gdb/jit: apply minor cleanup and modernization
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observable.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdbsupport/gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44 #include <forward_list>
45
46 static std::string jit_reader_dir;
47
48 static const char *const jit_break_name = "__jit_debug_register_code";
49
50 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
51
52 static void jit_inferior_init (struct gdbarch *gdbarch);
53 static void jit_inferior_exit_hook (struct inferior *inf);
54
55 /* An unwinder is registered for every gdbarch. This key is used to
56 remember if the unwinder has been registered for a particular
57 gdbarch. */
58
59 static struct gdbarch_data *jit_gdbarch_data;
60
61 /* Non-zero if we want to see trace of jit level stuff. */
62
63 static unsigned int jit_debug = 0;
64
65 static void
66 show_jit_debug (struct ui_file *file, int from_tty,
67 struct cmd_list_element *c, const char *value)
68 {
69 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
70 }
71
72 struct target_buffer
73 {
74 CORE_ADDR base;
75 ULONGEST size;
76 };
77
78 /* Opening the file is a no-op. */
79
80 static void *
81 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
82 {
83 return open_closure;
84 }
85
86 /* Closing the file is just freeing the base/size pair on our side. */
87
88 static int
89 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
90 {
91 xfree (stream);
92
93 /* Zero means success. */
94 return 0;
95 }
96
97 /* For reading the file, we just need to pass through to target_read_memory and
98 fix up the arguments and return values. */
99
100 static file_ptr
101 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
102 file_ptr nbytes, file_ptr offset)
103 {
104 int err;
105 struct target_buffer *buffer = (struct target_buffer *) stream;
106
107 /* If this read will read all of the file, limit it to just the rest. */
108 if (offset + nbytes > buffer->size)
109 nbytes = buffer->size - offset;
110
111 /* If there are no more bytes left, we've reached EOF. */
112 if (nbytes == 0)
113 return 0;
114
115 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
116 if (err)
117 return -1;
118
119 return nbytes;
120 }
121
122 /* For statting the file, we only support the st_size attribute. */
123
124 static int
125 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
126 {
127 struct target_buffer *buffer = (struct target_buffer*) stream;
128
129 memset (sb, 0, sizeof (struct stat));
130 sb->st_size = buffer->size;
131 return 0;
132 }
133
134 /* Open a BFD from the target's memory. */
135
136 static gdb_bfd_ref_ptr
137 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size,
138 const char *target)
139 {
140 struct target_buffer *buffer = XNEW (struct target_buffer);
141
142 buffer->base = addr;
143 buffer->size = size;
144 return gdb_bfd_openr_iovec ("<in-memory>", target,
145 mem_bfd_iovec_open,
146 buffer,
147 mem_bfd_iovec_pread,
148 mem_bfd_iovec_close,
149 mem_bfd_iovec_stat);
150 }
151
152 struct jit_reader
153 {
154 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
155 : functions (f), handle (std::move (h))
156 {
157 }
158
159 ~jit_reader ()
160 {
161 functions->destroy (functions);
162 }
163
164 DISABLE_COPY_AND_ASSIGN (jit_reader);
165
166 struct gdb_reader_funcs *functions;
167 gdb_dlhandle_up handle;
168 };
169
170 /* One reader that has been loaded successfully, and can potentially be used to
171 parse debug info. */
172
173 static struct jit_reader *loaded_jit_reader = NULL;
174
175 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
176 static const char *reader_init_fn_sym = "gdb_init_reader";
177
178 /* Try to load FILE_NAME as a JIT debug info reader. */
179
180 static struct jit_reader *
181 jit_reader_load (const char *file_name)
182 {
183 reader_init_fn_type *init_fn;
184 struct gdb_reader_funcs *funcs = NULL;
185
186 if (jit_debug)
187 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
188 file_name);
189 gdb_dlhandle_up so = gdb_dlopen (file_name);
190
191 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
192 if (!init_fn)
193 error (_("Could not locate initialization function: %s."),
194 reader_init_fn_sym);
195
196 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
197 error (_("Reader not GPL compatible."));
198
199 funcs = init_fn ();
200 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
201 error (_("Reader version does not match GDB version."));
202
203 return new jit_reader (funcs, std::move (so));
204 }
205
206 /* Provides the jit-reader-load command. */
207
208 static void
209 jit_reader_load_command (const char *args, int from_tty)
210 {
211 if (args == NULL)
212 error (_("No reader name provided."));
213 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
214
215 if (loaded_jit_reader != NULL)
216 error (_("JIT reader already loaded. Run jit-reader-unload first."));
217
218 if (!IS_ABSOLUTE_PATH (file.get ()))
219 file.reset (xstrprintf ("%s%s%s", jit_reader_dir.c_str (), SLASH_STRING,
220 file.get ()));
221
222 loaded_jit_reader = jit_reader_load (file.get ());
223 reinit_frame_cache ();
224 jit_inferior_created_hook ();
225 }
226
227 /* Provides the jit-reader-unload command. */
228
229 static void
230 jit_reader_unload_command (const char *args, int from_tty)
231 {
232 if (!loaded_jit_reader)
233 error (_("No JIT reader loaded."));
234
235 reinit_frame_cache ();
236 jit_inferior_exit_hook (current_inferior ());
237
238 delete loaded_jit_reader;
239 loaded_jit_reader = NULL;
240 }
241
242 /* Destructor for jiter_objfile_data. */
243
244 jiter_objfile_data::~jiter_objfile_data ()
245 {
246 if (this->jit_breakpoint != nullptr)
247 delete_breakpoint (this->jit_breakpoint);
248 }
249
250 /* Fetch the jiter_objfile_data associated with OBJF. If no data exists
251 yet, make a new structure and attach it. */
252
253 static jiter_objfile_data *
254 get_jiter_objfile_data (objfile *objf)
255 {
256 if (objf->jiter_data == nullptr)
257 objf->jiter_data.reset (new jiter_objfile_data ());
258
259 return objf->jiter_data.get ();
260 }
261
262 /* Remember OBJFILE has been created for struct jit_code_entry located
263 at inferior address ENTRY. */
264
265 static void
266 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
267 {
268 gdb_assert (objfile->jited_data == nullptr);
269
270 objfile->jited_data.reset (new jited_objfile_data (entry));
271 }
272
273 /* Helper function for reading the global JIT descriptor from remote
274 memory. Returns true if all went well, false otherwise. */
275
276 static bool
277 jit_read_descriptor (gdbarch *gdbarch,
278 jit_descriptor *descriptor,
279 objfile *jiter)
280 {
281 int err;
282 struct type *ptr_type;
283 int ptr_size;
284 int desc_size;
285 gdb_byte *desc_buf;
286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
287
288 gdb_assert (jiter != nullptr);
289 jiter_objfile_data *objf_data = jiter->jiter_data.get ();
290 gdb_assert (objf_data != nullptr);
291
292 CORE_ADDR addr = MSYMBOL_VALUE_ADDRESS (jiter, objf_data->descriptor);
293
294 if (jit_debug)
295 fprintf_unfiltered (gdb_stdlog,
296 "jit_read_descriptor, descriptor_addr = %s\n",
297 paddress (gdbarch, addr));
298
299 /* Figure out how big the descriptor is on the remote and how to read it. */
300 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
301 ptr_size = TYPE_LENGTH (ptr_type);
302 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
303 desc_buf = (gdb_byte *) alloca (desc_size);
304
305 /* Read the descriptor. */
306 err = target_read_memory (addr, desc_buf, desc_size);
307 if (err)
308 {
309 printf_unfiltered (_("Unable to read JIT descriptor from "
310 "remote memory\n"));
311 return false;
312 }
313
314 /* Fix the endianness to match the host. */
315 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
316 descriptor->action_flag =
317 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
318 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
319 descriptor->first_entry =
320 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
321
322 return true;
323 }
324
325 /* Helper function for reading a JITed code entry from remote memory. */
326
327 static void
328 jit_read_code_entry (struct gdbarch *gdbarch,
329 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
330 {
331 int err, off;
332 struct type *ptr_type;
333 int ptr_size;
334 int entry_size;
335 int align_bytes;
336 gdb_byte *entry_buf;
337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338
339 /* Figure out how big the entry is on the remote and how to read it. */
340 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
341 ptr_size = TYPE_LENGTH (ptr_type);
342
343 /* Figure out where the uint64_t value will be. */
344 align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64);
345 off = 3 * ptr_size;
346 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
347
348 entry_size = off + 8; /* Three pointers and one 64-bit int. */
349 entry_buf = (gdb_byte *) alloca (entry_size);
350
351 /* Read the entry. */
352 err = target_read_memory (code_addr, entry_buf, entry_size);
353 if (err)
354 error (_("Unable to read JIT code entry from remote memory!"));
355
356 /* Fix the endianness to match the host. */
357 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
358 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
359 code_entry->prev_entry =
360 extract_typed_address (&entry_buf[ptr_size], ptr_type);
361 code_entry->symfile_addr =
362 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
363 code_entry->symfile_size =
364 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
365 }
366
367 /* Proxy object for building a block. */
368
369 struct gdb_block
370 {
371 gdb_block (gdb_block *parent, CORE_ADDR begin, CORE_ADDR end,
372 const char *name)
373 : parent (parent),
374 begin (begin),
375 end (end),
376 name (name != nullptr ? xstrdup (name) : nullptr)
377 {}
378
379 /* The parent of this block. */
380 struct gdb_block *parent;
381
382 /* Points to the "real" block that is being built out of this
383 instance. This block will be added to a blockvector, which will
384 then be added to a symtab. */
385 struct block *real_block = nullptr;
386
387 /* The first and last code address corresponding to this block. */
388 CORE_ADDR begin, end;
389
390 /* The name of this block (if any). If this is non-NULL, the
391 FUNCTION symbol symbol is set to this value. */
392 gdb::unique_xmalloc_ptr<char> name;
393 };
394
395 /* Proxy object for building a symtab. */
396
397 struct gdb_symtab
398 {
399 explicit gdb_symtab (const char *file_name)
400 : file_name (file_name != nullptr ? file_name : "")
401 {}
402
403 /* The list of blocks in this symtab. These will eventually be
404 converted to real blocks.
405
406 This is specifically a linked list, instead of, for example, a vector,
407 because the pointers are returned to the user's debug info reader. So
408 it's important that the objects don't change location during their
409 lifetime (which would happen with a vector of objects getting resized). */
410 std::forward_list<gdb_block> blocks;
411
412 /* The number of blocks inserted. */
413 int nblocks = 0;
414
415 /* A mapping between line numbers to PC. */
416 gdb::unique_xmalloc_ptr<struct linetable> linetable;
417
418 /* The source file for this symtab. */
419 std::string file_name;
420 };
421
422 /* Proxy object for building an object. */
423
424 struct gdb_object
425 {
426 /* Symtabs of this object.
427
428 This is specifically a linked list, instead of, for example, a vector,
429 because the pointers are returned to the user's debug info reader. So
430 it's important that the objects don't change location during their
431 lifetime (which would happen with a vector of objects getting resized). */
432 std::forward_list<gdb_symtab> symtabs;
433 };
434
435 /* The type of the `private' data passed around by the callback
436 functions. */
437
438 typedef CORE_ADDR jit_dbg_reader_data;
439
440 /* The reader calls into this function to read data off the targets
441 address space. */
442
443 static enum gdb_status
444 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
445 {
446 int result = target_read_memory ((CORE_ADDR) target_mem,
447 (gdb_byte *) gdb_buf, len);
448 if (result == 0)
449 return GDB_SUCCESS;
450 else
451 return GDB_FAIL;
452 }
453
454 /* The reader calls into this function to create a new gdb_object
455 which it can then pass around to the other callbacks. Right now,
456 all that is required is allocating the memory. */
457
458 static struct gdb_object *
459 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
460 {
461 /* CB is not required right now, but sometime in the future we might
462 need a handle to it, and we'd like to do that without breaking
463 the ABI. */
464 return new gdb_object;
465 }
466
467 /* Readers call into this function to open a new gdb_symtab, which,
468 again, is passed around to other callbacks. */
469
470 static struct gdb_symtab *
471 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
472 struct gdb_object *object,
473 const char *file_name)
474 {
475 /* CB stays unused. See comment in jit_object_open_impl. */
476
477 object->symtabs.emplace_front (file_name);
478 return &object->symtabs.front ();
479 }
480
481 /* Called by readers to open a new gdb_block. This function also
482 inserts the new gdb_block in the correct place in the corresponding
483 gdb_symtab. */
484
485 static struct gdb_block *
486 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
487 struct gdb_symtab *symtab, struct gdb_block *parent,
488 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
489 {
490 /* Place the block at the beginning of the list, it will be sorted when the
491 symtab is finalized. */
492 symtab->blocks.emplace_front (parent, begin, end, name);
493 symtab->nblocks++;
494
495 return &symtab->blocks.front ();
496 }
497
498 /* Readers call this to add a line mapping (from PC to line number) to
499 a gdb_symtab. */
500
501 static void
502 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
503 struct gdb_symtab *stab, int nlines,
504 struct gdb_line_mapping *map)
505 {
506 int i;
507 int alloc_len;
508
509 if (nlines < 1)
510 return;
511
512 alloc_len = sizeof (struct linetable)
513 + (nlines - 1) * sizeof (struct linetable_entry);
514 stab->linetable.reset (XNEWVAR (struct linetable, alloc_len));
515 stab->linetable->nitems = nlines;
516 for (i = 0; i < nlines; i++)
517 {
518 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
519 stab->linetable->item[i].line = map[i].line;
520 stab->linetable->item[i].is_stmt = 1;
521 }
522 }
523
524 /* Called by readers to close a gdb_symtab. Does not need to do
525 anything as of now. */
526
527 static void
528 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
529 struct gdb_symtab *stab)
530 {
531 /* Right now nothing needs to be done here. We may need to do some
532 cleanup here in the future (again, without breaking the plugin
533 ABI). */
534 }
535
536 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
537
538 static void
539 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
540 {
541 struct compunit_symtab *cust;
542 size_t blockvector_size;
543 CORE_ADDR begin, end;
544 struct blockvector *bv;
545
546 int actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
547
548 /* Sort the blocks in the order they should appear in the blockvector. */
549 stab->blocks.sort([] (const gdb_block &a, const gdb_block &b)
550 {
551 if (a.begin != b.begin)
552 return a.begin < b.begin;
553
554 return a.end > b.end;
555 });
556
557 cust = allocate_compunit_symtab (objfile, stab->file_name.c_str ());
558 allocate_symtab (cust, stab->file_name.c_str ());
559 add_compunit_symtab_to_objfile (cust);
560
561 /* JIT compilers compile in memory. */
562 COMPUNIT_DIRNAME (cust) = NULL;
563
564 /* Copy over the linetable entry if one was provided. */
565 if (stab->linetable)
566 {
567 size_t size = ((stab->linetable->nitems - 1)
568 * sizeof (struct linetable_entry)
569 + sizeof (struct linetable));
570 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
571 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
572 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)),
573 stab->linetable.get (), size);
574 }
575
576 blockvector_size = (sizeof (struct blockvector)
577 + (actual_nblocks - 1) * sizeof (struct block *));
578 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
579 blockvector_size);
580 COMPUNIT_BLOCKVECTOR (cust) = bv;
581
582 /* At the end of this function, (begin, end) will contain the PC range this
583 entire blockvector spans. */
584 BLOCKVECTOR_MAP (bv) = NULL;
585 begin = stab->blocks.front ().begin;
586 end = stab->blocks.front ().end;
587 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
588
589 /* First run over all the gdb_block objects, creating a real block
590 object for each. Simultaneously, keep setting the real_block
591 fields. */
592 int block_idx = FIRST_LOCAL_BLOCK;
593 for (gdb_block &gdb_block_iter : stab->blocks)
594 {
595 struct block *new_block = allocate_block (&objfile->objfile_obstack);
596 struct symbol *block_name = new (&objfile->objfile_obstack) symbol;
597 struct type *block_type = arch_type (objfile->arch (),
598 TYPE_CODE_VOID,
599 TARGET_CHAR_BIT,
600 "void");
601
602 BLOCK_MULTIDICT (new_block)
603 = mdict_create_linear (&objfile->objfile_obstack, NULL);
604 /* The address range. */
605 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter.begin;
606 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter.end;
607
608 /* The name. */
609 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
610 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
611 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
612 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
613 SYMBOL_BLOCK_VALUE (block_name) = new_block;
614
615 block_name->m_name = obstack_strdup (&objfile->objfile_obstack,
616 gdb_block_iter.name.get ());
617
618 BLOCK_FUNCTION (new_block) = block_name;
619
620 BLOCKVECTOR_BLOCK (bv, block_idx) = new_block;
621 if (begin > BLOCK_START (new_block))
622 begin = BLOCK_START (new_block);
623 if (end < BLOCK_END (new_block))
624 end = BLOCK_END (new_block);
625
626 gdb_block_iter.real_block = new_block;
627
628 block_idx++;
629 }
630
631 /* Now add the special blocks. */
632 struct block *block_iter = NULL;
633 for (enum block_enum i : { GLOBAL_BLOCK, STATIC_BLOCK })
634 {
635 struct block *new_block;
636
637 new_block = (i == GLOBAL_BLOCK
638 ? allocate_global_block (&objfile->objfile_obstack)
639 : allocate_block (&objfile->objfile_obstack));
640 BLOCK_MULTIDICT (new_block)
641 = mdict_create_linear (&objfile->objfile_obstack, NULL);
642 BLOCK_SUPERBLOCK (new_block) = block_iter;
643 block_iter = new_block;
644
645 BLOCK_START (new_block) = (CORE_ADDR) begin;
646 BLOCK_END (new_block) = (CORE_ADDR) end;
647
648 BLOCKVECTOR_BLOCK (bv, i) = new_block;
649
650 if (i == GLOBAL_BLOCK)
651 set_block_compunit_symtab (new_block, cust);
652 }
653
654 /* Fill up the superblock fields for the real blocks, using the
655 real_block fields populated earlier. */
656 for (gdb_block &gdb_block_iter : stab->blocks)
657 {
658 if (gdb_block_iter.parent != NULL)
659 {
660 /* If the plugin specifically mentioned a parent block, we
661 use that. */
662 BLOCK_SUPERBLOCK (gdb_block_iter.real_block) =
663 gdb_block_iter.parent->real_block;
664 }
665 else
666 {
667 /* And if not, we set a default parent block. */
668 BLOCK_SUPERBLOCK (gdb_block_iter.real_block) =
669 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
670 }
671 }
672 }
673
674 /* Called when closing a gdb_objfile. Converts OBJ to a proper
675 objfile. */
676
677 static void
678 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
679 struct gdb_object *obj)
680 {
681 struct objfile *objfile;
682 jit_dbg_reader_data *priv_data;
683
684 priv_data = (jit_dbg_reader_data *) cb->priv_data;
685
686 objfile = objfile::make (nullptr, "<< JIT compiled code >>",
687 OBJF_NOT_FILENAME);
688 objfile->per_bfd->gdbarch = target_gdbarch ();
689
690 for (gdb_symtab &symtab : obj->symtabs)
691 finalize_symtab (&symtab, objfile);
692
693 add_objfile_entry (objfile, *priv_data);
694
695 delete obj;
696 }
697
698 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
699 ENTRY_ADDR is the address of the struct jit_code_entry in the
700 inferior address space. */
701
702 static int
703 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
704 CORE_ADDR entry_addr)
705 {
706 int status;
707 jit_dbg_reader_data priv_data;
708 struct gdb_reader_funcs *funcs;
709 struct gdb_symbol_callbacks callbacks =
710 {
711 jit_object_open_impl,
712 jit_symtab_open_impl,
713 jit_block_open_impl,
714 jit_symtab_close_impl,
715 jit_object_close_impl,
716
717 jit_symtab_line_mapping_add_impl,
718 jit_target_read_impl,
719
720 &priv_data
721 };
722
723 priv_data = entry_addr;
724
725 if (!loaded_jit_reader)
726 return 0;
727
728 gdb::byte_vector gdb_mem (code_entry->symfile_size);
729
730 status = 1;
731 try
732 {
733 if (target_read_memory (code_entry->symfile_addr, gdb_mem.data (),
734 code_entry->symfile_size))
735 status = 0;
736 }
737 catch (const gdb_exception &e)
738 {
739 status = 0;
740 }
741
742 if (status)
743 {
744 funcs = loaded_jit_reader->functions;
745 if (funcs->read (funcs, &callbacks, gdb_mem.data (),
746 code_entry->symfile_size)
747 != GDB_SUCCESS)
748 status = 0;
749 }
750
751 if (jit_debug && status == 0)
752 fprintf_unfiltered (gdb_stdlog,
753 "Could not read symtab using the loaded JIT reader.\n");
754 return status;
755 }
756
757 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
758 struct jit_code_entry in the inferior address space. */
759
760 static void
761 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
762 CORE_ADDR entry_addr,
763 struct gdbarch *gdbarch)
764 {
765 struct bfd_section *sec;
766 struct objfile *objfile;
767 const struct bfd_arch_info *b;
768
769 if (jit_debug)
770 fprintf_unfiltered (gdb_stdlog,
771 "jit_bfd_try_read_symtab, symfile_addr = %s, "
772 "symfile_size = %s\n",
773 paddress (gdbarch, code_entry->symfile_addr),
774 pulongest (code_entry->symfile_size));
775
776 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
777 code_entry->symfile_size,
778 gnutarget));
779 if (nbfd == NULL)
780 {
781 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
782 return;
783 }
784
785 /* Check the format. NOTE: This initializes important data that GDB uses!
786 We would segfault later without this line. */
787 if (!bfd_check_format (nbfd.get (), bfd_object))
788 {
789 printf_unfiltered (_("\
790 JITed symbol file is not an object file, ignoring it.\n"));
791 return;
792 }
793
794 /* Check bfd arch. */
795 b = gdbarch_bfd_arch_info (gdbarch);
796 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
797 warning (_("JITed object file architecture %s is not compatible "
798 "with target architecture %s."),
799 bfd_get_arch_info (nbfd.get ())->printable_name,
800 b->printable_name);
801
802 /* Read the section address information out of the symbol file. Since the
803 file is generated by the JIT at runtime, it should all of the absolute
804 addresses that we care about. */
805 section_addr_info sai;
806 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
807 if ((bfd_section_flags (sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
808 {
809 /* We assume that these virtual addresses are absolute, and do not
810 treat them as offsets. */
811 sai.emplace_back (bfd_section_vma (sec),
812 bfd_section_name (sec),
813 sec->index);
814 }
815
816 /* This call does not take ownership of SAI. */
817 objfile = symbol_file_add_from_bfd (nbfd.get (),
818 bfd_get_filename (nbfd.get ()), 0,
819 &sai,
820 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
821
822 add_objfile_entry (objfile, entry_addr);
823 }
824
825 /* This function registers code associated with a JIT code entry. It uses the
826 pointer and size pair in the entry to read the symbol file from the remote
827 and then calls symbol_file_add_from_local_memory to add it as though it were
828 a symbol file added by the user. */
829
830 static void
831 jit_register_code (struct gdbarch *gdbarch,
832 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
833 {
834 int success;
835
836 if (jit_debug)
837 fprintf_unfiltered (gdb_stdlog,
838 "jit_register_code, symfile_addr = %s, "
839 "symfile_size = %s\n",
840 paddress (gdbarch, code_entry->symfile_addr),
841 pulongest (code_entry->symfile_size));
842
843 success = jit_reader_try_read_symtab (code_entry, entry_addr);
844
845 if (!success)
846 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
847 }
848
849 /* Look up the objfile with this code entry address. */
850
851 static struct objfile *
852 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
853 {
854 for (objfile *objf : current_program_space->objfiles ())
855 {
856 if (objf->jited_data != nullptr && objf->jited_data->addr == entry_addr)
857 return objf;
858 }
859
860 return NULL;
861 }
862
863 /* This is called when a breakpoint is deleted. It updates the
864 inferior's cache, if needed. */
865
866 static void
867 jit_breakpoint_deleted (struct breakpoint *b)
868 {
869 if (b->type != bp_jit_event)
870 return;
871
872 for (bp_location *iter = b->loc; iter != nullptr; iter = iter->next)
873 {
874 for (objfile *objf : iter->pspace->objfiles ())
875 {
876 jiter_objfile_data *jiter_data = objf->jiter_data.get ();
877
878 if (jiter_data != nullptr
879 && jiter_data->jit_breakpoint == iter->owner)
880 {
881 jiter_data->cached_code_address = 0;
882 jiter_data->jit_breakpoint = nullptr;
883 }
884 }
885 }
886 }
887
888 /* (Re-)Initialize the jit breakpoints for JIT-producing objfiles in
889 PSPACE. */
890
891 static void
892 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch, program_space *pspace)
893 {
894 for (objfile *the_objfile : pspace->objfiles ())
895 {
896 /* Lookup the registration symbol. If it is missing, then we
897 assume we are not attached to a JIT. */
898 bound_minimal_symbol reg_symbol
899 = lookup_minimal_symbol (jit_break_name, nullptr, the_objfile);
900 if (reg_symbol.minsym == NULL
901 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
902 continue;
903
904 bound_minimal_symbol desc_symbol
905 = lookup_minimal_symbol (jit_descriptor_name, NULL, the_objfile);
906 if (desc_symbol.minsym == NULL
907 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
908 continue;
909
910 jiter_objfile_data *objf_data
911 = get_jiter_objfile_data (reg_symbol.objfile);
912 objf_data->register_code = reg_symbol.minsym;
913 objf_data->descriptor = desc_symbol.minsym;
914
915 CORE_ADDR addr = MSYMBOL_VALUE_ADDRESS (the_objfile,
916 objf_data->register_code);
917
918 if (jit_debug)
919 fprintf_unfiltered (gdb_stdlog,
920 "jit_breakpoint_re_set_internal, "
921 "breakpoint_addr = %s\n",
922 paddress (gdbarch, addr));
923
924 /* Check if we need to re-create the breakpoint. */
925 if (objf_data->cached_code_address == addr)
926 continue;
927
928 /* Delete the old breakpoint. */
929 if (objf_data->jit_breakpoint != nullptr)
930 delete_breakpoint (objf_data->jit_breakpoint);
931
932 /* Put a breakpoint in the registration symbol. */
933 objf_data->cached_code_address = addr;
934 objf_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
935 }
936 }
937
938 /* The private data passed around in the frame unwind callback
939 functions. */
940
941 struct jit_unwind_private
942 {
943 /* Cached register values. See jit_frame_sniffer to see how this
944 works. */
945 detached_regcache *regcache;
946
947 /* The frame being unwound. */
948 struct frame_info *this_frame;
949 };
950
951 /* Sets the value of a particular register in this frame. */
952
953 static void
954 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
955 struct gdb_reg_value *value)
956 {
957 struct jit_unwind_private *priv;
958 int gdb_reg;
959
960 priv = (struct jit_unwind_private *) cb->priv_data;
961
962 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
963 dwarf_regnum);
964 if (gdb_reg == -1)
965 {
966 if (jit_debug)
967 fprintf_unfiltered (gdb_stdlog,
968 _("Could not recognize DWARF regnum %d"),
969 dwarf_regnum);
970 value->free (value);
971 return;
972 }
973
974 priv->regcache->raw_supply (gdb_reg, value->value);
975 value->free (value);
976 }
977
978 static void
979 reg_value_free_impl (struct gdb_reg_value *value)
980 {
981 xfree (value);
982 }
983
984 /* Get the value of register REGNUM in the previous frame. */
985
986 static struct gdb_reg_value *
987 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
988 {
989 struct jit_unwind_private *priv;
990 struct gdb_reg_value *value;
991 int gdb_reg, size;
992 struct gdbarch *frame_arch;
993
994 priv = (struct jit_unwind_private *) cb->priv_data;
995 frame_arch = get_frame_arch (priv->this_frame);
996
997 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
998 size = register_size (frame_arch, gdb_reg);
999 value = ((struct gdb_reg_value *)
1000 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1001 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1002 value->value);
1003 value->size = size;
1004 value->free = reg_value_free_impl;
1005 return value;
1006 }
1007
1008 /* gdb_reg_value has a free function, which must be called on each
1009 saved register value. */
1010
1011 static void
1012 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1013 {
1014 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1015
1016 gdb_assert (priv_data->regcache != NULL);
1017 delete priv_data->regcache;
1018 xfree (priv_data);
1019 }
1020
1021 /* The frame sniffer for the pseudo unwinder.
1022
1023 While this is nominally a frame sniffer, in the case where the JIT
1024 reader actually recognizes the frame, it does a lot more work -- it
1025 unwinds the frame and saves the corresponding register values in
1026 the cache. jit_frame_prev_register simply returns the saved
1027 register values. */
1028
1029 static int
1030 jit_frame_sniffer (const struct frame_unwind *self,
1031 struct frame_info *this_frame, void **cache)
1032 {
1033 struct jit_unwind_private *priv_data;
1034 struct gdb_unwind_callbacks callbacks;
1035 struct gdb_reader_funcs *funcs;
1036
1037 callbacks.reg_get = jit_unwind_reg_get_impl;
1038 callbacks.reg_set = jit_unwind_reg_set_impl;
1039 callbacks.target_read = jit_target_read_impl;
1040
1041 if (loaded_jit_reader == NULL)
1042 return 0;
1043
1044 funcs = loaded_jit_reader->functions;
1045
1046 gdb_assert (!*cache);
1047
1048 *cache = XCNEW (struct jit_unwind_private);
1049 priv_data = (struct jit_unwind_private *) *cache;
1050 /* Take a snapshot of current regcache. */
1051 priv_data->regcache = new detached_regcache (get_frame_arch (this_frame),
1052 true);
1053 priv_data->this_frame = this_frame;
1054
1055 callbacks.priv_data = priv_data;
1056
1057 /* Try to coax the provided unwinder to unwind the stack */
1058 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1059 {
1060 if (jit_debug)
1061 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1062 "JIT reader.\n"));
1063 return 1;
1064 }
1065 if (jit_debug)
1066 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1067 "JIT reader.\n"));
1068
1069 jit_dealloc_cache (this_frame, *cache);
1070 *cache = NULL;
1071
1072 return 0;
1073 }
1074
1075
1076 /* The frame_id function for the pseudo unwinder. Relays the call to
1077 the loaded plugin. */
1078
1079 static void
1080 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1081 struct frame_id *this_id)
1082 {
1083 struct jit_unwind_private priv;
1084 struct gdb_frame_id frame_id;
1085 struct gdb_reader_funcs *funcs;
1086 struct gdb_unwind_callbacks callbacks;
1087
1088 priv.regcache = NULL;
1089 priv.this_frame = this_frame;
1090
1091 /* We don't expect the frame_id function to set any registers, so we
1092 set reg_set to NULL. */
1093 callbacks.reg_get = jit_unwind_reg_get_impl;
1094 callbacks.reg_set = NULL;
1095 callbacks.target_read = jit_target_read_impl;
1096 callbacks.priv_data = &priv;
1097
1098 gdb_assert (loaded_jit_reader);
1099 funcs = loaded_jit_reader->functions;
1100
1101 frame_id = funcs->get_frame_id (funcs, &callbacks);
1102 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1103 }
1104
1105 /* Pseudo unwinder function. Reads the previously fetched value for
1106 the register from the cache. */
1107
1108 static struct value *
1109 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1110 {
1111 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1112 struct gdbarch *gdbarch;
1113
1114 if (priv == NULL)
1115 return frame_unwind_got_optimized (this_frame, reg);
1116
1117 gdbarch = priv->regcache->arch ();
1118 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1119 enum register_status status = priv->regcache->cooked_read (reg, buf);
1120
1121 if (status == REG_VALID)
1122 return frame_unwind_got_bytes (this_frame, reg, buf);
1123 else
1124 return frame_unwind_got_optimized (this_frame, reg);
1125 }
1126
1127 /* Relay everything back to the unwinder registered by the JIT debug
1128 info reader.*/
1129
1130 static const struct frame_unwind jit_frame_unwind =
1131 {
1132 NORMAL_FRAME,
1133 default_frame_unwind_stop_reason,
1134 jit_frame_this_id,
1135 jit_frame_prev_register,
1136 NULL,
1137 jit_frame_sniffer,
1138 jit_dealloc_cache
1139 };
1140
1141
1142 /* This is the information that is stored at jit_gdbarch_data for each
1143 architecture. */
1144
1145 struct jit_gdbarch_data_type
1146 {
1147 /* Has the (pseudo) unwinder been prepended? */
1148 int unwinder_registered;
1149 };
1150
1151 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1152
1153 static void
1154 jit_prepend_unwinder (struct gdbarch *gdbarch)
1155 {
1156 struct jit_gdbarch_data_type *data;
1157
1158 data
1159 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1160 if (!data->unwinder_registered)
1161 {
1162 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1163 data->unwinder_registered = 1;
1164 }
1165 }
1166
1167 /* Register any already created translations. */
1168
1169 static void
1170 jit_inferior_init (struct gdbarch *gdbarch)
1171 {
1172 struct jit_descriptor descriptor;
1173 struct jit_code_entry cur_entry;
1174 CORE_ADDR cur_entry_addr;
1175
1176 if (jit_debug)
1177 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1178
1179 jit_prepend_unwinder (gdbarch);
1180
1181 jit_breakpoint_re_set_internal (gdbarch, current_program_space);
1182
1183 for (objfile *jiter : current_program_space->objfiles ())
1184 {
1185 if (jiter->jiter_data == nullptr)
1186 continue;
1187
1188 /* Read the descriptor so we can check the version number and load
1189 any already JITed functions. */
1190 if (!jit_read_descriptor (gdbarch, &descriptor, jiter))
1191 continue;
1192
1193 /* Check that the version number agrees with that we support. */
1194 if (descriptor.version != 1)
1195 {
1196 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1197 "in descriptor (expected 1)\n"),
1198 (long) descriptor.version);
1199 continue;
1200 }
1201
1202 /* If we've attached to a running program, we need to check the
1203 descriptor to register any functions that were already
1204 generated. */
1205 for (cur_entry_addr = descriptor.first_entry;
1206 cur_entry_addr != 0;
1207 cur_entry_addr = cur_entry.next_entry)
1208 {
1209 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1210
1211 /* This hook may be called many times during setup, so make sure
1212 we don't add the same symbol file twice. */
1213 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1214 continue;
1215
1216 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1217 }
1218 }
1219 }
1220
1221 /* inferior_created observer. */
1222
1223 static void
1224 jit_inferior_created (struct target_ops *ops, int from_tty)
1225 {
1226 jit_inferior_created_hook ();
1227 }
1228
1229 /* Exported routine to call when an inferior has been created. */
1230
1231 void
1232 jit_inferior_created_hook (void)
1233 {
1234 jit_inferior_init (target_gdbarch ());
1235 }
1236
1237 /* Exported routine to call to re-set the jit breakpoints,
1238 e.g. when a program is rerun. */
1239
1240 void
1241 jit_breakpoint_re_set (void)
1242 {
1243 jit_breakpoint_re_set_internal (target_gdbarch (), current_program_space);
1244 }
1245
1246 /* This function cleans up any code entries left over when the
1247 inferior exits. We get left over code when the inferior exits
1248 without unregistering its code, for example when it crashes. */
1249
1250 static void
1251 jit_inferior_exit_hook (struct inferior *inf)
1252 {
1253 for (objfile *objf : current_program_space->objfiles_safe ())
1254 {
1255 if (objf->jited_data != nullptr && objf->jited_data->addr != 0)
1256 objf->unlink ();
1257 }
1258 }
1259
1260 void
1261 jit_event_handler (gdbarch *gdbarch, objfile *jiter)
1262 {
1263 struct jit_descriptor descriptor;
1264
1265 /* If we get a JIT breakpoint event for this objfile, it is necessarily a
1266 JITer. */
1267 gdb_assert (jiter->jiter_data != nullptr);
1268
1269 /* Read the descriptor from remote memory. */
1270 if (!jit_read_descriptor (gdbarch, &descriptor, jiter))
1271 return;
1272 CORE_ADDR entry_addr = descriptor.relevant_entry;
1273
1274 /* Do the corresponding action. */
1275 switch (descriptor.action_flag)
1276 {
1277 case JIT_NOACTION:
1278 break;
1279
1280 case JIT_REGISTER:
1281 {
1282 jit_code_entry code_entry;
1283 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1284 jit_register_code (gdbarch, entry_addr, &code_entry);
1285 break;
1286 }
1287
1288 case JIT_UNREGISTER:
1289 {
1290 objfile *jited = jit_find_objf_with_entry_addr (entry_addr);
1291 if (jited == nullptr)
1292 printf_unfiltered (_("Unable to find JITed code "
1293 "entry at address: %s\n"),
1294 paddress (gdbarch, entry_addr));
1295 else
1296 jited->unlink ();
1297
1298 break;
1299 }
1300
1301 default:
1302 error (_("Unknown action_flag value in JIT descriptor!"));
1303 break;
1304 }
1305 }
1306
1307 /* Initialize the jit_gdbarch_data slot with an instance of struct
1308 jit_gdbarch_data_type */
1309
1310 static void *
1311 jit_gdbarch_data_init (struct obstack *obstack)
1312 {
1313 struct jit_gdbarch_data_type *data =
1314 XOBNEW (obstack, struct jit_gdbarch_data_type);
1315
1316 data->unwinder_registered = 0;
1317
1318 return data;
1319 }
1320
1321 void _initialize_jit ();
1322 void
1323 _initialize_jit ()
1324 {
1325 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1326 JIT_READER_DIR_RELOCATABLE);
1327 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1328 _("Set JIT debugging."),
1329 _("Show JIT debugging."),
1330 _("When non-zero, JIT debugging is enabled."),
1331 NULL,
1332 show_jit_debug,
1333 &setdebuglist, &showdebuglist);
1334
1335 gdb::observers::inferior_created.attach (jit_inferior_created);
1336 gdb::observers::inferior_exit.attach (jit_inferior_exit_hook);
1337 gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted);
1338
1339 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1340 if (is_dl_available ())
1341 {
1342 struct cmd_list_element *c;
1343
1344 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1345 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1346 Usage: jit-reader-load FILE\n\
1347 Try to load file FILE as a debug info reader (and unwinder) for\n\
1348 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1349 relocated relative to the GDB executable if required."));
1350 set_cmd_completer (c, filename_completer);
1351
1352 c = add_com ("jit-reader-unload", no_class,
1353 jit_reader_unload_command, _("\
1354 Unload the currently loaded JIT debug info reader.\n\
1355 Usage: jit-reader-unload\n\n\
1356 Do \"help jit-reader-load\" for info on loading debug info readers."));
1357 set_cmd_completer (c, noop_completer);
1358 }
1359 }
This page took 0.056485 seconds and 4 git commands to generate.