Fix grammar in error message.
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observer.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42
43 static const char *jit_reader_dir = NULL;
44
45 static const struct objfile_data *jit_objfile_data;
46
47 static const char *const jit_break_name = "__jit_debug_register_code";
48
49 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
50
51 static const struct program_space_data *jit_program_space_data = NULL;
52
53 static void jit_inferior_init (struct gdbarch *gdbarch);
54 static void jit_inferior_exit_hook (struct inferior *inf);
55
56 /* An unwinder is registered for every gdbarch. This key is used to
57 remember if the unwinder has been registered for a particular
58 gdbarch. */
59
60 static struct gdbarch_data *jit_gdbarch_data;
61
62 /* Non-zero if we want to see trace of jit level stuff. */
63
64 static unsigned int jit_debug = 0;
65
66 static void
67 show_jit_debug (struct ui_file *file, int from_tty,
68 struct cmd_list_element *c, const char *value)
69 {
70 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
71 }
72
73 struct target_buffer
74 {
75 CORE_ADDR base;
76 ULONGEST size;
77 };
78
79 /* Openning the file is a no-op. */
80
81 static void *
82 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
83 {
84 return open_closure;
85 }
86
87 /* Closing the file is just freeing the base/size pair on our side. */
88
89 static int
90 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
91 {
92 xfree (stream);
93
94 /* Zero means success. */
95 return 0;
96 }
97
98 /* For reading the file, we just need to pass through to target_read_memory and
99 fix up the arguments and return values. */
100
101 static file_ptr
102 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
103 file_ptr nbytes, file_ptr offset)
104 {
105 int err;
106 struct target_buffer *buffer = (struct target_buffer *) stream;
107
108 /* If this read will read all of the file, limit it to just the rest. */
109 if (offset + nbytes > buffer->size)
110 nbytes = buffer->size - offset;
111
112 /* If there are no more bytes left, we've reached EOF. */
113 if (nbytes == 0)
114 return 0;
115
116 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
117 if (err)
118 return -1;
119
120 return nbytes;
121 }
122
123 /* For statting the file, we only support the st_size attribute. */
124
125 static int
126 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
127 {
128 struct target_buffer *buffer = (struct target_buffer*) stream;
129
130 memset (sb, 0, sizeof (struct stat));
131 sb->st_size = buffer->size;
132 return 0;
133 }
134
135 /* Open a BFD from the target's memory. */
136
137 static struct bfd *
138 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
139 {
140 struct target_buffer *buffer = XNEW (struct target_buffer);
141
142 buffer->base = addr;
143 buffer->size = size;
144 return gdb_bfd_openr_iovec ("<in-memory>", target,
145 mem_bfd_iovec_open,
146 buffer,
147 mem_bfd_iovec_pread,
148 mem_bfd_iovec_close,
149 mem_bfd_iovec_stat);
150 }
151
152 /* One reader that has been loaded successfully, and can potentially be used to
153 parse debug info. */
154
155 static struct jit_reader
156 {
157 struct gdb_reader_funcs *functions;
158 void *handle;
159 } *loaded_jit_reader = NULL;
160
161 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
162 static const char *reader_init_fn_sym = "gdb_init_reader";
163
164 /* Try to load FILE_NAME as a JIT debug info reader. */
165
166 static struct jit_reader *
167 jit_reader_load (const char *file_name)
168 {
169 void *so;
170 reader_init_fn_type *init_fn;
171 struct jit_reader *new_reader = NULL;
172 struct gdb_reader_funcs *funcs = NULL;
173 struct cleanup *old_cleanups;
174
175 if (jit_debug)
176 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
177 file_name);
178 so = gdb_dlopen (file_name);
179 old_cleanups = make_cleanup_dlclose (so);
180
181 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
182 if (!init_fn)
183 error (_("Could not locate initialization function: %s."),
184 reader_init_fn_sym);
185
186 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
187 error (_("Reader not GPL compatible."));
188
189 funcs = init_fn ();
190 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
191 error (_("Reader version does not match GDB version."));
192
193 new_reader = XCNEW (struct jit_reader);
194 new_reader->functions = funcs;
195 new_reader->handle = so;
196
197 discard_cleanups (old_cleanups);
198 return new_reader;
199 }
200
201 /* Provides the jit-reader-load command. */
202
203 static void
204 jit_reader_load_command (char *args, int from_tty)
205 {
206 char *so_name;
207 struct cleanup *prev_cleanup;
208
209 if (args == NULL)
210 error (_("No reader name provided."));
211
212 if (loaded_jit_reader != NULL)
213 error (_("JIT reader already loaded. Run jit-reader-unload first."));
214
215 if (IS_ABSOLUTE_PATH (args))
216 so_name = xstrdup (args);
217 else
218 so_name = xstrprintf ("%s%s%s", jit_reader_dir, SLASH_STRING, args);
219 prev_cleanup = make_cleanup (xfree, so_name);
220
221 loaded_jit_reader = jit_reader_load (so_name);
222 reinit_frame_cache ();
223 jit_inferior_created_hook ();
224 do_cleanups (prev_cleanup);
225 }
226
227 /* Provides the jit-reader-unload command. */
228
229 static void
230 jit_reader_unload_command (char *args, int from_tty)
231 {
232 if (!loaded_jit_reader)
233 error (_("No JIT reader loaded."));
234
235 reinit_frame_cache ();
236 jit_inferior_exit_hook (current_inferior ());
237 loaded_jit_reader->functions->destroy (loaded_jit_reader->functions);
238
239 gdb_dlclose (loaded_jit_reader->handle);
240 xfree (loaded_jit_reader);
241 loaded_jit_reader = NULL;
242 }
243
244 /* Per-program space structure recording which objfile has the JIT
245 symbols. */
246
247 struct jit_program_space_data
248 {
249 /* The objfile. This is NULL if no objfile holds the JIT
250 symbols. */
251
252 struct objfile *objfile;
253
254 /* If this program space has __jit_debug_register_code, this is the
255 cached address from the minimal symbol. This is used to detect
256 relocations requiring the breakpoint to be re-created. */
257
258 CORE_ADDR cached_code_address;
259
260 /* This is the JIT event breakpoint, or NULL if it has not been
261 set. */
262
263 struct breakpoint *jit_breakpoint;
264 };
265
266 /* Per-objfile structure recording the addresses in the program space.
267 This object serves two purposes: for ordinary objfiles, it may
268 cache some symbols related to the JIT interface; and for
269 JIT-created objfiles, it holds some information about the
270 jit_code_entry. */
271
272 struct jit_objfile_data
273 {
274 /* Symbol for __jit_debug_register_code. */
275 struct minimal_symbol *register_code;
276
277 /* Symbol for __jit_debug_descriptor. */
278 struct minimal_symbol *descriptor;
279
280 /* Address of struct jit_code_entry in this objfile. This is only
281 non-zero for objfiles that represent code created by the JIT. */
282 CORE_ADDR addr;
283 };
284
285 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
286 yet, make a new structure and attach it. */
287
288 static struct jit_objfile_data *
289 get_jit_objfile_data (struct objfile *objf)
290 {
291 struct jit_objfile_data *objf_data;
292
293 objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
294 if (objf_data == NULL)
295 {
296 objf_data = XCNEW (struct jit_objfile_data);
297 set_objfile_data (objf, jit_objfile_data, objf_data);
298 }
299
300 return objf_data;
301 }
302
303 /* Remember OBJFILE has been created for struct jit_code_entry located
304 at inferior address ENTRY. */
305
306 static void
307 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
308 {
309 struct jit_objfile_data *objf_data;
310
311 objf_data = get_jit_objfile_data (objfile);
312 objf_data->addr = entry;
313 }
314
315 /* Return jit_program_space_data for current program space. Allocate
316 if not already present. */
317
318 static struct jit_program_space_data *
319 get_jit_program_space_data (void)
320 {
321 struct jit_program_space_data *ps_data;
322
323 ps_data
324 = ((struct jit_program_space_data *)
325 program_space_data (current_program_space, jit_program_space_data));
326 if (ps_data == NULL)
327 {
328 ps_data = XCNEW (struct jit_program_space_data);
329 set_program_space_data (current_program_space, jit_program_space_data,
330 ps_data);
331 }
332
333 return ps_data;
334 }
335
336 static void
337 jit_program_space_data_cleanup (struct program_space *ps, void *arg)
338 {
339 xfree (arg);
340 }
341
342 /* Helper function for reading the global JIT descriptor from remote
343 memory. Returns 1 if all went well, 0 otherwise. */
344
345 static int
346 jit_read_descriptor (struct gdbarch *gdbarch,
347 struct jit_descriptor *descriptor,
348 struct jit_program_space_data *ps_data)
349 {
350 int err;
351 struct type *ptr_type;
352 int ptr_size;
353 int desc_size;
354 gdb_byte *desc_buf;
355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
356 struct jit_objfile_data *objf_data;
357
358 if (ps_data->objfile == NULL)
359 return 0;
360 objf_data = get_jit_objfile_data (ps_data->objfile);
361 if (objf_data->descriptor == NULL)
362 return 0;
363
364 if (jit_debug)
365 fprintf_unfiltered (gdb_stdlog,
366 "jit_read_descriptor, descriptor_addr = %s\n",
367 paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
368 objf_data->descriptor)));
369
370 /* Figure out how big the descriptor is on the remote and how to read it. */
371 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
372 ptr_size = TYPE_LENGTH (ptr_type);
373 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
374 desc_buf = (gdb_byte *) alloca (desc_size);
375
376 /* Read the descriptor. */
377 err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
378 objf_data->descriptor),
379 desc_buf, desc_size);
380 if (err)
381 {
382 printf_unfiltered (_("Unable to read JIT descriptor from "
383 "remote memory\n"));
384 return 0;
385 }
386
387 /* Fix the endianness to match the host. */
388 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
389 descriptor->action_flag =
390 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
391 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
392 descriptor->first_entry =
393 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
394
395 return 1;
396 }
397
398 /* Helper function for reading a JITed code entry from remote memory. */
399
400 static void
401 jit_read_code_entry (struct gdbarch *gdbarch,
402 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
403 {
404 int err, off;
405 struct type *ptr_type;
406 int ptr_size;
407 int entry_size;
408 int align_bytes;
409 gdb_byte *entry_buf;
410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
411
412 /* Figure out how big the entry is on the remote and how to read it. */
413 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
414 ptr_size = TYPE_LENGTH (ptr_type);
415
416 /* Figure out where the longlong value will be. */
417 align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
418 off = 3 * ptr_size;
419 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
420
421 entry_size = off + 8; /* Three pointers and one 64-bit int. */
422 entry_buf = (gdb_byte *) alloca (entry_size);
423
424 /* Read the entry. */
425 err = target_read_memory (code_addr, entry_buf, entry_size);
426 if (err)
427 error (_("Unable to read JIT code entry from remote memory!"));
428
429 /* Fix the endianness to match the host. */
430 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
431 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
432 code_entry->prev_entry =
433 extract_typed_address (&entry_buf[ptr_size], ptr_type);
434 code_entry->symfile_addr =
435 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
436 code_entry->symfile_size =
437 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
438 }
439
440 /* Proxy object for building a block. */
441
442 struct gdb_block
443 {
444 /* gdb_blocks are linked into a tree structure. Next points to the
445 next node at the same depth as this block and parent to the
446 parent gdb_block. */
447 struct gdb_block *next, *parent;
448
449 /* Points to the "real" block that is being built out of this
450 instance. This block will be added to a blockvector, which will
451 then be added to a symtab. */
452 struct block *real_block;
453
454 /* The first and last code address corresponding to this block. */
455 CORE_ADDR begin, end;
456
457 /* The name of this block (if any). If this is non-NULL, the
458 FUNCTION symbol symbol is set to this value. */
459 const char *name;
460 };
461
462 /* Proxy object for building a symtab. */
463
464 struct gdb_symtab
465 {
466 /* The list of blocks in this symtab. These will eventually be
467 converted to real blocks. */
468 struct gdb_block *blocks;
469
470 /* The number of blocks inserted. */
471 int nblocks;
472
473 /* A mapping between line numbers to PC. */
474 struct linetable *linetable;
475
476 /* The source file for this symtab. */
477 const char *file_name;
478 struct gdb_symtab *next;
479 };
480
481 /* Proxy object for building an object. */
482
483 struct gdb_object
484 {
485 struct gdb_symtab *symtabs;
486 };
487
488 /* The type of the `private' data passed around by the callback
489 functions. */
490
491 typedef CORE_ADDR jit_dbg_reader_data;
492
493 /* The reader calls into this function to read data off the targets
494 address space. */
495
496 static enum gdb_status
497 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
498 {
499 int result = target_read_memory ((CORE_ADDR) target_mem,
500 (gdb_byte *) gdb_buf, len);
501 if (result == 0)
502 return GDB_SUCCESS;
503 else
504 return GDB_FAIL;
505 }
506
507 /* The reader calls into this function to create a new gdb_object
508 which it can then pass around to the other callbacks. Right now,
509 all that is required is allocating the memory. */
510
511 static struct gdb_object *
512 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
513 {
514 /* CB is not required right now, but sometime in the future we might
515 need a handle to it, and we'd like to do that without breaking
516 the ABI. */
517 return XCNEW (struct gdb_object);
518 }
519
520 /* Readers call into this function to open a new gdb_symtab, which,
521 again, is passed around to other callbacks. */
522
523 static struct gdb_symtab *
524 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
525 struct gdb_object *object,
526 const char *file_name)
527 {
528 struct gdb_symtab *ret;
529
530 /* CB stays unused. See comment in jit_object_open_impl. */
531
532 ret = XCNEW (struct gdb_symtab);
533 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
534 ret->next = object->symtabs;
535 object->symtabs = ret;
536 return ret;
537 }
538
539 /* Returns true if the block corresponding to old should be placed
540 before the block corresponding to new in the final blockvector. */
541
542 static int
543 compare_block (const struct gdb_block *const old,
544 const struct gdb_block *const newobj)
545 {
546 if (old == NULL)
547 return 1;
548 if (old->begin < newobj->begin)
549 return 1;
550 else if (old->begin == newobj->begin)
551 {
552 if (old->end > newobj->end)
553 return 1;
554 else
555 return 0;
556 }
557 else
558 return 0;
559 }
560
561 /* Called by readers to open a new gdb_block. This function also
562 inserts the new gdb_block in the correct place in the corresponding
563 gdb_symtab. */
564
565 static struct gdb_block *
566 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
567 struct gdb_symtab *symtab, struct gdb_block *parent,
568 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
569 {
570 struct gdb_block *block = XCNEW (struct gdb_block);
571
572 block->next = symtab->blocks;
573 block->begin = (CORE_ADDR) begin;
574 block->end = (CORE_ADDR) end;
575 block->name = name ? xstrdup (name) : NULL;
576 block->parent = parent;
577
578 /* Ensure that the blocks are inserted in the correct (reverse of
579 the order expected by blockvector). */
580 if (compare_block (symtab->blocks, block))
581 {
582 symtab->blocks = block;
583 }
584 else
585 {
586 struct gdb_block *i = symtab->blocks;
587
588 for (;; i = i->next)
589 {
590 /* Guaranteed to terminate, since compare_block (NULL, _)
591 returns 1. */
592 if (compare_block (i->next, block))
593 {
594 block->next = i->next;
595 i->next = block;
596 break;
597 }
598 }
599 }
600 symtab->nblocks++;
601
602 return block;
603 }
604
605 /* Readers call this to add a line mapping (from PC to line number) to
606 a gdb_symtab. */
607
608 static void
609 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
610 struct gdb_symtab *stab, int nlines,
611 struct gdb_line_mapping *map)
612 {
613 int i;
614 int alloc_len;
615
616 if (nlines < 1)
617 return;
618
619 alloc_len = sizeof (struct linetable)
620 + (nlines - 1) * sizeof (struct linetable_entry);
621 stab->linetable = (struct linetable *) xmalloc (alloc_len);
622 stab->linetable->nitems = nlines;
623 for (i = 0; i < nlines; i++)
624 {
625 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
626 stab->linetable->item[i].line = map[i].line;
627 }
628 }
629
630 /* Called by readers to close a gdb_symtab. Does not need to do
631 anything as of now. */
632
633 static void
634 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
635 struct gdb_symtab *stab)
636 {
637 /* Right now nothing needs to be done here. We may need to do some
638 cleanup here in the future (again, without breaking the plugin
639 ABI). */
640 }
641
642 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
643
644 static void
645 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
646 {
647 struct compunit_symtab *cust;
648 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
649 struct block *block_iter;
650 int actual_nblocks, i;
651 size_t blockvector_size;
652 CORE_ADDR begin, end;
653 struct blockvector *bv;
654
655 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
656
657 cust = allocate_compunit_symtab (objfile, stab->file_name);
658 allocate_symtab (cust, stab->file_name);
659 add_compunit_symtab_to_objfile (cust);
660
661 /* JIT compilers compile in memory. */
662 COMPUNIT_DIRNAME (cust) = NULL;
663
664 /* Copy over the linetable entry if one was provided. */
665 if (stab->linetable)
666 {
667 size_t size = ((stab->linetable->nitems - 1)
668 * sizeof (struct linetable_entry)
669 + sizeof (struct linetable));
670 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
671 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
672 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)), stab->linetable,
673 size);
674 }
675
676 blockvector_size = (sizeof (struct blockvector)
677 + (actual_nblocks - 1) * sizeof (struct block *));
678 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
679 blockvector_size);
680 COMPUNIT_BLOCKVECTOR (cust) = bv;
681
682 /* (begin, end) will contain the PC range this entire blockvector
683 spans. */
684 BLOCKVECTOR_MAP (bv) = NULL;
685 begin = stab->blocks->begin;
686 end = stab->blocks->end;
687 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
688
689 /* First run over all the gdb_block objects, creating a real block
690 object for each. Simultaneously, keep setting the real_block
691 fields. */
692 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
693 i >= FIRST_LOCAL_BLOCK;
694 i--, gdb_block_iter = gdb_block_iter->next)
695 {
696 struct block *new_block = allocate_block (&objfile->objfile_obstack);
697 struct symbol *block_name = allocate_symbol (objfile);
698 struct type *block_type = arch_type (get_objfile_arch (objfile),
699 TYPE_CODE_VOID,
700 1,
701 "void");
702
703 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
704 NULL);
705 /* The address range. */
706 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
707 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
708
709 /* The name. */
710 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
711 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
712 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
713 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
714 SYMBOL_BLOCK_VALUE (block_name) = new_block;
715
716 block_name->ginfo.name
717 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
718 gdb_block_iter->name,
719 strlen (gdb_block_iter->name));
720
721 BLOCK_FUNCTION (new_block) = block_name;
722
723 BLOCKVECTOR_BLOCK (bv, i) = new_block;
724 if (begin > BLOCK_START (new_block))
725 begin = BLOCK_START (new_block);
726 if (end < BLOCK_END (new_block))
727 end = BLOCK_END (new_block);
728
729 gdb_block_iter->real_block = new_block;
730 }
731
732 /* Now add the special blocks. */
733 block_iter = NULL;
734 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
735 {
736 struct block *new_block;
737
738 new_block = (i == GLOBAL_BLOCK
739 ? allocate_global_block (&objfile->objfile_obstack)
740 : allocate_block (&objfile->objfile_obstack));
741 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
742 NULL);
743 BLOCK_SUPERBLOCK (new_block) = block_iter;
744 block_iter = new_block;
745
746 BLOCK_START (new_block) = (CORE_ADDR) begin;
747 BLOCK_END (new_block) = (CORE_ADDR) end;
748
749 BLOCKVECTOR_BLOCK (bv, i) = new_block;
750
751 if (i == GLOBAL_BLOCK)
752 set_block_compunit_symtab (new_block, cust);
753 }
754
755 /* Fill up the superblock fields for the real blocks, using the
756 real_block fields populated earlier. */
757 for (gdb_block_iter = stab->blocks;
758 gdb_block_iter;
759 gdb_block_iter = gdb_block_iter->next)
760 {
761 if (gdb_block_iter->parent != NULL)
762 {
763 /* If the plugin specifically mentioned a parent block, we
764 use that. */
765 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
766 gdb_block_iter->parent->real_block;
767 }
768 else
769 {
770 /* And if not, we set a default parent block. */
771 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
772 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
773 }
774 }
775
776 /* Free memory. */
777 gdb_block_iter = stab->blocks;
778
779 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
780 gdb_block_iter;
781 gdb_block_iter = gdb_block_iter_tmp)
782 {
783 xfree ((void *) gdb_block_iter->name);
784 xfree (gdb_block_iter);
785 }
786 xfree (stab->linetable);
787 xfree ((char *) stab->file_name);
788 xfree (stab);
789 }
790
791 /* Called when closing a gdb_objfile. Converts OBJ to a proper
792 objfile. */
793
794 static void
795 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
796 struct gdb_object *obj)
797 {
798 struct gdb_symtab *i, *j;
799 struct objfile *objfile;
800 jit_dbg_reader_data *priv_data;
801
802 priv_data = (jit_dbg_reader_data *) cb->priv_data;
803
804 objfile = allocate_objfile (NULL, "<< JIT compiled code >>",
805 OBJF_NOT_FILENAME);
806 objfile->per_bfd->gdbarch = target_gdbarch ();
807
808 terminate_minimal_symbol_table (objfile);
809
810 j = NULL;
811 for (i = obj->symtabs; i; i = j)
812 {
813 j = i->next;
814 finalize_symtab (i, objfile);
815 }
816 add_objfile_entry (objfile, *priv_data);
817 xfree (obj);
818 }
819
820 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
821 ENTRY_ADDR is the address of the struct jit_code_entry in the
822 inferior address space. */
823
824 static int
825 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
826 CORE_ADDR entry_addr)
827 {
828 gdb_byte *gdb_mem;
829 int status;
830 jit_dbg_reader_data priv_data;
831 struct gdb_reader_funcs *funcs;
832 struct gdb_symbol_callbacks callbacks =
833 {
834 jit_object_open_impl,
835 jit_symtab_open_impl,
836 jit_block_open_impl,
837 jit_symtab_close_impl,
838 jit_object_close_impl,
839
840 jit_symtab_line_mapping_add_impl,
841 jit_target_read_impl,
842
843 &priv_data
844 };
845
846 priv_data = entry_addr;
847
848 if (!loaded_jit_reader)
849 return 0;
850
851 gdb_mem = (gdb_byte *) xmalloc (code_entry->symfile_size);
852
853 status = 1;
854 TRY
855 {
856 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
857 code_entry->symfile_size))
858 status = 0;
859 }
860 CATCH (e, RETURN_MASK_ALL)
861 {
862 status = 0;
863 }
864 END_CATCH
865
866 if (status)
867 {
868 funcs = loaded_jit_reader->functions;
869 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
870 != GDB_SUCCESS)
871 status = 0;
872 }
873
874 xfree (gdb_mem);
875 if (jit_debug && status == 0)
876 fprintf_unfiltered (gdb_stdlog,
877 "Could not read symtab using the loaded JIT reader.\n");
878 return status;
879 }
880
881 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
882 struct jit_code_entry in the inferior address space. */
883
884 static void
885 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
886 CORE_ADDR entry_addr,
887 struct gdbarch *gdbarch)
888 {
889 bfd *nbfd;
890 struct section_addr_info *sai;
891 struct bfd_section *sec;
892 struct objfile *objfile;
893 struct cleanup *old_cleanups;
894 int i;
895 const struct bfd_arch_info *b;
896
897 if (jit_debug)
898 fprintf_unfiltered (gdb_stdlog,
899 "jit_register_code, symfile_addr = %s, "
900 "symfile_size = %s\n",
901 paddress (gdbarch, code_entry->symfile_addr),
902 pulongest (code_entry->symfile_size));
903
904 nbfd = bfd_open_from_target_memory (code_entry->symfile_addr,
905 code_entry->symfile_size, gnutarget);
906 if (nbfd == NULL)
907 {
908 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
909 return;
910 }
911
912 /* Check the format. NOTE: This initializes important data that GDB uses!
913 We would segfault later without this line. */
914 if (!bfd_check_format (nbfd, bfd_object))
915 {
916 printf_unfiltered (_("\
917 JITed symbol file is not an object file, ignoring it.\n"));
918 gdb_bfd_unref (nbfd);
919 return;
920 }
921
922 /* Check bfd arch. */
923 b = gdbarch_bfd_arch_info (gdbarch);
924 if (b->compatible (b, bfd_get_arch_info (nbfd)) != b)
925 warning (_("JITed object file architecture %s is not compatible "
926 "with target architecture %s."), bfd_get_arch_info
927 (nbfd)->printable_name, b->printable_name);
928
929 /* Read the section address information out of the symbol file. Since the
930 file is generated by the JIT at runtime, it should all of the absolute
931 addresses that we care about. */
932 sai = alloc_section_addr_info (bfd_count_sections (nbfd));
933 old_cleanups = make_cleanup_free_section_addr_info (sai);
934 i = 0;
935 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
936 if ((bfd_get_section_flags (nbfd, sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
937 {
938 /* We assume that these virtual addresses are absolute, and do not
939 treat them as offsets. */
940 sai->other[i].addr = bfd_get_section_vma (nbfd, sec);
941 sai->other[i].name = xstrdup (bfd_get_section_name (nbfd, sec));
942 sai->other[i].sectindex = sec->index;
943 ++i;
944 }
945 sai->num_sections = i;
946
947 /* This call does not take ownership of SAI. */
948 make_cleanup_bfd_unref (nbfd);
949 objfile = symbol_file_add_from_bfd (nbfd, bfd_get_filename (nbfd), 0, sai,
950 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
951
952 do_cleanups (old_cleanups);
953 add_objfile_entry (objfile, entry_addr);
954 }
955
956 /* This function registers code associated with a JIT code entry. It uses the
957 pointer and size pair in the entry to read the symbol file from the remote
958 and then calls symbol_file_add_from_local_memory to add it as though it were
959 a symbol file added by the user. */
960
961 static void
962 jit_register_code (struct gdbarch *gdbarch,
963 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
964 {
965 int success;
966
967 if (jit_debug)
968 fprintf_unfiltered (gdb_stdlog,
969 "jit_register_code, symfile_addr = %s, "
970 "symfile_size = %s\n",
971 paddress (gdbarch, code_entry->symfile_addr),
972 pulongest (code_entry->symfile_size));
973
974 success = jit_reader_try_read_symtab (code_entry, entry_addr);
975
976 if (!success)
977 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
978 }
979
980 /* This function unregisters JITed code and frees the corresponding
981 objfile. */
982
983 static void
984 jit_unregister_code (struct objfile *objfile)
985 {
986 free_objfile (objfile);
987 }
988
989 /* Look up the objfile with this code entry address. */
990
991 static struct objfile *
992 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
993 {
994 struct objfile *objf;
995
996 ALL_OBJFILES (objf)
997 {
998 struct jit_objfile_data *objf_data;
999
1000 objf_data
1001 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1002 if (objf_data != NULL && objf_data->addr == entry_addr)
1003 return objf;
1004 }
1005 return NULL;
1006 }
1007
1008 /* This is called when a breakpoint is deleted. It updates the
1009 inferior's cache, if needed. */
1010
1011 static void
1012 jit_breakpoint_deleted (struct breakpoint *b)
1013 {
1014 struct bp_location *iter;
1015
1016 if (b->type != bp_jit_event)
1017 return;
1018
1019 for (iter = b->loc; iter != NULL; iter = iter->next)
1020 {
1021 struct jit_program_space_data *ps_data;
1022
1023 ps_data = ((struct jit_program_space_data *)
1024 program_space_data (iter->pspace, jit_program_space_data));
1025 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1026 {
1027 ps_data->cached_code_address = 0;
1028 ps_data->jit_breakpoint = NULL;
1029 }
1030 }
1031 }
1032
1033 /* (Re-)Initialize the jit breakpoint if necessary.
1034 Return 0 if the jit breakpoint has been successfully initialized. */
1035
1036 static int
1037 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1038 struct jit_program_space_data *ps_data)
1039 {
1040 struct bound_minimal_symbol reg_symbol;
1041 struct bound_minimal_symbol desc_symbol;
1042 struct jit_objfile_data *objf_data;
1043 CORE_ADDR addr;
1044
1045 if (ps_data->objfile == NULL)
1046 {
1047 /* Lookup the registration symbol. If it is missing, then we
1048 assume we are not attached to a JIT. */
1049 reg_symbol = lookup_minimal_symbol_and_objfile (jit_break_name);
1050 if (reg_symbol.minsym == NULL
1051 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1052 return 1;
1053
1054 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1055 reg_symbol.objfile);
1056 if (desc_symbol.minsym == NULL
1057 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1058 return 1;
1059
1060 objf_data = get_jit_objfile_data (reg_symbol.objfile);
1061 objf_data->register_code = reg_symbol.minsym;
1062 objf_data->descriptor = desc_symbol.minsym;
1063
1064 ps_data->objfile = reg_symbol.objfile;
1065 }
1066 else
1067 objf_data = get_jit_objfile_data (ps_data->objfile);
1068
1069 addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
1070
1071 if (jit_debug)
1072 fprintf_unfiltered (gdb_stdlog,
1073 "jit_breakpoint_re_set_internal, "
1074 "breakpoint_addr = %s\n",
1075 paddress (gdbarch, addr));
1076
1077 if (ps_data->cached_code_address == addr)
1078 return 0;
1079
1080 /* Delete the old breakpoint. */
1081 if (ps_data->jit_breakpoint != NULL)
1082 delete_breakpoint (ps_data->jit_breakpoint);
1083
1084 /* Put a breakpoint in the registration symbol. */
1085 ps_data->cached_code_address = addr;
1086 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1087
1088 return 0;
1089 }
1090
1091 /* The private data passed around in the frame unwind callback
1092 functions. */
1093
1094 struct jit_unwind_private
1095 {
1096 /* Cached register values. See jit_frame_sniffer to see how this
1097 works. */
1098 struct regcache *regcache;
1099
1100 /* The frame being unwound. */
1101 struct frame_info *this_frame;
1102 };
1103
1104 /* Sets the value of a particular register in this frame. */
1105
1106 static void
1107 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1108 struct gdb_reg_value *value)
1109 {
1110 struct jit_unwind_private *priv;
1111 int gdb_reg;
1112
1113 priv = (struct jit_unwind_private *) cb->priv_data;
1114
1115 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1116 dwarf_regnum);
1117 if (gdb_reg == -1)
1118 {
1119 if (jit_debug)
1120 fprintf_unfiltered (gdb_stdlog,
1121 _("Could not recognize DWARF regnum %d"),
1122 dwarf_regnum);
1123 value->free (value);
1124 return;
1125 }
1126
1127 regcache_raw_set_cached_value (priv->regcache, gdb_reg, value->value);
1128 value->free (value);
1129 }
1130
1131 static void
1132 reg_value_free_impl (struct gdb_reg_value *value)
1133 {
1134 xfree (value);
1135 }
1136
1137 /* Get the value of register REGNUM in the previous frame. */
1138
1139 static struct gdb_reg_value *
1140 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1141 {
1142 struct jit_unwind_private *priv;
1143 struct gdb_reg_value *value;
1144 int gdb_reg, size;
1145 struct gdbarch *frame_arch;
1146
1147 priv = (struct jit_unwind_private *) cb->priv_data;
1148 frame_arch = get_frame_arch (priv->this_frame);
1149
1150 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1151 size = register_size (frame_arch, gdb_reg);
1152 value = ((struct gdb_reg_value *)
1153 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1154 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1155 value->value);
1156 value->size = size;
1157 value->free = reg_value_free_impl;
1158 return value;
1159 }
1160
1161 /* gdb_reg_value has a free function, which must be called on each
1162 saved register value. */
1163
1164 static void
1165 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1166 {
1167 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1168 struct gdbarch *frame_arch;
1169 int i;
1170
1171 gdb_assert (priv_data->regcache != NULL);
1172 frame_arch = get_frame_arch (priv_data->this_frame);
1173
1174 regcache_xfree (priv_data->regcache);
1175 xfree (priv_data);
1176 }
1177
1178 /* The frame sniffer for the pseudo unwinder.
1179
1180 While this is nominally a frame sniffer, in the case where the JIT
1181 reader actually recognizes the frame, it does a lot more work -- it
1182 unwinds the frame and saves the corresponding register values in
1183 the cache. jit_frame_prev_register simply returns the saved
1184 register values. */
1185
1186 static int
1187 jit_frame_sniffer (const struct frame_unwind *self,
1188 struct frame_info *this_frame, void **cache)
1189 {
1190 struct jit_unwind_private *priv_data;
1191 struct gdb_unwind_callbacks callbacks;
1192 struct gdb_reader_funcs *funcs;
1193 struct address_space *aspace;
1194 struct gdbarch *gdbarch;
1195
1196 callbacks.reg_get = jit_unwind_reg_get_impl;
1197 callbacks.reg_set = jit_unwind_reg_set_impl;
1198 callbacks.target_read = jit_target_read_impl;
1199
1200 if (loaded_jit_reader == NULL)
1201 return 0;
1202
1203 funcs = loaded_jit_reader->functions;
1204
1205 gdb_assert (!*cache);
1206
1207 aspace = get_frame_address_space (this_frame);
1208 gdbarch = get_frame_arch (this_frame);
1209
1210 *cache = XCNEW (struct jit_unwind_private);
1211 priv_data = (struct jit_unwind_private *) *cache;
1212 priv_data->regcache = regcache_xmalloc (gdbarch, aspace);
1213 priv_data->this_frame = this_frame;
1214
1215 callbacks.priv_data = priv_data;
1216
1217 /* Try to coax the provided unwinder to unwind the stack */
1218 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1219 {
1220 if (jit_debug)
1221 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1222 "JIT reader.\n"));
1223 return 1;
1224 }
1225 if (jit_debug)
1226 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1227 "JIT reader.\n"));
1228
1229 jit_dealloc_cache (this_frame, *cache);
1230 *cache = NULL;
1231
1232 return 0;
1233 }
1234
1235
1236 /* The frame_id function for the pseudo unwinder. Relays the call to
1237 the loaded plugin. */
1238
1239 static void
1240 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1241 struct frame_id *this_id)
1242 {
1243 struct jit_unwind_private priv;
1244 struct gdb_frame_id frame_id;
1245 struct gdb_reader_funcs *funcs;
1246 struct gdb_unwind_callbacks callbacks;
1247
1248 priv.regcache = NULL;
1249 priv.this_frame = this_frame;
1250
1251 /* We don't expect the frame_id function to set any registers, so we
1252 set reg_set to NULL. */
1253 callbacks.reg_get = jit_unwind_reg_get_impl;
1254 callbacks.reg_set = NULL;
1255 callbacks.target_read = jit_target_read_impl;
1256 callbacks.priv_data = &priv;
1257
1258 gdb_assert (loaded_jit_reader);
1259 funcs = loaded_jit_reader->functions;
1260
1261 frame_id = funcs->get_frame_id (funcs, &callbacks);
1262 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1263 }
1264
1265 /* Pseudo unwinder function. Reads the previously fetched value for
1266 the register from the cache. */
1267
1268 static struct value *
1269 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1270 {
1271 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1272 struct gdbarch *gdbarch;
1273
1274 if (priv == NULL)
1275 return frame_unwind_got_optimized (this_frame, reg);
1276
1277 gdbarch = get_regcache_arch (priv->regcache);
1278 if (reg < gdbarch_num_regs (gdbarch))
1279 {
1280 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1281 enum register_status status;
1282
1283 status = regcache_raw_read (priv->regcache, reg, buf);
1284 if (status == REG_VALID)
1285 return frame_unwind_got_bytes (this_frame, reg, buf);
1286 else
1287 return frame_unwind_got_optimized (this_frame, reg);
1288 }
1289 else
1290 return gdbarch_pseudo_register_read_value (gdbarch, priv->regcache, reg);
1291 }
1292
1293 /* Relay everything back to the unwinder registered by the JIT debug
1294 info reader.*/
1295
1296 static const struct frame_unwind jit_frame_unwind =
1297 {
1298 NORMAL_FRAME,
1299 default_frame_unwind_stop_reason,
1300 jit_frame_this_id,
1301 jit_frame_prev_register,
1302 NULL,
1303 jit_frame_sniffer,
1304 jit_dealloc_cache
1305 };
1306
1307
1308 /* This is the information that is stored at jit_gdbarch_data for each
1309 architecture. */
1310
1311 struct jit_gdbarch_data_type
1312 {
1313 /* Has the (pseudo) unwinder been prepended? */
1314 int unwinder_registered;
1315 };
1316
1317 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1318
1319 static void
1320 jit_prepend_unwinder (struct gdbarch *gdbarch)
1321 {
1322 struct jit_gdbarch_data_type *data;
1323
1324 data
1325 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1326 if (!data->unwinder_registered)
1327 {
1328 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1329 data->unwinder_registered = 1;
1330 }
1331 }
1332
1333 /* Register any already created translations. */
1334
1335 static void
1336 jit_inferior_init (struct gdbarch *gdbarch)
1337 {
1338 struct jit_descriptor descriptor;
1339 struct jit_code_entry cur_entry;
1340 struct jit_program_space_data *ps_data;
1341 CORE_ADDR cur_entry_addr;
1342
1343 if (jit_debug)
1344 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1345
1346 jit_prepend_unwinder (gdbarch);
1347
1348 ps_data = get_jit_program_space_data ();
1349 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1350 return;
1351
1352 /* Read the descriptor so we can check the version number and load
1353 any already JITed functions. */
1354 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1355 return;
1356
1357 /* Check that the version number agrees with that we support. */
1358 if (descriptor.version != 1)
1359 {
1360 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1361 "in descriptor (expected 1)\n"),
1362 (long) descriptor.version);
1363 return;
1364 }
1365
1366 /* If we've attached to a running program, we need to check the descriptor
1367 to register any functions that were already generated. */
1368 for (cur_entry_addr = descriptor.first_entry;
1369 cur_entry_addr != 0;
1370 cur_entry_addr = cur_entry.next_entry)
1371 {
1372 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1373
1374 /* This hook may be called many times during setup, so make sure we don't
1375 add the same symbol file twice. */
1376 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1377 continue;
1378
1379 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1380 }
1381 }
1382
1383 /* inferior_created observer. */
1384
1385 static void
1386 jit_inferior_created (struct target_ops *ops, int from_tty)
1387 {
1388 jit_inferior_created_hook ();
1389 }
1390
1391 /* Exported routine to call when an inferior has been created. */
1392
1393 void
1394 jit_inferior_created_hook (void)
1395 {
1396 jit_inferior_init (target_gdbarch ());
1397 }
1398
1399 /* Exported routine to call to re-set the jit breakpoints,
1400 e.g. when a program is rerun. */
1401
1402 void
1403 jit_breakpoint_re_set (void)
1404 {
1405 jit_breakpoint_re_set_internal (target_gdbarch (),
1406 get_jit_program_space_data ());
1407 }
1408
1409 /* This function cleans up any code entries left over when the
1410 inferior exits. We get left over code when the inferior exits
1411 without unregistering its code, for example when it crashes. */
1412
1413 static void
1414 jit_inferior_exit_hook (struct inferior *inf)
1415 {
1416 struct objfile *objf;
1417 struct objfile *temp;
1418
1419 ALL_OBJFILES_SAFE (objf, temp)
1420 {
1421 struct jit_objfile_data *objf_data
1422 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1423
1424 if (objf_data != NULL && objf_data->addr != 0)
1425 jit_unregister_code (objf);
1426 }
1427 }
1428
1429 void
1430 jit_event_handler (struct gdbarch *gdbarch)
1431 {
1432 struct jit_descriptor descriptor;
1433 struct jit_code_entry code_entry;
1434 CORE_ADDR entry_addr;
1435 struct objfile *objf;
1436
1437 /* Read the descriptor from remote memory. */
1438 if (!jit_read_descriptor (gdbarch, &descriptor,
1439 get_jit_program_space_data ()))
1440 return;
1441 entry_addr = descriptor.relevant_entry;
1442
1443 /* Do the corresponding action. */
1444 switch (descriptor.action_flag)
1445 {
1446 case JIT_NOACTION:
1447 break;
1448 case JIT_REGISTER:
1449 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1450 jit_register_code (gdbarch, entry_addr, &code_entry);
1451 break;
1452 case JIT_UNREGISTER:
1453 objf = jit_find_objf_with_entry_addr (entry_addr);
1454 if (objf == NULL)
1455 printf_unfiltered (_("Unable to find JITed code "
1456 "entry at address: %s\n"),
1457 paddress (gdbarch, entry_addr));
1458 else
1459 jit_unregister_code (objf);
1460
1461 break;
1462 default:
1463 error (_("Unknown action_flag value in JIT descriptor!"));
1464 break;
1465 }
1466 }
1467
1468 /* Called to free the data allocated to the jit_program_space_data slot. */
1469
1470 static void
1471 free_objfile_data (struct objfile *objfile, void *data)
1472 {
1473 struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data;
1474
1475 if (objf_data->register_code != NULL)
1476 {
1477 struct jit_program_space_data *ps_data;
1478
1479 ps_data
1480 = ((struct jit_program_space_data *)
1481 program_space_data (objfile->pspace, jit_program_space_data));
1482 if (ps_data != NULL && ps_data->objfile == objfile)
1483 ps_data->objfile = NULL;
1484 }
1485
1486 xfree (data);
1487 }
1488
1489 /* Initialize the jit_gdbarch_data slot with an instance of struct
1490 jit_gdbarch_data_type */
1491
1492 static void *
1493 jit_gdbarch_data_init (struct obstack *obstack)
1494 {
1495 struct jit_gdbarch_data_type *data =
1496 XOBNEW (obstack, struct jit_gdbarch_data_type);
1497
1498 data->unwinder_registered = 0;
1499
1500 return data;
1501 }
1502
1503 /* Provide a prototype to silence -Wmissing-prototypes. */
1504
1505 extern void _initialize_jit (void);
1506
1507 void
1508 _initialize_jit (void)
1509 {
1510 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1511 JIT_READER_DIR_RELOCATABLE);
1512 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1513 _("Set JIT debugging."),
1514 _("Show JIT debugging."),
1515 _("When non-zero, JIT debugging is enabled."),
1516 NULL,
1517 show_jit_debug,
1518 &setdebuglist, &showdebuglist);
1519
1520 observer_attach_inferior_created (jit_inferior_created);
1521 observer_attach_inferior_exit (jit_inferior_exit_hook);
1522 observer_attach_breakpoint_deleted (jit_breakpoint_deleted);
1523
1524 jit_objfile_data =
1525 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1526 jit_program_space_data =
1527 register_program_space_data_with_cleanup (NULL,
1528 jit_program_space_data_cleanup);
1529 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1530 if (is_dl_available ())
1531 {
1532 add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1533 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1534 Usage: jit-reader-load FILE\n\
1535 Try to load file FILE as a debug info reader (and unwinder) for\n\
1536 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1537 relocated relative to the GDB executable if required."));
1538 add_com ("jit-reader-unload", no_class, jit_reader_unload_command, _("\
1539 Unload the currently loaded JIT debug info reader.\n\
1540 Usage: jit-reader-unload FILE\n\n\
1541 Do \"help jit-reader-load\" for info on loading debug info readers."));
1542 }
1543 }
This page took 0.103833 seconds and 4 git commands to generate.