b8ca2a523d9296df2ee51bed06e5480dc98f5381
[deliverable/binutils-gdb.git] / gdb / irix5-nat.c
1 /* Native support for the SGI Iris running IRIX version 5, for GDB.
2 Copyright 1988, 89, 90, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6 Implemented for Irix 4.x by Garrett A. Wollman.
7 Modified for Irix 5.x by Ian Lance Taylor.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30
31 #include "gdb_string.h"
32 #include <sys/time.h>
33 #include <sys/procfs.h>
34 #include <setjmp.h> /* For JB_XXX. */
35
36 /* Prototypes for supply_gregset etc. */
37 #include "gregset.h"
38
39 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
40
41 /* Size of elements in jmpbuf */
42
43 #define JB_ELEMENT_SIZE 4
44
45 /*
46 * See the comment in m68k-tdep.c regarding the utility of these functions.
47 *
48 * These definitions are from the MIPS SVR4 ABI, so they may work for
49 * any MIPS SVR4 target.
50 */
51
52 void
53 supply_gregset (gregset_t *gregsetp)
54 {
55 register int regi;
56 register greg_t *regp = &(*gregsetp)[0];
57 int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
58 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
59 {0};
60
61 for (regi = 0; regi <= CTX_RA; regi++)
62 supply_register (regi, (char *) (regp + regi) + gregoff);
63
64 supply_register (PC_REGNUM, (char *) (regp + CTX_EPC) + gregoff);
65 supply_register (HI_REGNUM, (char *) (regp + CTX_MDHI) + gregoff);
66 supply_register (LO_REGNUM, (char *) (regp + CTX_MDLO) + gregoff);
67 supply_register (CAUSE_REGNUM, (char *) (regp + CTX_CAUSE) + gregoff);
68
69 /* Fill inaccessible registers with zero. */
70 supply_register (BADVADDR_REGNUM, zerobuf);
71 }
72
73 void
74 fill_gregset (gregset_t *gregsetp, int regno)
75 {
76 int regi;
77 register greg_t *regp = &(*gregsetp)[0];
78
79 /* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
80 executable, we have to sign extend the registers to 64 bits before
81 filling in the gregset structure. */
82
83 for (regi = 0; regi <= CTX_RA; regi++)
84 if ((regno == -1) || (regno == regi))
85 *(regp + regi) =
86 extract_signed_integer (&registers[REGISTER_BYTE (regi)],
87 REGISTER_RAW_SIZE (regi));
88
89 if ((regno == -1) || (regno == PC_REGNUM))
90 *(regp + CTX_EPC) =
91 extract_signed_integer (&registers[REGISTER_BYTE (PC_REGNUM)],
92 REGISTER_RAW_SIZE (PC_REGNUM));
93
94 if ((regno == -1) || (regno == CAUSE_REGNUM))
95 *(regp + CTX_CAUSE) =
96 extract_signed_integer (&registers[REGISTER_BYTE (CAUSE_REGNUM)],
97 REGISTER_RAW_SIZE (CAUSE_REGNUM));
98
99 if ((regno == -1) || (regno == HI_REGNUM))
100 *(regp + CTX_MDHI) =
101 extract_signed_integer (&registers[REGISTER_BYTE (HI_REGNUM)],
102 REGISTER_RAW_SIZE (HI_REGNUM));
103
104 if ((regno == -1) || (regno == LO_REGNUM))
105 *(regp + CTX_MDLO) =
106 extract_signed_integer (&registers[REGISTER_BYTE (LO_REGNUM)],
107 REGISTER_RAW_SIZE (LO_REGNUM));
108 }
109
110 /*
111 * Now we do the same thing for floating-point registers.
112 * We don't bother to condition on FP0_REGNUM since any
113 * reasonable MIPS configuration has an R3010 in it.
114 *
115 * Again, see the comments in m68k-tdep.c.
116 */
117
118 void
119 supply_fpregset (fpregset_t *fpregsetp)
120 {
121 register int regi;
122 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
123 {0};
124
125 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
126
127 for (regi = 0; regi < 32; regi++)
128 supply_register (FP0_REGNUM + regi,
129 (char *) &fpregsetp->fp_r.fp_regs[regi]);
130
131 supply_register (FCRCS_REGNUM, (char *) &fpregsetp->fp_csr);
132
133 /* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
134 supply_register (FCRIR_REGNUM, zerobuf);
135 }
136
137 void
138 fill_fpregset (fpregset_t *fpregsetp, int regno)
139 {
140 int regi;
141 char *from, *to;
142
143 /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
144
145 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
146 {
147 if ((regno == -1) || (regno == regi))
148 {
149 from = (char *) &registers[REGISTER_BYTE (regi)];
150 to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
151 memcpy (to, from, REGISTER_RAW_SIZE (regi));
152 }
153 }
154
155 if ((regno == -1) || (regno == FCRCS_REGNUM))
156 fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE (FCRCS_REGNUM)];
157 }
158
159
160 /* Figure out where the longjmp will land.
161 We expect the first arg to be a pointer to the jmp_buf structure from which
162 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
163 This routine returns true on success. */
164
165 int
166 get_longjmp_target (CORE_ADDR *pc)
167 {
168 char *buf;
169 CORE_ADDR jb_addr;
170
171 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
172 jb_addr = read_register (A0_REGNUM);
173
174 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
175 TARGET_PTR_BIT / TARGET_CHAR_BIT))
176 return 0;
177
178 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
179
180 return 1;
181 }
182
183 static void
184 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
185 char *core_reg_sect;
186 unsigned core_reg_size;
187 int which; /* Unused */
188 CORE_ADDR reg_addr; /* Unused */
189 {
190 if (core_reg_size == REGISTER_BYTES)
191 {
192 memcpy ((char *) registers, core_reg_sect, core_reg_size);
193 }
194 else if (MIPS_REGSIZE == 4 &&
195 core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
196 {
197 /* This is a core file from a N32 executable, 64 bits are saved
198 for all registers. */
199 char *srcp = core_reg_sect;
200 char *dstp = registers;
201 int regno;
202
203 for (regno = 0; regno < NUM_REGS; regno++)
204 {
205 if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
206 {
207 /* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
208 currently assumes that they are 32 bit. */
209 *dstp++ = *srcp++;
210 *dstp++ = *srcp++;
211 *dstp++ = *srcp++;
212 *dstp++ = *srcp++;
213 if (REGISTER_RAW_SIZE (regno) == 4)
214 {
215 /* copying 4 bytes from eight bytes?
216 I don't see how this can be right... */
217 srcp += 4;
218 }
219 else
220 {
221 /* copy all 8 bytes (sizeof(double)) */
222 *dstp++ = *srcp++;
223 *dstp++ = *srcp++;
224 *dstp++ = *srcp++;
225 *dstp++ = *srcp++;
226 }
227 }
228 else
229 {
230 srcp += 4;
231 *dstp++ = *srcp++;
232 *dstp++ = *srcp++;
233 *dstp++ = *srcp++;
234 *dstp++ = *srcp++;
235 }
236 }
237 }
238 else
239 {
240 warning ("wrong size gregset struct in core file");
241 return;
242 }
243
244 registers_fetched ();
245 }
246 \f
247 /* Irix 5 uses what appears to be a unique form of shared library
248 support. This is a copy of solib.c modified for Irix 5. */
249 /* FIXME: Most of this code could be merged with osfsolib.c and solib.c
250 by using next_link_map_member and xfer_link_map_member in solib.c. */
251
252 #include <sys/types.h>
253 #include <signal.h>
254 #include <sys/param.h>
255 #include <fcntl.h>
256
257 /* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
258 with our versions of those files included by tm-mips.h. Prevent
259 <obj.h> from including them with some appropriate defines. */
260 #define __SYM_H__
261 #define __SYMCONST_H__
262 #include <obj.h>
263 #ifdef HAVE_OBJLIST_H
264 #include <objlist.h>
265 #endif
266
267 #ifdef NEW_OBJ_INFO_MAGIC
268 #define HANDLE_NEW_OBJ_LIST
269 #endif
270
271 #include "symtab.h"
272 #include "bfd.h"
273 #include "symfile.h"
274 #include "objfiles.h"
275 #include "command.h"
276 #include "frame.h"
277 #include "gdb_regex.h"
278 #include "inferior.h"
279 #include "language.h"
280 #include "gdbcmd.h"
281
282 /* The symbol which starts off the list of shared libraries. */
283 #define DEBUG_BASE "__rld_obj_head"
284
285 /* Irix 6.x introduces a new variant of object lists.
286 To be able to debug O32 executables under Irix 6, we have to handle both
287 variants. */
288
289 typedef enum
290 {
291 OBJ_LIST_OLD, /* Pre Irix 6.x object list. */
292 OBJ_LIST_32, /* 32 Bit Elf32_Obj_Info. */
293 OBJ_LIST_64 /* 64 Bit Elf64_Obj_Info, FIXME not yet implemented. */
294 }
295 obj_list_variant;
296
297 /* Define our own link_map structure.
298 This will help to share code with osfsolib.c and solib.c. */
299
300 struct link_map
301 {
302 obj_list_variant l_variant; /* which variant of object list */
303 CORE_ADDR l_lladdr; /* addr in inferior list was read from */
304 CORE_ADDR l_next; /* address of next object list entry */
305 };
306
307 /* Irix 5 shared objects are pre-linked to particular addresses
308 although the dynamic linker may have to relocate them if the
309 address ranges of the libraries used by the main program clash.
310 The offset is the difference between the address where the object
311 is mapped and the binding address of the shared library. */
312 #define LM_OFFSET(so) ((so) -> offset)
313 /* Loaded address of shared library. */
314 #define LM_ADDR(so) ((so) -> lmstart)
315
316 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
317
318 struct so_list
319 {
320 struct so_list *next; /* next structure in linked list */
321 struct link_map lm;
322 CORE_ADDR offset; /* prelink to load address offset */
323 char *so_name; /* shared object lib name */
324 CORE_ADDR lmstart; /* lower addr bound of mapped object */
325 CORE_ADDR lmend; /* upper addr bound of mapped object */
326 char symbols_loaded; /* flag: symbols read in yet? */
327 char from_tty; /* flag: print msgs? */
328 struct objfile *objfile; /* objfile for loaded lib */
329 struct section_table *sections;
330 struct section_table *sections_end;
331 struct section_table *textsection;
332 bfd *abfd;
333 };
334
335 static struct so_list *so_list_head; /* List of known shared objects */
336 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
337 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
338
339 /* Local function prototypes */
340
341 static void sharedlibrary_command (char *, int);
342
343 static int enable_break (void);
344
345 static int disable_break (void);
346
347 static void info_sharedlibrary_command (char *, int);
348
349 static int symbol_add_stub (void *);
350
351 static struct so_list *find_solib (struct so_list *);
352
353 static struct link_map *first_link_map_member (void);
354
355 static struct link_map *next_link_map_member (struct so_list *);
356
357 static void xfer_link_map_member (struct so_list *, struct link_map *);
358
359 static CORE_ADDR locate_base (void);
360
361 static int solib_map_sections (void *);
362
363 /*
364
365 LOCAL FUNCTION
366
367 solib_map_sections -- open bfd and build sections for shared lib
368
369 SYNOPSIS
370
371 static int solib_map_sections (struct so_list *so)
372
373 DESCRIPTION
374
375 Given a pointer to one of the shared objects in our list
376 of mapped objects, use the recorded name to open a bfd
377 descriptor for the object, build a section table, and then
378 relocate all the section addresses by the base address at
379 which the shared object was mapped.
380
381 FIXMES
382
383 In most (all?) cases the shared object file name recorded in the
384 dynamic linkage tables will be a fully qualified pathname. For
385 cases where it isn't, do we really mimic the systems search
386 mechanism correctly in the below code (particularly the tilde
387 expansion stuff?).
388 */
389
390 static int
391 solib_map_sections (void *arg)
392 {
393 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
394 char *filename;
395 char *scratch_pathname;
396 int scratch_chan;
397 struct section_table *p;
398 struct cleanup *old_chain;
399 bfd *abfd;
400
401 filename = tilde_expand (so->so_name);
402 old_chain = make_cleanup (free, filename);
403
404 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
405 &scratch_pathname);
406 if (scratch_chan < 0)
407 {
408 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
409 O_RDONLY, 0, &scratch_pathname);
410 }
411 if (scratch_chan < 0)
412 {
413 perror_with_name (filename);
414 }
415 /* Leave scratch_pathname allocated. abfd->name will point to it. */
416
417 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
418 if (!abfd)
419 {
420 close (scratch_chan);
421 error ("Could not open `%s' as an executable file: %s",
422 scratch_pathname, bfd_errmsg (bfd_get_error ()));
423 }
424 /* Leave bfd open, core_xfer_memory and "info files" need it. */
425 so->abfd = abfd;
426 abfd->cacheable = true;
427
428 if (!bfd_check_format (abfd, bfd_object))
429 {
430 error ("\"%s\": not in executable format: %s.",
431 scratch_pathname, bfd_errmsg (bfd_get_error ()));
432 }
433 if (build_section_table (abfd, &so->sections, &so->sections_end))
434 {
435 error ("Can't find the file sections in `%s': %s",
436 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
437 }
438
439 for (p = so->sections; p < so->sections_end; p++)
440 {
441 /* Relocate the section binding addresses as recorded in the shared
442 object's file by the offset to get the address to which the
443 object was actually mapped. */
444 p->addr += LM_OFFSET (so);
445 p->endaddr += LM_OFFSET (so);
446 so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
447 if (STREQ (p->the_bfd_section->name, ".text"))
448 {
449 so->textsection = p;
450 }
451 }
452
453 /* Free the file names, close the file now. */
454 do_cleanups (old_chain);
455
456 /* must be non-zero */
457 return (1);
458 }
459
460 /*
461
462 LOCAL FUNCTION
463
464 locate_base -- locate the base address of dynamic linker structs
465
466 SYNOPSIS
467
468 CORE_ADDR locate_base (void)
469
470 DESCRIPTION
471
472 For both the SunOS and SVR4 shared library implementations, if the
473 inferior executable has been linked dynamically, there is a single
474 address somewhere in the inferior's data space which is the key to
475 locating all of the dynamic linker's runtime structures. This
476 address is the value of the symbol defined by the macro DEBUG_BASE.
477 The job of this function is to find and return that address, or to
478 return 0 if there is no such address (the executable is statically
479 linked for example).
480
481 For SunOS, the job is almost trivial, since the dynamic linker and
482 all of it's structures are statically linked to the executable at
483 link time. Thus the symbol for the address we are looking for has
484 already been added to the minimal symbol table for the executable's
485 objfile at the time the symbol file's symbols were read, and all we
486 have to do is look it up there. Note that we explicitly do NOT want
487 to find the copies in the shared library.
488
489 The SVR4 version is much more complicated because the dynamic linker
490 and it's structures are located in the shared C library, which gets
491 run as the executable's "interpreter" by the kernel. We have to go
492 to a lot more work to discover the address of DEBUG_BASE. Because
493 of this complexity, we cache the value we find and return that value
494 on subsequent invocations. Note there is no copy in the executable
495 symbol tables.
496
497 Irix 5 is basically like SunOS.
498
499 Note that we can assume nothing about the process state at the time
500 we need to find this address. We may be stopped on the first instruc-
501 tion of the interpreter (C shared library), the first instruction of
502 the executable itself, or somewhere else entirely (if we attached
503 to the process for example).
504
505 */
506
507 static CORE_ADDR
508 locate_base (void)
509 {
510 struct minimal_symbol *msymbol;
511 CORE_ADDR address = 0;
512
513 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
514 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
515 {
516 address = SYMBOL_VALUE_ADDRESS (msymbol);
517 }
518 return (address);
519 }
520
521 /*
522
523 LOCAL FUNCTION
524
525 first_link_map_member -- locate first member in dynamic linker's map
526
527 SYNOPSIS
528
529 static struct link_map *first_link_map_member (void)
530
531 DESCRIPTION
532
533 Read in a copy of the first member in the inferior's dynamic
534 link map from the inferior's dynamic linker structures, and return
535 a pointer to the link map descriptor.
536 */
537
538 static struct link_map *
539 first_link_map_member (void)
540 {
541 struct obj_list *listp;
542 struct obj_list list_old;
543 struct link_map *lm;
544 static struct link_map first_lm;
545 CORE_ADDR lladdr;
546 CORE_ADDR next_lladdr;
547
548 /* We have not already read in the dynamic linking structures
549 from the inferior, lookup the address of the base structure. */
550 debug_base = locate_base ();
551 if (debug_base == 0)
552 return NULL;
553
554 /* Get address of first list entry. */
555 read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));
556
557 if (listp == NULL)
558 return NULL;
559
560 /* Get first list entry. */
561 /* The MIPS Sign extends addresses. */
562 lladdr = host_pointer_to_address (listp);
563 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
564
565 /* The first entry in the list is the object file we are debugging,
566 so skip it. */
567 next_lladdr = host_pointer_to_address (list_old.next);
568
569 #ifdef HANDLE_NEW_OBJ_LIST
570 if (list_old.data == NEW_OBJ_INFO_MAGIC)
571 {
572 Elf32_Obj_Info list_32;
573
574 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
575 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
576 return NULL;
577 next_lladdr = (CORE_ADDR) list_32.oi_next;
578 }
579 #endif
580
581 if (next_lladdr == 0)
582 return NULL;
583
584 first_lm.l_lladdr = next_lladdr;
585 lm = &first_lm;
586 return lm;
587 }
588
589 /*
590
591 LOCAL FUNCTION
592
593 next_link_map_member -- locate next member in dynamic linker's map
594
595 SYNOPSIS
596
597 static struct link_map *next_link_map_member (so_list_ptr)
598
599 DESCRIPTION
600
601 Read in a copy of the next member in the inferior's dynamic
602 link map from the inferior's dynamic linker structures, and return
603 a pointer to the link map descriptor.
604 */
605
606 static struct link_map *
607 next_link_map_member (struct so_list *so_list_ptr)
608 {
609 struct link_map *lm = &so_list_ptr->lm;
610 CORE_ADDR next_lladdr = lm->l_next;
611 static struct link_map next_lm;
612
613 if (next_lladdr == 0)
614 {
615 /* We have hit the end of the list, so check to see if any were
616 added, but be quiet if we can't read from the target any more. */
617 int status = 0;
618
619 if (lm->l_variant == OBJ_LIST_OLD)
620 {
621 struct obj_list list_old;
622
623 status = target_read_memory (lm->l_lladdr,
624 (char *) &list_old,
625 sizeof (struct obj_list));
626 next_lladdr = host_pointer_to_address (list_old.next);
627 }
628 #ifdef HANDLE_NEW_OBJ_LIST
629 else if (lm->l_variant == OBJ_LIST_32)
630 {
631 Elf32_Obj_Info list_32;
632 status = target_read_memory (lm->l_lladdr,
633 (char *) &list_32,
634 sizeof (Elf32_Obj_Info));
635 next_lladdr = (CORE_ADDR) list_32.oi_next;
636 }
637 #endif
638
639 if (status != 0 || next_lladdr == 0)
640 return NULL;
641 }
642
643 next_lm.l_lladdr = next_lladdr;
644 lm = &next_lm;
645 return lm;
646 }
647
648 /*
649
650 LOCAL FUNCTION
651
652 xfer_link_map_member -- set local variables from dynamic linker's map
653
654 SYNOPSIS
655
656 static void xfer_link_map_member (so_list_ptr, lm)
657
658 DESCRIPTION
659
660 Read in a copy of the requested member in the inferior's dynamic
661 link map from the inferior's dynamic linker structures, and fill
662 in the necessary so_list_ptr elements.
663 */
664
665 static void
666 xfer_link_map_member (struct so_list *so_list_ptr, struct link_map *lm)
667 {
668 struct obj_list list_old;
669 CORE_ADDR lladdr = lm->l_lladdr;
670 struct link_map *new_lm = &so_list_ptr->lm;
671 int errcode;
672
673 read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
674
675 new_lm->l_variant = OBJ_LIST_OLD;
676 new_lm->l_lladdr = lladdr;
677 new_lm->l_next = host_pointer_to_address (list_old.next);
678
679 #ifdef HANDLE_NEW_OBJ_LIST
680 if (list_old.data == NEW_OBJ_INFO_MAGIC)
681 {
682 Elf32_Obj_Info list_32;
683
684 read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
685 if (list_32.oi_size != sizeof (Elf32_Obj_Info))
686 return;
687 new_lm->l_variant = OBJ_LIST_32;
688 new_lm->l_next = (CORE_ADDR) list_32.oi_next;
689
690 target_read_string ((CORE_ADDR) list_32.oi_pathname,
691 &so_list_ptr->so_name,
692 list_32.oi_pathname_len + 1, &errcode);
693 if (errcode != 0)
694 memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);
695
696 LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
697 LM_OFFSET (so_list_ptr) =
698 (CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
699 }
700 else
701 #endif
702 {
703 #if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
704 /* If we are compiling GDB under N32 ABI, the alignments in
705 the obj struct are different from the O32 ABI and we will get
706 wrong values when accessing the struct.
707 As a workaround we use fixed values which are good for
708 Irix 6.2. */
709 char buf[432];
710
711 read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));
712
713 target_read_string (extract_address (&buf[236], 4),
714 &so_list_ptr->so_name,
715 INT_MAX, &errcode);
716 if (errcode != 0)
717 memory_error (errcode, extract_address (&buf[236], 4));
718
719 LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
720 LM_OFFSET (so_list_ptr) =
721 extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
722 #else
723 struct obj obj_old;
724
725 read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
726 sizeof (struct obj));
727
728 target_read_string ((CORE_ADDR) obj_old.o_path,
729 &so_list_ptr->so_name,
730 INT_MAX, &errcode);
731 if (errcode != 0)
732 memory_error (errcode, (CORE_ADDR) obj_old.o_path);
733
734 LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
735 LM_OFFSET (so_list_ptr) =
736 (CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
737 #endif
738 }
739
740 catch_errors (solib_map_sections, (char *) so_list_ptr,
741 "Error while mapping shared library sections:\n",
742 RETURN_MASK_ALL);
743 }
744
745
746 /*
747
748 LOCAL FUNCTION
749
750 find_solib -- step through list of shared objects
751
752 SYNOPSIS
753
754 struct so_list *find_solib (struct so_list *so_list_ptr)
755
756 DESCRIPTION
757
758 This module contains the routine which finds the names of any
759 loaded "images" in the current process. The argument in must be
760 NULL on the first call, and then the returned value must be passed
761 in on subsequent calls. This provides the capability to "step" down
762 the list of loaded objects. On the last object, a NULL value is
763 returned.
764 */
765
766 static struct so_list *
767 find_solib (so_list_ptr)
768 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
769 {
770 struct so_list *so_list_next = NULL;
771 struct link_map *lm = NULL;
772 struct so_list *new;
773
774 if (so_list_ptr == NULL)
775 {
776 /* We are setting up for a new scan through the loaded images. */
777 if ((so_list_next = so_list_head) == NULL)
778 {
779 /* Find the first link map list member. */
780 lm = first_link_map_member ();
781 }
782 }
783 else
784 {
785 /* We have been called before, and are in the process of walking
786 the shared library list. Advance to the next shared object. */
787 lm = next_link_map_member (so_list_ptr);
788 so_list_next = so_list_ptr->next;
789 }
790 if ((so_list_next == NULL) && (lm != NULL))
791 {
792 new = (struct so_list *) xmalloc (sizeof (struct so_list));
793 memset ((char *) new, 0, sizeof (struct so_list));
794 /* Add the new node as the next node in the list, or as the root
795 node if this is the first one. */
796 if (so_list_ptr != NULL)
797 {
798 so_list_ptr->next = new;
799 }
800 else
801 {
802 so_list_head = new;
803 }
804 so_list_next = new;
805 xfer_link_map_member (new, lm);
806 }
807 return (so_list_next);
808 }
809
810 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
811
812 static int
813 symbol_add_stub (void *arg)
814 {
815 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
816 CORE_ADDR text_addr = 0;
817 struct section_addr_info section_addrs;
818
819 memset (&section_addrs, 0, sizeof (section_addrs));
820 if (so->textsection)
821 text_addr = so->textsection->addr;
822 else if (so->abfd != NULL)
823 {
824 asection *lowest_sect;
825
826 /* If we didn't find a mapped non zero sized .text section, set up
827 text_addr so that the relocation in symbol_file_add does no harm. */
828
829 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
830 if (lowest_sect == NULL)
831 bfd_map_over_sections (so->abfd, find_lowest_section,
832 (PTR) &lowest_sect);
833 if (lowest_sect)
834 text_addr = bfd_section_vma (so->abfd, lowest_sect) + LM_OFFSET (so);
835 }
836
837
838 section_addrs.other[0].name = ".text";
839 section_addrs.other[0].addr = text_addr;
840 so->objfile = symbol_file_add (so->so_name, so->from_tty,
841 &section_addrs, 0, 0);
842 /* must be non-zero */
843 return (1);
844 }
845
846 /*
847
848 GLOBAL FUNCTION
849
850 solib_add -- add a shared library file to the symtab and section list
851
852 SYNOPSIS
853
854 void solib_add (char *arg_string, int from_tty,
855 struct target_ops *target)
856
857 DESCRIPTION
858
859 */
860
861 void
862 solib_add (char *arg_string, int from_tty, struct target_ops *target)
863 {
864 register struct so_list *so = NULL; /* link map state variable */
865
866 /* Last shared library that we read. */
867 struct so_list *so_last = NULL;
868
869 char *re_err;
870 int count;
871 int old;
872
873 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
874 {
875 error ("Invalid regexp: %s", re_err);
876 }
877
878 /* Add the shared library sections to the section table of the
879 specified target, if any. */
880 if (target)
881 {
882 /* Count how many new section_table entries there are. */
883 so = NULL;
884 count = 0;
885 while ((so = find_solib (so)) != NULL)
886 {
887 if (so->so_name[0])
888 {
889 count += so->sections_end - so->sections;
890 }
891 }
892
893 if (count)
894 {
895 old = target_resize_to_sections (target, count);
896
897 /* Add these section table entries to the target's table. */
898 while ((so = find_solib (so)) != NULL)
899 {
900 if (so->so_name[0])
901 {
902 count = so->sections_end - so->sections;
903 memcpy ((char *) (target->to_sections + old),
904 so->sections,
905 (sizeof (struct section_table)) * count);
906 old += count;
907 }
908 }
909 }
910 }
911
912 /* Now add the symbol files. */
913 while ((so = find_solib (so)) != NULL)
914 {
915 if (so->so_name[0] && re_exec (so->so_name))
916 {
917 so->from_tty = from_tty;
918 if (so->symbols_loaded)
919 {
920 if (from_tty)
921 {
922 printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
923 }
924 }
925 else if (catch_errors
926 (symbol_add_stub, (char *) so,
927 "Error while reading shared library symbols:\n",
928 RETURN_MASK_ALL))
929 {
930 so_last = so;
931 so->symbols_loaded = 1;
932 }
933 }
934 }
935
936 /* Getting new symbols may change our opinion about what is
937 frameless. */
938 if (so_last)
939 reinit_frame_cache ();
940 }
941
942 /*
943
944 LOCAL FUNCTION
945
946 info_sharedlibrary_command -- code for "info sharedlibrary"
947
948 SYNOPSIS
949
950 static void info_sharedlibrary_command ()
951
952 DESCRIPTION
953
954 Walk through the shared library list and print information
955 about each attached library.
956 */
957
958 static void
959 info_sharedlibrary_command (char *ignore, int from_tty)
960 {
961 register struct so_list *so = NULL; /* link map state variable */
962 int header_done = 0;
963
964 if (exec_bfd == NULL)
965 {
966 printf_unfiltered ("No executable file.\n");
967 return;
968 }
969 while ((so = find_solib (so)) != NULL)
970 {
971 if (so->so_name[0])
972 {
973 if (!header_done)
974 {
975 printf_unfiltered ("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
976 "Shared Object Library");
977 header_done++;
978 }
979 printf_unfiltered ("%-12s",
980 local_hex_string_custom ((unsigned long) LM_ADDR (so),
981 "08l"));
982 printf_unfiltered ("%-12s",
983 local_hex_string_custom ((unsigned long) so->lmend,
984 "08l"));
985 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
986 printf_unfiltered ("%s\n", so->so_name);
987 }
988 }
989 if (so_list_head == NULL)
990 {
991 printf_unfiltered ("No shared libraries loaded at this time.\n");
992 }
993 }
994
995 /*
996
997 GLOBAL FUNCTION
998
999 solib_address -- check to see if an address is in a shared lib
1000
1001 SYNOPSIS
1002
1003 char *solib_address (CORE_ADDR address)
1004
1005 DESCRIPTION
1006
1007 Provides a hook for other gdb routines to discover whether or
1008 not a particular address is within the mapped address space of
1009 a shared library. Any address between the base mapping address
1010 and the first address beyond the end of the last mapping, is
1011 considered to be within the shared library address space, for
1012 our purposes.
1013
1014 For example, this routine is called at one point to disable
1015 breakpoints which are in shared libraries that are not currently
1016 mapped in.
1017 */
1018
1019 char *
1020 solib_address (CORE_ADDR address)
1021 {
1022 register struct so_list *so = 0; /* link map state variable */
1023
1024 while ((so = find_solib (so)) != NULL)
1025 {
1026 if (so->so_name[0])
1027 {
1028 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
1029 (address < (CORE_ADDR) so->lmend))
1030 return (so->so_name);
1031 }
1032 }
1033 return (0);
1034 }
1035
1036 /* Called by free_all_symtabs */
1037
1038 void
1039 clear_solib (void)
1040 {
1041 struct so_list *next;
1042 char *bfd_filename;
1043
1044 disable_breakpoints_in_shlibs (1);
1045
1046 while (so_list_head)
1047 {
1048 if (so_list_head->sections)
1049 {
1050 free ((PTR) so_list_head->sections);
1051 }
1052 if (so_list_head->abfd)
1053 {
1054 bfd_filename = bfd_get_filename (so_list_head->abfd);
1055 if (!bfd_close (so_list_head->abfd))
1056 warning ("cannot close \"%s\": %s",
1057 bfd_filename, bfd_errmsg (bfd_get_error ()));
1058 }
1059 else
1060 /* This happens for the executable on SVR4. */
1061 bfd_filename = NULL;
1062
1063 next = so_list_head->next;
1064 if (bfd_filename)
1065 free ((PTR) bfd_filename);
1066 free (so_list_head->so_name);
1067 free ((PTR) so_list_head);
1068 so_list_head = next;
1069 }
1070 debug_base = 0;
1071 }
1072
1073 /*
1074
1075 LOCAL FUNCTION
1076
1077 disable_break -- remove the "mapping changed" breakpoint
1078
1079 SYNOPSIS
1080
1081 static int disable_break ()
1082
1083 DESCRIPTION
1084
1085 Removes the breakpoint that gets hit when the dynamic linker
1086 completes a mapping change.
1087
1088 */
1089
1090 static int
1091 disable_break (void)
1092 {
1093 int status = 1;
1094
1095
1096 /* Note that breakpoint address and original contents are in our address
1097 space, so we just need to write the original contents back. */
1098
1099 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1100 {
1101 status = 0;
1102 }
1103
1104 /* For the SVR4 version, we always know the breakpoint address. For the
1105 SunOS version we don't know it until the above code is executed.
1106 Grumble if we are stopped anywhere besides the breakpoint address. */
1107
1108 if (stop_pc != breakpoint_addr)
1109 {
1110 warning ("stopped at unknown breakpoint while handling shared libraries");
1111 }
1112
1113 return (status);
1114 }
1115
1116 /*
1117
1118 LOCAL FUNCTION
1119
1120 enable_break -- arrange for dynamic linker to hit breakpoint
1121
1122 SYNOPSIS
1123
1124 int enable_break (void)
1125
1126 DESCRIPTION
1127
1128 This functions inserts a breakpoint at the entry point of the
1129 main executable, where all shared libraries are mapped in.
1130 */
1131
1132 static int
1133 enable_break (void)
1134 {
1135 if (symfile_objfile != NULL
1136 && target_insert_breakpoint (symfile_objfile->ei.entry_point,
1137 shadow_contents) == 0)
1138 {
1139 breakpoint_addr = symfile_objfile->ei.entry_point;
1140 return 1;
1141 }
1142
1143 return 0;
1144 }
1145
1146 /*
1147
1148 GLOBAL FUNCTION
1149
1150 solib_create_inferior_hook -- shared library startup support
1151
1152 SYNOPSIS
1153
1154 void solib_create_inferior_hook()
1155
1156 DESCRIPTION
1157
1158 When gdb starts up the inferior, it nurses it along (through the
1159 shell) until it is ready to execute it's first instruction. At this
1160 point, this function gets called via expansion of the macro
1161 SOLIB_CREATE_INFERIOR_HOOK.
1162
1163 For SunOS executables, this first instruction is typically the
1164 one at "_start", or a similar text label, regardless of whether
1165 the executable is statically or dynamically linked. The runtime
1166 startup code takes care of dynamically linking in any shared
1167 libraries, once gdb allows the inferior to continue.
1168
1169 For SVR4 executables, this first instruction is either the first
1170 instruction in the dynamic linker (for dynamically linked
1171 executables) or the instruction at "start" for statically linked
1172 executables. For dynamically linked executables, the system
1173 first exec's /lib/libc.so.N, which contains the dynamic linker,
1174 and starts it running. The dynamic linker maps in any needed
1175 shared libraries, maps in the actual user executable, and then
1176 jumps to "start" in the user executable.
1177
1178 For both SunOS shared libraries, and SVR4 shared libraries, we
1179 can arrange to cooperate with the dynamic linker to discover the
1180 names of shared libraries that are dynamically linked, and the
1181 base addresses to which they are linked.
1182
1183 This function is responsible for discovering those names and
1184 addresses, and saving sufficient information about them to allow
1185 their symbols to be read at a later time.
1186
1187 FIXME
1188
1189 Between enable_break() and disable_break(), this code does not
1190 properly handle hitting breakpoints which the user might have
1191 set in the startup code or in the dynamic linker itself. Proper
1192 handling will probably have to wait until the implementation is
1193 changed to use the "breakpoint handler function" method.
1194
1195 Also, what if child has exit()ed? Must exit loop somehow.
1196 */
1197
1198 void
1199 solib_create_inferior_hook (void)
1200 {
1201 if (!enable_break ())
1202 {
1203 warning ("shared library handler failed to enable breakpoint");
1204 return;
1205 }
1206
1207 /* Now run the target. It will eventually hit the breakpoint, at
1208 which point all of the libraries will have been mapped in and we
1209 can go groveling around in the dynamic linker structures to find
1210 out what we need to know about them. */
1211
1212 clear_proceed_status ();
1213 stop_soon_quietly = 1;
1214 stop_signal = TARGET_SIGNAL_0;
1215 do
1216 {
1217 target_resume (-1, 0, stop_signal);
1218 wait_for_inferior ();
1219 }
1220 while (stop_signal != TARGET_SIGNAL_TRAP);
1221
1222 /* We are now either at the "mapping complete" breakpoint (or somewhere
1223 else, a condition we aren't prepared to deal with anyway), so adjust
1224 the PC as necessary after a breakpoint, disable the breakpoint, and
1225 add any shared libraries that were mapped in. */
1226
1227 if (DECR_PC_AFTER_BREAK)
1228 {
1229 stop_pc -= DECR_PC_AFTER_BREAK;
1230 write_register (PC_REGNUM, stop_pc);
1231 }
1232
1233 if (!disable_break ())
1234 {
1235 warning ("shared library handler failed to disable breakpoint");
1236 }
1237
1238 /* solib_add will call reinit_frame_cache.
1239 But we are stopped in the startup code and we might not have symbols
1240 for the startup code, so heuristic_proc_start could be called
1241 and will put out an annoying warning.
1242 Delaying the resetting of stop_soon_quietly until after symbol loading
1243 suppresses the warning. */
1244 if (auto_solib_add)
1245 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1246 stop_soon_quietly = 0;
1247 }
1248
1249 /*
1250
1251 LOCAL FUNCTION
1252
1253 sharedlibrary_command -- handle command to explicitly add library
1254
1255 SYNOPSIS
1256
1257 static void sharedlibrary_command (char *args, int from_tty)
1258
1259 DESCRIPTION
1260
1261 */
1262
1263 static void
1264 sharedlibrary_command (char *args, int from_tty)
1265 {
1266 dont_repeat ();
1267 solib_add (args, from_tty, (struct target_ops *) 0);
1268 }
1269
1270 void
1271 _initialize_solib (void)
1272 {
1273 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1274 "Load shared object library symbols for files matching REGEXP.");
1275 add_info ("sharedlibrary", info_sharedlibrary_command,
1276 "Status of loaded shared object libraries.");
1277
1278 add_show_from_set
1279 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1280 (char *) &auto_solib_add,
1281 "Set autoloading of shared library symbols.\n\
1282 If nonzero, symbols from all shared object libraries will be loaded\n\
1283 automatically when the inferior begins execution or when the dynamic linker\n\
1284 informs gdb that a new library has been loaded. Otherwise, symbols\n\
1285 must be loaded manually, using `sharedlibrary'.",
1286 &setlist),
1287 &showlist);
1288 }
1289 \f
1290
1291 /* Register that we are able to handle irix5 core file formats.
1292 This really is bfd_target_unknown_flavour */
1293
1294 static struct core_fns irix5_core_fns =
1295 {
1296 bfd_target_unknown_flavour, /* core_flavour */
1297 default_check_format, /* check_format */
1298 default_core_sniffer, /* core_sniffer */
1299 fetch_core_registers, /* core_read_registers */
1300 NULL /* next */
1301 };
1302
1303 void
1304 _initialize_core_irix5 (void)
1305 {
1306 add_core_fns (&irix5_core_fns);
1307 }
This page took 0.055593 seconds and 4 git commands to generate.