import gdb-1999-10-11 snapshot
[deliverable/binutils-gdb.git] / gdb / irix5-nat.c
1 /* Native support for the SGI Iris running IRIX version 5, for GDB.
2 Copyright 1988, 89, 90, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 Implemented for Irix 4.x by Garrett A. Wollman.
7 Modified for Irix 5.x by Ian Lance Taylor.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30
31 #include "gdb_string.h"
32 #include <sys/time.h>
33 #include <sys/procfs.h>
34 #include <setjmp.h> /* For JB_XXX. */
35
36 static void
37 fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
38
39 /* Size of elements in jmpbuf */
40
41 #define JB_ELEMENT_SIZE 4
42
43 /*
44 * See the comment in m68k-tdep.c regarding the utility of these functions.
45 *
46 * These definitions are from the MIPS SVR4 ABI, so they may work for
47 * any MIPS SVR4 target.
48 */
49
50 void
51 supply_gregset (gregsetp)
52 gregset_t *gregsetp;
53 {
54 register int regi;
55 register greg_t *regp = &(*gregsetp)[0];
56 int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
57 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
58 {0};
59
60 for (regi = 0; regi <= CTX_RA; regi++)
61 supply_register (regi, (char *) (regp + regi) + gregoff);
62
63 supply_register (PC_REGNUM, (char *) (regp + CTX_EPC) + gregoff);
64 supply_register (HI_REGNUM, (char *) (regp + CTX_MDHI) + gregoff);
65 supply_register (LO_REGNUM, (char *) (regp + CTX_MDLO) + gregoff);
66 supply_register (CAUSE_REGNUM, (char *) (regp + CTX_CAUSE) + gregoff);
67
68 /* Fill inaccessible registers with zero. */
69 supply_register (BADVADDR_REGNUM, zerobuf);
70 }
71
72 void
73 fill_gregset (gregsetp, regno)
74 gregset_t *gregsetp;
75 int regno;
76 {
77 int regi;
78 register greg_t *regp = &(*gregsetp)[0];
79
80 /* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
81 executable, we have to sign extend the registers to 64 bits before
82 filling in the gregset structure. */
83
84 for (regi = 0; regi <= CTX_RA; regi++)
85 if ((regno == -1) || (regno == regi))
86 *(regp + regi) =
87 extract_signed_integer (&registers[REGISTER_BYTE (regi)],
88 REGISTER_RAW_SIZE (regi));
89
90 if ((regno == -1) || (regno == PC_REGNUM))
91 *(regp + CTX_EPC) =
92 extract_signed_integer (&registers[REGISTER_BYTE (PC_REGNUM)],
93 REGISTER_RAW_SIZE (PC_REGNUM));
94
95 if ((regno == -1) || (regno == CAUSE_REGNUM))
96 *(regp + CTX_CAUSE) =
97 extract_signed_integer (&registers[REGISTER_BYTE (CAUSE_REGNUM)],
98 REGISTER_RAW_SIZE (CAUSE_REGNUM));
99
100 if ((regno == -1) || (regno == HI_REGNUM))
101 *(regp + CTX_MDHI) =
102 extract_signed_integer (&registers[REGISTER_BYTE (HI_REGNUM)],
103 REGISTER_RAW_SIZE (HI_REGNUM));
104
105 if ((regno == -1) || (regno == LO_REGNUM))
106 *(regp + CTX_MDLO) =
107 extract_signed_integer (&registers[REGISTER_BYTE (LO_REGNUM)],
108 REGISTER_RAW_SIZE (LO_REGNUM));
109 }
110
111 /*
112 * Now we do the same thing for floating-point registers.
113 * We don't bother to condition on FP0_REGNUM since any
114 * reasonable MIPS configuration has an R3010 in it.
115 *
116 * Again, see the comments in m68k-tdep.c.
117 */
118
119 void
120 supply_fpregset (fpregsetp)
121 fpregset_t *fpregsetp;
122 {
123 register int regi;
124 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
125 {0};
126
127 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
128
129 for (regi = 0; regi < 32; regi++)
130 supply_register (FP0_REGNUM + regi,
131 (char *) &fpregsetp->fp_r.fp_regs[regi]);
132
133 supply_register (FCRCS_REGNUM, (char *) &fpregsetp->fp_csr);
134
135 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
136 supply_register (FCRIR_REGNUM, zerobuf);
137 }
138
139 void
140 fill_fpregset (fpregsetp, regno)
141 fpregset_t *fpregsetp;
142 int regno;
143 {
144 int regi;
145 char *from, *to;
146
147 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
148
149 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
150 {
151 if ((regno == -1) || (regno == regi))
152 {
153 from = (char *) &registers[REGISTER_BYTE (regi)];
154 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
155 memcpy (to, from, REGISTER_RAW_SIZE (regi));
156 }
157 }
158
159 if ((regno == -1) || (regno == FCRCS_REGNUM))
160 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE (FCRCS_REGNUM)];
161 }
162
163
164 /* Figure out where the longjmp will land.
165 We expect the first arg to be a pointer to the jmp_buf structure from which
166 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
167 This routine returns true on success. */
168
169 int
170 get_longjmp_target (pc)
171 CORE_ADDR *pc;
172 {
173 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
174 CORE_ADDR jb_addr;
175
176 jb_addr = read_register (A0_REGNUM);
177
178 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
179 TARGET_PTR_BIT / TARGET_CHAR_BIT))
180 return 0;
181
182 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
183
184 return 1;
185 }
186
187 static void
188 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
189 char *core_reg_sect;
190 unsigned core_reg_size;
191 int which; /* Unused */
192 CORE_ADDR reg_addr; /* Unused */
193 {
194 if (core_reg_size == REGISTER_BYTES)
195 {
196 memcpy ((char *) registers, core_reg_sect, core_reg_size);
197 }
198 else if (MIPS_REGSIZE == 4 &&
199 core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
200 {
201 /* This is a core file from a N32 executable, 64 bits are saved
202 for all registers. */
203 char *srcp = core_reg_sect;
204 char *dstp = registers;
205 int regno;
206
207 for (regno = 0; regno < NUM_REGS; regno++)
208 {
209 if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
210 {
211 /* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
212 currently assumes that they are 32 bit. */
213 *dstp++ = *srcp++;
214 *dstp++ = *srcp++;
215 *dstp++ = *srcp++;
216 *dstp++ = *srcp++;
217 if (REGISTER_RAW_SIZE (regno) == 4)
218 {
219 /* copying 4 bytes from eight bytes?
220 I don't see how this can be right... */
221 srcp += 4;
222 }
223 else
224 {
225 /* copy all 8 bytes (sizeof(double)) */
226 *dstp++ = *srcp++;
227 *dstp++ = *srcp++;
228 *dstp++ = *srcp++;
229 *dstp++ = *srcp++;
230 }
231 }
232 else
233 {
234 srcp += 4;
235 *dstp++ = *srcp++;
236 *dstp++ = *srcp++;
237 *dstp++ = *srcp++;
238 *dstp++ = *srcp++;
239 }
240 }
241 }
242 else
243 {
244 warning ("wrong size gregset struct in core file");
245 return;
246 }
247
248 registers_fetched ();
249 }
250 \f
251 /* Irix 5 uses what appears to be a unique form of shared library
252 support. This is a copy of solib.c modified for Irix 5. */
253 /* FIXME: Most of this code could be merged with osfsolib.c and solib.c
254 by using next_link_map_member and xfer_link_map_member in solib.c. */
255
256 #include <sys/types.h>
257 #include <signal.h>
258 #include <sys/param.h>
259 #include <fcntl.h>
260
261 /* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
262 with our versions of those files included by tm-mips.h. Prevent
263 <obj.h> from including them with some appropriate defines. */
264 #define __SYM_H__
265 #define __SYMCONST_H__
266 #include <obj.h>
267 #ifdef HAVE_OBJLIST_H
268 #include <objlist.h>
269 #endif
270
271 #ifdef NEW_OBJ_INFO_MAGIC
272 #define HANDLE_NEW_OBJ_LIST
273 #endif
274
275 #include "symtab.h"
276 #include "bfd.h"
277 #include "symfile.h"
278 #include "objfiles.h"
279 #include "command.h"
280 #include "frame.h"
281 #include "gnu-regex.h"
282 #include "inferior.h"
283 #include "language.h"
284 #include "gdbcmd.h"
285
286 /* The symbol which starts off the list of shared libraries. */
287 #define DEBUG_BASE "__rld_obj_head"
288
289 /* Irix 6.x introduces a new variant of object lists.
290 To be able to debug O32 executables under Irix 6, we have to handle both
291 variants. */
292
293 typedef enum
294 {
295 OBJ_LIST_OLD, /* Pre Irix 6.x object list. */
296 OBJ_LIST_32, /* 32 Bit Elf32_Obj_Info. */
297 OBJ_LIST_64 /* 64 Bit Elf64_Obj_Info, FIXME not yet implemented. */
298 }
299 obj_list_variant;
300
301 /* Define our own link_map structure.
302 This will help to share code with osfsolib.c and solib.c. */
303
304 struct link_map
305 {
306 obj_list_variant l_variant; /* which variant of object list */
307 CORE_ADDR l_lladdr; /* addr in inferior list was read from */
308 CORE_ADDR l_next; /* address of next object list entry */
309 };
310
311 /* Irix 5 shared objects are pre-linked to particular addresses
312 although the dynamic linker may have to relocate them if the
313 address ranges of the libraries used by the main program clash.
314 The offset is the difference between the address where the object
315 is mapped and the binding address of the shared library. */
316 #define LM_OFFSET(so) ((so) -> offset)
317 /* Loaded address of shared library. */
318 #define LM_ADDR(so) ((so) -> lmstart)
319
320 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
321
322 struct so_list
323 {
324 struct so_list *next; /* next structure in linked list */
325 struct link_map lm;
326 CORE_ADDR offset; /* prelink to load address offset */
327 char *so_name; /* shared object lib name */
328 CORE_ADDR lmstart; /* lower addr bound of mapped object */
329 CORE_ADDR lmend; /* upper addr bound of mapped object */
330 char symbols_loaded; /* flag: symbols read in yet? */
331 char from_tty; /* flag: print msgs? */
332 struct objfile *objfile; /* objfile for loaded lib */
333 struct section_table *sections;
334 struct section_table *sections_end;
335 struct section_table *textsection;
336 bfd *abfd;
337 };
338
339 static struct so_list *so_list_head; /* List of known shared objects */
340 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
341 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
342
343 /* Local function prototypes */
344
345 static void
346 sharedlibrary_command PARAMS ((char *, int));
347
348 static int
349 enable_break PARAMS ((void));
350
351 static int
352 disable_break PARAMS ((void));
353
354 static void
355 info_sharedlibrary_command PARAMS ((char *, int));
356
357 static int
358 symbol_add_stub PARAMS ((char *));
359
360 static struct so_list *
361 find_solib PARAMS ((struct so_list *));
362
363 static struct link_map *
364 first_link_map_member PARAMS ((void));
365
366 static struct link_map *
367 next_link_map_member PARAMS ((struct so_list *));
368
369 static void
370 xfer_link_map_member PARAMS ((struct so_list *, struct link_map *));
371
372 static CORE_ADDR
373 locate_base PARAMS ((void));
374
375 static int
376 solib_map_sections PARAMS ((char *));
377
378 /*
379
380 LOCAL FUNCTION
381
382 solib_map_sections -- open bfd and build sections for shared lib
383
384 SYNOPSIS
385
386 static int solib_map_sections (struct so_list *so)
387
388 DESCRIPTION
389
390 Given a pointer to one of the shared objects in our list
391 of mapped objects, use the recorded name to open a bfd
392 descriptor for the object, build a section table, and then
393 relocate all the section addresses by the base address at
394 which the shared object was mapped.
395
396 FIXMES
397
398 In most (all?) cases the shared object file name recorded in the
399 dynamic linkage tables will be a fully qualified pathname. For
400 cases where it isn't, do we really mimic the systems search
401 mechanism correctly in the below code (particularly the tilde
402 expansion stuff?).
403 */
404
405 static int
406 solib_map_sections (arg)
407 char *arg;
408 {
409 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
410 char *filename;
411 char *scratch_pathname;
412 int scratch_chan;
413 struct section_table *p;
414 struct cleanup *old_chain;
415 bfd *abfd;
416
417 filename = tilde_expand (so->so_name);
418 old_chain = make_cleanup (free, filename);
419
420 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
421 &scratch_pathname);
422 if (scratch_chan < 0)
423 {
424 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
425 O_RDONLY, 0, &scratch_pathname);
426 }
427 if (scratch_chan < 0)
428 {
429 perror_with_name (filename);
430 }
431 /* Leave scratch_pathname allocated. abfd->name will point to it. */
432
433 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
434 if (!abfd)
435 {
436 close (scratch_chan);
437 error ("Could not open `%s' as an executable file: %s",
438 scratch_pathname, bfd_errmsg (bfd_get_error ()));
439 }
440 /* Leave bfd open, core_xfer_memory and "info files" need it. */
441 so->abfd = abfd;
442 abfd->cacheable = true;
443
444 if (!bfd_check_format (abfd, bfd_object))
445 {
446 error ("\"%s\": not in executable format: %s.",
447 scratch_pathname, bfd_errmsg (bfd_get_error ()));
448 }
449 if (build_section_table (abfd, &so->sections, &so->sections_end))
450 {
451 error ("Can't find the file sections in `%s': %s",
452 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
453 }
454
455 for (p = so->sections; p < so->sections_end; p++)
456 {
457 /* Relocate the section binding addresses as recorded in the shared
458 object's file by the offset to get the address to which the
459 object was actually mapped. */
460 p->addr += LM_OFFSET (so);
461 p->endaddr += LM_OFFSET (so);
462 so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
463 if (STREQ (p->the_bfd_section->name, ".text"))
464 {
465 so->textsection = p;
466 }
467 }
468
469 /* Free the file names, close the file now. */
470 do_cleanups (old_chain);
471
472 return (1);
473 }
474
475 /*
476
477 LOCAL FUNCTION
478
479 locate_base -- locate the base address of dynamic linker structs
480
481 SYNOPSIS
482
483 CORE_ADDR locate_base (void)
484
485 DESCRIPTION
486
487 For both the SunOS and SVR4 shared library implementations, if the
488 inferior executable has been linked dynamically, there is a single
489 address somewhere in the inferior's data space which is the key to
490 locating all of the dynamic linker's runtime structures. This
491 address is the value of the symbol defined by the macro DEBUG_BASE.
492 The job of this function is to find and return that address, or to
493 return 0 if there is no such address (the executable is statically
494 linked for example).
495
496 For SunOS, the job is almost trivial, since the dynamic linker and
497 all of it's structures are statically linked to the executable at
498 link time. Thus the symbol for the address we are looking for has
499 already been added to the minimal symbol table for the executable's
500 objfile at the time the symbol file's symbols were read, and all we
501 have to do is look it up there. Note that we explicitly do NOT want
502 to find the copies in the shared library.
503
504 The SVR4 version is much more complicated because the dynamic linker
505 and it's structures are located in the shared C library, which gets
506 run as the executable's "interpreter" by the kernel. We have to go
507 to a lot more work to discover the address of DEBUG_BASE. Because
508 of this complexity, we cache the value we find and return that value
509 on subsequent invocations. Note there is no copy in the executable
510 symbol tables.
511
512 Irix 5 is basically like SunOS.
513
514 Note that we can assume nothing about the process state at the time
515 we need to find this address. We may be stopped on the first instruc-
516 tion of the interpreter (C shared library), the first instruction of
517 the executable itself, or somewhere else entirely (if we attached
518 to the process for example).
519
520 */
521
522 static CORE_ADDR
523 locate_base ()
524 {
525 struct minimal_symbol *msymbol;
526 CORE_ADDR address = 0;
527
528 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
529 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
530 {
531 address = SYMBOL_VALUE_ADDRESS (msymbol);
532 }
533 return (address);
534 }
535
536 /*
537
538 LOCAL FUNCTION
539
540 first_link_map_member -- locate first member in dynamic linker's map
541
542 SYNOPSIS
543
544 static struct link_map *first_link_map_member (void)
545
546 DESCRIPTION
547
548 Read in a copy of the first member in the inferior's dynamic
549 link map from the inferior's dynamic linker structures, and return
550 a pointer to the link map descriptor.
551 */
552
553 static struct link_map *
554 first_link_map_member ()
555 {
556 struct obj_list *listp;
557 struct obj_list list_old;
558 struct link_map *lm;
559 static struct link_map first_lm;
560 CORE_ADDR lladdr;
561 CORE_ADDR next_lladdr;
562
563 /* We have not already read in the dynamic linking structures
564 from the inferior, lookup the address of the base structure. */
565 debug_base = locate_base ();
566 if (debug_base == 0)
567 return NULL;
568
569 /* Get address of first list entry. */
570 read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));
571
572 if (listp == NULL)
573 return NULL;
574
575 /* Get first list entry. */
576 lladdr = (CORE_ADDR) listp;
577 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
578
579 /* The first entry in the list is the object file we are debugging,
580 so skip it. */
581 next_lladdr = (CORE_ADDR) list_old.next;
582
583 #ifdef HANDLE_NEW_OBJ_LIST
584 if (list_old.data == NEW_OBJ_INFO_MAGIC)
585 {
586 Elf32_Obj_Info list_32;
587
588 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
589 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
590 return NULL;
591 next_lladdr = (CORE_ADDR) list_32.oi_next;
592 }
593 #endif
594
595 if (next_lladdr == 0)
596 return NULL;
597
598 first_lm.l_lladdr = next_lladdr;
599 lm = &first_lm;
600 return lm;
601 }
602
603 /*
604
605 LOCAL FUNCTION
606
607 next_link_map_member -- locate next member in dynamic linker's map
608
609 SYNOPSIS
610
611 static struct link_map *next_link_map_member (so_list_ptr)
612
613 DESCRIPTION
614
615 Read in a copy of the next member in the inferior's dynamic
616 link map from the inferior's dynamic linker structures, and return
617 a pointer to the link map descriptor.
618 */
619
620 static struct link_map *
621 next_link_map_member (so_list_ptr)
622 struct so_list *so_list_ptr;
623 {
624 struct link_map *lm = &so_list_ptr->lm;
625 CORE_ADDR next_lladdr = lm->l_next;
626 static struct link_map next_lm;
627
628 if (next_lladdr == 0)
629 {
630 /* We have hit the end of the list, so check to see if any were
631 added, but be quiet if we can't read from the target any more. */
632 int status = 0;
633
634 if (lm->l_variant == OBJ_LIST_OLD)
635 {
636 struct obj_list list_old;
637
638 status = target_read_memory (lm->l_lladdr,
639 (char *) &list_old,
640 sizeof (struct obj_list));
641 next_lladdr = (CORE_ADDR) list_old.next;
642 }
643 #ifdef HANDLE_NEW_OBJ_LIST
644 else if (lm->l_variant == OBJ_LIST_32)
645 {
646 Elf32_Obj_Info list_32;
647 status = target_read_memory (lm->l_lladdr,
648 (char *) &list_32,
649 sizeof (Elf32_Obj_Info));
650 next_lladdr = (CORE_ADDR) list_32.oi_next;
651 }
652 #endif
653
654 if (status != 0 || next_lladdr == 0)
655 return NULL;
656 }
657
658 next_lm.l_lladdr = next_lladdr;
659 lm = &next_lm;
660 return lm;
661 }
662
663 /*
664
665 LOCAL FUNCTION
666
667 xfer_link_map_member -- set local variables from dynamic linker's map
668
669 SYNOPSIS
670
671 static void xfer_link_map_member (so_list_ptr, lm)
672
673 DESCRIPTION
674
675 Read in a copy of the requested member in the inferior's dynamic
676 link map from the inferior's dynamic linker structures, and fill
677 in the necessary so_list_ptr elements.
678 */
679
680 static void
681 xfer_link_map_member (so_list_ptr, lm)
682 struct so_list *so_list_ptr;
683 struct link_map *lm;
684 {
685 struct obj_list list_old;
686 CORE_ADDR lladdr = lm->l_lladdr;
687 struct link_map *new_lm = &so_list_ptr->lm;
688 int errcode;
689
690 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
691
692 new_lm->l_variant = OBJ_LIST_OLD;
693 new_lm->l_lladdr = lladdr;
694 new_lm->l_next = (CORE_ADDR) list_old.next;
695
696 #ifdef HANDLE_NEW_OBJ_LIST
697 if (list_old.data == NEW_OBJ_INFO_MAGIC)
698 {
699 Elf32_Obj_Info list_32;
700
701 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
702 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
703 return;
704 new_lm->l_variant = OBJ_LIST_32;
705 new_lm->l_next = (CORE_ADDR) list_32.oi_next;
706
707 target_read_string ((CORE_ADDR) list_32.oi_pathname,
708 &so_list_ptr->so_name,
709 list_32.oi_pathname_len + 1, &errcode);
710 if (errcode != 0)
711 memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);
712
713 LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
714 LM_OFFSET (so_list_ptr) =
715 (CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
716 }
717 else
718 #endif
719 {
720 #if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
721 /* If we are compiling GDB under N32 ABI, the alignments in
722 the obj struct are different from the O32 ABI and we will get
723 wrong values when accessing the struct.
724 As a workaround we use fixed values which are good for
725 Irix 6.2. */
726 char buf[432];
727
728 read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));
729
730 target_read_string (extract_address (&buf[236], 4),
731 &so_list_ptr->so_name,
732 INT_MAX, &errcode);
733 if (errcode != 0)
734 memory_error (errcode, extract_address (&buf[236], 4));
735
736 LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
737 LM_OFFSET (so_list_ptr) =
738 extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
739 #else
740 struct obj obj_old;
741
742 read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
743 sizeof (struct obj));
744
745 target_read_string ((CORE_ADDR) obj_old.o_path,
746 &so_list_ptr->so_name,
747 INT_MAX, &errcode);
748 if (errcode != 0)
749 memory_error (errcode, (CORE_ADDR) obj_old.o_path);
750
751 LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
752 LM_OFFSET (so_list_ptr) =
753 (CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
754 #endif
755 }
756
757 catch_errors (solib_map_sections, (char *) so_list_ptr,
758 "Error while mapping shared library sections:\n",
759 RETURN_MASK_ALL);
760 }
761
762
763 /*
764
765 LOCAL FUNCTION
766
767 find_solib -- step through list of shared objects
768
769 SYNOPSIS
770
771 struct so_list *find_solib (struct so_list *so_list_ptr)
772
773 DESCRIPTION
774
775 This module contains the routine which finds the names of any
776 loaded "images" in the current process. The argument in must be
777 NULL on the first call, and then the returned value must be passed
778 in on subsequent calls. This provides the capability to "step" down
779 the list of loaded objects. On the last object, a NULL value is
780 returned.
781 */
782
783 static struct so_list *
784 find_solib (so_list_ptr)
785 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
786 {
787 struct so_list *so_list_next = NULL;
788 struct link_map *lm = NULL;
789 struct so_list *new;
790
791 if (so_list_ptr == NULL)
792 {
793 /* We are setting up for a new scan through the loaded images. */
794 if ((so_list_next = so_list_head) == NULL)
795 {
796 /* Find the first link map list member. */
797 lm = first_link_map_member ();
798 }
799 }
800 else
801 {
802 /* We have been called before, and are in the process of walking
803 the shared library list. Advance to the next shared object. */
804 lm = next_link_map_member (so_list_ptr);
805 so_list_next = so_list_ptr->next;
806 }
807 if ((so_list_next == NULL) && (lm != NULL))
808 {
809 new = (struct so_list *) xmalloc (sizeof (struct so_list));
810 memset ((char *) new, 0, sizeof (struct so_list));
811 /* Add the new node as the next node in the list, or as the root
812 node if this is the first one. */
813 if (so_list_ptr != NULL)
814 {
815 so_list_ptr->next = new;
816 }
817 else
818 {
819 so_list_head = new;
820 }
821 so_list_next = new;
822 xfer_link_map_member (new, lm);
823 }
824 return (so_list_next);
825 }
826
827 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
828
829 static int
830 symbol_add_stub (arg)
831 char *arg;
832 {
833 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
834 CORE_ADDR text_addr = 0;
835 struct section_addr_info section_addrs;
836
837 memset (&section_addrs, 0, sizeof (section_addrs));
838 if (so->textsection)
839 text_addr = so->textsection->addr;
840 else if (so->abfd != NULL)
841 {
842 asection *lowest_sect;
843
844 /* If we didn't find a mapped non zero sized .text section, set up
845 text_addr so that the relocation in symbol_file_add does no harm. */
846
847 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
848 if (lowest_sect == NULL)
849 bfd_map_over_sections (so->abfd, find_lowest_section,
850 (PTR) &lowest_sect);
851 if (lowest_sect)
852 text_addr = bfd_section_vma (so->abfd, lowest_sect) + LM_OFFSET (so);
853 }
854
855 section_addrs.text_addr = text_addr;
856 so->objfile = symbol_file_add (so->so_name, so->from_tty,
857 &section_addrs, 0, 0);
858 return (1);
859 }
860
861 /*
862
863 GLOBAL FUNCTION
864
865 solib_add -- add a shared library file to the symtab and section list
866
867 SYNOPSIS
868
869 void solib_add (char *arg_string, int from_tty,
870 struct target_ops *target)
871
872 DESCRIPTION
873
874 */
875
876 void
877 solib_add (arg_string, from_tty, target)
878 char *arg_string;
879 int from_tty;
880 struct target_ops *target;
881 {
882 register struct so_list *so = NULL; /* link map state variable */
883
884 /* Last shared library that we read. */
885 struct so_list *so_last = NULL;
886
887 char *re_err;
888 int count;
889 int old;
890
891 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
892 {
893 error ("Invalid regexp: %s", re_err);
894 }
895
896 /* Add the shared library sections to the section table of the
897 specified target, if any. */
898 if (target)
899 {
900 /* Count how many new section_table entries there are. */
901 so = NULL;
902 count = 0;
903 while ((so = find_solib (so)) != NULL)
904 {
905 if (so->so_name[0])
906 {
907 count += so->sections_end - so->sections;
908 }
909 }
910
911 if (count)
912 {
913 old = target_resize_to_sections (target, count);
914
915 /* Add these section table entries to the target's table. */
916 while ((so = find_solib (so)) != NULL)
917 {
918 if (so->so_name[0])
919 {
920 count = so->sections_end - so->sections;
921 memcpy ((char *) (target->to_sections + old),
922 so->sections,
923 (sizeof (struct section_table)) * count);
924 old += count;
925 }
926 }
927 }
928 }
929
930 /* Now add the symbol files. */
931 while ((so = find_solib (so)) != NULL)
932 {
933 if (so->so_name[0] && re_exec (so->so_name))
934 {
935 so->from_tty = from_tty;
936 if (so->symbols_loaded)
937 {
938 if (from_tty)
939 {
940 printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
941 }
942 }
943 else if (catch_errors
944 (symbol_add_stub, (char *) so,
945 "Error while reading shared library symbols:\n",
946 RETURN_MASK_ALL))
947 {
948 so_last = so;
949 so->symbols_loaded = 1;
950 }
951 }
952 }
953
954 /* Getting new symbols may change our opinion about what is
955 frameless. */
956 if (so_last)
957 reinit_frame_cache ();
958 }
959
960 /*
961
962 LOCAL FUNCTION
963
964 info_sharedlibrary_command -- code for "info sharedlibrary"
965
966 SYNOPSIS
967
968 static void info_sharedlibrary_command ()
969
970 DESCRIPTION
971
972 Walk through the shared library list and print information
973 about each attached library.
974 */
975
976 static void
977 info_sharedlibrary_command (ignore, from_tty)
978 char *ignore;
979 int from_tty;
980 {
981 register struct so_list *so = NULL; /* link map state variable */
982 int header_done = 0;
983
984 if (exec_bfd == NULL)
985 {
986 printf_unfiltered ("No exec file.\n");
987 return;
988 }
989 while ((so = find_solib (so)) != NULL)
990 {
991 if (so->so_name[0])
992 {
993 if (!header_done)
994 {
995 printf_unfiltered ("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
996 "Shared Object Library");
997 header_done++;
998 }
999 printf_unfiltered ("%-12s",
1000 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1001 "08l"));
1002 printf_unfiltered ("%-12s",
1003 local_hex_string_custom ((unsigned long) so->lmend,
1004 "08l"));
1005 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1006 printf_unfiltered ("%s\n", so->so_name);
1007 }
1008 }
1009 if (so_list_head == NULL)
1010 {
1011 printf_unfiltered ("No shared libraries loaded at this time.\n");
1012 }
1013 }
1014
1015 /*
1016
1017 GLOBAL FUNCTION
1018
1019 solib_address -- check to see if an address is in a shared lib
1020
1021 SYNOPSIS
1022
1023 char *solib_address (CORE_ADDR address)
1024
1025 DESCRIPTION
1026
1027 Provides a hook for other gdb routines to discover whether or
1028 not a particular address is within the mapped address space of
1029 a shared library. Any address between the base mapping address
1030 and the first address beyond the end of the last mapping, is
1031 considered to be within the shared library address space, for
1032 our purposes.
1033
1034 For example, this routine is called at one point to disable
1035 breakpoints which are in shared libraries that are not currently
1036 mapped in.
1037 */
1038
1039 char *
1040 solib_address (address)
1041 CORE_ADDR address;
1042 {
1043 register struct so_list *so = 0; /* link map state variable */
1044
1045 while ((so = find_solib (so)) != NULL)
1046 {
1047 if (so->so_name[0])
1048 {
1049 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
1050 (address < (CORE_ADDR) so->lmend))
1051 return (so->so_name);
1052 }
1053 }
1054 return (0);
1055 }
1056
1057 /* Called by free_all_symtabs */
1058
1059 void
1060 clear_solib ()
1061 {
1062 struct so_list *next;
1063 char *bfd_filename;
1064
1065 disable_breakpoints_in_shlibs (1);
1066
1067 while (so_list_head)
1068 {
1069 if (so_list_head->sections)
1070 {
1071 free ((PTR) so_list_head->sections);
1072 }
1073 if (so_list_head->abfd)
1074 {
1075 bfd_filename = bfd_get_filename (so_list_head->abfd);
1076 if (!bfd_close (so_list_head->abfd))
1077 warning ("cannot close \"%s\": %s",
1078 bfd_filename, bfd_errmsg (bfd_get_error ()));
1079 }
1080 else
1081 /* This happens for the executable on SVR4. */
1082 bfd_filename = NULL;
1083
1084 next = so_list_head->next;
1085 if (bfd_filename)
1086 free ((PTR) bfd_filename);
1087 free (so_list_head->so_name);
1088 free ((PTR) so_list_head);
1089 so_list_head = next;
1090 }
1091 debug_base = 0;
1092 }
1093
1094 /*
1095
1096 LOCAL FUNCTION
1097
1098 disable_break -- remove the "mapping changed" breakpoint
1099
1100 SYNOPSIS
1101
1102 static int disable_break ()
1103
1104 DESCRIPTION
1105
1106 Removes the breakpoint that gets hit when the dynamic linker
1107 completes a mapping change.
1108
1109 */
1110
1111 static int
1112 disable_break ()
1113 {
1114 int status = 1;
1115
1116
1117 /* Note that breakpoint address and original contents are in our address
1118 space, so we just need to write the original contents back. */
1119
1120 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1121 {
1122 status = 0;
1123 }
1124
1125 /* For the SVR4 version, we always know the breakpoint address. For the
1126 SunOS version we don't know it until the above code is executed.
1127 Grumble if we are stopped anywhere besides the breakpoint address. */
1128
1129 if (stop_pc != breakpoint_addr)
1130 {
1131 warning ("stopped at unknown breakpoint while handling shared libraries");
1132 }
1133
1134 return (status);
1135 }
1136
1137 /*
1138
1139 LOCAL FUNCTION
1140
1141 enable_break -- arrange for dynamic linker to hit breakpoint
1142
1143 SYNOPSIS
1144
1145 int enable_break (void)
1146
1147 DESCRIPTION
1148
1149 This functions inserts a breakpoint at the entry point of the
1150 main executable, where all shared libraries are mapped in.
1151 */
1152
1153 static int
1154 enable_break ()
1155 {
1156 if (symfile_objfile != NULL
1157 && target_insert_breakpoint (symfile_objfile->ei.entry_point,
1158 shadow_contents) == 0)
1159 {
1160 breakpoint_addr = symfile_objfile->ei.entry_point;
1161 return 1;
1162 }
1163
1164 return 0;
1165 }
1166
1167 /*
1168
1169 GLOBAL FUNCTION
1170
1171 solib_create_inferior_hook -- shared library startup support
1172
1173 SYNOPSIS
1174
1175 void solib_create_inferior_hook()
1176
1177 DESCRIPTION
1178
1179 When gdb starts up the inferior, it nurses it along (through the
1180 shell) until it is ready to execute it's first instruction. At this
1181 point, this function gets called via expansion of the macro
1182 SOLIB_CREATE_INFERIOR_HOOK.
1183
1184 For SunOS executables, this first instruction is typically the
1185 one at "_start", or a similar text label, regardless of whether
1186 the executable is statically or dynamically linked. The runtime
1187 startup code takes care of dynamically linking in any shared
1188 libraries, once gdb allows the inferior to continue.
1189
1190 For SVR4 executables, this first instruction is either the first
1191 instruction in the dynamic linker (for dynamically linked
1192 executables) or the instruction at "start" for statically linked
1193 executables. For dynamically linked executables, the system
1194 first exec's /lib/libc.so.N, which contains the dynamic linker,
1195 and starts it running. The dynamic linker maps in any needed
1196 shared libraries, maps in the actual user executable, and then
1197 jumps to "start" in the user executable.
1198
1199 For both SunOS shared libraries, and SVR4 shared libraries, we
1200 can arrange to cooperate with the dynamic linker to discover the
1201 names of shared libraries that are dynamically linked, and the
1202 base addresses to which they are linked.
1203
1204 This function is responsible for discovering those names and
1205 addresses, and saving sufficient information about them to allow
1206 their symbols to be read at a later time.
1207
1208 FIXME
1209
1210 Between enable_break() and disable_break(), this code does not
1211 properly handle hitting breakpoints which the user might have
1212 set in the startup code or in the dynamic linker itself. Proper
1213 handling will probably have to wait until the implementation is
1214 changed to use the "breakpoint handler function" method.
1215
1216 Also, what if child has exit()ed? Must exit loop somehow.
1217 */
1218
1219 void
1220 solib_create_inferior_hook ()
1221 {
1222 if (!enable_break ())
1223 {
1224 warning ("shared library handler failed to enable breakpoint");
1225 return;
1226 }
1227
1228 /* Now run the target. It will eventually hit the breakpoint, at
1229 which point all of the libraries will have been mapped in and we
1230 can go groveling around in the dynamic linker structures to find
1231 out what we need to know about them. */
1232
1233 clear_proceed_status ();
1234 stop_soon_quietly = 1;
1235 stop_signal = TARGET_SIGNAL_0;
1236 do
1237 {
1238 target_resume (-1, 0, stop_signal);
1239 wait_for_inferior ();
1240 }
1241 while (stop_signal != TARGET_SIGNAL_TRAP);
1242
1243 /* We are now either at the "mapping complete" breakpoint (or somewhere
1244 else, a condition we aren't prepared to deal with anyway), so adjust
1245 the PC as necessary after a breakpoint, disable the breakpoint, and
1246 add any shared libraries that were mapped in. */
1247
1248 if (DECR_PC_AFTER_BREAK)
1249 {
1250 stop_pc -= DECR_PC_AFTER_BREAK;
1251 write_register (PC_REGNUM, stop_pc);
1252 }
1253
1254 if (!disable_break ())
1255 {
1256 warning ("shared library handler failed to disable breakpoint");
1257 }
1258
1259 /* solib_add will call reinit_frame_cache.
1260 But we are stopped in the startup code and we might not have symbols
1261 for the startup code, so heuristic_proc_start could be called
1262 and will put out an annoying warning.
1263 Delaying the resetting of stop_soon_quietly until after symbol loading
1264 suppresses the warning. */
1265 if (auto_solib_add)
1266 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1267 stop_soon_quietly = 0;
1268 }
1269
1270 /*
1271
1272 LOCAL FUNCTION
1273
1274 sharedlibrary_command -- handle command to explicitly add library
1275
1276 SYNOPSIS
1277
1278 static void sharedlibrary_command (char *args, int from_tty)
1279
1280 DESCRIPTION
1281
1282 */
1283
1284 static void
1285 sharedlibrary_command (args, from_tty)
1286 char *args;
1287 int from_tty;
1288 {
1289 dont_repeat ();
1290 solib_add (args, from_tty, (struct target_ops *) 0);
1291 }
1292
1293 void
1294 _initialize_solib ()
1295 {
1296 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1297 "Load shared object library symbols for files matching REGEXP.");
1298 add_info ("sharedlibrary", info_sharedlibrary_command,
1299 "Status of loaded shared object libraries.");
1300
1301 add_show_from_set
1302 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1303 (char *) &auto_solib_add,
1304 "Set autoloading of shared library symbols.\n\
1305 If nonzero, symbols from all shared object libraries will be loaded\n\
1306 automatically when the inferior begins execution or when the dynamic linker\n\
1307 informs gdb that a new library has been loaded. Otherwise, symbols\n\
1308 must be loaded manually, using `sharedlibrary'.",
1309 &setlist),
1310 &showlist);
1311 }
1312 \f
1313
1314 /* Register that we are able to handle irix5 core file formats.
1315 This really is bfd_target_unknown_flavour */
1316
1317 static struct core_fns irix5_core_fns =
1318 {
1319 bfd_target_unknown_flavour, /* core_flavour */
1320 default_check_format, /* check_format */
1321 default_core_sniffer, /* core_sniffer */
1322 fetch_core_registers, /* core_read_registers */
1323 NULL /* next */
1324 };
1325
1326 void
1327 _initialize_core_irix5 ()
1328 {
1329 add_core_fns (&irix5_core_fns);
1330 }
This page took 0.059166 seconds and 4 git commands to generate.