2004-09-13 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / infttrace.c
1 /* Low level Unix child interface to ttrace, for GDB when running under HP-UX.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdb_string.h"
28 #include "gdb_wait.h"
29 #include "command.h"
30 #include "gdbthread.h"
31 #include "infttrace.h"
32
33 /* We need pstat functionality so that we can get the exec file
34 for a process we attach to.
35
36 According to HP, we should use the 64bit interfaces, so we
37 define _PSTAT64 to achieve this. */
38 #define _PSTAT64
39 #include <sys/pstat.h>
40
41 /* Some hackery to work around a use of the #define name NO_FLAGS
42 * in both gdb and HPUX (bfd.h and /usr/include/machine/vmparam.h).
43 */
44 #ifdef NO_FLAGS
45 #define INFTTRACE_TEMP_HACK NO_FLAGS
46 #undef NO_FLAGS
47 #endif
48
49 #include <sys/param.h>
50 #include <sys/dir.h>
51 #include <signal.h>
52 #include <sys/ioctl.h>
53
54 #include <sys/ttrace.h>
55 #include <sys/mman.h>
56
57 #ifndef NO_PTRACE_H
58 #ifdef PTRACE_IN_WRONG_PLACE
59 #include <ptrace.h>
60 #else
61 #include <sys/ptrace.h>
62 #endif
63 #endif /* NO_PTRACE_H */
64
65 /* Second half of the hackery above. Non-ANSI C, so
66 * we can't use "#error", alas.
67 */
68 #ifdef NO_FLAGS
69 #if (NO_FLAGS != INFTTRACE_TEMP_HACK )
70 /* #error "Hackery to remove warning didn't work right" */
71 #else
72 /* Ok, new def'n of NO_FLAGS is same as old one; no action needed. */
73 #endif
74 #else
75 /* #error "Didn't get expected re-definition of NO_FLAGS" */
76 #define NO_FLAGS INFTTRACE_TEMP_HACK
77 #endif
78
79 #if !defined (PT_SETTRC)
80 #define PT_SETTRC 0 /* Make process traceable by parent */
81 #endif
82 #if !defined (PT_READ_I)
83 #define PT_READ_I 1 /* Read word from text space */
84 #endif
85 #if !defined (PT_READ_D)
86 #define PT_READ_D 2 /* Read word from data space */
87 #endif
88 #if !defined (PT_READ_U)
89 #define PT_READ_U 3 /* Read word from kernel user struct */
90 #endif
91 #if !defined (PT_WRITE_I)
92 #define PT_WRITE_I 4 /* Write word to text space */
93 #endif
94 #if !defined (PT_WRITE_D)
95 #define PT_WRITE_D 5 /* Write word to data space */
96 #endif
97 #if !defined (PT_WRITE_U)
98 #define PT_WRITE_U 6 /* Write word to kernel user struct */
99 #endif
100 #if !defined (PT_CONTINUE)
101 #define PT_CONTINUE 7 /* Continue after signal */
102 #endif
103 #if !defined (PT_STEP)
104 #define PT_STEP 9 /* Set flag for single stepping */
105 #endif
106 #if !defined (PT_KILL)
107 #define PT_KILL 8 /* Send child a SIGKILL signal */
108 #endif
109
110 #ifndef PT_ATTACH
111 #define PT_ATTACH PTRACE_ATTACH
112 #endif
113 #ifndef PT_DETACH
114 #define PT_DETACH PTRACE_DETACH
115 #endif
116
117 #include "gdbcore.h"
118 #ifdef HAVE_SYS_FILE_H
119 #include <sys/file.h>
120 #endif
121
122 /* This semaphore is used to coordinate the child and parent processes
123 after a fork(), and before an exec() by the child. See parent_attach_all
124 for details.
125 */
126 typedef struct
127 {
128 int parent_channel[2]; /* Parent "talks" to [1], child "listens" to [0] */
129 int child_channel[2]; /* Child "talks" to [1], parent "listens" to [0] */
130 }
131 startup_semaphore_t;
132
133 #define SEM_TALK (1)
134 #define SEM_LISTEN (0)
135
136 static startup_semaphore_t startup_semaphore;
137
138 /* See can_touch_threads_of_process for details. */
139 static int vforking_child_pid = 0;
140 static int vfork_in_flight = 0;
141
142 /* 1 if ok as results of a ttrace or ttrace_wait call, 0 otherwise.
143 */
144 #define TT_OK( _status, _errno ) \
145 (((_status) == 1) && ((_errno) == 0))
146
147 #define TTRACE_ARG_TYPE uint64_t
148
149 /* When supplied as the "addr" operand, ttrace interprets this
150 to mean, "from the current address".
151 */
152 #define TT_USE_CURRENT_PC ((TTRACE_ARG_TYPE) TT_NOPC)
153
154 /* When supplied as the "addr", "data" or "addr2" operand for most
155 requests, ttrace interprets this to mean, "pay no heed to this
156 argument".
157 */
158 #define TT_NIL ((TTRACE_ARG_TYPE) TT_NULLARG)
159
160 /* This is capable of holding the value of a 32-bit register. The
161 value is always left-aligned in the buffer; i.e., [0] contains
162 the most-significant byte of the register's value, and [sizeof(reg)]
163 contains the least-significant value.
164
165 ??rehrauer: Yes, this assumes that an int is 32-bits on HP-UX, and
166 that registers are 32-bits on HP-UX. The latter assumption changes
167 with PA2.0.
168 */
169 typedef int register_value_t;
170
171 /********************************************************************
172
173 How this works:
174
175 1. Thread numbers
176
177 The rest of GDB sees threads as being things with different
178 "pid" (process id) values. See "thread.c" for details. The
179 separate threads will be seen and reacted to if infttrace passes
180 back different pid values (for _events_). See wait_for_inferior
181 in inftarg.c.
182
183 So infttrace is going to use thread ids externally, pretending
184 they are process ids, and keep track internally so that it can
185 use the real process id (and thread id) when calling ttrace.
186
187 The data structure that supports this is a linked list of the
188 current threads. Since at some date infttrace will have to
189 deal with multiple processes, each list element records its
190 corresponding pid, rather than having a single global.
191
192 Note that the list is only approximately current; that's ok, as
193 it's up to date when we need it (we hope!). Also, it can contain
194 dead threads, as there's no harm if it does.
195
196 The approach taken here is to bury the translation from external
197 to internal inside "call_ttrace" and a few other places.
198
199 There are some wrinkles:
200
201 o When GDB forks itself to create the debug target process,
202 there's only a pid of 0 around in the child, so the
203 TT_PROC_SETTRC operation uses a more direct call to ttrace;
204 Similiarly, the initial setting of the event mask happens
205 early as well, and so is also special-cased, and an attach
206 uses a real pid;
207
208 o We define an unthreaded application as having a "pseudo"
209 thread;
210
211 o To keep from confusing the rest of GDB, we don't switch
212 the PID for the pseudo thread to a TID. A table will help:
213
214 Rest of GDB sees these PIDs: pid tid1 tid2 tid3 ...
215
216 Our thread list stores: pid pid pid pid ...
217 tid0 tid1 tid2 tid3
218
219 Ttrace sees these TIDS: tid0 tid1 tid2 tid3 ...
220
221 Both pid and tid0 will map to tid0, as there are infttrace.c-internal
222 calls to ttrace using tid0.
223
224 2. Step and Continue
225
226 Since we're implementing the "stop the world" model, sub-model
227 "other threads run during step", we have some stuff to do:
228
229 o User steps require continuing all threads other than the
230 one the user is stepping;
231
232 o Internal debugger steps (such as over a breakpoint or watchpoint,
233 but not out of a library load thunk) require stepping only
234 the selected thread; this means that we have to report the
235 step finish on that thread, which can lead to complications;
236
237 o When a thread is created, it is created running, rather
238 than stopped--so we have to stop it.
239
240 The OS doesn't guarantee the stopped thread list will be stable,
241 no does it guarantee where on the stopped thread list a thread
242 that is single-stepped will wind up: it's possible that it will
243 be off the list for a while, it's possible the step will complete
244 and it will be re-posted to the end...
245
246 This means we have to scan the stopped thread list, build up
247 a work-list, and then run down the work list; we can't do the
248 step/continue during the scan.
249
250 3. Buffering events
251
252 Then there's the issue of waiting for an event. We do this by
253 noticing how many events are reported at the end of each wait.
254 From then on, we "fake" all resumes and steps, returning instantly,
255 and don't do another wait. Once all pending events are reported,
256 we can really resume again.
257
258 To keep this hidden, all the routines which know about tids and
259 pids or real events and simulated ones are static (file-local).
260
261 This code can make lots of calls to ttrace, in particular it
262 can spin down the list of thread states more than once. If this
263 becomes a performance hit, the spin could be done once and the
264 various "tsp" blocks saved, keeping all later spins in this
265 process.
266
267 The O/S doesn't promise to keep the list straight, and so we must
268 re-scan a lot. By observation, it looks like a single-step/wait
269 puts the stepped thread at the end of the list but doesn't change
270 it otherwise.
271
272 ****************************************************************
273 */
274
275 /* Uncomment these to turn on various debugging output */
276 /* #define THREAD_DEBUG */
277 /* #define WAIT_BUFFER_DEBUG */
278 /* #define PARANOIA */
279
280
281 #define INFTTRACE_ALL_THREADS (-1)
282 #define INFTTRACE_STEP (1)
283 #define INFTTRACE_CONTINUE (0)
284
285 /* FIX: this is used in inftarg.c/child_wait, in a hack.
286 */
287 extern int not_same_real_pid;
288
289 /* This is used to count buffered events.
290 */
291 static unsigned int more_events_left = 0;
292
293 /* Process state.
294 */
295 typedef enum process_state_enum
296 {
297 STOPPED,
298 FAKE_STEPPING,
299 FAKE_CONTINUE, /* For later use */
300 RUNNING,
301 FORKING,
302 VFORKING
303 }
304 process_state_t;
305
306 static process_state_t process_state = STOPPED;
307
308 /* User-specified stepping modality.
309 */
310 typedef enum stepping_mode_enum
311 {
312 DO_DEFAULT, /* ...which is a continue! */
313 DO_STEP,
314 DO_CONTINUE
315 }
316 stepping_mode_t;
317
318 /* Action to take on an attach, depends on
319 * what kind (user command, fork, vfork).
320 *
321 * At the moment, this is either:
322 *
323 * o continue with a SIGTRAP signal, or
324 *
325 * o leave stopped.
326 */
327 typedef enum attach_continue_enum
328 {
329 DO_ATTACH_CONTINUE,
330 DONT_ATTACH_CONTINUE
331 }
332 attach_continue_t;
333
334 /* This flag is true if we are doing a step-over-bpt
335 * with buffered events. We will have to be sure to
336 * report the right thread, as otherwise the spaghetti
337 * code in "infrun.c/wait_for_inferior" will get
338 * confused.
339 */
340 static int doing_fake_step = 0;
341 static lwpid_t fake_step_tid = 0;
342 \f
343
344 /****************************************************
345 * Thread information structure routines and types. *
346 ****************************************************
347 */
348 typedef
349 struct thread_info_struct
350 {
351 int am_pseudo; /* This is a pseudo-thread for the process. */
352 int pid; /* Process ID */
353 lwpid_t tid; /* Thread ID */
354 int handled; /* 1 if a buffered event was handled. */
355 int seen; /* 1 if this thread was seen on a traverse. */
356 int terminated; /* 1 if thread has terminated. */
357 int have_signal; /* 1 if signal to be sent */
358 enum target_signal signal_value; /* Signal to send */
359 int have_start; /* 1 if alternate starting address */
360 stepping_mode_t stepping_mode; /* Whether to step or continue */
361 CORE_ADDR start; /* Where to start */
362 int have_state; /* 1 if the event state has been set */
363 ttstate_t last_stop_state; /* The most recently-waited event for this thread. */
364 struct thread_info_struct
365 *next; /* All threads are linked via this field. */
366 struct thread_info_struct
367 *next_pseudo; /* All pseudo-threads are linked via this field. */
368 }
369 thread_info;
370
371 typedef
372 struct thread_info_header_struct
373 {
374 int count;
375 thread_info *head;
376 thread_info *head_pseudo;
377
378 }
379 thread_info_header;
380
381 static thread_info_header thread_head =
382 {0, NULL, NULL};
383 static thread_info_header deleted_threads =
384 {0, NULL, NULL};
385
386 static ptid_t saved_real_ptid;
387 \f
388
389 /*************************************************
390 * Debugging support functions *
391 *************************************************
392 */
393 CORE_ADDR
394 get_raw_pc (lwpid_t ttid)
395 {
396 unsigned long pc_val;
397 int offset;
398 int res;
399
400 offset = register_addr (PC_REGNUM, U_REGS_OFFSET);
401 res = read_from_register_save_state (
402 ttid,
403 (TTRACE_ARG_TYPE) offset,
404 (char *) &pc_val,
405 sizeof (pc_val));
406 if (res <= 0)
407 {
408 return (CORE_ADDR) pc_val;
409 }
410 else
411 {
412 return (CORE_ADDR) 0;
413 }
414 }
415
416 static char *
417 get_printable_name_of_stepping_mode (stepping_mode_t mode)
418 {
419 switch (mode)
420 {
421 case DO_DEFAULT:
422 return "DO_DEFAULT";
423 case DO_STEP:
424 return "DO_STEP";
425 case DO_CONTINUE:
426 return "DO_CONTINUE";
427 default:
428 return "?unknown mode?";
429 }
430 }
431
432 /* This function returns a pointer to a string describing the
433 * ttrace event being reported.
434 */
435 char *
436 get_printable_name_of_ttrace_event (ttevents_t event)
437 {
438 /* This enumeration is "gappy", so don't use a table. */
439 switch (event)
440 {
441
442 case TTEVT_NONE:
443 return "TTEVT_NONE";
444 case TTEVT_SIGNAL:
445 return "TTEVT_SIGNAL";
446 case TTEVT_FORK:
447 return "TTEVT_FORK";
448 case TTEVT_EXEC:
449 return "TTEVT_EXEC";
450 case TTEVT_EXIT:
451 return "TTEVT_EXIT";
452 case TTEVT_VFORK:
453 return "TTEVT_VFORK";
454 case TTEVT_SYSCALL_RETURN:
455 return "TTEVT_SYSCALL_RETURN";
456 case TTEVT_LWP_CREATE:
457 return "TTEVT_LWP_CREATE";
458 case TTEVT_LWP_TERMINATE:
459 return "TTEVT_LWP_TERMINATE";
460 case TTEVT_LWP_EXIT:
461 return "TTEVT_LWP_EXIT";
462 case TTEVT_LWP_ABORT_SYSCALL:
463 return "TTEVT_LWP_ABORT_SYSCALL";
464 case TTEVT_SYSCALL_ENTRY:
465 return "TTEVT_SYSCALL_ENTRY";
466 case TTEVT_SYSCALL_RESTART:
467 return "TTEVT_SYSCALL_RESTART";
468 default:
469 return "?new event?";
470 }
471 }
472 \f
473
474 /* This function translates the ttrace request enumeration into
475 * a character string that is its printable (aka "human readable")
476 * name.
477 */
478 char *
479 get_printable_name_of_ttrace_request (ttreq_t request)
480 {
481 if (!IS_TTRACE_REQ (request))
482 return "?bad req?";
483
484 /* This enumeration is "gappy", so don't use a table. */
485 switch (request)
486 {
487 case TT_PROC_SETTRC:
488 return "TT_PROC_SETTRC";
489 case TT_PROC_ATTACH:
490 return "TT_PROC_ATTACH";
491 case TT_PROC_DETACH:
492 return "TT_PROC_DETACH";
493 case TT_PROC_RDTEXT:
494 return "TT_PROC_RDTEXT";
495 case TT_PROC_WRTEXT:
496 return "TT_PROC_WRTEXT";
497 case TT_PROC_RDDATA:
498 return "TT_PROC_RDDATA";
499 case TT_PROC_WRDATA:
500 return "TT_PROC_WRDATA";
501 case TT_PROC_STOP:
502 return "TT_PROC_STOP";
503 case TT_PROC_CONTINUE:
504 return "TT_PROC_CONTINUE";
505 case TT_PROC_GET_PATHNAME:
506 return "TT_PROC_GET_PATHNAME";
507 case TT_PROC_GET_EVENT_MASK:
508 return "TT_PROC_GET_EVENT_MASK";
509 case TT_PROC_SET_EVENT_MASK:
510 return "TT_PROC_SET_EVENT_MASK";
511 case TT_PROC_GET_FIRST_LWP_STATE:
512 return "TT_PROC_GET_FIRST_LWP_STATE";
513 case TT_PROC_GET_NEXT_LWP_STATE:
514 return "TT_PROC_GET_NEXT_LWP_STATE";
515 case TT_PROC_EXIT:
516 return "TT_PROC_EXIT";
517 case TT_PROC_GET_MPROTECT:
518 return "TT_PROC_GET_MPROTECT";
519 case TT_PROC_SET_MPROTECT:
520 return "TT_PROC_SET_MPROTECT";
521 case TT_PROC_SET_SCBM:
522 return "TT_PROC_SET_SCBM";
523 case TT_LWP_STOP:
524 return "TT_LWP_STOP";
525 case TT_LWP_CONTINUE:
526 return "TT_LWP_CONTINUE";
527 case TT_LWP_SINGLE:
528 return "TT_LWP_SINGLE";
529 case TT_LWP_RUREGS:
530 return "TT_LWP_RUREGS";
531 case TT_LWP_WUREGS:
532 return "TT_LWP_WUREGS";
533 case TT_LWP_GET_EVENT_MASK:
534 return "TT_LWP_GET_EVENT_MASK";
535 case TT_LWP_SET_EVENT_MASK:
536 return "TT_LWP_SET_EVENT_MASK";
537 case TT_LWP_GET_STATE:
538 return "TT_LWP_GET_STATE";
539 default:
540 return "?new req?";
541 }
542 }
543 \f
544
545 /* This function translates the process state enumeration into
546 * a character string that is its printable (aka "human readable")
547 * name.
548 */
549 static char *
550 get_printable_name_of_process_state (process_state_t process_state)
551 {
552 switch (process_state)
553 {
554 case STOPPED:
555 return "STOPPED";
556 case FAKE_STEPPING:
557 return "FAKE_STEPPING";
558 case RUNNING:
559 return "RUNNING";
560 case FORKING:
561 return "FORKING";
562 case VFORKING:
563 return "VFORKING";
564 default:
565 return "?some unknown state?";
566 }
567 }
568
569 /* Set a ttrace thread state to a safe, initial state.
570 */
571 static void
572 clear_ttstate_t (ttstate_t *tts)
573 {
574 tts->tts_pid = 0;
575 tts->tts_lwpid = 0;
576 tts->tts_user_tid = 0;
577 tts->tts_event = TTEVT_NONE;
578 }
579
580 /* Copy ttrace thread state TTS_FROM into TTS_TO.
581 */
582 static void
583 copy_ttstate_t (ttstate_t *tts_to, ttstate_t *tts_from)
584 {
585 memcpy ((char *) tts_to, (char *) tts_from, sizeof (*tts_to));
586 }
587
588 /* Are there any live threads we know about?
589 */
590 static int
591 any_thread_records (void)
592 {
593 return (thread_head.count > 0);
594 }
595
596 /* Create, fill in and link in a thread descriptor.
597 */
598 static thread_info *
599 create_thread_info (int pid, lwpid_t tid)
600 {
601 thread_info *new_p;
602 thread_info *p;
603 int thread_count_of_pid;
604
605 new_p = xmalloc (sizeof (thread_info));
606 new_p->pid = pid;
607 new_p->tid = tid;
608 new_p->have_signal = 0;
609 new_p->have_start = 0;
610 new_p->have_state = 0;
611 clear_ttstate_t (&new_p->last_stop_state);
612 new_p->am_pseudo = 0;
613 new_p->handled = 0;
614 new_p->seen = 0;
615 new_p->terminated = 0;
616 new_p->next = NULL;
617 new_p->next_pseudo = NULL;
618 new_p->stepping_mode = DO_DEFAULT;
619
620 if (0 == thread_head.count)
621 {
622 #ifdef THREAD_DEBUG
623 if (debug_on)
624 printf ("First thread, pid %d tid %d!\n", pid, tid);
625 #endif
626 saved_real_ptid = inferior_ptid;
627 }
628 else
629 {
630 #ifdef THREAD_DEBUG
631 if (debug_on)
632 printf ("Subsequent thread, pid %d tid %d\n", pid, tid);
633 #endif
634 }
635
636 /* Another day, another thread...
637 */
638 thread_head.count++;
639
640 /* The new thread always goes at the head of the list.
641 */
642 new_p->next = thread_head.head;
643 thread_head.head = new_p;
644
645 /* Is this the "pseudo" thread of a process? It is if there's
646 * no other thread for this process on the list. (Note that this
647 * accomodates multiple processes, such as we see even for simple
648 * cases like forking "non-threaded" programs.)
649 */
650 p = thread_head.head;
651 thread_count_of_pid = 0;
652 while (p)
653 {
654 if (p->pid == new_p->pid)
655 thread_count_of_pid++;
656 p = p->next;
657 }
658
659 /* Did we see any other threads for this pid? (Recall that we just
660 * added this thread to the list...)
661 */
662 if (thread_count_of_pid == 1)
663 {
664 new_p->am_pseudo = 1;
665 new_p->next_pseudo = thread_head.head_pseudo;
666 thread_head.head_pseudo = new_p;
667 }
668
669 return new_p;
670 }
671
672 /* Get rid of our thread info.
673 */
674 static void
675 clear_thread_info (void)
676 {
677 thread_info *p;
678 thread_info *q;
679
680 #ifdef THREAD_DEBUG
681 if (debug_on)
682 printf ("Clearing all thread info\n");
683 #endif
684
685 p = thread_head.head;
686 while (p)
687 {
688 q = p;
689 p = p->next;
690 xfree (q);
691 }
692
693 thread_head.head = NULL;
694 thread_head.head_pseudo = NULL;
695 thread_head.count = 0;
696
697 p = deleted_threads.head;
698 while (p)
699 {
700 q = p;
701 p = p->next;
702 xfree (q);
703 }
704
705 deleted_threads.head = NULL;
706 deleted_threads.head_pseudo = NULL;
707 deleted_threads.count = 0;
708
709 /* No threads, so can't have pending events.
710 */
711 more_events_left = 0;
712 }
713
714 /* Given a tid, find the thread block for it.
715 */
716 static thread_info *
717 find_thread_info (lwpid_t tid)
718 {
719 thread_info *p;
720
721 for (p = thread_head.head; p; p = p->next)
722 {
723 if (p->tid == tid)
724 {
725 return p;
726 }
727 }
728
729 for (p = deleted_threads.head; p; p = p->next)
730 {
731 if (p->tid == tid)
732 {
733 return p;
734 }
735 }
736
737 return NULL;
738 }
739
740 /* For any but the pseudo thread, this maps to the
741 * thread ID. For the pseudo thread, if you pass either
742 * the thread id or the PID, you get the pseudo thread ID.
743 *
744 * We have to be prepared for core gdb to ask about
745 * deleted threads. We do the map, but we don't like it.
746 */
747 static lwpid_t
748 map_from_gdb_tid (lwpid_t gdb_tid)
749 {
750 thread_info *p;
751
752 /* First assume gdb_tid really is a tid, and try to find a
753 * matching entry on the threads list.
754 */
755 for (p = thread_head.head; p; p = p->next)
756 {
757 if (p->tid == gdb_tid)
758 return gdb_tid;
759 }
760
761 /* It doesn't appear to be a tid; perhaps it's really a pid?
762 * Try to find a "pseudo" thread entry on the threads list.
763 */
764 for (p = thread_head.head_pseudo; p != NULL; p = p->next_pseudo)
765 {
766 if (p->pid == gdb_tid)
767 return p->tid;
768 }
769
770 /* Perhaps it's the tid of a deleted thread we may still
771 * have some knowledge of?
772 */
773 for (p = deleted_threads.head; p; p = p->next)
774 {
775 if (p->tid == gdb_tid)
776 return gdb_tid;
777 }
778
779 /* Or perhaps it's the pid of a deleted process we may still
780 * have knowledge of?
781 */
782 for (p = deleted_threads.head_pseudo; p != NULL; p = p->next_pseudo)
783 {
784 if (p->pid == gdb_tid)
785 return p->tid;
786 }
787
788 return 0; /* Error? */
789 }
790
791 /* Map the other way: from a real tid to the
792 * "pid" known by core gdb. This tid may be
793 * for a thread that just got deleted, so we
794 * also need to consider deleted threads.
795 */
796 static lwpid_t
797 map_to_gdb_tid (lwpid_t real_tid)
798 {
799 thread_info *p;
800
801 for (p = thread_head.head; p; p = p->next)
802 {
803 if (p->tid == real_tid)
804 {
805 if (p->am_pseudo)
806 return p->pid;
807 else
808 return real_tid;
809 }
810 }
811
812 for (p = deleted_threads.head; p; p = p->next)
813 {
814 if (p->tid == real_tid)
815 if (p->am_pseudo)
816 return p->pid; /* Error? */
817 else
818 return real_tid;
819 }
820
821 return 0; /* Error? Never heard of this thread! */
822 }
823
824 /* Do any threads have saved signals?
825 */
826 static int
827 saved_signals_exist (void)
828 {
829 thread_info *p;
830
831 for (p = thread_head.head; p; p = p->next)
832 {
833 if (p->have_signal)
834 {
835 return 1;
836 }
837 }
838
839 return 0;
840 }
841
842 /* Is this the tid for the zero-th thread?
843 */
844 static int
845 is_pseudo_thread (lwpid_t tid)
846 {
847 thread_info *p = find_thread_info (tid);
848 if (NULL == p || p->terminated)
849 return 0;
850 else
851 return p->am_pseudo;
852 }
853
854 /* Is this thread terminated?
855 */
856 static int
857 is_terminated (lwpid_t tid)
858 {
859 thread_info *p = find_thread_info (tid);
860
861 if (NULL != p)
862 return p->terminated;
863
864 return 0;
865 }
866
867 /* Is this pid a real PID or a TID?
868 */
869 static int
870 is_process_id (int pid)
871 {
872 lwpid_t tid;
873 thread_info *tinfo;
874 pid_t this_pid;
875 int this_pid_count;
876
877 /* What does PID really represent?
878 */
879 tid = map_from_gdb_tid (pid);
880 if (tid <= 0)
881 return 0; /* Actually, is probably an error... */
882
883 tinfo = find_thread_info (tid);
884
885 /* Does it appear to be a true thread?
886 */
887 if (!tinfo->am_pseudo)
888 return 0;
889
890 /* Else, it looks like it may be a process. See if there's any other
891 * threads with the same process ID, though. If there are, then TID
892 * just happens to be the first thread of several for this process.
893 */
894 this_pid = tinfo->pid;
895 this_pid_count = 0;
896 for (tinfo = thread_head.head; tinfo; tinfo = tinfo->next)
897 {
898 if (tinfo->pid == this_pid)
899 this_pid_count++;
900 }
901
902 return (this_pid_count == 1);
903 }
904
905
906 /* Add a thread to our info. Prevent duplicate entries.
907 */
908 static thread_info *
909 add_tthread (int pid, lwpid_t tid)
910 {
911 thread_info *p;
912
913 p = find_thread_info (tid);
914 if (NULL == p)
915 p = create_thread_info (pid, tid);
916
917 return p;
918 }
919
920 /* Notice that a thread was deleted.
921 */
922 static void
923 del_tthread (lwpid_t tid)
924 {
925 thread_info *p;
926 thread_info *chase;
927
928 if (thread_head.count <= 0)
929 {
930 error ("Internal error in thread database.");
931 return;
932 }
933
934 chase = NULL;
935 for (p = thread_head.head; p; p = p->next)
936 {
937 if (p->tid == tid)
938 {
939
940 #ifdef THREAD_DEBUG
941 if (debug_on)
942 printf ("Delete here: %d \n", tid);
943 #endif
944
945 if (p->am_pseudo)
946 {
947 /*
948 * Deleting a main thread is ok if we're doing
949 * a parent-follow on a child; this is odd but
950 * not wrong. It apparently _doesn't_ happen
951 * on the child-follow, as we don't just delete
952 * the pseudo while keeping the rest of the
953 * threads around--instead, we clear out the whole
954 * thread list at once.
955 */
956 thread_info *q;
957 thread_info *q_chase;
958
959 q_chase = NULL;
960 for (q = thread_head.head_pseudo; q; q = q->next)
961 {
962 if (q == p)
963 {
964 /* Remove from pseudo list.
965 */
966 if (q_chase == NULL)
967 thread_head.head_pseudo = p->next_pseudo;
968 else
969 q_chase->next = p->next_pseudo;
970 }
971 else
972 q_chase = q;
973 }
974 }
975
976 /* Remove from live list.
977 */
978 thread_head.count--;
979
980 if (NULL == chase)
981 thread_head.head = p->next;
982 else
983 chase->next = p->next;
984
985 /* Add to deleted thread list.
986 */
987 p->next = deleted_threads.head;
988 deleted_threads.head = p;
989 deleted_threads.count++;
990 if (p->am_pseudo)
991 {
992 p->next_pseudo = deleted_threads.head_pseudo;
993 deleted_threads.head_pseudo = p;
994 }
995 p->terminated = 1;
996
997 return;
998 }
999
1000 else
1001 chase = p;
1002 }
1003 }
1004
1005 /* Get the pid for this tid. (Has to be a real TID!).
1006 */
1007 static int
1008 get_pid_for (lwpid_t tid)
1009 {
1010 thread_info *p;
1011
1012 for (p = thread_head.head; p; p = p->next)
1013 {
1014 if (p->tid == tid)
1015 {
1016 return p->pid;
1017 }
1018 }
1019
1020 for (p = deleted_threads.head; p; p = p->next)
1021 {
1022 if (p->tid == tid)
1023 {
1024 return p->pid;
1025 }
1026 }
1027
1028 return 0;
1029 }
1030
1031 /* Note that this thread's current event has been handled.
1032 */
1033 static void
1034 set_handled (int pid, lwpid_t tid)
1035 {
1036 thread_info *p;
1037
1038 p = find_thread_info (tid);
1039 if (NULL == p)
1040 p = add_tthread (pid, tid);
1041
1042 p->handled = 1;
1043 }
1044
1045 /* Was this thread's current event handled?
1046 */
1047 static int
1048 was_handled (lwpid_t tid)
1049 {
1050 thread_info *p;
1051
1052 p = find_thread_info (tid);
1053 if (NULL != p)
1054 return p->handled;
1055
1056 return 0; /* New threads have not been handled */
1057 }
1058
1059 /* Set this thread to unhandled.
1060 */
1061 static void
1062 clear_handled (lwpid_t tid)
1063 {
1064 thread_info *p;
1065
1066 #ifdef WAIT_BUFFER_DEBUG
1067 if (debug_on)
1068 printf ("clear_handled %d\n", (int) tid);
1069 #endif
1070
1071 p = find_thread_info (tid);
1072 if (p == NULL)
1073 error ("Internal error: No thread state to clear?");
1074
1075 p->handled = 0;
1076 }
1077
1078 /* Set all threads to unhandled.
1079 */
1080 static void
1081 clear_all_handled (void)
1082 {
1083 thread_info *p;
1084
1085 #ifdef WAIT_BUFFER_DEBUG
1086 if (debug_on)
1087 printf ("clear_all_handled\n");
1088 #endif
1089
1090 for (p = thread_head.head; p; p = p->next)
1091 {
1092 p->handled = 0;
1093 }
1094
1095 for (p = deleted_threads.head; p; p = p->next)
1096 {
1097 p->handled = 0;
1098 }
1099 }
1100
1101 /* Set this thread to default stepping mode.
1102 */
1103 static void
1104 clear_stepping_mode (lwpid_t tid)
1105 {
1106 thread_info *p;
1107
1108 #ifdef WAIT_BUFFER_DEBUG
1109 if (debug_on)
1110 printf ("clear_stepping_mode %d\n", (int) tid);
1111 #endif
1112
1113 p = find_thread_info (tid);
1114 if (p == NULL)
1115 error ("Internal error: No thread state to clear?");
1116
1117 p->stepping_mode = DO_DEFAULT;
1118 }
1119
1120 /* Set all threads to do default continue on resume.
1121 */
1122 static void
1123 clear_all_stepping_mode (void)
1124 {
1125 thread_info *p;
1126
1127 #ifdef WAIT_BUFFER_DEBUG
1128 if (debug_on)
1129 printf ("clear_all_stepping_mode\n");
1130 #endif
1131
1132 for (p = thread_head.head; p; p = p->next)
1133 {
1134 p->stepping_mode = DO_DEFAULT;
1135 }
1136
1137 for (p = deleted_threads.head; p; p = p->next)
1138 {
1139 p->stepping_mode = DO_DEFAULT;
1140 }
1141 }
1142
1143 /* Set all threads to unseen on this pass.
1144 */
1145 static void
1146 set_all_unseen (void)
1147 {
1148 thread_info *p;
1149
1150 for (p = thread_head.head; p; p = p->next)
1151 {
1152 p->seen = 0;
1153 }
1154 }
1155
1156 #if (defined( THREAD_DEBUG ) || defined( PARANOIA ))
1157 /* debugging routine.
1158 */
1159 static void
1160 print_tthread (thread_info *p)
1161 {
1162 printf (" Thread pid %d, tid %d", p->pid, p->tid);
1163 if (p->have_state)
1164 printf (", event is %s",
1165 get_printable_name_of_ttrace_event (p->last_stop_state.tts_event));
1166
1167 if (p->am_pseudo)
1168 printf (", pseudo thread");
1169
1170 if (p->have_signal)
1171 printf (", have signal 0x%x", p->signal_value);
1172
1173 if (p->have_start)
1174 printf (", have start at 0x%x", p->start);
1175
1176 printf (", step is %s", get_printable_name_of_stepping_mode (p->stepping_mode));
1177
1178 if (p->handled)
1179 printf (", handled");
1180 else
1181 printf (", not handled");
1182
1183 if (p->seen)
1184 printf (", seen");
1185 else
1186 printf (", not seen");
1187
1188 printf ("\n");
1189 }
1190
1191 static void
1192 print_tthreads (void)
1193 {
1194 thread_info *p;
1195
1196 if (thread_head.count == 0)
1197 printf ("Thread list is empty\n");
1198 else
1199 {
1200 printf ("Thread list has ");
1201 if (thread_head.count == 1)
1202 printf ("1 entry:\n");
1203 else
1204 printf ("%d entries:\n", thread_head.count);
1205 for (p = thread_head.head; p; p = p->next)
1206 {
1207 print_tthread (p);
1208 }
1209 }
1210
1211 if (deleted_threads.count == 0)
1212 printf ("Deleted thread list is empty\n");
1213 else
1214 {
1215 printf ("Deleted thread list has ");
1216 if (deleted_threads.count == 1)
1217 printf ("1 entry:\n");
1218 else
1219 printf ("%d entries:\n", deleted_threads.count);
1220
1221 for (p = deleted_threads.head; p; p = p->next)
1222 {
1223 print_tthread (p);
1224 }
1225 }
1226 }
1227 #endif
1228
1229 /* Update the thread list based on the "seen" bits.
1230 */
1231 static void
1232 update_thread_list (void)
1233 {
1234 thread_info *p;
1235 thread_info *chase;
1236
1237 chase = NULL;
1238 for (p = thread_head.head; p; p = p->next)
1239 {
1240 /* Is this an "unseen" thread which really happens to be a process?
1241 If so, is it inferior_ptid and is a vfork in flight? If yes to
1242 all, then DON'T REMOVE IT! We're in the midst of moving a vfork
1243 operation, which is a multiple step thing, to the point where we
1244 can touch the parent again. We've most likely stopped to examine
1245 the child at a late stage in the vfork, and if we're not following
1246 the child, we'd best not treat the parent as a dead "thread"...
1247 */
1248 if ((!p->seen) && p->am_pseudo && vfork_in_flight
1249 && (p->pid != vforking_child_pid))
1250 p->seen = 1;
1251
1252 if (!p->seen)
1253 {
1254 /* Remove this one
1255 */
1256
1257 #ifdef THREAD_DEBUG
1258 if (debug_on)
1259 printf ("Delete unseen thread: %d \n", p->tid);
1260 #endif
1261 del_tthread (p->tid);
1262 }
1263 }
1264 }
1265 \f
1266
1267
1268 /************************************************
1269 * O/S call wrappers *
1270 ************************************************
1271 */
1272
1273 /* This function simply calls ttrace with the given arguments.
1274 * It exists so that all calls to ttrace are isolated. All
1275 * parameters should be as specified by "man 2 ttrace".
1276 *
1277 * No other "raw" calls to ttrace should exist in this module.
1278 */
1279 static int
1280 call_real_ttrace (ttreq_t request, pid_t pid, lwpid_t tid, TTRACE_ARG_TYPE addr,
1281 TTRACE_ARG_TYPE data, TTRACE_ARG_TYPE addr2)
1282 {
1283 int tt_status;
1284
1285 errno = 0;
1286 tt_status = ttrace (request, pid, tid, addr, data, addr2);
1287
1288 #ifdef THREAD_DEBUG
1289 if (errno)
1290 {
1291 /* Don't bother for a known benign error: if you ask for the
1292 * first thread state, but there is only one thread and it's
1293 * not stopped, ttrace complains.
1294 *
1295 * We have this inside the #ifdef because our caller will do
1296 * this check for real.
1297 */
1298 if (request != TT_PROC_GET_FIRST_LWP_STATE
1299 || errno != EPROTO)
1300 {
1301 if (debug_on)
1302 printf ("TT fail for %s, with pid %d, tid %d, status %d \n",
1303 get_printable_name_of_ttrace_request (request),
1304 pid, tid, tt_status);
1305 }
1306 }
1307 #endif
1308
1309 #if 0
1310 /* ??rehrauer: It would probably be most robust to catch and report
1311 * failed requests here. However, some clients of this interface
1312 * seem to expect to catch & deal with them, so we'd best not.
1313 */
1314 if (errno)
1315 {
1316 strcpy (reason_for_failure, "ttrace (");
1317 strcat (reason_for_failure, get_printable_name_of_ttrace_request (request));
1318 strcat (reason_for_failure, ")");
1319 printf ("ttrace error, errno = %d\n", errno);
1320 perror_with_name (reason_for_failure);
1321 }
1322 #endif
1323
1324 return tt_status;
1325 }
1326 \f
1327
1328 /* This function simply calls ttrace_wait with the given arguments.
1329 * It exists so that all calls to ttrace_wait are isolated.
1330 *
1331 * No "raw" calls to ttrace_wait should exist elsewhere.
1332 */
1333 static int
1334 call_real_ttrace_wait (int pid, lwpid_t tid, ttwopt_t option, ttstate_t *tsp,
1335 size_t tsp_size)
1336 {
1337 int ttw_status;
1338 thread_info *tinfo = NULL;
1339
1340 errno = 0;
1341 ttw_status = ttrace_wait (pid, tid, option, tsp, tsp_size);
1342
1343 if (errno)
1344 {
1345 #ifdef THREAD_DEBUG
1346 if (debug_on)
1347 printf ("TW fail with pid %d, tid %d \n", pid, tid);
1348 #endif
1349
1350 perror_with_name ("ttrace wait");
1351 }
1352
1353 return ttw_status;
1354 }
1355 \f
1356
1357 /* A process may have one or more kernel threads, of which all or
1358 none may be stopped. This function returns the ID of the first
1359 kernel thread in a stopped state, or 0 if none are stopped.
1360
1361 This function can be used with get_process_next_stopped_thread_id
1362 to iterate over the IDs of all stopped threads of this process.
1363 */
1364 static lwpid_t
1365 get_process_first_stopped_thread_id (int pid, ttstate_t *thread_state)
1366 {
1367 int tt_status;
1368
1369 tt_status = call_real_ttrace (TT_PROC_GET_FIRST_LWP_STATE,
1370 (pid_t) pid,
1371 (lwpid_t) TT_NIL,
1372 (TTRACE_ARG_TYPE) thread_state,
1373 (TTRACE_ARG_TYPE) sizeof (*thread_state),
1374 TT_NIL);
1375
1376 if (errno)
1377 {
1378 if (errno == EPROTO)
1379 {
1380 /* This is an error we can handle: there isn't any stopped
1381 * thread. This happens when we're re-starting the application
1382 * and it has only one thread. GET_NEXT handles the case of
1383 * no more stopped threads well; GET_FIRST doesn't. (A ttrace
1384 * "feature".)
1385 */
1386 tt_status = 1;
1387 errno = 0;
1388 return 0;
1389 }
1390 else
1391 perror_with_name ("ttrace");
1392 }
1393
1394 if (tt_status < 0)
1395 /* Failed somehow.
1396 */
1397 return 0;
1398
1399 return thread_state->tts_lwpid;
1400 }
1401 \f
1402
1403 /* This function returns the ID of the "next" kernel thread in a
1404 stopped state, or 0 if there are none. "Next" refers to the
1405 thread following that of the last successful call to this
1406 function or to get_process_first_stopped_thread_id, using
1407 the value of thread_state returned by that call.
1408
1409 This function can be used with get_process_first_stopped_thread_id
1410 to iterate over the IDs of all stopped threads of this process.
1411 */
1412 static lwpid_t
1413 get_process_next_stopped_thread_id (int pid, ttstate_t *thread_state)
1414 {
1415 int tt_status;
1416
1417 tt_status = call_real_ttrace (
1418 TT_PROC_GET_NEXT_LWP_STATE,
1419 (pid_t) pid,
1420 (lwpid_t) TT_NIL,
1421 (TTRACE_ARG_TYPE) thread_state,
1422 (TTRACE_ARG_TYPE) sizeof (*thread_state),
1423 TT_NIL);
1424 if (errno)
1425 perror_with_name ("ttrace");
1426
1427 if (tt_status < 0)
1428 /* Failed
1429 */
1430 return 0;
1431
1432 else if (tt_status == 0)
1433 {
1434 /* End of list, no next state. Don't return the
1435 * tts_lwpid, as it's a meaningless "240".
1436 *
1437 * This is an HPUX "feature".
1438 */
1439 return 0;
1440 }
1441
1442 return thread_state->tts_lwpid;
1443 }
1444
1445 /* ??rehrauer: Eventually this function perhaps should be calling
1446 pid_to_thread_id. However, that function currently does nothing
1447 for HP-UX. Even then, I'm not clear whether that function
1448 will return a "kernel" thread ID, or a "user" thread ID. If
1449 the former, we can just call it here. If the latter, we must
1450 map from the "user" tid to a "kernel" tid.
1451
1452 NOTE: currently not called.
1453 */
1454 static lwpid_t
1455 get_active_tid_of_pid (int pid)
1456 {
1457 ttstate_t thread_state;
1458
1459 return get_process_first_stopped_thread_id (pid, &thread_state);
1460 }
1461
1462 /* This function returns 1 if tt_request is a ttrace request that
1463 * operates upon all threads of a (i.e., the entire) process.
1464 */
1465 int
1466 is_process_ttrace_request (ttreq_t tt_request)
1467 {
1468 return IS_TTRACE_PROCREQ (tt_request);
1469 }
1470 \f
1471
1472 /* This function translates a thread ttrace request into
1473 * the equivalent process request for a one-thread process.
1474 */
1475 static ttreq_t
1476 make_process_version (ttreq_t request)
1477 {
1478 if (!IS_TTRACE_REQ (request))
1479 {
1480 error ("Internal error, bad ttrace request made\n");
1481 return -1;
1482 }
1483
1484 switch (request)
1485 {
1486 case TT_LWP_STOP:
1487 return TT_PROC_STOP;
1488
1489 case TT_LWP_CONTINUE:
1490 return TT_PROC_CONTINUE;
1491
1492 case TT_LWP_GET_EVENT_MASK:
1493 return TT_PROC_GET_EVENT_MASK;
1494
1495 case TT_LWP_SET_EVENT_MASK:
1496 return TT_PROC_SET_EVENT_MASK;
1497
1498 case TT_LWP_SINGLE:
1499 case TT_LWP_RUREGS:
1500 case TT_LWP_WUREGS:
1501 case TT_LWP_GET_STATE:
1502 return -1; /* No equivalent */
1503
1504 default:
1505 return request;
1506 }
1507 }
1508 \f
1509
1510 /* This function translates the "pid" used by the rest of
1511 * gdb to a real pid and a tid. It then calls "call_real_ttrace"
1512 * with the given arguments.
1513 *
1514 * In general, other parts of this module should call this
1515 * function when they are dealing with external users, who only
1516 * have tids to pass (but they call it "pid" for historical
1517 * reasons).
1518 */
1519 static int
1520 call_ttrace (ttreq_t request, int gdb_tid, TTRACE_ARG_TYPE addr,
1521 TTRACE_ARG_TYPE data, TTRACE_ARG_TYPE addr2)
1522 {
1523 lwpid_t real_tid;
1524 int real_pid;
1525 ttreq_t new_request;
1526 int tt_status;
1527 char reason_for_failure[100]; /* Arbitrary size, should be big enough. */
1528
1529 #ifdef THREAD_DEBUG
1530 int is_interesting = 0;
1531
1532 if (TT_LWP_RUREGS == request)
1533 {
1534 is_interesting = 1; /* Adjust code here as desired */
1535 }
1536
1537 if (is_interesting && 0 && debug_on)
1538 {
1539 if (!is_process_ttrace_request (request))
1540 {
1541 printf ("TT: Thread request, tid is %d", gdb_tid);
1542 printf ("== SINGLE at %x", addr);
1543 }
1544 else
1545 {
1546 printf ("TT: Process request, tid is %d\n", gdb_tid);
1547 printf ("==! SINGLE at %x", addr);
1548 }
1549 }
1550 #endif
1551
1552 /* The initial SETTRC and SET_EVENT_MASK calls (and all others
1553 * which happen before any threads get set up) should go
1554 * directly to "call_real_ttrace", so they don't happen here.
1555 *
1556 * But hardware watchpoints do a SET_EVENT_MASK, so we can't
1557 * rule them out....
1558 */
1559 #ifdef THREAD_DEBUG
1560 if (request == TT_PROC_SETTRC && debug_on)
1561 printf ("Unexpected call for TT_PROC_SETTRC\n");
1562 #endif
1563
1564 /* Sometimes we get called with a bogus tid (e.g., if a
1565 * thread has terminated, we return 0; inftarg later asks
1566 * whether the thread has exited/forked/vforked).
1567 */
1568 if (gdb_tid == 0)
1569 {
1570 errno = ESRCH; /* ttrace's response would probably be "No such process". */
1571 return -1;
1572 }
1573
1574 /* All other cases should be able to expect that there are
1575 * thread records.
1576 */
1577 if (!any_thread_records ())
1578 {
1579 #ifdef THREAD_DEBUG
1580 if (debug_on)
1581 warning ("No thread records for ttrace call");
1582 #endif
1583 errno = ESRCH; /* ttrace's response would be "No such process". */
1584 return -1;
1585 }
1586
1587 /* OK, now the task is to translate the incoming tid into
1588 * a pid/tid pair.
1589 */
1590 real_tid = map_from_gdb_tid (gdb_tid);
1591 real_pid = get_pid_for (real_tid);
1592
1593 /* Now check the result. "Real_pid" is NULL if our list
1594 * didn't find it. We have some tricks we can play to fix
1595 * this, however.
1596 */
1597 if (0 == real_pid)
1598 {
1599 ttstate_t thread_state;
1600
1601 #ifdef THREAD_DEBUG
1602 if (debug_on)
1603 printf ("No saved pid for tid %d\n", gdb_tid);
1604 #endif
1605
1606 if (is_process_ttrace_request (request))
1607 {
1608
1609 /* Ok, we couldn't get a tid. Try to translate to
1610 * the equivalent process operation. We expect this
1611 * NOT to happen, so this is a desparation-type
1612 * move. It can happen if there is an internal
1613 * error and so no "wait()" call is ever done.
1614 */
1615 new_request = make_process_version (request);
1616 if (new_request == -1)
1617 {
1618
1619 #ifdef THREAD_DEBUG
1620 if (debug_on)
1621 printf ("...and couldn't make process version of thread operation\n");
1622 #endif
1623
1624 /* Use hacky saved pid, which won't always be correct
1625 * in the multi-process future. Use tid as thread,
1626 * probably dooming this to failure. FIX!
1627 */
1628 if (! ptid_equal (saved_real_ptid, null_ptid))
1629 {
1630 #ifdef THREAD_DEBUG
1631 if (debug_on)
1632 printf ("...using saved pid %d\n",
1633 PIDGET (saved_real_ptid));
1634 #endif
1635
1636 real_pid = PIDGET (saved_real_ptid);
1637 real_tid = gdb_tid;
1638 }
1639
1640 else
1641 error ("Unable to perform thread operation");
1642 }
1643
1644 else
1645 {
1646 /* Sucessfully translated this to a process request,
1647 * which needs no thread value.
1648 */
1649 real_pid = gdb_tid;
1650 real_tid = 0;
1651 request = new_request;
1652
1653 #ifdef THREAD_DEBUG
1654 if (debug_on)
1655 {
1656 printf ("Translated thread request to process request\n");
1657 if (ptid_equal (saved_real_ptid, null_ptid))
1658 printf ("...but there's no saved pid\n");
1659
1660 else
1661 {
1662 if (gdb_tid != PIDGET (saved_real_ptid))
1663 printf ("...but have the wrong pid (%d rather than %d)\n",
1664 gdb_tid, PIDGET (saved_real_ptid));
1665 }
1666 }
1667 #endif
1668 } /* Translated to a process request */
1669 } /* Is a process request */
1670
1671 else
1672 {
1673 /* We have to have a thread. Ooops.
1674 */
1675 error ("Thread request with no threads (%s)",
1676 get_printable_name_of_ttrace_request (request));
1677 }
1678 }
1679
1680 /* Ttrace doesn't like to see tid values on process requests,
1681 * even if we have the right one.
1682 */
1683 if (is_process_ttrace_request (request))
1684 {
1685 real_tid = 0;
1686 }
1687
1688 #ifdef THREAD_DEBUG
1689 if (is_interesting && 0 && debug_on)
1690 {
1691 printf (" now tid %d, pid %d\n", real_tid, real_pid);
1692 printf (" request is %s\n", get_printable_name_of_ttrace_request (request));
1693 }
1694 #endif
1695
1696 /* Finally, the (almost) real call.
1697 */
1698 tt_status = call_real_ttrace (request, real_pid, real_tid, addr, data, addr2);
1699
1700 #ifdef THREAD_DEBUG
1701 if (is_interesting && debug_on)
1702 {
1703 if (!TT_OK (tt_status, errno)
1704 && !(tt_status == 0 & errno == 0))
1705 printf (" got error (errno==%d, status==%d)\n", errno, tt_status);
1706 }
1707 #endif
1708
1709 return tt_status;
1710 }
1711
1712
1713 /* Stop all the threads of a process.
1714
1715 * NOTE: use of TT_PROC_STOP can cause a thread with a real event
1716 * to get a TTEVT_NONE event, discarding the old event. Be
1717 * very careful, and only call TT_PROC_STOP when you mean it!
1718 */
1719 static void
1720 stop_all_threads_of_process (pid_t real_pid)
1721 {
1722 int ttw_status;
1723
1724 ttw_status = call_real_ttrace (TT_PROC_STOP,
1725 (pid_t) real_pid,
1726 (lwpid_t) TT_NIL,
1727 (TTRACE_ARG_TYPE) TT_NIL,
1728 (TTRACE_ARG_TYPE) TT_NIL,
1729 TT_NIL);
1730 if (errno)
1731 perror_with_name ("ttrace stop of other threads");
1732 }
1733
1734
1735 /* Under some circumstances, it's unsafe to attempt to stop, or even
1736 query the state of, a process' threads.
1737
1738 In ttrace-based HP-UX, an example is a vforking child process. The
1739 vforking parent and child are somewhat fragile, w/r/t what we can do
1740 what we can do to them with ttrace, until after the child exits or
1741 execs, or until the parent's vfork event is delivered. Until that
1742 time, we must not try to stop the process' threads, or inquire how
1743 many there are, or even alter its data segments, or it typically dies
1744 with a SIGILL. Sigh.
1745
1746 This function returns 1 if this stopped process, and the event that
1747 we're told was responsible for its current stopped state, cannot safely
1748 have its threads examined.
1749 */
1750 #define CHILD_VFORKED(evt,pid) \
1751 (((evt) == TTEVT_VFORK) && ((pid) != PIDGET (inferior_ptid)))
1752 #define CHILD_URPED(evt,pid) \
1753 ((((evt) == TTEVT_EXEC) || ((evt) == TTEVT_EXIT)) && ((pid) != vforking_child_pid))
1754 #define PARENT_VFORKED(evt,pid) \
1755 (((evt) == TTEVT_VFORK) && ((pid) == PIDGET (inferior_ptid)))
1756
1757 static int
1758 can_touch_threads_of_process (int pid, ttevents_t stopping_event)
1759 {
1760 if (CHILD_VFORKED (stopping_event, pid))
1761 {
1762 vforking_child_pid = pid;
1763 vfork_in_flight = 1;
1764 }
1765
1766 else if (vfork_in_flight &&
1767 (PARENT_VFORKED (stopping_event, pid) ||
1768 CHILD_URPED (stopping_event, pid)))
1769 {
1770 vfork_in_flight = 0;
1771 vforking_child_pid = 0;
1772 }
1773
1774 return !vfork_in_flight;
1775 }
1776
1777
1778 /* If we can find an as-yet-unhandled thread state of a
1779 * stopped thread of this process return 1 and set "tsp".
1780 * Return 0 if we can't.
1781 *
1782 * If this function is used when the threads of PIS haven't
1783 * been stopped, undefined behaviour is guaranteed!
1784 */
1785 static int
1786 select_stopped_thread_of_process (int pid, ttstate_t *tsp)
1787 {
1788 lwpid_t candidate_tid, tid;
1789 ttstate_t candidate_tstate, tstate;
1790
1791 /* If we're not allowed to touch the process now, then just
1792 * return the current value of *TSP.
1793 *
1794 * This supports "vfork". It's ok, really, to double the
1795 * current event (the child EXEC, we hope!).
1796 */
1797 if (!can_touch_threads_of_process (pid, tsp->tts_event))
1798 return 1;
1799
1800 /* Decide which of (possibly more than one) events to
1801 * return as the first one. We scan them all so that
1802 * we always return the result of a fake-step first.
1803 */
1804 candidate_tid = 0;
1805 for (tid = get_process_first_stopped_thread_id (pid, &tstate);
1806 tid != 0;
1807 tid = get_process_next_stopped_thread_id (pid, &tstate))
1808 {
1809 /* TTEVT_NONE events are uninteresting to our clients. They're
1810 * an artifact of our "stop the world" model--the thread is
1811 * stopped because we stopped it.
1812 */
1813 if (tstate.tts_event == TTEVT_NONE)
1814 {
1815 set_handled (pid, tstate.tts_lwpid);
1816 }
1817
1818 /* Did we just single-step a single thread, without letting any
1819 * of the others run? Is this an event for that thread?
1820 *
1821 * If so, we believe our client would prefer to see this event
1822 * over any others. (Typically the client wants to just push
1823 * one thread a little farther forward, and then go around
1824 * checking for what all threads are doing.)
1825 */
1826 else if (doing_fake_step && (tstate.tts_lwpid == fake_step_tid))
1827 {
1828 #ifdef WAIT_BUFFER_DEBUG
1829 /* It's possible here to see either a SIGTRAP (due to
1830 * successful completion of a step) or a SYSCALL_ENTRY
1831 * (due to a step completion with active hardware
1832 * watchpoints).
1833 */
1834 if (debug_on)
1835 printf ("Ending fake step with tid %d, state %s\n",
1836 tstate.tts_lwpid,
1837 get_printable_name_of_ttrace_event (tstate.tts_event));
1838 #endif
1839
1840 /* Remember this one, and throw away any previous
1841 * candidate.
1842 */
1843 candidate_tid = tstate.tts_lwpid;
1844 candidate_tstate = tstate;
1845 }
1846
1847 #ifdef FORGET_DELETED_BPTS
1848
1849 /* We can't just do this, as if we do, and then wind
1850 * up the loop with no unhandled events, we need to
1851 * handle that case--the appropriate reaction is to
1852 * just continue, but there's no easy way to do that.
1853 *
1854 * Better to put this in the ttrace_wait call--if, when
1855 * we fake a wait, we update our events based on the
1856 * breakpoint_here_pc call and find there are no more events,
1857 * then we better continue and so on.
1858 *
1859 * Or we could put it in the next/continue fake.
1860 * But it has to go in the buffering code, not in the
1861 * real go/wait code.
1862 */
1863 else if ((TTEVT_SIGNAL == tstate.tts_event)
1864 && (5 == tstate.tts_u.tts_signal.tts_signo)
1865 && (0 != get_raw_pc (tstate.tts_lwpid))
1866 && !breakpoint_here_p (get_raw_pc (tstate.tts_lwpid)))
1867 {
1868 /*
1869 * If the user deleted a breakpoint while this
1870 * breakpoint-hit event was buffered, we can forget
1871 * it now.
1872 */
1873 #ifdef WAIT_BUFFER_DEBUG
1874 if (debug_on)
1875 printf ("Forgetting deleted bp hit for thread %d\n",
1876 tstate.tts_lwpid);
1877 #endif
1878
1879 set_handled (pid, tstate.tts_lwpid);
1880 }
1881 #endif
1882
1883 /* Else, is this the first "unhandled" event? If so,
1884 * we believe our client wants to see it (if we don't
1885 * see a fake-step later on in the scan).
1886 */
1887 else if (!was_handled (tstate.tts_lwpid) && candidate_tid == 0)
1888 {
1889 candidate_tid = tstate.tts_lwpid;
1890 candidate_tstate = tstate;
1891 }
1892
1893 /* This is either an event that has already been "handled",
1894 * and thus we believe is uninteresting to our client, or we
1895 * already have a candidate event. Ignore it...
1896 */
1897 }
1898
1899 /* What do we report?
1900 */
1901 if (doing_fake_step)
1902 {
1903 if (candidate_tid == fake_step_tid)
1904 {
1905 /* Fake step.
1906 */
1907 tstate = candidate_tstate;
1908 }
1909 else
1910 {
1911 warning ("Internal error: fake-step failed to complete.");
1912 return 0;
1913 }
1914 }
1915 else if (candidate_tid != 0)
1916 {
1917 /* Found a candidate unhandled event.
1918 */
1919 tstate = candidate_tstate;
1920 }
1921 else if (tid != 0)
1922 {
1923 warning ("Internal error in call of ttrace_wait.");
1924 return 0;
1925 }
1926 else
1927 {
1928 warning ("Internal error: no unhandled thread event to select");
1929 return 0;
1930 }
1931
1932 copy_ttstate_t (tsp, &tstate);
1933 return 1;
1934 } /* End of select_stopped_thread_of_process */
1935
1936 #ifdef PARANOIA
1937 /* Check our internal thread data against the real thing.
1938 */
1939 static void
1940 check_thread_consistency (pid_t real_pid)
1941 {
1942 int tid; /* really lwpid_t */
1943 ttstate_t tstate;
1944 thread_info *p;
1945
1946 /* Spin down the O/S list of threads, checking that they
1947 * match what we've got.
1948 */
1949 for (tid = get_process_first_stopped_thread_id (real_pid, &tstate);
1950 tid != 0;
1951 tid = get_process_next_stopped_thread_id (real_pid, &tstate))
1952 {
1953
1954 p = find_thread_info (tid);
1955
1956 if (NULL == p)
1957 {
1958 warning ("No internal thread data for thread %d.", tid);
1959 continue;
1960 }
1961
1962 if (!p->seen)
1963 {
1964 warning ("Inconsistent internal thread data for thread %d.", tid);
1965 }
1966
1967 if (p->terminated)
1968 {
1969 warning ("Thread %d is not terminated, internal error.", tid);
1970 continue;
1971 }
1972
1973
1974 #define TT_COMPARE( fld ) \
1975 tstate.fld != p->last_stop_state.fld
1976
1977 if (p->have_state)
1978 {
1979 if (TT_COMPARE (tts_pid)
1980 || TT_COMPARE (tts_lwpid)
1981 || TT_COMPARE (tts_user_tid)
1982 || TT_COMPARE (tts_event)
1983 || TT_COMPARE (tts_flags)
1984 || TT_COMPARE (tts_scno)
1985 || TT_COMPARE (tts_scnargs))
1986 {
1987 warning ("Internal thread data for thread %d is wrong.", tid);
1988 continue;
1989 }
1990 }
1991 }
1992 }
1993 #endif /* PARANOIA */
1994 \f
1995
1996 /* This function wraps calls to "call_real_ttrace_wait" so
1997 * that a actual wait is only done when all pending events
1998 * have been reported.
1999 *
2000 * Note that typically it is called with a pid of "0", i.e.
2001 * the "don't care" value.
2002 *
2003 * Return value is the status of the pseudo wait.
2004 */
2005 static int
2006 call_ttrace_wait (int pid, ttwopt_t option, ttstate_t *tsp, size_t tsp_size)
2007 {
2008 /* This holds the actual, for-real, true process ID.
2009 */
2010 static int real_pid;
2011
2012 /* As an argument to ttrace_wait, zero pid
2013 * means "Any process", and zero tid means
2014 * "Any thread of the specified process".
2015 */
2016 int wait_pid = 0;
2017 lwpid_t wait_tid = 0;
2018 lwpid_t real_tid;
2019
2020 int ttw_status = 0; /* To be returned */
2021
2022 thread_info *tinfo = NULL;
2023
2024 if (pid != 0)
2025 {
2026 /* Unexpected case.
2027 */
2028 #ifdef THREAD_DEBUG
2029 if (debug_on)
2030 printf ("TW: Pid to wait on is %d\n", pid);
2031 #endif
2032
2033 if (!any_thread_records ())
2034 error ("No thread records for ttrace call w. specific pid");
2035
2036 /* OK, now the task is to translate the incoming tid into
2037 * a pid/tid pair.
2038 */
2039 real_tid = map_from_gdb_tid (pid);
2040 real_pid = get_pid_for (real_tid);
2041 #ifdef THREAD_DEBUG
2042 if (debug_on)
2043 printf ("==TW: real pid %d, real tid %d\n", real_pid, real_tid);
2044 #endif
2045 }
2046
2047
2048 /* Sanity checks and set-up.
2049 * Process State
2050 *
2051 * Stopped Running Fake-step (v)Fork
2052 * \________________________________________
2053 * |
2054 * No buffered events | error wait wait wait
2055 * |
2056 * Buffered events | debuffer error wait debuffer (?)
2057 *
2058 */
2059 if (more_events_left == 0)
2060 {
2061
2062 if (process_state == RUNNING)
2063 {
2064 /* OK--normal call of ttrace_wait with no buffered events.
2065 */
2066 ;
2067 }
2068 else if (process_state == FAKE_STEPPING)
2069 {
2070 /* Ok--call of ttrace_wait to support
2071 * fake stepping with no buffered events.
2072 *
2073 * But we better be fake-stepping!
2074 */
2075 if (!doing_fake_step)
2076 {
2077 warning ("Inconsistent thread state.");
2078 }
2079 }
2080 else if ((process_state == FORKING)
2081 || (process_state == VFORKING))
2082 {
2083 /* Ok--there are two processes, so waiting
2084 * for the second while the first is stopped
2085 * is ok. Handled bits stay as they were.
2086 */
2087 ;
2088 }
2089 else if (process_state == STOPPED)
2090 {
2091 warning ("Process not running at wait call.");
2092 }
2093 else
2094 /* No known state.
2095 */
2096 warning ("Inconsistent process state.");
2097 }
2098
2099 else
2100 {
2101 /* More events left
2102 */
2103 if (process_state == STOPPED)
2104 {
2105 /* OK--buffered events being unbuffered.
2106 */
2107 ;
2108 }
2109 else if (process_state == RUNNING)
2110 {
2111 /* An error--shouldn't have buffered events
2112 * when running.
2113 */
2114 warning ("Trying to continue with buffered events:");
2115 }
2116 else if (process_state == FAKE_STEPPING)
2117 {
2118 /*
2119 * Better be fake-stepping!
2120 */
2121 if (!doing_fake_step)
2122 {
2123 warning ("Losing buffered thread events!\n");
2124 }
2125 }
2126 else if ((process_state == FORKING)
2127 || (process_state == VFORKING))
2128 {
2129 /* Ok--there are two processes, so waiting
2130 * for the second while the first is stopped
2131 * is ok. Handled bits stay as they were.
2132 */
2133 ;
2134 }
2135 else
2136 warning ("Process in unknown state with buffered events.");
2137 }
2138
2139 /* Sometimes we have to wait for a particular thread
2140 * (if we're stepping over a bpt). In that case, we
2141 * _know_ it's going to complete the single-step we
2142 * asked for (because we're only doing the step under
2143 * certain very well-understood circumstances), so it
2144 * can't block.
2145 */
2146 if (doing_fake_step)
2147 {
2148 wait_tid = fake_step_tid;
2149 wait_pid = get_pid_for (fake_step_tid);
2150
2151 #ifdef WAIT_BUFFER_DEBUG
2152 if (debug_on)
2153 printf ("Doing a wait after a fake-step for %d, pid %d\n",
2154 wait_tid, wait_pid);
2155 #endif
2156 }
2157
2158 if (more_events_left == 0 /* No buffered events, need real ones. */
2159 || process_state != STOPPED)
2160 {
2161 /* If there are no buffered events, and so we need
2162 * real ones, or if we are FORKING, VFORKING,
2163 * FAKE_STEPPING or RUNNING, and thus have to do
2164 * a real wait, then do a real wait.
2165 */
2166
2167 #ifdef WAIT_BUFFER_DEBUG
2168 /* Normal case... */
2169 if (debug_on)
2170 printf ("TW: do it for real; pid %d, tid %d\n", wait_pid, wait_tid);
2171 #endif
2172
2173 /* The actual wait call.
2174 */
2175 ttw_status = call_real_ttrace_wait (wait_pid, wait_tid, option, tsp, tsp_size);
2176
2177 /* Note that the routines we'll call will be using "call_real_ttrace",
2178 * not "call_ttrace", and thus need the real pid rather than the pseudo-tid
2179 * the rest of the world uses (which is actually the tid).
2180 */
2181 real_pid = tsp->tts_pid;
2182
2183 /* For most events: Stop the world!
2184
2185 * It's sometimes not safe to stop all threads of a process.
2186 * Sometimes it's not even safe to ask for the thread state
2187 * of a process!
2188 */
2189 if (can_touch_threads_of_process (real_pid, tsp->tts_event))
2190 {
2191 /* If we're really only stepping a single thread, then don't
2192 * try to stop all the others -- we only do this single-stepping
2193 * business when all others were already stopped...and the stop
2194 * would mess up other threads' events.
2195 *
2196 * Similiarly, if there are other threads with events,
2197 * don't do the stop.
2198 */
2199 if (!doing_fake_step)
2200 {
2201 if (more_events_left > 0)
2202 warning ("Internal error in stopping process");
2203
2204 stop_all_threads_of_process (real_pid);
2205
2206 /* At this point, we could scan and update_thread_list(),
2207 * and only use the local list for the rest of the
2208 * module! We'd get rid of the scans in the various
2209 * continue routines (adding one in attach). It'd
2210 * be great--UPGRADE ME!
2211 */
2212 }
2213 }
2214
2215 #ifdef PARANOIA
2216 else if (debug_on)
2217 {
2218 if (more_events_left > 0)
2219 printf ("== Can't stop process; more events!\n");
2220 else
2221 printf ("== Can't stop process!\n");
2222 }
2223 #endif
2224
2225 process_state = STOPPED;
2226
2227 #ifdef WAIT_BUFFER_DEBUG
2228 if (debug_on)
2229 printf ("Process set to STOPPED\n");
2230 #endif
2231 }
2232
2233 else
2234 {
2235 /* Fake a call to ttrace_wait. The process must be
2236 * STOPPED, as we aren't going to do any wait.
2237 */
2238 #ifdef WAIT_BUFFER_DEBUG
2239 if (debug_on)
2240 printf ("TW: fake it\n");
2241 #endif
2242
2243 if (process_state != STOPPED)
2244 {
2245 warning ("Process not stopped at wait call, in state '%s'.\n",
2246 get_printable_name_of_process_state (process_state));
2247 }
2248
2249 if (doing_fake_step)
2250 error ("Internal error in stepping over breakpoint");
2251
2252 ttw_status = 0; /* Faking it is always successful! */
2253 } /* End of fake or not? if */
2254
2255 /* Pick an event to pass to our caller. Be paranoid.
2256 */
2257 if (!select_stopped_thread_of_process (real_pid, tsp))
2258 warning ("Can't find event, using previous event.");
2259
2260 else if (tsp->tts_event == TTEVT_NONE)
2261 warning ("Internal error: no thread has a real event.");
2262
2263 else if (doing_fake_step)
2264 {
2265 if (fake_step_tid != tsp->tts_lwpid)
2266 warning ("Internal error in stepping over breakpoint.");
2267
2268 /* This wait clears the (current) fake-step if there was one.
2269 */
2270 doing_fake_step = 0;
2271 fake_step_tid = 0;
2272 }
2273
2274 /* We now have a correct tsp and ttw_status for the thread
2275 * which we want to report. So it's "handled"! This call
2276 * will add it to our list if it's not there already.
2277 */
2278 set_handled (real_pid, tsp->tts_lwpid);
2279
2280 /* Save a copy of the ttrace state of this thread, in our local
2281 thread descriptor.
2282
2283 This caches the state. The implementation of queries like
2284 hpux_has_execd can then use this cached state, rather than
2285 be forced to make an explicit ttrace call to get it.
2286
2287 (Guard against the condition that this is the first time we've
2288 waited on, i.e., seen this thread, and so haven't yet entered
2289 it into our list of threads.)
2290 */
2291 tinfo = find_thread_info (tsp->tts_lwpid);
2292 if (tinfo != NULL)
2293 {
2294 copy_ttstate_t (&tinfo->last_stop_state, tsp);
2295 tinfo->have_state = 1;
2296 }
2297
2298 return ttw_status;
2299 } /* call_ttrace_wait */
2300
2301 #if defined(CHILD_REPORTED_EXEC_EVENTS_PER_EXEC_CALL)
2302 int
2303 child_reported_exec_events_per_exec_call (void)
2304 {
2305 return 1; /* ttrace reports the event once per call. */
2306 }
2307 #endif
2308 \f
2309
2310
2311 /* Our implementation of hardware watchpoints involves making memory
2312 pages write-protected. We must remember a page's original permissions,
2313 and we must also know when it is appropriate to restore a page's
2314 permissions to its original state.
2315
2316 We use a "dictionary" of hardware-watched pages to do this. Each
2317 hardware-watched page is recorded in the dictionary. Each page's
2318 dictionary entry contains the original permissions and a reference
2319 count. Pages are hashed into the dictionary by their start address.
2320
2321 When hardware watchpoint is set on page X for the first time, page X
2322 is added to the dictionary with a reference count of 1. If other
2323 hardware watchpoints are subsequently set on page X, its reference
2324 count is incremented. When hardware watchpoints are removed from
2325 page X, its reference count is decremented. If a page's reference
2326 count drops to 0, it's permissions are restored and the page's entry
2327 is thrown out of the dictionary.
2328 */
2329 typedef struct memory_page
2330 {
2331 CORE_ADDR page_start;
2332 int reference_count;
2333 int original_permissions;
2334 struct memory_page *next;
2335 struct memory_page *previous;
2336 }
2337 memory_page_t;
2338
2339 #define MEMORY_PAGE_DICTIONARY_BUCKET_COUNT 128
2340
2341 static struct
2342 {
2343 LONGEST page_count;
2344 int page_size;
2345 int page_protections_allowed;
2346 /* These are just the heads of chains of actual page descriptors. */
2347 memory_page_t buckets[MEMORY_PAGE_DICTIONARY_BUCKET_COUNT];
2348 }
2349 memory_page_dictionary;
2350
2351
2352 static void
2353 require_memory_page_dictionary (void)
2354 {
2355 int i;
2356
2357 /* Is the memory page dictionary ready for use? If so, we're done. */
2358 if (memory_page_dictionary.page_count >= (LONGEST) 0)
2359 return;
2360
2361 /* Else, initialize it. */
2362 memory_page_dictionary.page_count = (LONGEST) 0;
2363
2364 for (i = 0; i < MEMORY_PAGE_DICTIONARY_BUCKET_COUNT; i++)
2365 {
2366 memory_page_dictionary.buckets[i].page_start = (CORE_ADDR) 0;
2367 memory_page_dictionary.buckets[i].reference_count = 0;
2368 memory_page_dictionary.buckets[i].next = NULL;
2369 memory_page_dictionary.buckets[i].previous = NULL;
2370 }
2371 }
2372
2373
2374 static void
2375 retire_memory_page_dictionary (void)
2376 {
2377 memory_page_dictionary.page_count = (LONGEST) - 1;
2378 }
2379
2380
2381 /* Write-protect the memory page that starts at this address.
2382
2383 Returns the original permissions of the page.
2384 */
2385 static int
2386 write_protect_page (int pid, CORE_ADDR page_start)
2387 {
2388 int tt_status;
2389 int original_permissions;
2390 int new_permissions;
2391
2392 tt_status = call_ttrace (TT_PROC_GET_MPROTECT,
2393 pid,
2394 (TTRACE_ARG_TYPE) page_start,
2395 TT_NIL,
2396 (TTRACE_ARG_TYPE) & original_permissions);
2397 if (errno || (tt_status < 0))
2398 {
2399 return 0; /* What else can we do? */
2400 }
2401
2402 /* We'll also write-protect the page now, if that's allowed. */
2403 if (memory_page_dictionary.page_protections_allowed)
2404 {
2405 new_permissions = original_permissions & ~PROT_WRITE;
2406 tt_status = call_ttrace (TT_PROC_SET_MPROTECT,
2407 pid,
2408 (TTRACE_ARG_TYPE) page_start,
2409 (TTRACE_ARG_TYPE) memory_page_dictionary.page_size,
2410 (TTRACE_ARG_TYPE) new_permissions);
2411 if (errno || (tt_status < 0))
2412 {
2413 return 0; /* What else can we do? */
2414 }
2415 }
2416
2417 return original_permissions;
2418 }
2419
2420
2421 /* Unwrite-protect the memory page that starts at this address, restoring
2422 (what we must assume are) its original permissions.
2423 */
2424 static void
2425 unwrite_protect_page (int pid, CORE_ADDR page_start, int original_permissions)
2426 {
2427 int tt_status;
2428
2429 tt_status = call_ttrace (TT_PROC_SET_MPROTECT,
2430 pid,
2431 (TTRACE_ARG_TYPE) page_start,
2432 (TTRACE_ARG_TYPE) memory_page_dictionary.page_size,
2433 (TTRACE_ARG_TYPE) original_permissions);
2434 if (errno || (tt_status < 0))
2435 {
2436 return; /* What else can we do? */
2437 }
2438 }
2439
2440
2441 /* Memory page-protections are used to implement "hardware" watchpoints
2442 on HP-UX.
2443
2444 For every memory page that is currently being watched (i.e., that
2445 presently should be write-protected), write-protect it.
2446 */
2447 void
2448 hppa_enable_page_protection_events (int pid)
2449 {
2450 int bucket;
2451
2452 memory_page_dictionary.page_protections_allowed = 1;
2453
2454 for (bucket = 0; bucket < MEMORY_PAGE_DICTIONARY_BUCKET_COUNT; bucket++)
2455 {
2456 memory_page_t *page;
2457
2458 page = memory_page_dictionary.buckets[bucket].next;
2459 while (page != NULL)
2460 {
2461 page->original_permissions = write_protect_page (pid, page->page_start);
2462 page = page->next;
2463 }
2464 }
2465 }
2466
2467
2468 /* Memory page-protections are used to implement "hardware" watchpoints
2469 on HP-UX.
2470
2471 For every memory page that is currently being watched (i.e., that
2472 presently is or should be write-protected), un-write-protect it.
2473 */
2474 void
2475 hppa_disable_page_protection_events (int pid)
2476 {
2477 int bucket;
2478
2479 for (bucket = 0; bucket < MEMORY_PAGE_DICTIONARY_BUCKET_COUNT; bucket++)
2480 {
2481 memory_page_t *page;
2482
2483 page = memory_page_dictionary.buckets[bucket].next;
2484 while (page != NULL)
2485 {
2486 unwrite_protect_page (pid, page->page_start, page->original_permissions);
2487 page = page->next;
2488 }
2489 }
2490
2491 memory_page_dictionary.page_protections_allowed = 0;
2492 }
2493
2494 /* Count the number of outstanding events. At this
2495 * point, we have selected one thread and its event
2496 * as the one to be "reported" upwards to core gdb.
2497 * That thread is already marked as "handled".
2498 *
2499 * Note: we could just scan our own thread list. FIXME!
2500 */
2501 static int
2502 count_unhandled_events (int real_pid, lwpid_t real_tid)
2503 {
2504 ttstate_t tstate;
2505 lwpid_t ttid;
2506 int events_left;
2507
2508 /* Ok, find out how many threads have real events to report.
2509 */
2510 events_left = 0;
2511 ttid = get_process_first_stopped_thread_id (real_pid, &tstate);
2512
2513 #ifdef THREAD_DEBUG
2514 if (debug_on)
2515 {
2516 if (ttid == 0)
2517 printf ("Process %d has no threads\n", real_pid);
2518 else
2519 printf ("Process %d has these threads:\n", real_pid);
2520 }
2521 #endif
2522
2523 while (ttid > 0)
2524 {
2525 if (tstate.tts_event != TTEVT_NONE
2526 && !was_handled (ttid))
2527 {
2528 /* TTEVT_NONE implies we just stopped it ourselves
2529 * because we're the stop-the-world guys, so it's
2530 * not an event from our point of view.
2531 *
2532 * If "was_handled" is true, this is an event we
2533 * already handled, so don't count it.
2534 *
2535 * Note that we don't count the thread with the
2536 * currently-reported event, as it's already marked
2537 * as handled.
2538 */
2539 events_left++;
2540 }
2541
2542 #if defined( THREAD_DEBUG ) || defined( WAIT_BUFFER_DEBUG )
2543 if (debug_on)
2544 {
2545 if (ttid == real_tid)
2546 printf ("*"); /* Thread we're reporting */
2547 else
2548 printf (" ");
2549
2550 if (tstate.tts_event != TTEVT_NONE)
2551 printf ("+"); /* Thread with a real event */
2552 else
2553 printf (" ");
2554
2555 if (was_handled (ttid))
2556 printf ("h"); /* Thread has been handled */
2557 else
2558 printf (" ");
2559
2560 printf (" %d, with event %s", ttid,
2561 get_printable_name_of_ttrace_event (tstate.tts_event));
2562
2563 if (tstate.tts_event == TTEVT_SIGNAL
2564 && 5 == tstate.tts_u.tts_signal.tts_signo)
2565 {
2566 CORE_ADDR pc_val;
2567
2568 pc_val = get_raw_pc (ttid);
2569
2570 if (pc_val > 0)
2571 printf (" breakpoint at 0x%x\n", pc_val);
2572 else
2573 printf (" bpt, can't fetch pc.\n");
2574 }
2575 else
2576 printf ("\n");
2577 }
2578 #endif
2579
2580 ttid = get_process_next_stopped_thread_id (real_pid, &tstate);
2581 }
2582
2583 #if defined( THREAD_DEBUG ) || defined( WAIT_BUFFER_DEBUG )
2584 if (debug_on)
2585 if (events_left > 0)
2586 printf ("There are thus %d pending events\n", events_left);
2587 #endif
2588
2589 return events_left;
2590 }
2591
2592 /* This function is provided as a sop to clients that are calling
2593 * ptrace_wait to wait for a process to stop. (see the
2594 * implementation of child_wait.) Return value is the pid for
2595 * the event that ended the wait.
2596 *
2597 * Note: used by core gdb and so uses the pseudo-pid (really tid).
2598 */
2599 int
2600 ptrace_wait (ptid_t ptid, int *status)
2601 {
2602 ttstate_t tsp;
2603 int ttwait_return;
2604 int real_pid;
2605 ttstate_t state;
2606 lwpid_t real_tid;
2607 int return_pid;
2608
2609 /* The ptrace implementation of this also ignores pid.
2610 */
2611 *status = 0;
2612
2613 ttwait_return = call_ttrace_wait (0, TTRACE_WAITOK, &tsp, sizeof (tsp));
2614 if (ttwait_return < 0)
2615 {
2616 /* ??rehrauer: It appears that if our inferior exits and we
2617 haven't asked for exit events, that we're not getting any
2618 indication save a negative return from ttrace_wait and an
2619 errno set to ESRCH?
2620 */
2621 if (errno == ESRCH)
2622 {
2623 *status = 0; /* WIFEXITED */
2624 return PIDGET (inferior_ptid);
2625 }
2626
2627 warning ("Call of ttrace_wait returned with errno %d.",
2628 errno);
2629 *status = ttwait_return;
2630 return PIDGET (inferior_ptid);
2631 }
2632
2633 real_pid = tsp.tts_pid;
2634 real_tid = tsp.tts_lwpid;
2635
2636 /* One complication is that the "tts_event" structure has
2637 * a set of flags, and more than one can be set. So we
2638 * either have to force an order (as we do here), or handle
2639 * more than one flag at a time.
2640 */
2641 if (tsp.tts_event & TTEVT_LWP_CREATE)
2642 {
2643
2644 /* Unlike what you might expect, this event is reported in
2645 * the _creating_ thread, and the _created_ thread (whose tid
2646 * we have) is still running. So we have to stop it. This
2647 * has already been done in "call_ttrace_wait", but should we
2648 * ever abandon the "stop-the-world" model, here's the command
2649 * to use:
2650 *
2651 * call_ttrace( TT_LWP_STOP, real_tid, TT_NIL, TT_NIL, TT_NIL );
2652 *
2653 * Note that this would depend on being called _after_ "add_tthread"
2654 * below for the tid-to-pid translation to be done in "call_ttrace".
2655 */
2656
2657 #ifdef THREAD_DEBUG
2658 if (debug_on)
2659 printf ("New thread: pid %d, tid %d, creator tid %d\n",
2660 real_pid, tsp.tts_u.tts_thread.tts_target_lwpid,
2661 real_tid);
2662 #endif
2663
2664 /* Now we have to return the tid of the created thread, not
2665 * the creating thread, or "wait_for_inferior" won't know we
2666 * have a new "process" (thread). Plus we should record it
2667 * right, too.
2668 */
2669 real_tid = tsp.tts_u.tts_thread.tts_target_lwpid;
2670
2671 add_tthread (real_pid, real_tid);
2672 }
2673
2674 else if ((tsp.tts_event & TTEVT_LWP_TERMINATE)
2675 || (tsp.tts_event & TTEVT_LWP_EXIT))
2676 {
2677
2678 #ifdef THREAD_DEBUG
2679 if (debug_on)
2680 printf ("Thread dies: %d\n", real_tid);
2681 #endif
2682
2683 del_tthread (real_tid);
2684 }
2685
2686 else if (tsp.tts_event & TTEVT_EXEC)
2687 {
2688
2689 #ifdef THREAD_DEBUG
2690 if (debug_on)
2691 printf ("Pid %d has zero'th thread %d; inferior pid is %d\n",
2692 real_pid, real_tid, PIDGET (inferior_ptid));
2693 #endif
2694
2695 add_tthread (real_pid, real_tid);
2696 }
2697
2698 #ifdef THREAD_DEBUG
2699 else if (debug_on)
2700 {
2701 printf ("Process-level event %s, using tid %d\n",
2702 get_printable_name_of_ttrace_event (tsp.tts_event),
2703 real_tid);
2704
2705 /* OK to do this, as "add_tthread" won't add
2706 * duplicate entries. Also OK not to do it,
2707 * as this event isn't one which can change the
2708 * thread state.
2709 */
2710 add_tthread (real_pid, real_tid);
2711 }
2712 #endif
2713
2714
2715 /* How many events are left to report later?
2716 * In a non-stop-the-world model, this isn't needed.
2717 *
2718 * Note that it's not always safe to query the thread state of a process,
2719 * which is what count_unhandled_events does. (If unsafe, we're left with
2720 * no other resort than to assume that no more events remain...)
2721 */
2722 if (can_touch_threads_of_process (real_pid, tsp.tts_event))
2723 more_events_left = count_unhandled_events (real_pid, real_tid);
2724
2725 else
2726 {
2727 if (more_events_left > 0)
2728 warning ("Vfork or fork causing loss of %d buffered events.",
2729 more_events_left);
2730
2731 more_events_left = 0;
2732 }
2733
2734 /* Attempt to translate the ttrace_wait-returned status into the
2735 ptrace equivalent.
2736
2737 ??rehrauer: This is somewhat fragile. We really ought to rewrite
2738 clients that expect to pick apart a ptrace wait status, to use
2739 something a little more abstract.
2740 */
2741 if ((tsp.tts_event & TTEVT_EXEC)
2742 || (tsp.tts_event & TTEVT_FORK)
2743 || (tsp.tts_event & TTEVT_VFORK))
2744 {
2745 /* Forks come in pairs (parent and child), so core gdb
2746 * will do two waits. Be ready to notice this.
2747 */
2748 if (tsp.tts_event & TTEVT_FORK)
2749 {
2750 process_state = FORKING;
2751
2752 #ifdef WAIT_BUFFER_DEBUG
2753 if (debug_on)
2754 printf ("Process set to FORKING\n");
2755 #endif
2756 }
2757 else if (tsp.tts_event & TTEVT_VFORK)
2758 {
2759 process_state = VFORKING;
2760
2761 #ifdef WAIT_BUFFER_DEBUG
2762 if (debug_on)
2763 printf ("Process set to VFORKING\n");
2764 #endif
2765 }
2766
2767 /* Make an exec or fork look like a breakpoint. Definitely a hack,
2768 but I don't think non HP-UX-specific clients really carefully
2769 inspect the first events they get after inferior startup, so
2770 it probably almost doesn't matter what we claim this is.
2771 */
2772
2773 #ifdef THREAD_DEBUG
2774 if (debug_on)
2775 printf ("..a process 'event'\n");
2776 #endif
2777
2778 /* Also make fork and exec events look like bpts, so they can be caught.
2779 */
2780 *status = 0177 | (_SIGTRAP << 8);
2781 }
2782
2783 /* Special-cases: We ask for syscall entry and exit events to implement
2784 "fast" (aka "hardware") watchpoints.
2785
2786 When we get a syscall entry, we want to disable page-protections,
2787 and resume the inferior; this isn't an event we wish for
2788 wait_for_inferior to see. Note that we must resume ONLY the
2789 thread that reported the syscall entry; we don't want to allow
2790 other threads to run with the page protections off, as they might
2791 then be able to write to watch memory without it being caught.
2792
2793 When we get a syscall exit, we want to reenable page-protections,
2794 but we don't want to resume the inferior; this is an event we wish
2795 wait_for_inferior to see. Make it look like the signal we normally
2796 get for a single-step completion. This should cause wait_for_inferior
2797 to evaluate whether any watchpoint triggered.
2798
2799 Or rather, that's what we'd LIKE to do for syscall exit; we can't,
2800 due to some HP-UX "features". Some syscalls have problems with
2801 write-protections on some pages, and some syscalls seem to have
2802 pending writes to those pages at the time we're getting the return
2803 event. So, we'll single-step the inferior to get out of the syscall,
2804 and then reenable protections.
2805
2806 Note that we're intentionally allowing the syscall exit case to
2807 fall through into the succeeding cases, as sometimes we single-
2808 step out of one syscall only to immediately enter another...
2809 */
2810 else if ((tsp.tts_event & TTEVT_SYSCALL_ENTRY)
2811 || (tsp.tts_event & TTEVT_SYSCALL_RETURN))
2812 {
2813 /* Make a syscall event look like a breakpoint. Same comments
2814 as for exec & fork events.
2815 */
2816 #ifdef THREAD_DEBUG
2817 if (debug_on)
2818 printf ("..a syscall 'event'\n");
2819 #endif
2820
2821 /* Also make syscall events look like bpts, so they can be caught.
2822 */
2823 *status = 0177 | (_SIGTRAP << 8);
2824 }
2825
2826 else if ((tsp.tts_event & TTEVT_LWP_CREATE)
2827 || (tsp.tts_event & TTEVT_LWP_TERMINATE)
2828 || (tsp.tts_event & TTEVT_LWP_EXIT))
2829 {
2830 /* Make a thread event look like a breakpoint. Same comments
2831 * as for exec & fork events.
2832 */
2833 #ifdef THREAD_DEBUG
2834 if (debug_on)
2835 printf ("..a thread 'event'\n");
2836 #endif
2837
2838 /* Also make thread events look like bpts, so they can be caught.
2839 */
2840 *status = 0177 | (_SIGTRAP << 8);
2841 }
2842
2843 else if ((tsp.tts_event & TTEVT_EXIT))
2844 { /* WIFEXITED */
2845
2846 #ifdef THREAD_DEBUG
2847 if (debug_on)
2848 printf ("..an exit\n");
2849 #endif
2850
2851 /* Prevent rest of gdb from thinking this is
2852 * a new thread if for some reason it's never
2853 * seen the main thread before.
2854 */
2855 inferior_ptid = pid_to_ptid (map_to_gdb_tid (real_tid)); /* HACK, FIX */
2856
2857 *status = 0 | (tsp.tts_u.tts_exit.tts_exitcode);
2858 }
2859
2860 else if (tsp.tts_event & TTEVT_SIGNAL)
2861 { /* WIFSTOPPED */
2862 #ifdef THREAD_DEBUG
2863 if (debug_on)
2864 printf ("..a signal, %d\n", tsp.tts_u.tts_signal.tts_signo);
2865 #endif
2866
2867 *status = 0177 | (tsp.tts_u.tts_signal.tts_signo << 8);
2868 }
2869
2870 else
2871 { /* !WIFSTOPPED */
2872
2873 /* This means the process or thread terminated. But we should've
2874 caught an explicit exit/termination above. So warn (this is
2875 really an internal error) and claim the process or thread
2876 terminated with a SIGTRAP.
2877 */
2878
2879 warning ("process_wait: unknown process state");
2880
2881 #ifdef THREAD_DEBUG
2882 if (debug_on)
2883 printf ("Process-level event %s, using tid %d\n",
2884 get_printable_name_of_ttrace_event (tsp.tts_event),
2885 real_tid);
2886 #endif
2887
2888 *status = _SIGTRAP;
2889 }
2890
2891 target_post_wait (pid_to_ptid (tsp.tts_pid), *status);
2892
2893
2894 #ifdef THREAD_DEBUG
2895 if (debug_on)
2896 printf ("Done waiting, pid is %d, tid %d\n", real_pid, real_tid);
2897 #endif
2898
2899 /* All code external to this module uses the tid, but calls
2900 * it "pid". There's some tweaking so that the outside sees
2901 * the first thread as having the same number as the starting
2902 * pid.
2903 */
2904 return_pid = map_to_gdb_tid (real_tid);
2905
2906 if (real_tid == 0 || return_pid == 0)
2907 {
2908 warning ("Internal error: process-wait failed.");
2909 }
2910
2911 return return_pid;
2912 }
2913 \f
2914
2915 /* This function causes the caller's process to be traced by its
2916 parent. This is intended to be called after GDB forks itself,
2917 and before the child execs the target. Despite the name, it
2918 is called by the child.
2919
2920 Note that HP-UX ttrace is rather funky in how this is done.
2921 If the parent wants to get the initial exec event of a child,
2922 it must set the ttrace event mask of the child to include execs.
2923 (The child cannot do this itself.) This must be done after the
2924 child is forked, but before it execs.
2925
2926 To coordinate the parent and child, we implement a semaphore using
2927 pipes. After SETTRC'ing itself, the child tells the parent that
2928 it is now traceable by the parent, and waits for the parent's
2929 acknowledgement. The parent can then set the child's event mask,
2930 and notify the child that it can now exec.
2931
2932 (The acknowledgement by parent happens as a result of a call to
2933 child_acknowledge_created_inferior.)
2934 */
2935 int
2936 parent_attach_all (int p1, PTRACE_ARG3_TYPE p2, int p3)
2937 {
2938 int tt_status;
2939
2940 /* We need a memory home for a constant, to pass it to ttrace.
2941 The value of the constant is arbitrary, so long as both
2942 parent and child use the same value. Might as well use the
2943 "magic" constant provided by ttrace...
2944 */
2945 uint64_t tc_magic_child = TT_VERSION;
2946 uint64_t tc_magic_parent = 0;
2947
2948 tt_status = call_real_ttrace (
2949 TT_PROC_SETTRC,
2950 (int) TT_NIL,
2951 (lwpid_t) TT_NIL,
2952 TT_NIL,
2953 (TTRACE_ARG_TYPE) TT_VERSION,
2954 TT_NIL);
2955
2956 if (tt_status < 0)
2957 return tt_status;
2958
2959 /* Notify the parent that we're potentially ready to exec(). */
2960 write (startup_semaphore.child_channel[SEM_TALK],
2961 &tc_magic_child,
2962 sizeof (tc_magic_child));
2963
2964 /* Wait for acknowledgement from the parent. */
2965 read (startup_semaphore.parent_channel[SEM_LISTEN],
2966 &tc_magic_parent,
2967 sizeof (tc_magic_parent));
2968
2969 if (tc_magic_child != tc_magic_parent)
2970 warning ("mismatched semaphore magic");
2971
2972 /* Discard our copy of the semaphore. */
2973 (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
2974 (void) close (startup_semaphore.parent_channel[SEM_TALK]);
2975 (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
2976 (void) close (startup_semaphore.child_channel[SEM_TALK]);
2977
2978 return tt_status;
2979 }
2980
2981 /* Despite being file-local, this routine is dealing with
2982 * actual process IDs, not thread ids. That's because it's
2983 * called before the first "wait" call, and there's no map
2984 * yet from tids to pids.
2985 *
2986 * When it is called, a forked child is running, but waiting on
2987 * the semaphore. If you stop the child and re-start it,
2988 * things get confused, so don't do that! An attached child is
2989 * stopped.
2990 *
2991 * Since this is called after either attach or run, we
2992 * have to be the common part of both.
2993 */
2994 static void
2995 require_notification_of_events (int real_pid)
2996 {
2997 int tt_status;
2998 ttevent_t notifiable_events;
2999
3000 lwpid_t tid;
3001 ttstate_t thread_state;
3002
3003 #ifdef THREAD_DEBUG
3004 if (debug_on)
3005 printf ("Require notif, pid is %d\n", real_pid);
3006 #endif
3007
3008 /* Temporary HACK: tell inftarg.c/child_wait to not
3009 * loop until pids are the same.
3010 */
3011 not_same_real_pid = 0;
3012
3013 sigemptyset (&notifiable_events.tte_signals);
3014 notifiable_events.tte_opts = TTEO_NONE;
3015
3016 /* This ensures that forked children inherit their parent's
3017 * event mask, which we're setting here.
3018 *
3019 * NOTE: if you debug gdb with itself, then the ultimate
3020 * debuggee gets flags set by the outermost gdb, as
3021 * a child of a child will still inherit.
3022 */
3023 notifiable_events.tte_opts |= TTEO_PROC_INHERIT;
3024
3025 notifiable_events.tte_events = TTEVT_DEFAULT;
3026 notifiable_events.tte_events |= TTEVT_SIGNAL;
3027 notifiable_events.tte_events |= TTEVT_EXEC;
3028 notifiable_events.tte_events |= TTEVT_EXIT;
3029 notifiable_events.tte_events |= TTEVT_FORK;
3030 notifiable_events.tte_events |= TTEVT_VFORK;
3031 notifiable_events.tte_events |= TTEVT_LWP_CREATE;
3032 notifiable_events.tte_events |= TTEVT_LWP_EXIT;
3033 notifiable_events.tte_events |= TTEVT_LWP_TERMINATE;
3034
3035 tt_status = call_real_ttrace (
3036 TT_PROC_SET_EVENT_MASK,
3037 real_pid,
3038 (lwpid_t) TT_NIL,
3039 (TTRACE_ARG_TYPE) & notifiable_events,
3040 (TTRACE_ARG_TYPE) sizeof (notifiable_events),
3041 TT_NIL);
3042 }
3043
3044 static void
3045 require_notification_of_exec_events (int real_pid)
3046 {
3047 int tt_status;
3048 ttevent_t notifiable_events;
3049
3050 lwpid_t tid;
3051 ttstate_t thread_state;
3052
3053 #ifdef THREAD_DEBUG
3054 if (debug_on)
3055 printf ("Require notif, pid is %d\n", real_pid);
3056 #endif
3057
3058 /* Temporary HACK: tell inftarg.c/child_wait to not
3059 * loop until pids are the same.
3060 */
3061 not_same_real_pid = 0;
3062
3063 sigemptyset (&notifiable_events.tte_signals);
3064 notifiable_events.tte_opts = TTEO_NOSTRCCHLD;
3065
3066 /* This ensures that forked children don't inherit their parent's
3067 * event mask, which we're setting here.
3068 */
3069 notifiable_events.tte_opts &= ~TTEO_PROC_INHERIT;
3070
3071 notifiable_events.tte_events = TTEVT_DEFAULT;
3072 notifiable_events.tte_events |= TTEVT_EXEC;
3073 notifiable_events.tte_events |= TTEVT_EXIT;
3074
3075 tt_status = call_real_ttrace (
3076 TT_PROC_SET_EVENT_MASK,
3077 real_pid,
3078 (lwpid_t) TT_NIL,
3079 (TTRACE_ARG_TYPE) & notifiable_events,
3080 (TTRACE_ARG_TYPE) sizeof (notifiable_events),
3081 TT_NIL);
3082 }
3083 \f
3084
3085 /* This function is called by the parent process, with pid being the
3086 * ID of the child process, after the debugger has forked.
3087 */
3088 void
3089 child_acknowledge_created_inferior (int pid)
3090 {
3091 /* We need a memory home for a constant, to pass it to ttrace.
3092 The value of the constant is arbitrary, so long as both
3093 parent and child use the same value. Might as well use the
3094 "magic" constant provided by ttrace...
3095 */
3096 uint64_t tc_magic_parent = TT_VERSION;
3097 uint64_t tc_magic_child = 0;
3098
3099 /* Wait for the child to tell us that it has forked. */
3100 read (startup_semaphore.child_channel[SEM_LISTEN],
3101 &tc_magic_child,
3102 sizeof (tc_magic_child));
3103
3104 /* Clear thread info now. We'd like to do this in
3105 * "require...", but that messes up attach.
3106 */
3107 clear_thread_info ();
3108
3109 /* Tell the "rest of gdb" that the initial thread exists.
3110 * This isn't really a hack. Other thread-based versions
3111 * of gdb (e.g. gnu-nat.c) seem to do the same thing.
3112 *
3113 * Q: Why don't we also add this thread to the local
3114 * list via "add_tthread"?
3115 *
3116 * A: Because we don't know the tid, and can't stop the
3117 * the process safely to ask what it is. Anyway, we'll
3118 * add it when it gets the EXEC event.
3119 */
3120 add_thread (pid_to_ptid (pid)); /* in thread.c */
3121
3122 /* We can now set the child's ttrace event mask.
3123 */
3124 require_notification_of_exec_events (pid);
3125
3126 /* Tell ourselves that the process is running.
3127 */
3128 process_state = RUNNING;
3129
3130 /* Notify the child that it can exec. */
3131 write (startup_semaphore.parent_channel[SEM_TALK],
3132 &tc_magic_parent,
3133 sizeof (tc_magic_parent));
3134
3135 /* Discard our copy of the semaphore. */
3136 (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
3137 (void) close (startup_semaphore.parent_channel[SEM_TALK]);
3138 (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
3139 (void) close (startup_semaphore.child_channel[SEM_TALK]);
3140 }
3141
3142
3143 /*
3144 * arrange for notification of all events by
3145 * calling require_notification_of_events.
3146 */
3147 void
3148 child_post_startup_inferior (ptid_t ptid)
3149 {
3150 require_notification_of_events (PIDGET (ptid));
3151 }
3152
3153 /* From here on, we should expect tids rather than pids.
3154 */
3155 static void
3156 hppa_enable_catch_fork (int tid)
3157 {
3158 int tt_status;
3159 ttevent_t ttrace_events;
3160
3161 /* Get the set of events that are currently enabled.
3162 */
3163 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3164 tid,
3165 (TTRACE_ARG_TYPE) & ttrace_events,
3166 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3167 TT_NIL);
3168 if (errno)
3169 perror_with_name ("ttrace");
3170
3171 /* Add forks to that set. */
3172 ttrace_events.tte_events |= TTEVT_FORK;
3173
3174 #ifdef THREAD_DEBUG
3175 if (debug_on)
3176 printf ("enable fork, tid is %d\n", tid);
3177 #endif
3178
3179 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3180 tid,
3181 (TTRACE_ARG_TYPE) & ttrace_events,
3182 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3183 TT_NIL);
3184 if (errno)
3185 perror_with_name ("ttrace");
3186 }
3187
3188
3189 static void
3190 hppa_disable_catch_fork (int tid)
3191 {
3192 int tt_status;
3193 ttevent_t ttrace_events;
3194
3195 /* Get the set of events that are currently enabled.
3196 */
3197 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3198 tid,
3199 (TTRACE_ARG_TYPE) & ttrace_events,
3200 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3201 TT_NIL);
3202
3203 if (errno)
3204 perror_with_name ("ttrace");
3205
3206 /* Remove forks from that set. */
3207 ttrace_events.tte_events &= ~TTEVT_FORK;
3208
3209 #ifdef THREAD_DEBUG
3210 if (debug_on)
3211 printf ("disable fork, tid is %d\n", tid);
3212 #endif
3213
3214 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3215 tid,
3216 (TTRACE_ARG_TYPE) & ttrace_events,
3217 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3218 TT_NIL);
3219
3220 if (errno)
3221 perror_with_name ("ttrace");
3222 }
3223
3224
3225 #if defined(CHILD_INSERT_FORK_CATCHPOINT)
3226 int
3227 child_insert_fork_catchpoint (int tid)
3228 {
3229 /* Enable reporting of fork events from the kernel. */
3230 /* ??rehrauer: For the moment, we're always enabling these events,
3231 and just ignoring them if there's no catchpoint to catch them.
3232 */
3233 return 0;
3234 }
3235 #endif
3236
3237
3238 #if defined(CHILD_REMOVE_FORK_CATCHPOINT)
3239 int
3240 child_remove_fork_catchpoint (int tid)
3241 {
3242 /* Disable reporting of fork events from the kernel. */
3243 /* ??rehrauer: For the moment, we're always enabling these events,
3244 and just ignoring them if there's no catchpoint to catch them.
3245 */
3246 return 0;
3247 }
3248 #endif
3249
3250
3251 static void
3252 hppa_enable_catch_vfork (int tid)
3253 {
3254 int tt_status;
3255 ttevent_t ttrace_events;
3256
3257 /* Get the set of events that are currently enabled.
3258 */
3259 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3260 tid,
3261 (TTRACE_ARG_TYPE) & ttrace_events,
3262 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3263 TT_NIL);
3264
3265 if (errno)
3266 perror_with_name ("ttrace");
3267
3268 /* Add vforks to that set. */
3269 ttrace_events.tte_events |= TTEVT_VFORK;
3270
3271 #ifdef THREAD_DEBUG
3272 if (debug_on)
3273 printf ("enable vfork, tid is %d\n", tid);
3274 #endif
3275
3276 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3277 tid,
3278 (TTRACE_ARG_TYPE) & ttrace_events,
3279 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3280 TT_NIL);
3281
3282 if (errno)
3283 perror_with_name ("ttrace");
3284 }
3285
3286
3287 static void
3288 hppa_disable_catch_vfork (int tid)
3289 {
3290 int tt_status;
3291 ttevent_t ttrace_events;
3292
3293 /* Get the set of events that are currently enabled. */
3294 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
3295 tid,
3296 (TTRACE_ARG_TYPE) & ttrace_events,
3297 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3298 TT_NIL);
3299
3300 if (errno)
3301 perror_with_name ("ttrace");
3302
3303 /* Remove vforks from that set. */
3304 ttrace_events.tte_events &= ~TTEVT_VFORK;
3305
3306 #ifdef THREAD_DEBUG
3307 if (debug_on)
3308 printf ("disable vfork, tid is %d\n", tid);
3309 #endif
3310 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
3311 tid,
3312 (TTRACE_ARG_TYPE) & ttrace_events,
3313 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
3314 TT_NIL);
3315
3316 if (errno)
3317 perror_with_name ("ttrace");
3318 }
3319
3320
3321 #if defined(CHILD_INSERT_VFORK_CATCHPOINT)
3322 int
3323 child_insert_vfork_catchpoint (int tid)
3324 {
3325 /* Enable reporting of vfork events from the kernel. */
3326 /* ??rehrauer: For the moment, we're always enabling these events,
3327 and just ignoring them if there's no catchpoint to catch them.
3328 */
3329 return 0;
3330 }
3331 #endif
3332
3333
3334 #if defined(CHILD_REMOVE_VFORK_CATCHPOINT)
3335 int
3336 child_remove_vfork_catchpoint (int tid)
3337 {
3338 /* Disable reporting of vfork events from the kernel. */
3339 /* ??rehrauer: For the moment, we're always enabling these events,
3340 and just ignoring them if there's no catchpoint to catch them.
3341 */
3342 return 0;
3343 }
3344 #endif
3345
3346 /* Q: Do we need to map the returned process ID to a thread ID?
3347
3348 * A: I don't think so--here we want a _real_ pid. Any later
3349 * operations will call "require_notification_of_events" and
3350 * start the mapping.
3351 */
3352 int
3353 hpux_has_forked (int tid, int *childpid)
3354 {
3355 int tt_status;
3356 ttstate_t ttrace_state;
3357 thread_info *tinfo;
3358
3359 /* Do we have cached thread state that we can consult? If so, use it. */
3360 tinfo = find_thread_info (map_from_gdb_tid (tid));
3361 if (tinfo != NULL)
3362 {
3363 copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3364 }
3365
3366 /* Nope, must read the thread's current state */
3367 else
3368 {
3369 tt_status = call_ttrace (TT_LWP_GET_STATE,
3370 tid,
3371 (TTRACE_ARG_TYPE) & ttrace_state,
3372 (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3373 TT_NIL);
3374
3375 if (errno)
3376 perror_with_name ("ttrace");
3377
3378 if (tt_status < 0)
3379 return 0;
3380 }
3381
3382 if (ttrace_state.tts_event & TTEVT_FORK)
3383 {
3384 *childpid = ttrace_state.tts_u.tts_fork.tts_fpid;
3385 return 1;
3386 }
3387
3388 return 0;
3389 }
3390
3391 /* See hpux_has_forked for pid discussion.
3392 */
3393 int
3394 hpux_has_vforked (int tid, int *childpid)
3395 {
3396 int tt_status;
3397 ttstate_t ttrace_state;
3398 thread_info *tinfo;
3399
3400 /* Do we have cached thread state that we can consult? If so, use it. */
3401 tinfo = find_thread_info (map_from_gdb_tid (tid));
3402 if (tinfo != NULL)
3403 copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3404
3405 /* Nope, must read the thread's current state */
3406 else
3407 {
3408 tt_status = call_ttrace (TT_LWP_GET_STATE,
3409 tid,
3410 (TTRACE_ARG_TYPE) & ttrace_state,
3411 (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3412 TT_NIL);
3413
3414 if (errno)
3415 perror_with_name ("ttrace");
3416
3417 if (tt_status < 0)
3418 return 0;
3419 }
3420
3421 if (ttrace_state.tts_event & TTEVT_VFORK)
3422 {
3423 *childpid = ttrace_state.tts_u.tts_fork.tts_fpid;
3424 return 1;
3425 }
3426
3427 return 0;
3428 }
3429
3430
3431 #if defined(CHILD_INSERT_EXEC_CATCHPOINT)
3432 int
3433 child_insert_exec_catchpoint (int tid)
3434 {
3435 /* Enable reporting of exec events from the kernel. */
3436 /* ??rehrauer: For the moment, we're always enabling these events,
3437 and just ignoring them if there's no catchpoint to catch them.
3438 */
3439 return 0;
3440 }
3441 #endif
3442
3443
3444 #if defined(CHILD_REMOVE_EXEC_CATCHPOINT)
3445 int
3446 child_remove_exec_catchpoint (int tid)
3447 {
3448 /* Disable reporting of execevents from the kernel. */
3449 /* ??rehrauer: For the moment, we're always enabling these events,
3450 and just ignoring them if there's no catchpoint to catch them.
3451 */
3452 return 0;
3453 }
3454 #endif
3455
3456
3457 int
3458 hpux_has_execd (int tid, char **execd_pathname)
3459 {
3460 int tt_status;
3461 ttstate_t ttrace_state;
3462 thread_info *tinfo;
3463
3464 /* Do we have cached thread state that we can consult? If so, use it. */
3465 tinfo = find_thread_info (map_from_gdb_tid (tid));
3466 if (tinfo != NULL)
3467 copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3468
3469 /* Nope, must read the thread's current state */
3470 else
3471 {
3472 tt_status = call_ttrace (TT_LWP_GET_STATE,
3473 tid,
3474 (TTRACE_ARG_TYPE) & ttrace_state,
3475 (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3476 TT_NIL);
3477
3478 if (errno)
3479 perror_with_name ("ttrace");
3480
3481 if (tt_status < 0)
3482 return 0;
3483 }
3484
3485 if (ttrace_state.tts_event & TTEVT_EXEC)
3486 {
3487 /* See child_pid_to_exec_file in this file: this is a macro.
3488 */
3489 char *exec_file = target_pid_to_exec_file (tid);
3490
3491 *execd_pathname = savestring (exec_file, strlen (exec_file));
3492 return 1;
3493 }
3494
3495 return 0;
3496 }
3497
3498
3499 int
3500 hpux_has_syscall_event (int pid, enum target_waitkind *kind, int *syscall_id)
3501 {
3502 int tt_status;
3503 ttstate_t ttrace_state;
3504 thread_info *tinfo;
3505
3506 /* Do we have cached thread state that we can consult? If so, use it. */
3507 tinfo = find_thread_info (map_from_gdb_tid (pid));
3508 if (tinfo != NULL)
3509 copy_ttstate_t (&ttrace_state, &tinfo->last_stop_state);
3510
3511 /* Nope, must read the thread's current state */
3512 else
3513 {
3514 tt_status = call_ttrace (TT_LWP_GET_STATE,
3515 pid,
3516 (TTRACE_ARG_TYPE) & ttrace_state,
3517 (TTRACE_ARG_TYPE) sizeof (ttrace_state),
3518 TT_NIL);
3519
3520 if (errno)
3521 perror_with_name ("ttrace");
3522
3523 if (tt_status < 0)
3524 return 0;
3525 }
3526
3527 *kind = TARGET_WAITKIND_SPURIOUS; /* Until proven otherwise... */
3528 *syscall_id = -1;
3529
3530 if (ttrace_state.tts_event & TTEVT_SYSCALL_ENTRY)
3531 *kind = TARGET_WAITKIND_SYSCALL_ENTRY;
3532 else if (ttrace_state.tts_event & TTEVT_SYSCALL_RETURN)
3533 *kind = TARGET_WAITKIND_SYSCALL_RETURN;
3534 else
3535 return 0;
3536
3537 *syscall_id = ttrace_state.tts_scno;
3538 return 1;
3539 }
3540 \f
3541
3542
3543 #if defined(CHILD_THREAD_ALIVE)
3544
3545 /* Check to see if the given thread is alive.
3546
3547 * We'll trust the thread list, as the more correct
3548 * approach of stopping the process and spinning down
3549 * the OS's thread list is _very_ expensive.
3550 *
3551 * May need a FIXME for that reason.
3552 */
3553 int
3554 child_thread_alive (ptid_t ptid)
3555 {
3556 lwpid_t gdb_tid = PIDGET (ptid);
3557 lwpid_t tid;
3558
3559 /* This spins down the lists twice.
3560 * Possible peformance improvement here!
3561 */
3562 tid = map_from_gdb_tid (gdb_tid);
3563 return !is_terminated (tid);
3564 }
3565
3566 #endif
3567 \f
3568
3569
3570 /* This function attempts to read the specified number of bytes from the
3571 save_state_t that is our view into the hardware registers, starting at
3572 ss_offset, and ending at ss_offset + sizeof_buf - 1
3573
3574 If this function succeeds, it deposits the fetched bytes into buf,
3575 and returns 0.
3576
3577 If it fails, it returns a negative result. The contents of buf are
3578 undefined it this function fails.
3579 */
3580 int
3581 read_from_register_save_state (int tid, TTRACE_ARG_TYPE ss_offset, char *buf,
3582 int sizeof_buf)
3583 {
3584 int tt_status;
3585 register_value_t register_value = 0;
3586
3587 tt_status = call_ttrace (TT_LWP_RUREGS,
3588 tid,
3589 ss_offset,
3590 (TTRACE_ARG_TYPE) sizeof_buf,
3591 (TTRACE_ARG_TYPE) buf);
3592
3593 if (tt_status == 1)
3594 /* Map ttrace's version of success to our version.
3595 * Sometime ttrace returns 0, but that's ok here.
3596 */
3597 return 0;
3598
3599 return tt_status;
3600 }
3601 \f
3602
3603 /* This function attempts to write the specified number of bytes to the
3604 save_state_t that is our view into the hardware registers, starting at
3605 ss_offset, and ending at ss_offset + sizeof_buf - 1
3606
3607 If this function succeeds, it deposits the bytes in buf, and returns 0.
3608
3609 If it fails, it returns a negative result. The contents of the save_state_t
3610 are undefined it this function fails.
3611 */
3612 int
3613 write_to_register_save_state (int tid, TTRACE_ARG_TYPE ss_offset, char *buf,
3614 int sizeof_buf)
3615 {
3616 int tt_status;
3617 register_value_t register_value = 0;
3618
3619 tt_status = call_ttrace (TT_LWP_WUREGS,
3620 tid,
3621 ss_offset,
3622 (TTRACE_ARG_TYPE) sizeof_buf,
3623 (TTRACE_ARG_TYPE) buf);
3624 return tt_status;
3625 }
3626 \f
3627
3628 /* This function is a sop to the largeish number of direct calls
3629 to call_ptrace that exist in other files. Rather than create
3630 functions whose name abstracts away from ptrace, and change all
3631 the present callers of call_ptrace, we'll do the expedient (and
3632 perhaps only practical) thing.
3633
3634 Note HP-UX explicitly disallows a mix of ptrace & ttrace on a traced
3635 process. Thus, we must translate all ptrace requests into their
3636 process-specific, ttrace equivalents.
3637 */
3638 int
3639 call_ptrace (int pt_request, int gdb_tid, PTRACE_ARG3_TYPE addr, int data)
3640 {
3641 ttreq_t tt_request;
3642 TTRACE_ARG_TYPE tt_addr = (TTRACE_ARG_TYPE) addr;
3643 TTRACE_ARG_TYPE tt_data = (TTRACE_ARG_TYPE) data;
3644 TTRACE_ARG_TYPE tt_addr2 = TT_NIL;
3645 int tt_status;
3646 register_value_t register_value;
3647 int read_buf;
3648
3649 /* Perform the necessary argument translation. Note that some
3650 cases are funky enough in the ttrace realm that we handle them
3651 very specially.
3652 */
3653 switch (pt_request)
3654 {
3655 /* The following cases cannot conveniently be handled conveniently
3656 by merely adjusting the ptrace arguments and feeding into the
3657 generic call to ttrace at the bottom of this function.
3658
3659 Note that because all branches of this switch end in "return",
3660 there's no need for any "break" statements.
3661 */
3662 case PT_SETTRC:
3663 return parent_attach_all (0, 0, 0);
3664
3665 case PT_RUREGS:
3666 tt_status = read_from_register_save_state (gdb_tid,
3667 tt_addr,
3668 &register_value,
3669 sizeof (register_value));
3670 if (tt_status < 0)
3671 return tt_status;
3672 return register_value;
3673
3674 case PT_WUREGS:
3675 register_value = (int) tt_data;
3676 tt_status = write_to_register_save_state (gdb_tid,
3677 tt_addr,
3678 &register_value,
3679 sizeof (register_value));
3680 return tt_status;
3681 break;
3682
3683 case PT_READ_I:
3684 tt_status = call_ttrace (TT_PROC_RDTEXT, /* Implicit 4-byte xfer becomes block-xfer. */
3685 gdb_tid,
3686 tt_addr,
3687 (TTRACE_ARG_TYPE) 4,
3688 (TTRACE_ARG_TYPE) & read_buf);
3689 if (tt_status < 0)
3690 return tt_status;
3691 return read_buf;
3692
3693 case PT_READ_D:
3694 tt_status = call_ttrace (TT_PROC_RDDATA, /* Implicit 4-byte xfer becomes block-xfer. */
3695 gdb_tid,
3696 tt_addr,
3697 (TTRACE_ARG_TYPE) 4,
3698 (TTRACE_ARG_TYPE) & read_buf);
3699 if (tt_status < 0)
3700 return tt_status;
3701 return read_buf;
3702
3703 case PT_ATTACH:
3704 tt_status = call_real_ttrace (TT_PROC_ATTACH,
3705 map_from_gdb_tid (gdb_tid),
3706 (lwpid_t) TT_NIL,
3707 tt_addr,
3708 (TTRACE_ARG_TYPE) TT_VERSION,
3709 tt_addr2);
3710 if (tt_status < 0)
3711 return tt_status;
3712 return tt_status;
3713
3714 /* The following cases are handled by merely adjusting the ptrace
3715 arguments and feeding into the generic call to ttrace.
3716 */
3717 case PT_DETACH:
3718 tt_request = TT_PROC_DETACH;
3719 break;
3720
3721 case PT_WRITE_I:
3722 tt_request = TT_PROC_WRTEXT; /* Translates 4-byte xfer to block-xfer. */
3723 tt_data = 4; /* This many bytes. */
3724 tt_addr2 = (TTRACE_ARG_TYPE) & data; /* Address of xfer source. */
3725 break;
3726
3727 case PT_WRITE_D:
3728 tt_request = TT_PROC_WRDATA; /* Translates 4-byte xfer to block-xfer. */
3729 tt_data = 4; /* This many bytes. */
3730 tt_addr2 = (TTRACE_ARG_TYPE) & data; /* Address of xfer source. */
3731 break;
3732
3733 case PT_RDTEXT:
3734 tt_request = TT_PROC_RDTEXT;
3735 break;
3736
3737 case PT_RDDATA:
3738 tt_request = TT_PROC_RDDATA;
3739 break;
3740
3741 case PT_WRTEXT:
3742 tt_request = TT_PROC_WRTEXT;
3743 break;
3744
3745 case PT_WRDATA:
3746 tt_request = TT_PROC_WRDATA;
3747 break;
3748
3749 case PT_CONTINUE:
3750 tt_request = TT_PROC_CONTINUE;
3751 break;
3752
3753 case PT_STEP:
3754 tt_request = TT_LWP_SINGLE; /* Should not be making this request? */
3755 break;
3756
3757 case PT_KILL:
3758 tt_request = TT_PROC_EXIT;
3759 break;
3760
3761 case PT_GET_PROCESS_PATHNAME:
3762 tt_request = TT_PROC_GET_PATHNAME;
3763 break;
3764
3765 default:
3766 tt_request = pt_request; /* Let ttrace be the one to complain. */
3767 break;
3768 }
3769
3770 return call_ttrace (tt_request,
3771 gdb_tid,
3772 tt_addr,
3773 tt_data,
3774 tt_addr2);
3775 }
3776
3777 /* Kill that pesky process!
3778 */
3779 void
3780 kill_inferior (void)
3781 {
3782 int tid;
3783 int wait_status;
3784 thread_info *t;
3785 thread_info **paranoia;
3786 int para_count, i;
3787
3788 if (PIDGET (inferior_ptid) == 0)
3789 return;
3790
3791 /* Walk the list of "threads", some of which are "pseudo threads",
3792 aka "processes". For each that is NOT inferior_ptid, stop it,
3793 and detach it.
3794
3795 You see, we may not have just a single process to kill. If we're
3796 restarting or quitting or detaching just after the inferior has
3797 forked, then we've actually two processes to clean up.
3798
3799 But we can't just call target_mourn_inferior() for each, since that
3800 zaps the target vector.
3801 */
3802
3803 paranoia = (thread_info **) xmalloc (thread_head.count *
3804 sizeof (thread_info *));
3805 para_count = 0;
3806
3807 t = thread_head.head;
3808 while (t)
3809 {
3810
3811 paranoia[para_count] = t;
3812 for (i = 0; i < para_count; i++)
3813 {
3814 if (t->next == paranoia[i])
3815 {
3816 warning ("Bad data in gdb's thread data; repairing.");
3817 t->next = 0;
3818 }
3819 }
3820 para_count++;
3821
3822 if (t->am_pseudo && (t->pid != PIDGET (inferior_ptid)))
3823 {
3824 call_ttrace (TT_PROC_EXIT,
3825 t->pid,
3826 TT_NIL,
3827 TT_NIL,
3828 TT_NIL);
3829 }
3830 t = t->next;
3831 }
3832
3833 xfree (paranoia);
3834
3835 call_ttrace (TT_PROC_EXIT,
3836 PIDGET (inferior_ptid),
3837 TT_NIL,
3838 TT_NIL,
3839 TT_NIL);
3840 target_mourn_inferior ();
3841 clear_thread_info ();
3842 }
3843
3844
3845 #ifndef CHILD_RESUME
3846
3847 /* Sanity check a thread about to be continued.
3848 */
3849 static void
3850 thread_dropping_event_check (thread_info *p)
3851 {
3852 if (!p->handled)
3853 {
3854 /*
3855 * This seems to happen when we "next" over a
3856 * "fork()" while following the parent. If it's
3857 * the FORK event, that's ok. If it's a SIGNAL
3858 * in the unfollowed child, that's ok to--but
3859 * how can we know that's what's going on?
3860 *
3861 * FIXME!
3862 */
3863 if (p->have_state)
3864 {
3865 if (p->last_stop_state.tts_event == TTEVT_FORK)
3866 {
3867 /* Ok */
3868 ;
3869 }
3870 else if (p->last_stop_state.tts_event == TTEVT_SIGNAL)
3871 {
3872 /* Ok, close eyes and let it happen.
3873 */
3874 ;
3875 }
3876 else
3877 {
3878 /* This shouldn't happen--we're dropping a
3879 * real event.
3880 */
3881 warning ("About to continue process %d, thread %d with unhandled event %s.",
3882 p->pid, p->tid,
3883 get_printable_name_of_ttrace_event (
3884 p->last_stop_state.tts_event));
3885
3886 #ifdef PARANOIA
3887 if (debug_on)
3888 print_tthread (p);
3889 #endif
3890 }
3891 }
3892 else
3893 {
3894 /* No saved state, have to assume it failed.
3895 */
3896 warning ("About to continue process %d, thread %d with unhandled event.",
3897 p->pid, p->tid);
3898 #ifdef PARANOIA
3899 if (debug_on)
3900 print_tthread (p);
3901 #endif
3902 }
3903 }
3904
3905 } /* thread_dropping_event_check */
3906
3907 /* Use a loop over the threads to continue all the threads but
3908 * the one specified, which is to be stepped.
3909 */
3910 static void
3911 threads_continue_all_but_one (lwpid_t gdb_tid, int signal)
3912 {
3913 thread_info *p;
3914 int thread_signal;
3915 lwpid_t real_tid;
3916 lwpid_t scan_tid;
3917 ttstate_t state;
3918 int real_pid;
3919
3920 #ifdef THREAD_DEBUG
3921 if (debug_on)
3922 printf ("Using loop over threads to step/resume with signals\n");
3923 #endif
3924
3925 /* First update the thread list.
3926 */
3927 set_all_unseen ();
3928 real_tid = map_from_gdb_tid (gdb_tid);
3929 real_pid = get_pid_for (real_tid);
3930
3931 scan_tid = get_process_first_stopped_thread_id (real_pid, &state);
3932 while (0 != scan_tid)
3933 {
3934
3935 #ifdef THREAD_DEBUG
3936 /* FIX: later should check state is stopped;
3937 * state.tts_flags & TTS_STATEMASK == TTS_WASSUSPENDED
3938 */
3939 if (debug_on)
3940 if ((state.tts_flags & TTS_STATEMASK) != TTS_WASSUSPENDED)
3941 printf ("About to continue non-stopped thread %d\n", scan_tid);
3942 #endif
3943
3944 p = find_thread_info (scan_tid);
3945 if (NULL == p)
3946 {
3947 add_tthread (real_pid, scan_tid);
3948 p = find_thread_info (scan_tid);
3949
3950 /* This is either a newly-created thread or the
3951 * result of a fork; in either case there's no
3952 * actual event to worry about.
3953 */
3954 p->handled = 1;
3955
3956 if (state.tts_event != TTEVT_NONE)
3957 {
3958 /* Oops, do need to worry!
3959 */
3960 warning ("Unexpected thread with \"%s\" event.",
3961 get_printable_name_of_ttrace_event (state.tts_event));
3962 }
3963 }
3964 else if (scan_tid != p->tid)
3965 error ("Bad data in thread database.");
3966
3967 #ifdef THREAD_DEBUG
3968 if (debug_on)
3969 if (p->terminated)
3970 printf ("Why are we continuing a dead thread?\n");
3971 #endif
3972
3973 p->seen = 1;
3974
3975 scan_tid = get_process_next_stopped_thread_id (real_pid, &state);
3976 }
3977
3978 /* Remove unseen threads.
3979 */
3980 update_thread_list ();
3981
3982 /* Now run down the thread list and continue or step.
3983 */
3984 for (p = thread_head.head; p; p = p->next)
3985 {
3986
3987 /* Sanity check.
3988 */
3989 thread_dropping_event_check (p);
3990
3991 /* Pass the correct signals along.
3992 */
3993 if (p->have_signal)
3994 {
3995 thread_signal = p->signal_value;
3996 p->have_signal = 0;
3997 }
3998 else
3999 thread_signal = 0;
4000
4001 if (p->tid != real_tid)
4002 {
4003 /*
4004 * Not the thread of interest, so continue it
4005 * as the user expects.
4006 */
4007 if (p->stepping_mode == DO_STEP)
4008 {
4009 /* Just step this thread.
4010 */
4011 call_ttrace (
4012 TT_LWP_SINGLE,
4013 p->tid,
4014 TT_USE_CURRENT_PC,
4015 (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4016 TT_NIL);
4017 }
4018 else
4019 {
4020 /* Regular continue (default case).
4021 */
4022 call_ttrace (
4023 TT_LWP_CONTINUE,
4024 p->tid,
4025 TT_USE_CURRENT_PC,
4026 (TTRACE_ARG_TYPE) target_signal_to_host (thread_signal),
4027 TT_NIL);
4028 }
4029 }
4030 else
4031 {
4032 /* Step the thread of interest.
4033 */
4034 call_ttrace (
4035 TT_LWP_SINGLE,
4036 real_tid,
4037 TT_USE_CURRENT_PC,
4038 (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4039 TT_NIL);
4040 }
4041 } /* Loop over threads */
4042 } /* End threads_continue_all_but_one */
4043
4044 /* Use a loop over the threads to continue all the threads.
4045 * This is done when a signal must be sent to any of the threads.
4046 */
4047 static void
4048 threads_continue_all_with_signals (lwpid_t gdb_tid, int signal)
4049 {
4050 thread_info *p;
4051 int thread_signal;
4052 lwpid_t real_tid;
4053 lwpid_t scan_tid;
4054 ttstate_t state;
4055 int real_pid;
4056
4057 #ifdef THREAD_DEBUG
4058 if (debug_on)
4059 printf ("Using loop over threads to resume with signals\n");
4060 #endif
4061
4062 /* Scan and update thread list.
4063 */
4064 set_all_unseen ();
4065 real_tid = map_from_gdb_tid (gdb_tid);
4066 real_pid = get_pid_for (real_tid);
4067
4068 scan_tid = get_process_first_stopped_thread_id (real_pid, &state);
4069 while (0 != scan_tid)
4070 {
4071
4072 #ifdef THREAD_DEBUG
4073 if (debug_on)
4074 if ((state.tts_flags & TTS_STATEMASK) != TTS_WASSUSPENDED)
4075 warning ("About to continue non-stopped thread %d\n", scan_tid);
4076 #endif
4077
4078 p = find_thread_info (scan_tid);
4079 if (NULL == p)
4080 {
4081 add_tthread (real_pid, scan_tid);
4082 p = find_thread_info (scan_tid);
4083
4084 /* This is either a newly-created thread or the
4085 * result of a fork; in either case there's no
4086 * actual event to worry about.
4087 */
4088 p->handled = 1;
4089
4090 if (state.tts_event != TTEVT_NONE)
4091 {
4092 /* Oops, do need to worry!
4093 */
4094 warning ("Unexpected thread with \"%s\" event.",
4095 get_printable_name_of_ttrace_event (state.tts_event));
4096 }
4097 }
4098
4099 #ifdef THREAD_DEBUG
4100 if (debug_on)
4101 if (p->terminated)
4102 printf ("Why are we continuing a dead thread? (1)\n");
4103 #endif
4104
4105 p->seen = 1;
4106
4107 scan_tid = get_process_next_stopped_thread_id (real_pid, &state);
4108 }
4109
4110 /* Remove unseen threads from our list.
4111 */
4112 update_thread_list ();
4113
4114 /* Continue the threads.
4115 */
4116 for (p = thread_head.head; p; p = p->next)
4117 {
4118
4119 /* Sanity check.
4120 */
4121 thread_dropping_event_check (p);
4122
4123 /* Pass the correct signals along.
4124 */
4125 if (p->tid == real_tid)
4126 {
4127 thread_signal = signal;
4128 p->have_signal = 0;
4129 }
4130 else if (p->have_signal)
4131 {
4132 thread_signal = p->signal_value;
4133 p->have_signal = 0;
4134 }
4135 else
4136 thread_signal = 0;
4137
4138 if (p->stepping_mode == DO_STEP)
4139 {
4140 call_ttrace (
4141 TT_LWP_SINGLE,
4142 p->tid,
4143 TT_USE_CURRENT_PC,
4144 (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4145 TT_NIL);
4146 }
4147 else
4148 {
4149 /* Continue this thread (default case).
4150 */
4151 call_ttrace (
4152 TT_LWP_CONTINUE,
4153 p->tid,
4154 TT_USE_CURRENT_PC,
4155 (TTRACE_ARG_TYPE) target_signal_to_host (thread_signal),
4156 TT_NIL);
4157 }
4158 }
4159 } /* End threads_continue_all_with_signals */
4160
4161 /* Step one thread only.
4162 */
4163 static void
4164 thread_fake_step (lwpid_t tid, enum target_signal signal)
4165 {
4166 thread_info *p;
4167
4168 #ifdef THREAD_DEBUG
4169 if (debug_on)
4170 {
4171 printf ("Doing a fake-step over a bpt, etc. for %d\n", tid);
4172
4173 if (is_terminated (tid))
4174 printf ("Why are we continuing a dead thread? (4)\n");
4175 }
4176 #endif
4177
4178 if (doing_fake_step)
4179 warning ("Step while step already in progress.");
4180
4181 /* See if there's a saved signal value for this
4182 * thread to be passed on, but no current signal.
4183 */
4184 p = find_thread_info (tid);
4185 if (p != NULL)
4186 {
4187 if (p->have_signal && signal == TARGET_SIGNAL_0)
4188 {
4189 /* Pass on a saved signal.
4190 */
4191 signal = p->signal_value;
4192 }
4193
4194 p->have_signal = 0;
4195 }
4196
4197 if (!p->handled)
4198 warning ("Internal error: continuing unhandled thread.");
4199
4200 call_ttrace (TT_LWP_SINGLE,
4201 tid,
4202 TT_USE_CURRENT_PC,
4203 (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4204 TT_NIL);
4205
4206 /* Do bookkeeping so "call_ttrace_wait" knows it has to wait
4207 * for this thread only, and clear any saved signal info.
4208 */
4209 doing_fake_step = 1;
4210 fake_step_tid = tid;
4211
4212 } /* End thread_fake_step */
4213
4214 /* Continue one thread when a signal must be sent to it.
4215 */
4216 static void
4217 threads_continue_one_with_signal (lwpid_t gdb_tid, int signal)
4218 {
4219 thread_info *p;
4220 lwpid_t real_tid;
4221 int real_pid;
4222
4223 #ifdef THREAD_DEBUG
4224 if (debug_on)
4225 printf ("Continuing one thread with a signal\n");
4226 #endif
4227
4228 real_tid = map_from_gdb_tid (gdb_tid);
4229 real_pid = get_pid_for (real_tid);
4230
4231 p = find_thread_info (real_tid);
4232 if (NULL == p)
4233 {
4234 add_tthread (real_pid, real_tid);
4235 }
4236
4237 #ifdef THREAD_DEBUG
4238 if (debug_on)
4239 if (p->terminated)
4240 printf ("Why are we continuing a dead thread? (2)\n");
4241 #endif
4242
4243 if (!p->handled)
4244 warning ("Internal error: continuing unhandled thread.");
4245
4246 p->have_signal = 0;
4247
4248 call_ttrace (TT_LWP_CONTINUE,
4249 gdb_tid,
4250 TT_USE_CURRENT_PC,
4251 (TTRACE_ARG_TYPE) target_signal_to_host (signal),
4252 TT_NIL);
4253 }
4254 #endif
4255
4256 #ifndef CHILD_RESUME
4257
4258 /* Resume execution of the inferior process.
4259
4260 * This routine is in charge of setting the "handled" bits.
4261 *
4262 * If STEP is zero, continue it.
4263 * If STEP is nonzero, single-step it.
4264 *
4265 * If SIGNAL is nonzero, give it that signal.
4266 *
4267 * If TID is -1, apply to all threads.
4268 * If TID is not -1, apply to specified thread.
4269 *
4270 * STEP
4271 * \ !0 0
4272 * TID \________________________________________________
4273 * |
4274 * -1 | Step current Continue all threads
4275 * | thread and (but which gets any
4276 * | continue others signal?--We look at
4277 * | "inferior_ptid")
4278 * |
4279 * N | Step _this_ thread Continue _this_ thread
4280 * | and leave others and leave others
4281 * | stopped; internally stopped; used only for
4282 * | used by gdb, never hardware watchpoints
4283 * | a user command. and attach, never a
4284 * | user command.
4285 */
4286 void
4287 child_resume (ptid_t ptid, int step, enum target_signal signal)
4288 {
4289 int resume_all_threads;
4290 lwpid_t tid;
4291 process_state_t new_process_state;
4292 lwpid_t gdb_tid = PIDGET (ptid);
4293
4294 resume_all_threads =
4295 (gdb_tid == INFTTRACE_ALL_THREADS) ||
4296 (vfork_in_flight);
4297
4298 if (resume_all_threads)
4299 {
4300 /* Resume all threads, but first pick a tid value
4301 * so we can get the pid when in call_ttrace doing
4302 * the map.
4303 */
4304 if (vfork_in_flight)
4305 tid = vforking_child_pid;
4306 else
4307 tid = map_from_gdb_tid (PIDGET (inferior_ptid));
4308 }
4309 else
4310 tid = map_from_gdb_tid (gdb_tid);
4311
4312 #ifdef THREAD_DEBUG
4313 if (debug_on)
4314 {
4315 if (more_events_left)
4316 printf ("More events; ");
4317
4318 if (signal != 0)
4319 printf ("Sending signal %d; ", signal);
4320
4321 if (resume_all_threads)
4322 {
4323 if (step == 0)
4324 printf ("Continue process %d\n", tid);
4325 else
4326 printf ("Step/continue thread %d\n", tid);
4327 }
4328 else
4329 {
4330 if (step == 0)
4331 printf ("Continue thread %d\n", tid);
4332 else
4333 printf ("Step just thread %d\n", tid);
4334 }
4335
4336 if (vfork_in_flight)
4337 printf ("Vfork in flight\n");
4338 }
4339 #endif
4340
4341 if (process_state == RUNNING)
4342 warning ("Internal error in resume logic; doing resume or step anyway.");
4343
4344 if (!step /* Asked to continue... */
4345 && resume_all_threads /* whole process.. */
4346 && signal != 0 /* with a signal... */
4347 && more_events_left > 0)
4348 { /* but we can't yet--save it! */
4349
4350 /* Continue with signal means we have to set the pending
4351 * signal value for this thread.
4352 */
4353 thread_info *k;
4354
4355 #ifdef THREAD_DEBUG
4356 if (debug_on)
4357 printf ("Saving signal %d for thread %d\n", signal, tid);
4358 #endif
4359
4360 k = find_thread_info (tid);
4361 if (k != NULL)
4362 {
4363 k->have_signal = 1;
4364 k->signal_value = signal;
4365
4366 #ifdef THREAD_DEBUG
4367 if (debug_on)
4368 if (k->terminated)
4369 printf ("Why are we continuing a dead thread? (3)\n");
4370 #endif
4371
4372 }
4373
4374 #ifdef THREAD_DEBUG
4375 else if (debug_on)
4376 {
4377 printf ("No thread info for tid %d\n", tid);
4378 }
4379 #endif
4380 }
4381
4382 /* Are we faking this "continue" or "step"?
4383
4384 * We used to do steps by continuing all the threads for
4385 * which the events had been handled already. While
4386 * conceptually nicer (hides it all in a lower level), this
4387 * can lead to starvation and a hang (e.g. all but one thread
4388 * are unhandled at a breakpoint just before a "join" operation,
4389 * and one thread is in the join, and the user wants to step that
4390 * thread).
4391 */
4392 if (resume_all_threads /* Whole process, therefore user command */
4393 && more_events_left > 0)
4394 { /* But we can't do this yet--fake it! */
4395 thread_info *p;
4396
4397 if (!step)
4398 {
4399 /* No need to do any notes on a per-thread
4400 * basis--we're done!
4401 */
4402 #ifdef WAIT_BUFFER_DEBUG
4403 if (debug_on)
4404 printf ("Faking a process resume.\n");
4405 #endif
4406
4407 return;
4408 }
4409 else
4410 {
4411
4412 #ifdef WAIT_BUFFER_DEBUG
4413 if (debug_on)
4414 printf ("Faking a process step.\n");
4415 #endif
4416
4417 }
4418
4419 p = find_thread_info (tid);
4420 if (p == NULL)
4421 {
4422 warning ("No thread information for tid %d, 'next' command ignored.\n", tid);
4423 return;
4424 }
4425 else
4426 {
4427
4428 #ifdef THREAD_DEBUG
4429 if (debug_on)
4430 if (p->terminated)
4431 printf ("Why are we continuing a dead thread? (3.5)\n");
4432 #endif
4433
4434 if (p->stepping_mode != DO_DEFAULT)
4435 {
4436 warning ("Step or continue command applied to thread which is already stepping or continuing; command ignored.");
4437
4438 return;
4439 }
4440
4441 if (step)
4442 p->stepping_mode = DO_STEP;
4443 else
4444 p->stepping_mode = DO_CONTINUE;
4445
4446 return;
4447 } /* Have thread info */
4448 } /* Must fake step or go */
4449
4450 /* Execept for fake-steps, from here on we know we are
4451 * going to wind up with a running process which will
4452 * need a real wait.
4453 */
4454 new_process_state = RUNNING;
4455
4456 /* An address of TT_USE_CURRENT_PC tells ttrace to continue from where
4457 * it was. (If GDB wanted it to start some other way, we have already
4458 * written a new PC value to the child.)
4459 *
4460 * If this system does not support PT_STEP, a higher level function will
4461 * have called single_step() to transmute the step request into a
4462 * continue request (by setting breakpoints on all possible successor
4463 * instructions), so we don't have to worry about that here.
4464 */
4465 if (step)
4466 {
4467 if (resume_all_threads)
4468 {
4469 /*
4470 * Regular user step: other threads get a "continue".
4471 */
4472 threads_continue_all_but_one (tid, signal);
4473 clear_all_handled ();
4474 clear_all_stepping_mode ();
4475 }
4476
4477 else
4478 {
4479 /* "Fake step": gdb is stepping one thread over a
4480 * breakpoint, watchpoint, or out of a library load
4481 * event, etc. The rest just stay where they are.
4482 *
4483 * Also used when there are pending events: we really
4484 * step the current thread, but leave the rest stopped.
4485 * Users can't request this, but "wait_for_inferior"
4486 * does--a lot!
4487 */
4488 thread_fake_step (tid, signal);
4489
4490 /* Clear the "handled" state of this thread, because
4491 * we'll soon get a new event for it. Other events
4492 * stay as they were.
4493 */
4494 clear_handled (tid);
4495 clear_stepping_mode (tid);
4496 new_process_state = FAKE_STEPPING;
4497 }
4498 }
4499
4500 else
4501 {
4502 /* TT_LWP_CONTINUE can pass signals to threads, TT_PROC_CONTINUE can't.
4503 Therefore, we really can't use TT_PROC_CONTINUE here.
4504
4505 Consider a process which stopped due to signal which gdb decides
4506 to handle and not pass on to the inferior. In that case we must
4507 clear the pending signal by restarting the inferior using
4508 TT_LWP_CONTINUE and pass zero as the signal number. Else the
4509 pending signal will be passed to the inferior. interrupt.exp
4510 in the testsuite does this precise thing and fails due to the
4511 unwanted signal delivery to the inferior. */
4512 /* drow/2002-12-05: However, note that we must use TT_PROC_CONTINUE
4513 if we are tracing a vfork. */
4514 if (vfork_in_flight)
4515 {
4516 call_ttrace (TT_PROC_CONTINUE, tid, TT_NIL, TT_NIL, TT_NIL);
4517 clear_all_handled ();
4518 clear_all_stepping_mode ();
4519 }
4520 else if (resume_all_threads)
4521 {
4522 #ifdef THREAD_DEBUG
4523 if (debug_on)
4524 printf ("Doing a continue by loop of all threads\n");
4525 #endif
4526
4527 threads_continue_all_with_signals (tid, signal);
4528
4529 clear_all_handled ();
4530 clear_all_stepping_mode ();
4531 }
4532 else
4533 {
4534 #ifdef THREAD_DEBUG
4535 printf ("Doing a continue w/signal of just thread %d\n", tid);
4536 #endif
4537
4538 threads_continue_one_with_signal (tid, signal);
4539
4540 /* Clear the "handled" state of this thread, because we
4541 will soon get a new event for it. Other events can
4542 stay as they were. */
4543 clear_handled (tid);
4544 clear_stepping_mode (tid);
4545 }
4546 }
4547
4548 process_state = new_process_state;
4549
4550 #ifdef WAIT_BUFFER_DEBUG
4551 if (debug_on)
4552 printf ("Process set to %s\n",
4553 get_printable_name_of_process_state (process_state));
4554 #endif
4555
4556 }
4557 #endif /* CHILD_RESUME */
4558 \f
4559 /*
4560 * Like it says.
4561 *
4562 * One worry is that we may not be attaching to "inferior_ptid"
4563 * and thus may not want to clear out our data. FIXME?
4564 *
4565 */
4566 static void
4567 update_thread_state_after_attach (int pid, attach_continue_t kind_of_go)
4568 {
4569 int tt_status;
4570 ttstate_t thread_state;
4571 lwpid_t a_thread;
4572 lwpid_t tid;
4573
4574 /* The process better be stopped.
4575 */
4576 if (process_state != STOPPED
4577 && process_state != VFORKING)
4578 warning ("Internal error attaching.");
4579
4580 /* Clear out old tthread info and start over. This has the
4581 * side effect of ensuring that the TRAP is reported as being
4582 * in the right thread (re-mapped from tid to pid).
4583 *
4584 * It's because we need to add the tthread _now_ that we
4585 * need to call "clear_thread_info" _now_, and that's why
4586 * "require_notification_of_events" doesn't clear the thread
4587 * info (it's called later than this routine).
4588 */
4589 clear_thread_info ();
4590 a_thread = 0;
4591
4592 for (tid = get_process_first_stopped_thread_id (pid, &thread_state);
4593 tid != 0;
4594 tid = get_process_next_stopped_thread_id (pid, &thread_state))
4595 {
4596 thread_info *p;
4597
4598 if (a_thread == 0)
4599 {
4600 a_thread = tid;
4601 #ifdef THREAD_DEBUG
4602 if (debug_on)
4603 printf ("Attaching to process %d, thread %d\n",
4604 pid, a_thread);
4605 #endif
4606 }
4607
4608 /* Tell ourselves and the "rest of gdb" that this thread
4609 * exists.
4610 *
4611 * This isn't really a hack. Other thread-based versions
4612 * of gdb (e.g. gnu-nat.c) seem to do the same thing.
4613 *
4614 * We don't need to do mapping here, as we know this
4615 * is the first thread and thus gets the real pid
4616 * (and is "inferior_ptid").
4617 *
4618 * NOTE: it probably isn't the originating thread,
4619 * but that doesn't matter (we hope!).
4620 */
4621 add_tthread (pid, tid);
4622 p = find_thread_info (tid);
4623 if (NULL == p) /* ?We just added it! */
4624 error ("Internal error adding a thread on attach.");
4625
4626 copy_ttstate_t (&p->last_stop_state, &thread_state);
4627 p->have_state = 1;
4628
4629 if (DO_ATTACH_CONTINUE == kind_of_go)
4630 {
4631 /*
4632 * If we are going to CONTINUE afterwards,
4633 * raising a SIGTRAP, don't bother trying to
4634 * handle this event. But check first!
4635 */
4636 switch (p->last_stop_state.tts_event)
4637 {
4638
4639 case TTEVT_NONE:
4640 /* Ok to set this handled.
4641 */
4642 break;
4643
4644 default:
4645 warning ("Internal error; skipping event %s on process %d, thread %d.",
4646 get_printable_name_of_ttrace_event (
4647 p->last_stop_state.tts_event),
4648 p->pid, p->tid);
4649 }
4650
4651 set_handled (pid, tid);
4652
4653 }
4654 else
4655 {
4656 /* There will be no "continue" opertion, so the
4657 * process remains stopped. Don't set any events
4658 * handled except the "gimmies".
4659 */
4660 switch (p->last_stop_state.tts_event)
4661 {
4662
4663 case TTEVT_NONE:
4664 /* Ok to ignore this.
4665 */
4666 set_handled (pid, tid);
4667 break;
4668
4669 case TTEVT_EXEC:
4670 case TTEVT_FORK:
4671 /* Expected "other" FORK or EXEC event from a
4672 * fork or vfork.
4673 */
4674 break;
4675
4676 default:
4677 printf ("Internal error: failed to handle event %s on process %d, thread %d.",
4678 get_printable_name_of_ttrace_event (
4679 p->last_stop_state.tts_event),
4680 p->pid, p->tid);
4681 }
4682 }
4683
4684 add_thread (pid_to_ptid (pid)); /* in thread.c */
4685 }
4686
4687 #ifdef PARANOIA
4688 if (debug_on)
4689 print_tthreads ();
4690 #endif
4691
4692 /* One mustn't call ttrace_wait() after attaching via ttrace,
4693 'cause the process is stopped already.
4694
4695 However, the upper layers of gdb's execution control will
4696 want to wait after attaching (but not after forks, in
4697 which case they will be doing a "target_resume", anticipating
4698 a later TTEVT_EXEC or TTEVT_FORK event).
4699
4700 To make this attach() implementation more compatible with
4701 others, we'll make the attached-to process raise a SIGTRAP.
4702
4703 Issue: this continues only one thread. That could be
4704 dangerous if the thread is blocked--the process won't run
4705 and no trap will be raised. FIX! (check state.tts_flags?
4706 need one that's either TTS_WASRUNNING--but we've stopped
4707 it and made it TTS_WASSUSPENDED. Hum...FIXME!)
4708 */
4709 if (DO_ATTACH_CONTINUE == kind_of_go)
4710 {
4711 tt_status = call_real_ttrace (
4712 TT_LWP_CONTINUE,
4713 pid,
4714 a_thread,
4715 TT_USE_CURRENT_PC,
4716 (TTRACE_ARG_TYPE) target_signal_to_host (TARGET_SIGNAL_TRAP),
4717 TT_NIL);
4718 if (errno)
4719 perror_with_name ("ttrace");
4720
4721 clear_handled (a_thread); /* So TRAP will be reported. */
4722
4723 /* Now running.
4724 */
4725 process_state = RUNNING;
4726 }
4727
4728 attach_flag = 1;
4729 }
4730 \f
4731
4732 /* Start debugging the process whose number is PID.
4733 * (A _real_ pid).
4734 */
4735 int
4736 attach (int pid)
4737 {
4738 int tt_status;
4739
4740 tt_status = call_real_ttrace (
4741 TT_PROC_ATTACH,
4742 pid,
4743 (lwpid_t) TT_NIL,
4744 TT_NIL,
4745 (TTRACE_ARG_TYPE) TT_VERSION,
4746 TT_NIL);
4747 if (errno)
4748 perror_with_name ("ttrace attach");
4749
4750 /* If successful, the process is now stopped.
4751 */
4752 process_state = STOPPED;
4753
4754 /* Our caller ("attach_command" in "infcmd.c")
4755 * expects to do a "wait_for_inferior" after
4756 * the attach, so make sure the inferior is
4757 * running when we're done.
4758 */
4759 update_thread_state_after_attach (pid, DO_ATTACH_CONTINUE);
4760
4761 return pid;
4762 }
4763
4764
4765 #if defined(CHILD_POST_ATTACH)
4766 void
4767 child_post_attach (int pid)
4768 {
4769 #ifdef THREAD_DEBUG
4770 if (debug_on)
4771 printf ("child-post-attach call\n");
4772 #endif
4773
4774 require_notification_of_events (pid);
4775 }
4776 #endif
4777
4778
4779 /* Stop debugging the process whose number is PID
4780 and continue it with signal number SIGNAL.
4781 SIGNAL = 0 means just continue it.
4782 */
4783 void
4784 detach (int signal)
4785 {
4786 errno = 0;
4787 call_ttrace (TT_PROC_DETACH,
4788 PIDGET (inferior_ptid),
4789 TT_NIL,
4790 (TTRACE_ARG_TYPE) signal,
4791 TT_NIL);
4792 attach_flag = 0;
4793
4794 clear_thread_info ();
4795
4796 /* Process-state? */
4797 }
4798 \f
4799
4800 /* Default the type of the ttrace transfer to int. */
4801 #ifndef TTRACE_XFER_TYPE
4802 #define TTRACE_XFER_TYPE int
4803 #endif
4804
4805 void
4806 _initialize_kernel_u_addr (void)
4807 {
4808 }
4809
4810 #if !defined (CHILD_XFER_MEMORY)
4811 /* NOTE! I tried using TTRACE_READDATA, etc., to read and write memory
4812 in the NEW_SUN_TTRACE case.
4813 It ought to be straightforward. But it appears that writing did
4814 not write the data that I specified. I cannot understand where
4815 it got the data that it actually did write. */
4816
4817 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
4818 to debugger memory starting at MYADDR. Copy to inferior if
4819 WRITE is nonzero. TARGET is ignored.
4820
4821 Returns the length copied, which is either the LEN argument or zero.
4822 This xfer function does not do partial moves, since child_ops
4823 doesn't allow memory operations to cross below us in the target stack
4824 anyway. */
4825
4826 int
4827 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
4828 struct mem_attrib *attrib,
4829 struct target_ops *target)
4830 {
4831 int i;
4832 /* Round starting address down to longword boundary. */
4833 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (TTRACE_XFER_TYPE);
4834 /* Round ending address up; get number of longwords that makes. */
4835 int count
4836 = (((memaddr + len) - addr) + sizeof (TTRACE_XFER_TYPE) - 1)
4837 / sizeof (TTRACE_XFER_TYPE);
4838 /* Allocate buffer of that many longwords. */
4839 /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
4840 because it uses alloca to allocate a buffer of arbitrary size.
4841 For very large xfers, this could crash GDB's stack. */
4842 TTRACE_XFER_TYPE *buffer
4843 = (TTRACE_XFER_TYPE *) alloca (count * sizeof (TTRACE_XFER_TYPE));
4844
4845 if (write)
4846 {
4847 /* Fill start and end extra bytes of buffer with existing memory data. */
4848
4849 if (addr != memaddr || len < (int) sizeof (TTRACE_XFER_TYPE))
4850 {
4851 /* Need part of initial word -- fetch it. */
4852 buffer[0] = call_ttrace (TT_LWP_RDTEXT,
4853 PIDGET (inferior_ptid),
4854 (TTRACE_ARG_TYPE) addr,
4855 TT_NIL,
4856 TT_NIL);
4857 }
4858
4859 if (count > 1) /* FIXME, avoid if even boundary */
4860 {
4861 buffer[count - 1] = call_ttrace (TT_LWP_RDTEXT,
4862 PIDGET (inferior_ptid),
4863 ((TTRACE_ARG_TYPE)
4864 (addr + (count - 1) * sizeof (TTRACE_XFER_TYPE))),
4865 TT_NIL,
4866 TT_NIL);
4867 }
4868
4869 /* Copy data to be written over corresponding part of buffer */
4870
4871 memcpy ((char *) buffer + (memaddr & (sizeof (TTRACE_XFER_TYPE) - 1)),
4872 myaddr,
4873 len);
4874
4875 /* Write the entire buffer. */
4876
4877 for (i = 0; i < count; i++, addr += sizeof (TTRACE_XFER_TYPE))
4878 {
4879 errno = 0;
4880 call_ttrace (TT_LWP_WRDATA,
4881 PIDGET (inferior_ptid),
4882 (TTRACE_ARG_TYPE) addr,
4883 (TTRACE_ARG_TYPE) buffer[i],
4884 TT_NIL);
4885 if (errno)
4886 {
4887 /* Using the appropriate one (I or D) is necessary for
4888 Gould NP1, at least. */
4889 errno = 0;
4890 call_ttrace (TT_LWP_WRTEXT,
4891 PIDGET (inferior_ptid),
4892 (TTRACE_ARG_TYPE) addr,
4893 (TTRACE_ARG_TYPE) buffer[i],
4894 TT_NIL);
4895 }
4896 if (errno)
4897 return 0;
4898 }
4899 }
4900 else
4901 {
4902 /* Read all the longwords */
4903 for (i = 0; i < count; i++, addr += sizeof (TTRACE_XFER_TYPE))
4904 {
4905 errno = 0;
4906 buffer[i] = call_ttrace (TT_LWP_RDTEXT,
4907 PIDGET (inferior_ptid),
4908 (TTRACE_ARG_TYPE) addr,
4909 TT_NIL,
4910 TT_NIL);
4911 if (errno)
4912 return 0;
4913 QUIT;
4914 }
4915
4916 /* Copy appropriate bytes out of the buffer. */
4917 memcpy (myaddr,
4918 (char *) buffer + (memaddr & (sizeof (TTRACE_XFER_TYPE) - 1)),
4919 len);
4920 }
4921 return len;
4922 }
4923 \f
4924
4925 static void
4926 udot_info (void)
4927 {
4928 int udot_off; /* Offset into user struct */
4929 int udot_val; /* Value from user struct at udot_off */
4930 char mess[128]; /* For messages */
4931
4932 if (!target_has_execution)
4933 {
4934 error ("The program is not being run.");
4935 }
4936
4937 #if !defined (KERNEL_U_SIZE)
4938
4939 /* Adding support for this command is easy. Typically you just add a
4940 routine, called "kernel_u_size" that returns the size of the user
4941 struct, to the appropriate *-nat.c file and then add to the native
4942 config file "#define KERNEL_U_SIZE kernel_u_size()" */
4943 error ("Don't know how large ``struct user'' is in this version of gdb.");
4944
4945 #else
4946
4947 for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
4948 {
4949 if ((udot_off % 24) == 0)
4950 {
4951 if (udot_off > 0)
4952 {
4953 printf_filtered ("\n");
4954 }
4955 printf_filtered ("%04x:", udot_off);
4956 }
4957 udot_val = call_ttrace (TT_LWP_RUREGS,
4958 PIDGET (inferior_ptid),
4959 (TTRACE_ARG_TYPE) udot_off,
4960 TT_NIL,
4961 TT_NIL);
4962 if (errno != 0)
4963 {
4964 sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
4965 perror_with_name (mess);
4966 }
4967 /* Avoid using nonportable (?) "*" in print specs */
4968 printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
4969 }
4970 printf_filtered ("\n");
4971
4972 #endif
4973 }
4974 #endif /* !defined (CHILD_XFER_MEMORY). */
4975
4976
4977 /* TTrace version of "target_pid_to_exec_file"
4978 */
4979 char *
4980 child_pid_to_exec_file (int tid)
4981 {
4982 int tt_status;
4983 static char exec_file_buffer[1024];
4984 pid_t pid;
4985 static struct pst_status buf;
4986
4987 /* On various versions of hpux11, this may fail due to a supposed
4988 kernel bug. We have alternate methods to get this information
4989 (ie pstat). */
4990 tt_status = call_ttrace (TT_PROC_GET_PATHNAME,
4991 tid,
4992 (uint64_t) exec_file_buffer,
4993 sizeof (exec_file_buffer) - 1,
4994 0);
4995 if (tt_status >= 0)
4996 return exec_file_buffer;
4997
4998 /* Try to get process information via pstat and extract the filename
4999 from the pst_cmd field within the pst_status structure. */
5000 if (pstat_getproc (&buf, sizeof (struct pst_status), 0, tid) != -1)
5001 {
5002 char *p = buf.pst_cmd;
5003
5004 while (*p && *p != ' ')
5005 p++;
5006 *p = 0;
5007
5008 return (buf.pst_cmd);
5009 }
5010
5011 return (NULL);
5012 }
5013
5014 void
5015 pre_fork_inferior (void)
5016 {
5017 int status;
5018
5019 status = pipe (startup_semaphore.parent_channel);
5020 if (status < 0)
5021 {
5022 warning ("error getting parent pipe for startup semaphore");
5023 return;
5024 }
5025
5026 status = pipe (startup_semaphore.child_channel);
5027 if (status < 0)
5028 {
5029 warning ("error getting child pipe for startup semaphore");
5030 return;
5031 }
5032 }
5033
5034 /* Called from child_follow_fork in hppah-nat.c.
5035 *
5036 * This seems to be intended to attach after a fork or
5037 * vfork, while "attach" is used to attach to a pid
5038 * given by the user. The check for an existing attach
5039 * seems odd--it always fails in our test system.
5040 */
5041 int
5042 hppa_require_attach (int pid)
5043 {
5044 int tt_status;
5045 CORE_ADDR pc;
5046 CORE_ADDR pc_addr;
5047 unsigned int regs_offset;
5048 process_state_t old_process_state = process_state;
5049
5050 /* Are we already attached? There appears to be no explicit
5051 * way to answer this via ttrace, so we try something which
5052 * should be innocuous if we are attached. If that fails,
5053 * then we assume we're not attached, and so attempt to make
5054 * it so.
5055 */
5056 errno = 0;
5057 tt_status = call_real_ttrace (TT_PROC_STOP,
5058 pid,
5059 (lwpid_t) TT_NIL,
5060 (TTRACE_ARG_TYPE) TT_NIL,
5061 (TTRACE_ARG_TYPE) TT_NIL,
5062 TT_NIL);
5063
5064 if (errno)
5065 {
5066 /* No change to process-state!
5067 */
5068 errno = 0;
5069 pid = attach (pid);
5070 }
5071 else
5072 {
5073 /* If successful, the process is now stopped. But if
5074 * we're VFORKING, the parent is still running, so don't
5075 * change the process state.
5076 */
5077 if (process_state != VFORKING)
5078 process_state = STOPPED;
5079
5080 /* If we were already attached, you'd think that we
5081 * would need to start going again--but you'd be wrong,
5082 * as the fork-following code is actually in the middle
5083 * of the "resume" routine in in "infrun.c" and so
5084 * will (almost) immediately do a resume.
5085 *
5086 * On the other hand, if we are VFORKING, which means
5087 * that the child and the parent share a process for a
5088 * while, we know that "resume" won't be resuming
5089 * until the child EXEC event is seen. But we still
5090 * don't want to continue, as the event is already
5091 * there waiting.
5092 */
5093 update_thread_state_after_attach (pid, DONT_ATTACH_CONTINUE);
5094 } /* STOP succeeded */
5095
5096 return pid;
5097 }
5098
5099 int
5100 hppa_require_detach (int pid, int signal)
5101 {
5102 int tt_status;
5103
5104 /* If signal is non-zero, we must pass the signal on to the active
5105 thread prior to detaching. We do this by continuing the threads
5106 with the signal.
5107 */
5108 if (signal != 0)
5109 {
5110 errno = 0;
5111 threads_continue_all_with_signals (pid, signal);
5112 }
5113
5114 errno = 0;
5115 tt_status = call_ttrace (TT_PROC_DETACH,
5116 pid,
5117 TT_NIL,
5118 TT_NIL,
5119 TT_NIL);
5120
5121 errno = 0; /* Ignore any errors. */
5122
5123 /* process_state? */
5124
5125 return pid;
5126 }
5127
5128 /* Given the starting address of a memory page, hash it to a bucket in
5129 the memory page dictionary.
5130 */
5131 static int
5132 get_dictionary_bucket_of_page (CORE_ADDR page_start)
5133 {
5134 int hash;
5135
5136 hash = (page_start / memory_page_dictionary.page_size);
5137 hash = hash % MEMORY_PAGE_DICTIONARY_BUCKET_COUNT;
5138
5139 return hash;
5140 }
5141
5142
5143 /* Given a memory page's starting address, get (i.e., find an existing
5144 or create a new) dictionary entry for the page. The page will be
5145 write-protected when this function returns, but may have a reference
5146 count of 0 (if the page was newly-added to the dictionary).
5147 */
5148 static memory_page_t *
5149 get_dictionary_entry_of_page (int pid, CORE_ADDR page_start)
5150 {
5151 int bucket;
5152 memory_page_t *page = NULL;
5153 memory_page_t *previous_page = NULL;
5154
5155 /* We're going to be using the dictionary now, than-kew. */
5156 require_memory_page_dictionary ();
5157
5158 /* Try to find an existing dictionary entry for this page. Hash
5159 on the page's starting address.
5160 */
5161 bucket = get_dictionary_bucket_of_page (page_start);
5162 page = &memory_page_dictionary.buckets[bucket];
5163 while (page != NULL)
5164 {
5165 if (page->page_start == page_start)
5166 break;
5167 previous_page = page;
5168 page = page->next;
5169 }
5170
5171 /* Did we find a dictionary entry for this page? If not, then
5172 add it to the dictionary now.
5173 */
5174 if (page == NULL)
5175 {
5176 /* Create a new entry. */
5177 page = (memory_page_t *) xmalloc (sizeof (memory_page_t));
5178 page->page_start = page_start;
5179 page->reference_count = 0;
5180 page->next = NULL;
5181 page->previous = NULL;
5182
5183 /* We'll write-protect the page now, if that's allowed. */
5184 page->original_permissions = write_protect_page (pid, page_start);
5185
5186 /* Add the new entry to the dictionary. */
5187 page->previous = previous_page;
5188 previous_page->next = page;
5189
5190 memory_page_dictionary.page_count++;
5191 }
5192
5193 return page;
5194 }
5195
5196
5197 static void
5198 remove_dictionary_entry_of_page (int pid, memory_page_t *page)
5199 {
5200 /* Restore the page's original permissions. */
5201 unwrite_protect_page (pid, page->page_start, page->original_permissions);
5202
5203 /* Kick the page out of the dictionary. */
5204 if (page->previous != NULL)
5205 page->previous->next = page->next;
5206 if (page->next != NULL)
5207 page->next->previous = page->previous;
5208
5209 /* Just in case someone retains a handle to this after it's freed. */
5210 page->page_start = (CORE_ADDR) 0;
5211
5212 memory_page_dictionary.page_count--;
5213
5214 xfree (page);
5215 }
5216
5217
5218 static void
5219 hppa_enable_syscall_events (int pid)
5220 {
5221 int tt_status;
5222 ttevent_t ttrace_events;
5223
5224 /* Get the set of events that are currently enabled. */
5225 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
5226 pid,
5227 (TTRACE_ARG_TYPE) & ttrace_events,
5228 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5229 TT_NIL);
5230 if (errno)
5231 perror_with_name ("ttrace");
5232
5233 /* Add syscall events to that set. */
5234 ttrace_events.tte_events |= TTEVT_SYSCALL_ENTRY;
5235 ttrace_events.tte_events |= TTEVT_SYSCALL_RETURN;
5236
5237 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
5238 pid,
5239 (TTRACE_ARG_TYPE) & ttrace_events,
5240 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5241 TT_NIL);
5242 if (errno)
5243 perror_with_name ("ttrace");
5244 }
5245
5246
5247 static void
5248 hppa_disable_syscall_events (int pid)
5249 {
5250 int tt_status;
5251 ttevent_t ttrace_events;
5252
5253 /* Get the set of events that are currently enabled. */
5254 tt_status = call_ttrace (TT_PROC_GET_EVENT_MASK,
5255 pid,
5256 (TTRACE_ARG_TYPE) & ttrace_events,
5257 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5258 TT_NIL);
5259 if (errno)
5260 perror_with_name ("ttrace");
5261
5262 /* Remove syscall events from that set. */
5263 ttrace_events.tte_events &= ~TTEVT_SYSCALL_ENTRY;
5264 ttrace_events.tte_events &= ~TTEVT_SYSCALL_RETURN;
5265
5266 tt_status = call_ttrace (TT_PROC_SET_EVENT_MASK,
5267 pid,
5268 (TTRACE_ARG_TYPE) & ttrace_events,
5269 (TTRACE_ARG_TYPE) sizeof (ttrace_events),
5270 TT_NIL);
5271 if (errno)
5272 perror_with_name ("ttrace");
5273 }
5274
5275
5276 /* The address range beginning with START and ending with START+LEN-1
5277 (inclusive) is to be watched via page-protection by a new watchpoint.
5278 Set protection for all pages that overlap that range.
5279
5280 Note that our caller sets TYPE to:
5281 0 for a bp_hardware_watchpoint,
5282 1 for a bp_read_watchpoint,
5283 2 for a bp_access_watchpoint
5284
5285 (Yes, this is intentionally (though lord only knows why) different
5286 from the TYPE that is passed to hppa_remove_hw_watchpoint.)
5287 */
5288 int
5289 hppa_insert_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len, int type)
5290 {
5291 CORE_ADDR page_start;
5292 int dictionary_was_empty;
5293 int page_size;
5294 int page_id;
5295 LONGEST range_size_in_pages;
5296
5297 if (type != 0)
5298 error ("read or access hardware watchpoints not supported on HP-UX");
5299
5300 /* Examine all pages in the address range. */
5301 require_memory_page_dictionary ();
5302
5303 dictionary_was_empty = (memory_page_dictionary.page_count == (LONGEST) 0);
5304
5305 page_size = memory_page_dictionary.page_size;
5306 page_start = (start / page_size) * page_size;
5307 range_size_in_pages = ((LONGEST) len + (LONGEST) page_size - 1) / (LONGEST) page_size;
5308
5309 for (page_id = 0; page_id < range_size_in_pages; page_id++, page_start += page_size)
5310 {
5311 memory_page_t *page;
5312
5313 /* This gets the page entered into the dictionary if it was
5314 not already entered.
5315 */
5316 page = get_dictionary_entry_of_page (pid, page_start);
5317 page->reference_count++;
5318 }
5319
5320 /* Our implementation depends on seeing calls to kernel code, for the
5321 following reason. Here we ask to be notified of syscalls.
5322
5323 When a protected page is accessed by user code, HP-UX raises a SIGBUS.
5324 Fine.
5325
5326 But when kernel code accesses the page, it doesn't give a SIGBUS.
5327 Rather, the system call that touched the page fails, with errno=EFAULT.
5328 Not good for us.
5329
5330 We could accomodate this "feature" by asking to be notified of syscall
5331 entries & exits; upon getting an entry event, disabling page-protections;
5332 upon getting an exit event, reenabling page-protections and then checking
5333 if any watchpoints triggered.
5334
5335 However, this turns out to be a real performance loser. syscalls are
5336 usually a frequent occurrence. Having to unprotect-reprotect all watched
5337 pages, and also to then read all watched memory locations and compare for
5338 triggers, can be quite expensive.
5339
5340 Instead, we'll only ask to be notified of syscall exits. When we get
5341 one, we'll check whether errno is set. If not, or if it's not EFAULT,
5342 we can just continue the inferior.
5343
5344 If errno is set upon syscall exit to EFAULT, we must perform some fairly
5345 hackish stuff to determine whether the failure really was due to a
5346 page-protect trap on a watched location.
5347 */
5348 if (dictionary_was_empty)
5349 hppa_enable_syscall_events (pid);
5350
5351 return 1;
5352 }
5353
5354
5355 /* The address range beginning with START and ending with START+LEN-1
5356 (inclusive) was being watched via page-protection by a watchpoint
5357 which has been removed. Remove protection for all pages that
5358 overlap that range, which are not also being watched by other
5359 watchpoints.
5360 */
5361 int
5362 hppa_remove_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len, int type)
5363 {
5364 CORE_ADDR page_start;
5365 int dictionary_is_empty;
5366 int page_size;
5367 int page_id;
5368 LONGEST range_size_in_pages;
5369
5370 if (type != 0)
5371 error ("read or access hardware watchpoints not supported on HP-UX");
5372
5373 /* Examine all pages in the address range. */
5374 require_memory_page_dictionary ();
5375
5376 page_size = memory_page_dictionary.page_size;
5377 page_start = (start / page_size) * page_size;
5378 range_size_in_pages = ((LONGEST) len + (LONGEST) page_size - 1) / (LONGEST) page_size;
5379
5380 for (page_id = 0; page_id < range_size_in_pages; page_id++, page_start += page_size)
5381 {
5382 memory_page_t *page;
5383
5384 page = get_dictionary_entry_of_page (pid, page_start);
5385 page->reference_count--;
5386
5387 /* Was this the last reference of this page? If so, then we
5388 must scrub the entry from the dictionary, and also restore
5389 the page's original permissions.
5390 */
5391 if (page->reference_count == 0)
5392 remove_dictionary_entry_of_page (pid, page);
5393 }
5394
5395 dictionary_is_empty = (memory_page_dictionary.page_count == (LONGEST) 0);
5396
5397 /* If write protections are currently disallowed, then that implies that
5398 wait_for_inferior believes that the inferior is within a system call.
5399 Since we want to see both syscall entry and return, it's clearly not
5400 good to disable syscall events in this state!
5401
5402 ??rehrauer: Yeah, it'd be better if we had a specific flag that said,
5403 "inferior is between syscall events now". Oh well.
5404 */
5405 if (dictionary_is_empty && memory_page_dictionary.page_protections_allowed)
5406 hppa_disable_syscall_events (pid);
5407
5408 return 1;
5409 }
5410
5411
5412 /* Could we implement a watchpoint of this type via our available
5413 hardware support?
5414
5415 This query does not consider whether a particular address range
5416 could be so watched, but just whether support is generally available
5417 for such things. See hppa_range_profitable_for_hw_watchpoint for a
5418 query that answers whether a particular range should be watched via
5419 hardware support.
5420 */
5421 int
5422 hppa_can_use_hw_watchpoint (int type, int cnt, int ot)
5423 {
5424 return (type == bp_hardware_watchpoint);
5425 }
5426
5427
5428 /* Assuming we could set a hardware watchpoint on this address, do
5429 we think it would be profitable ("a good idea") to do so? If not,
5430 we can always set a regular (aka single-step & test) watchpoint
5431 on the address...
5432 */
5433 int
5434 hppa_range_profitable_for_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len)
5435 {
5436 int range_is_stack_based;
5437 int range_is_accessible;
5438 CORE_ADDR page_start;
5439 int page_size;
5440 int page;
5441 LONGEST range_size_in_pages;
5442
5443 /* ??rehrauer: For now, say that all addresses are potentially
5444 profitable. Possibly later we'll want to test the address
5445 for "stackness"?
5446 */
5447 range_is_stack_based = 0;
5448
5449 /* If any page in the range is inaccessible, then we cannot
5450 really use hardware watchpointing, even though our client
5451 thinks we can. In that case, it's actually an error to
5452 attempt to use hw watchpoints, so we'll tell our client
5453 that the range is "unprofitable", and hope that they listen...
5454 */
5455 range_is_accessible = 1; /* Until proven otherwise. */
5456
5457 /* Examine all pages in the address range. */
5458 errno = 0;
5459 page_size = sysconf (_SC_PAGE_SIZE);
5460
5461 /* If we can't determine page size, we're hosed. Tell our
5462 client it's unprofitable to use hw watchpoints for this
5463 range.
5464 */
5465 if (errno || (page_size <= 0))
5466 {
5467 errno = 0;
5468 return 0;
5469 }
5470
5471 page_start = (start / page_size) * page_size;
5472 range_size_in_pages = len / (LONGEST) page_size;
5473
5474 for (page = 0; page < range_size_in_pages; page++, page_start += page_size)
5475 {
5476 int tt_status;
5477 int page_permissions;
5478
5479 /* Is this page accessible? */
5480 errno = 0;
5481 tt_status = call_ttrace (TT_PROC_GET_MPROTECT,
5482 pid,
5483 (TTRACE_ARG_TYPE) page_start,
5484 TT_NIL,
5485 (TTRACE_ARG_TYPE) & page_permissions);
5486 if (errno || (tt_status < 0))
5487 {
5488 errno = 0;
5489 range_is_accessible = 0;
5490 break;
5491 }
5492
5493 /* Yes, go for another... */
5494 }
5495
5496 return (!range_is_stack_based && range_is_accessible);
5497 }
5498
5499
5500 char *
5501 hppa_pid_or_tid_to_str (ptid_t ptid)
5502 {
5503 static char buf[100]; /* Static because address returned. */
5504 pid_t id = PIDGET (ptid);
5505
5506 /* Does this appear to be a process? If so, print it that way. */
5507 if (is_process_id (id))
5508 return child_pid_to_str (ptid);
5509
5510 /* Else, print both the GDB thread number and the system thread id. */
5511 sprintf (buf, "thread %d (", pid_to_thread_id (ptid));
5512 strcat (buf, hppa_tid_to_str (ptid));
5513 strcat (buf, ")\0");
5514
5515 return buf;
5516 }
5517 \f
5518
5519 void
5520 hppa_ensure_vforking_parent_remains_stopped (int pid)
5521 {
5522 /* Nothing to do when using ttrace. Only the ptrace-based implementation
5523 must do real work.
5524 */
5525 }
5526
5527
5528 int
5529 hppa_resume_execd_vforking_child_to_get_parent_vfork (void)
5530 {
5531 return 0; /* No, the parent vfork is available now. */
5532 }
5533 \f
5534
5535 /* Write a register as a 64bit value. This may be necessary if the
5536 native OS is too braindamaged to allow some (or all) registers to
5537 be written in 32bit hunks such as hpux11 and the PC queue registers.
5538
5539 This is horribly gross and disgusting. */
5540
5541 int
5542 ttrace_write_reg_64 (int gdb_tid, CORE_ADDR dest_addr, CORE_ADDR src_addr)
5543 {
5544 pid_t pid;
5545 lwpid_t tid;
5546 int tt_status;
5547
5548 tid = map_from_gdb_tid (gdb_tid);
5549 pid = get_pid_for (tid);
5550
5551 errno = 0;
5552 tt_status = ttrace (TT_LWP_WUREGS,
5553 pid,
5554 tid,
5555 (TTRACE_ARG_TYPE) dest_addr,
5556 8,
5557 (TTRACE_ARG_TYPE) src_addr );
5558
5559 #ifdef THREAD_DEBUG
5560 if (errno)
5561 {
5562 /* Don't bother for a known benign error: if you ask for the
5563 first thread state, but there is only one thread and it's
5564 not stopped, ttrace complains.
5565
5566 We have this inside the #ifdef because our caller will do
5567 this check for real. */
5568 if( request != TT_PROC_GET_FIRST_LWP_STATE
5569 || errno != EPROTO )
5570 {
5571 if( debug_on )
5572 printf( "TT fail for %s, with pid %d, tid %d, status %d \n",
5573 get_printable_name_of_ttrace_request (TT_LWP_WUREGS),
5574 pid, tid, tt_status );
5575 }
5576 }
5577 #endif
5578
5579 return tt_status;
5580 }
5581
5582 void
5583 _initialize_infttrace (void)
5584 {
5585 /* Initialize the ttrace-based hardware watchpoint implementation. */
5586 memory_page_dictionary.page_count = (LONGEST) - 1;
5587 memory_page_dictionary.page_protections_allowed = 1;
5588
5589 errno = 0;
5590 memory_page_dictionary.page_size = sysconf (_SC_PAGE_SIZE);
5591
5592 /* We do a lot of casts from pointers to TTRACE_ARG_TYPE; make sure
5593 this is okay. */
5594 if (sizeof (TTRACE_ARG_TYPE) < sizeof (void *))
5595 internal_error (__FILE__, __LINE__, "failed internal consistency check");
5596
5597 if (errno || (memory_page_dictionary.page_size <= 0))
5598 perror_with_name ("sysconf");
5599 }
This page took 0.155794 seconds and 4 git commands to generate.