* defs.h (extract_signed_integer, extract_unsigned_integer,
[deliverable/binutils-gdb.git] / gdb / iq2000-tdep.c
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
3
4 Copyright (C) 2000, 2004, 2005, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Red Hat.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "dwarf2-frame.h"
29 #include "gdbtypes.h"
30 #include "value.h"
31 #include "dis-asm.h"
32 #include "gdb_string.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35 #include "osabi.h"
36 #include "gdbcore.h"
37
38 enum gdb_regnum
39 {
40 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
41 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
42 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
43 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
44 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
45 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
46 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
47 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
48 E_PC_REGNUM,
49 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
50 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
51 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
52 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
53 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
54 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
55 E_NUM_REGS = E_PC_REGNUM + 1
56 };
57
58 /* Use an invalid address value as 'not available' marker. */
59 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
60
61 struct iq2000_frame_cache
62 {
63 /* Base address. */
64 CORE_ADDR base;
65 CORE_ADDR pc;
66 LONGEST framesize;
67 int using_fp;
68 CORE_ADDR saved_sp;
69 CORE_ADDR saved_regs [E_NUM_REGS];
70 };
71
72 /* Harvard methods: */
73
74 static CORE_ADDR
75 insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
76 {
77 return addr & 0x7fffffffL;
78 }
79
80 static CORE_ADDR
81 insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
82 {
83 return (ptr & 0x7fffffffL) | 0x80000000L;
84 }
85
86 /* Function: pointer_to_address
87 Convert a target pointer to an address in host (CORE_ADDR) format. */
88
89 static CORE_ADDR
90 iq2000_pointer_to_address (struct gdbarch *gdbarch,
91 struct type * type, const gdb_byte * buf)
92 {
93 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
94 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
95 CORE_ADDR addr
96 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
97
98 if (target == TYPE_CODE_FUNC
99 || target == TYPE_CODE_METHOD
100 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
101 addr = insn_addr_from_ptr (addr);
102
103 return addr;
104 }
105
106 /* Function: address_to_pointer
107 Convert a host-format address (CORE_ADDR) into a target pointer. */
108
109 static void
110 iq2000_address_to_pointer (struct gdbarch *gdbarch,
111 struct type *type, gdb_byte *buf, CORE_ADDR addr)
112 {
113 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
114 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
115
116 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
117 addr = insn_ptr_from_addr (addr);
118 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
119 }
120
121 /* Real register methods: */
122
123 /* Function: register_name
124 Returns the name of the iq2000 register number N. */
125
126 static const char *
127 iq2000_register_name (struct gdbarch *gdbarch, int regnum)
128 {
129 static const char * names[E_NUM_REGS] =
130 {
131 "r0", "r1", "r2", "r3", "r4",
132 "r5", "r6", "r7", "r8", "r9",
133 "r10", "r11", "r12", "r13", "r14",
134 "r15", "r16", "r17", "r18", "r19",
135 "r20", "r21", "r22", "r23", "r24",
136 "r25", "r26", "r27", "r28", "r29",
137 "r30", "r31",
138 "pc"
139 };
140 if (regnum < 0 || regnum >= E_NUM_REGS)
141 return NULL;
142 return names[regnum];
143 }
144
145 /* Prologue analysis methods: */
146
147 /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
148 #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
149 #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
150 #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
151 #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
152
153 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
154 #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
155 #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
156 #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
157
158 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
159 #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
160 #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
161 #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
162 #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
163
164 /* Function: find_last_line_symbol
165
166 Given an address range, first find a line symbol corresponding to
167 the starting address. Then find the last line symbol within the
168 range that has a line number less than or equal to the first line.
169
170 For optimized code with code motion, this finds the last address
171 for the lowest-numbered line within the address range. */
172
173 static struct symtab_and_line
174 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
175 {
176 struct symtab_and_line sal = find_pc_line (start, notcurrent);
177 struct symtab_and_line best_sal = sal;
178
179 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
180 return sal;
181
182 do
183 {
184 if (sal.line && sal.line <= best_sal.line)
185 best_sal = sal;
186 sal = find_pc_line (sal.end, notcurrent);
187 }
188 while (sal.pc && sal.pc < end);
189
190 return best_sal;
191 }
192
193 /* Function: scan_prologue
194 Decode the instructions within the given address range.
195 Decide when we must have reached the end of the function prologue.
196 If a frame_info pointer is provided, fill in its prologue information.
197
198 Returns the address of the first instruction after the prologue. */
199
200 static CORE_ADDR
201 iq2000_scan_prologue (struct gdbarch *gdbarch,
202 CORE_ADDR scan_start,
203 CORE_ADDR scan_end,
204 struct frame_info *fi,
205 struct iq2000_frame_cache *cache)
206 {
207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
208 struct symtab_and_line sal;
209 CORE_ADDR pc;
210 CORE_ADDR loop_end;
211 int found_store_lr = 0;
212 int found_decr_sp = 0;
213 int srcreg;
214 int tgtreg;
215 signed short offset;
216
217 if (scan_end == (CORE_ADDR) 0)
218 {
219 loop_end = scan_start + 100;
220 sal.end = sal.pc = 0;
221 }
222 else
223 {
224 loop_end = scan_end;
225 if (fi)
226 sal = find_last_line_symbol (scan_start, scan_end, 0);
227 }
228
229 /* Saved registers:
230 We first have to save the saved register's offset, and
231 only later do we compute its actual address. Since the
232 offset can be zero, we must first initialize all the
233 saved regs to minus one (so we can later distinguish
234 between one that's not saved, and one that's saved at zero). */
235 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
236 cache->saved_regs[srcreg] = -1;
237 cache->using_fp = 0;
238 cache->framesize = 0;
239
240 for (pc = scan_start; pc < loop_end; pc += 4)
241 {
242 LONGEST insn = read_memory_unsigned_integer (pc, 4, byte_order);
243 /* Skip any instructions writing to (sp) or decrementing the
244 SP. */
245 if ((insn & 0xffe00000) == 0xac200000)
246 {
247 /* sw using SP/%1 as base. */
248 /* LEGACY -- from assembly-only port. */
249 tgtreg = ((insn >> 16) & 0x1f);
250 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
251 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
252
253 if (tgtreg == E_LR_REGNUM)
254 found_store_lr = 1;
255 continue;
256 }
257
258 if ((insn & 0xffff8000) == 0x20218000)
259 {
260 /* addi %1, %1, -N == addi %sp, %sp, -N */
261 /* LEGACY -- from assembly-only port */
262 found_decr_sp = 1;
263 cache->framesize = -((signed short) (insn & 0xffff));
264 continue;
265 }
266
267 if (INSN_IS_ADDIU (insn))
268 {
269 srcreg = ADDIU_REG_SRC (insn);
270 tgtreg = ADDIU_REG_TGT (insn);
271 offset = ADDIU_IMMEDIATE (insn);
272 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
273 cache->framesize = -offset;
274 continue;
275 }
276
277 if (INSN_IS_STORE_WORD (insn))
278 {
279 srcreg = SW_REG_SRC (insn);
280 tgtreg = SW_REG_INDEX (insn);
281 offset = SW_OFFSET (insn);
282
283 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
284 {
285 /* "push" to stack (via SP or FP reg) */
286 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
287 cache->saved_regs[srcreg] = offset;
288 continue;
289 }
290 }
291
292 if (INSN_IS_MOVE (insn))
293 {
294 srcreg = MOVE_REG_SRC (insn);
295 tgtreg = MOVE_REG_TGT (insn);
296
297 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
298 {
299 /* Copy sp to fp. */
300 cache->using_fp = 1;
301 continue;
302 }
303 }
304
305 /* Unknown instruction encountered in frame. Bail out?
306 1) If we have a subsequent line symbol, we can keep going.
307 2) If not, we need to bail out and quit scanning instructions. */
308
309 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
310 continue;
311 else /* bail */
312 break;
313 }
314
315 return pc;
316 }
317
318 static void
319 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
320 {
321 int i;
322
323 cache->base = 0;
324 cache->framesize = 0;
325 cache->using_fp = 0;
326 cache->saved_sp = 0;
327 for (i = 0; i < E_NUM_REGS; i++)
328 cache->saved_regs[i] = -1;
329 }
330
331 /* Function: iq2000_skip_prologue
332 If the input address is in a function prologue,
333 returns the address of the end of the prologue;
334 else returns the input address.
335
336 Note: the input address is likely to be the function start,
337 since this function is mainly used for advancing a breakpoint
338 to the first line, or stepping to the first line when we have
339 stepped into a function call. */
340
341 static CORE_ADDR
342 iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
343 {
344 CORE_ADDR func_addr = 0 , func_end = 0;
345
346 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
347 {
348 struct symtab_and_line sal;
349 struct iq2000_frame_cache cache;
350
351 /* Found a function. */
352 sal = find_pc_line (func_addr, 0);
353 if (sal.end && sal.end < func_end)
354 /* Found a line number, use it as end of prologue. */
355 return sal.end;
356
357 /* No useable line symbol. Use prologue parsing method. */
358 iq2000_init_frame_cache (&cache);
359 return iq2000_scan_prologue (gdbarch, func_addr, func_end, NULL, &cache);
360 }
361
362 /* No function symbol -- just return the PC. */
363 return (CORE_ADDR) pc;
364 }
365
366 static struct iq2000_frame_cache *
367 iq2000_frame_cache (struct frame_info *this_frame, void **this_cache)
368 {
369 struct gdbarch *gdbarch = get_frame_arch (this_frame);
370 struct iq2000_frame_cache *cache;
371 CORE_ADDR current_pc;
372 int i;
373
374 if (*this_cache)
375 return *this_cache;
376
377 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
378 iq2000_init_frame_cache (cache);
379 *this_cache = cache;
380
381 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
382 //if (cache->base == 0)
383 //return cache;
384
385 current_pc = get_frame_pc (this_frame);
386 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
387 if (cache->pc != 0)
388 iq2000_scan_prologue (gdbarch, cache->pc, current_pc, this_frame, cache);
389 if (!cache->using_fp)
390 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
391
392 cache->saved_sp = cache->base + cache->framesize;
393
394 for (i = 0; i < E_NUM_REGS; i++)
395 if (cache->saved_regs[i] != -1)
396 cache->saved_regs[i] += cache->base;
397
398 return cache;
399 }
400
401 static struct value *
402 iq2000_frame_prev_register (struct frame_info *this_frame, void **this_cache,
403 int regnum)
404 {
405 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame, this_cache);
406
407 if (regnum == E_SP_REGNUM && cache->saved_sp)
408 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
409
410 if (regnum == E_PC_REGNUM)
411 regnum = E_LR_REGNUM;
412
413 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
414 return frame_unwind_got_memory (this_frame, regnum,
415 cache->saved_regs[regnum]);
416
417 return frame_unwind_got_register (this_frame, regnum, regnum);
418 }
419
420 static void
421 iq2000_frame_this_id (struct frame_info *this_frame, void **this_cache,
422 struct frame_id *this_id)
423 {
424 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame, this_cache);
425
426 /* This marks the outermost frame. */
427 if (cache->base == 0)
428 return;
429
430 *this_id = frame_id_build (cache->saved_sp, cache->pc);
431 }
432
433 static const struct frame_unwind iq2000_frame_unwind = {
434 NORMAL_FRAME,
435 iq2000_frame_this_id,
436 iq2000_frame_prev_register,
437 NULL,
438 default_frame_sniffer
439 };
440
441 static CORE_ADDR
442 iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
443 {
444 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
445 }
446
447 static CORE_ADDR
448 iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
449 {
450 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
451 }
452
453 static struct frame_id
454 iq2000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
455 {
456 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
457 return frame_id_build (sp, get_frame_pc (this_frame));
458 }
459
460 static CORE_ADDR
461 iq2000_frame_base_address (struct frame_info *this_frame, void **this_cache)
462 {
463 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame, this_cache);
464
465 return cache->base;
466 }
467
468 static const struct frame_base iq2000_frame_base = {
469 &iq2000_frame_unwind,
470 iq2000_frame_base_address,
471 iq2000_frame_base_address,
472 iq2000_frame_base_address
473 };
474
475 static const unsigned char *
476 iq2000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
477 int *lenptr)
478 {
479 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
480 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
481
482 if ((*pcptr & 3) != 0)
483 error ("breakpoint_from_pc: invalid breakpoint address 0x%lx",
484 (long) *pcptr);
485
486 *lenptr = 4;
487 return (gdbarch_byte_order (gdbarch)
488 == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
489 }
490
491 /* Target function return value methods: */
492
493 /* Function: store_return_value
494 Copy the function return value from VALBUF into the
495 proper location for a function return. */
496
497 static void
498 iq2000_store_return_value (struct type *type, struct regcache *regcache,
499 const void *valbuf)
500 {
501 int len = TYPE_LENGTH (type);
502 int regno = E_FN_RETURN_REGNUM;
503
504 while (len > 0)
505 {
506 char buf[4];
507 int size = len % 4 ?: 4;
508
509 memset (buf, 0, 4);
510 memcpy (buf + 4 - size, valbuf, size);
511 regcache_raw_write (regcache, regno++, buf);
512 len -= size;
513 valbuf = ((char *) valbuf) + size;
514 }
515 }
516
517 /* Function: use_struct_convention
518 Returns non-zero if the given struct type will be returned using
519 a special convention, rather than the normal function return method. */
520
521 static int
522 iq2000_use_struct_convention (struct type *type)
523 {
524 return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
525 || (TYPE_CODE (type) == TYPE_CODE_UNION))
526 && TYPE_LENGTH (type) > 8;
527 }
528
529 /* Function: extract_return_value
530 Copy the function's return value into VALBUF.
531 This function is called only in the context of "target function calls",
532 ie. when the debugger forces a function to be called in the child, and
533 when the debugger forces a function to return prematurely via the
534 "return" command. */
535
536 static void
537 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
538 void *valbuf)
539 {
540 struct gdbarch *gdbarch = get_regcache_arch (regcache);
541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
542
543 /* If the function's return value is 8 bytes or less, it is
544 returned in a register, and if larger than 8 bytes, it is
545 returned in a stack location which is pointed to by the same
546 register. */
547 int len = TYPE_LENGTH (type);
548
549 if (len <= (2 * 4))
550 {
551 int regno = E_FN_RETURN_REGNUM;
552
553 /* Return values of <= 8 bytes are returned in
554 FN_RETURN_REGNUM. */
555 while (len > 0)
556 {
557 ULONGEST tmp;
558 int size = len % 4 ?: 4;
559
560 /* By using store_unsigned_integer we avoid having to
561 do anything special for small big-endian values. */
562 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
563 store_unsigned_integer (valbuf, size, byte_order, tmp);
564 len -= size;
565 valbuf = ((char *) valbuf) + size;
566 }
567 }
568 else
569 {
570 /* Return values > 8 bytes are returned in memory,
571 pointed to by FN_RETURN_REGNUM. */
572 ULONGEST return_buffer;
573 regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
574 &return_buffer);
575 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
576 }
577 }
578
579 static enum return_value_convention
580 iq2000_return_value (struct gdbarch *gdbarch, struct type *func_type,
581 struct type *type, struct regcache *regcache,
582 gdb_byte *readbuf, const gdb_byte *writebuf)
583 {
584 if (iq2000_use_struct_convention (type))
585 return RETURN_VALUE_STRUCT_CONVENTION;
586 if (writebuf)
587 iq2000_store_return_value (type, regcache, writebuf);
588 else if (readbuf)
589 iq2000_extract_return_value (type, regcache, readbuf);
590 return RETURN_VALUE_REGISTER_CONVENTION;
591 }
592
593 /* Function: register_virtual_type
594 Returns the default type for register N. */
595
596 static struct type *
597 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
598 {
599 return builtin_type (gdbarch)->builtin_int32;
600 }
601
602 static CORE_ADDR
603 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
604 {
605 /* This is the same frame alignment used by gcc. */
606 return ((sp + 7) & ~7);
607 }
608
609 /* Convenience function to check 8-byte types for being a scalar type
610 or a struct with only one long long or double member. */
611 static int
612 iq2000_pass_8bytetype_by_address (struct type *type)
613 {
614 struct type *ftype;
615
616 /* Skip typedefs. */
617 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
618 type = TYPE_TARGET_TYPE (type);
619 /* Non-struct and non-union types are always passed by value. */
620 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
621 && TYPE_CODE (type) != TYPE_CODE_UNION)
622 return 0;
623 /* Structs with more than 1 field are always passed by address. */
624 if (TYPE_NFIELDS (type) != 1)
625 return 1;
626 /* Get field type. */
627 ftype = (TYPE_FIELDS (type))[0].type;
628 /* The field type must have size 8, otherwise pass by address. */
629 if (TYPE_LENGTH (ftype) != 8)
630 return 1;
631 /* Skip typedefs of field type. */
632 while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
633 ftype = TYPE_TARGET_TYPE (ftype);
634 /* If field is int or float, pass by value. */
635 if (TYPE_CODE (ftype) == TYPE_CODE_FLT
636 || TYPE_CODE (ftype) == TYPE_CODE_INT)
637 return 0;
638 /* Everything else, pass by address. */
639 return 1;
640 }
641
642 static CORE_ADDR
643 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
644 struct regcache *regcache, CORE_ADDR bp_addr,
645 int nargs, struct value **args, CORE_ADDR sp,
646 int struct_return, CORE_ADDR struct_addr)
647 {
648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
649 const bfd_byte *val;
650 bfd_byte buf[4];
651 struct type *type;
652 int i, argreg, typelen, slacklen;
653 int stackspace = 0;
654 /* Used to copy struct arguments into the stack. */
655 CORE_ADDR struct_ptr;
656
657 /* First determine how much stack space we will need. */
658 for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
659 {
660 type = value_type (args[i]);
661 typelen = TYPE_LENGTH (type);
662 if (typelen <= 4)
663 {
664 /* Scalars of up to 4 bytes,
665 structs of up to 4 bytes, and
666 pointers. */
667 if (argreg <= E_LAST_ARGREG)
668 argreg++;
669 else
670 stackspace += 4;
671 }
672 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
673 {
674 /* long long,
675 double, and possibly
676 structs with a single field of long long or double. */
677 if (argreg <= E_LAST_ARGREG - 1)
678 {
679 /* 8-byte arg goes into a register pair
680 (must start with an even-numbered reg) */
681 if (((argreg - E_1ST_ARGREG) % 2) != 0)
682 argreg ++;
683 argreg += 2;
684 }
685 else
686 {
687 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
688 /* 8-byte arg goes on stack, must be 8-byte aligned. */
689 stackspace = ((stackspace + 7) & ~7);
690 stackspace += 8;
691 }
692 }
693 else
694 {
695 /* Structs are passed as pointer to a copy of the struct.
696 So we need room on the stack for a copy of the struct
697 plus for the argument pointer. */
698 if (argreg <= E_LAST_ARGREG)
699 argreg++;
700 else
701 stackspace += 4;
702 /* Care for 8-byte alignment of structs saved on stack. */
703 stackspace += ((typelen + 7) & ~7);
704 }
705 }
706
707 /* Now copy params, in ascending order, into their assigned location
708 (either in a register or on the stack). */
709
710 sp -= (sp % 8); /* align */
711 struct_ptr = sp;
712 sp -= stackspace;
713 sp -= (sp % 8); /* align again */
714 stackspace = 0;
715
716 argreg = E_1ST_ARGREG;
717 if (struct_return)
718 {
719 /* A function that returns a struct will consume one argreg to do so.
720 */
721 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
722 }
723
724 for (i = 0; i < nargs; i++)
725 {
726 type = value_type (args[i]);
727 typelen = TYPE_LENGTH (type);
728 val = value_contents (args[i]);
729 if (typelen <= 4)
730 {
731 /* Char, short, int, float, pointer, and structs <= four bytes. */
732 slacklen = (4 - (typelen % 4)) % 4;
733 memset (buf, 0, sizeof (buf));
734 memcpy (buf + slacklen, val, typelen);
735 if (argreg <= E_LAST_ARGREG)
736 {
737 /* Passed in a register. */
738 regcache_raw_write (regcache, argreg++, buf);
739 }
740 else
741 {
742 /* Passed on the stack. */
743 write_memory (sp + stackspace, buf, 4);
744 stackspace += 4;
745 }
746 }
747 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
748 {
749 /* (long long), (double), or struct consisting of
750 a single (long long) or (double). */
751 if (argreg <= E_LAST_ARGREG - 1)
752 {
753 /* 8-byte arg goes into a register pair
754 (must start with an even-numbered reg) */
755 if (((argreg - E_1ST_ARGREG) % 2) != 0)
756 argreg++;
757 regcache_raw_write (regcache, argreg++, val);
758 regcache_raw_write (regcache, argreg++, val + 4);
759 }
760 else
761 {
762 /* 8-byte arg goes on stack, must be 8-byte aligned. */
763 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
764 stackspace = ((stackspace + 7) & ~7);
765 write_memory (sp + stackspace, val, typelen);
766 stackspace += 8;
767 }
768 }
769 else
770 {
771 /* Store struct beginning at the upper end of the previously
772 computed stack space. Then store the address of the struct
773 using the usual rules for a 4 byte value. */
774 struct_ptr -= ((typelen + 7) & ~7);
775 write_memory (struct_ptr, val, typelen);
776 if (argreg <= E_LAST_ARGREG)
777 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
778 else
779 {
780 store_unsigned_integer (buf, 4, byte_order, struct_ptr);
781 write_memory (sp + stackspace, buf, 4);
782 stackspace += 4;
783 }
784 }
785 }
786
787 /* Store return address. */
788 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
789
790 /* Update stack pointer. */
791 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
792
793 /* And that should do it. Return the new stack pointer. */
794 return sp;
795 }
796
797 /* Function: gdbarch_init
798 Initializer function for the iq2000 gdbarch vector.
799 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
800
801 static struct gdbarch *
802 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
803 {
804 struct gdbarch *gdbarch;
805
806 /* Look up list for candidates - only one. */
807 arches = gdbarch_list_lookup_by_info (arches, &info);
808 if (arches != NULL)
809 return arches->gdbarch;
810
811 gdbarch = gdbarch_alloc (&info, NULL);
812
813 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
814 set_gdbarch_num_pseudo_regs (gdbarch, 0);
815 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
816 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
817 set_gdbarch_register_name (gdbarch, iq2000_register_name);
818 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
819 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
820 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
821 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
822 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
823 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
824 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
825 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
826 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
827 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
828 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
829 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
830 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
831 set_gdbarch_return_value (gdbarch, iq2000_return_value);
832 set_gdbarch_breakpoint_from_pc (gdbarch, iq2000_breakpoint_from_pc);
833 set_gdbarch_frame_args_skip (gdbarch, 0);
834 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
835 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
836 set_gdbarch_print_insn (gdbarch, print_insn_iq2000);
837 set_gdbarch_register_type (gdbarch, iq2000_register_type);
838 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
839 set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
840 set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
841 set_gdbarch_dummy_id (gdbarch, iq2000_dummy_id);
842 frame_base_set_default (gdbarch, &iq2000_frame_base);
843 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
844
845 gdbarch_init_osabi (info, gdbarch);
846
847 dwarf2_append_unwinders (gdbarch);
848 frame_unwind_append_unwinder (gdbarch, &iq2000_frame_unwind);
849
850 return gdbarch;
851 }
852
853 /* Function: _initialize_iq2000_tdep
854 Initializer function for the iq2000 module.
855 Called by gdb at start-up. */
856
857 /* Provide a prototype to silence -Wmissing-prototypes. */
858 extern initialize_file_ftype _initialize_iq2000_tdep;
859
860 void
861 _initialize_iq2000_tdep (void)
862 {
863 register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);
864 }
This page took 0.048524 seconds and 4 git commands to generate.