* configure.in (hppa*-*-*): Also configure and build stabs-only
[deliverable/binutils-gdb.git] / gdb / irix5-nat.c
1 /* Native support for the SGI Iris running IRIX version 5, for GDB.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
4 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
5 Implemented for Irix 4.x by Garrett A. Wollman.
6 Modified for Irix 5.x by Ian Lance Taylor.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28
29 #include <sys/time.h>
30 #include <sys/procfs.h>
31 #include <setjmp.h> /* For JB_XXX. */
32
33 /* Size of elements in jmpbuf */
34
35 #define JB_ELEMENT_SIZE 4
36
37 /*
38 * See the comment in m68k-tdep.c regarding the utility of these functions.
39 *
40 * These definitions are from the MIPS SVR4 ABI, so they may work for
41 * any MIPS SVR4 target.
42 */
43
44 void
45 supply_gregset (gregsetp)
46 gregset_t *gregsetp;
47 {
48 register int regi;
49 register greg_t *regp = &(*gregsetp)[0];
50
51 for(regi = 0; regi <= CTX_RA; regi++)
52 supply_register (regi, (char *)(regp + regi));
53
54 supply_register (PC_REGNUM, (char *)(regp + CTX_EPC));
55 supply_register (HI_REGNUM, (char *)(regp + CTX_MDHI));
56 supply_register (LO_REGNUM, (char *)(regp + CTX_MDLO));
57 supply_register (CAUSE_REGNUM, (char *)(regp + CTX_CAUSE));
58 }
59
60 void
61 fill_gregset (gregsetp, regno)
62 gregset_t *gregsetp;
63 int regno;
64 {
65 int regi;
66 register greg_t *regp = &(*gregsetp)[0];
67
68 for (regi = 0; regi <= CTX_RA; regi++)
69 if ((regno == -1) || (regno == regi))
70 *(regp + regi) = *(greg_t *) &registers[REGISTER_BYTE (regi)];
71
72 if ((regno == -1) || (regno == PC_REGNUM))
73 *(regp + CTX_EPC) = *(greg_t *) &registers[REGISTER_BYTE (PC_REGNUM)];
74
75 if ((regno == -1) || (regno == CAUSE_REGNUM))
76 *(regp + CTX_CAUSE) = *(greg_t *) &registers[REGISTER_BYTE (PS_REGNUM)];
77
78 if ((regno == -1) || (regno == HI_REGNUM))
79 *(regp + CTX_MDHI) = *(greg_t *) &registers[REGISTER_BYTE (HI_REGNUM)];
80
81 if ((regno == -1) || (regno == LO_REGNUM))
82 *(regp + CTX_MDLO) = *(greg_t *) &registers[REGISTER_BYTE (LO_REGNUM)];
83 }
84
85 /*
86 * Now we do the same thing for floating-point registers.
87 * We don't bother to condition on FP0_REGNUM since any
88 * reasonable MIPS configuration has an R3010 in it.
89 *
90 * Again, see the comments in m68k-tdep.c.
91 */
92
93 void
94 supply_fpregset (fpregsetp)
95 fpregset_t *fpregsetp;
96 {
97 register int regi;
98
99 for (regi = 0; regi < 32; regi++)
100 supply_register (FP0_REGNUM + regi,
101 (char *)&fpregsetp->fp_r.fp_regs[regi]);
102
103 supply_register (FCRCS_REGNUM, (char *)&fpregsetp->fp_csr);
104
105 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
106 }
107
108 void
109 fill_fpregset (fpregsetp, regno)
110 fpregset_t *fpregsetp;
111 int regno;
112 {
113 int regi;
114 char *from, *to;
115
116 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
117 {
118 if ((regno == -1) || (regno == regi))
119 {
120 from = (char *) &registers[REGISTER_BYTE (regi)];
121 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
122 memcpy(to, from, REGISTER_RAW_SIZE (regi));
123 }
124 }
125
126 if ((regno == -1) || (regno == FCRCS_REGNUM))
127 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE(FCRCS_REGNUM)];
128 }
129
130
131 /* Figure out where the longjmp will land.
132 We expect the first arg to be a pointer to the jmp_buf structure from which
133 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
134 This routine returns true on success. */
135
136 int
137 get_longjmp_target (pc)
138 CORE_ADDR *pc;
139 {
140 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
141 CORE_ADDR jb_addr;
142
143 jb_addr = read_register (A0_REGNUM);
144
145 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
146 TARGET_PTR_BIT / TARGET_CHAR_BIT))
147 return 0;
148
149 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
150
151 return 1;
152 }
153
154 void
155 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
156 char *core_reg_sect;
157 unsigned core_reg_size;
158 int which; /* Unused */
159 unsigned int reg_addr; /* Unused */
160 {
161 if (core_reg_size != REGISTER_BYTES)
162 {
163 warning ("wrong size gregset struct in core file");
164 return;
165 }
166
167 memcpy ((char *)registers, core_reg_sect, core_reg_size);
168 }
169 \f
170 /* Irix 5 uses what appears to be a unique form of shared library
171 support. This is a copy of solib.c modified for Irix 5. */
172
173 #include <sys/types.h>
174 #include <signal.h>
175 #include <string.h>
176 #include <sys/param.h>
177 #include <fcntl.h>
178
179 /* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
180 with our versions of those files included by tm-mips.h. Prevent
181 <obj.h> from including them with some appropriate defines. */
182 #define __SYM_H__
183 #define __SYMCONST_H__
184 #include <obj.h>
185
186 #include "symtab.h"
187 #include "bfd.h"
188 #include "symfile.h"
189 #include "objfiles.h"
190 #include "command.h"
191 #include "frame.h"
192 #include "regex.h"
193 #include "inferior.h"
194 #include "language.h"
195
196 /* We need to set a breakpoint at a point when we know that the
197 mapping of shared libraries is complete. dbx simply breaks at main
198 (or, for FORTRAN, MAIN__), so we do the same. We can not break at
199 the very beginning of main, because the startup code will jump into
200 main after the GP initialization instructions. SOLIB_BKPT_OFFSET
201 is used to skip those instructions. */
202
203 #define SOLIB_BKPT_OFFSET 12
204
205 static char *bkpt_names[] = {
206 "main",
207 "MAIN__",
208 NULL
209 };
210
211 /* The symbol which starts off the list of shared libraries. */
212 #define DEBUG_BASE "__rld_obj_head"
213
214 /* How to get the loaded address of a shared library. */
215 #define LM_ADDR(so) ((so)->lm.o_base_address)
216
217 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
218
219 extern CORE_ADDR sigtramp_address, sigtramp_end;
220
221 struct so_list {
222 struct so_list *next; /* next structure in linked list */
223 struct obj_list ll;
224 struct obj lm; /* copy of link map from inferior */
225 struct obj_list *lladdr; /* addr in inferior lm was read from */
226 CORE_ADDR lmend; /* upper addr bound of mapped object */
227 char symbols_loaded; /* flag: symbols read in yet? */
228 char from_tty; /* flag: print msgs? */
229 struct objfile *objfile; /* objfile for loaded lib */
230 struct section_table *sections;
231 struct section_table *sections_end;
232 struct section_table *textsection;
233 bfd *abfd;
234 };
235
236 static struct so_list *so_list_head; /* List of known shared objects */
237 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
238 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
239
240 /* Local function prototypes */
241
242 static void
243 sharedlibrary_command PARAMS ((char *, int));
244
245 static int
246 enable_break PARAMS ((void));
247
248 static int
249 disable_break PARAMS ((void));
250
251 static void
252 info_sharedlibrary_command PARAMS ((char *, int));
253
254 static int
255 symbol_add_stub PARAMS ((char *));
256
257 static struct so_list *
258 find_solib PARAMS ((struct so_list *));
259
260 static struct obj_list *
261 first_link_map_member PARAMS ((void));
262
263 static CORE_ADDR
264 locate_base PARAMS ((void));
265
266 static void
267 solib_map_sections PARAMS ((struct so_list *));
268
269 /*
270
271 LOCAL FUNCTION
272
273 solib_map_sections -- open bfd and build sections for shared lib
274
275 SYNOPSIS
276
277 static void solib_map_sections (struct so_list *so)
278
279 DESCRIPTION
280
281 Given a pointer to one of the shared objects in our list
282 of mapped objects, use the recorded name to open a bfd
283 descriptor for the object, build a section table, and then
284 relocate all the section addresses by the base address at
285 which the shared object was mapped.
286
287 FIXMES
288
289 In most (all?) cases the shared object file name recorded in the
290 dynamic linkage tables will be a fully qualified pathname. For
291 cases where it isn't, do we really mimic the systems search
292 mechanism correctly in the below code (particularly the tilde
293 expansion stuff?).
294 */
295
296 static void
297 solib_map_sections (so)
298 struct so_list *so;
299 {
300 char *filename;
301 char *scratch_pathname;
302 int scratch_chan;
303 struct section_table *p;
304 struct cleanup *old_chain;
305 bfd *abfd;
306
307 filename = tilde_expand (so -> lm.o_path);
308 old_chain = make_cleanup (free, filename);
309
310 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
311 &scratch_pathname);
312 if (scratch_chan < 0)
313 {
314 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
315 O_RDONLY, 0, &scratch_pathname);
316 }
317 if (scratch_chan < 0)
318 {
319 perror_with_name (filename);
320 }
321 /* Leave scratch_pathname allocated. abfd->name will point to it. */
322
323 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
324 if (!abfd)
325 {
326 close (scratch_chan);
327 error ("Could not open `%s' as an executable file: %s",
328 scratch_pathname, bfd_errmsg (bfd_error));
329 }
330 /* Leave bfd open, core_xfer_memory and "info files" need it. */
331 so -> abfd = abfd;
332 abfd -> cacheable = true;
333
334 if (!bfd_check_format (abfd, bfd_object))
335 {
336 error ("\"%s\": not in executable format: %s.",
337 scratch_pathname, bfd_errmsg (bfd_error));
338 }
339 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
340 {
341 error ("Can't find the file sections in `%s': %s",
342 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_error));
343 }
344
345 for (p = so -> sections; p < so -> sections_end; p++)
346 {
347 /* Relocate the section binding addresses as recorded in the shared
348 object's file by the base address to which the object was actually
349 mapped. */
350 p -> addr += (CORE_ADDR) LM_ADDR (so);
351 p -> endaddr += (CORE_ADDR) LM_ADDR (so);
352 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
353 if (STREQ (p -> sec_ptr -> name, ".text"))
354 {
355 so -> textsection = p;
356 }
357 }
358
359 /* Free the file names, close the file now. */
360 do_cleanups (old_chain);
361 }
362
363 /*
364
365 LOCAL FUNCTION
366
367 locate_base -- locate the base address of dynamic linker structs
368
369 SYNOPSIS
370
371 CORE_ADDR locate_base (void)
372
373 DESCRIPTION
374
375 For both the SunOS and SVR4 shared library implementations, if the
376 inferior executable has been linked dynamically, there is a single
377 address somewhere in the inferior's data space which is the key to
378 locating all of the dynamic linker's runtime structures. This
379 address is the value of the symbol defined by the macro DEBUG_BASE.
380 The job of this function is to find and return that address, or to
381 return 0 if there is no such address (the executable is statically
382 linked for example).
383
384 For SunOS, the job is almost trivial, since the dynamic linker and
385 all of it's structures are statically linked to the executable at
386 link time. Thus the symbol for the address we are looking for has
387 already been added to the minimal symbol table for the executable's
388 objfile at the time the symbol file's symbols were read, and all we
389 have to do is look it up there. Note that we explicitly do NOT want
390 to find the copies in the shared library.
391
392 The SVR4 version is much more complicated because the dynamic linker
393 and it's structures are located in the shared C library, which gets
394 run as the executable's "interpreter" by the kernel. We have to go
395 to a lot more work to discover the address of DEBUG_BASE. Because
396 of this complexity, we cache the value we find and return that value
397 on subsequent invocations. Note there is no copy in the executable
398 symbol tables.
399
400 Irix 5 is basically like SunOS.
401
402 Note that we can assume nothing about the process state at the time
403 we need to find this address. We may be stopped on the first instruc-
404 tion of the interpreter (C shared library), the first instruction of
405 the executable itself, or somewhere else entirely (if we attached
406 to the process for example).
407
408 */
409
410 static CORE_ADDR
411 locate_base ()
412 {
413 struct minimal_symbol *msymbol;
414 CORE_ADDR address = 0;
415
416 msymbol = lookup_minimal_symbol (DEBUG_BASE, symfile_objfile);
417 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
418 {
419 address = SYMBOL_VALUE_ADDRESS (msymbol);
420 }
421 return (address);
422 }
423
424 /*
425
426 LOCAL FUNCTION
427
428 first_link_map_member -- locate first member in dynamic linker's map
429
430 SYNOPSIS
431
432 static struct link_map *first_link_map_member (void)
433
434 DESCRIPTION
435
436 Read in a copy of the first member in the inferior's dynamic
437 link map from the inferior's dynamic linker structures, and return
438 a pointer to the copy in our address space.
439 */
440
441 static struct obj_list *
442 first_link_map_member ()
443 {
444 struct obj_list *lm;
445 struct obj_list s;
446
447 read_memory (debug_base, (char *) &lm, sizeof (struct obj_list *));
448
449 if (lm == NULL)
450 return NULL;
451
452 /* The first entry in the list is the object file we are debugging,
453 so skip it. */
454 read_memory ((CORE_ADDR) lm, (char *) &s, sizeof (struct obj_list));
455
456 return s.next;
457 }
458
459 /*
460
461 LOCAL FUNCTION
462
463 find_solib -- step through list of shared objects
464
465 SYNOPSIS
466
467 struct so_list *find_solib (struct so_list *so_list_ptr)
468
469 DESCRIPTION
470
471 This module contains the routine which finds the names of any
472 loaded "images" in the current process. The argument in must be
473 NULL on the first call, and then the returned value must be passed
474 in on subsequent calls. This provides the capability to "step" down
475 the list of loaded objects. On the last object, a NULL value is
476 returned.
477 */
478
479 static struct so_list *
480 find_solib (so_list_ptr)
481 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
482 {
483 struct so_list *so_list_next = NULL;
484 struct obj_list *lm = NULL;
485 struct so_list *new;
486
487 if (so_list_ptr == NULL)
488 {
489 /* We are setting up for a new scan through the loaded images. */
490 if ((so_list_next = so_list_head) == NULL)
491 {
492 /* We have not already read in the dynamic linking structures
493 from the inferior, lookup the address of the base structure. */
494 debug_base = locate_base ();
495 if (debug_base != 0)
496 {
497 /* Read the base structure in and find the address of the first
498 link map list member. */
499 lm = first_link_map_member ();
500 }
501 }
502 }
503 else
504 {
505 /* We have been called before, and are in the process of walking
506 the shared library list. Advance to the next shared object. */
507 if ((lm = so_list_ptr->ll.next) == NULL)
508 {
509 /* We have hit the end of the list, so check to see if any were
510 added, but be quiet if we can't read from the target any more. */
511 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lladdr,
512 (char *) &(so_list_ptr -> ll),
513 sizeof (struct obj_list));
514 if (status == 0)
515 {
516 lm = so_list_ptr->ll.next;
517 }
518 else
519 {
520 lm = NULL;
521 }
522 }
523 so_list_next = so_list_ptr -> next;
524 }
525 if ((so_list_next == NULL) && (lm != NULL))
526 {
527 /* Get next link map structure from inferior image and build a local
528 abbreviated load_map structure */
529 new = (struct so_list *) xmalloc (sizeof (struct so_list));
530 memset ((char *) new, 0, sizeof (struct so_list));
531 new -> lladdr = lm;
532 /* Add the new node as the next node in the list, or as the root
533 node if this is the first one. */
534 if (so_list_ptr != NULL)
535 {
536 so_list_ptr -> next = new;
537 }
538 else
539 {
540 so_list_head = new;
541 }
542 so_list_next = new;
543 read_memory ((CORE_ADDR) lm, (char *) &(new -> ll),
544 sizeof (struct obj_list));
545 read_memory ((CORE_ADDR) new->ll.data, (char *) &(new -> lm),
546 sizeof (struct obj));
547 solib_map_sections (new);
548 }
549 return (so_list_next);
550 }
551
552 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
553
554 static int
555 symbol_add_stub (arg)
556 char *arg;
557 {
558 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
559
560 so -> objfile = symbol_file_add (so -> lm.o_path, so -> from_tty,
561 (unsigned int) so -> textsection -> addr,
562 0, 0, 0);
563 return (1);
564 }
565
566 /*
567
568 GLOBAL FUNCTION
569
570 solib_add -- add a shared library file to the symtab and section list
571
572 SYNOPSIS
573
574 void solib_add (char *arg_string, int from_tty,
575 struct target_ops *target)
576
577 DESCRIPTION
578
579 */
580
581 void
582 solib_add (arg_string, from_tty, target)
583 char *arg_string;
584 int from_tty;
585 struct target_ops *target;
586 {
587 register struct so_list *so = NULL; /* link map state variable */
588
589 /* Last shared library that we read. */
590 struct so_list *so_last = NULL;
591
592 char *re_err;
593 int count;
594 int old;
595
596 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
597 {
598 error ("Invalid regexp: %s", re_err);
599 }
600
601 /* Getting new symbols may change our opinion about what is
602 frameless. */
603 reinit_frame_cache ();
604 /* Not to mention where _sigtramp is. */
605 sigtramp_address = 0;
606
607 while ((so = find_solib (so)) != NULL)
608 {
609 if (so -> lm.o_path[0] && re_exec (so -> lm.o_path))
610 {
611 so -> from_tty = from_tty;
612 if (so -> symbols_loaded)
613 {
614 if (from_tty)
615 {
616 printf_unfiltered ("Symbols already loaded for %s\n", so -> lm.o_path);
617 }
618 }
619 else if (catch_errors
620 (symbol_add_stub, (char *) so,
621 "Error while reading shared library symbols:\n",
622 RETURN_MASK_ALL))
623 {
624 so_last = so;
625 so -> symbols_loaded = 1;
626 }
627 }
628 }
629
630 /* Now add the shared library sections to the section table of the
631 specified target, if any. */
632 if (target)
633 {
634 /* Count how many new section_table entries there are. */
635 so = NULL;
636 count = 0;
637 while ((so = find_solib (so)) != NULL)
638 {
639 if (so -> lm.o_path[0])
640 {
641 count += so -> sections_end - so -> sections;
642 }
643 }
644
645 if (count)
646 {
647 /* Reallocate the target's section table including the new size. */
648 if (target -> to_sections)
649 {
650 old = target -> to_sections_end - target -> to_sections;
651 target -> to_sections = (struct section_table *)
652 xrealloc ((char *)target -> to_sections,
653 (sizeof (struct section_table)) * (count + old));
654 }
655 else
656 {
657 old = 0;
658 target -> to_sections = (struct section_table *)
659 xmalloc ((sizeof (struct section_table)) * count);
660 }
661 target -> to_sections_end = target -> to_sections + (count + old);
662
663 /* Add these section table entries to the target's table. */
664 while ((so = find_solib (so)) != NULL)
665 {
666 if (so -> lm.o_path[0])
667 {
668 count = so -> sections_end - so -> sections;
669 memcpy ((char *) (target -> to_sections + old),
670 so -> sections,
671 (sizeof (struct section_table)) * count);
672 old += count;
673 }
674 }
675 }
676 }
677 }
678
679 /*
680
681 LOCAL FUNCTION
682
683 info_sharedlibrary_command -- code for "info sharedlibrary"
684
685 SYNOPSIS
686
687 static void info_sharedlibrary_command ()
688
689 DESCRIPTION
690
691 Walk through the shared library list and print information
692 about each attached library.
693 */
694
695 static void
696 info_sharedlibrary_command (ignore, from_tty)
697 char *ignore;
698 int from_tty;
699 {
700 register struct so_list *so = NULL; /* link map state variable */
701 int header_done = 0;
702
703 if (exec_bfd == NULL)
704 {
705 printf_unfiltered ("No exec file.\n");
706 return;
707 }
708 while ((so = find_solib (so)) != NULL)
709 {
710 if (so -> lm.o_path[0])
711 {
712 if (!header_done)
713 {
714 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
715 "Shared Object Library");
716 header_done++;
717 }
718 printf_unfiltered ("%-12s",
719 local_hex_string_custom ((unsigned long) LM_ADDR (so),
720 "08l"));
721 printf_unfiltered ("%-12s",
722 local_hex_string_custom ((unsigned long) so -> lmend,
723 "08l"));
724 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
725 printf_unfiltered ("%s\n", so -> lm.o_path);
726 }
727 }
728 if (so_list_head == NULL)
729 {
730 printf_unfiltered ("No shared libraries loaded at this time.\n");
731 }
732 }
733
734 /*
735
736 GLOBAL FUNCTION
737
738 solib_address -- check to see if an address is in a shared lib
739
740 SYNOPSIS
741
742 int solib_address (CORE_ADDR address)
743
744 DESCRIPTION
745
746 Provides a hook for other gdb routines to discover whether or
747 not a particular address is within the mapped address space of
748 a shared library. Any address between the base mapping address
749 and the first address beyond the end of the last mapping, is
750 considered to be within the shared library address space, for
751 our purposes.
752
753 For example, this routine is called at one point to disable
754 breakpoints which are in shared libraries that are not currently
755 mapped in.
756 */
757
758 int
759 solib_address (address)
760 CORE_ADDR address;
761 {
762 register struct so_list *so = 0; /* link map state variable */
763
764 while ((so = find_solib (so)) != NULL)
765 {
766 if (so -> lm.o_path[0])
767 {
768 if ((address >= (CORE_ADDR) so->lm.o_base_address) &&
769 (address < (CORE_ADDR) so -> lmend))
770 {
771 return (1);
772 }
773 }
774 }
775 return (0);
776 }
777
778 /* Called by free_all_symtabs */
779
780 void
781 clear_solib()
782 {
783 struct so_list *next;
784 char *bfd_filename;
785
786 while (so_list_head)
787 {
788 if (so_list_head -> sections)
789 {
790 free ((PTR)so_list_head -> sections);
791 }
792 if (so_list_head -> abfd)
793 {
794 bfd_filename = bfd_get_filename (so_list_head -> abfd);
795 bfd_close (so_list_head -> abfd);
796 }
797 else
798 /* This happens for the executable on SVR4. */
799 bfd_filename = NULL;
800
801 next = so_list_head -> next;
802 if (bfd_filename)
803 free ((PTR)bfd_filename);
804 free ((PTR)so_list_head);
805 so_list_head = next;
806 }
807 debug_base = 0;
808 }
809
810 /*
811
812 LOCAL FUNCTION
813
814 disable_break -- remove the "mapping changed" breakpoint
815
816 SYNOPSIS
817
818 static int disable_break ()
819
820 DESCRIPTION
821
822 Removes the breakpoint that gets hit when the dynamic linker
823 completes a mapping change.
824
825 */
826
827 static int
828 disable_break ()
829 {
830 int status = 1;
831
832
833 /* Note that breakpoint address and original contents are in our address
834 space, so we just need to write the original contents back. */
835
836 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
837 {
838 status = 0;
839 }
840
841 /* For the SVR4 version, we always know the breakpoint address. For the
842 SunOS version we don't know it until the above code is executed.
843 Grumble if we are stopped anywhere besides the breakpoint address. */
844
845 if (stop_pc != breakpoint_addr)
846 {
847 warning ("stopped at unknown breakpoint while handling shared libraries");
848 }
849
850 return (status);
851 }
852
853 /*
854
855 LOCAL FUNCTION
856
857 enable_break -- arrange for dynamic linker to hit breakpoint
858
859 SYNOPSIS
860
861 int enable_break (void)
862
863 DESCRIPTION
864
865 Both the SunOS and the SVR4 dynamic linkers have, as part of their
866 debugger interface, support for arranging for the inferior to hit
867 a breakpoint after mapping in the shared libraries. This function
868 enables that breakpoint.
869
870 For SunOS, there is a special flag location (in_debugger) which we
871 set to 1. When the dynamic linker sees this flag set, it will set
872 a breakpoint at a location known only to itself, after saving the
873 original contents of that place and the breakpoint address itself,
874 in it's own internal structures. When we resume the inferior, it
875 will eventually take a SIGTRAP when it runs into the breakpoint.
876 We handle this (in a different place) by restoring the contents of
877 the breakpointed location (which is only known after it stops),
878 chasing around to locate the shared libraries that have been
879 loaded, then resuming.
880
881 For SVR4, the debugger interface structure contains a member (r_brk)
882 which is statically initialized at the time the shared library is
883 built, to the offset of a function (_r_debug_state) which is guaran-
884 teed to be called once before mapping in a library, and again when
885 the mapping is complete. At the time we are examining this member,
886 it contains only the unrelocated offset of the function, so we have
887 to do our own relocation. Later, when the dynamic linker actually
888 runs, it relocates r_brk to be the actual address of _r_debug_state().
889
890 The debugger interface structure also contains an enumeration which
891 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
892 depending upon whether or not the library is being mapped or unmapped,
893 and then set to RT_CONSISTENT after the library is mapped/unmapped.
894
895 Irix 5, on the other hand, has no such features. Instead, we
896 set a breakpoint at main.
897 */
898
899 static int
900 enable_break ()
901 {
902 int success = 0;
903 struct minimal_symbol *msymbol;
904 char **bkpt_namep;
905 CORE_ADDR bkpt_addr;
906
907 /* Scan through the list of symbols, trying to look up the symbol and
908 set a breakpoint there. Terminate loop when we/if we succeed. */
909
910 breakpoint_addr = 0;
911 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
912 {
913 msymbol = lookup_minimal_symbol (*bkpt_namep, symfile_objfile);
914 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
915 {
916 bkpt_addr = SYMBOL_VALUE_ADDRESS (msymbol);
917 #ifdef SOLIB_BKPT_OFFSET
918 /* We only want to skip if bkpt_addr is currently pointing
919 at a GP setting instruction. */
920 {
921 char buf[4];
922
923 if (target_read_memory (bkpt_addr, buf, 4) == 0)
924 {
925 unsigned long insn;
926
927 insn = extract_unsigned_integer (buf, 4);
928 if ((insn & 0xffff0000) == 0x3c1c0000) /* lui $gp,n */
929 bkpt_addr += SOLIB_BKPT_OFFSET;
930 }
931 }
932 #endif
933 if (target_insert_breakpoint (bkpt_addr, shadow_contents) == 0)
934 {
935 breakpoint_addr = bkpt_addr;
936 success = 1;
937 break;
938 }
939 }
940 }
941
942 return (success);
943 }
944
945 /*
946
947 GLOBAL FUNCTION
948
949 solib_create_inferior_hook -- shared library startup support
950
951 SYNOPSIS
952
953 void solib_create_inferior_hook()
954
955 DESCRIPTION
956
957 When gdb starts up the inferior, it nurses it along (through the
958 shell) until it is ready to execute it's first instruction. At this
959 point, this function gets called via expansion of the macro
960 SOLIB_CREATE_INFERIOR_HOOK.
961
962 For SunOS executables, this first instruction is typically the
963 one at "_start", or a similar text label, regardless of whether
964 the executable is statically or dynamically linked. The runtime
965 startup code takes care of dynamically linking in any shared
966 libraries, once gdb allows the inferior to continue.
967
968 For SVR4 executables, this first instruction is either the first
969 instruction in the dynamic linker (for dynamically linked
970 executables) or the instruction at "start" for statically linked
971 executables. For dynamically linked executables, the system
972 first exec's /lib/libc.so.N, which contains the dynamic linker,
973 and starts it running. The dynamic linker maps in any needed
974 shared libraries, maps in the actual user executable, and then
975 jumps to "start" in the user executable.
976
977 For both SunOS shared libraries, and SVR4 shared libraries, we
978 can arrange to cooperate with the dynamic linker to discover the
979 names of shared libraries that are dynamically linked, and the
980 base addresses to which they are linked.
981
982 This function is responsible for discovering those names and
983 addresses, and saving sufficient information about them to allow
984 their symbols to be read at a later time.
985
986 FIXME
987
988 Between enable_break() and disable_break(), this code does not
989 properly handle hitting breakpoints which the user might have
990 set in the startup code or in the dynamic linker itself. Proper
991 handling will probably have to wait until the implementation is
992 changed to use the "breakpoint handler function" method.
993
994 Also, what if child has exit()ed? Must exit loop somehow.
995 */
996
997 void
998 solib_create_inferior_hook()
999 {
1000 if (!enable_break ())
1001 {
1002 warning ("shared library handler failed to enable breakpoint");
1003 return;
1004 }
1005
1006 /* Now run the target. It will eventually hit the breakpoint, at
1007 which point all of the libraries will have been mapped in and we
1008 can go groveling around in the dynamic linker structures to find
1009 out what we need to know about them. */
1010
1011 clear_proceed_status ();
1012 stop_soon_quietly = 1;
1013 stop_signal = 0;
1014 do
1015 {
1016 target_resume (-1, 0, stop_signal);
1017 wait_for_inferior ();
1018 }
1019 while (stop_signal != SIGTRAP);
1020 stop_soon_quietly = 0;
1021
1022 /* We are now either at the "mapping complete" breakpoint (or somewhere
1023 else, a condition we aren't prepared to deal with anyway), so adjust
1024 the PC as necessary after a breakpoint, disable the breakpoint, and
1025 add any shared libraries that were mapped in. */
1026
1027 if (DECR_PC_AFTER_BREAK)
1028 {
1029 stop_pc -= DECR_PC_AFTER_BREAK;
1030 write_register (PC_REGNUM, stop_pc);
1031 }
1032
1033 if (!disable_break ())
1034 {
1035 warning ("shared library handler failed to disable breakpoint");
1036 }
1037
1038 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1039 }
1040
1041 /*
1042
1043 LOCAL FUNCTION
1044
1045 sharedlibrary_command -- handle command to explicitly add library
1046
1047 SYNOPSIS
1048
1049 static void sharedlibrary_command (char *args, int from_tty)
1050
1051 DESCRIPTION
1052
1053 */
1054
1055 static void
1056 sharedlibrary_command (args, from_tty)
1057 char *args;
1058 int from_tty;
1059 {
1060 dont_repeat ();
1061 solib_add (args, from_tty, (struct target_ops *) 0);
1062 }
1063
1064 void
1065 _initialize_solib()
1066 {
1067
1068 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1069 "Load shared object library symbols for files matching REGEXP.");
1070 add_info ("sharedlibrary", info_sharedlibrary_command,
1071 "Status of loaded shared object libraries.");
1072 }
This page took 0.050853 seconds and 4 git commands to generate.