.
1332 */
1333 static int
1334 call_real_ttrace_wait (int pid, lwpid_t tid, ttwopt_t option, ttstate_t *tsp,
1335 size_t tsp_size)
1336 {
1337 int ttw_status;
1338 thread_info *tinfo = NULL;
1339
1340 errno = 0;
1341 ttw_status = ttrace_wait (pid, tid, option, tsp, tsp_size);
1342
1343 if (errno)
1344 {
1345 #ifdef THREAD_DEBUG
1346 if (debug_on)
1347 printf ("TW fail with pid %d, tid %d \n", pid, tid);
1348 #endif
1349
1350 perror_with_name ("ttrace wait");
1351 }
1352
1353 return ttw_status;
1354 }
1355 \f
1356
1357 /* A process may have one or more kernel threads, of which all or
1358 none may be stopped. This function returns the ID of the first
1359 kernel thread in a stopped state, or 0 if none are stopped.
1360
1361 This function can be used with get_process_next_stopped_thread_id
1362 to iterate over the IDs of all stopped threads of this process.
1363 */
1364 static lwpid_t
1365 get_process_first_stopped_thread_id (int pid, ttstate_t *thread_state)
1366 {
1367 int tt_status;
1368
1369 tt_status = call_real_ttrace (TT_PROC_GET_FIRST_LWP_STATE,
1370 (pid_t) pid,
1371 (lwpid_t) TT_NIL,
1372 (TTRACE_ARG_TYPE) thread_state,
1373 (TTRACE_ARG_TYPE) sizeof (*thread_state),
1374 TT_NIL);
1375
1376 if (errno)
1377 {
1378 if (errno == EPROTO)
1379 {
1380 /* This is an error we can handle: there isn't any stopped
1381 * thread. This happens when we're re-starting the application
1382 * and it has only one thread. GET_NEXT handles the case of
1383 * no more stopped threads well; GET_FIRST doesn't. (A ttrace
1384 * "feature".)
1385 */
1386 tt_status = 1;
1387 errno = 0;
1388 return 0;
1389 }
1390 else
1391 perror_with_name ("ttrace");
1392 }
1393
1394 if (tt_status < 0)
1395 /* Failed somehow.
1396 */
1397 return 0;
1398
1399 return thread_state->tts_lwpid;
1400 }
1401 \f
1402
1403 /* This function returns the ID of the "next" kernel thread in a
1404 stopped state, or 0 if there are none. "Next" refers to the
1405 thread following that of the last successful call to this
1406 function or to get_process_first_stopped_thread_id, using
1407 the value of thread_state returned by that call.
1408
1409 This function can be used with get_process_first_stopped_thread_id
1410 to iterate over the IDs of all stopped threads of this process.
1411 */
1412 static lwpid_t
1413 get_process_next_stopped_thread_id (int pid, ttstate_t *thread_state)
1414 {
1415 int tt_status;
1416
1417 tt_status = call_real_ttrace (
1418 TT_PROC_GET_NEXT_LWP_STATE,
1419 (pid_t) pid,
1420 (lwpid_t) TT_NIL,
1421 (TTRACE_ARG_TYPE) thread_state,
1422 (TTRACE_ARG_TYPE) sizeof (*thread_state),
1423 TT_NIL);
1424 if (errno)
1425 perror_with_name ("ttrace");
1426
1427 if (tt_status < 0)
1428 /* Failed
1429 */
1430 return 0;
1431
1432 else if (tt_status == 0)
1433 {
1434 /* End of list, no next state. Don't return the
1435 * tts_lwpid, as it's a meaningless "240".
1436 *
1437 * This is an HPUX "feature".
1438 */
1439 return 0;
1440 }
1441
1442 return thread_state->tts_lwpid;
1443 }
1444
1445 /* ??rehrauer: Eventually this function perhaps should be calling
1446 pid_to_thread_id. However, that function currently does nothing
1447 for HP-UX. Even then, I'm not clear whether that function
1448 will return a "kernel" thread ID, or a "user" thread ID. If
1449 the former, we can just call it here. If the latter, we must
1450 map from the "user" tid to a "kernel" tid.
1451
1452 NOTE: currently not called.
1453 */
1454 static lwpid_t
1455 get_active_tid_of_pid (int pid)
1456 {
1457 ttstate_t thread_state;
1458
1459 return get_process_first_stopped_thread_id (pid, &thread_state);
1460 }
1461
1462 /* This function returns 1 if tt_request is a ttrace request that
1463 * operates upon all threads of a (i.e., the entire) process.
1464 */
1465 int
1466 is_process_ttrace_request (ttreq_t tt_request)
1467 {
1468 return IS_TTRACE_PROCREQ (tt_request);
1469 }
1470 \f
1471
1472 /* This function translates a thread ttrace request into
1473 * the equivalent process request for a one-thread process.
1474 */
1475 static ttreq_t
1476 make_process_version (ttreq_t request)
1477 {
1478 if (!IS_TTRACE_REQ (request))
1479 {
1480 error ("Internal error, bad ttrace request made\n");
1481 return -1;
1482 }
1483
1484 switch (request)
1485 {
1486 case TT_LWP_STOP:
1487 return TT_PROC_STOP;
1488
1489 case TT_LWP_CONTINUE:
1490 return TT_PROC_CONTINUE;
1491
1492 case TT_LWP_GET_EVENT_MASK:
1493 return TT_PROC_GET_EVENT_MASK;
1494
1495 case TT_LWP_SET_EVENT_MASK:
1496 return TT_PROC_SET_EVENT_MASK;
1497
1498 case TT_LWP_SINGLE:
1499 case TT_LWP_RUREGS:
1500 case TT_LWP_WUREGS:
1501 case TT_LWP_GET_STATE:
1502 return -1; /* No equivalent */
1503
1504 default:
1505 return request;
1506 }
1507 }
1508 \f
1509
1510 /* This function translates the "pid" used by the rest of
1511 * gdb to a real pid and a tid. It then calls "call_real_ttrace"
1512 * with the given arguments.
1513 *
1514 * In general, other parts of this module should call this
1515 * function when they are dealing with external users, who only
1516 * have tids to pass (but they call it "pid" for historical
1517 * reasons).
1518 */
1519 static int
1520 call_ttrace (ttreq_t request, int gdb_tid, TTRACE_ARG_TYPE addr,
1521 TTRACE_ARG_TYPE data, TTRACE_ARG_TYPE addr2)
1522 {
1523 lwpid_t real_tid;
1524 int real_pid;
1525 ttreq_t new_request;
1526 int tt_status;
1527 char reason_for_failure[100]; /* Arbitrary size, should be big enough. */
1528
1529 #ifdef THREAD_DEBUG
1530 int is_interesting = 0;
1531
1532 if (TT_LWP_RUREGS == request)
1533 {
1534 is_interesting = 1; /* Adjust code here as desired */
1535 }
1536
1537 if (is_interesting && 0 && debug_on)
1538 {
1539 if (!is_process_ttrace_request (request))
1540 {
1541 printf ("TT: Thread request, tid is %d", gdb_tid);
1542 printf ("== SINGLE at %x", addr);
1543 }
1544 else
1545 {
1546 printf ("TT: Process request, tid is %d\n", gdb_tid);
1547 printf ("==! SINGLE at %x", addr);
1548 }
1549 }
1550 #endif
1551
1552 /* The initial SETTRC and SET_EVENT_MASK calls (and all others
1553 * which happen before any threads get set up) should go
1554 * directly to "call_real_ttrace", so they don't happen here.
1555 *
1556 * But hardware watchpoints do a SET_EVENT_MASK, so we can't
1557 * rule them out....
1558 */
1559 #ifdef THREAD_DEBUG
1560 if (request == TT_PROC_SETTRC && debug_on)
1561 printf ("Unexpected call for TT_PROC_SETTRC\n");
1562 #endif
1563
1564 /* Sometimes we get called with a bogus tid (e.g., if a
1565 * thread has terminated, we return 0; inftarg later asks
1566 * whether the thread has exited/forked/vforked).
1567 */
1568 if (gdb_tid == 0)
1569 {
1570 errno = ESRCH; /* ttrace's response would probably be "No such process". */
1571 return -1;
1572 }
1573
1574 /* All other cases should be able to expect that there are
1575 * thread records.
1576 */
1577 if (!any_thread_records ())
1578 {
1579 #ifdef THREAD_DEBUG
1580 if (debug_on)
1581 warning ("No thread records for ttrace call");
1582 #endif
1583 errno = ESRCH; /* ttrace's response would be "No such process". */
1584 return -1;
1585 }
1586
1587 /* OK, now the task is to translate the incoming tid into
1588 * a pid/tid pair.
1589 */
1590 real_tid = map_from_gdb_tid (gdb_tid);
1591 real_pid = get_pid_for (real_tid);
1592
1593 /* Now check the result. "Real_pid" is NULL if our list
1594 * didn't find it. We have some tricks we can play to fix
1595 * this, however.
1596 */
1597 if (0 == real_pid)
1598 {
1599 ttstate_t thread_state;
1600
1601 #ifdef THREAD_DEBUG
1602 if (debug_on)
1603 printf ("No saved pid for tid %d\n", gdb_tid);
1604 #endif
1605
1606 if (is_process_ttrace_request (request))
1607 {
1608
1609 /* Ok, we couldn't get a tid. Try to translate to
1610 * the equivalent process operation. We expect this
1611 * NOT to happen, so this is a desparation-type
1612 * move. It can happen if there is an internal
1613 * error and so no "wait()" call is ever done.
1614 */
1615 new_request = make_process_version (request);
1616 if (new_request == -1)
1617 {
1618
1619 #ifdef THREAD_DEBUG
1620 if (debug_on)
1621 printf ("...and couldn't make process version of thread operation\n");
1622 #endif
1623
1624 /* Use hacky saved pid, which won't always be correct
1625 * in the multi-process future. Use tid as thread,
1626 * probably dooming this to failure. FIX!
1627 */
1628 if (saved_real_pid != 0)
1629 {
1630 #ifdef THREAD_DEBUG
1631 if (debug_on)
1632 printf ("...using saved pid %d\n", saved_real_pid);
1633 #endif
1634
1635 real_pid = saved_real_pid;
1636 real_tid = gdb_tid;
1637 }
1638
1639 else
1640 error ("Unable to perform thread operation");
1641 }
1642
1643 else
1644 {
1645 /* Sucessfully translated this to a process request,
1646 * which needs no thread value.
1647 */
1648 real_pid = gdb_tid;
1649 real_tid = 0;
1650 request = new_request;
1651
1652 #ifdef THREAD_DEBUG
1653 if (debug_on)
1654 {
1655 printf ("Translated thread request to process request\n");
1656 if (saved_real_pid == 0)
1657 printf ("...but there's no saved pid\n");
1658
1659 else
1660 {
1661 if (gdb_tid != saved_real_pid)
1662 printf ("...but have the wrong pid (%d rather than %d)\n",
1663 gdb_tid, saved_real_pid);
1664 }
1665 }
1666 #endif
1667 } /* Translated to a process request */
1668 } /* Is a process request */
1669
1670 else
1671 {
1672 /* We have to have a thread. Ooops.
1673 */
1674 error ("Thread request with no threads (%s)",
1675 get_printable_name_of_ttrace_request (request));
1676 }
1677 }
1678
1679 /* Ttrace doesn't like to see tid values on process requests,
1680 * even if we have the right one.
1681 */
1682 if (is_process_ttrace_request (request))
1683 {
1684 real_tid = 0;
1685 }
1686
1687 #ifdef THREAD_DEBUG
1688 if (is_interesting && 0 && debug_on)
1689 {
1690 printf (" now tid %d, pid %d\n", real_tid, real_pid);
1691 printf (" request is %s\n", get_printable_name_of_ttrace_request (request));
1692 }
1693 #endif
1694
1695 /* Finally, the (almost) real call.
1696 */
1697 tt_status = call_real_ttrace (request, real_pid, real_tid, addr, data, addr2);
1698
1699 #ifdef THREAD_DEBUG
1700 if (is_interesting && debug_on)
1701 {
1702 if (!TT_OK (tt_status, errno)
1703 && !(tt_status == 0 & errno == 0))
1704 printf (" got error (errno==%d, status==%d)\n", errno, tt_status);
1705 }
1706 #endif
1707
1708 return tt_status;
1709 }
1710
1711
1712 /* Stop all the threads of a process.
1713
1714 * NOTE: use of TT_PROC_STOP can cause a thread with a real event
1715 * to get a TTEVT_NONE event, discarding the old event. Be
1716 * very careful, and only call TT_PROC_STOP when you mean it!
1717 */
1718 static void
1719 stop_all_threads_of_process (pid_t real_pid)
1720 {
1721 int ttw_status;
1722
1723 ttw_status = call_real_ttrace (TT_PROC_STOP,
1724 (pid_t) real_pid,
1725 (lwpid_t) TT_NIL,
1726 (TTRACE_ARG_TYPE) TT_NIL,
1727 (TTRACE_ARG_TYPE) TT_NIL,
1728 TT_NIL);
1729 if (errno)
1730 perror_with_name ("ttrace stop of other threads");
1731 }
1732
1733
1734 /* Under some circumstances, it's unsafe to attempt to stop, or even
1735 query the state of, a process' threads.
1736
1737 In ttrace-based HP-UX, an example is a vforking child process. The
1738 vforking parent and child are somewhat fragile, w/r/t what we can do
1739 what we can do to them with ttrace, until after the child exits or
1740 execs, or until the parent's vfork event is delivered. Until that
1741 time, we must not try to stop the process' threads, or inquire how
1742 many there are, or even alter its data segments, or it typically dies
1743 with a SIGILL. Sigh.
1744
1745 This function returns 1 if this stopped process, and the event that
1746 we're told was responsible for its current stopped state, cannot safely
1747 have its threads examined.
1748 */
1749 #define CHILD_VFORKED(evt,pid) \
1750 (((evt) == TTEVT_VFORK) && ((pid) != inferior_pid))
1751 #define CHILD_URPED(evt,pid) \
1752 ((((evt) == TTEVT_EXEC) || ((evt) == TTEVT_EXIT)) && ((pid) != vforking_child_pid))
1753 #define PARENT_VFORKED(evt,pid) \
1754 (((evt) == TTEVT_VFORK) && ((pid) == inferior_pid))
1755
1756 static int
1757 can_touch_threads_of_process (int pid, ttevents_t stopping_event)
1758 {
1759 if (CHILD_VFORKED (stopping_event, pid))
1760 {
1761 vforking_child_pid = pid;
1762 vfork_in_flight = 1;
1763 }
1764
1765 else if (vfork_in_flight &&
1766 (PARENT_VFORKED (stopping_event, pid) ||
1767 CHILD_URPED (stopping_event, pid)))
1768 {
1769 vfork_in_flight = 0;
1770 vforking_child_pid = 0;
1771 }
1772
1773 return !vfork_in_flight;
1774 }
1775
1776
1777 /* If we can find an as-yet-unhandled thread state of a
1778 * stopped thread of this process return 1 and set "tsp".
1779 * Return 0 if we can't.
1780 *
1781 * If this function is used when the threads of PIS haven't
1782 * been stopped, undefined behaviour is guaranteed!
1783 */
1784 static int
1785 select_stopped_thread_of_process (int pid, ttstate_t *tsp)
1786 {
1787 lwpid_t candidate_tid, tid;
1788 ttstate_t candidate_tstate, tstate;
1789
1790 /* If we're not allowed to touch the process now, then just
1791 * return the current value of *TSP.
1792 *
1793 * This supports "vfork". It's ok, really, to double the
1794 * current event (the child EXEC, we hope!).
1795 */
1796 if (!can_touch_threads_of_process (pid, tsp->tts_event))
1797 return 1;
1798
1799 /* Decide which of (possibly more than one) events to
1800 * return as the first one. We scan them all so that
1801 * we always return the result of a fake-step first.
1802 */
1803 candidate_tid = 0;
1804 for (tid = get_process_first_stopped_thread_id (pid, &tstate);
1805 tid != 0;
1806 tid = get_process_next_stopped_thread_id (pid, &tstate))
1807 {
1808 /* TTEVT_NONE events are uninteresting to our clients. They're
1809 * an artifact of our "stop the world" model--the thread is
1810 * stopped because we stopped it.
1811 */
1812 if (tstate.tts_event == TTEVT_NONE)
1813 {
1814 set_handled (pid, tstate.tts_lwpid);
1815 }
1816
1817 /* Did we just single-step a single thread, without letting any
1818 * of the others run? Is this an event for that thread?
1819 *
1820 * If so, we believe our client would prefer to see this event
1821 * over any others. (Typically the client wants to just push
1822 * one thread a little farther forward, and then go around
1823 * checking for what all threads are doing.)
1824 */
1825 else if (doing_fake_step && (tstate.tts_lwpid == fake_step_tid))
1826 {
1827 #ifdef WAIT_BUFFER_DEBUG
1828 /* It's possible here to see either a SIGTRAP (due to
1829 * successful completion of a step) or a SYSCALL_ENTRY
1830 * (due to a step completion with active hardware
1831 * watchpoints).
1832 */
1833 if (debug_on)
1834 printf ("Ending fake step with tid %d, state %s\n",
1835 tstate.tts_lwpid,
1836 get_printable_name_of_ttrace_event (tstate.tts_event));
1837 #endif
1838
1839 /* Remember this one, and throw away any previous
1840 * candidate.
1841 */
1842 candidate_tid = tstate.tts_lwpid;
1843 candidate_tstate = tstate;
1844 }
1845
1846 #ifdef FORGET_DELETED_BPTS
1847
1848 /* We can't just do this, as if we do, and then wind
1849 * up the loop with no unhandled events, we need to
1850 * handle that case--the appropriate reaction is to
1851 * just continue, but there's no easy way to do that.
1852 *
1853 * Better to put this in the ttrace_wait call--if, when
1854 * we fake a wait, we update our events based on the
1855 * breakpoint_here_pc call and find there are no more events,
1856 * then we better continue and so on.
1857 *
1858 * Or we could put it in the next/continue fake.
1859 * But it has to go in the buffering code, not in the
1860 * real go/wait code.
1861 */
1862 else if ((TTEVT_SIGNAL == tstate.tts_event)
1863 && (5 == tstate.tts_u.tts_signal.tts_signo)
1864 && (0 != get_raw_pc (tstate.tts_lwpid))
1865 && !breakpoint_here_p (get_raw_pc (tstate.tts_lwpid)))
1866 {
1867 /*
1868 * If the user deleted a breakpoint while this
1869 * breakpoint-hit event was buffered, we can forget
1870 * it now.
1871 */
1872 #ifdef WAIT_BUFFER_DEBUG
1873 if (debug_on)
1874 printf ("Forgetting deleted bp hit for thread %d\n",
1875 tstate.tts_lwpid);
1876 #endif
1877
1878 set_handled (pid, tstate.tts_lwpid);
1879 }
1880 #endif
1881
1882 /* Else, is this the first "unhandled" event? If so,
1883 * we believe our client wants to see it (if we don't
1884 * see a fake-step later on in the scan).
1885 */
1886 else if (!was_handled (tstate.tts_lwpid) && candidate_tid == 0)
1887 {
1888 candidate_tid = tstate.tts_lwpid;
1889 candidate_tstate = tstate;
1890 }
1891
1892 /* This is either an event that has already been "handled",
1893 * and thus we believe is uninteresting to our client, or we
1894 * already have a candidate event. Ignore it...
1895 */
1896 }
1897
1898 /* What do we report?
1899 */
1900 if (doing_fake_step)
1901 {
1902 if (candidate_tid == fake_step_tid)
1903 {
1904 /* Fake step.
1905 */
1906 tstate = candidate_tstate;
1907 }
1908 else
1909 {
1910 warning ("Internal error: fake-step failed to complete.");
1911 return 0;
1912 }
1913 }
1914 else if (candidate_tid != 0)
1915 {
1916 /* Found a candidate unhandled event.
1917 */
1918 tstate = candidate_tstate;
1919 }
1920 else if (tid != 0)
1921 {
1922 warning ("Internal error in call of ttrace_wait.");
1923 return 0;
1924 }
1925 else
1926 {
1927 warning ("Internal error: no unhandled thread event to select");
1928 return 0;
1929 }
1930
1931 copy_ttstate_t (tsp, &tstate);
1932 return 1;
1933 } /* End of select_stopped_thread_of_process */
1934
1935 #ifdef PARANOIA
1936 /* Check our internal thread data against the real thing.
1937 */
1938 static void
1939 check_thread_consistency (pid_t real_pid)
1940 {
1941 int tid; /* really lwpid_t */
1942 ttstate_t tstate;
1943 thread_info *p;
1944
1945 /* Spin down the O/S list of threads, checking that they
1946 * match what we've got.
1947 */
1948 for (tid = get_process_first_stopped_thread_id (real_pid, &tstate);
1949 tid != 0;
1950 tid = get_process_next_stopped_thread_id (real_pid, &tstate))
1951 {
1952
1953 p = find_thread_info (tid);
1954
1955 if (NULL == p)
1956 {
1957 warning ("No internal thread data for thread %d.", tid);
1958 continue;
1959 }
1960
1961 if (!p->seen)
1962 {
1963 warning ("Inconsistent internal thread data for thread %d.", tid);
1964 }
1965
1966 if (p->terminated)
1967 {
1968 warning ("Thread %d is not terminated, internal error.", tid);
1969 continue;
1970 }
1971
1972
1973 #define TT_COMPARE( fld ) \
1974 tstate.fld != p->last_stop_state.fld
1975
1976 if (p->have_state)
1977 {
1978 if (TT_COMPARE (tts_pid)
1979 || TT_COMPARE (tts_lwpid)
1980 || TT_COMPARE (tts_user_tid)
1981 || TT_COMPARE (tts_event)
1982 || TT_COMPARE (tts_flags)
1983 || TT_COMPARE (tts_scno)
1984 || TT_COMPARE (tts_scnargs))
1985 {
1986 warning ("Internal thread data for thread %d is wrong.", tid);
1987 continue;
1988 }
1989 }
1990 }
1991 }
1992 #endif /* PARANOIA */
1993 \f
1994
1995 /* This function wraps calls to "call_real_ttrace_wait" so
1996 * that a actual wait is only done when all pending events
1997 * have been reported.
1998 *
1999 * Note that typically it is called with a pid of "0", i.e.
2000 * the "don't care" value.
2001 *
2002 * Return value is the status of the pseudo wait.
2003 */
2004 static int
2005 call_ttrace_wait (int pid, ttwopt_t option, ttstate_t *tsp, size_t tsp_size)
2006 {
2007 /* This holds the actual, for-real, true process ID.
2008 */
2009 static int real_pid;
2010
2011 /* As an argument to ttrace_wait, zero pid
2012 * means "Any process", and zero tid means
2013 * "Any thread of the specified process".
2014 */
2015 int wait_pid = 0;
2016 lwpid_t wait_tid = 0;
2017 lwpid_t real_tid;
2018
2019 int ttw_status = 0; /* To be returned */
2020
2021 thread_info *tinfo = NULL;
2022
2023 if (pid != 0)
2024 {
2025 /* Unexpected case.
2026 */
2027 #ifdef THREAD_DEBUG
2028 if (debug_on)
2029 printf ("TW: Pid to wait on is %d\n", pid);
2030 #endif
2031
2032 if (!any_thread_records ())
2033 error ("No thread records for ttrace call w. specific pid");
2034
2035 /* OK, now the task is to translate the incoming tid into
2036 * a pid/tid pair.
2037 */
2038 real_tid = map_from_gdb_tid (pid);
2039 real_pid = get_pid_for (real_tid);
2040 #ifdef THREAD_DEBUG
2041 if (debug_on)
2042 printf ("==TW: real pid %d, real tid %d\n", real_pid, real_tid);
2043 #endif
2044 }
2045
2046
2047 /* Sanity checks and set-up.
2048 * Process State
2049 *
2050 * Stopped Running Fake-step (v)Fork
2051 * \________________________________________
2052 * |
2053 * No buffered events | error wait wait wait
2054 * |
2055 * Buffered events | debuffer error wait debuffer (?)
2056 *
2057 */
2058 if (more_events_left == 0)
2059 {
2060
2061 if (process_state == RUNNING)
2062 {
2063 /* OK--normal call of ttrace_wait with no buffered events.
2064 */
2065 ;
2066 }
2067 else if (process_state == FAKE_STEPPING)
2068 {
2069 /* Ok--call of ttrace_wait to support
2070 * fake stepping with no buffered events.
2071 *
2072 * But we better be fake-stepping!
2073 */
2074 if (!doing_fake_step)
2075 {
2076 warning ("Inconsistent thread state.");
2077 }
2078 }
2079 else if ((process_state == FORKING)
2080 || (process_state == VFORKING))
2081 {
2082 /* Ok--there are two processes, so waiting
2083 * for the second while the first is stopped
2084 * is ok. Handled bits stay as they were.
2085 */
2086 ;
2087 }
2088 else if (process_state == STOPPED)
2089 {
2090 warning ("Process not running at wait call.");
2091 }
2092 else
2093 /* No known state.
2094 */
2095 warning ("Inconsistent process state.");
2096 }
2097
2098 else
2099 {
2100 /* More events left
2101 */
2102 if (process_state == STOPPED)
2103 {
2104 /* OK--buffered events being unbuffered.
2105 */
2106 ;
2107 }
2108 else if (process_state == RUNNING)
2109 {
2110 /* An error--shouldn't have buffered events
2111 * when running.
2112 */
2113 warning ("Trying to continue with buffered events:");
2114 }
2115 else if (process_state == FAKE_STEPPING)
2116 {
2117 /*
2118 * Better be fake-stepping!
2119 */
2120 if (!doing_fake_step)
2121 {
2122 warning ("Losing buffered thread events!\n");
2123 }
2124 }
2125 else if ((process_state == FORKING)
2126 || (process_state == VFORKING))
2127 {
2128 /* Ok--there are two processes, so waiting
2129 * for the second while the first is stopped
2130 * is ok. Handled bits stay as they were.
2131 */
2132 ;
2133 }
2134 else
2135 warning ("Process in unknown state with buffered events.");
2136 }
2137
2138 /* Sometimes we have to wait for a particular thread
2139 * (if we're stepping over a bpt). In that case, we
2140 * _know_ it's going to complete the single-step we
2141 * asked for (because we're only doing the step under
2142 * certain very well-understood circumstances), so it
2143 * can't block.
2144 */
2145 if (doing_fake_step)
2146 {
2147 wait_tid = fake_step_tid;
2148 wait_pid = get_pid_for (fake_step_tid);
2149
2150 #ifdef WAIT_BUFFER_DEBUG
2151 if (debug_on)
2152 printf ("Doing a wait after a fake-step for %d, pid %d\n",
2153 wait_tid, wait_pid);
2154 #endif
2155 }
2156
2157 if (more_events_left == 0 /* No buffered events, need real ones. */
2158 || process_state != STOPPED)
2159 {
2160 /* If there are no buffered events, and so we need
2161 * real ones, or if we are FORKING, VFORKING,
2162 * FAKE_STEPPING or RUNNING, and thus have to do
2163 * a real wait, then do a real wait.
2164 */
2165
2166 #ifdef WAIT_BUFFER_DEBUG
2167 /* Normal case... */
2168 if (debug_on)
2169 printf ("TW: do it for real; pid %d, tid %d\n", wait_pid, wait_tid);
2170 #endif
2171
2172 /* The actual wait call.
2173 */
2174 ttw_status = call_real_ttrace_wait (wait_pid, wait_tid, option, tsp, tsp_size);
2175
2176 /* Note that the routines we'll call will be using "call_real_ttrace",
2177 * not "call_ttrace", and thus need the real pid rather than the pseudo-tid
2178 * the rest of the world uses (which is actually the tid).
2179 */
2180 real_pid = tsp->tts_pid;
2181
2182 /* For most events: Stop the world!
2183
2184 * It's sometimes not safe to stop all threads of a process.
2185 * Sometimes it's not even safe to ask for the thread state
2186 * of a process!
2187 */
2188 if (can_touch_threads_of_process (real_pid, tsp->tts_event))
2189 {
2190 /* If we're really only stepping a single thread, then don't
2191 * try to stop all the others -- we only do this single-stepping
2192 * business when all others were already stopped...and the stop
2193 * would mess up other threads' events.
2194 *
2195 * Similiarly, if there are other threads with events,
2196 * don't do the stop.
2197 */
2198 if (!doing_fake_step)
2199 {
2200 if (more_events_left > 0)
2201 warning ("Internal error in stopping process");
2202
2203 stop_all_threads_of_process (real_pid);
2204
2205 /* At this point, we could scan and update_thread_list(),
2206 * and only use the local list for the rest of the
2207 * module! We'd get rid of the scans in the various
2208 * continue routines (adding one in attach). It'd
2209 * be great--UPGRADE ME!
2210 */
2211 }
2212 }
2213
2214 #ifdef PARANOIA
2215 else if (debug_on)
2216 {
2217 if (more_events_left > 0)
2218 printf ("== Can't stop process; more events!\n");
2219 else
2220 printf ("== Can't stop process!\n");
2221 }
2222 #endif
2223
2224 process_state = STOPPED;
2225
2226 #ifdef WAIT_BUFFER_DEBUG
2227 if (debug_on)
2228 printf ("Process set to STOPPED\n");
2229 #endif
2230 }
2231
2232 else
2233 {
2234 /* Fake a call to ttrace_wait. The process must be
2235 * STOPPED, as we aren't going to do any wait.
2236 */
2237 #ifdef WAIT_BUFFER_DEBUG
2238 if (debug_on)
2239 printf ("TW: fake it\n");
2240 #endif
2241
2242 if (process_state != STOPPED)
2243 {
2244 warning ("Process not stopped at wait call, in state '%s'.\n",
2245 get_printable_name_of_process_state (process_state));
2246 }
2247
2248 if (doing_fake_step)
2249 error ("Internal error in stepping over breakpoint");
2250
2251 ttw_status = 0; /* Faking it is always successful! */
2252 } /* End of fake or not? if */
2253
2254 /* Pick an event to pass to our caller. Be paranoid.
2255 */
2256 if (!select_stopped_thread_of_process (real_pid, tsp))
2257 warning ("Can't find event, using previous event.");
2258
2259 else if (tsp->tts_event == TTEVT_NONE)
2260 warning ("Internal error: no thread has a real event.");
2261
2262 else if (doing_fake_step)
2263 {
2264 if (fake_step_tid != tsp->tts_lwpid)
2265 warning ("Internal error in stepping over breakpoint.");
2266
2267 /* This wait clears the (current) fake-step if there was one.
2268 */
2269 doing_fake_step = 0;
2270 fake_step_tid = 0;
2271 }
2272
2273 /* We now have a correct tsp and ttw_status for the thread
2274 * which we want to report. So it's "handled"! This call
2275 * will add it to our list if it's not there already.
2276 */
2277 set_handled (real_pid, tsp->tts_lwpid);
2278
2279 /* Save a copy of the ttrace state of this thread, in our local
2280 thread descriptor.
2281
2282 This caches the state. The implementation of queries like
2283 target_has_execd can then use this cached state, rather than
2284 be forced to make an explicit ttrace call to get it.
2285
2286 (Guard against the condition that this is the first time we've
2287 waited on, i.e., seen this thread, and so haven't yet entered
2288 it into our list of threads.)
2289 */
2290 tinfo = find_thread_info (tsp->tts_lwpid);
2291 if (tinfo != NULL)
2292 {
2293 copy_ttstate_t (&tinfo->last_stop_state, tsp);
2294 tinfo->have_state = 1;
2295 }
2296
2297 return ttw_status;
2298 } /* call_ttrace_wait */
2299
2300 #if defined(CHILD_REPORTED_EXEC_EVENTS_PER_EXEC_CALL)
2301 int
2302 child_reported_exec_events_per_exec_call (void)
2303 {
2304 return 1; /* ttrace reports the event once per call. */
2305 }
2306 #endif
2307 \f
2308
2309
2310 /* Our implementation of hardware watchpoints involves making memory
2311 pages write-protected. We must remember a page's original permissions,
2312 and we must also know when it is appropriate to restore a page's
2313 permissions to its original state.
2314
2315 We use a "dictionary" of hardware-watched pages to do this. Each
2316 hardware-watched page is recorded in the dictionary. Each page's
2317 dictionary entry contains the original permissions and a reference
2318 count. Pages are hashed into the dictionary by their start address.
2319
2320 When hardware watchpoint is set on page X for the first time, page X
2321 is added to the dictionary with a reference count of 1. If other
2322 hardware watchpoints are subsequently set on page X, its reference
2323 count is incremented. When hardware watchpoints are removed from
2324 page X, its reference count is decremented. If a page's reference
2325 count drops to 0, it's permissions are restored and the page's entry
2326 is thrown out of the dictionary.
2327 */
2328 typedef struct memory_page
2329 {
2330 CORE_ADDR page_start;
2331 int reference_count;
2332 int original_permissions;
2333 struct memory_page *next;
2334 struct memory_page *previous;
2335 }
2336 memory_page_t;
2337
2338 #define MEMORY_PAGE_DICTIONARY_BUCKET_COUNT 128
2339
2340 static struct
2341 {
2342 LONGEST page_count;
2343 int page_size;
2344 int page_protections_allowed;
2345 /* These are just the heads of chains of actual page descriptors. */
2346 memory_page_t buckets[MEMORY_PAGE_DICTIONARY_BUCKET_COUNT];
2347 }
2348 memory_page_dictionary;
2349
2350
2351 static void
2352 require_memory_page_dictionary (void)
2353 {
2354 int i;
2355
2356 /* Is the memory page dictionary ready for use? If so, we're done. */
2357 if (memory_page_dictionary.page_count >= (LONGEST) 0)
2358 return;
2359
2360 /* Else, initialize it. */
2361 memory_page_dictionary.page_count = (LONGEST) 0;
2362
2363 for (i = 0; i < MEMORY_PAGE_DICTIONARY_BUCKET_COUNT; i++)
2364 {
2365 memory_page_dictionary.buckets[i].page_start = (CORE_ADDR) 0;
2366 memory_page_dictionary.buckets[i].reference_count = 0;
2367 memory_page_dictionary.buckets[i].next = NULL;
2368 memory_page_dictionary.buckets[i].previous = NULL;
2369 }
2370 }
2371
2372
2373 static void
2374 retire_memory_page_dictionary (void)
2375 {
2376 memory_page_dictionary.page_count = (LONGEST) - 1;
2377 }
2378
2379
2380 /* Write-protect the memory page that starts at this address.
2381
2382 Returns the original permissions of the page.
2383 */
2384 static int
2385 write_protect_page (int pid, CORE_ADDR page_start)
2386 {
2387 int tt_status;
2388 int original_permissions;
2389 int new_permissions;
2390
2391 tt_status = call_ttrace (TT_PROC_GET_MPROTECT,
2392 pid,
2393 (TTRACE_ARG_TYPE) page_start,
2394 TT_NIL,
2395 (TTRACE_ARG_TYPE) & original_permissions);
2396 if (errno || (tt_status < 0))
2397 {
2398 return 0; /* What else can we do? */
2399 }
2400
2401 /* We'll also write-protect the page now, if that's allowed. */
2402 if (memory_page_dictionary.page_protections_allowed)
2403 {
2404 new_permissions = original_permissions & ~PROT_WRITE;
2405 tt_status = call_ttrace (TT_PROC_SET_MPROTECT,
2406 pid,
2407 (TTRACE_ARG_TYPE) page_start,
2408 (TTRACE_ARG_TYPE) memory_page_dictionary.page_size,
2409 (TTRACE_ARG_TYPE) new_permissions);
2410 if (errno || (tt_status < 0))
2411 {
2412 return 0; /* What else can we do? */
2413 }
2414 }
2415
2416 return original_permissions;
2417 }
2418
2419
2420 /* Unwrite-protect the memory page that starts at this address, restoring
2421 (what we must assume are) its original permissions.
2422 */
2423 static void
2424 unwrite_protect_page (int pid, CORE_ADDR page_start, int original_permissions)
2425 {
2426 int tt_status;
2427
2428 tt_status = call_ttrace (TT_PROC_SET_MPROTECT,
2429 pid,
2430 (TTRACE_ARG_TYPE) page_start,
2431 (TTRACE_ARG_TYPE) memory_page_dictionary.page_size,
2432 (TTRACE_ARG_TYPE) original_permissions);
2433 if (errno || (tt_status < 0))
2434 {
2435 return; /* What else can we do? */
2436 }
2437 }
2438
2439
2440 /* Memory page-protections are used to implement "hardware" watchpoints
2441 on HP-UX.
2442
2443 For every memory page that is currently being watched (i.e., that
2444 presently should be write-protected), write-protect it.
2445 */
2446 void
2447 hppa_enable_page_protection_events (int pid)
2448 {
2449 int bucket;
2450
2451 memory_page_dictionary.page_protections_allowed = 1;
2452
2453 for (bucket = 0; bucket < MEMORY_PAGE_DICTIONARY_BUCKET_COUNT; bucket++)
2454 {
2455 memory_page_t *page;
2456
2457 page = memory_page_dictionary.buckets[bucket].next;
2458 while (page != NULL)
2459 {
2460 page->original_permissions = write_protect_page (pid, page->page_start);
2461 page = page->next;
2462 }
2463 }
2464 }
2465
2466
2467 /* Memory page-protections are used to implement "hardware" watchpoints
2468 on HP-UX.
2469
2470 For every memory page that is currently being watched (i.e., that
2471 presently is or should be write-protected), un-write-protect it.
2472 */
2473 void
2474 hppa_disable_page_protection_events (int pid)
2475 {
2476 int bucket;
2477
2478 for (bucket = 0; bucket < MEMORY_PAGE_DICTIONARY_BUCKET_COUNT; bucket++)
2479 {
2480 memory_page_t *page;
2481
2482 page = memory_page_dictionary.buckets[bucket].next;
2483 while (page != NULL)
2484 {
2485 unwrite_protect_page (pid, page->page_start, page->original_permissions);
2486 page = page->next;
2487 }
2488 }
2489
2490 memory_page_dictionary.page_protections_allowed = 0;
2491 }
2492
2493 /* Count the number of outstanding events. At this
2494 * point, we have selected one thread and its event
2495 * as the one to be "reported" upwards to core gdb.
2496 * That thread is already marked as "handled".
2497 *
2498 * Note: we could just scan our own thread list. FIXME!
2499 */
2500 static int
2501 count_unhandled_events (int real_pid, lwpid_t real_tid)
2502 {
2503 ttstate_t tstate;
2504 lwpid_t ttid;
2505 int events_left;
2506
2507 /* Ok, find out how many threads have real events to report.
2508 */
2509 events_left = 0;
2510 ttid = get_process_first_stopped_thread_id (real_pid, &tstate);
2511
2512 #ifdef THREAD_DEBUG
2513 if (debug_on)
2514 {
2515 if (ttid == 0)
2516 printf ("Process %d has no threads\n", real_pid);
2517 else
2518 printf ("Process %d has these threads:\n", real_pid);
2519 }
2520 #endif
2521
2522 while (ttid > 0)
2523 {
2524 if (tstate.tts_event != TTEVT_NONE
2525 && !was_handled (ttid))
2526 {
2527 /* TTEVT_NONE implies we just stopped it ourselves
2528 * because we're the stop-the-world guys, so it's
2529 * not an event from our point of view.
2530 *
2531 * If "was_handled" is true, this is an event we
2532 * already handled, so don't count it.
2533 *
2534 * Note that we don't count the thread with the
2535 * currently-reported event, as it's already marked
2536 * as handled.
2537 */
2538 events_left++;
2539 }
2540
2541 #if defined( THREAD_DEBUG ) || defined( WAIT_BUFFER_DEBUG )
2542 if (debug_on)
2543 {
2544 if (ttid == real_tid)
2545 printf ("*"); /* Thread we're reporting */
2546 else
2547 printf (" ");
2548
2549 if (tstate.tts_event != TTEVT_NONE)
2550 printf ("+"); /* Thread with a real event */
2551 else
2552 printf (" ");
2553
2554 if (was_handled (ttid))
2555 printf ("h"); /* Thread has been handled */
2556 else
2557 printf (" ");
2558
2559 printf (" %d, with event %s", ttid,
2560 get_printable_name_of_ttrace_event (tstate.tts_event));
2561
2562 if (tstate.tts_event == TTEVT_SIGNAL
2563 && 5 == tstate.tts_u.tts_signal.tts_signo)
2564 {
2565 CORE_ADDR pc_val;
2566
2567 pc_val = get_raw_pc (ttid);
2568
2569 if (pc_val > 0)
2570 printf (" breakpoint at 0x%x\n", pc_val);
2571 else
2572 printf (" bpt, can't fetch pc.\n");
2573 }
2574 else
2575 printf ("\n");
2576 }
2577 #endif
2578
2579 ttid = get_process_next_stopped_thread_id (real_pid, &tstate);
2580 }
2581
2582 #if defined( THREAD_DEBUG ) || defined( WAIT_BUFFER_DEBUG )
2583 if (debug_on)
2584 if (events_left > 0)
2585 printf ("There are thus %d pending events\n", events_left);
2586 #endif
2587
2588 return events_left;
2589 }
2590
2591 /* This function is provided as a sop to clients that are calling
2592 * ptrace_wait to wait for a process to stop. (see the
2593 * implementation of child_wait.) Return value is the pid for
2594 * the event that ended the wait.
2595 *
2596 * Note: used by core gdb and so uses the pseudo-pid (really tid).
2597 */
2598 int
2599 ptrace_wait (int pid, int *status)
2600 {
2601 ttstate_t tsp;
2602 int ttwait_return;
2603 int real_pid;
2604 ttstate_t state;
2605 lwpid_t real_tid;
2606 int return_pid;
2607
2608 /* The ptrace implementation of this also ignores pid.
2609 */
2610 *status = 0;
2611
2612 ttwait_return = call_ttrace_wait (0, TTRACE_WAITOK, &tsp, sizeof (tsp));
2613 if (ttwait_return < 0)
2614 {
2615 /* ??rehrauer: It appears that if our inferior exits and we
2616 haven't asked for exit events, that we're not getting any
2617 indication save a negative return from ttrace_wait and an
2618 errno set to ESRCH?
2619 */
2620 if (errno == ESRCH)
2621 {
2622 *status = 0; /* WIFEXITED */
2623 return inferior_pid;
2624 }
2625
2626 warning ("Call of ttrace_wait returned with errno %d.",
2627 errno);
2628 *status = ttwait_return;
2629 return inferior_pid;
2630 }
2631
2632 real_pid = tsp.tts_pid;
2633 real_tid = tsp.tts_lwpid;
2634
2635 /* One complication is that the "tts_event" structure has
2636 * a set of flags, and more than one can be set. So we
2637 * either have to force an order (as we do here), or handle
2638 * more than one flag at a time.
2639 */
2640 if (tsp.tts_event & TTEVT_LWP_CREATE)
2641 {
2642
2643 /* Unlike what you might expect, this event is reported in
2644 * the _creating_ thread, and the _created_ thread (whose tid
2645 * we have) is still running. So we have to stop it. This
2646 * has already been done in "call_ttrace_wait", but should we
2647 * ever abandon the "stop-the-world" model, here's the command
2648 * to use:
2649 *
2650 * call_ttrace( TT_LWP_STOP, real_tid, TT_NIL, TT_NIL, TT_NIL );
2651 *
2652 * Note that this would depend on being called _after_ "add_tthread"
2653 * below for the tid-to-pid translation to be done in "call_ttrace".
2654 */
2655
2656 #ifdef THREAD_DEBUG
2657 if (debug_on)
2658 printf ("New thread: pid %d, tid %d, creator tid %d\n",
2659 real_pid, tsp.tts_u.tts_thread.tts_target_lwpid,
2660 real_tid);
2661 #endif
2662
2663 /* Now we have to return the tid of the created thread, not
2664 * the creating thread, or "wait_for_inferior" won't know we
2665 * have a new "process" (thread). Plus we should record it
2666 * right, too.
2667 */
2668 real_tid = tsp.tts_u.tts_thread.tts_target_lwpid;
2669
2670 add_tthread (real_pid, real_tid);
2671 }
2672
2673 else if ((tsp.tts_event & TTEVT_LWP_TERMINATE)
2674 || (tsp.tts_event & TTEVT_LWP_EXIT))
2675 {
2676
2677 #ifdef THREAD_DEBUG
2678 if (debug_on)
2679 printf ("Thread dies: %d\n", real_tid);
2680 #endif
2681
2682 del_tthread (real_tid);
2683 }
2684
2685 else if (tsp.tts_event & TTEVT_EXEC)
2686 {
2687
2688 #ifdef THREAD_DEBUG
2689 if (debug_on)
2690 printf ("Pid %d has zero'th thread %d; inferior pid is %d\n",
2691 real_pid, real_tid, inferior_pid);
2692 #endif
2693
2694 add_tthread (real_pid, real_tid);
2695 }
2696
2697 #ifdef THREAD_DEBUG
2698 else if (debug_on)
2699 {
2700 printf ("Process-level event %s, using tid %d\n",
2701 get_printable_name_of_ttrace_event (tsp.tts_event),
2702 real_tid);
2703
2704 /* OK to do this, as "add_tthread" won't add
2705 * duplicate entries. Also OK not to do it,
2706 * as this event isn't one which can change the
2707 * thread state.
2708 */
2709 add_tthread (real_pid, real_tid);
2710 }
2711 #endif
2712
2713
2714 /* How many events are left to report later?
2715 * In a non-stop-the-world model, this isn't needed.
2716 *
2717 * Note that it's not always safe to query the thread state of a process,
2718 * which is what count_unhandled_events does. (If unsafe, we're left with
2719 * no other resort than to assume that no more events remain...)
2720 */
2721 if (can_touch_threads_of_process (real_pid, tsp.tts_event))
2722 more_events_left = count_unhandled_events (real_pid, real_tid);
2723
2724 else
2725 {
2726 if (more_events_left > 0)
2727 warning ("Vfork or fork causing loss of %d buffered events.",
2728 more_events_left);
2729
2730 more_events_left = 0;
2731 }
2732
2733 /* Attempt to translate the ttrace_wait-returned status into the
2734 ptrace equivalent.
2735
2736 ??rehrauer: This is somewhat fragile. We really ought to rewrite
2737 clients that expect to pick apart a ptrace wait status, to use
2738 something a little more abstract.
2739 */
2740 if ((tsp.tts_event & TTEVT_EXEC)
2741 || (tsp.tts_event & TTEVT_FORK)
2742 || (tsp.tts_event & TTEVT_VFORK))
2743 {
2744 /* Forks come in pairs (parent and child), so core gdb
2745 * will do two waits. Be ready to notice this.
2746 */
2747 if (tsp.tts_event & TTEVT_FORK)
2748 {
2749 process_state = FORKING;
2750
2751 #ifdef WAIT_BUFFER_DEBUG
2752 if (debug_on)
2753 printf ("Process set to FORKING\n");
2754 #endif
2755 }
2756 else if (tsp.tts_event & TTEVT_VFORK)
2757 {
2758 process_state = VFORKING;
2759
2760 #ifdef WAIT_BUFFER_DEBUG
2761 if (debug_on)
2762 printf ("Process set to VFORKING\n");
2763 #endif
2764 }
2765
2766 /* Make an exec or fork look like a breakpoint. Definitely a hack,
2767 but I don't think non HP-UX-specific clients really carefully
2768 inspect the first events they get after inferior startup, so
2769 it probably almost doesn't matter what we claim this is.
2770 */
2771
2772 #ifdef THREAD_DEBUG
2773 if (debug_on)
2774 printf ("..a process 'event'\n");
2775 #endif
2776
2777 /* Also make fork and exec events look like bpts, so they can be caught.
2778 */
2779 *status = 0177 | (_SIGTRAP << 8);
2780 }
2781
2782 /* Special-cases: We ask for syscall entry and exit events to implement
2783 "fast" (aka "hardware") watchpoints.
2784
2785 When we get a syscall entry, we want to disable page-protections,
2786 and resume the inferior; this isn't an event we wish for
2787 wait_for_inferior to see. Note that we must resume ONLY the
2788 thread that reported the syscall entry; we don't want to allow
2789 other threads to run with the page protections off, as they might
2790 then be able to write to watch memory without it being caught.
2791
2792 When we get a syscall exit, we want to reenable page-protections,
2793 but we don't want to resume the inferior; this is an event we wish
2794 wait_for_inferior to see. Make it look like the signal we normally
2795 get for a single-step completion. This should cause wait_for_inferior
2796 to evaluate whether any watchpoint triggered.
2797
2798 Or rather, that's what we'd LIKE to do for syscall exit; we can't,
2799 due to some HP-UX "features". Some syscalls have problems with
2800 write-protections on some pages, and some syscalls seem to have
2801 pending writes to those pages at the time we're getting the return
2802 event. So, we'll single-step the inferior to get out of the syscall,
2803 and then reenable protections.
2804
2805 Note that we're intentionally allowing the syscall exit case to
2806 fall through into the succeeding cases, as sometimes we single-
2807 step out of one syscall only to immediately enter another...
2808 */
2809 else if ((tsp.tts_event & TTEVT_SYSCALL_ENTRY)
2810 || (tsp.tts_event & TTEVT_SYSCALL_RETURN))
2811 {
2812 /* Make a syscall event look like a breakpoint. Same comments
2813 as for exec & fork events.
2814 */
2815 #ifdef THREAD_DEBUG
2816 if (debug_on)
2817 printf ("..a syscall 'event'\n");
2818 #endif
2819
2820 /* Also make syscall events look like bpts, so they can be caught.
2821 */
2822 *status = 0177 | (_SIGTRAP << 8);
2823 }
2824
2825 else if ((tsp.tts_event & TTEVT_LWP_CREATE)
2826 || (tsp.tts_event & TTEVT_LWP_TERMINATE)
2827 || (tsp.tts_event & TTEVT_LWP_EXIT))
2828 {
2829 /* Make a thread event look like a breakpoint. Same comments
2830 * as for exec & fork events.
2831 */
2832 #ifdef THREAD_DEBUG
2833 if (debug_on)
2834 printf ("..a thread 'event'\n");
2835 #endif
2836
2837 /* Also make thread events look like bpts, so they can be caught.
2838 */
2839 *status = 0177 | (_SIGTRAP << 8);
2840 }
2841
2842 else if ((tsp.tts_event & TTEVT_EXIT))
2843 { /* WIFEXITED */
2844
2845 #ifdef THREAD_DEBUG
2846 if (debug_on)
2847 printf ("..an exit\n");
2848 #endif
2849
2850 /* Prevent rest of gdb from thinking this is
2851 * a new thread if for some reason it's never
2852 * seen the main thread before.
2853 */
2854 inferior_pid = map_to_gdb_tid (real_tid); /* HACK, FIX */
2855
2856 *status = 0 | (tsp.tts_u.tts_exit.tts_exitcode);
2857 }
2858
2859 else if (tsp.tts_event & TTEVT_SIGNAL)
2860 { /* WIFSTOPPED */
2861 #ifdef THREAD_DEBUG
2862 if (debug_on)
2863 printf ("..a signal, %d\n", tsp.tts_u.tts_signal.tts_signo);
2864 #endif
2865
2866 *status = 0177 | (tsp.tts_u.tts_signal.tts_signo << 8);
2867 }
2868
2869 else
2870 { /* !WIFSTOPPED */
2871
2872 /* This means the process or thread terminated. But we should've
2873 caught an explicit exit/termination above. So warn (this is
2874 really an internal error) and claim the process or thread
2875 terminated with a SIGTRAP.
2876 */
2877
2878 warning ("process_wait: unknown process state");
2879
2880 #ifdef THREAD_DEBUG
2881 if (debug_on)
2882 printf ("Process-level event %s, using tid %d\n",
2883 get_printable_name_of_ttrace_event (tsp.tts_event),
2884 real_tid);
2885 #endif
2886
2887 *status = _SIGTRAP;
2888 }
2889
2890 target_post_wait (tsp.tts_pid, *status);
2891
2892
2893 #ifdef THREAD_DEBUG
2894 if (debug_on)
2895 printf ("Done waiting, pid is %d, tid %d\n", real_pid, real_tid);
2896 #endif
2897
2898 /* All code external to this module uses the tid, but calls
2899 * it "pid". There's some tweaking so that the outside sees
2900 * the first thread as having the same number as the starting
2901 * pid.
2902 */
2903 return_pid = map_to_gdb_tid (real_tid);
2904
2905 /* Remember this for later use in "hppa_prepare_to_proceed".
2906 */
2907 old_gdb_pid = inferior_pid;
2908 reported_pid = return_pid;
2909 reported_bpt = ((tsp.tts_event & TTEVT_SIGNAL) && (5 == tsp.tts_u.tts_signal.tts_signo));
2910
2911 if (real_tid == 0 || return_pid == 0)
2912 {
2913 warning ("Internal error: process-wait failed.");
2914 }
2915
2916 return return_pid;
2917 }
2918 \f
2919
2920 /* This function causes the caller's process to be traced by its
2921 parent. This is intended to be called after GDB forks itself,
2922 and before the child execs the target. Despite the name, it
2923 is called by the child.
2924
2925 Note that HP-UX ttrace is rather funky in how this is done.
2926 If the parent wants to get the initial exec event of a child,
2927 it must set the ttrace event mask of the child to include execs.
2928 (The child cannot do this itself.) This must be done after the
2929 child is forked, but before it execs.
2930
2931 To coordinate the parent and child, we implement a semaphore using
2932 pipes. After SETTRC'ing itself, the child tells the parent that
2933 it is now traceable by the parent, and waits for the parent's
2934 acknowledgement. The parent can then set the child's event mask,
2935 and notify the child that it can now exec.
2936
2937 (The acknowledgement by parent happens as a result of a call to
2938 child_acknowledge_created_inferior.)
2939 */
2940 int
2941 parent_attach_all (void)
2942 {
2943 int tt_status;
2944
2945 /* We need a memory home for a constant, to pass it to ttrace.
2946 The value of the constant is arbitrary, so long as both
2947 parent and child use the same value. Might as well use the
2948 "magic" constant provided by ttrace...
2949 */
2950 uint64_t tc_magic_child = TT_VERSION;
2951 uint64_t tc_magic_parent = 0;
2952
2953 tt_status = call_real_ttrace (
2954 TT_PROC_SETTRC,
2955 (int) TT_NIL,
2956 (lwpid_t) TT_NIL,
2957 TT_NIL,
2958 (TTRACE_ARG_TYPE) TT_VERSION,
2959 TT_NIL);
2960
2961 if (tt_status < 0)
2962 return tt_status;
2963
2964 /* Notify the parent that we're potentially ready to exec(). */
2965 write (startup_semaphore.child_channel[SEM_TALK],
2966 &tc_magic_child,
2967 sizeof (tc_magic_child));
2968
2969 /* Wait for acknowledgement from the parent. */
2970 read (startup_semaphore.parent_channel[SEM_LISTEN],
2971 &tc_magic_parent,
2972 sizeof (tc_magic_parent));
2973
2974 if (tc_magic_child != tc_magic_parent)
2975 warning ("mismatched semaphore magic");
2976
2977 /* Discard our copy of the semaphore. */
2978 (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
2979 (void) close (startup_semaphore.parent_channel[SEM_TALK]);
2980 (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
2981 (void) close (startup_semaphore.child_channel[SEM_TALK]);
2982
2983 return tt_status;
2984 }
2985
2986 /* Despite being file-local, this routine is dealing with
2987 * actual process IDs, not thread ids. That's because it's
2988 * called before the first "wait" call, and there's no map
2989 * yet from tids to pids.
2990 *
2991 * When it is called, a forked child is running, but waiting on
2992 * the semaphore. If you stop the child and re-start it,
2993 * things get confused, so don't do that! An attached child is
2994 * stopped.
2995 *
2996 * Since this is called after either attach or run, we
2997 * have to be the common part of both.
2998 */
2999 static void
3000 require_notification_of_events (int real_pid)
3001 {
3002 int tt_status;
3003 ttevent_t notifiable_events;
3004
3005 lwpid_t tid;
3006 ttstate_t thread_state;
3007
3008 #ifdef THREAD_DEBUG
3009 if (debug_on)
3010 printf ("Require notif, pid is %d\n", real_pid);
3011 #endif
3012
3013 /* Temporary HACK: tell inftarg.c/child_wait to not
3014 * loop until pids are the same.
3015 */
3016 not_same_real_pid = 0;
3017
3018 sigemptyset (&notifiable_events.tte_signals);
3019 notifiable_events.tte_opts = TTEO_NONE;
3020
3021 /* This ensures that forked children inherit their parent's
3022 * event mask, which we're setting here.
3023 *
3024 * NOTE: if you debug gdb with itself, then the ultimate
3025 * debuggee gets flags set by the outermost gdb, as
3026 * a child of a child will still inherit.
3027 */
3028 notifiable_events.tte_opts |= TTEO_PROC_INHERIT;
3029
3030 notifiable_events.tte_events = TTEVT_DEFAULT;
3031 notifiable_events.tte_events |= TTEVT_SIGNAL;
3032 notifiable_events.tte_events |= TTEVT_EXEC;
3033 notifiable_events.tte_events |= TTEVT_EXIT;
3034 notifiable_events.tte_events |= TTEVT_FORK;
3035 notifiable_events.tte_events |= TTEVT_VFORK;
3036 notifiable_events.tte_events |= TTEVT_LWP_CREATE;
3037 notifiable_events.tte_events |= TTEVT_LWP_EXIT;
3038 notifiable_events.tte_events |= TTEVT_LWP_TERMINATE;
3039
3040 tt_status = call_real_ttrace (
3041 TT_PROC_SET_EVENT_MASK,
3042 real_pid,
3043 (lwpid_t) TT_NIL,
3044 (TTRACE_ARG_TYPE) & notifiable_events,
3045 (TTRACE_ARG_TYPE) sizeof (notifiable_events),
3046 TT_NIL);
3047 }
3048
3049 static void
3050 require_notification_of_exec_events (int real_pid)
3051 {
3052 int tt_status;
3053 ttevent_t notifiable_events;
3054
3055 lwpid_t tid;
3056 ttstate_t thread_state;
3057
3058 #ifdef THREAD_DEBUG
3059 if (debug_on)
3060 printf ("Require notif, pid is %d\n", real_pid);
3061 #endif
3062
3063 /* Temporary HACK: tell inftarg.c/child_wait to not
3064 * loop until pids are the same.
3065 */
3066 not_same_real_pid = 0;
3067
3068 sigemptyset (&notifiable_events.tte_signals);
3069 notifiable_events.tte_opts = TTEO_NOSTRCCHLD;
3070
3071 /* This ensures that forked children don't inherit their parent's
3072 * event mask, which we're setting here.
3073 */
3074 notifiable_events.tte_opts &= ~TTEO_PROC_INHERIT;
3075
3076 notifiable_events.tte_events = TTEVT_DEFAULT;
3077 notifiable_events.tte_events |= TTEVT_EXEC;
3078 notifiable_events.tte_events |= TTEVT_EXIT;
3079
3080 tt_status = call_real_ttrace (
3081 TT_PROC_SET_EVENT_MASK,
3082 real_pid,
3083 (lwpid_t) TT_NIL,
3084 (TTRACE_ARG_TYPE) & notifiable_events,
3085 (TTRACE_ARG_TYPE) sizeof (notifiable_events),
3086 TT_NIL);
3087 }
3088 \f
3089
3090 /* This function is called by the parent process, with pid being the
3091 * ID of the child process, after the debugger has forked.
3092 */
3093 void
3094 child_acknowledge_created_inferior (int pid)
3095 {
3096 /* We need a memory home for a constant, to pass it to ttrace.
3097 The value of the constant is arbitrary, so long as both
3098 parent and child use the same value. Might as well use the
3099 "magic" constant provided by ttrace...
3100 */
3101 uint64_t tc_magic_parent = TT_VERSION;
3102 uint64_t tc_magic_child = 0;
3103
3104 /* Wait for the child to tell us that it has forked. */
3105 read (startup_semaphore.child_channel[SEM_LISTEN],
3106 &tc_magic_child,
3107 sizeof (tc_magic_child));
3108
3109 /* Clear thread info now. We'd like to do this in
3110 * "require...", but that messes up attach.
3111 */
3112 clear_thread_info ();
3113
3114 /* Tell the "rest of gdb" that the initial thread exists.
3115 * This isn't really a hack. Other thread-based versions
3116 * of gdb (e.g. gnu-nat.c) seem to do the same thing.
3117 *
3118 * Q: Why don't we also add this thread to the local
3119 * list via "add_tthread"?
3120 *
3121 * A: Because we don't know the tid, and can't stop the
3122 * the process safely to ask what it is. Anyway, we'll
3123 * add it when it gets the EXEC event.
3124 */
3125 add_thread (pid); /* in thread.c */
3126
3127 /* We can now set the child's ttrace event mask.
3128 */
3129 require_notification_of_exec_events (pid);
3130
3131 /* Tell ourselves that the process is running.
3132 */
3133 process_state = RUNNING;
3134
3135 /* Notify the child that it can exec. */
3136 write (startup_semaphore.parent_channel[SEM_TALK],
3137 &tc_magic_parent,
3138 sizeof (tc_magic_parent));
3139
3140 /* Discard our copy of the semaphore. */
3141 (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
3142 (void) close (startup_semaphore.parent_channel[SEM_TALK]);
3143 (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
3144 (void) close (startup_semaphore.child_channel[SEM_TALK]);
3145 }
3146
3147
3148 /*
3149 * arrange for notification of all events by
3150 * calling require_notification_of_events.
3151 */
3152 void
3153 child_post_startup_inferior (int real_pid)
3154 {
3155 require_notification_of_events (real_pid);
3156 }
3157
3158 /* From here on, we should expect tids rather than pids.
3159 */
3160 static void
3161 hppa_enable_catch_fork (int tid)
3162 {
3163 int tt_status;
3164 ttevent_t ttrace_events;
3165
3166 /* Get the set of events that are currently enabled.
3167 */
3168 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3169 tid,
3170 (TTRACE_ARG_TYPE) & ttrace_events,
3171 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3172 TT_NIL);
3173 if (errno)
3174 perror_with_name ("ttrace");
3175
3176 /* Add forks to that set. */
3177 ttrace_events.tte_events |= TTEVT_FORK;
3178
3179 #ifdef THREAD_DEBUG
3180 if (debug_on)
3181 printf ("enable fork, tid is %d\n", tid);
3182 #endif
3183
3184 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3185 tid,
3186 (TTRACE_ARG_TYPE) & ttrace_events,
3187 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3188 TT_NIL);
3189 if (errno)
3190 perror_with_name ("ttrace");
3191 }
3192
3193
3194 static void
3195 hppa_disable_catch_fork (int tid)
3196 {
3197 int tt_status;
3198 ttevent_t ttrace_events;
3199
3200 /* Get the set of events that are currently enabled.
3201 */
3202 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3203 tid,
3204 (TTRACE_ARG_TYPE) & ttrace_events,
3205 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3206 TT_NIL);
3207
3208 if (errno)
3209 perror_with_name ("ttrace");
3210
3211 /* Remove forks from that set. */
3212 ttrace_events.tte_events &= ~TTEVT_FORK;
3213
3214 #ifdef THREAD_DEBUG
3215 if (debug_on)
3216 printf ("disable fork, tid is %d\n", tid);
3217 #endif
3218
3219 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3220 tid,
3221 (TTRACE_ARG_TYPE) & ttrace_events,
3222 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3223 TT_NIL);
3224
3225 if (errno)
3226 perror_with_name ("ttrace");
3227 }
3228
3229
3230 #if defined(CHILD_INSERT_FORK_CATCHPOINT)
3231 int
3232 child_insert_fork_catchpoint (int tid)
3233 {
3234 /* Enable reporting of fork events from the kernel. */
3235 /* ??rehrauer: For the moment, we're always enabling these events,
3236 and just ignoring them if there's no catchpoint to catch them.
3237 */
3238 return 0;
3239 }
3240 #endif
3241
3242
3243 #if defined(CHILD_REMOVE_FORK_CATCHPOINT)
3244 int
3245 child_remove_fork_catchpoint (int tid)
3246 {
3247 /* Disable reporting of fork events from the kernel. */
3248 /* ??rehrauer: For the moment, we're always enabling these events,
3249 and just ignoring them if there's no catchpoint to catch them.
3250 */
3251 return 0;
3252 }
3253 #endif
3254
3255
3256 static void
3257 hppa_enable_catch_vfork (int tid)
3258 {
3259 int tt_status;
3260 ttevent_t ttrace_events;
3261
3262 /* Get the set of events that are currently enabled.
3263 */
3264 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3265 tid,
3266 (TTRACE_ARG_TYPE) & ttrace_events,
3267 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3268 TT_NIL);
3269
3270 if (errno)
3271 perror_with_name ("ttrace");
3272
3273 /* Add vforks to that set. */
3274 ttrace_events.tte_events |= TTEVT_VFORK;
3275
3276 #ifdef THREAD_DEBUG
3277 if (debug_on)
3278 printf ("enable vfork, tid is %d\n", tid);
3279 #endif
3280
3281 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3282 tid,
3283 (TTRACE_ARG_TYPE) & ttrace_events,
3284 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3285 TT_NIL);
3286
3287 if (errno)
3288 perror_with_name ("ttrace");
3289 }
3290
3291
3292 static void
3293 hppa_disable_catch_vfork (int tid)
3294 {
3295 int tt_status;
3296 ttevent_t ttrace_events;
3297
3298 /* Get the set of events that are currently enabled. */
3299 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3300 tid,
3301 (TTRACE_ARG_TYPE) & ttrace_events,
3302 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3303 TT_NIL);
3304
3305 if (errno)
3306 perror_with_name ("ttrace");
3307
3308 /* Remove vforks from that set. */
3309 ttrace_events.tte_events &= ~TTEVT_VFORK;
3310
3311 #ifdef THREAD_DEBUG
3312 if (debug_on)
3313 printf ("disable vfork, tid is %d\n", tid);
3314 #endif
3315 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3316 tid,
3317 (TTRACE_ARG_TYPE) & ttrace_events,
3318 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3319 TT_NIL);
3320
3321 if (errno)
3322 perror_with_name ("ttrace");
3323 }
3324
3325
3326 #if defined(CHILD_INSERT_VFORK_CATCHPOINT)
3327 int
3328 child_insert_vfork_catchpoint (int tid)
3329 {
3330 /* Enable reporting of vfork events from the kernel. */
3331 /* ??rehrauer: For the moment, we're always enabling these events,
3332 and just ignoring them if there's no catchpoint to catch them.
3333 */
3334 return 0;
3335 }
3336 #endif
3337
3338
3339 #if defined(CHILD_REMOVE_VFORK_CATCHPOINT)
3340 int
3341 child_remove_vfork_catchpoint (int tid)
3342 {
3343 /* Disable reporting of vfork events from the kernel. */
3344 /* ??rehrauer: For the moment, we're always enabling these events,
3345 and just ignoring them if there's no catchpoint to catch them.
3346 */
3347 return 0;
3348 }
3349 #endif
3350
3351 #if defined(CHILD_HAS_FORKED)
3352
3353 /* Q: Do we need to map the returned process ID to a thread ID?
3354
3355 * A: I don't think so--here we want a _real_ pid. Any later
3356 * operations will call "require_notification_of_events" and
3357 * start the mapping.
3358 */
3359 int
3360 child_has_forked (int tid, int *childpid)
3361 {
3362 int tt_status;
3363 ttstate_t ttrace_state;
3364 thread_info *tinfo;
3365
3366 /* Do we have cached thread state that we can consult? If so, use it. */
3367 tinfo = find_thread_info (map_from_gdb_tid (tid));
3368 if (tinfo != NULL)
3369 {
3370 copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3371 }
3372
3373 /* Nope, must read the thread's current state */
3374 else
3375 {
3376 tt_status = call_ttrace (TT_LWP_GET_STATE,
3377 tid,
3378 (TTRACE_ARG_TYPE) & ttrace_state,
3379 (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3380 TT_NIL);
3381
3382 if (errno)
3383 perror_with_name ("ttrace");
3384
3385 if (tt_status < 0)
3386 return 0;
3387 }
3388
3389 if (ttrace_state.tts_event & TTEVT_FORK)
3390 {
3391 *childpid = ttrace_state.tts_u.tts_fork.tts_fpid;
3392 return 1;
3393 }
3394
3395 return 0;
3396 }
3397 #endif
3398
3399
3400 #if defined(CHILD_HAS_VFORKED)
3401
3402 /* See child_has_forked for pid discussion.
3403 */
3404 int
3405 child_has_vforked (int tid, int *childpid)
3406 {
3407 int tt_status;
3408 ttstate_t ttrace_state;
3409 thread_info *tinfo;
3410
3411 /* Do we have cached thread state that we can consult? If so, use it. */
3412 tinfo = find_thread_info (map_from_gdb_tid (tid));
3413 if (tinfo != NULL)
3414 copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3415
3416 /* Nope, must read the thread's current state */
3417 else
3418 {
3419 tt_status = call_ttrace (TT_LWP_GET_STATE,
3420 tid,
3421 (TTRACE_ARG_TYPE) & ttrace_state,
3422 (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3423 TT_NIL);
3424
3425 if (errno)
3426 perror_with_name ("ttrace");
3427
3428 if (tt_status < 0)
3429 return 0;
3430 }
3431
3432 if (ttrace_state.tts_event & TTEVT_VFORK)
3433 {
3434 *childpid = ttrace_state.tts_u.tts_fork.tts_fpid;
3435 return 1;
3436 }
3437
3438 return 0;
3439 }
3440 #endif
3441
3442
3443 #if defined(CHILD_CAN_FOLLOW_VFORK_PRIOR_TO_EXEC)
3444 int
3445 child_can_follow_vfork_prior_to_exec (void)
3446 {
3447 /* ttrace does allow this.
3448
3449 ??rehrauer: However, I had major-league problems trying to
3450 convince wait_for_inferior to handle that case. Perhaps when
3451 it is rewritten to grok multiple processes in an explicit way...
3452 */
3453 return 0;
3454 }
3455 #endif
3456
3457
3458 #if defined(CHILD_INSERT_EXEC_CATCHPOINT)
3459 int
3460 child_insert_exec_catchpoint (int tid)
3461 {
3462 /* Enable reporting of exec events from the kernel. */
3463 /* ??rehrauer: For the moment, we're always enabling these events,
3464 and just ignoring them if there's no catchpoint to catch them.
3465 */
3466 return 0;
3467 }
3468 #endif
3469
3470
3471 #if defined(CHILD_REMOVE_EXEC_CATCHPOINT)
3472 int
3473 child_remove_exec_catchpoint (int tid)
3474 {
3475 /* Disable reporting of execevents from the kernel. */
3476 /* ??rehrauer: For the moment, we're always enabling these events,
3477 and just ignoring them if there's no catchpoint to catch them.
3478 */
3479 return 0;
3480 }
3481 #endif
3482
3483
3484 #if defined(CHILD_HAS_EXECD)
3485 int
3486 child_has_execd (int tid, char **execd_pathname)
3487 {
3488 int tt_status;
3489 ttstate_t ttrace_state;
3490 thread_info *tinfo;
3491
3492 /* Do we have cached thread state that we can consult? If so, use it. */
3493 tinfo = find_thread_info (map_from_gdb_tid (tid));
3494 if (tinfo != NULL)
3495 copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3496
3497 /* Nope, must read the thread's current state */
3498 else
3499 {
3500 tt_status = call_ttrace (TT_LWP_GET_STATE,
3501 tid,
3502 (TTRACE_ARG_TYPE) & ttrace_state,
3503 (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3504 TT_NIL);
3505
3506 if (errno)
3507 perror_with_name ("ttrace");
3508
3509 if (tt_status < 0)
3510 return 0;
3511 }
3512
3513 if (ttrace_state.tts_event & TTEVT_EXEC)
3514 {
3515 /* See child_pid_to_exec_file in this file: this is a macro.
3516 */
3517 char *exec_file = target_pid_to_exec_file (tid);
3518
3519 *execd_pathname = savestring (exec_file, strlen (exec_file));
3520 return 1;
3521 }
3522
3523 return 0;
3524 }
3525 #endif
3526
3527
3528 #if defined(CHILD_HAS_SYSCALL_EVENT)
3529 int
3530 child_has_syscall_event (int pid, enum target_waitkind *kind, int *syscall_id)
3531 {
3532 int tt_status;
3533 ttstate_t ttrace_state;
3534 thread_info *tinfo;
3535
3536 /* Do we have cached thread state that we can consult? If so, use it. */
3537 tinfo = find_thread_info (map_from_gdb_tid (pid));
3538 if (tinfo != NULL)
3539 copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3540
3541 /* Nope, must read the thread's current state */
3542 else
3543 {
3544 tt_status = call_ttrace (TT_LWP_GET_STATE,
3545 pid,
3546 (TTRACE_ARG_TYPE) & ttrace_state,
3547 (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3548 TT_NIL);
3549
3550 if (errno)
3551 perror_with_name ("ttrace");
3552
3553 if (tt_status < 0)
3554 return 0;
3555 }
3556
3557 *kind = TARGET_WAITKIND_SPURIOUS; /* Until proven otherwise... */
3558 *syscall_id = -1;
3559
3560 if (ttrace_state.tts_event & TTEVT_SYSCALL_ENTRY)
3561 *kind = TARGET_WAITKIND_SYSCALL_ENTRY;
3562 else if (ttrace_state.tts_event & TTEVT_SYSCALL_RETURN)
3563 *kind = TARGET_WAITKIND_SYSCALL_RETURN;
3564 else
3565 return 0;
3566
3567 *syscall_id = ttrace_state.tts_scno;
3568 return 1;
3569 }
3570 #endif
3571 \f
3572
3573
3574 #if defined(CHILD_THREAD_ALIVE)
3575
3576 /* Check to see if the given thread is alive.
3577
3578 * We'll trust the thread list, as the more correct
3579 * approach of stopping the process and spinning down
3580 * the OS's thread list is _very_ expensive.
3581 *
3582 * May need a FIXME for that reason.
3583 */
3584 int
3585 child_thread_alive (lwpid_t gdb_tid)
3586 {
3587 lwpid_t tid;
3588
3589 /* This spins down the lists twice.
3590 * Possible peformance improvement here!
3591 */
3592 tid = map_from_gdb_tid (gdb_tid);
3593 return !is_terminated (tid);
3594 }
3595
3596 #endif
3597 \f
3598
3599
3600 /* This function attempts to read the specified number of bytes from the
3601 save_state_t that is our view into the hardware registers, starting at
3602 ss_offset, and ending at ss_offset + sizeof_buf - 1
3603
3604 If this function succeeds, it deposits the fetched bytes into buf,
3605 and returns 0.
3606
3607 If it fails, it returns a negative result. The contents of buf are
3608 undefined it this function fails.
3609 */
3610 int
3611 read_from_register_save_state (int tid, TTRACE_ARG_TYPE ss_offset, char *buf,
3612 int sizeof_buf)
3613 {
3614 int tt_status;
3615 register_value_t register_value = 0;
3616
3617 tt_status = call_ttrace (TT_LWP_RUREGS,
3618 tid,
3619 ss_offset,
3620 (TTRACE_ARG_TYPE) sizeof_buf,
3621 (TTRACE_ARG_TYPE) buf);
3622
3623 if (tt_status == 1)
3624 /* Map ttrace's version of success to our version.
3625 * Sometime ttrace returns 0, but that's ok here.
3626 */
3627 return 0;
3628
3629 return tt_status;
3630 }
3631 \f
3632
3633 /* This function attempts to write the specified number of bytes to the
3634 save_state_t that is our view into the hardware registers, starting at
3635 ss_offset, and ending at ss_offset + sizeof_buf - 1
3636
3637 If this function succeeds, it deposits the bytes in buf, and returns 0.
3638
3639 If it fails, it returns a negative result. The contents of the save_state_t
3640 are undefined it this function fails.
3641 */
3642 int
3643 write_to_register_save_state (int tid, TTRACE_ARG_TYPE ss_offset, char *buf,
3644 int sizeof_buf)
3645 {
3646 int tt_status;
3647 register_value_t register_value = 0;
3648
3649 tt_status = call_ttrace (TT_LWP_WUREGS,
3650 tid,
3651 ss_offset,
3652 (TTRACE_ARG_TYPE) sizeof_buf,
3653 (TTRACE_ARG_TYPE) buf);
3654 return tt_status;
3655 }
3656 \f
3657
3658 /* This function is a sop to the largeish number of direct calls
3659 to call_ptrace that exist in other files. Rather than create
3660 functions whose name abstracts away from ptrace, and change all
3661 the present callers of call_ptrace, we'll do the expedient (and
3662 perhaps only practical) thing.
3663
3664 Note HP-UX explicitly disallows a mix of ptrace & ttrace on a traced
3665 process. Thus, we must translate all ptrace requests into their
3666 process-specific, ttrace equivalents.
3667 */
3668 int
3669 call_ptrace (int pt_request, int gdb_tid, PTRACE_ARG3_TYPE addr, int data)
3670 {
3671 ttreq_t tt_request;
3672 TTRACE_ARG_TYPE tt_addr = (TTRACE_ARG_TYPE) addr;
3673 TTRACE_ARG_TYPE tt_data = (TTRACE_ARG_TYPE) data;
3674 TTRACE_ARG_TYPE tt_addr2 = TT_NIL;
3675 int tt_status;
3676 register_value_t register_value;
3677 int read_buf;
3678
3679 /* Perform the necessary argument translation. Note that some
3680 cases are funky enough in the ttrace realm that we handle them
3681 very specially.
3682 */
3683 switch (pt_request)
3684 {
3685 /* The following cases cannot conveniently be handled conveniently
3686 by merely adjusting the ptrace arguments and feeding into the
3687 generic call to ttrace at the bottom of this function.
3688
3689 Note that because all branches of this switch end in "return",
3690 there's no need for any "break" statements.
3691 */
3692 case PT_SETTRC:
3693 return parent_attach_all ();
3694
3695 case PT_RUREGS:
3696 tt_status = read_from_register_save_state (gdb_tid,
3697 tt_addr,
3698 &register_value,
3699 sizeof (register_value));
3700 if (tt_status < 0)
3701 return tt_status;
3702 return register_value;
3703
3704 case PT_WUREGS:
3705 register_value = (int) tt_data;
3706 tt_status = write_to_register_save_state (gdb_tid,
3707 tt_addr,
3708 &register_value,
3709 sizeof (register_value));
3710 return tt_status;
3711 break;
3712
3713 case PT_READ_I:
3714 tt_status = call_ttrace (TT_PROC_RDTEXT, /* Implicit 4-byte xfer becomes block-xfer. */
3715 gdb_tid,
3716 tt_addr,
3717 (TTRACE_ARG_TYPE) 4,
3718 (TTRACE_ARG_TYPE) & read_buf);
3719 if (tt_status < 0)
3720 return tt_status;
3721 return read_buf;
3722
3723 case PT_READ_D:
3724 tt_status = call_ttrace (TT_PROC_RDDATA, /* Implicit 4-byte xfer becomes block-xfer. */
3725 gdb_tid,
3726 tt_addr,
3727 (TTRACE_ARG_TYPE) 4,
3728 (TTRACE_ARG_TYPE) & read_buf);
3729 if (tt_status < 0)
3730 return tt_status;
3731 return read_buf;
3732
3733 case PT_ATTACH:
3734 tt_status = call_real_ttrace (TT_PROC_ATTACH,
3735 map_from_gdb_tid (gdb_tid),
3736 (lwpid_t) TT_NIL,
3737 tt_addr,
3738 (TTRACE_ARG_TYPE) TT_VERSION,
3739 tt_addr2);
3740 if (tt_status < 0)
3741 return tt_status;
3742 return tt_status;
3743
3744 /* The following cases are handled by merely adjusting the ptrace
3745 arguments and feeding into the generic call to ttrace.
3746 */
3747 case PT_DETACH:
3748 tt_request = TT_PROC_DETACH;
3749 break;
3750
3751 case PT_WRITE_I:
3752 tt_request = TT_PROC_WRTEXT; /* Translates 4-byte xfer to block-xfer. */
3753 tt_data = 4; /* This many bytes. */
3754 tt_addr2 = (TTRACE_ARG_TYPE) & data; /* Address of xfer source. */
3755 break;
3756
3757 case PT_WRITE_D:
3758 tt_request = TT_PROC_WRDATA; /* Translates 4-byte xfer to block-xfer. */
3759 tt_data = 4; /* This many bytes. */
3760 tt_addr2 = (TTRACE_ARG_TYPE) & data; /* Address of xfer source. */
3761 break;
3762
3763 case PT_RDTEXT:
3764 tt_request = TT_PROC_RDTEXT;
3765 break;
3766
3767 case PT_RDDATA:
3768 tt_request = TT_PROC_RDDATA;
3769 break;
3770
3771 case PT_WRTEXT:
3772 tt_request = TT_PROC_WRTEXT;
3773 break;
3774
3775 case PT_WRDATA:
3776 tt_request = TT_PROC_WRDATA;
3777 break;
3778
3779 case PT_CONTINUE:
3780 tt_request = TT_PROC_CONTINUE;
3781 break;
3782
3783 case PT_STEP:
3784 tt_request = TT_LWP_SINGLE; /* Should not be making this request? */
3785 break;
3786
3787 case PT_KILL:
3788 tt_request = TT_PROC_EXIT;
3789 break;
3790
3791 case PT_GET_PROCESS_PATHNAME:
3792 tt_request = TT_PROC_GET_PATHNAME;
3793 break;
3794
3795 default:
3796 tt_request = pt_request; /* Let ttrace be the one to complain. */
3797 break;
3798 }
3799
3800 return call_ttrace (tt_request,
3801 gdb_tid,
3802 tt_addr,
3803 tt_data,
3804 tt_addr2);
3805 }
3806
3807 /* Kill that pesky process!
3808 */
3809 void
3810 kill_inferior (void)
3811 {
3812 int tid;
3813 int wait_status;
3814 thread_info *t;
3815 thread_info **paranoia;
3816 int para_count, i;
3817
3818 if (inferior_pid == 0)
3819 return;
3820
3821 /* Walk the list of "threads", some of which are "pseudo threads",
3822 aka "processes". For each that is NOT inferior_pid, stop it,
3823 and detach it.
3824
3825 You see, we may not have just a single process to kill. If we're
3826 restarting or quitting or detaching just after the inferior has
3827 forked, then we've actually two processes to clean up.
3828
3829 But we can't just call target_mourn_inferior() for each, since that
3830 zaps the target vector.
3831 */
3832
3833 paranoia = (thread_info **) xmalloc (thread_head.count *
3834 sizeof (thread_info *));
3835 para_count = 0;
3836
3837 t = thread_head.head;
3838 while (t)
3839 {
3840
3841 paranoia[para_count] = t;
3842 for (i = 0; i < para_count; i++)
3843 {
3844 if (t->next == paranoia[i])
3845 {
3846 warning ("Bad data in gdb's thread data; repairing.");
3847 t->next = 0;
3848 }
3849 }
3850 para_count++;
3851
3852 if (t->am_pseudo && (t->pid != inferior_pid))
3853 {
3854 /* TT_PROC_STOP doesn't require a subsequent ttrace_wait, as it
3855 * generates no event.
3856 */
3857 call_ttrace (TT_PROC_STOP,
3858 t->pid,
3859 TT_NIL,
3860 TT_NIL,
3861 TT_NIL);
3862
3863 call_ttrace (TT_PROC_DETACH,
3864 t->pid,
3865 TT_NIL,
3866 (TTRACE_ARG_TYPE) TARGET_SIGNAL_0,
3867 TT_NIL);
3868 }
3869 t = t->next;
3870 }
3871
3872 xfree (paranoia);
3873
3874 call_ttrace (TT_PROC_STOP,
3875 inferior_pid,
3876 TT_NIL,
3877 TT_NIL,
3878 TT_NIL);
3879 target_mourn_inferior ();
3880 clear_thread_info ();
3881 }
3882
3883
3884 #ifndef CHILD_RESUME
3885
3886 /* Sanity check a thread about to be continued.
3887 */
3888 static void
3889 thread_dropping_event_check (thread_info *p)
3890 {
3891 if (!p->handled)
3892 {
3893 /*
3894 * This seems to happen when we "next" over a
3895 * "fork()" while following the parent. If it's
3896 * the FORK event, that's ok. If it's a SIGNAL
3897 * in the unfollowed child, that's ok to--but
3898 * how can we know that's what's going on?
3899 *
3900 * FIXME!
3901 */
3902 if (p->have_state)
3903 {
3904 if (p->last_stop_state.tts_event == TTEVT_FORK)
3905 {
3906 /* Ok */
3907 ;
3908 }
3909 else if (p->last_stop_state.tts_event == TTEVT_SIGNAL)
3910 {
3911 /* Ok, close eyes and let it happen.
3912 */
3913 ;
3914 }
3915 else
3916 {
3917 /* This shouldn't happen--we're dropping a
3918 * real event.
3919 */
3920 warning ("About to continue process %d, thread %d with unhandled event %s.",
3921 p->pid, p->tid,
3922 get_printable_name_of_ttrace_event (
3923 p->last_stop_state.tts_event));
3924
3925 #ifdef PARANOIA
3926 if (debug_on)
3927 print_tthread (p);
3928 #endif
3929 }
3930 }
3931 else
3932 {
3933 /* No saved state, have to assume it failed.
3934 */
3935 warning ("About to continue process %d, thread %d with unhandled event.",
3936 p->pid, p->tid);
3937 #ifdef PARANOIA
3938 if (debug_on)
3939 print_tthread (p);
3940 #endif
3941 }
3942 }
3943
3944 } /* thread_dropping_event_check */
3945
3946 /* Use a loop over the threads to continue all the threads but
3947 * the one specified, which is to be stepped.
3948 */
3949 static void
3950 threads_continue_all_but_one (lwpid_t gdb_tid, int signal)
3951 {
3952 thread_info *p;
3953 int thread_signal;
3954 lwpid_t real_tid;
3955 lwpid_t scan_tid;
3956 ttstate_t state;
3957 int real_pid;
3958
3959 #ifdef THREAD_DEBUG
3960 if (debug_on)
3961 printf ("Using loop over threads to step/resume with signals\n");
3962 #endif
3963
3964 /* First update the thread list.
3965 */
3966 set_all_unseen ();
3967 real_tid = map_from_gdb_tid (gdb_tid);
3968 real_pid = get_pid_for (real_tid);
3969
3970 scan_tid = get_process_first_stopped_thread_id (real_pid, &state);
3971 while (0 != scan_tid)
3972 {
3973
3974 #ifdef THREAD_DEBUG
3975 /* FIX: later should check state is stopped;
3976 * state.tts_flags & TTS_STATEMASK == TTS_WASSUSPENDED
3977 */
3978 if (debug_on)
3979 if (state.tts_flags & TTS_STATEMASK != TTS_WASSUSPENDED)
3980 printf ("About to continue non-stopped thread %d\n", scan_tid);
3981 #endif
3982
3983 p = find_thread_info (scan_tid);
3984 if (NULL == p)
3985 {
3986 add_tthread (real_pid, scan_tid);
3987 p = find_thread_info (scan_tid);
3988
3989 /* This is either a newly-created thread or the
3990 * result of a fork; in either case there's no
3991 * actual event to worry about.
3992 */
3993 p->handled = 1;
3994
3995 if (state.tts_event != TTEVT_NONE)
3996 {
3997 /* Oops, do need to worry!
3998 */
3999 warning ("Unexpected thread with \"%s\" event.",
4000 get_printable_name_of_ttrace_event (state.tts_event));
4001 }
4002 }
4003 else if (scan_tid != p->tid)
4004 error ("Bad data in thread database.");
4005
4006 #ifdef THREAD_DEBUG
4007 if (debug_on)
4008 if (p->terminated)
4009 printf ("Why are we continuing a dead thread?\n");
4010 #endif
4011
4012 p->seen = 1;
4013
4014 scan_tid = get_process_next_stopped_thread_id (real_pid, &state);
4015 }
4016
4017 /* Remove unseen threads.
4018 */
4019 update_thread_list ();
4020
4021 /* Now run down the thread list and continue or step.
4022 */
4023 for (p = thread_head.head; p; p = p->next)
4024 {
4025
4026 /* Sanity check.
4027 */
4028 thread_dropping_event_check (p);
4029
4030 /* Pass the correct signals along.
4031 */
4032 if (p->have_signal)
4033 {
4034 thread_signal = p->signal_value;
4035 p->have_signal = 0;
4036 }
4037 else
4038 thread_signal = 0;
4039
4040 if (p->tid != real_tid)
4041 {
4042 /*
4043 * Not the thread of interest, so continue it
4044 * as the user expects.
4045 */
4046 if (p->stepping_mode == DO_STEP)
4047 {
4048 /* Just step this thread.
4049 */
4050 call_ttrace (
4051 TT_LWP_SINGLE,
4052 p->tid,
4053 TT_USE_CURRENT_PC,
4054 (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4055 TT_NIL);
4056 }
4057 else
4058 {
4059 /* Regular continue (default case).
4060 */
4061 call_ttrace (
4062 TT_LWP_CONTINUE,
4063 p->tid,
4064 TT_USE_CURRENT_PC,
4065 (TTRACE_ARG_TYPE) target_signal_to_host (thread_signal),
4066 TT_NIL);
4067 }
4068 }
4069 else
4070 {
4071 /* Step the thread of interest.
4072 */
4073 call_ttrace (
4074 TT_LWP_SINGLE,
4075 real_tid,
4076 TT_USE_CURRENT_PC,
4077 (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4078 TT_NIL);
4079 }
4080 } /* Loop over threads */
4081 } /* End threads_continue_all_but_one */
4082
4083 /* Use a loop over the threads to continue all the threads.
4084 * This is done when a signal must be sent to any of the threads.
4085 */
4086 static void
4087 threads_continue_all_with_signals (lwpid_t gdb_tid, int signal)
4088 {
4089 thread_info *p;
4090 int thread_signal;
4091 lwpid_t real_tid;
4092 lwpid_t scan_tid;
4093 ttstate_t state;
4094 int real_pid;
4095
4096 #ifdef THREAD_DEBUG
4097 if (debug_on)
4098 printf ("Using loop over threads to resume with signals\n");
4099 #endif
4100
4101 /* Scan and update thread list.
4102 */
4103 set_all_unseen ();
4104 real_tid = map_from_gdb_tid (gdb_tid);
4105 real_pid = get_pid_for (real_tid);
4106
4107 scan_tid = get_process_first_stopped_thread_id (real_pid, &state);
4108 while (0 != scan_tid)
4109 {
4110
4111 #ifdef THREAD_DEBUG
4112 if (debug_on)
4113 if (state.tts_flags & TTS_STATEMASK != TTS_WASSUSPENDED)
4114 warning ("About to continue non-stopped thread %d\n", scan_tid);
4115 #endif
4116
4117 p = find_thread_info (scan_tid);
4118 if (NULL == p)
4119 {
4120 add_tthread (real_pid, scan_tid);
4121 p = find_thread_info (scan_tid);
4122
4123 /* This is either a newly-created thread or the
4124 * result of a fork; in either case there's no
4125 * actual event to worry about.
4126 */
4127 p->handled = 1;
4128
4129 if (state.tts_event != TTEVT_NONE)
4130 {
4131 /* Oops, do need to worry!
4132 */
4133 warning ("Unexpected thread with \"%s\" event.",
4134 get_printable_name_of_ttrace_event (state.tts_event));
4135 }
4136 }
4137
4138 #ifdef THREAD_DEBUG
4139 if (debug_on)
4140 if (p->terminated)
4141 printf ("Why are we continuing a dead thread? (1)\n");
4142 #endif
4143
4144 p->seen = 1;
4145
4146 scan_tid = get_process_next_stopped_thread_id (real_pid, &state);
4147 }
4148
4149 /* Remove unseen threads from our list.
4150 */
4151 update_thread_list ();
4152
4153 /* Continue the threads.
4154 */
4155 for (p = thread_head.head; p; p = p->next)
4156 {
4157
4158 /* Sanity check.
4159 */
4160 thread_dropping_event_check (p);
4161
4162 /* Pass the correct signals along.
4163 */
4164 if (p->tid == real_tid)
4165 {
4166 thread_signal = signal;
4167 p->have_signal = 0;
4168 }
4169 else if (p->have_signal)
4170 {
4171 thread_signal = p->signal_value;
4172 p->have_signal = 0;
4173 }
4174 else
4175 thread_signal = 0;
4176
4177 if (p->stepping_mode == DO_STEP)
4178 {
4179 call_ttrace (
4180 TT_LWP_SINGLE,
4181 p->tid,
4182 TT_USE_CURRENT_PC,
4183 (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4184 TT_NIL);
4185 }
4186 else
4187 {
4188 /* Continue this thread (default case).
4189 */
4190 call_ttrace (
4191 TT_LWP_CONTINUE,
4192 p->tid,
4193 TT_USE_CURRENT_PC,
4194 (TTRACE_ARG_TYPE) target_signal_to_host (thread_signal),
4195 TT_NIL);
4196 }
4197 }
4198 } /* End threads_continue_all_with_signals */
4199
4200 /* Step one thread only.
4201 */
4202 static void
4203 thread_fake_step (lwpid_t tid, enum target_signal signal)
4204 {
4205 thread_info *p;
4206
4207 #ifdef THREAD_DEBUG
4208 if (debug_on)
4209 {
4210 printf ("Doing a fake-step over a bpt, etc. for %d\n", tid);
4211
4212 if (is_terminated (tid))
4213 printf ("Why are we continuing a dead thread? (4)\n");
4214 }
4215 #endif
4216
4217 if (doing_fake_step)
4218 warning ("Step while step already in progress.");
4219
4220 /* See if there's a saved signal value for this
4221 * thread to be passed on, but no current signal.
4222 */
4223 p = find_thread_info (tid);
4224 if (p != NULL)
4225 {
4226 if (p->have_signal && signal == TARGET_SIGNAL_0)
4227 {
4228 /* Pass on a saved signal.
4229 */
4230 signal = p->signal_value;
4231 }
4232
4233 p->have_signal = 0;
4234 }
4235
4236 if (!p->handled)
4237 warning ("Internal error: continuing unhandled thread.");
4238
4239 call_ttrace (TT_LWP_SINGLE,
4240 tid,
4241 TT_USE_CURRENT_PC,
4242 (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4243 TT_NIL);
4244
4245 /* Do bookkeeping so "call_ttrace_wait" knows it has to wait
4246 * for this thread only, and clear any saved signal info.
4247 */
4248 doing_fake_step = 1;
4249 fake_step_tid = tid;
4250
4251 } /* End thread_fake_step */
4252
4253 /* Continue one thread when a signal must be sent to it.
4254 */
4255 static void
4256 threads_continue_one_with_signal (lwpid_t gdb_tid, int signal)
4257 {
4258 thread_info *p;
4259 lwpid_t real_tid;
4260 int real_pid;
4261
4262 #ifdef THREAD_DEBUG
4263 if (debug_on)
4264 printf ("Continuing one thread with a signal\n");
4265 #endif
4266
4267 real_tid = map_from_gdb_tid (gdb_tid);
4268 real_pid = get_pid_for (real_tid);
4269
4270 p = find_thread_info (real_tid);
4271 if (NULL == p)
4272 {
4273 add_tthread (real_pid, real_tid);
4274 }
4275
4276 #ifdef THREAD_DEBUG
4277 if (debug_on)
4278 if (p->terminated)
4279 printf ("Why are we continuing a dead thread? (2)\n");
4280 #endif
4281
4282 if (!p->handled)
4283 warning ("Internal error: continuing unhandled thread.");
4284
4285 p->have_signal = 0;
4286
4287 call_ttrace (TT_LWP_CONTINUE,
4288 gdb_tid,
4289 TT_USE_CURRENT_PC,
4290 (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4291 TT_NIL);
4292 }
4293 #endif
4294
4295 #ifndef CHILD_RESUME
4296
4297 /* Resume execution of the inferior process.
4298
4299 * This routine is in charge of setting the "handled" bits.
4300 *
4301 * If STEP is zero, continue it.
4302 * If STEP is nonzero, single-step it.
4303 *
4304 * If SIGNAL is nonzero, give it that signal.
4305 *
4306 * If TID is -1, apply to all threads.
4307 * If TID is not -1, apply to specified thread.
4308 *
4309 * STEP
4310 * \ !0 0
4311 * TID \________________________________________________
4312 * |
4313 * -1 | Step current Continue all threads
4314 * | thread and (but which gets any
4315 * | continue others signal?--We look at
4316 * | "inferior_pid")
4317 * |
4318 * N | Step _this_ thread Continue _this_ thread
4319 * | and leave others and leave others
4320 * | stopped; internally stopped; used only for
4321 * | used by gdb, never hardware watchpoints
4322 * | a user command. and attach, never a
4323 * | user command.
4324 */
4325 void
4326 child_resume (lwpid_t gdb_tid, int step, enum target_signal signal)
4327 {
4328 int resume_all_threads;
4329 lwpid_t tid;
4330 process_state_t new_process_state;
4331
4332 resume_all_threads =
4333 (gdb_tid == INFTTRACE_ALL_THREADS) ||
4334 (vfork_in_flight);
4335
4336 if (resume_all_threads)
4337 {
4338 /* Resume all threads, but first pick a tid value
4339 * so we can get the pid when in call_ttrace doing
4340 * the map.
4341 */
4342 if (vfork_in_flight)
4343 tid = vforking_child_pid;
4344 else
4345 tid = map_from_gdb_tid (inferior_pid);
4346 }
4347 else
4348 tid = map_from_gdb_tid (gdb_tid);
4349
4350 #ifdef THREAD_DEBUG
4351 if (debug_on)
4352 {
4353 if (more_events_left)
4354 printf ("More events; ");
4355
4356 if (signal != 0)
4357 printf ("Sending signal %d; ", signal);
4358
4359 if (resume_all_threads)
4360 {
4361 if (step == 0)
4362 printf ("Continue process %d\n", tid);
4363 else
4364 printf ("Step/continue thread %d\n", tid);
4365 }
4366 else
4367 {
4368 if (step == 0)
4369 printf ("Continue thread %d\n", tid);
4370 else
4371 printf ("Step just thread %d\n", tid);
4372 }
4373
4374 if (vfork_in_flight)
4375 printf ("Vfork in flight\n");
4376 }
4377 #endif
4378
4379 if (process_state == RUNNING)
4380 warning ("Internal error in resume logic; doing resume or step anyway.");
4381
4382 if (!step /* Asked to continue... */
4383 && resume_all_threads /* whole process.. */
4384 && signal != 0 /* with a signal... */
4385 && more_events_left > 0)
4386 { /* but we can't yet--save it! */
4387
4388 /* Continue with signal means we have to set the pending
4389 * signal value for this thread.
4390 */
4391 thread_info *k;
4392
4393 #ifdef THREAD_DEBUG
4394 if (debug_on)
4395 printf ("Saving signal %d for thread %d\n", signal, tid);
4396 #endif
4397
4398 k = find_thread_info (tid);
4399 if (k != NULL)
4400 {
4401 k->have_signal = 1;
4402 k->signal_value = signal;
4403
4404 #ifdef THREAD_DEBUG
4405 if (debug_on)
4406 if (k->terminated)
4407 printf ("Why are we continuing a dead thread? (3)\n");
4408 #endif
4409
4410 }
4411
4412 #ifdef THREAD_DEBUG
4413 else if (debug_on)
4414 {
4415 printf ("No thread info for tid %d\n", tid);
4416 }
4417 #endif
4418 }
4419
4420 /* Are we faking this "continue" or "step"?
4421
4422 * We used to do steps by continuing all the threads for
4423 * which the events had been handled already. While
4424 * conceptually nicer (hides it all in a lower level), this
4425 * can lead to starvation and a hang (e.g. all but one thread
4426 * are unhandled at a breakpoint just before a "join" operation,
4427 * and one thread is in the join, and the user wants to step that
4428 * thread).
4429 */
4430 if (resume_all_threads /* Whole process, therefore user command */
4431 && more_events_left > 0)
4432 { /* But we can't do this yet--fake it! */
4433 thread_info *p;
4434
4435 if (!step)
4436 {
4437 /* No need to do any notes on a per-thread
4438 * basis--we're done!
4439 */
4440 #ifdef WAIT_BUFFER_DEBUG
4441 if (debug_on)
4442 printf ("Faking a process resume.\n");
4443 #endif
4444
4445 return;
4446 }
4447 else
4448 {
4449
4450 #ifdef WAIT_BUFFER_DEBUG
4451 if (debug_on)
4452 printf ("Faking a process step.\n");
4453 #endif
4454
4455 }
4456
4457 p = find_thread_info (tid);
4458 if (p == NULL)
4459 {
4460 warning ("No thread information for tid %d, 'next' command ignored.\n", tid);
4461 return;
4462 }
4463 else
4464 {
4465
4466 #ifdef THREAD_DEBUG
4467 if (debug_on)
4468 if (p->terminated)
4469 printf ("Why are we continuing a dead thread? (3.5)\n");
4470 #endif
4471
4472 if (p->stepping_mode != DO_DEFAULT)
4473 {
4474 warning ("Step or continue command applied to thread which is already stepping or continuing; command ignored.");
4475
4476 return;
4477 }
4478
4479 if (step)
4480 p->stepping_mode = DO_STEP;
4481 else
4482 p->stepping_mode = DO_CONTINUE;
4483
4484 return;
4485 } /* Have thread info */
4486 } /* Must fake step or go */
4487
4488 /* Execept for fake-steps, from here on we know we are
4489 * going to wind up with a running process which will
4490 * need a real wait.
4491 */
4492 new_process_state = RUNNING;
4493
4494 /* An address of TT_USE_CURRENT_PC tells ttrace to continue from where
4495 * it was. (If GDB wanted it to start some other way, we have already
4496 * written a new PC value to the child.)
4497 *
4498 * If this system does not support PT_STEP, a higher level function will
4499 * have called single_step() to transmute the step request into a
4500 * continue request (by setting breakpoints on all possible successor
4501 * instructions), so we don't have to worry about that here.
4502 */
4503 if (step)
4504 {
4505 if (resume_all_threads)
4506 {
4507 /*
4508 * Regular user step: other threads get a "continue".
4509 */
4510 threads_continue_all_but_one (tid, signal);
4511 clear_all_handled ();
4512 clear_all_stepping_mode ();
4513 }
4514
4515 else
4516 {
4517 /* "Fake step": gdb is stepping one thread over a
4518 * breakpoint, watchpoint, or out of a library load
4519 * event, etc. The rest just stay where they are.
4520 *
4521 * Also used when there are pending events: we really
4522 * step the current thread, but leave the rest stopped.
4523 * Users can't request this, but "wait_for_inferior"
4524 * does--a lot!
4525 */
4526 thread_fake_step (tid, signal);
4527
4528 /* Clear the "handled" state of this thread, because
4529 * we'll soon get a new event for it. Other events
4530 * stay as they were.
4531 */
4532 clear_handled (tid);
4533 clear_stepping_mode (tid);
4534 new_process_state = FAKE_STEPPING;
4535 }
4536 }
4537
4538 else
4539 {
4540 /* TT_LWP_CONTINUE can pass signals to threads,
4541 * TT_PROC_CONTINUE can't. So if there are any
4542 * signals to pass, we have to use the (slower)
4543 * loop over the stopped threads.
4544 *
4545 * Equally, if we have to not continue some threads,
4546 * due to saved events, we have to use the loop.
4547 */
4548 if ((signal != 0) || saved_signals_exist ())
4549 {
4550 if (resume_all_threads)
4551 {
4552
4553 #ifdef THREAD_DEBUG
4554 if (debug_on)
4555 printf ("Doing a continue by loop of all threads\n");
4556 #endif
4557
4558 threads_continue_all_with_signals (tid, signal);
4559
4560 clear_all_handled ();
4561 clear_all_stepping_mode ();
4562 }
4563
4564 else
4565 {
4566 #ifdef THREAD_DEBUG
4567 printf ("Doing a continue w/signal of just thread %d\n", tid);
4568 #endif
4569
4570 threads_continue_one_with_signal (tid, signal);
4571
4572 /* Clear the "handled" state of this thread, because
4573 * we'll soon get a new event for it. Other events
4574 * can stay as they were.
4575 */
4576 clear_handled (tid);
4577 clear_stepping_mode (tid);
4578 }
4579 }
4580
4581 else
4582 {
4583 /* No signals to send.
4584 */
4585 if (resume_all_threads)
4586 {
4587 #ifdef THREAD_DEBUG
4588 if (debug_on)
4589 printf ("Doing a continue by process of process %d\n", tid);
4590 #endif
4591
4592 if (more_events_left > 0)
4593 {
4594 warning ("Losing buffered events on continue.");
4595 more_events_left = 0;
4596 }
4597
4598 call_ttrace (TT_PROC_CONTINUE,
4599 tid,
4600 TT_NIL,
4601 TT_NIL,
4602 TT_NIL);
4603
4604 clear_all_handled ();
4605 clear_all_stepping_mode ();
4606 }
4607
4608 else
4609 {
4610 #ifdef THREAD_DEBUG
4611 if (debug_on)
4612 {
4613 printf ("Doing a continue of just thread %d\n", tid);
4614 if (is_terminated (tid))
4615 printf ("Why are we continuing a dead thread? (5)\n");
4616 }
4617 #endif
4618
4619 call_ttrace (TT_LWP_CONTINUE,
4620 tid,
4621 TT_NIL,
4622 TT_NIL,
4623 TT_NIL);
4624
4625 /* Clear the "handled" state of this thread, because
4626 * we'll soon get a new event for it. Other events
4627 * can stay as they were.
4628 */
4629 clear_handled (tid);
4630 clear_stepping_mode (tid);
4631 }
4632 }
4633 }
4634
4635 process_state = new_process_state;
4636
4637 #ifdef WAIT_BUFFER_DEBUG
4638 if (debug_on)
4639 printf ("Process set to %s\n",
4640 get_printable_name_of_process_state (process_state));
4641 #endif
4642
4643 }
4644 #endif /* CHILD_RESUME */
4645 \f
4646
4647 #ifdef ATTACH_DETACH
4648 /*
4649 * Like it says.
4650 *
4651 * One worry is that we may not be attaching to "inferior_pid"
4652 * and thus may not want to clear out our data. FIXME?
4653 *
4654 */
4655 static void
4656 update_thread_state_after_attach (int pid, attach_continue_t kind_of_go)
4657 {
4658 int tt_status;
4659 ttstate_t thread_state;
4660 lwpid_t a_thread;
4661 lwpid_t tid;
4662
4663 /* The process better be stopped.
4664 */
4665 if (process_state != STOPPED
4666 && process_state != VFORKING)
4667 warning ("Internal error attaching.");
4668
4669 /* Clear out old tthread info and start over. This has the
4670 * side effect of ensuring that the TRAP is reported as being
4671 * in the right thread (re-mapped from tid to pid).
4672 *
4673 * It's because we need to add the tthread _now_ that we
4674 * need to call "clear_thread_info" _now_, and that's why
4675 * "require_notification_of_events" doesn't clear the thread
4676 * info (it's called later than this routine).
4677 */
4678 clear_thread_info ();
4679 a_thread = 0;
4680
4681 for (tid = get_process_first_stopped_thread_id (pid, &thread_state);
4682 tid != 0;
4683 tid = get_process_next_stopped_thread_id (pid, &thread_state))
4684 {
4685 thread_info *p;
4686
4687 if (a_thread == 0)
4688 {
4689 a_thread = tid;
4690 #ifdef THREAD_DEBUG
4691 if (debug_on)
4692 printf ("Attaching to process %d, thread %d\n",
4693 pid, a_thread);
4694 #endif
4695 }
4696
4697 /* Tell ourselves and the "rest of gdb" that this thread
4698 * exists.
4699 *
4700 * This isn't really a hack. Other thread-based versions
4701 * of gdb (e.g. gnu-nat.c) seem to do the same thing.
4702 *
4703 * We don't need to do mapping here, as we know this
4704 * is the first thread and thus gets the real pid
4705 * (and is "inferior_pid").
4706 *
4707 * NOTE: it probably isn't the originating thread,
4708 * but that doesn't matter (we hope!).
4709 */
4710 add_tthread (pid, tid);
4711 p = find_thread_info (tid);
4712 if (NULL == p) /* ?We just added it! */
4713 error ("Internal error adding a thread on attach.");
4714
4715 copy_ttstate_t (&p->last_stop_state, &thread_state);
4716 p->have_state = 1;
4717
4718 if (DO_ATTACH_CONTINUE == kind_of_go)
4719 {
4720 /*
4721 * If we are going to CONTINUE afterwards,
4722 * raising a SIGTRAP, don't bother trying to
4723 * handle this event. But check first!
4724 */
4725 switch (p->last_stop_state.tts_event)
4726 {
4727
4728 case TTEVT_NONE:
4729 /* Ok to set this handled.
4730 */
4731 break;
4732
4733 default:
4734 warning ("Internal error; skipping event %s on process %d, thread %d.",
4735 get_printable_name_of_ttrace_event (
4736 p->last_stop_state.tts_event),
4737 p->pid, p->tid);
4738 }
4739
4740 set_handled (pid, tid);
4741
4742 }
4743 else
4744 {
4745 /* There will be no "continue" opertion, so the
4746 * process remains stopped. Don't set any events
4747 * handled except the "gimmies".
4748 */
4749 switch (p->last_stop_state.tts_event)
4750 {
4751
4752 case TTEVT_NONE:
4753 /* Ok to ignore this.
4754 */
4755 set_handled (pid, tid);
4756 break;
4757
4758 case TTEVT_EXEC:
4759 case TTEVT_FORK:
4760 /* Expected "other" FORK or EXEC event from a
4761 * fork or vfork.
4762 */
4763 break;
4764
4765 default:
4766 printf ("Internal error: failed to handle event %s on process %d, thread %d.",
4767 get_printable_name_of_ttrace_event (
4768 p->last_stop_state.tts_event),
4769 p->pid, p->tid);
4770 }
4771 }
4772
4773 add_thread (tid); /* in thread.c */
4774 }
4775
4776 #ifdef PARANOIA
4777 if (debug_on)
4778 print_tthreads ();
4779 #endif
4780
4781 /* One mustn't call ttrace_wait() after attaching via ttrace,
4782 'cause the process is stopped already.
4783
4784 However, the upper layers of gdb's execution control will
4785 want to wait after attaching (but not after forks, in
4786 which case they will be doing a "target_resume", anticipating
4787 a later TTEVT_EXEC or TTEVT_FORK event).
4788
4789 To make this attach() implementation more compatible with
4790 others, we'll make the attached-to process raise a SIGTRAP.
4791
4792 Issue: this continues only one thread. That could be
4793 dangerous if the thread is blocked--the process won't run
4794 and no trap will be raised. FIX! (check state.tts_flags?
4795 need one that's either TTS_WASRUNNING--but we've stopped
4796 it and made it TTS_WASSUSPENDED. Hum...FIXME!)
4797 */
4798 if (DO_ATTACH_CONTINUE == kind_of_go)
4799 {
4800 tt_status = call_real_ttrace (
4801 TT_LWP_CONTINUE,
4802 pid,
4803 a_thread,
4804 TT_USE_CURRENT_PC,
4805 (TTRACE_ARG_TYPE) target_signal_to_host (TARGET_SIGNAL_TRAP),
4806 TT_NIL);
4807 if (errno)
4808 perror_with_name ("ttrace");
4809
4810 clear_handled (a_thread); /* So TRAP will be reported. */
4811
4812 /* Now running.
4813 */
4814 process_state = RUNNING;
4815 }
4816
4817 attach_flag = 1;
4818 }
4819 #endif /* ATTACH_DETACH */
4820 \f
4821
4822 #ifdef ATTACH_DETACH
4823 /* Start debugging the process whose number is PID.
4824 * (A _real_ pid).
4825 */
4826 int
4827 attach (int pid)
4828 {
4829 int tt_status;
4830
4831 tt_status = call_real_ttrace (
4832 TT_PROC_ATTACH,
4833 pid,
4834 (lwpid_t) TT_NIL,
4835 TT_NIL,
4836 (TTRACE_ARG_TYPE) TT_VERSION,
4837 TT_NIL);
4838 if (errno)
4839 perror_with_name ("ttrace attach");
4840
4841 /* If successful, the process is now stopped.
4842 */
4843 process_state = STOPPED;
4844
4845 /* Our caller ("attach_command" in "infcmd.c")
4846 * expects to do a "wait_for_inferior" after
4847 * the attach, so make sure the inferior is
4848 * running when we're done.
4849 */
4850 update_thread_state_after_attach (pid, DO_ATTACH_CONTINUE);
4851
4852 return pid;
4853 }
4854
4855
4856 #if defined(CHILD_POST_ATTACH)
4857 void
4858 child_post_attach (int pid)
4859 {
4860 #ifdef THREAD_DEBUG
4861 if (debug_on)
4862 printf ("child-post-attach call\n");
4863 #endif
4864
4865 require_notification_of_events (pid);
4866 }
4867 #endif
4868
4869
4870 /* Stop debugging the process whose number is PID
4871 and continue it with signal number SIGNAL.
4872 SIGNAL = 0 means just continue it.
4873 */
4874 void
4875 detach (int signal)
4876 {
4877 errno = 0;
4878 call_ttrace (TT_PROC_DETACH,
4879 inferior_pid,
4880 TT_NIL,
4881 (TTRACE_ARG_TYPE) signal,
4882 TT_NIL);
4883 attach_flag = 0;
4884
4885 clear_thread_info ();
4886
4887 /* Process-state? */
4888 }
4889 #endif /* ATTACH_DETACH */
4890 \f
4891
4892 /* Default the type of the ttrace transfer to int. */
4893 #ifndef TTRACE_XFER_TYPE
4894 #define TTRACE_XFER_TYPE int
4895 #endif
4896
4897 void
4898 _initialize_kernel_u_addr (void)
4899 {
4900 }
4901
4902 #if !defined (CHILD_XFER_MEMORY)
4903 /* NOTE! I tried using TTRACE_READDATA, etc., to read and write memory
4904 in the NEW_SUN_TTRACE case.
4905 It ought to be straightforward. But it appears that writing did
4906 not write the data that I specified. I cannot understand where
4907 it got the data that it actually did write. */
4908
4909 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
4910 to debugger memory starting at MYADDR. Copy to inferior if
4911 WRITE is nonzero. TARGET is ignored.
4912
4913 Returns the length copied, which is either the LEN argument or zero.
4914 This xfer function does not do partial moves, since child_ops
4915 doesn't allow memory operations to cross below us in the target stack
4916 anyway. */
4917
4918 int
4919 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
4920 struct mem_attrib *attrib,
4921 struct target_ops *target)
4922 {
4923 register int i;
4924 /* Round starting address down to longword boundary. */
4925 register CORE_ADDR addr = memaddr & -sizeof (TTRACE_XFER_TYPE);
4926 /* Round ending address up; get number of longwords that makes. */
4927 register int count
4928 = (((memaddr + len) - addr) + sizeof (TTRACE_XFER_TYPE) - 1)
4929 / sizeof (TTRACE_XFER_TYPE);
4930 /* Allocate buffer of that many longwords. */
4931 register TTRACE_XFER_TYPE *buffer
4932 = (TTRACE_XFER_TYPE *) alloca (count * sizeof (TTRACE_XFER_TYPE));
4933
4934 if (write)
4935 {
4936 /* Fill start and end extra bytes of buffer with existing memory data. */
4937
4938 if (addr != memaddr || len < (int) sizeof (TTRACE_XFER_TYPE))
4939 {
4940 /* Need part of initial word -- fetch it. */
4941 buffer[0] = call_ttrace (TT_LWP_RDTEXT,
4942 inferior_pid,
4943 (TTRACE_ARG_TYPE) addr,
4944 TT_NIL,
4945 TT_NIL);
4946 }
4947
4948 if (count > 1) /* FIXME, avoid if even boundary */
4949 {
4950 buffer[count - 1] = call_ttrace (TT_LWP_RDTEXT,
4951 inferior_pid,
4952 ((TTRACE_ARG_TYPE)
4953 (addr + (count - 1) * sizeof (TTRACE_XFER_TYPE))),
4954 TT_NIL,
4955 TT_NIL);
4956 }
4957
4958 /* Copy data to be written over corresponding part of buffer */
4959
4960 memcpy ((char *) buffer + (memaddr & (sizeof (TTRACE_XFER_TYPE) - 1)),
4961 myaddr,
4962 len);
4963
4964 /* Write the entire buffer. */
4965
4966 for (i = 0; i < count; i++, addr += sizeof (TTRACE_XFER_TYPE))
4967 {
4968 errno = 0;
4969 call_ttrace (TT_LWP_WRDATA,
4970 inferior_pid,
4971 (TTRACE_ARG_TYPE) addr,
4972 (TTRACE_ARG_TYPE) buffer[i],
4973 TT_NIL);
4974 if (errno)
4975 {
4976 /* Using the appropriate one (I or D) is necessary for
4977 Gould NP1, at least. */
4978 errno = 0;
4979 call_ttrace (TT_LWP_WRTEXT,
4980 inferior_pid,
4981 (TTRACE_ARG_TYPE) addr,
4982 (TTRACE_ARG_TYPE) buffer[i],
4983 TT_NIL);
4984 }
4985 if (errno)
4986 return 0;
4987 }
4988 }
4989 else
4990 {
4991 /* Read all the longwords */
4992 for (i = 0; i < count; i++, addr += sizeof (TTRACE_XFER_TYPE))
4993 {
4994 errno = 0;
4995 buffer[i] = call_ttrace (TT_LWP_RDTEXT,
4996 inferior_pid,
4997 (TTRACE_ARG_TYPE) addr,
4998 TT_NIL,
4999 TT_NIL);
5000 if (errno)
5001 return 0;
5002 QUIT;
5003 }
5004
5005 /* Copy appropriate bytes out of the buffer. */
5006 memcpy (myaddr,
5007 (char *) buffer + (memaddr & (sizeof (TTRACE_XFER_TYPE) - 1)),
5008 len);
5009 }
5010 return len;
5011 }
5012 \f
5013
5014 static void
5015 udot_info (void)
5016 {
5017 int udot_off; /* Offset into user struct */
5018 int udot_val; /* Value from user struct at udot_off */
5019 char mess[128]; /* For messages */
5020
5021 if (!target_has_execution)
5022 {
5023 error ("The program is not being run.");
5024 }
5025
5026 #if !defined (KERNEL_U_SIZE)
5027
5028 /* Adding support for this command is easy. Typically you just add a
5029 routine, called "kernel_u_size" that returns the size of the user
5030 struct, to the appropriate *-nat.c file and then add to the native
5031 config file "#define KERNEL_U_SIZE kernel_u_size()" */
5032 error ("Don't know how large ``struct user'' is in this version of gdb.");
5033
5034 #else
5035
5036 for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
5037 {
5038 if ((udot_off % 24) == 0)
5039 {
5040 if (udot_off > 0)
5041 {
5042 printf_filtered ("\n");
5043 }
5044 printf_filtered ("%04x:", udot_off);
5045 }
5046 udot_val = call_ttrace (TT_LWP_RUREGS,
5047 inferior_pid,
5048 (TTRACE_ARG_TYPE) udot_off,
5049 TT_NIL,
5050 TT_NIL);
5051 if (errno != 0)
5052 {
5053 sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
5054 perror_with_name (mess);
5055 }
5056 /* Avoid using nonportable (?) "*" in print specs */
5057 printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
5058 }
5059 printf_filtered ("\n");
5060
5061 #endif
5062 }
5063 #endif /* !defined (CHILD_XFER_MEMORY). */
5064
5065 /* TTrace version of "target_pid_to_exec_file"
5066 */
5067 char *
5068 child_pid_to_exec_file (int tid)
5069 {
5070 static char exec_file_buffer[1024];
5071 int tt_status;
5072 CORE_ADDR top_of_stack;
5073 char four_chars[4];
5074 int name_index;
5075 int i;
5076 int done;
5077 int saved_inferior_pid;
5078
5079 /* As of 10.x HP-UX, there's an explicit request to get the
5080 *pathname.
5081 */
5082 tt_status = call_ttrace (TT_PROC_GET_PATHNAME,
5083 tid,
5084 (TTRACE_ARG_TYPE) exec_file_buffer,
5085 (TTRACE_ARG_TYPE) sizeof (exec_file_buffer) - 1,
5086 TT_NIL);
5087 if (tt_status >= 0)
5088 return exec_file_buffer;
5089
5090 /* ??rehrauer: The above request may or may not be broken. It
5091 doesn't seem to work when I use it. But, it may be designed
5092 to only work immediately after an exec event occurs. (I'm
5093 waiting for COSL to explain.)
5094
5095 In any case, if it fails, try a really, truly amazingly gross
5096 hack that DDE uses, of pawing through the process' data
5097 segment to find the pathname.
5098 */
5099 top_of_stack = (TARGET_PTR_BIT == 64 ? 0x800003ffff7f0000 : 0x7b03a000);
5100 name_index = 0;
5101 done = 0;
5102
5103 /* On the chance that pid != inferior_pid, set inferior_pid
5104 to pid, so that (grrrr!) implicit uses of inferior_pid get
5105 the right id.
5106 */
5107 saved_inferior_pid = inferior_pid;
5108 inferior_pid = tid;
5109
5110 /* Try to grab a null-terminated string. */
5111 while (!done)
5112 {
5113 if (target_read_memory (top_of_stack, four_chars, 4) != 0)
5114 {
5115 inferior_pid = saved_inferior_pid;
5116 return NULL;
5117 }
5118 for (i = 0; i < 4; i++)
5119 {
5120 exec_file_buffer[name_index++] = four_chars[i];
5121 done = (four_chars[i] == '\0');
5122 if (done)
5123 break;
5124 }
5125 top_of_stack += 4;
5126 }
5127
5128 if (exec_file_buffer[0] == '\0')
5129 {
5130 inferior_pid = saved_inferior_pid;
5131 return NULL;
5132 }
5133
5134 inferior_pid = saved_inferior_pid;
5135 return exec_file_buffer;
5136 }
5137
5138
5139 void
5140 pre_fork_inferior (void)
5141 {
5142 int status;
5143
5144 status = pipe (startup_semaphore.parent_channel);
5145 if (status < 0)
5146 {
5147 warning ("error getting parent pipe for startup semaphore");
5148 return;
5149 }
5150
5151 status = pipe (startup_semaphore.child_channel);
5152 if (status < 0)
5153 {
5154 warning ("error getting child pipe for startup semaphore");
5155 return;
5156 }
5157 }
5158
5159 /* Called via #define REQUIRE_ATTACH from inftarg.c,
5160 * ultimately from "follow_inferior_fork" in infrun.c,
5161 * itself called from "resume".
5162 *
5163 * This seems to be intended to attach after a fork or
5164 * vfork, while "attach" is used to attach to a pid
5165 * given by the user. The check for an existing attach
5166 * seems odd--it always fails in our test system.
5167 */
5168 int
5169 hppa_require_attach (int pid)
5170 {
5171 int tt_status;
5172 CORE_ADDR pc;
5173 CORE_ADDR pc_addr;
5174 unsigned int regs_offset;
5175 process_state_t old_process_state = process_state;
5176
5177 /* Are we already attached? There appears to be no explicit
5178 * way to answer this via ttrace, so we try something which
5179 * should be innocuous if we are attached. If that fails,
5180 * then we assume we're not attached, and so attempt to make
5181 * it so.
5182 */
5183 errno = 0;
5184 tt_status = call_real_ttrace (TT_PROC_STOP,
5185 pid,
5186 (lwpid_t) TT_NIL,
5187 (TTRACE_ARG_TYPE) TT_NIL,
5188 (TTRACE_ARG_TYPE) TT_NIL,
5189 TT_NIL);
5190
5191 if (errno)
5192 {
5193 /* No change to process-state!
5194 */
5195 errno = 0;
5196 pid = attach (pid);
5197 }
5198 else
5199 {
5200 /* If successful, the process is now stopped. But if
5201 * we're VFORKING, the parent is still running, so don't
5202 * change the process state.
5203 */
5204 if (process_state != VFORKING)
5205 process_state = STOPPED;
5206
5207 /* If we were already attached, you'd think that we
5208 * would need to start going again--but you'd be wrong,
5209 * as the fork-following code is actually in the middle
5210 * of the "resume" routine in in "infrun.c" and so
5211 * will (almost) immediately do a resume.
5212 *
5213 * On the other hand, if we are VFORKING, which means
5214 * that the child and the parent share a process for a
5215 * while, we know that "resume" won't be resuming
5216 * until the child EXEC event is seen. But we still
5217 * don't want to continue, as the event is already
5218 * there waiting.
5219 */
5220 update_thread_state_after_attach (pid, DONT_ATTACH_CONTINUE);
5221 } /* STOP succeeded */
5222
5223 return pid;
5224 }
5225
5226 int
5227 hppa_require_detach (int pid, int signal)
5228 {
5229 int tt_status;
5230
5231 /* If signal is non-zero, we must pass the signal on to the active
5232 thread prior to detaching. We do this by continuing the threads
5233 with the signal.
5234 */
5235 if (signal != 0)
5236 {
5237 errno = 0;
5238 threads_continue_all_with_signals (pid, signal);
5239 }
5240
5241 errno = 0;
5242 tt_status = call_ttrace (TT_PROC_DETACH,
5243 pid,
5244 TT_NIL,
5245 TT_NIL,
5246 TT_NIL);
5247
5248 errno = 0; /* Ignore any errors. */
5249
5250 /* process_state? */
5251
5252 return pid;
5253 }
5254
5255 /* Given the starting address of a memory page, hash it to a bucket in
5256 the memory page dictionary.
5257 */
5258 static int
5259 get_dictionary_bucket_of_page (CORE_ADDR page_start)
5260 {
5261 int hash;
5262
5263 hash = (page_start / memory_page_dictionary.page_size);
5264 hash = hash % MEMORY_PAGE_DICTIONARY_BUCKET_COUNT;
5265
5266 return hash;
5267 }
5268
5269
5270 /* Given a memory page's starting address, get (i.e., find an existing
5271 or create a new) dictionary entry for the page. The page will be
5272 write-protected when this function returns, but may have a reference
5273 count of 0 (if the page was newly-added to the dictionary).
5274 */
5275 static memory_page_t *
5276 get_dictionary_entry_of_page (int pid, CORE_ADDR page_start)
5277 {
5278 int bucket;
5279 memory_page_t *page = NULL;
5280 memory_page_t *previous_page = NULL;
5281
5282 /* We're going to be using the dictionary now, than-kew. */
5283 require_memory_page_dictionary ();
5284
5285 /* Try to find an existing dictionary entry for this page. Hash
5286 on the page's starting address.
5287 */
5288 bucket = get_dictionary_bucket_of_page (page_start);
5289 page = &memory_page_dictionary.buckets[bucket];
5290 while (page != NULL)
5291 {
5292 if (page->page_start == page_start)
5293 break;
5294 previous_page = page;
5295 page = page->next;
5296 }
5297
5298 /* Did we find a dictionary entry for this page? If not, then
5299 add it to the dictionary now.
5300 */
5301 if (page == NULL)
5302 {
5303 /* Create a new entry. */
5304 page = (memory_page_t *) xmalloc (sizeof (memory_page_t));
5305 page->page_start = page_start;
5306 page->reference_count = 0;
5307 page->next = NULL;
5308 page->previous = NULL;
5309
5310 /* We'll write-protect the page now, if that's allowed. */
5311 page->original_permissions = write_protect_page (pid, page_start);
5312
5313 /* Add the new entry to the dictionary. */
5314 page->previous = previous_page;
5315 previous_page->next = page;
5316
5317 memory_page_dictionary.page_count++;
5318 }
5319
5320 return page;
5321 }
5322
5323
5324 static void
5325 remove_dictionary_entry_of_page (int pid, memory_page_t *page)
5326 {
5327 /* Restore the page's original permissions. */
5328 unwrite_protect_page (pid, page->page_start, page->original_permissions);
5329
5330 /* Kick the page out of the dictionary. */
5331 if (page->previous != NULL)
5332 page->previous->next = page->next;
5333 if (page->next != NULL)
5334 page->next->previous = page->previous;
5335
5336 /* Just in case someone retains a handle to this after it's freed. */
5337 page->page_start = (CORE_ADDR) 0;
5338
5339 memory_page_dictionary.page_count--;
5340
5341 xfree (page);
5342 }
5343
5344
5345 static void
5346 hppa_enable_syscall_events (int pid)
5347 {
5348 int tt_status;
5349 ttevent_t ttrace_events;
5350
5351 /* Get the set of events that are currently enabled. */
5352 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
5353 pid,
5354 (TTRACE_ARG_TYPE) & ttrace_events,
5355 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5356 TT_NIL);
5357 if (errno)
5358 perror_with_name ("ttrace");
5359
5360 /* Add syscall events to that set. */
5361 ttrace_events.tte_events |= TTEVT_SYSCALL_ENTRY;
5362 ttrace_events.tte_events |= TTEVT_SYSCALL_RETURN;
5363
5364 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
5365 pid,
5366 (TTRACE_ARG_TYPE) & ttrace_events,
5367 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5368 TT_NIL);
5369 if (errno)
5370 perror_with_name ("ttrace");
5371 }
5372
5373
5374 static void
5375 hppa_disable_syscall_events (int pid)
5376 {
5377 int tt_status;
5378 ttevent_t ttrace_events;
5379
5380 /* Get the set of events that are currently enabled. */
5381 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
5382 pid,
5383 (TTRACE_ARG_TYPE) & ttrace_events,
5384 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5385 TT_NIL);
5386 if (errno)
5387 perror_with_name ("ttrace");
5388
5389 /* Remove syscall events from that set. */
5390 ttrace_events.tte_events &= ~TTEVT_SYSCALL_ENTRY;
5391 ttrace_events.tte_events &= ~TTEVT_SYSCALL_RETURN;
5392
5393 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
5394 pid,
5395 (TTRACE_ARG_TYPE) & ttrace_events,
5396 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5397 TT_NIL);
5398 if (errno)
5399 perror_with_name ("ttrace");
5400 }
5401
5402
5403 /* The address range beginning with START and ending with START+LEN-1
5404 (inclusive) is to be watched via page-protection by a new watchpoint.
5405 Set protection for all pages that overlap that range.
5406
5407 Note that our caller sets TYPE to:
5408 0 for a bp_hardware_watchpoint,
5409 1 for a bp_read_watchpoint,
5410 2 for a bp_access_watchpoint
5411
5412 (Yes, this is intentionally (though lord only knows why) different
5413 from the TYPE that is passed to hppa_remove_hw_watchpoint.)
5414 */
5415 int
5416 hppa_insert_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len, int type)
5417 {
5418 CORE_ADDR page_start;
5419 int dictionary_was_empty;
5420 int page_size;
5421 int page_id;
5422 LONGEST range_size_in_pages;
5423
5424 if (type != 0)
5425 error ("read or access hardware watchpoints not supported on HP-UX");
5426
5427 /* Examine all pages in the address range. */
5428 require_memory_page_dictionary ();
5429
5430 dictionary_was_empty = (memory_page_dictionary.page_count == (LONGEST) 0);
5431
5432 page_size = memory_page_dictionary.page_size;
5433 page_start = (start / page_size) * page_size;
5434 range_size_in_pages = ((LONGEST) len + (LONGEST) page_size - 1) / (LONGEST) page_size;
5435
5436 for (page_id = 0; page_id < range_size_in_pages; page_id++, page_start += page_size)
5437 {
5438 memory_page_t *page;
5439
5440 /* This gets the page entered into the dictionary if it was
5441 not already entered.
5442 */
5443 page = get_dictionary_entry_of_page (pid, page_start);
5444 page->reference_count++;
5445 }
5446
5447 /* Our implementation depends on seeing calls to kernel code, for the
5448 following reason. Here we ask to be notified of syscalls.
5449
5450 When a protected page is accessed by user code, HP-UX raises a SIGBUS.
5451 Fine.
5452
5453 But when kernel code accesses the page, it doesn't give a SIGBUS.
5454 Rather, the system call that touched the page fails, with errno=EFAULT.
5455 Not good for us.
5456
5457 We could accomodate this "feature" by asking to be notified of syscall
5458 entries & exits; upon getting an entry event, disabling page-protections;
5459 upon getting an exit event, reenabling page-protections and then checking
5460 if any watchpoints triggered.
5461
5462 However, this turns out to be a real performance loser. syscalls are
5463 usually a frequent occurrence. Having to unprotect-reprotect all watched
5464 pages, and also to then read all watched memory locations and compare for
5465 triggers, can be quite expensive.
5466
5467 Instead, we'll only ask to be notified of syscall exits. When we get
5468 one, we'll check whether errno is set. If not, or if it's not EFAULT,
5469 we can just continue the inferior.
5470
5471 If errno is set upon syscall exit to EFAULT, we must perform some fairly
5472 hackish stuff to determine whether the failure really was due to a
5473 page-protect trap on a watched location.
5474 */
5475 if (dictionary_was_empty)
5476 hppa_enable_syscall_events (pid);
5477
5478 return 1;
5479 }
5480
5481
5482 /* The address range beginning with START and ending with START+LEN-1
5483 (inclusive) was being watched via page-protection by a watchpoint
5484 which has been removed. Remove protection for all pages that
5485 overlap that range, which are not also being watched by other
5486 watchpoints.
5487 */
5488 int
5489 hppa_remove_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len,
5490 enum bptype type)
5491 {
5492 CORE_ADDR page_start;
5493 int dictionary_is_empty;
5494 int page_size;
5495 int page_id;
5496 LONGEST range_size_in_pages;
5497
5498 if (type != 0)
5499 error ("read or access hardware watchpoints not supported on HP-UX");
5500
5501 /* Examine all pages in the address range. */
5502 require_memory_page_dictionary ();
5503
5504 page_size = memory_page_dictionary.page_size;
5505 page_start = (start / page_size) * page_size;
5506 range_size_in_pages = ((LONGEST) len + (LONGEST) page_size - 1) / (LONGEST) page_size;
5507
5508 for (page_id = 0; page_id < range_size_in_pages; page_id++, page_start += page_size)
5509 {
5510 memory_page_t *page;
5511
5512 page = get_dictionary_entry_of_page (pid, page_start);
5513 page->reference_count--;
5514
5515 /* Was this the last reference of this page? If so, then we
5516 must scrub the entry from the dictionary, and also restore
5517 the page's original permissions.
5518 */
5519 if (page->reference_count == 0)
5520 remove_dictionary_entry_of_page (pid, page);
5521 }
5522
5523 dictionary_is_empty = (memory_page_dictionary.page_count == (LONGEST) 0);
5524
5525 /* If write protections are currently disallowed, then that implies that
5526 wait_for_inferior believes that the inferior is within a system call.
5527 Since we want to see both syscall entry and return, it's clearly not
5528 good to disable syscall events in this state!
5529
5530 ??rehrauer: Yeah, it'd be better if we had a specific flag that said,
5531 "inferior is between syscall events now". Oh well.
5532 */
5533 if (dictionary_is_empty && memory_page_dictionary.page_protections_allowed)
5534 hppa_disable_syscall_events (pid);
5535
5536 return 1;
5537 }
5538
5539
5540 /* Could we implement a watchpoint of this type via our available
5541 hardware support?
5542
5543 This query does not consider whether a particular address range
5544 could be so watched, but just whether support is generally available
5545 for such things. See hppa_range_profitable_for_hw_watchpoint for a
5546 query that answers whether a particular range should be watched via
5547 hardware support.
5548 */
5549 int
5550 hppa_can_use_hw_watchpoint (enum bptype type, int cnt, enum bptype ot)
5551 {
5552 return (type == bp_hardware_watchpoint);
5553 }
5554
5555
5556 /* Assuming we could set a hardware watchpoint on this address, do
5557 we think it would be profitable ("a good idea") to do so? If not,
5558 we can always set a regular (aka single-step & test) watchpoint
5559 on the address...
5560 */
5561 int
5562 hppa_range_profitable_for_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len)
5563 {
5564 int range_is_stack_based;
5565 int range_is_accessible;
5566 CORE_ADDR page_start;
5567 int page_size;
5568 int page;
5569 LONGEST range_size_in_pages;
5570
5571 /* ??rehrauer: For now, say that all addresses are potentially
5572 profitable. Possibly later we'll want to test the address
5573 for "stackness"?
5574 */
5575 range_is_stack_based = 0;
5576
5577 /* If any page in the range is inaccessible, then we cannot
5578 really use hardware watchpointing, even though our client
5579 thinks we can. In that case, it's actually an error to
5580 attempt to use hw watchpoints, so we'll tell our client
5581 that the range is "unprofitable", and hope that they listen...
5582 */
5583 range_is_accessible = 1; /* Until proven otherwise. */
5584
5585 /* Examine all pages in the address range. */
5586 errno = 0;
5587 page_size = sysconf (_SC_PAGE_SIZE);
5588
5589 /* If we can't determine page size, we're hosed. Tell our
5590 client it's unprofitable to use hw watchpoints for this
5591 range.
5592 */
5593 if (errno || (page_size <= 0))
5594 {
5595 errno = 0;
5596 return 0;
5597 }
5598
5599 page_start = (start / page_size) * page_size;
5600 range_size_in_pages = len / (LONGEST) page_size;
5601
5602 for (page = 0; page < range_size_in_pages; page++, page_start += page_size)
5603 {
5604 int tt_status;
5605 int page_permissions;
5606
5607 /* Is this page accessible? */
5608 errno = 0;
5609 tt_status = call_ttrace (TT_PROC_GET_MPROTECT,
5610 pid,
5611 (TTRACE_ARG_TYPE) page_start,
5612 TT_NIL,
5613 (TTRACE_ARG_TYPE) & page_permissions);
5614 if (errno || (tt_status < 0))
5615 {
5616 errno = 0;
5617 range_is_accessible = 0;
5618 break;
5619 }
5620
5621 /* Yes, go for another... */
5622 }
5623
5624 return (!range_is_stack_based && range_is_accessible);
5625 }
5626
5627
5628 char *
5629 hppa_pid_or_tid_to_str (pid_t id)
5630 {
5631 static char buf[100]; /* Static because address returned. */
5632
5633 /* Does this appear to be a process? If so, print it that way. */
5634 if (is_process_id (id))
5635 return child_pid_to_str (id);
5636
5637 /* Else, print both the GDB thread number and the system thread id. */
5638 sprintf (buf, "thread %d (", pid_to_thread_id (id));
5639 strcat (buf, hppa_tid_to_str (id));
5640 strcat (buf, ")\0");
5641
5642 return buf;
5643 }
5644 \f
5645
5646 /* If the current pid is not the pid this module reported
5647 * from "ptrace_wait" with the most recent event, then the
5648 * user has switched threads.
5649 *
5650 * If the last reported event was a breakpoint, then return
5651 * the old thread id, else return 0.
5652 */
5653 pid_t
5654 hppa_switched_threads (pid_t gdb_pid)
5655 {
5656 if (gdb_pid == old_gdb_pid)
5657 {
5658 /*
5659 * Core gdb is working with the same pid that it
5660 * was before we reported the last event. This
5661 * is ok: e.g. we reported hitting a thread-specific
5662 * breakpoint, but we were reporting the wrong
5663 * thread, so the core just ignored the event.
5664 *
5665 * No thread switch has happened.
5666 */
5667 return (pid_t) 0;
5668 }
5669 else if (gdb_pid == reported_pid)
5670 {
5671 /*
5672 * Core gdb is working with the pid we reported, so
5673 * any continue or step will be able to figure out
5674 * that it needs to step over any hit breakpoints
5675 * without our (i.e. PREPARE_TO_PROCEED's) help.
5676 */
5677 return (pid_t) 0;
5678 }
5679 else if (!reported_bpt)
5680 {
5681 /*
5682 * The core switched, but we didn't just report a
5683 * breakpoint, so there's no just-hit breakpoint
5684 * instruction at "reported_pid"'s PC, and thus there
5685 * is no need to step over it.
5686 */
5687 return (pid_t) 0;
5688 }
5689 else
5690 {
5691 /* There's been a real switch, and we reported
5692 * a hit breakpoint. Let "hppa_prepare_to_proceed"
5693 * know, so it can see whether the breakpoint is
5694 * still active.
5695 */
5696 return reported_pid;
5697 }
5698
5699 /* Keep compiler happy with an obvious return at the end.
5700 */
5701 return (pid_t) 0;
5702 }
5703
5704 void
5705 hppa_ensure_vforking_parent_remains_stopped (int pid)
5706 {
5707 /* Nothing to do when using ttrace. Only the ptrace-based implementation
5708 must do real work.
5709 */
5710 }
5711
5712
5713 int
5714 hppa_resume_execd_vforking_child_to_get_parent_vfork (void)
5715 {
5716 return 0; /* No, the parent vfork is available now. */
5717 }
5718 \f
5719
5720 /* Write a register as a 64bit value. This may be necessary if the
5721 native OS is too braindamaged to allow some (or all) registers to
5722 be written in 32bit hunks such as hpux11 and the PC queue registers.
5723
5724 This is horribly gross and disgusting. */
5725
5726 int
5727 ttrace_write_reg_64 (int gdb_tid, CORE_ADDR dest_addr, CORE_ADDR src_addr)
5728 {
5729 pid_t pid;
5730 lwpid_t tid;
5731 int tt_status;
5732
5733 tid = map_from_gdb_tid (gdb_tid);
5734 pid = get_pid_for (tid);
5735
5736 errno = 0;
5737 tt_status = ttrace (TT_LWP_WUREGS,
5738 pid,
5739 tid,
5740 (TTRACE_ARG_TYPE) dest_addr,
5741 8,
5742 (TTRACE_ARG_TYPE) src_addr );
5743
5744 #ifdef THREAD_DEBUG
5745 if (errno)
5746 {
5747 /* Don't bother for a known benign error: if you ask for the
5748 first thread state, but there is only one thread and it's
5749 not stopped, ttrace complains.
5750
5751 We have this inside the #ifdef because our caller will do
5752 this check for real. */
5753 if( request != TT_PROC_GET_FIRST_LWP_STATE
5754 || errno != EPROTO )
5755 {
5756 if( debug_on )
5757 printf( "TT fail for %s, with pid %d, tid %d, status %d \n",
5758 get_printable_name_of_ttrace_request (TT_LWP_WUREGS),
5759 pid, tid, tt_status );
5760 }
5761 }
5762 #endif
5763
5764 return tt_status;
5765 }
5766
5767 void
5768 _initialize_infttrace (void)
5769 {
5770 /* Initialize the ttrace-based hardware watchpoint implementation. */
5771 memory_page_dictionary.page_count = (LONGEST) - 1;
5772 memory_page_dictionary.page_protections_allowed = 1;
5773
5774 errno = 0;
5775 memory_page_dictionary.page_size = sysconf (_SC_PAGE_SIZE);
5776
5777 /* We do a lot of casts from pointers to TTRACE_ARG_TYPE; make sure
5778 this is okay. */
5779 if (sizeof (TTRACE_ARG_TYPE) < sizeof (void *))
5780 internal_error (__FILE__, __LINE__, "failed internal consistency check");
5781
5782 if (errno || (memory_page_dictionary.page_size <= 0))
5783 perror_with_name ("sysconf");
5784 }
This page took 0.147695 seconds and 4 git commands to generate.