* stack.c (print_frame_args): Fix typos in comments.
[deliverable/binutils-gdb.git] / gdb / iq2000-tdep.c
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
3
4 Copyright (C) 2000, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
5
6 Contributed by Red Hat.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "gdb_string.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "osabi.h"
35 #include "gdbcore.h"
36
37 enum gdb_regnum
38 {
39 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
40 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
41 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
42 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
43 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
44 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
45 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
46 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
47 E_PC_REGNUM,
48 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
49 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
50 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
51 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
52 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
53 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
54 E_NUM_REGS = E_PC_REGNUM + 1
55 };
56
57 /* Use an invalid address value as 'not available' marker. */
58 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
59
60 struct iq2000_frame_cache
61 {
62 /* Base address. */
63 CORE_ADDR base;
64 CORE_ADDR pc;
65 LONGEST framesize;
66 int using_fp;
67 CORE_ADDR saved_sp;
68 CORE_ADDR saved_regs [E_NUM_REGS];
69 };
70
71 /* Harvard methods: */
72
73 static CORE_ADDR
74 insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
75 {
76 return addr & 0x7fffffffL;
77 }
78
79 static CORE_ADDR
80 insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
81 {
82 return (ptr & 0x7fffffffL) | 0x80000000L;
83 }
84
85 /* Function: pointer_to_address
86 Convert a target pointer to an address in host (CORE_ADDR) format. */
87
88 static CORE_ADDR
89 iq2000_pointer_to_address (struct type * type, const gdb_byte * buf)
90 {
91 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
92 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
93
94 if (target == TYPE_CODE_FUNC
95 || target == TYPE_CODE_METHOD
96 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
97 addr = insn_addr_from_ptr (addr);
98
99 return addr;
100 }
101
102 /* Function: address_to_pointer
103 Convert a host-format address (CORE_ADDR) into a target pointer. */
104
105 static void
106 iq2000_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
107 {
108 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
109
110 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
111 addr = insn_ptr_from_addr (addr);
112 store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
113 }
114
115 /* Real register methods: */
116
117 /* Function: register_name
118 Returns the name of the iq2000 register number N. */
119
120 static const char *
121 iq2000_register_name (struct gdbarch *gdbarch, int regnum)
122 {
123 static const char * names[E_NUM_REGS] =
124 {
125 "r0", "r1", "r2", "r3", "r4",
126 "r5", "r6", "r7", "r8", "r9",
127 "r10", "r11", "r12", "r13", "r14",
128 "r15", "r16", "r17", "r18", "r19",
129 "r20", "r21", "r22", "r23", "r24",
130 "r25", "r26", "r27", "r28", "r29",
131 "r30", "r31",
132 "pc"
133 };
134 if (regnum < 0 || regnum >= E_NUM_REGS)
135 return NULL;
136 return names[regnum];
137 }
138
139 /* Prologue analysis methods: */
140
141 /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
142 #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
143 #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
144 #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
145 #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
146
147 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
148 #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
149 #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
150 #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
151
152 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
153 #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
154 #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
155 #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
156 #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
157
158 /* Function: find_last_line_symbol
159
160 Given an address range, first find a line symbol corresponding to
161 the starting address. Then find the last line symbol within the
162 range that has a line number less than or equal to the first line.
163
164 For optimized code with code motion, this finds the last address
165 for the lowest-numbered line within the address range. */
166
167 static struct symtab_and_line
168 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
169 {
170 struct symtab_and_line sal = find_pc_line (start, notcurrent);
171 struct symtab_and_line best_sal = sal;
172
173 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
174 return sal;
175
176 do
177 {
178 if (sal.line && sal.line <= best_sal.line)
179 best_sal = sal;
180 sal = find_pc_line (sal.end, notcurrent);
181 }
182 while (sal.pc && sal.pc < end);
183
184 return best_sal;
185 }
186
187 /* Function: scan_prologue
188 Decode the instructions within the given address range.
189 Decide when we must have reached the end of the function prologue.
190 If a frame_info pointer is provided, fill in its prologue information.
191
192 Returns the address of the first instruction after the prologue. */
193
194 static CORE_ADDR
195 iq2000_scan_prologue (CORE_ADDR scan_start,
196 CORE_ADDR scan_end,
197 struct frame_info *fi,
198 struct iq2000_frame_cache *cache)
199 {
200 struct symtab_and_line sal;
201 CORE_ADDR pc;
202 CORE_ADDR loop_end;
203 int found_store_lr = 0;
204 int found_decr_sp = 0;
205 int srcreg;
206 int tgtreg;
207 signed short offset;
208
209 if (scan_end == (CORE_ADDR) 0)
210 {
211 loop_end = scan_start + 100;
212 sal.end = sal.pc = 0;
213 }
214 else
215 {
216 loop_end = scan_end;
217 if (fi)
218 sal = find_last_line_symbol (scan_start, scan_end, 0);
219 }
220
221 /* Saved registers:
222 We first have to save the saved register's offset, and
223 only later do we compute its actual address. Since the
224 offset can be zero, we must first initialize all the
225 saved regs to minus one (so we can later distinguish
226 between one that's not saved, and one that's saved at zero). */
227 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
228 cache->saved_regs[srcreg] = -1;
229 cache->using_fp = 0;
230 cache->framesize = 0;
231
232 for (pc = scan_start; pc < loop_end; pc += 4)
233 {
234 LONGEST insn = read_memory_unsigned_integer (pc, 4);
235 /* Skip any instructions writing to (sp) or decrementing the
236 SP. */
237 if ((insn & 0xffe00000) == 0xac200000)
238 {
239 /* sw using SP/%1 as base. */
240 /* LEGACY -- from assembly-only port. */
241 tgtreg = ((insn >> 16) & 0x1f);
242 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
243 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
244
245 if (tgtreg == E_LR_REGNUM)
246 found_store_lr = 1;
247 continue;
248 }
249
250 if ((insn & 0xffff8000) == 0x20218000)
251 {
252 /* addi %1, %1, -N == addi %sp, %sp, -N */
253 /* LEGACY -- from assembly-only port */
254 found_decr_sp = 1;
255 cache->framesize = -((signed short) (insn & 0xffff));
256 continue;
257 }
258
259 if (INSN_IS_ADDIU (insn))
260 {
261 srcreg = ADDIU_REG_SRC (insn);
262 tgtreg = ADDIU_REG_TGT (insn);
263 offset = ADDIU_IMMEDIATE (insn);
264 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
265 cache->framesize = -offset;
266 continue;
267 }
268
269 if (INSN_IS_STORE_WORD (insn))
270 {
271 srcreg = SW_REG_SRC (insn);
272 tgtreg = SW_REG_INDEX (insn);
273 offset = SW_OFFSET (insn);
274
275 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
276 {
277 /* "push" to stack (via SP or FP reg) */
278 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
279 cache->saved_regs[srcreg] = offset;
280 continue;
281 }
282 }
283
284 if (INSN_IS_MOVE (insn))
285 {
286 srcreg = MOVE_REG_SRC (insn);
287 tgtreg = MOVE_REG_TGT (insn);
288
289 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
290 {
291 /* Copy sp to fp. */
292 cache->using_fp = 1;
293 continue;
294 }
295 }
296
297 /* Unknown instruction encountered in frame. Bail out?
298 1) If we have a subsequent line symbol, we can keep going.
299 2) If not, we need to bail out and quit scanning instructions. */
300
301 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
302 continue;
303 else /* bail */
304 break;
305 }
306
307 return pc;
308 }
309
310 static void
311 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
312 {
313 int i;
314
315 cache->base = 0;
316 cache->framesize = 0;
317 cache->using_fp = 0;
318 cache->saved_sp = 0;
319 for (i = 0; i < E_NUM_REGS; i++)
320 cache->saved_regs[i] = -1;
321 }
322
323 /* Function: iq2000_skip_prologue
324 If the input address is in a function prologue,
325 returns the address of the end of the prologue;
326 else returns the input address.
327
328 Note: the input address is likely to be the function start,
329 since this function is mainly used for advancing a breakpoint
330 to the first line, or stepping to the first line when we have
331 stepped into a function call. */
332
333 static CORE_ADDR
334 iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
335 {
336 CORE_ADDR func_addr = 0 , func_end = 0;
337
338 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
339 {
340 struct symtab_and_line sal;
341 struct iq2000_frame_cache cache;
342
343 /* Found a function. */
344 sal = find_pc_line (func_addr, 0);
345 if (sal.end && sal.end < func_end)
346 /* Found a line number, use it as end of prologue. */
347 return sal.end;
348
349 /* No useable line symbol. Use prologue parsing method. */
350 iq2000_init_frame_cache (&cache);
351 return iq2000_scan_prologue (func_addr, func_end, NULL, &cache);
352 }
353
354 /* No function symbol -- just return the PC. */
355 return (CORE_ADDR) pc;
356 }
357
358 static struct iq2000_frame_cache *
359 iq2000_frame_cache (struct frame_info *this_frame, void **this_cache)
360 {
361 struct iq2000_frame_cache *cache;
362 CORE_ADDR current_pc;
363 int i;
364
365 if (*this_cache)
366 return *this_cache;
367
368 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
369 iq2000_init_frame_cache (cache);
370 *this_cache = cache;
371
372 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
373 //if (cache->base == 0)
374 //return cache;
375
376 current_pc = get_frame_pc (this_frame);
377 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
378 if (cache->pc != 0)
379 iq2000_scan_prologue (cache->pc, current_pc, this_frame, cache);
380 if (!cache->using_fp)
381 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
382
383 cache->saved_sp = cache->base + cache->framesize;
384
385 for (i = 0; i < E_NUM_REGS; i++)
386 if (cache->saved_regs[i] != -1)
387 cache->saved_regs[i] += cache->base;
388
389 return cache;
390 }
391
392 static struct value *
393 iq2000_frame_prev_register (struct frame_info *this_frame, void **this_cache,
394 int regnum)
395 {
396 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame, this_cache);
397
398 if (regnum == E_SP_REGNUM && cache->saved_sp)
399 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
400
401 if (regnum == E_PC_REGNUM)
402 regnum = E_LR_REGNUM;
403
404 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
405 return frame_unwind_got_memory (this_frame, regnum,
406 cache->saved_regs[regnum]);
407
408 return frame_unwind_got_register (this_frame, regnum, regnum);
409 }
410
411 static void
412 iq2000_frame_this_id (struct frame_info *this_frame, void **this_cache,
413 struct frame_id *this_id)
414 {
415 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame, this_cache);
416
417 /* This marks the outermost frame. */
418 if (cache->base == 0)
419 return;
420
421 *this_id = frame_id_build (cache->saved_sp, cache->pc);
422 }
423
424 static const struct frame_unwind iq2000_frame_unwind = {
425 NORMAL_FRAME,
426 iq2000_frame_this_id,
427 iq2000_frame_prev_register,
428 NULL,
429 default_frame_sniffer
430 };
431
432 static CORE_ADDR
433 iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
434 {
435 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
436 }
437
438 static CORE_ADDR
439 iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
440 {
441 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
442 }
443
444 static struct frame_id
445 iq2000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
446 {
447 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
448 return frame_id_build (sp, get_frame_pc (this_frame));
449 }
450
451 static CORE_ADDR
452 iq2000_frame_base_address (struct frame_info *this_frame, void **this_cache)
453 {
454 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame, this_cache);
455
456 return cache->base;
457 }
458
459 static const struct frame_base iq2000_frame_base = {
460 &iq2000_frame_unwind,
461 iq2000_frame_base_address,
462 iq2000_frame_base_address,
463 iq2000_frame_base_address
464 };
465
466 static const unsigned char *
467 iq2000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
468 int *lenptr)
469 {
470 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
471 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
472
473 if ((*pcptr & 3) != 0)
474 error ("breakpoint_from_pc: invalid breakpoint address 0x%lx",
475 (long) *pcptr);
476
477 *lenptr = 4;
478 return (gdbarch_byte_order (gdbarch)
479 == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
480 }
481
482 /* Target function return value methods: */
483
484 /* Function: store_return_value
485 Copy the function return value from VALBUF into the
486 proper location for a function return. */
487
488 static void
489 iq2000_store_return_value (struct type *type, struct regcache *regcache,
490 const void *valbuf)
491 {
492 int len = TYPE_LENGTH (type);
493 int regno = E_FN_RETURN_REGNUM;
494
495 while (len > 0)
496 {
497 char buf[4];
498 int size = len % 4 ?: 4;
499
500 memset (buf, 0, 4);
501 memcpy (buf + 4 - size, valbuf, size);
502 regcache_raw_write (regcache, regno++, buf);
503 len -= size;
504 valbuf = ((char *) valbuf) + size;
505 }
506 }
507
508 /* Function: use_struct_convention
509 Returns non-zero if the given struct type will be returned using
510 a special convention, rather than the normal function return method. */
511
512 static int
513 iq2000_use_struct_convention (struct type *type)
514 {
515 return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
516 || (TYPE_CODE (type) == TYPE_CODE_UNION))
517 && TYPE_LENGTH (type) > 8;
518 }
519
520 /* Function: extract_return_value
521 Copy the function's return value into VALBUF.
522 This function is called only in the context of "target function calls",
523 ie. when the debugger forces a function to be called in the child, and
524 when the debugger forces a function to return prematurely via the
525 "return" command. */
526
527 static void
528 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
529 void *valbuf)
530 {
531 /* If the function's return value is 8 bytes or less, it is
532 returned in a register, and if larger than 8 bytes, it is
533 returned in a stack location which is pointed to by the same
534 register. */
535 int len = TYPE_LENGTH (type);
536
537 if (len <= (2 * 4))
538 {
539 int regno = E_FN_RETURN_REGNUM;
540
541 /* Return values of <= 8 bytes are returned in
542 FN_RETURN_REGNUM. */
543 while (len > 0)
544 {
545 ULONGEST tmp;
546 int size = len % 4 ?: 4;
547
548 /* By using store_unsigned_integer we avoid having to
549 do anything special for small big-endian values. */
550 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
551 store_unsigned_integer (valbuf, size, tmp);
552 len -= size;
553 valbuf = ((char *) valbuf) + size;
554 }
555 }
556 else
557 {
558 /* Return values > 8 bytes are returned in memory,
559 pointed to by FN_RETURN_REGNUM. */
560 ULONGEST return_buffer;
561 regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
562 &return_buffer);
563 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
564 }
565 }
566
567 static enum return_value_convention
568 iq2000_return_value (struct gdbarch *gdbarch, struct type *func_type,
569 struct type *type, struct regcache *regcache,
570 gdb_byte *readbuf, const gdb_byte *writebuf)
571 {
572 if (iq2000_use_struct_convention (type))
573 return RETURN_VALUE_STRUCT_CONVENTION;
574 if (writebuf)
575 iq2000_store_return_value (type, regcache, writebuf);
576 else if (readbuf)
577 iq2000_extract_return_value (type, regcache, readbuf);
578 return RETURN_VALUE_REGISTER_CONVENTION;
579 }
580
581 /* Function: register_virtual_type
582 Returns the default type for register N. */
583
584 static struct type *
585 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
586 {
587 return builtin_type_int32;
588 }
589
590 static CORE_ADDR
591 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
592 {
593 /* This is the same frame alignment used by gcc. */
594 return ((sp + 7) & ~7);
595 }
596
597 /* Convenience function to check 8-byte types for being a scalar type
598 or a struct with only one long long or double member. */
599 static int
600 iq2000_pass_8bytetype_by_address (struct type *type)
601 {
602 struct type *ftype;
603
604 /* Skip typedefs. */
605 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
606 type = TYPE_TARGET_TYPE (type);
607 /* Non-struct and non-union types are always passed by value. */
608 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
609 && TYPE_CODE (type) != TYPE_CODE_UNION)
610 return 0;
611 /* Structs with more than 1 field are always passed by address. */
612 if (TYPE_NFIELDS (type) != 1)
613 return 1;
614 /* Get field type. */
615 ftype = (TYPE_FIELDS (type))[0].type;
616 /* The field type must have size 8, otherwise pass by address. */
617 if (TYPE_LENGTH (ftype) != 8)
618 return 1;
619 /* Skip typedefs of field type. */
620 while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
621 ftype = TYPE_TARGET_TYPE (ftype);
622 /* If field is int or float, pass by value. */
623 if (TYPE_CODE (ftype) == TYPE_CODE_FLT
624 || TYPE_CODE (ftype) == TYPE_CODE_INT)
625 return 0;
626 /* Everything else, pass by address. */
627 return 1;
628 }
629
630 static CORE_ADDR
631 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
632 struct regcache *regcache, CORE_ADDR bp_addr,
633 int nargs, struct value **args, CORE_ADDR sp,
634 int struct_return, CORE_ADDR struct_addr)
635 {
636 const bfd_byte *val;
637 bfd_byte buf[4];
638 struct type *type;
639 int i, argreg, typelen, slacklen;
640 int stackspace = 0;
641 /* Used to copy struct arguments into the stack. */
642 CORE_ADDR struct_ptr;
643
644 /* First determine how much stack space we will need. */
645 for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
646 {
647 type = value_type (args[i]);
648 typelen = TYPE_LENGTH (type);
649 if (typelen <= 4)
650 {
651 /* Scalars of up to 4 bytes,
652 structs of up to 4 bytes, and
653 pointers. */
654 if (argreg <= E_LAST_ARGREG)
655 argreg++;
656 else
657 stackspace += 4;
658 }
659 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
660 {
661 /* long long,
662 double, and possibly
663 structs with a single field of long long or double. */
664 if (argreg <= E_LAST_ARGREG - 1)
665 {
666 /* 8-byte arg goes into a register pair
667 (must start with an even-numbered reg) */
668 if (((argreg - E_1ST_ARGREG) % 2) != 0)
669 argreg ++;
670 argreg += 2;
671 }
672 else
673 {
674 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
675 /* 8-byte arg goes on stack, must be 8-byte aligned. */
676 stackspace = ((stackspace + 7) & ~7);
677 stackspace += 8;
678 }
679 }
680 else
681 {
682 /* Structs are passed as pointer to a copy of the struct.
683 So we need room on the stack for a copy of the struct
684 plus for the argument pointer. */
685 if (argreg <= E_LAST_ARGREG)
686 argreg++;
687 else
688 stackspace += 4;
689 /* Care for 8-byte alignment of structs saved on stack. */
690 stackspace += ((typelen + 7) & ~7);
691 }
692 }
693
694 /* Now copy params, in ascending order, into their assigned location
695 (either in a register or on the stack). */
696
697 sp -= (sp % 8); /* align */
698 struct_ptr = sp;
699 sp -= stackspace;
700 sp -= (sp % 8); /* align again */
701 stackspace = 0;
702
703 argreg = E_1ST_ARGREG;
704 if (struct_return)
705 {
706 /* A function that returns a struct will consume one argreg to do so.
707 */
708 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
709 }
710
711 for (i = 0; i < nargs; i++)
712 {
713 type = value_type (args[i]);
714 typelen = TYPE_LENGTH (type);
715 val = value_contents (args[i]);
716 if (typelen <= 4)
717 {
718 /* Char, short, int, float, pointer, and structs <= four bytes. */
719 slacklen = (4 - (typelen % 4)) % 4;
720 memset (buf, 0, sizeof (buf));
721 memcpy (buf + slacklen, val, typelen);
722 if (argreg <= E_LAST_ARGREG)
723 {
724 /* Passed in a register. */
725 regcache_raw_write (regcache, argreg++, buf);
726 }
727 else
728 {
729 /* Passed on the stack. */
730 write_memory (sp + stackspace, buf, 4);
731 stackspace += 4;
732 }
733 }
734 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
735 {
736 /* (long long), (double), or struct consisting of
737 a single (long long) or (double). */
738 if (argreg <= E_LAST_ARGREG - 1)
739 {
740 /* 8-byte arg goes into a register pair
741 (must start with an even-numbered reg) */
742 if (((argreg - E_1ST_ARGREG) % 2) != 0)
743 argreg++;
744 regcache_raw_write (regcache, argreg++, val);
745 regcache_raw_write (regcache, argreg++, val + 4);
746 }
747 else
748 {
749 /* 8-byte arg goes on stack, must be 8-byte aligned. */
750 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
751 stackspace = ((stackspace + 7) & ~7);
752 write_memory (sp + stackspace, val, typelen);
753 stackspace += 8;
754 }
755 }
756 else
757 {
758 /* Store struct beginning at the upper end of the previously
759 computed stack space. Then store the address of the struct
760 using the usual rules for a 4 byte value. */
761 struct_ptr -= ((typelen + 7) & ~7);
762 write_memory (struct_ptr, val, typelen);
763 if (argreg <= E_LAST_ARGREG)
764 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
765 else
766 {
767 store_unsigned_integer (buf, 4, struct_ptr);
768 write_memory (sp + stackspace, buf, 4);
769 stackspace += 4;
770 }
771 }
772 }
773
774 /* Store return address. */
775 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
776
777 /* Update stack pointer. */
778 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
779
780 /* And that should do it. Return the new stack pointer. */
781 return sp;
782 }
783
784 /* Function: gdbarch_init
785 Initializer function for the iq2000 gdbarch vector.
786 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
787
788 static struct gdbarch *
789 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
790 {
791 struct gdbarch *gdbarch;
792
793 /* Look up list for candidates - only one. */
794 arches = gdbarch_list_lookup_by_info (arches, &info);
795 if (arches != NULL)
796 return arches->gdbarch;
797
798 gdbarch = gdbarch_alloc (&info, NULL);
799
800 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
801 set_gdbarch_num_pseudo_regs (gdbarch, 0);
802 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
803 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
804 set_gdbarch_register_name (gdbarch, iq2000_register_name);
805 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
806 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
807 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
808 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
809 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
810 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
811 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
812 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
813 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
814 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
815 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
816 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
817 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
818 set_gdbarch_return_value (gdbarch, iq2000_return_value);
819 set_gdbarch_breakpoint_from_pc (gdbarch, iq2000_breakpoint_from_pc);
820 set_gdbarch_frame_args_skip (gdbarch, 0);
821 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
822 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
823 set_gdbarch_print_insn (gdbarch, print_insn_iq2000);
824 set_gdbarch_register_type (gdbarch, iq2000_register_type);
825 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
826 set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
827 set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
828 set_gdbarch_dummy_id (gdbarch, iq2000_dummy_id);
829 frame_base_set_default (gdbarch, &iq2000_frame_base);
830 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
831
832 gdbarch_init_osabi (info, gdbarch);
833
834 dwarf2_append_unwinders (gdbarch);
835 frame_unwind_append_unwinder (gdbarch, &iq2000_frame_unwind);
836
837 return gdbarch;
838 }
839
840 /* Function: _initialize_iq2000_tdep
841 Initializer function for the iq2000 module.
842 Called by gdb at start-up. */
843
844 void
845 _initialize_iq2000_tdep (void)
846 {
847 register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);
848 }
This page took 0.049565 seconds and 4 git commands to generate.