2007-06-13 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / iq2000-tdep.c
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
3
4 Copyright (C) 2000, 2004, 2005, 2007 Free Software Foundation, Inc.
5
6 Contributed by Red Hat.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "dwarf2-frame.h"
30 #include "gdbtypes.h"
31 #include "value.h"
32 #include "dis-asm.h"
33 #include "gdb_string.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "osabi.h"
37 #include "gdbcore.h"
38
39 enum gdb_regnum
40 {
41 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
42 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
43 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
44 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
45 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
46 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
47 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
48 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
49 E_PC_REGNUM,
50 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
51 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
52 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
53 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
54 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
55 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
56 E_NUM_REGS = E_PC_REGNUM + 1
57 };
58
59 /* Use an invalid address value as 'not available' marker. */
60 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
61
62 struct iq2000_frame_cache
63 {
64 /* Base address. */
65 CORE_ADDR base;
66 CORE_ADDR pc;
67 LONGEST framesize;
68 int using_fp;
69 CORE_ADDR saved_sp;
70 CORE_ADDR saved_regs [E_NUM_REGS];
71 };
72
73 /* Harvard methods: */
74
75 static CORE_ADDR
76 insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
77 {
78 return addr & 0x7fffffffL;
79 }
80
81 static CORE_ADDR
82 insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
83 {
84 return (ptr & 0x7fffffffL) | 0x80000000L;
85 }
86
87 /* Function: pointer_to_address
88 Convert a target pointer to an address in host (CORE_ADDR) format. */
89
90 static CORE_ADDR
91 iq2000_pointer_to_address (struct type * type, const void * buf)
92 {
93 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
94 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
95
96 if (target == TYPE_CODE_FUNC
97 || target == TYPE_CODE_METHOD
98 || (TYPE_FLAGS (TYPE_TARGET_TYPE (type)) & TYPE_FLAG_CODE_SPACE) != 0)
99 addr = insn_addr_from_ptr (addr);
100
101 return addr;
102 }
103
104 /* Function: address_to_pointer
105 Convert a host-format address (CORE_ADDR) into a target pointer. */
106
107 static void
108 iq2000_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
109 {
110 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
111
112 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
113 addr = insn_ptr_from_addr (addr);
114 store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
115 }
116
117 /* Real register methods: */
118
119 /* Function: register_name
120 Returns the name of the iq2000 register number N. */
121
122 static const char *
123 iq2000_register_name (int regnum)
124 {
125 static const char * names[E_NUM_REGS] =
126 {
127 "r0", "r1", "r2", "r3", "r4",
128 "r5", "r6", "r7", "r8", "r9",
129 "r10", "r11", "r12", "r13", "r14",
130 "r15", "r16", "r17", "r18", "r19",
131 "r20", "r21", "r22", "r23", "r24",
132 "r25", "r26", "r27", "r28", "r29",
133 "r30", "r31",
134 "pc"
135 };
136 if (regnum < 0 || regnum >= E_NUM_REGS)
137 return NULL;
138 return names[regnum];
139 }
140
141 /* Prologue analysis methods: */
142
143 /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
144 #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
145 #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
146 #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
147 #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
148
149 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
150 #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
151 #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
152 #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
153
154 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
155 #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
156 #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
157 #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
158 #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
159
160 /* Function: find_last_line_symbol
161
162 Given an address range, first find a line symbol corresponding to
163 the starting address. Then find the last line symbol within the
164 range that has a line number less than or equal to the first line.
165
166 For optimized code with code motion, this finds the last address
167 for the lowest-numbered line within the address range. */
168
169 static struct symtab_and_line
170 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
171 {
172 struct symtab_and_line sal = find_pc_line (start, notcurrent);
173 struct symtab_and_line best_sal = sal;
174
175 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
176 return sal;
177
178 do
179 {
180 if (sal.line && sal.line <= best_sal.line)
181 best_sal = sal;
182 sal = find_pc_line (sal.end, notcurrent);
183 }
184 while (sal.pc && sal.pc < end);
185
186 return best_sal;
187 }
188
189 /* Function: scan_prologue
190 Decode the instructions within the given address range.
191 Decide when we must have reached the end of the function prologue.
192 If a frame_info pointer is provided, fill in its prologue information.
193
194 Returns the address of the first instruction after the prologue. */
195
196 static CORE_ADDR
197 iq2000_scan_prologue (CORE_ADDR scan_start,
198 CORE_ADDR scan_end,
199 struct frame_info *fi,
200 struct iq2000_frame_cache *cache)
201 {
202 struct symtab_and_line sal;
203 CORE_ADDR pc;
204 CORE_ADDR loop_end;
205 int found_store_lr = 0;
206 int found_decr_sp = 0;
207 int srcreg;
208 int tgtreg;
209 signed short offset;
210
211 if (scan_end == (CORE_ADDR) 0)
212 {
213 loop_end = scan_start + 100;
214 sal.end = sal.pc = 0;
215 }
216 else
217 {
218 loop_end = scan_end;
219 if (fi)
220 sal = find_last_line_symbol (scan_start, scan_end, 0);
221 }
222
223 /* Saved registers:
224 We first have to save the saved register's offset, and
225 only later do we compute its actual address. Since the
226 offset can be zero, we must first initialize all the
227 saved regs to minus one (so we can later distinguish
228 between one that's not saved, and one that's saved at zero). */
229 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
230 cache->saved_regs[srcreg] = -1;
231 cache->using_fp = 0;
232 cache->framesize = 0;
233
234 for (pc = scan_start; pc < loop_end; pc += 4)
235 {
236 LONGEST insn = read_memory_unsigned_integer (pc, 4);
237 /* Skip any instructions writing to (sp) or decrementing the
238 SP. */
239 if ((insn & 0xffe00000) == 0xac200000)
240 {
241 /* sw using SP/%1 as base. */
242 /* LEGACY -- from assembly-only port. */
243 tgtreg = ((insn >> 16) & 0x1f);
244 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
245 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
246
247 if (tgtreg == E_LR_REGNUM)
248 found_store_lr = 1;
249 continue;
250 }
251
252 if ((insn & 0xffff8000) == 0x20218000)
253 {
254 /* addi %1, %1, -N == addi %sp, %sp, -N */
255 /* LEGACY -- from assembly-only port */
256 found_decr_sp = 1;
257 cache->framesize = -((signed short) (insn & 0xffff));
258 continue;
259 }
260
261 if (INSN_IS_ADDIU (insn))
262 {
263 srcreg = ADDIU_REG_SRC (insn);
264 tgtreg = ADDIU_REG_TGT (insn);
265 offset = ADDIU_IMMEDIATE (insn);
266 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
267 cache->framesize = -offset;
268 continue;
269 }
270
271 if (INSN_IS_STORE_WORD (insn))
272 {
273 srcreg = SW_REG_SRC (insn);
274 tgtreg = SW_REG_INDEX (insn);
275 offset = SW_OFFSET (insn);
276
277 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
278 {
279 /* "push" to stack (via SP or FP reg) */
280 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
281 cache->saved_regs[srcreg] = offset;
282 continue;
283 }
284 }
285
286 if (INSN_IS_MOVE (insn))
287 {
288 srcreg = MOVE_REG_SRC (insn);
289 tgtreg = MOVE_REG_TGT (insn);
290
291 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
292 {
293 /* Copy sp to fp. */
294 cache->using_fp = 1;
295 continue;
296 }
297 }
298
299 /* Unknown instruction encountered in frame. Bail out?
300 1) If we have a subsequent line symbol, we can keep going.
301 2) If not, we need to bail out and quit scanning instructions. */
302
303 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
304 continue;
305 else /* bail */
306 break;
307 }
308
309 return pc;
310 }
311
312 static void
313 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
314 {
315 int i;
316
317 cache->base = 0;
318 cache->framesize = 0;
319 cache->using_fp = 0;
320 cache->saved_sp = 0;
321 for (i = 0; i < E_NUM_REGS; i++)
322 cache->saved_regs[i] = -1;
323 }
324
325 /* Function: iq2000_skip_prologue
326 If the input address is in a function prologue,
327 returns the address of the end of the prologue;
328 else returns the input address.
329
330 Note: the input address is likely to be the function start,
331 since this function is mainly used for advancing a breakpoint
332 to the first line, or stepping to the first line when we have
333 stepped into a function call. */
334
335 static CORE_ADDR
336 iq2000_skip_prologue (CORE_ADDR pc)
337 {
338 CORE_ADDR func_addr = 0 , func_end = 0;
339
340 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
341 {
342 struct symtab_and_line sal;
343 struct iq2000_frame_cache cache;
344
345 /* Found a function. */
346 sal = find_pc_line (func_addr, 0);
347 if (sal.end && sal.end < func_end)
348 /* Found a line number, use it as end of prologue. */
349 return sal.end;
350
351 /* No useable line symbol. Use prologue parsing method. */
352 iq2000_init_frame_cache (&cache);
353 return iq2000_scan_prologue (func_addr, func_end, NULL, &cache);
354 }
355
356 /* No function symbol -- just return the PC. */
357 return (CORE_ADDR) pc;
358 }
359
360 static struct iq2000_frame_cache *
361 iq2000_frame_cache (struct frame_info *next_frame, void **this_cache)
362 {
363 struct iq2000_frame_cache *cache;
364 CORE_ADDR current_pc;
365 int i;
366
367 if (*this_cache)
368 return *this_cache;
369
370 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
371 iq2000_init_frame_cache (cache);
372 *this_cache = cache;
373
374 cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
375 //if (cache->base == 0)
376 //return cache;
377
378 current_pc = frame_pc_unwind (next_frame);
379 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
380 if (cache->pc != 0)
381 iq2000_scan_prologue (cache->pc, current_pc, next_frame, cache);
382 if (!cache->using_fp)
383 cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
384
385 cache->saved_sp = cache->base + cache->framesize;
386
387 for (i = 0; i < E_NUM_REGS; i++)
388 if (cache->saved_regs[i] != -1)
389 cache->saved_regs[i] += cache->base;
390
391 return cache;
392 }
393
394 static void
395 iq2000_frame_prev_register (struct frame_info *next_frame, void **this_cache,
396 int regnum, int *optimizedp,
397 enum lval_type *lvalp, CORE_ADDR *addrp,
398 int *realnump, void *valuep)
399 {
400 struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
401 if (regnum == E_SP_REGNUM && cache->saved_sp)
402 {
403 *optimizedp = 0;
404 *lvalp = not_lval;
405 *addrp = 0;
406 *realnump = -1;
407 if (valuep)
408 store_unsigned_integer (valuep, 4, cache->saved_sp);
409 return;
410 }
411
412 if (regnum == E_PC_REGNUM)
413 regnum = E_LR_REGNUM;
414
415 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
416 {
417 *optimizedp = 0;
418 *lvalp = lval_memory;
419 *addrp = cache->saved_regs[regnum];
420 *realnump = -1;
421 if (valuep)
422 read_memory (*addrp, valuep, register_size (current_gdbarch, regnum));
423 return;
424 }
425
426 *optimizedp = 0;
427 *lvalp = lval_register;
428 *addrp = 0;
429 *realnump = regnum;
430 if (valuep)
431 frame_unwind_register (next_frame, (*realnump), valuep);
432 }
433
434 static void
435 iq2000_frame_this_id (struct frame_info *next_frame, void **this_cache,
436 struct frame_id *this_id)
437 {
438 struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
439
440 /* This marks the outermost frame. */
441 if (cache->base == 0)
442 return;
443
444 *this_id = frame_id_build (cache->saved_sp, cache->pc);
445 }
446
447 static const struct frame_unwind iq2000_frame_unwind = {
448 NORMAL_FRAME,
449 iq2000_frame_this_id,
450 iq2000_frame_prev_register
451 };
452
453 static const struct frame_unwind *
454 iq2000_frame_sniffer (struct frame_info *next_frame)
455 {
456 return &iq2000_frame_unwind;
457 }
458
459 static CORE_ADDR
460 iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
461 {
462 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
463 }
464
465 static CORE_ADDR
466 iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
467 {
468 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
469 }
470
471 static struct frame_id
472 iq2000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
473 {
474 return frame_id_build (iq2000_unwind_sp (gdbarch, next_frame),
475 frame_pc_unwind (next_frame));
476 }
477
478 static CORE_ADDR
479 iq2000_frame_base_address (struct frame_info *next_frame, void **this_cache)
480 {
481 struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
482
483 return cache->base;
484 }
485
486 static const struct frame_base iq2000_frame_base = {
487 &iq2000_frame_unwind,
488 iq2000_frame_base_address,
489 iq2000_frame_base_address,
490 iq2000_frame_base_address
491 };
492
493 static const unsigned char *
494 iq2000_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
495 {
496 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
497 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
498
499 if ((*pcptr & 3) != 0)
500 error ("breakpoint_from_pc: invalid breakpoint address 0x%lx",
501 (long) *pcptr);
502
503 *lenptr = 4;
504 return (gdbarch_byte_order (current_gdbarch)
505 == BFD_ENDIAN_BIG) ? big_breakpoint
506 : little_breakpoint;
507 }
508
509 /* Target function return value methods: */
510
511 /* Function: store_return_value
512 Copy the function return value from VALBUF into the
513 proper location for a function return. */
514
515 static void
516 iq2000_store_return_value (struct type *type, struct regcache *regcache,
517 const void *valbuf)
518 {
519 int len = TYPE_LENGTH (type);
520 int regno = E_FN_RETURN_REGNUM;
521
522 while (len > 0)
523 {
524 char buf[4];
525 int size = len % 4 ?: 4;
526
527 memset (buf, 0, 4);
528 memcpy (buf + 4 - size, valbuf, size);
529 regcache_raw_write (regcache, regno++, buf);
530 len -= size;
531 valbuf = ((char *) valbuf) + size;
532 }
533 }
534
535 /* Function: use_struct_convention
536 Returns non-zero if the given struct type will be returned using
537 a special convention, rather than the normal function return method. */
538
539 static int
540 iq2000_use_struct_convention (struct type *type)
541 {
542 return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
543 || (TYPE_CODE (type) == TYPE_CODE_UNION))
544 && TYPE_LENGTH (type) > 8;
545 }
546
547 /* Function: extract_return_value
548 Copy the function's return value into VALBUF.
549 This function is called only in the context of "target function calls",
550 ie. when the debugger forces a function to be called in the child, and
551 when the debugger forces a function to return prematurely via the
552 "return" command. */
553
554 static void
555 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
556 void *valbuf)
557 {
558 /* If the function's return value is 8 bytes or less, it is
559 returned in a register, and if larger than 8 bytes, it is
560 returned in a stack location which is pointed to by the same
561 register. */
562 CORE_ADDR return_buffer;
563 int len = TYPE_LENGTH (type);
564
565 if (len <= (2 * 4))
566 {
567 int regno = E_FN_RETURN_REGNUM;
568
569 /* Return values of <= 8 bytes are returned in
570 FN_RETURN_REGNUM. */
571 while (len > 0)
572 {
573 ULONGEST tmp;
574 int size = len % 4 ?: 4;
575
576 /* By using store_unsigned_integer we avoid having to
577 do anything special for small big-endian values. */
578 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
579 store_unsigned_integer (valbuf, size, tmp);
580 len -= size;
581 valbuf = ((char *) valbuf) + size;
582 }
583 }
584 else
585 {
586 /* Return values > 8 bytes are returned in memory,
587 pointed to by FN_RETURN_REGNUM. */
588 regcache_cooked_read (regcache, E_FN_RETURN_REGNUM, & return_buffer);
589 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
590 }
591 }
592
593 static enum return_value_convention
594 iq2000_return_value (struct gdbarch *gdbarch, struct type *type,
595 struct regcache *regcache,
596 void *readbuf, const void *writebuf)
597 {
598 if (iq2000_use_struct_convention (type))
599 return RETURN_VALUE_STRUCT_CONVENTION;
600 if (writebuf)
601 iq2000_store_return_value (type, regcache, writebuf);
602 else if (readbuf)
603 iq2000_extract_return_value (type, regcache, readbuf);
604 return RETURN_VALUE_REGISTER_CONVENTION;
605 }
606
607 /* Function: register_virtual_type
608 Returns the default type for register N. */
609
610 static struct type *
611 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
612 {
613 return builtin_type_int32;
614 }
615
616 static CORE_ADDR
617 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
618 {
619 /* This is the same frame alignment used by gcc. */
620 return ((sp + 7) & ~7);
621 }
622
623 /* Convenience function to check 8-byte types for being a scalar type
624 or a struct with only one long long or double member. */
625 static int
626 iq2000_pass_8bytetype_by_address (struct type *type)
627 {
628 struct type *ftype;
629
630 /* Skip typedefs. */
631 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
632 type = TYPE_TARGET_TYPE (type);
633 /* Non-struct and non-union types are always passed by value. */
634 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
635 && TYPE_CODE (type) != TYPE_CODE_UNION)
636 return 0;
637 /* Structs with more than 1 field are always passed by address. */
638 if (TYPE_NFIELDS (type) != 1)
639 return 1;
640 /* Get field type. */
641 ftype = (TYPE_FIELDS (type))[0].type;
642 /* The field type must have size 8, otherwise pass by address. */
643 if (TYPE_LENGTH (ftype) != 8)
644 return 1;
645 /* Skip typedefs of field type. */
646 while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
647 ftype = TYPE_TARGET_TYPE (ftype);
648 /* If field is int or float, pass by value. */
649 if (TYPE_CODE (ftype) == TYPE_CODE_FLT
650 || TYPE_CODE (ftype) == TYPE_CODE_INT)
651 return 0;
652 /* Everything else, pass by address. */
653 return 1;
654 }
655
656 static CORE_ADDR
657 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
658 struct regcache *regcache, CORE_ADDR bp_addr,
659 int nargs, struct value **args, CORE_ADDR sp,
660 int struct_return, CORE_ADDR struct_addr)
661 {
662 const bfd_byte *val;
663 bfd_byte buf[4];
664 struct type *type;
665 int i, argreg, typelen, slacklen;
666 int stackspace = 0;
667 /* Used to copy struct arguments into the stack. */
668 CORE_ADDR struct_ptr;
669
670 /* First determine how much stack space we will need. */
671 for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
672 {
673 type = value_type (args[i]);
674 typelen = TYPE_LENGTH (type);
675 if (typelen <= 4)
676 {
677 /* Scalars of up to 4 bytes,
678 structs of up to 4 bytes, and
679 pointers. */
680 if (argreg <= E_LAST_ARGREG)
681 argreg++;
682 else
683 stackspace += 4;
684 }
685 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
686 {
687 /* long long,
688 double, and possibly
689 structs with a single field of long long or double. */
690 if (argreg <= E_LAST_ARGREG - 1)
691 {
692 /* 8-byte arg goes into a register pair
693 (must start with an even-numbered reg) */
694 if (((argreg - E_1ST_ARGREG) % 2) != 0)
695 argreg ++;
696 argreg += 2;
697 }
698 else
699 {
700 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
701 /* 8-byte arg goes on stack, must be 8-byte aligned. */
702 stackspace = ((stackspace + 7) & ~7);
703 stackspace += 8;
704 }
705 }
706 else
707 {
708 /* Structs are passed as pointer to a copy of the struct.
709 So we need room on the stack for a copy of the struct
710 plus for the argument pointer. */
711 if (argreg <= E_LAST_ARGREG)
712 argreg++;
713 else
714 stackspace += 4;
715 /* Care for 8-byte alignment of structs saved on stack. */
716 stackspace += ((typelen + 7) & ~7);
717 }
718 }
719
720 /* Now copy params, in ascending order, into their assigned location
721 (either in a register or on the stack). */
722
723 sp -= (sp % 8); /* align */
724 struct_ptr = sp;
725 sp -= stackspace;
726 sp -= (sp % 8); /* align again */
727 stackspace = 0;
728
729 argreg = E_1ST_ARGREG;
730 if (struct_return)
731 {
732 /* A function that returns a struct will consume one argreg to do so.
733 */
734 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
735 }
736
737 for (i = 0; i < nargs; i++)
738 {
739 type = value_type (args[i]);
740 typelen = TYPE_LENGTH (type);
741 val = value_contents (args[i]);
742 if (typelen <= 4)
743 {
744 /* Char, short, int, float, pointer, and structs <= four bytes. */
745 slacklen = (4 - (typelen % 4)) % 4;
746 memset (buf, 0, sizeof (buf));
747 memcpy (buf + slacklen, val, typelen);
748 if (argreg <= E_LAST_ARGREG)
749 {
750 /* Passed in a register. */
751 regcache_raw_write (regcache, argreg++, buf);
752 }
753 else
754 {
755 /* Passed on the stack. */
756 write_memory (sp + stackspace, buf, 4);
757 stackspace += 4;
758 }
759 }
760 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
761 {
762 /* (long long), (double), or struct consisting of
763 a single (long long) or (double). */
764 if (argreg <= E_LAST_ARGREG - 1)
765 {
766 /* 8-byte arg goes into a register pair
767 (must start with an even-numbered reg) */
768 if (((argreg - E_1ST_ARGREG) % 2) != 0)
769 argreg++;
770 regcache_raw_write (regcache, argreg++, val);
771 regcache_raw_write (regcache, argreg++, val + 4);
772 }
773 else
774 {
775 /* 8-byte arg goes on stack, must be 8-byte aligned. */
776 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
777 stackspace = ((stackspace + 7) & ~7);
778 write_memory (sp + stackspace, val, typelen);
779 stackspace += 8;
780 }
781 }
782 else
783 {
784 /* Store struct beginning at the upper end of the previously
785 computed stack space. Then store the address of the struct
786 using the usual rules for a 4 byte value. */
787 struct_ptr -= ((typelen + 7) & ~7);
788 write_memory (struct_ptr, val, typelen);
789 if (argreg <= E_LAST_ARGREG)
790 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
791 else
792 {
793 store_unsigned_integer (buf, 4, struct_ptr);
794 write_memory (sp + stackspace, buf, 4);
795 stackspace += 4;
796 }
797 }
798 }
799
800 /* Store return address. */
801 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
802
803 /* Update stack pointer. */
804 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
805
806 /* And that should do it. Return the new stack pointer. */
807 return sp;
808 }
809
810 /* Function: gdbarch_init
811 Initializer function for the iq2000 gdbarch vector.
812 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
813
814 static struct gdbarch *
815 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
816 {
817 struct gdbarch *gdbarch;
818
819 /* Look up list for candidates - only one. */
820 arches = gdbarch_list_lookup_by_info (arches, &info);
821 if (arches != NULL)
822 return arches->gdbarch;
823
824 gdbarch = gdbarch_alloc (&info, NULL);
825
826 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
827 set_gdbarch_num_pseudo_regs (gdbarch, 0);
828 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
829 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
830 set_gdbarch_register_name (gdbarch, iq2000_register_name);
831 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
832 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
833 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
834 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
835 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
836 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
837 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
838 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
839 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
840 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
841 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
842 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
843 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
844 set_gdbarch_return_value (gdbarch, iq2000_return_value);
845 set_gdbarch_breakpoint_from_pc (gdbarch, iq2000_breakpoint_from_pc);
846 set_gdbarch_frame_args_skip (gdbarch, 0);
847 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
848 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
849 set_gdbarch_print_insn (gdbarch, print_insn_iq2000);
850 set_gdbarch_register_type (gdbarch, iq2000_register_type);
851 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
852 set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
853 set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
854 set_gdbarch_unwind_dummy_id (gdbarch, iq2000_unwind_dummy_id);
855 frame_base_set_default (gdbarch, &iq2000_frame_base);
856 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
857
858 gdbarch_init_osabi (info, gdbarch);
859
860 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
861 frame_unwind_append_sniffer (gdbarch, iq2000_frame_sniffer);
862
863 return gdbarch;
864 }
865
866 /* Function: _initialize_iq2000_tdep
867 Initializer function for the iq2000 module.
868 Called by gdb at start-up. */
869
870 void
871 _initialize_iq2000_tdep (void)
872 {
873 register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);
874 }
This page took 0.047966 seconds and 4 git commands to generate.