Typo fix.
[deliverable/binutils-gdb.git] / gdb / iq2000-tdep.c
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
3
4 Copyright 2000, 2004, 2005 Free Software Foundation, Inc.
5
6 Contributed by Red Hat.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "dwarf2-frame.h"
30 #include "gdbtypes.h"
31 #include "value.h"
32 #include "dis-asm.h"
33 #include "gdb_string.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "osabi.h"
37 #include "gdbcore.h"
38
39 enum gdb_regnum
40 {
41 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
42 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
43 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
44 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
45 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
46 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
47 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
48 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
49 E_PC_REGNUM,
50 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
51 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
52 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
53 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
54 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
55 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
56 E_NUM_REGS = E_PC_REGNUM + 1
57 };
58
59 /* Use an invalid address value as 'not available' marker. */
60 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
61
62 struct iq2000_frame_cache
63 {
64 /* Base address. */
65 CORE_ADDR base;
66 CORE_ADDR pc;
67 LONGEST framesize;
68 int using_fp;
69 CORE_ADDR saved_sp;
70 CORE_ADDR saved_regs [E_NUM_REGS];
71 };
72
73 /* Harvard methods: */
74
75 static CORE_ADDR
76 insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
77 {
78 return addr & 0x7fffffffL;
79 }
80
81 static CORE_ADDR
82 insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
83 {
84 return (ptr & 0x7fffffffL) | 0x80000000L;
85 }
86
87 /* Function: pointer_to_address
88 Convert a target pointer to an address in host (CORE_ADDR) format. */
89
90 static CORE_ADDR
91 iq2000_pointer_to_address (struct type * type, const void * buf)
92 {
93 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
94 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
95
96 if (target == TYPE_CODE_FUNC
97 || target == TYPE_CODE_METHOD
98 || (TYPE_FLAGS (TYPE_TARGET_TYPE (type)) & TYPE_FLAG_CODE_SPACE) != 0)
99 addr = insn_addr_from_ptr (addr);
100
101 return addr;
102 }
103
104 /* Function: address_to_pointer
105 Convert a host-format address (CORE_ADDR) into a target pointer. */
106
107 static void
108 iq2000_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
109 {
110 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
111
112 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
113 addr = insn_ptr_from_addr (addr);
114 store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
115 }
116
117 /* Real register methods: */
118
119 /* Function: register_name
120 Returns the name of the iq2000 register number N. */
121
122 static const char *
123 iq2000_register_name (int regnum)
124 {
125 static const char * names[E_NUM_REGS] =
126 {
127 "r0", "r1", "r2", "r3", "r4",
128 "r5", "r6", "r7", "r8", "r9",
129 "r10", "r11", "r12", "r13", "r14",
130 "r15", "r16", "r17", "r18", "r19",
131 "r20", "r21", "r22", "r23", "r24",
132 "r25", "r26", "r27", "r28", "r29",
133 "r30", "r31",
134 "pc"
135 };
136 if (regnum < 0 || regnum >= E_NUM_REGS)
137 return NULL;
138 return names[regnum];
139 }
140
141 /* Prologue analysis methods: */
142
143 /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
144 #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
145 #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
146 #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
147 #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
148
149 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
150 #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
151 #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
152 #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
153
154 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
155 #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
156 #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
157 #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
158 #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
159
160 /* Function: find_last_line_symbol
161
162 Given an address range, first find a line symbol corresponding to
163 the starting address. Then find the last line symbol within the
164 range that has a line number less than or equal to the first line.
165
166 For optimized code with code motion, this finds the last address
167 for the lowest-numbered line within the address range. */
168
169 static struct symtab_and_line
170 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
171 {
172 struct symtab_and_line sal = find_pc_line (start, notcurrent);
173 struct symtab_and_line best_sal = sal;
174
175 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
176 return sal;
177
178 do
179 {
180 if (sal.line && sal.line <= best_sal.line)
181 best_sal = sal;
182 sal = find_pc_line (sal.end, notcurrent);
183 }
184 while (sal.pc && sal.pc < end);
185
186 return best_sal;
187 }
188
189 /* Function: scan_prologue
190 Decode the instructions within the given address range.
191 Decide when we must have reached the end of the function prologue.
192 If a frame_info pointer is provided, fill in its prologue information.
193
194 Returns the address of the first instruction after the prologue. */
195
196 static CORE_ADDR
197 iq2000_scan_prologue (CORE_ADDR scan_start,
198 CORE_ADDR scan_end,
199 struct frame_info *fi,
200 struct iq2000_frame_cache *cache)
201 {
202 struct symtab_and_line sal;
203 CORE_ADDR pc;
204 CORE_ADDR loop_end;
205 int found_store_lr = 0;
206 int found_decr_sp = 0;
207 int srcreg;
208 int tgtreg;
209 signed short offset;
210
211 if (scan_end == (CORE_ADDR) 0)
212 {
213 loop_end = scan_start + 100;
214 sal.end = sal.pc = 0;
215 }
216 else
217 {
218 loop_end = scan_end;
219 if (fi)
220 sal = find_last_line_symbol (scan_start, scan_end, 0);
221 }
222
223 /* Saved registers:
224 We first have to save the saved register's offset, and
225 only later do we compute its actual address. Since the
226 offset can be zero, we must first initialize all the
227 saved regs to minus one (so we can later distinguish
228 between one that's not saved, and one that's saved at zero). */
229 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
230 cache->saved_regs[srcreg] = -1;
231 cache->using_fp = 0;
232 cache->framesize = 0;
233
234 for (pc = scan_start; pc < loop_end; pc += 4)
235 {
236 LONGEST insn = read_memory_unsigned_integer (pc, 4);
237 /* Skip any instructions writing to (sp) or decrementing the
238 SP. */
239 if ((insn & 0xffe00000) == 0xac200000)
240 {
241 /* sw using SP/%1 as base. */
242 /* LEGACY -- from assembly-only port. */
243 tgtreg = ((insn >> 16) & 0x1f);
244 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
245 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
246
247 if (tgtreg == E_LR_REGNUM)
248 found_store_lr = 1;
249 continue;
250 }
251
252 if ((insn & 0xffff8000) == 0x20218000)
253 {
254 /* addi %1, %1, -N == addi %sp, %sp, -N */
255 /* LEGACY -- from assembly-only port */
256 found_decr_sp = 1;
257 cache->framesize = -((signed short) (insn & 0xffff));
258 continue;
259 }
260
261 if (INSN_IS_ADDIU (insn))
262 {
263 srcreg = ADDIU_REG_SRC (insn);
264 tgtreg = ADDIU_REG_TGT (insn);
265 offset = ADDIU_IMMEDIATE (insn);
266 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
267 cache->framesize = -offset;
268 continue;
269 }
270
271 if (INSN_IS_STORE_WORD (insn))
272 {
273 srcreg = SW_REG_SRC (insn);
274 tgtreg = SW_REG_INDEX (insn);
275 offset = SW_OFFSET (insn);
276
277 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
278 {
279 /* "push" to stack (via SP or FP reg) */
280 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
281 cache->saved_regs[srcreg] = offset;
282 continue;
283 }
284 }
285
286 if (INSN_IS_MOVE (insn))
287 {
288 srcreg = MOVE_REG_SRC (insn);
289 tgtreg = MOVE_REG_TGT (insn);
290
291 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
292 {
293 /* Copy sp to fp. */
294 cache->using_fp = 1;
295 continue;
296 }
297 }
298
299 /* Unknown instruction encountered in frame. Bail out?
300 1) If we have a subsequent line symbol, we can keep going.
301 2) If not, we need to bail out and quit scanning instructions. */
302
303 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
304 continue;
305 else /* bail */
306 break;
307 }
308
309 return pc;
310 }
311
312 static void
313 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
314 {
315 int i;
316
317 cache->base = 0;
318 cache->framesize = 0;
319 cache->using_fp = 0;
320 cache->saved_sp = 0;
321 for (i = 0; i < E_NUM_REGS; i++)
322 cache->saved_regs[i] = -1;
323 }
324
325 /* Function: iq2000_skip_prologue
326 If the input address is in a function prologue,
327 returns the address of the end of the prologue;
328 else returns the input address.
329
330 Note: the input address is likely to be the function start,
331 since this function is mainly used for advancing a breakpoint
332 to the first line, or stepping to the first line when we have
333 stepped into a function call. */
334
335 static CORE_ADDR
336 iq2000_skip_prologue (CORE_ADDR pc)
337 {
338 CORE_ADDR func_addr = 0 , func_end = 0;
339
340 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
341 {
342 struct symtab_and_line sal;
343 struct iq2000_frame_cache cache;
344
345 /* Found a function. */
346 sal = find_pc_line (func_addr, 0);
347 if (sal.end && sal.end < func_end)
348 /* Found a line number, use it as end of prologue. */
349 return sal.end;
350
351 /* No useable line symbol. Use prologue parsing method. */
352 iq2000_init_frame_cache (&cache);
353 return iq2000_scan_prologue (func_addr, func_end, NULL, &cache);
354 }
355
356 /* No function symbol -- just return the PC. */
357 return (CORE_ADDR) pc;
358 }
359
360 static struct iq2000_frame_cache *
361 iq2000_frame_cache (struct frame_info *next_frame, void **this_cache)
362 {
363 struct iq2000_frame_cache *cache;
364 CORE_ADDR current_pc;
365 int i;
366
367 if (*this_cache)
368 return *this_cache;
369
370 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
371 iq2000_init_frame_cache (cache);
372 *this_cache = cache;
373
374 cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
375 //if (cache->base == 0)
376 //return cache;
377
378 current_pc = frame_pc_unwind (next_frame);
379 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
380 if (cache->pc != 0)
381 iq2000_scan_prologue (cache->pc, current_pc, next_frame, cache);
382 if (!cache->using_fp)
383 cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
384
385 cache->saved_sp = cache->base + cache->framesize;
386
387 for (i = 0; i < E_NUM_REGS; i++)
388 if (cache->saved_regs[i] != -1)
389 cache->saved_regs[i] += cache->base;
390
391 return cache;
392 }
393
394 static void
395 iq2000_frame_prev_register (struct frame_info *next_frame, void **this_cache,
396 int regnum, int *optimizedp,
397 enum lval_type *lvalp, CORE_ADDR *addrp,
398 int *realnump, void *valuep)
399 {
400 struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
401 if (regnum == E_SP_REGNUM && cache->saved_sp)
402 {
403 *optimizedp = 0;
404 *lvalp = not_lval;
405 *addrp = 0;
406 *realnump = -1;
407 if (valuep)
408 store_unsigned_integer (valuep, 4, cache->saved_sp);
409 return;
410 }
411
412 if (regnum == E_PC_REGNUM)
413 regnum = E_LR_REGNUM;
414
415 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
416 {
417 *optimizedp = 0;
418 *lvalp = lval_memory;
419 *addrp = cache->saved_regs[regnum];
420 *realnump = -1;
421 if (valuep)
422 read_memory (*addrp, valuep, register_size (current_gdbarch, regnum));
423 return;
424 }
425
426 *optimizedp = 0;
427 *lvalp = lval_register;
428 *addrp = 0;
429 *realnump = regnum;
430 if (valuep)
431 frame_unwind_register (next_frame, (*realnump), valuep);
432 }
433
434 static void
435 iq2000_frame_this_id (struct frame_info *next_frame, void **this_cache,
436 struct frame_id *this_id)
437 {
438 struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
439
440 /* This marks the outermost frame. */
441 if (cache->base == 0)
442 return;
443
444 *this_id = frame_id_build (cache->saved_sp, cache->pc);
445 }
446
447 static const struct frame_unwind iq2000_frame_unwind = {
448 NORMAL_FRAME,
449 iq2000_frame_this_id,
450 iq2000_frame_prev_register
451 };
452
453 static const struct frame_unwind *
454 iq2000_frame_sniffer (struct frame_info *next_frame)
455 {
456 return &iq2000_frame_unwind;
457 }
458
459 static CORE_ADDR
460 iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
461 {
462 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
463 }
464
465 static CORE_ADDR
466 iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
467 {
468 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
469 }
470
471 static struct frame_id
472 iq2000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
473 {
474 return frame_id_build (iq2000_unwind_sp (gdbarch, next_frame),
475 frame_pc_unwind (next_frame));
476 }
477
478 static CORE_ADDR
479 iq2000_frame_base_address (struct frame_info *next_frame, void **this_cache)
480 {
481 struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
482
483 return cache->base;
484 }
485
486 static const struct frame_base iq2000_frame_base = {
487 &iq2000_frame_unwind,
488 iq2000_frame_base_address,
489 iq2000_frame_base_address,
490 iq2000_frame_base_address
491 };
492
493 static const unsigned char *
494 iq2000_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
495 {
496 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
497 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
498
499 if ((*pcptr & 3) != 0)
500 error ("breakpoint_from_pc: invalid breakpoint address 0x%lx",
501 (long) *pcptr);
502
503 *lenptr = 4;
504 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? big_breakpoint
505 : little_breakpoint;
506 }
507
508 /* Target function return value methods: */
509
510 /* Function: store_return_value
511 Copy the function return value from VALBUF into the
512 proper location for a function return. */
513
514 static void
515 iq2000_store_return_value (struct type *type, struct regcache *regcache,
516 const void *valbuf)
517 {
518 int len = TYPE_LENGTH (type);
519 int regno = E_FN_RETURN_REGNUM;
520
521 while (len > 0)
522 {
523 char buf[4];
524 int size = len % 4 ?: 4;
525
526 memset (buf, 0, 4);
527 memcpy (buf + 4 - size, valbuf, size);
528 regcache_raw_write (regcache, regno++, buf);
529 len -= size;
530 valbuf = ((char *) valbuf) + size;
531 }
532 }
533
534 /* Function: use_struct_convention
535 Returns non-zero if the given struct type will be returned using
536 a special convention, rather than the normal function return method. */
537
538 static int
539 iq2000_use_struct_convention (struct type *type)
540 {
541 return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
542 || (TYPE_CODE (type) == TYPE_CODE_UNION))
543 && TYPE_LENGTH (type) > 8;
544 }
545
546 /* Function: extract_return_value
547 Copy the function's return value into VALBUF.
548 This function is called only in the context of "target function calls",
549 ie. when the debugger forces a function to be called in the child, and
550 when the debugger forces a function to return prematurely via the
551 "return" command. */
552
553 static void
554 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
555 void *valbuf)
556 {
557 /* If the function's return value is 8 bytes or less, it is
558 returned in a register, and if larger than 8 bytes, it is
559 returned in a stack location which is pointed to by the same
560 register. */
561 CORE_ADDR return_buffer;
562 int len = TYPE_LENGTH (type);
563
564 if (len <= (2 * 4))
565 {
566 int regno = E_FN_RETURN_REGNUM;
567
568 /* Return values of <= 8 bytes are returned in
569 FN_RETURN_REGNUM. */
570 while (len > 0)
571 {
572 ULONGEST tmp;
573 int size = len % 4 ?: 4;
574
575 /* By using store_unsigned_integer we avoid having to
576 do anything special for small big-endian values. */
577 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
578 store_unsigned_integer (valbuf, size, tmp);
579 len -= size;
580 valbuf = ((char *) valbuf) + size;
581 }
582 }
583 else
584 {
585 /* Return values > 8 bytes are returned in memory,
586 pointed to by FN_RETURN_REGNUM. */
587 regcache_cooked_read (regcache, E_FN_RETURN_REGNUM, & return_buffer);
588 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
589 }
590 }
591
592 static enum return_value_convention
593 iq2000_return_value (struct gdbarch *gdbarch, struct type *type,
594 struct regcache *regcache,
595 void *readbuf, const void *writebuf)
596 {
597 if (iq2000_use_struct_convention (type))
598 return RETURN_VALUE_STRUCT_CONVENTION;
599 if (writebuf)
600 iq2000_store_return_value (type, regcache, writebuf);
601 else if (readbuf)
602 iq2000_extract_return_value (type, regcache, readbuf);
603 return RETURN_VALUE_REGISTER_CONVENTION;
604 }
605
606 /* Function: register_virtual_type
607 Returns the default type for register N. */
608
609 static struct type *
610 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
611 {
612 return builtin_type_int32;
613 }
614
615 static CORE_ADDR
616 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
617 {
618 /* This is the same frame alignment used by gcc. */
619 return ((sp + 7) & ~7);
620 }
621
622 /* Convenience function to check 8-byte types for being a scalar type
623 or a struct with only one long long or double member. */
624 static int
625 iq2000_pass_8bytetype_by_address (struct type *type)
626 {
627 struct type *ftype;
628
629 /* Skip typedefs. */
630 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
631 type = TYPE_TARGET_TYPE (type);
632 /* Non-struct and non-union types are always passed by value. */
633 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
634 && TYPE_CODE (type) != TYPE_CODE_UNION)
635 return 0;
636 /* Structs with more than 1 field are always passed by address. */
637 if (TYPE_NFIELDS (type) != 1)
638 return 1;
639 /* Get field type. */
640 ftype = (TYPE_FIELDS (type))[0].type;
641 /* The field type must have size 8, otherwise pass by address. */
642 if (TYPE_LENGTH (ftype) != 8)
643 return 1;
644 /* Skip typedefs of field type. */
645 while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
646 ftype = TYPE_TARGET_TYPE (ftype);
647 /* If field is int or float, pass by value. */
648 if (TYPE_CODE (ftype) == TYPE_CODE_FLT
649 || TYPE_CODE (ftype) == TYPE_CODE_INT)
650 return 0;
651 /* Everything else, pass by address. */
652 return 1;
653 }
654
655 static CORE_ADDR
656 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
657 struct regcache *regcache, CORE_ADDR bp_addr,
658 int nargs, struct value **args, CORE_ADDR sp,
659 int struct_return, CORE_ADDR struct_addr)
660 {
661 const bfd_byte *val;
662 bfd_byte buf[4];
663 struct type *type;
664 int i, argreg, typelen, slacklen;
665 int stackspace = 0;
666 /* Used to copy struct arguments into the stack. */
667 CORE_ADDR struct_ptr;
668
669 /* First determine how much stack space we will need. */
670 for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
671 {
672 type = value_type (args[i]);
673 typelen = TYPE_LENGTH (type);
674 if (typelen <= 4)
675 {
676 /* Scalars of up to 4 bytes,
677 structs of up to 4 bytes, and
678 pointers. */
679 if (argreg <= E_LAST_ARGREG)
680 argreg++;
681 else
682 stackspace += 4;
683 }
684 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
685 {
686 /* long long,
687 double, and possibly
688 structs with a single field of long long or double. */
689 if (argreg <= E_LAST_ARGREG - 1)
690 {
691 /* 8-byte arg goes into a register pair
692 (must start with an even-numbered reg) */
693 if (((argreg - E_1ST_ARGREG) % 2) != 0)
694 argreg ++;
695 argreg += 2;
696 }
697 else
698 {
699 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
700 /* 8-byte arg goes on stack, must be 8-byte aligned. */
701 stackspace = ((stackspace + 7) & ~7);
702 stackspace += 8;
703 }
704 }
705 else
706 {
707 /* Structs are passed as pointer to a copy of the struct.
708 So we need room on the stack for a copy of the struct
709 plus for the argument pointer. */
710 if (argreg <= E_LAST_ARGREG)
711 argreg++;
712 else
713 stackspace += 4;
714 /* Care for 8-byte alignment of structs saved on stack. */
715 stackspace += ((typelen + 7) & ~7);
716 }
717 }
718
719 /* Now copy params, in ascending order, into their assigned location
720 (either in a register or on the stack). */
721
722 sp -= (sp % 8); /* align */
723 struct_ptr = sp;
724 sp -= stackspace;
725 sp -= (sp % 8); /* align again */
726 stackspace = 0;
727
728 argreg = E_1ST_ARGREG;
729 if (struct_return)
730 {
731 /* A function that returns a struct will consume one argreg to do so.
732 */
733 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
734 }
735
736 for (i = 0; i < nargs; i++)
737 {
738 type = value_type (args[i]);
739 typelen = TYPE_LENGTH (type);
740 val = value_contents (args[i]);
741 if (typelen <= 4)
742 {
743 /* Char, short, int, float, pointer, and structs <= four bytes. */
744 slacklen = (4 - (typelen % 4)) % 4;
745 memset (buf, 0, sizeof (buf));
746 memcpy (buf + slacklen, val, typelen);
747 if (argreg <= E_LAST_ARGREG)
748 {
749 /* Passed in a register. */
750 regcache_raw_write (regcache, argreg++, buf);
751 }
752 else
753 {
754 /* Passed on the stack. */
755 write_memory (sp + stackspace, buf, 4);
756 stackspace += 4;
757 }
758 }
759 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
760 {
761 /* (long long), (double), or struct consisting of
762 a single (long long) or (double). */
763 if (argreg <= E_LAST_ARGREG - 1)
764 {
765 /* 8-byte arg goes into a register pair
766 (must start with an even-numbered reg) */
767 if (((argreg - E_1ST_ARGREG) % 2) != 0)
768 argreg++;
769 regcache_raw_write (regcache, argreg++, val);
770 regcache_raw_write (regcache, argreg++, val + 4);
771 }
772 else
773 {
774 /* 8-byte arg goes on stack, must be 8-byte aligned. */
775 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
776 stackspace = ((stackspace + 7) & ~7);
777 write_memory (sp + stackspace, val, typelen);
778 stackspace += 8;
779 }
780 }
781 else
782 {
783 /* Store struct beginning at the upper end of the previously
784 computed stack space. Then store the address of the struct
785 using the usual rules for a 4 byte value. */
786 struct_ptr -= ((typelen + 7) & ~7);
787 write_memory (struct_ptr, val, typelen);
788 if (argreg <= E_LAST_ARGREG)
789 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
790 else
791 {
792 store_unsigned_integer (buf, 4, struct_ptr);
793 write_memory (sp + stackspace, buf, 4);
794 stackspace += 4;
795 }
796 }
797 }
798
799 /* Store return address. */
800 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
801
802 /* Update stack pointer. */
803 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
804
805 /* And that should do it. Return the new stack pointer. */
806 return sp;
807 }
808
809 /* Function: gdbarch_init
810 Initializer function for the iq2000 gdbarch vector.
811 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
812
813 static struct gdbarch *
814 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
815 {
816 struct gdbarch *gdbarch;
817
818 /* Look up list for candidates - only one. */
819 arches = gdbarch_list_lookup_by_info (arches, &info);
820 if (arches != NULL)
821 return arches->gdbarch;
822
823 gdbarch = gdbarch_alloc (&info, NULL);
824
825 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
826 set_gdbarch_num_pseudo_regs (gdbarch, 0);
827 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
828 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
829 set_gdbarch_register_name (gdbarch, iq2000_register_name);
830 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
831 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
832 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
833 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
834 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
835 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
836 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
837 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
838 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
839 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
840 set_gdbarch_float_format (gdbarch, & floatformat_ieee_single_big);
841 set_gdbarch_double_format (gdbarch, & floatformat_ieee_double_big);
842 set_gdbarch_long_double_format (gdbarch, & floatformat_ieee_double_big);
843 set_gdbarch_return_value (gdbarch, iq2000_return_value);
844 set_gdbarch_breakpoint_from_pc (gdbarch, iq2000_breakpoint_from_pc);
845 set_gdbarch_frame_args_skip (gdbarch, 0);
846 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
847 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
848 set_gdbarch_print_insn (gdbarch, print_insn_iq2000);
849 set_gdbarch_register_type (gdbarch, iq2000_register_type);
850 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
851 set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
852 set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
853 set_gdbarch_unwind_dummy_id (gdbarch, iq2000_unwind_dummy_id);
854 frame_base_set_default (gdbarch, &iq2000_frame_base);
855 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
856
857 gdbarch_init_osabi (info, gdbarch);
858
859 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
860 frame_unwind_append_sniffer (gdbarch, iq2000_frame_sniffer);
861
862 return gdbarch;
863 }
864
865 /* Function: _initialize_iq2000_tdep
866 Initializer function for the iq2000 module.
867 Called by gdb at start-up. */
868
869 void
870 _initialize_iq2000_tdep (void)
871 {
872 register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);
873 }
This page took 0.052003 seconds and 4 git commands to generate.