arc: Fix ARI warning for printf(%p)
[deliverable/binutils-gdb.git] / gdb / iq2000-tdep.c
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
3
4 Copyright (C) 2000-2016 Free Software Foundation, Inc.
5
6 Contributed by Red Hat.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "osabi.h"
34 #include "gdbcore.h"
35
36 enum gdb_regnum
37 {
38 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
39 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
40 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
41 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
42 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
43 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
44 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
45 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
46 E_PC_REGNUM,
47 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
48 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
49 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
50 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
51 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
52 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
53 E_NUM_REGS = E_PC_REGNUM + 1
54 };
55
56 /* Use an invalid address value as 'not available' marker. */
57 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
58
59 struct iq2000_frame_cache
60 {
61 /* Base address. */
62 CORE_ADDR base;
63 CORE_ADDR pc;
64 LONGEST framesize;
65 int using_fp;
66 CORE_ADDR saved_sp;
67 CORE_ADDR saved_regs [E_NUM_REGS];
68 };
69
70 /* Harvard methods: */
71
72 static CORE_ADDR
73 insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
74 {
75 return addr & 0x7fffffffL;
76 }
77
78 static CORE_ADDR
79 insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
80 {
81 return (ptr & 0x7fffffffL) | 0x80000000L;
82 }
83
84 /* Function: pointer_to_address
85 Convert a target pointer to an address in host (CORE_ADDR) format. */
86
87 static CORE_ADDR
88 iq2000_pointer_to_address (struct gdbarch *gdbarch,
89 struct type * type, const gdb_byte * buf)
90 {
91 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
92 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
93 CORE_ADDR addr
94 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
95
96 if (target == TYPE_CODE_FUNC
97 || target == TYPE_CODE_METHOD
98 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
99 addr = insn_addr_from_ptr (addr);
100
101 return addr;
102 }
103
104 /* Function: address_to_pointer
105 Convert a host-format address (CORE_ADDR) into a target pointer. */
106
107 static void
108 iq2000_address_to_pointer (struct gdbarch *gdbarch,
109 struct type *type, gdb_byte *buf, CORE_ADDR addr)
110 {
111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
112 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
113
114 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
115 addr = insn_ptr_from_addr (addr);
116 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
117 }
118
119 /* Real register methods: */
120
121 /* Function: register_name
122 Returns the name of the iq2000 register number N. */
123
124 static const char *
125 iq2000_register_name (struct gdbarch *gdbarch, int regnum)
126 {
127 static const char * names[E_NUM_REGS] =
128 {
129 "r0", "r1", "r2", "r3", "r4",
130 "r5", "r6", "r7", "r8", "r9",
131 "r10", "r11", "r12", "r13", "r14",
132 "r15", "r16", "r17", "r18", "r19",
133 "r20", "r21", "r22", "r23", "r24",
134 "r25", "r26", "r27", "r28", "r29",
135 "r30", "r31",
136 "pc"
137 };
138 if (regnum < 0 || regnum >= E_NUM_REGS)
139 return NULL;
140 return names[regnum];
141 }
142
143 /* Prologue analysis methods: */
144
145 /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
146 #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
147 #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
148 #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
149 #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
150
151 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
152 #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
153 #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
154 #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
155
156 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
157 #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
158 #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
159 #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
160 #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
161
162 /* Function: find_last_line_symbol
163
164 Given an address range, first find a line symbol corresponding to
165 the starting address. Then find the last line symbol within the
166 range that has a line number less than or equal to the first line.
167
168 For optimized code with code motion, this finds the last address
169 for the lowest-numbered line within the address range. */
170
171 static struct symtab_and_line
172 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
173 {
174 struct symtab_and_line sal = find_pc_line (start, notcurrent);
175 struct symtab_and_line best_sal = sal;
176
177 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
178 return sal;
179
180 do
181 {
182 if (sal.line && sal.line <= best_sal.line)
183 best_sal = sal;
184 sal = find_pc_line (sal.end, notcurrent);
185 }
186 while (sal.pc && sal.pc < end);
187
188 return best_sal;
189 }
190
191 /* Function: scan_prologue
192 Decode the instructions within the given address range.
193 Decide when we must have reached the end of the function prologue.
194 If a frame_info pointer is provided, fill in its prologue information.
195
196 Returns the address of the first instruction after the prologue. */
197
198 static CORE_ADDR
199 iq2000_scan_prologue (struct gdbarch *gdbarch,
200 CORE_ADDR scan_start,
201 CORE_ADDR scan_end,
202 struct frame_info *fi,
203 struct iq2000_frame_cache *cache)
204 {
205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
206 struct symtab_and_line sal;
207 CORE_ADDR pc;
208 CORE_ADDR loop_end;
209 int srcreg;
210 int tgtreg;
211 signed short offset;
212
213 if (scan_end == (CORE_ADDR) 0)
214 {
215 loop_end = scan_start + 100;
216 sal.end = sal.pc = 0;
217 }
218 else
219 {
220 loop_end = scan_end;
221 if (fi)
222 sal = find_last_line_symbol (scan_start, scan_end, 0);
223 else
224 sal.end = 0; /* Avoid GCC false warning. */
225 }
226
227 /* Saved registers:
228 We first have to save the saved register's offset, and
229 only later do we compute its actual address. Since the
230 offset can be zero, we must first initialize all the
231 saved regs to minus one (so we can later distinguish
232 between one that's not saved, and one that's saved at zero). */
233 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
234 cache->saved_regs[srcreg] = -1;
235 cache->using_fp = 0;
236 cache->framesize = 0;
237
238 for (pc = scan_start; pc < loop_end; pc += 4)
239 {
240 LONGEST insn = read_memory_unsigned_integer (pc, 4, byte_order);
241 /* Skip any instructions writing to (sp) or decrementing the
242 SP. */
243 if ((insn & 0xffe00000) == 0xac200000)
244 {
245 /* sw using SP/%1 as base. */
246 /* LEGACY -- from assembly-only port. */
247 tgtreg = ((insn >> 16) & 0x1f);
248 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
249 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
250
251 continue;
252 }
253
254 if ((insn & 0xffff8000) == 0x20218000)
255 {
256 /* addi %1, %1, -N == addi %sp, %sp, -N */
257 /* LEGACY -- from assembly-only port. */
258 cache->framesize = -((signed short) (insn & 0xffff));
259 continue;
260 }
261
262 if (INSN_IS_ADDIU (insn))
263 {
264 srcreg = ADDIU_REG_SRC (insn);
265 tgtreg = ADDIU_REG_TGT (insn);
266 offset = ADDIU_IMMEDIATE (insn);
267 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
268 cache->framesize = -offset;
269 continue;
270 }
271
272 if (INSN_IS_STORE_WORD (insn))
273 {
274 srcreg = SW_REG_SRC (insn);
275 tgtreg = SW_REG_INDEX (insn);
276 offset = SW_OFFSET (insn);
277
278 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
279 {
280 /* "push" to stack (via SP or FP reg). */
281 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
282 cache->saved_regs[srcreg] = offset;
283 continue;
284 }
285 }
286
287 if (INSN_IS_MOVE (insn))
288 {
289 srcreg = MOVE_REG_SRC (insn);
290 tgtreg = MOVE_REG_TGT (insn);
291
292 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
293 {
294 /* Copy sp to fp. */
295 cache->using_fp = 1;
296 continue;
297 }
298 }
299
300 /* Unknown instruction encountered in frame. Bail out?
301 1) If we have a subsequent line symbol, we can keep going.
302 2) If not, we need to bail out and quit scanning instructions. */
303
304 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
305 continue;
306 else /* bail */
307 break;
308 }
309
310 return pc;
311 }
312
313 static void
314 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
315 {
316 int i;
317
318 cache->base = 0;
319 cache->framesize = 0;
320 cache->using_fp = 0;
321 cache->saved_sp = 0;
322 for (i = 0; i < E_NUM_REGS; i++)
323 cache->saved_regs[i] = -1;
324 }
325
326 /* Function: iq2000_skip_prologue
327 If the input address is in a function prologue,
328 returns the address of the end of the prologue;
329 else returns the input address.
330
331 Note: the input address is likely to be the function start,
332 since this function is mainly used for advancing a breakpoint
333 to the first line, or stepping to the first line when we have
334 stepped into a function call. */
335
336 static CORE_ADDR
337 iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
338 {
339 CORE_ADDR func_addr = 0 , func_end = 0;
340
341 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
342 {
343 struct symtab_and_line sal;
344 struct iq2000_frame_cache cache;
345
346 /* Found a function. */
347 sal = find_pc_line (func_addr, 0);
348 if (sal.end && sal.end < func_end)
349 /* Found a line number, use it as end of prologue. */
350 return sal.end;
351
352 /* No useable line symbol. Use prologue parsing method. */
353 iq2000_init_frame_cache (&cache);
354 return iq2000_scan_prologue (gdbarch, func_addr, func_end, NULL, &cache);
355 }
356
357 /* No function symbol -- just return the PC. */
358 return (CORE_ADDR) pc;
359 }
360
361 static struct iq2000_frame_cache *
362 iq2000_frame_cache (struct frame_info *this_frame, void **this_cache)
363 {
364 struct gdbarch *gdbarch = get_frame_arch (this_frame);
365 struct iq2000_frame_cache *cache;
366 CORE_ADDR current_pc;
367 int i;
368
369 if (*this_cache)
370 return (struct iq2000_frame_cache *) *this_cache;
371
372 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
373 iq2000_init_frame_cache (cache);
374 *this_cache = cache;
375
376 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
377
378 current_pc = get_frame_pc (this_frame);
379 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
380 if (cache->pc != 0)
381 iq2000_scan_prologue (gdbarch, cache->pc, current_pc, this_frame, cache);
382 if (!cache->using_fp)
383 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
384
385 cache->saved_sp = cache->base + cache->framesize;
386
387 for (i = 0; i < E_NUM_REGS; i++)
388 if (cache->saved_regs[i] != -1)
389 cache->saved_regs[i] += cache->base;
390
391 return cache;
392 }
393
394 static struct value *
395 iq2000_frame_prev_register (struct frame_info *this_frame, void **this_cache,
396 int regnum)
397 {
398 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
399 this_cache);
400
401 if (regnum == E_SP_REGNUM && cache->saved_sp)
402 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
403
404 if (regnum == E_PC_REGNUM)
405 regnum = E_LR_REGNUM;
406
407 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
408 return frame_unwind_got_memory (this_frame, regnum,
409 cache->saved_regs[regnum]);
410
411 return frame_unwind_got_register (this_frame, regnum, regnum);
412 }
413
414 static void
415 iq2000_frame_this_id (struct frame_info *this_frame, void **this_cache,
416 struct frame_id *this_id)
417 {
418 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
419 this_cache);
420
421 /* This marks the outermost frame. */
422 if (cache->base == 0)
423 return;
424
425 *this_id = frame_id_build (cache->saved_sp, cache->pc);
426 }
427
428 static const struct frame_unwind iq2000_frame_unwind = {
429 NORMAL_FRAME,
430 default_frame_unwind_stop_reason,
431 iq2000_frame_this_id,
432 iq2000_frame_prev_register,
433 NULL,
434 default_frame_sniffer
435 };
436
437 static CORE_ADDR
438 iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
439 {
440 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
441 }
442
443 static CORE_ADDR
444 iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
445 {
446 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
447 }
448
449 static struct frame_id
450 iq2000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
451 {
452 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
453 return frame_id_build (sp, get_frame_pc (this_frame));
454 }
455
456 static CORE_ADDR
457 iq2000_frame_base_address (struct frame_info *this_frame, void **this_cache)
458 {
459 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
460 this_cache);
461
462 return cache->base;
463 }
464
465 static const struct frame_base iq2000_frame_base = {
466 &iq2000_frame_unwind,
467 iq2000_frame_base_address,
468 iq2000_frame_base_address,
469 iq2000_frame_base_address
470 };
471
472 static const unsigned char *
473 iq2000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
474 int *lenptr)
475 {
476 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
477 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
478
479 if ((*pcptr & 3) != 0)
480 error (_("breakpoint_from_pc: invalid breakpoint address 0x%lx"),
481 (long) *pcptr);
482
483 *lenptr = 4;
484 return (gdbarch_byte_order (gdbarch)
485 == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
486 }
487
488 /* Target function return value methods: */
489
490 /* Function: store_return_value
491 Copy the function return value from VALBUF into the
492 proper location for a function return. */
493
494 static void
495 iq2000_store_return_value (struct type *type, struct regcache *regcache,
496 const void *valbuf)
497 {
498 int len = TYPE_LENGTH (type);
499 int regno = E_FN_RETURN_REGNUM;
500
501 while (len > 0)
502 {
503 gdb_byte buf[4];
504 int size = len % 4 ?: 4;
505
506 memset (buf, 0, 4);
507 memcpy (buf + 4 - size, valbuf, size);
508 regcache_raw_write (regcache, regno++, buf);
509 len -= size;
510 valbuf = ((char *) valbuf) + size;
511 }
512 }
513
514 /* Function: use_struct_convention
515 Returns non-zero if the given struct type will be returned using
516 a special convention, rather than the normal function return method. */
517
518 static int
519 iq2000_use_struct_convention (struct type *type)
520 {
521 return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
522 || (TYPE_CODE (type) == TYPE_CODE_UNION))
523 && TYPE_LENGTH (type) > 8;
524 }
525
526 /* Function: extract_return_value
527 Copy the function's return value into VALBUF.
528 This function is called only in the context of "target function calls",
529 ie. when the debugger forces a function to be called in the child, and
530 when the debugger forces a function to return prematurely via the
531 "return" command. */
532
533 static void
534 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
535 gdb_byte *valbuf)
536 {
537 struct gdbarch *gdbarch = get_regcache_arch (regcache);
538 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
539
540 /* If the function's return value is 8 bytes or less, it is
541 returned in a register, and if larger than 8 bytes, it is
542 returned in a stack location which is pointed to by the same
543 register. */
544 int len = TYPE_LENGTH (type);
545
546 if (len <= (2 * 4))
547 {
548 int regno = E_FN_RETURN_REGNUM;
549
550 /* Return values of <= 8 bytes are returned in
551 FN_RETURN_REGNUM. */
552 while (len > 0)
553 {
554 ULONGEST tmp;
555 int size = len % 4 ?: 4;
556
557 /* By using store_unsigned_integer we avoid having to
558 do anything special for small big-endian values. */
559 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
560 store_unsigned_integer (valbuf, size, byte_order, tmp);
561 len -= size;
562 valbuf += size;
563 }
564 }
565 else
566 {
567 /* Return values > 8 bytes are returned in memory,
568 pointed to by FN_RETURN_REGNUM. */
569 ULONGEST return_buffer;
570 regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
571 &return_buffer);
572 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
573 }
574 }
575
576 static enum return_value_convention
577 iq2000_return_value (struct gdbarch *gdbarch, struct value *function,
578 struct type *type, struct regcache *regcache,
579 gdb_byte *readbuf, const gdb_byte *writebuf)
580 {
581 if (iq2000_use_struct_convention (type))
582 return RETURN_VALUE_STRUCT_CONVENTION;
583 if (writebuf)
584 iq2000_store_return_value (type, regcache, writebuf);
585 else if (readbuf)
586 iq2000_extract_return_value (type, regcache, readbuf);
587 return RETURN_VALUE_REGISTER_CONVENTION;
588 }
589
590 /* Function: register_virtual_type
591 Returns the default type for register N. */
592
593 static struct type *
594 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
595 {
596 return builtin_type (gdbarch)->builtin_int32;
597 }
598
599 static CORE_ADDR
600 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
601 {
602 /* This is the same frame alignment used by gcc. */
603 return ((sp + 7) & ~7);
604 }
605
606 /* Convenience function to check 8-byte types for being a scalar type
607 or a struct with only one long long or double member. */
608 static int
609 iq2000_pass_8bytetype_by_address (struct type *type)
610 {
611 struct type *ftype;
612
613 /* Skip typedefs. */
614 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
615 type = TYPE_TARGET_TYPE (type);
616 /* Non-struct and non-union types are always passed by value. */
617 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
618 && TYPE_CODE (type) != TYPE_CODE_UNION)
619 return 0;
620 /* Structs with more than 1 field are always passed by address. */
621 if (TYPE_NFIELDS (type) != 1)
622 return 1;
623 /* Get field type. */
624 ftype = (TYPE_FIELDS (type))[0].type;
625 /* The field type must have size 8, otherwise pass by address. */
626 if (TYPE_LENGTH (ftype) != 8)
627 return 1;
628 /* Skip typedefs of field type. */
629 while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
630 ftype = TYPE_TARGET_TYPE (ftype);
631 /* If field is int or float, pass by value. */
632 if (TYPE_CODE (ftype) == TYPE_CODE_FLT
633 || TYPE_CODE (ftype) == TYPE_CODE_INT)
634 return 0;
635 /* Everything else, pass by address. */
636 return 1;
637 }
638
639 static CORE_ADDR
640 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
641 struct regcache *regcache, CORE_ADDR bp_addr,
642 int nargs, struct value **args, CORE_ADDR sp,
643 int struct_return, CORE_ADDR struct_addr)
644 {
645 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
646 const bfd_byte *val;
647 bfd_byte buf[4];
648 struct type *type;
649 int i, argreg, typelen, slacklen;
650 int stackspace = 0;
651 /* Used to copy struct arguments into the stack. */
652 CORE_ADDR struct_ptr;
653
654 /* First determine how much stack space we will need. */
655 for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
656 {
657 type = value_type (args[i]);
658 typelen = TYPE_LENGTH (type);
659 if (typelen <= 4)
660 {
661 /* Scalars of up to 4 bytes,
662 structs of up to 4 bytes, and
663 pointers. */
664 if (argreg <= E_LAST_ARGREG)
665 argreg++;
666 else
667 stackspace += 4;
668 }
669 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
670 {
671 /* long long,
672 double, and possibly
673 structs with a single field of long long or double. */
674 if (argreg <= E_LAST_ARGREG - 1)
675 {
676 /* 8-byte arg goes into a register pair
677 (must start with an even-numbered reg). */
678 if (((argreg - E_1ST_ARGREG) % 2) != 0)
679 argreg ++;
680 argreg += 2;
681 }
682 else
683 {
684 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
685 /* 8-byte arg goes on stack, must be 8-byte aligned. */
686 stackspace = ((stackspace + 7) & ~7);
687 stackspace += 8;
688 }
689 }
690 else
691 {
692 /* Structs are passed as pointer to a copy of the struct.
693 So we need room on the stack for a copy of the struct
694 plus for the argument pointer. */
695 if (argreg <= E_LAST_ARGREG)
696 argreg++;
697 else
698 stackspace += 4;
699 /* Care for 8-byte alignment of structs saved on stack. */
700 stackspace += ((typelen + 7) & ~7);
701 }
702 }
703
704 /* Now copy params, in ascending order, into their assigned location
705 (either in a register or on the stack). */
706
707 sp -= (sp % 8); /* align */
708 struct_ptr = sp;
709 sp -= stackspace;
710 sp -= (sp % 8); /* align again */
711 stackspace = 0;
712
713 argreg = E_1ST_ARGREG;
714 if (struct_return)
715 {
716 /* A function that returns a struct will consume one argreg to do so.
717 */
718 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
719 }
720
721 for (i = 0; i < nargs; i++)
722 {
723 type = value_type (args[i]);
724 typelen = TYPE_LENGTH (type);
725 val = value_contents (args[i]);
726 if (typelen <= 4)
727 {
728 /* Char, short, int, float, pointer, and structs <= four bytes. */
729 slacklen = (4 - (typelen % 4)) % 4;
730 memset (buf, 0, sizeof (buf));
731 memcpy (buf + slacklen, val, typelen);
732 if (argreg <= E_LAST_ARGREG)
733 {
734 /* Passed in a register. */
735 regcache_raw_write (regcache, argreg++, buf);
736 }
737 else
738 {
739 /* Passed on the stack. */
740 write_memory (sp + stackspace, buf, 4);
741 stackspace += 4;
742 }
743 }
744 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
745 {
746 /* (long long), (double), or struct consisting of
747 a single (long long) or (double). */
748 if (argreg <= E_LAST_ARGREG - 1)
749 {
750 /* 8-byte arg goes into a register pair
751 (must start with an even-numbered reg). */
752 if (((argreg - E_1ST_ARGREG) % 2) != 0)
753 argreg++;
754 regcache_raw_write (regcache, argreg++, val);
755 regcache_raw_write (regcache, argreg++, val + 4);
756 }
757 else
758 {
759 /* 8-byte arg goes on stack, must be 8-byte aligned. */
760 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
761 stackspace = ((stackspace + 7) & ~7);
762 write_memory (sp + stackspace, val, typelen);
763 stackspace += 8;
764 }
765 }
766 else
767 {
768 /* Store struct beginning at the upper end of the previously
769 computed stack space. Then store the address of the struct
770 using the usual rules for a 4 byte value. */
771 struct_ptr -= ((typelen + 7) & ~7);
772 write_memory (struct_ptr, val, typelen);
773 if (argreg <= E_LAST_ARGREG)
774 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
775 else
776 {
777 store_unsigned_integer (buf, 4, byte_order, struct_ptr);
778 write_memory (sp + stackspace, buf, 4);
779 stackspace += 4;
780 }
781 }
782 }
783
784 /* Store return address. */
785 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
786
787 /* Update stack pointer. */
788 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
789
790 /* And that should do it. Return the new stack pointer. */
791 return sp;
792 }
793
794 /* Function: gdbarch_init
795 Initializer function for the iq2000 gdbarch vector.
796 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
797
798 static struct gdbarch *
799 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
800 {
801 struct gdbarch *gdbarch;
802
803 /* Look up list for candidates - only one. */
804 arches = gdbarch_list_lookup_by_info (arches, &info);
805 if (arches != NULL)
806 return arches->gdbarch;
807
808 gdbarch = gdbarch_alloc (&info, NULL);
809
810 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
811 set_gdbarch_num_pseudo_regs (gdbarch, 0);
812 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
813 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
814 set_gdbarch_register_name (gdbarch, iq2000_register_name);
815 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
816 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
817 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
818 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
819 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
820 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
821 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
822 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
823 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
824 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
825 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
826 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
827 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
828 set_gdbarch_return_value (gdbarch, iq2000_return_value);
829 set_gdbarch_breakpoint_from_pc (gdbarch, iq2000_breakpoint_from_pc);
830 set_gdbarch_frame_args_skip (gdbarch, 0);
831 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
832 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
833 set_gdbarch_print_insn (gdbarch, print_insn_iq2000);
834 set_gdbarch_register_type (gdbarch, iq2000_register_type);
835 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
836 set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
837 set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
838 set_gdbarch_dummy_id (gdbarch, iq2000_dummy_id);
839 frame_base_set_default (gdbarch, &iq2000_frame_base);
840 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
841
842 gdbarch_init_osabi (info, gdbarch);
843
844 dwarf2_append_unwinders (gdbarch);
845 frame_unwind_append_unwinder (gdbarch, &iq2000_frame_unwind);
846
847 return gdbarch;
848 }
849
850 /* Function: _initialize_iq2000_tdep
851 Initializer function for the iq2000 module.
852 Called by gdb at start-up. */
853
854 /* Provide a prototype to silence -Wmissing-prototypes. */
855 extern initialize_file_ftype _initialize_iq2000_tdep;
856
857 void
858 _initialize_iq2000_tdep (void)
859 {
860 register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);
861 }
This page took 0.055059 seconds and 4 git commands to generate.