2011-01-08 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / iq2000-tdep.c
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
3
4 Copyright (C) 2000, 2004, 2005, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Red Hat.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "dwarf2-frame.h"
29 #include "gdbtypes.h"
30 #include "value.h"
31 #include "dis-asm.h"
32 #include "gdb_string.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35 #include "osabi.h"
36 #include "gdbcore.h"
37
38 enum gdb_regnum
39 {
40 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
41 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
42 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
43 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
44 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
45 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
46 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
47 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
48 E_PC_REGNUM,
49 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
50 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
51 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
52 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
53 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
54 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
55 E_NUM_REGS = E_PC_REGNUM + 1
56 };
57
58 /* Use an invalid address value as 'not available' marker. */
59 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
60
61 struct iq2000_frame_cache
62 {
63 /* Base address. */
64 CORE_ADDR base;
65 CORE_ADDR pc;
66 LONGEST framesize;
67 int using_fp;
68 CORE_ADDR saved_sp;
69 CORE_ADDR saved_regs [E_NUM_REGS];
70 };
71
72 /* Harvard methods: */
73
74 static CORE_ADDR
75 insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
76 {
77 return addr & 0x7fffffffL;
78 }
79
80 static CORE_ADDR
81 insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
82 {
83 return (ptr & 0x7fffffffL) | 0x80000000L;
84 }
85
86 /* Function: pointer_to_address
87 Convert a target pointer to an address in host (CORE_ADDR) format. */
88
89 static CORE_ADDR
90 iq2000_pointer_to_address (struct gdbarch *gdbarch,
91 struct type * type, const gdb_byte * buf)
92 {
93 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
94 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
95 CORE_ADDR addr
96 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
97
98 if (target == TYPE_CODE_FUNC
99 || target == TYPE_CODE_METHOD
100 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
101 addr = insn_addr_from_ptr (addr);
102
103 return addr;
104 }
105
106 /* Function: address_to_pointer
107 Convert a host-format address (CORE_ADDR) into a target pointer. */
108
109 static void
110 iq2000_address_to_pointer (struct gdbarch *gdbarch,
111 struct type *type, gdb_byte *buf, CORE_ADDR addr)
112 {
113 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
114 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
115
116 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
117 addr = insn_ptr_from_addr (addr);
118 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
119 }
120
121 /* Real register methods: */
122
123 /* Function: register_name
124 Returns the name of the iq2000 register number N. */
125
126 static const char *
127 iq2000_register_name (struct gdbarch *gdbarch, int regnum)
128 {
129 static const char * names[E_NUM_REGS] =
130 {
131 "r0", "r1", "r2", "r3", "r4",
132 "r5", "r6", "r7", "r8", "r9",
133 "r10", "r11", "r12", "r13", "r14",
134 "r15", "r16", "r17", "r18", "r19",
135 "r20", "r21", "r22", "r23", "r24",
136 "r25", "r26", "r27", "r28", "r29",
137 "r30", "r31",
138 "pc"
139 };
140 if (regnum < 0 || regnum >= E_NUM_REGS)
141 return NULL;
142 return names[regnum];
143 }
144
145 /* Prologue analysis methods: */
146
147 /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
148 #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
149 #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
150 #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
151 #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
152
153 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
154 #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
155 #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
156 #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
157
158 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
159 #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
160 #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
161 #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
162 #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
163
164 /* Function: find_last_line_symbol
165
166 Given an address range, first find a line symbol corresponding to
167 the starting address. Then find the last line symbol within the
168 range that has a line number less than or equal to the first line.
169
170 For optimized code with code motion, this finds the last address
171 for the lowest-numbered line within the address range. */
172
173 static struct symtab_and_line
174 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
175 {
176 struct symtab_and_line sal = find_pc_line (start, notcurrent);
177 struct symtab_and_line best_sal = sal;
178
179 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
180 return sal;
181
182 do
183 {
184 if (sal.line && sal.line <= best_sal.line)
185 best_sal = sal;
186 sal = find_pc_line (sal.end, notcurrent);
187 }
188 while (sal.pc && sal.pc < end);
189
190 return best_sal;
191 }
192
193 /* Function: scan_prologue
194 Decode the instructions within the given address range.
195 Decide when we must have reached the end of the function prologue.
196 If a frame_info pointer is provided, fill in its prologue information.
197
198 Returns the address of the first instruction after the prologue. */
199
200 static CORE_ADDR
201 iq2000_scan_prologue (struct gdbarch *gdbarch,
202 CORE_ADDR scan_start,
203 CORE_ADDR scan_end,
204 struct frame_info *fi,
205 struct iq2000_frame_cache *cache)
206 {
207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
208 struct symtab_and_line sal;
209 CORE_ADDR pc;
210 CORE_ADDR loop_end;
211 int found_store_lr = 0;
212 int found_decr_sp = 0;
213 int srcreg;
214 int tgtreg;
215 signed short offset;
216
217 if (scan_end == (CORE_ADDR) 0)
218 {
219 loop_end = scan_start + 100;
220 sal.end = sal.pc = 0;
221 }
222 else
223 {
224 loop_end = scan_end;
225 if (fi)
226 sal = find_last_line_symbol (scan_start, scan_end, 0);
227 else
228 sal.end = 0; /* Avoid GCC false warning. */
229 }
230
231 /* Saved registers:
232 We first have to save the saved register's offset, and
233 only later do we compute its actual address. Since the
234 offset can be zero, we must first initialize all the
235 saved regs to minus one (so we can later distinguish
236 between one that's not saved, and one that's saved at zero). */
237 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
238 cache->saved_regs[srcreg] = -1;
239 cache->using_fp = 0;
240 cache->framesize = 0;
241
242 for (pc = scan_start; pc < loop_end; pc += 4)
243 {
244 LONGEST insn = read_memory_unsigned_integer (pc, 4, byte_order);
245 /* Skip any instructions writing to (sp) or decrementing the
246 SP. */
247 if ((insn & 0xffe00000) == 0xac200000)
248 {
249 /* sw using SP/%1 as base. */
250 /* LEGACY -- from assembly-only port. */
251 tgtreg = ((insn >> 16) & 0x1f);
252 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
253 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
254
255 if (tgtreg == E_LR_REGNUM)
256 found_store_lr = 1;
257 continue;
258 }
259
260 if ((insn & 0xffff8000) == 0x20218000)
261 {
262 /* addi %1, %1, -N == addi %sp, %sp, -N */
263 /* LEGACY -- from assembly-only port. */
264 found_decr_sp = 1;
265 cache->framesize = -((signed short) (insn & 0xffff));
266 continue;
267 }
268
269 if (INSN_IS_ADDIU (insn))
270 {
271 srcreg = ADDIU_REG_SRC (insn);
272 tgtreg = ADDIU_REG_TGT (insn);
273 offset = ADDIU_IMMEDIATE (insn);
274 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
275 cache->framesize = -offset;
276 continue;
277 }
278
279 if (INSN_IS_STORE_WORD (insn))
280 {
281 srcreg = SW_REG_SRC (insn);
282 tgtreg = SW_REG_INDEX (insn);
283 offset = SW_OFFSET (insn);
284
285 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
286 {
287 /* "push" to stack (via SP or FP reg). */
288 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
289 cache->saved_regs[srcreg] = offset;
290 continue;
291 }
292 }
293
294 if (INSN_IS_MOVE (insn))
295 {
296 srcreg = MOVE_REG_SRC (insn);
297 tgtreg = MOVE_REG_TGT (insn);
298
299 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
300 {
301 /* Copy sp to fp. */
302 cache->using_fp = 1;
303 continue;
304 }
305 }
306
307 /* Unknown instruction encountered in frame. Bail out?
308 1) If we have a subsequent line symbol, we can keep going.
309 2) If not, we need to bail out and quit scanning instructions. */
310
311 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
312 continue;
313 else /* bail */
314 break;
315 }
316
317 return pc;
318 }
319
320 static void
321 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
322 {
323 int i;
324
325 cache->base = 0;
326 cache->framesize = 0;
327 cache->using_fp = 0;
328 cache->saved_sp = 0;
329 for (i = 0; i < E_NUM_REGS; i++)
330 cache->saved_regs[i] = -1;
331 }
332
333 /* Function: iq2000_skip_prologue
334 If the input address is in a function prologue,
335 returns the address of the end of the prologue;
336 else returns the input address.
337
338 Note: the input address is likely to be the function start,
339 since this function is mainly used for advancing a breakpoint
340 to the first line, or stepping to the first line when we have
341 stepped into a function call. */
342
343 static CORE_ADDR
344 iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
345 {
346 CORE_ADDR func_addr = 0 , func_end = 0;
347
348 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
349 {
350 struct symtab_and_line sal;
351 struct iq2000_frame_cache cache;
352
353 /* Found a function. */
354 sal = find_pc_line (func_addr, 0);
355 if (sal.end && sal.end < func_end)
356 /* Found a line number, use it as end of prologue. */
357 return sal.end;
358
359 /* No useable line symbol. Use prologue parsing method. */
360 iq2000_init_frame_cache (&cache);
361 return iq2000_scan_prologue (gdbarch, func_addr, func_end, NULL, &cache);
362 }
363
364 /* No function symbol -- just return the PC. */
365 return (CORE_ADDR) pc;
366 }
367
368 static struct iq2000_frame_cache *
369 iq2000_frame_cache (struct frame_info *this_frame, void **this_cache)
370 {
371 struct gdbarch *gdbarch = get_frame_arch (this_frame);
372 struct iq2000_frame_cache *cache;
373 CORE_ADDR current_pc;
374 int i;
375
376 if (*this_cache)
377 return *this_cache;
378
379 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
380 iq2000_init_frame_cache (cache);
381 *this_cache = cache;
382
383 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
384 //if (cache->base == 0)
385 //return cache;
386
387 current_pc = get_frame_pc (this_frame);
388 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
389 if (cache->pc != 0)
390 iq2000_scan_prologue (gdbarch, cache->pc, current_pc, this_frame, cache);
391 if (!cache->using_fp)
392 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
393
394 cache->saved_sp = cache->base + cache->framesize;
395
396 for (i = 0; i < E_NUM_REGS; i++)
397 if (cache->saved_regs[i] != -1)
398 cache->saved_regs[i] += cache->base;
399
400 return cache;
401 }
402
403 static struct value *
404 iq2000_frame_prev_register (struct frame_info *this_frame, void **this_cache,
405 int regnum)
406 {
407 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
408 this_cache);
409
410 if (regnum == E_SP_REGNUM && cache->saved_sp)
411 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
412
413 if (regnum == E_PC_REGNUM)
414 regnum = E_LR_REGNUM;
415
416 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
417 return frame_unwind_got_memory (this_frame, regnum,
418 cache->saved_regs[regnum]);
419
420 return frame_unwind_got_register (this_frame, regnum, regnum);
421 }
422
423 static void
424 iq2000_frame_this_id (struct frame_info *this_frame, void **this_cache,
425 struct frame_id *this_id)
426 {
427 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
428 this_cache);
429
430 /* This marks the outermost frame. */
431 if (cache->base == 0)
432 return;
433
434 *this_id = frame_id_build (cache->saved_sp, cache->pc);
435 }
436
437 static const struct frame_unwind iq2000_frame_unwind = {
438 NORMAL_FRAME,
439 iq2000_frame_this_id,
440 iq2000_frame_prev_register,
441 NULL,
442 default_frame_sniffer
443 };
444
445 static CORE_ADDR
446 iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
447 {
448 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
449 }
450
451 static CORE_ADDR
452 iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
453 {
454 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
455 }
456
457 static struct frame_id
458 iq2000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
459 {
460 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
461 return frame_id_build (sp, get_frame_pc (this_frame));
462 }
463
464 static CORE_ADDR
465 iq2000_frame_base_address (struct frame_info *this_frame, void **this_cache)
466 {
467 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
468 this_cache);
469
470 return cache->base;
471 }
472
473 static const struct frame_base iq2000_frame_base = {
474 &iq2000_frame_unwind,
475 iq2000_frame_base_address,
476 iq2000_frame_base_address,
477 iq2000_frame_base_address
478 };
479
480 static const unsigned char *
481 iq2000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
482 int *lenptr)
483 {
484 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
485 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
486
487 if ((*pcptr & 3) != 0)
488 error ("breakpoint_from_pc: invalid breakpoint address 0x%lx",
489 (long) *pcptr);
490
491 *lenptr = 4;
492 return (gdbarch_byte_order (gdbarch)
493 == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
494 }
495
496 /* Target function return value methods: */
497
498 /* Function: store_return_value
499 Copy the function return value from VALBUF into the
500 proper location for a function return. */
501
502 static void
503 iq2000_store_return_value (struct type *type, struct regcache *regcache,
504 const void *valbuf)
505 {
506 int len = TYPE_LENGTH (type);
507 int regno = E_FN_RETURN_REGNUM;
508
509 while (len > 0)
510 {
511 char buf[4];
512 int size = len % 4 ?: 4;
513
514 memset (buf, 0, 4);
515 memcpy (buf + 4 - size, valbuf, size);
516 regcache_raw_write (regcache, regno++, buf);
517 len -= size;
518 valbuf = ((char *) valbuf) + size;
519 }
520 }
521
522 /* Function: use_struct_convention
523 Returns non-zero if the given struct type will be returned using
524 a special convention, rather than the normal function return method. */
525
526 static int
527 iq2000_use_struct_convention (struct type *type)
528 {
529 return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
530 || (TYPE_CODE (type) == TYPE_CODE_UNION))
531 && TYPE_LENGTH (type) > 8;
532 }
533
534 /* Function: extract_return_value
535 Copy the function's return value into VALBUF.
536 This function is called only in the context of "target function calls",
537 ie. when the debugger forces a function to be called in the child, and
538 when the debugger forces a function to return prematurely via the
539 "return" command. */
540
541 static void
542 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
543 void *valbuf)
544 {
545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
546 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
547
548 /* If the function's return value is 8 bytes or less, it is
549 returned in a register, and if larger than 8 bytes, it is
550 returned in a stack location which is pointed to by the same
551 register. */
552 int len = TYPE_LENGTH (type);
553
554 if (len <= (2 * 4))
555 {
556 int regno = E_FN_RETURN_REGNUM;
557
558 /* Return values of <= 8 bytes are returned in
559 FN_RETURN_REGNUM. */
560 while (len > 0)
561 {
562 ULONGEST tmp;
563 int size = len % 4 ?: 4;
564
565 /* By using store_unsigned_integer we avoid having to
566 do anything special for small big-endian values. */
567 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
568 store_unsigned_integer (valbuf, size, byte_order, tmp);
569 len -= size;
570 valbuf = ((char *) valbuf) + size;
571 }
572 }
573 else
574 {
575 /* Return values > 8 bytes are returned in memory,
576 pointed to by FN_RETURN_REGNUM. */
577 ULONGEST return_buffer;
578 regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
579 &return_buffer);
580 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
581 }
582 }
583
584 static enum return_value_convention
585 iq2000_return_value (struct gdbarch *gdbarch, struct type *func_type,
586 struct type *type, struct regcache *regcache,
587 gdb_byte *readbuf, const gdb_byte *writebuf)
588 {
589 if (iq2000_use_struct_convention (type))
590 return RETURN_VALUE_STRUCT_CONVENTION;
591 if (writebuf)
592 iq2000_store_return_value (type, regcache, writebuf);
593 else if (readbuf)
594 iq2000_extract_return_value (type, regcache, readbuf);
595 return RETURN_VALUE_REGISTER_CONVENTION;
596 }
597
598 /* Function: register_virtual_type
599 Returns the default type for register N. */
600
601 static struct type *
602 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
603 {
604 return builtin_type (gdbarch)->builtin_int32;
605 }
606
607 static CORE_ADDR
608 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
609 {
610 /* This is the same frame alignment used by gcc. */
611 return ((sp + 7) & ~7);
612 }
613
614 /* Convenience function to check 8-byte types for being a scalar type
615 or a struct with only one long long or double member. */
616 static int
617 iq2000_pass_8bytetype_by_address (struct type *type)
618 {
619 struct type *ftype;
620
621 /* Skip typedefs. */
622 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
623 type = TYPE_TARGET_TYPE (type);
624 /* Non-struct and non-union types are always passed by value. */
625 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
626 && TYPE_CODE (type) != TYPE_CODE_UNION)
627 return 0;
628 /* Structs with more than 1 field are always passed by address. */
629 if (TYPE_NFIELDS (type) != 1)
630 return 1;
631 /* Get field type. */
632 ftype = (TYPE_FIELDS (type))[0].type;
633 /* The field type must have size 8, otherwise pass by address. */
634 if (TYPE_LENGTH (ftype) != 8)
635 return 1;
636 /* Skip typedefs of field type. */
637 while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
638 ftype = TYPE_TARGET_TYPE (ftype);
639 /* If field is int or float, pass by value. */
640 if (TYPE_CODE (ftype) == TYPE_CODE_FLT
641 || TYPE_CODE (ftype) == TYPE_CODE_INT)
642 return 0;
643 /* Everything else, pass by address. */
644 return 1;
645 }
646
647 static CORE_ADDR
648 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
649 struct regcache *regcache, CORE_ADDR bp_addr,
650 int nargs, struct value **args, CORE_ADDR sp,
651 int struct_return, CORE_ADDR struct_addr)
652 {
653 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
654 const bfd_byte *val;
655 bfd_byte buf[4];
656 struct type *type;
657 int i, argreg, typelen, slacklen;
658 int stackspace = 0;
659 /* Used to copy struct arguments into the stack. */
660 CORE_ADDR struct_ptr;
661
662 /* First determine how much stack space we will need. */
663 for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
664 {
665 type = value_type (args[i]);
666 typelen = TYPE_LENGTH (type);
667 if (typelen <= 4)
668 {
669 /* Scalars of up to 4 bytes,
670 structs of up to 4 bytes, and
671 pointers. */
672 if (argreg <= E_LAST_ARGREG)
673 argreg++;
674 else
675 stackspace += 4;
676 }
677 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
678 {
679 /* long long,
680 double, and possibly
681 structs with a single field of long long or double. */
682 if (argreg <= E_LAST_ARGREG - 1)
683 {
684 /* 8-byte arg goes into a register pair
685 (must start with an even-numbered reg). */
686 if (((argreg - E_1ST_ARGREG) % 2) != 0)
687 argreg ++;
688 argreg += 2;
689 }
690 else
691 {
692 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
693 /* 8-byte arg goes on stack, must be 8-byte aligned. */
694 stackspace = ((stackspace + 7) & ~7);
695 stackspace += 8;
696 }
697 }
698 else
699 {
700 /* Structs are passed as pointer to a copy of the struct.
701 So we need room on the stack for a copy of the struct
702 plus for the argument pointer. */
703 if (argreg <= E_LAST_ARGREG)
704 argreg++;
705 else
706 stackspace += 4;
707 /* Care for 8-byte alignment of structs saved on stack. */
708 stackspace += ((typelen + 7) & ~7);
709 }
710 }
711
712 /* Now copy params, in ascending order, into their assigned location
713 (either in a register or on the stack). */
714
715 sp -= (sp % 8); /* align */
716 struct_ptr = sp;
717 sp -= stackspace;
718 sp -= (sp % 8); /* align again */
719 stackspace = 0;
720
721 argreg = E_1ST_ARGREG;
722 if (struct_return)
723 {
724 /* A function that returns a struct will consume one argreg to do so.
725 */
726 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
727 }
728
729 for (i = 0; i < nargs; i++)
730 {
731 type = value_type (args[i]);
732 typelen = TYPE_LENGTH (type);
733 val = value_contents (args[i]);
734 if (typelen <= 4)
735 {
736 /* Char, short, int, float, pointer, and structs <= four bytes. */
737 slacklen = (4 - (typelen % 4)) % 4;
738 memset (buf, 0, sizeof (buf));
739 memcpy (buf + slacklen, val, typelen);
740 if (argreg <= E_LAST_ARGREG)
741 {
742 /* Passed in a register. */
743 regcache_raw_write (regcache, argreg++, buf);
744 }
745 else
746 {
747 /* Passed on the stack. */
748 write_memory (sp + stackspace, buf, 4);
749 stackspace += 4;
750 }
751 }
752 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
753 {
754 /* (long long), (double), or struct consisting of
755 a single (long long) or (double). */
756 if (argreg <= E_LAST_ARGREG - 1)
757 {
758 /* 8-byte arg goes into a register pair
759 (must start with an even-numbered reg). */
760 if (((argreg - E_1ST_ARGREG) % 2) != 0)
761 argreg++;
762 regcache_raw_write (regcache, argreg++, val);
763 regcache_raw_write (regcache, argreg++, val + 4);
764 }
765 else
766 {
767 /* 8-byte arg goes on stack, must be 8-byte aligned. */
768 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
769 stackspace = ((stackspace + 7) & ~7);
770 write_memory (sp + stackspace, val, typelen);
771 stackspace += 8;
772 }
773 }
774 else
775 {
776 /* Store struct beginning at the upper end of the previously
777 computed stack space. Then store the address of the struct
778 using the usual rules for a 4 byte value. */
779 struct_ptr -= ((typelen + 7) & ~7);
780 write_memory (struct_ptr, val, typelen);
781 if (argreg <= E_LAST_ARGREG)
782 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
783 else
784 {
785 store_unsigned_integer (buf, 4, byte_order, struct_ptr);
786 write_memory (sp + stackspace, buf, 4);
787 stackspace += 4;
788 }
789 }
790 }
791
792 /* Store return address. */
793 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
794
795 /* Update stack pointer. */
796 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
797
798 /* And that should do it. Return the new stack pointer. */
799 return sp;
800 }
801
802 /* Function: gdbarch_init
803 Initializer function for the iq2000 gdbarch vector.
804 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
805
806 static struct gdbarch *
807 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
808 {
809 struct gdbarch *gdbarch;
810
811 /* Look up list for candidates - only one. */
812 arches = gdbarch_list_lookup_by_info (arches, &info);
813 if (arches != NULL)
814 return arches->gdbarch;
815
816 gdbarch = gdbarch_alloc (&info, NULL);
817
818 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
819 set_gdbarch_num_pseudo_regs (gdbarch, 0);
820 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
821 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
822 set_gdbarch_register_name (gdbarch, iq2000_register_name);
823 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
824 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
825 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
826 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
827 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
828 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
829 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
830 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
831 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
832 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
833 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
834 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
835 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
836 set_gdbarch_return_value (gdbarch, iq2000_return_value);
837 set_gdbarch_breakpoint_from_pc (gdbarch, iq2000_breakpoint_from_pc);
838 set_gdbarch_frame_args_skip (gdbarch, 0);
839 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
840 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
841 set_gdbarch_print_insn (gdbarch, print_insn_iq2000);
842 set_gdbarch_register_type (gdbarch, iq2000_register_type);
843 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
844 set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
845 set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
846 set_gdbarch_dummy_id (gdbarch, iq2000_dummy_id);
847 frame_base_set_default (gdbarch, &iq2000_frame_base);
848 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
849
850 gdbarch_init_osabi (info, gdbarch);
851
852 dwarf2_append_unwinders (gdbarch);
853 frame_unwind_append_unwinder (gdbarch, &iq2000_frame_unwind);
854
855 return gdbarch;
856 }
857
858 /* Function: _initialize_iq2000_tdep
859 Initializer function for the iq2000 module.
860 Called by gdb at start-up. */
861
862 /* Provide a prototype to silence -Wmissing-prototypes. */
863 extern initialize_file_ftype _initialize_iq2000_tdep;
864
865 void
866 _initialize_iq2000_tdep (void)
867 {
868 register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);
869 }
This page took 0.048148 seconds and 5 git commands to generate.