PR cli/21688: Fix multi-line/inline command differentiation
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observer.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44
45 static const char *jit_reader_dir = NULL;
46
47 static const struct objfile_data *jit_objfile_data;
48
49 static const char *const jit_break_name = "__jit_debug_register_code";
50
51 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
52
53 static const struct program_space_data *jit_program_space_data = NULL;
54
55 static void jit_inferior_init (struct gdbarch *gdbarch);
56 static void jit_inferior_exit_hook (struct inferior *inf);
57
58 /* An unwinder is registered for every gdbarch. This key is used to
59 remember if the unwinder has been registered for a particular
60 gdbarch. */
61
62 static struct gdbarch_data *jit_gdbarch_data;
63
64 /* Non-zero if we want to see trace of jit level stuff. */
65
66 static unsigned int jit_debug = 0;
67
68 static void
69 show_jit_debug (struct ui_file *file, int from_tty,
70 struct cmd_list_element *c, const char *value)
71 {
72 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
73 }
74
75 struct target_buffer
76 {
77 CORE_ADDR base;
78 ULONGEST size;
79 };
80
81 /* Openning the file is a no-op. */
82
83 static void *
84 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
85 {
86 return open_closure;
87 }
88
89 /* Closing the file is just freeing the base/size pair on our side. */
90
91 static int
92 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
93 {
94 xfree (stream);
95
96 /* Zero means success. */
97 return 0;
98 }
99
100 /* For reading the file, we just need to pass through to target_read_memory and
101 fix up the arguments and return values. */
102
103 static file_ptr
104 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
105 file_ptr nbytes, file_ptr offset)
106 {
107 int err;
108 struct target_buffer *buffer = (struct target_buffer *) stream;
109
110 /* If this read will read all of the file, limit it to just the rest. */
111 if (offset + nbytes > buffer->size)
112 nbytes = buffer->size - offset;
113
114 /* If there are no more bytes left, we've reached EOF. */
115 if (nbytes == 0)
116 return 0;
117
118 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
119 if (err)
120 return -1;
121
122 return nbytes;
123 }
124
125 /* For statting the file, we only support the st_size attribute. */
126
127 static int
128 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
129 {
130 struct target_buffer *buffer = (struct target_buffer*) stream;
131
132 memset (sb, 0, sizeof (struct stat));
133 sb->st_size = buffer->size;
134 return 0;
135 }
136
137 /* Open a BFD from the target's memory. */
138
139 static gdb_bfd_ref_ptr
140 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
141 {
142 struct target_buffer *buffer = XNEW (struct target_buffer);
143
144 buffer->base = addr;
145 buffer->size = size;
146 return gdb_bfd_openr_iovec ("<in-memory>", target,
147 mem_bfd_iovec_open,
148 buffer,
149 mem_bfd_iovec_pread,
150 mem_bfd_iovec_close,
151 mem_bfd_iovec_stat);
152 }
153
154 struct jit_reader
155 {
156 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
157 : functions (f), handle (std::move (h))
158 {
159 }
160
161 ~jit_reader ()
162 {
163 functions->destroy (functions);
164 }
165
166 jit_reader (const jit_reader &) = delete;
167 jit_reader &operator= (const jit_reader &) = delete;
168
169 struct gdb_reader_funcs *functions;
170 gdb_dlhandle_up handle;
171 };
172
173 /* One reader that has been loaded successfully, and can potentially be used to
174 parse debug info. */
175
176 static struct jit_reader *loaded_jit_reader = NULL;
177
178 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
179 static const char *reader_init_fn_sym = "gdb_init_reader";
180
181 /* Try to load FILE_NAME as a JIT debug info reader. */
182
183 static struct jit_reader *
184 jit_reader_load (const char *file_name)
185 {
186 reader_init_fn_type *init_fn;
187 struct gdb_reader_funcs *funcs = NULL;
188
189 if (jit_debug)
190 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
191 file_name);
192 gdb_dlhandle_up so = gdb_dlopen (file_name);
193
194 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
195 if (!init_fn)
196 error (_("Could not locate initialization function: %s."),
197 reader_init_fn_sym);
198
199 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
200 error (_("Reader not GPL compatible."));
201
202 funcs = init_fn ();
203 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
204 error (_("Reader version does not match GDB version."));
205
206 return new jit_reader (funcs, std::move (so));
207 }
208
209 /* Provides the jit-reader-load command. */
210
211 static void
212 jit_reader_load_command (char *args, int from_tty)
213 {
214 char *so_name;
215 struct cleanup *prev_cleanup;
216
217 if (args == NULL)
218 error (_("No reader name provided."));
219 args = tilde_expand (args);
220 prev_cleanup = make_cleanup (xfree, args);
221
222 if (loaded_jit_reader != NULL)
223 error (_("JIT reader already loaded. Run jit-reader-unload first."));
224
225 if (IS_ABSOLUTE_PATH (args))
226 so_name = args;
227 else
228 {
229 so_name = xstrprintf ("%s%s%s", jit_reader_dir, SLASH_STRING, args);
230 make_cleanup (xfree, so_name);
231 }
232
233 loaded_jit_reader = jit_reader_load (so_name);
234 reinit_frame_cache ();
235 jit_inferior_created_hook ();
236 do_cleanups (prev_cleanup);
237 }
238
239 /* Provides the jit-reader-unload command. */
240
241 static void
242 jit_reader_unload_command (char *args, int from_tty)
243 {
244 if (!loaded_jit_reader)
245 error (_("No JIT reader loaded."));
246
247 reinit_frame_cache ();
248 jit_inferior_exit_hook (current_inferior ());
249
250 delete loaded_jit_reader;
251 loaded_jit_reader = NULL;
252 }
253
254 /* Per-program space structure recording which objfile has the JIT
255 symbols. */
256
257 struct jit_program_space_data
258 {
259 /* The objfile. This is NULL if no objfile holds the JIT
260 symbols. */
261
262 struct objfile *objfile;
263
264 /* If this program space has __jit_debug_register_code, this is the
265 cached address from the minimal symbol. This is used to detect
266 relocations requiring the breakpoint to be re-created. */
267
268 CORE_ADDR cached_code_address;
269
270 /* This is the JIT event breakpoint, or NULL if it has not been
271 set. */
272
273 struct breakpoint *jit_breakpoint;
274 };
275
276 /* Per-objfile structure recording the addresses in the program space.
277 This object serves two purposes: for ordinary objfiles, it may
278 cache some symbols related to the JIT interface; and for
279 JIT-created objfiles, it holds some information about the
280 jit_code_entry. */
281
282 struct jit_objfile_data
283 {
284 /* Symbol for __jit_debug_register_code. */
285 struct minimal_symbol *register_code;
286
287 /* Symbol for __jit_debug_descriptor. */
288 struct minimal_symbol *descriptor;
289
290 /* Address of struct jit_code_entry in this objfile. This is only
291 non-zero for objfiles that represent code created by the JIT. */
292 CORE_ADDR addr;
293 };
294
295 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
296 yet, make a new structure and attach it. */
297
298 static struct jit_objfile_data *
299 get_jit_objfile_data (struct objfile *objf)
300 {
301 struct jit_objfile_data *objf_data;
302
303 objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
304 if (objf_data == NULL)
305 {
306 objf_data = XCNEW (struct jit_objfile_data);
307 set_objfile_data (objf, jit_objfile_data, objf_data);
308 }
309
310 return objf_data;
311 }
312
313 /* Remember OBJFILE has been created for struct jit_code_entry located
314 at inferior address ENTRY. */
315
316 static void
317 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
318 {
319 struct jit_objfile_data *objf_data;
320
321 objf_data = get_jit_objfile_data (objfile);
322 objf_data->addr = entry;
323 }
324
325 /* Return jit_program_space_data for current program space. Allocate
326 if not already present. */
327
328 static struct jit_program_space_data *
329 get_jit_program_space_data (void)
330 {
331 struct jit_program_space_data *ps_data;
332
333 ps_data
334 = ((struct jit_program_space_data *)
335 program_space_data (current_program_space, jit_program_space_data));
336 if (ps_data == NULL)
337 {
338 ps_data = XCNEW (struct jit_program_space_data);
339 set_program_space_data (current_program_space, jit_program_space_data,
340 ps_data);
341 }
342
343 return ps_data;
344 }
345
346 static void
347 jit_program_space_data_cleanup (struct program_space *ps, void *arg)
348 {
349 xfree (arg);
350 }
351
352 /* Helper function for reading the global JIT descriptor from remote
353 memory. Returns 1 if all went well, 0 otherwise. */
354
355 static int
356 jit_read_descriptor (struct gdbarch *gdbarch,
357 struct jit_descriptor *descriptor,
358 struct jit_program_space_data *ps_data)
359 {
360 int err;
361 struct type *ptr_type;
362 int ptr_size;
363 int desc_size;
364 gdb_byte *desc_buf;
365 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
366 struct jit_objfile_data *objf_data;
367
368 if (ps_data->objfile == NULL)
369 return 0;
370 objf_data = get_jit_objfile_data (ps_data->objfile);
371 if (objf_data->descriptor == NULL)
372 return 0;
373
374 if (jit_debug)
375 fprintf_unfiltered (gdb_stdlog,
376 "jit_read_descriptor, descriptor_addr = %s\n",
377 paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
378 objf_data->descriptor)));
379
380 /* Figure out how big the descriptor is on the remote and how to read it. */
381 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
382 ptr_size = TYPE_LENGTH (ptr_type);
383 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
384 desc_buf = (gdb_byte *) alloca (desc_size);
385
386 /* Read the descriptor. */
387 err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
388 objf_data->descriptor),
389 desc_buf, desc_size);
390 if (err)
391 {
392 printf_unfiltered (_("Unable to read JIT descriptor from "
393 "remote memory\n"));
394 return 0;
395 }
396
397 /* Fix the endianness to match the host. */
398 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
399 descriptor->action_flag =
400 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
401 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
402 descriptor->first_entry =
403 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
404
405 return 1;
406 }
407
408 /* Helper function for reading a JITed code entry from remote memory. */
409
410 static void
411 jit_read_code_entry (struct gdbarch *gdbarch,
412 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
413 {
414 int err, off;
415 struct type *ptr_type;
416 int ptr_size;
417 int entry_size;
418 int align_bytes;
419 gdb_byte *entry_buf;
420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
421
422 /* Figure out how big the entry is on the remote and how to read it. */
423 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
424 ptr_size = TYPE_LENGTH (ptr_type);
425
426 /* Figure out where the longlong value will be. */
427 align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
428 off = 3 * ptr_size;
429 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
430
431 entry_size = off + 8; /* Three pointers and one 64-bit int. */
432 entry_buf = (gdb_byte *) alloca (entry_size);
433
434 /* Read the entry. */
435 err = target_read_memory (code_addr, entry_buf, entry_size);
436 if (err)
437 error (_("Unable to read JIT code entry from remote memory!"));
438
439 /* Fix the endianness to match the host. */
440 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
441 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
442 code_entry->prev_entry =
443 extract_typed_address (&entry_buf[ptr_size], ptr_type);
444 code_entry->symfile_addr =
445 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
446 code_entry->symfile_size =
447 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
448 }
449
450 /* Proxy object for building a block. */
451
452 struct gdb_block
453 {
454 /* gdb_blocks are linked into a tree structure. Next points to the
455 next node at the same depth as this block and parent to the
456 parent gdb_block. */
457 struct gdb_block *next, *parent;
458
459 /* Points to the "real" block that is being built out of this
460 instance. This block will be added to a blockvector, which will
461 then be added to a symtab. */
462 struct block *real_block;
463
464 /* The first and last code address corresponding to this block. */
465 CORE_ADDR begin, end;
466
467 /* The name of this block (if any). If this is non-NULL, the
468 FUNCTION symbol symbol is set to this value. */
469 const char *name;
470 };
471
472 /* Proxy object for building a symtab. */
473
474 struct gdb_symtab
475 {
476 /* The list of blocks in this symtab. These will eventually be
477 converted to real blocks. */
478 struct gdb_block *blocks;
479
480 /* The number of blocks inserted. */
481 int nblocks;
482
483 /* A mapping between line numbers to PC. */
484 struct linetable *linetable;
485
486 /* The source file for this symtab. */
487 const char *file_name;
488 struct gdb_symtab *next;
489 };
490
491 /* Proxy object for building an object. */
492
493 struct gdb_object
494 {
495 struct gdb_symtab *symtabs;
496 };
497
498 /* The type of the `private' data passed around by the callback
499 functions. */
500
501 typedef CORE_ADDR jit_dbg_reader_data;
502
503 /* The reader calls into this function to read data off the targets
504 address space. */
505
506 static enum gdb_status
507 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
508 {
509 int result = target_read_memory ((CORE_ADDR) target_mem,
510 (gdb_byte *) gdb_buf, len);
511 if (result == 0)
512 return GDB_SUCCESS;
513 else
514 return GDB_FAIL;
515 }
516
517 /* The reader calls into this function to create a new gdb_object
518 which it can then pass around to the other callbacks. Right now,
519 all that is required is allocating the memory. */
520
521 static struct gdb_object *
522 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
523 {
524 /* CB is not required right now, but sometime in the future we might
525 need a handle to it, and we'd like to do that without breaking
526 the ABI. */
527 return XCNEW (struct gdb_object);
528 }
529
530 /* Readers call into this function to open a new gdb_symtab, which,
531 again, is passed around to other callbacks. */
532
533 static struct gdb_symtab *
534 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
535 struct gdb_object *object,
536 const char *file_name)
537 {
538 struct gdb_symtab *ret;
539
540 /* CB stays unused. See comment in jit_object_open_impl. */
541
542 ret = XCNEW (struct gdb_symtab);
543 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
544 ret->next = object->symtabs;
545 object->symtabs = ret;
546 return ret;
547 }
548
549 /* Returns true if the block corresponding to old should be placed
550 before the block corresponding to new in the final blockvector. */
551
552 static int
553 compare_block (const struct gdb_block *const old,
554 const struct gdb_block *const newobj)
555 {
556 if (old == NULL)
557 return 1;
558 if (old->begin < newobj->begin)
559 return 1;
560 else if (old->begin == newobj->begin)
561 {
562 if (old->end > newobj->end)
563 return 1;
564 else
565 return 0;
566 }
567 else
568 return 0;
569 }
570
571 /* Called by readers to open a new gdb_block. This function also
572 inserts the new gdb_block in the correct place in the corresponding
573 gdb_symtab. */
574
575 static struct gdb_block *
576 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
577 struct gdb_symtab *symtab, struct gdb_block *parent,
578 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
579 {
580 struct gdb_block *block = XCNEW (struct gdb_block);
581
582 block->next = symtab->blocks;
583 block->begin = (CORE_ADDR) begin;
584 block->end = (CORE_ADDR) end;
585 block->name = name ? xstrdup (name) : NULL;
586 block->parent = parent;
587
588 /* Ensure that the blocks are inserted in the correct (reverse of
589 the order expected by blockvector). */
590 if (compare_block (symtab->blocks, block))
591 {
592 symtab->blocks = block;
593 }
594 else
595 {
596 struct gdb_block *i = symtab->blocks;
597
598 for (;; i = i->next)
599 {
600 /* Guaranteed to terminate, since compare_block (NULL, _)
601 returns 1. */
602 if (compare_block (i->next, block))
603 {
604 block->next = i->next;
605 i->next = block;
606 break;
607 }
608 }
609 }
610 symtab->nblocks++;
611
612 return block;
613 }
614
615 /* Readers call this to add a line mapping (from PC to line number) to
616 a gdb_symtab. */
617
618 static void
619 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
620 struct gdb_symtab *stab, int nlines,
621 struct gdb_line_mapping *map)
622 {
623 int i;
624 int alloc_len;
625
626 if (nlines < 1)
627 return;
628
629 alloc_len = sizeof (struct linetable)
630 + (nlines - 1) * sizeof (struct linetable_entry);
631 stab->linetable = (struct linetable *) xmalloc (alloc_len);
632 stab->linetable->nitems = nlines;
633 for (i = 0; i < nlines; i++)
634 {
635 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
636 stab->linetable->item[i].line = map[i].line;
637 }
638 }
639
640 /* Called by readers to close a gdb_symtab. Does not need to do
641 anything as of now. */
642
643 static void
644 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
645 struct gdb_symtab *stab)
646 {
647 /* Right now nothing needs to be done here. We may need to do some
648 cleanup here in the future (again, without breaking the plugin
649 ABI). */
650 }
651
652 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
653
654 static void
655 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
656 {
657 struct compunit_symtab *cust;
658 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
659 struct block *block_iter;
660 int actual_nblocks, i;
661 size_t blockvector_size;
662 CORE_ADDR begin, end;
663 struct blockvector *bv;
664
665 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
666
667 cust = allocate_compunit_symtab (objfile, stab->file_name);
668 allocate_symtab (cust, stab->file_name);
669 add_compunit_symtab_to_objfile (cust);
670
671 /* JIT compilers compile in memory. */
672 COMPUNIT_DIRNAME (cust) = NULL;
673
674 /* Copy over the linetable entry if one was provided. */
675 if (stab->linetable)
676 {
677 size_t size = ((stab->linetable->nitems - 1)
678 * sizeof (struct linetable_entry)
679 + sizeof (struct linetable));
680 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
681 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
682 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)), stab->linetable,
683 size);
684 }
685
686 blockvector_size = (sizeof (struct blockvector)
687 + (actual_nblocks - 1) * sizeof (struct block *));
688 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
689 blockvector_size);
690 COMPUNIT_BLOCKVECTOR (cust) = bv;
691
692 /* (begin, end) will contain the PC range this entire blockvector
693 spans. */
694 BLOCKVECTOR_MAP (bv) = NULL;
695 begin = stab->blocks->begin;
696 end = stab->blocks->end;
697 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
698
699 /* First run over all the gdb_block objects, creating a real block
700 object for each. Simultaneously, keep setting the real_block
701 fields. */
702 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
703 i >= FIRST_LOCAL_BLOCK;
704 i--, gdb_block_iter = gdb_block_iter->next)
705 {
706 struct block *new_block = allocate_block (&objfile->objfile_obstack);
707 struct symbol *block_name = allocate_symbol (objfile);
708 struct type *block_type = arch_type (get_objfile_arch (objfile),
709 TYPE_CODE_VOID,
710 1,
711 "void");
712
713 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
714 NULL);
715 /* The address range. */
716 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
717 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
718
719 /* The name. */
720 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
721 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
722 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
723 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
724 SYMBOL_BLOCK_VALUE (block_name) = new_block;
725
726 block_name->ginfo.name
727 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
728 gdb_block_iter->name,
729 strlen (gdb_block_iter->name));
730
731 BLOCK_FUNCTION (new_block) = block_name;
732
733 BLOCKVECTOR_BLOCK (bv, i) = new_block;
734 if (begin > BLOCK_START (new_block))
735 begin = BLOCK_START (new_block);
736 if (end < BLOCK_END (new_block))
737 end = BLOCK_END (new_block);
738
739 gdb_block_iter->real_block = new_block;
740 }
741
742 /* Now add the special blocks. */
743 block_iter = NULL;
744 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
745 {
746 struct block *new_block;
747
748 new_block = (i == GLOBAL_BLOCK
749 ? allocate_global_block (&objfile->objfile_obstack)
750 : allocate_block (&objfile->objfile_obstack));
751 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
752 NULL);
753 BLOCK_SUPERBLOCK (new_block) = block_iter;
754 block_iter = new_block;
755
756 BLOCK_START (new_block) = (CORE_ADDR) begin;
757 BLOCK_END (new_block) = (CORE_ADDR) end;
758
759 BLOCKVECTOR_BLOCK (bv, i) = new_block;
760
761 if (i == GLOBAL_BLOCK)
762 set_block_compunit_symtab (new_block, cust);
763 }
764
765 /* Fill up the superblock fields for the real blocks, using the
766 real_block fields populated earlier. */
767 for (gdb_block_iter = stab->blocks;
768 gdb_block_iter;
769 gdb_block_iter = gdb_block_iter->next)
770 {
771 if (gdb_block_iter->parent != NULL)
772 {
773 /* If the plugin specifically mentioned a parent block, we
774 use that. */
775 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
776 gdb_block_iter->parent->real_block;
777 }
778 else
779 {
780 /* And if not, we set a default parent block. */
781 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
782 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
783 }
784 }
785
786 /* Free memory. */
787 gdb_block_iter = stab->blocks;
788
789 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
790 gdb_block_iter;
791 gdb_block_iter = gdb_block_iter_tmp)
792 {
793 xfree ((void *) gdb_block_iter->name);
794 xfree (gdb_block_iter);
795 }
796 xfree (stab->linetable);
797 xfree ((char *) stab->file_name);
798 xfree (stab);
799 }
800
801 /* Called when closing a gdb_objfile. Converts OBJ to a proper
802 objfile. */
803
804 static void
805 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
806 struct gdb_object *obj)
807 {
808 struct gdb_symtab *i, *j;
809 struct objfile *objfile;
810 jit_dbg_reader_data *priv_data;
811
812 priv_data = (jit_dbg_reader_data *) cb->priv_data;
813
814 objfile = allocate_objfile (NULL, "<< JIT compiled code >>",
815 OBJF_NOT_FILENAME);
816 objfile->per_bfd->gdbarch = target_gdbarch ();
817
818 terminate_minimal_symbol_table (objfile);
819
820 j = NULL;
821 for (i = obj->symtabs; i; i = j)
822 {
823 j = i->next;
824 finalize_symtab (i, objfile);
825 }
826 add_objfile_entry (objfile, *priv_data);
827 xfree (obj);
828 }
829
830 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
831 ENTRY_ADDR is the address of the struct jit_code_entry in the
832 inferior address space. */
833
834 static int
835 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
836 CORE_ADDR entry_addr)
837 {
838 gdb_byte *gdb_mem;
839 int status;
840 jit_dbg_reader_data priv_data;
841 struct gdb_reader_funcs *funcs;
842 struct gdb_symbol_callbacks callbacks =
843 {
844 jit_object_open_impl,
845 jit_symtab_open_impl,
846 jit_block_open_impl,
847 jit_symtab_close_impl,
848 jit_object_close_impl,
849
850 jit_symtab_line_mapping_add_impl,
851 jit_target_read_impl,
852
853 &priv_data
854 };
855
856 priv_data = entry_addr;
857
858 if (!loaded_jit_reader)
859 return 0;
860
861 gdb_mem = (gdb_byte *) xmalloc (code_entry->symfile_size);
862
863 status = 1;
864 TRY
865 {
866 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
867 code_entry->symfile_size))
868 status = 0;
869 }
870 CATCH (e, RETURN_MASK_ALL)
871 {
872 status = 0;
873 }
874 END_CATCH
875
876 if (status)
877 {
878 funcs = loaded_jit_reader->functions;
879 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
880 != GDB_SUCCESS)
881 status = 0;
882 }
883
884 xfree (gdb_mem);
885 if (jit_debug && status == 0)
886 fprintf_unfiltered (gdb_stdlog,
887 "Could not read symtab using the loaded JIT reader.\n");
888 return status;
889 }
890
891 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
892 struct jit_code_entry in the inferior address space. */
893
894 static void
895 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
896 CORE_ADDR entry_addr,
897 struct gdbarch *gdbarch)
898 {
899 struct section_addr_info *sai;
900 struct bfd_section *sec;
901 struct objfile *objfile;
902 struct cleanup *old_cleanups;
903 int i;
904 const struct bfd_arch_info *b;
905
906 if (jit_debug)
907 fprintf_unfiltered (gdb_stdlog,
908 "jit_register_code, symfile_addr = %s, "
909 "symfile_size = %s\n",
910 paddress (gdbarch, code_entry->symfile_addr),
911 pulongest (code_entry->symfile_size));
912
913 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
914 code_entry->symfile_size,
915 gnutarget));
916 if (nbfd == NULL)
917 {
918 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
919 return;
920 }
921
922 /* Check the format. NOTE: This initializes important data that GDB uses!
923 We would segfault later without this line. */
924 if (!bfd_check_format (nbfd.get (), bfd_object))
925 {
926 printf_unfiltered (_("\
927 JITed symbol file is not an object file, ignoring it.\n"));
928 return;
929 }
930
931 /* Check bfd arch. */
932 b = gdbarch_bfd_arch_info (gdbarch);
933 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
934 warning (_("JITed object file architecture %s is not compatible "
935 "with target architecture %s."),
936 bfd_get_arch_info (nbfd.get ())->printable_name,
937 b->printable_name);
938
939 /* Read the section address information out of the symbol file. Since the
940 file is generated by the JIT at runtime, it should all of the absolute
941 addresses that we care about. */
942 sai = alloc_section_addr_info (bfd_count_sections (nbfd.get ()));
943 old_cleanups = make_cleanup_free_section_addr_info (sai);
944 i = 0;
945 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
946 if ((bfd_get_section_flags (nbfd.get (), sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
947 {
948 /* We assume that these virtual addresses are absolute, and do not
949 treat them as offsets. */
950 sai->other[i].addr = bfd_get_section_vma (nbfd.get (), sec);
951 sai->other[i].name = xstrdup (bfd_get_section_name (nbfd.get (), sec));
952 sai->other[i].sectindex = sec->index;
953 ++i;
954 }
955 sai->num_sections = i;
956
957 /* This call does not take ownership of SAI. */
958 objfile = symbol_file_add_from_bfd (nbfd.get (),
959 bfd_get_filename (nbfd.get ()), 0, sai,
960 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
961
962 do_cleanups (old_cleanups);
963 add_objfile_entry (objfile, entry_addr);
964 }
965
966 /* This function registers code associated with a JIT code entry. It uses the
967 pointer and size pair in the entry to read the symbol file from the remote
968 and then calls symbol_file_add_from_local_memory to add it as though it were
969 a symbol file added by the user. */
970
971 static void
972 jit_register_code (struct gdbarch *gdbarch,
973 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
974 {
975 int success;
976
977 if (jit_debug)
978 fprintf_unfiltered (gdb_stdlog,
979 "jit_register_code, symfile_addr = %s, "
980 "symfile_size = %s\n",
981 paddress (gdbarch, code_entry->symfile_addr),
982 pulongest (code_entry->symfile_size));
983
984 success = jit_reader_try_read_symtab (code_entry, entry_addr);
985
986 if (!success)
987 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
988 }
989
990 /* This function unregisters JITed code and frees the corresponding
991 objfile. */
992
993 static void
994 jit_unregister_code (struct objfile *objfile)
995 {
996 free_objfile (objfile);
997 }
998
999 /* Look up the objfile with this code entry address. */
1000
1001 static struct objfile *
1002 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
1003 {
1004 struct objfile *objf;
1005
1006 ALL_OBJFILES (objf)
1007 {
1008 struct jit_objfile_data *objf_data;
1009
1010 objf_data
1011 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1012 if (objf_data != NULL && objf_data->addr == entry_addr)
1013 return objf;
1014 }
1015 return NULL;
1016 }
1017
1018 /* This is called when a breakpoint is deleted. It updates the
1019 inferior's cache, if needed. */
1020
1021 static void
1022 jit_breakpoint_deleted (struct breakpoint *b)
1023 {
1024 struct bp_location *iter;
1025
1026 if (b->type != bp_jit_event)
1027 return;
1028
1029 for (iter = b->loc; iter != NULL; iter = iter->next)
1030 {
1031 struct jit_program_space_data *ps_data;
1032
1033 ps_data = ((struct jit_program_space_data *)
1034 program_space_data (iter->pspace, jit_program_space_data));
1035 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1036 {
1037 ps_data->cached_code_address = 0;
1038 ps_data->jit_breakpoint = NULL;
1039 }
1040 }
1041 }
1042
1043 /* (Re-)Initialize the jit breakpoint if necessary.
1044 Return 0 if the jit breakpoint has been successfully initialized. */
1045
1046 static int
1047 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1048 struct jit_program_space_data *ps_data)
1049 {
1050 struct bound_minimal_symbol reg_symbol;
1051 struct bound_minimal_symbol desc_symbol;
1052 struct jit_objfile_data *objf_data;
1053 CORE_ADDR addr;
1054
1055 if (ps_data->objfile == NULL)
1056 {
1057 /* Lookup the registration symbol. If it is missing, then we
1058 assume we are not attached to a JIT. */
1059 reg_symbol = lookup_minimal_symbol_and_objfile (jit_break_name);
1060 if (reg_symbol.minsym == NULL
1061 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1062 return 1;
1063
1064 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1065 reg_symbol.objfile);
1066 if (desc_symbol.minsym == NULL
1067 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1068 return 1;
1069
1070 objf_data = get_jit_objfile_data (reg_symbol.objfile);
1071 objf_data->register_code = reg_symbol.minsym;
1072 objf_data->descriptor = desc_symbol.minsym;
1073
1074 ps_data->objfile = reg_symbol.objfile;
1075 }
1076 else
1077 objf_data = get_jit_objfile_data (ps_data->objfile);
1078
1079 addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
1080
1081 if (jit_debug)
1082 fprintf_unfiltered (gdb_stdlog,
1083 "jit_breakpoint_re_set_internal, "
1084 "breakpoint_addr = %s\n",
1085 paddress (gdbarch, addr));
1086
1087 if (ps_data->cached_code_address == addr)
1088 return 0;
1089
1090 /* Delete the old breakpoint. */
1091 if (ps_data->jit_breakpoint != NULL)
1092 delete_breakpoint (ps_data->jit_breakpoint);
1093
1094 /* Put a breakpoint in the registration symbol. */
1095 ps_data->cached_code_address = addr;
1096 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1097
1098 return 0;
1099 }
1100
1101 /* The private data passed around in the frame unwind callback
1102 functions. */
1103
1104 struct jit_unwind_private
1105 {
1106 /* Cached register values. See jit_frame_sniffer to see how this
1107 works. */
1108 struct regcache *regcache;
1109
1110 /* The frame being unwound. */
1111 struct frame_info *this_frame;
1112 };
1113
1114 /* Sets the value of a particular register in this frame. */
1115
1116 static void
1117 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1118 struct gdb_reg_value *value)
1119 {
1120 struct jit_unwind_private *priv;
1121 int gdb_reg;
1122
1123 priv = (struct jit_unwind_private *) cb->priv_data;
1124
1125 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1126 dwarf_regnum);
1127 if (gdb_reg == -1)
1128 {
1129 if (jit_debug)
1130 fprintf_unfiltered (gdb_stdlog,
1131 _("Could not recognize DWARF regnum %d"),
1132 dwarf_regnum);
1133 value->free (value);
1134 return;
1135 }
1136
1137 regcache_raw_set_cached_value (priv->regcache, gdb_reg, value->value);
1138 value->free (value);
1139 }
1140
1141 static void
1142 reg_value_free_impl (struct gdb_reg_value *value)
1143 {
1144 xfree (value);
1145 }
1146
1147 /* Get the value of register REGNUM in the previous frame. */
1148
1149 static struct gdb_reg_value *
1150 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1151 {
1152 struct jit_unwind_private *priv;
1153 struct gdb_reg_value *value;
1154 int gdb_reg, size;
1155 struct gdbarch *frame_arch;
1156
1157 priv = (struct jit_unwind_private *) cb->priv_data;
1158 frame_arch = get_frame_arch (priv->this_frame);
1159
1160 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1161 size = register_size (frame_arch, gdb_reg);
1162 value = ((struct gdb_reg_value *)
1163 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1164 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1165 value->value);
1166 value->size = size;
1167 value->free = reg_value_free_impl;
1168 return value;
1169 }
1170
1171 /* gdb_reg_value has a free function, which must be called on each
1172 saved register value. */
1173
1174 static void
1175 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1176 {
1177 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1178
1179 gdb_assert (priv_data->regcache != NULL);
1180 regcache_xfree (priv_data->regcache);
1181 xfree (priv_data);
1182 }
1183
1184 /* The frame sniffer for the pseudo unwinder.
1185
1186 While this is nominally a frame sniffer, in the case where the JIT
1187 reader actually recognizes the frame, it does a lot more work -- it
1188 unwinds the frame and saves the corresponding register values in
1189 the cache. jit_frame_prev_register simply returns the saved
1190 register values. */
1191
1192 static int
1193 jit_frame_sniffer (const struct frame_unwind *self,
1194 struct frame_info *this_frame, void **cache)
1195 {
1196 struct jit_unwind_private *priv_data;
1197 struct gdb_unwind_callbacks callbacks;
1198 struct gdb_reader_funcs *funcs;
1199 struct address_space *aspace;
1200 struct gdbarch *gdbarch;
1201
1202 callbacks.reg_get = jit_unwind_reg_get_impl;
1203 callbacks.reg_set = jit_unwind_reg_set_impl;
1204 callbacks.target_read = jit_target_read_impl;
1205
1206 if (loaded_jit_reader == NULL)
1207 return 0;
1208
1209 funcs = loaded_jit_reader->functions;
1210
1211 gdb_assert (!*cache);
1212
1213 aspace = get_frame_address_space (this_frame);
1214 gdbarch = get_frame_arch (this_frame);
1215
1216 *cache = XCNEW (struct jit_unwind_private);
1217 priv_data = (struct jit_unwind_private *) *cache;
1218 priv_data->regcache = regcache_xmalloc (gdbarch, aspace);
1219 priv_data->this_frame = this_frame;
1220
1221 callbacks.priv_data = priv_data;
1222
1223 /* Try to coax the provided unwinder to unwind the stack */
1224 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1225 {
1226 if (jit_debug)
1227 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1228 "JIT reader.\n"));
1229 return 1;
1230 }
1231 if (jit_debug)
1232 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1233 "JIT reader.\n"));
1234
1235 jit_dealloc_cache (this_frame, *cache);
1236 *cache = NULL;
1237
1238 return 0;
1239 }
1240
1241
1242 /* The frame_id function for the pseudo unwinder. Relays the call to
1243 the loaded plugin. */
1244
1245 static void
1246 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1247 struct frame_id *this_id)
1248 {
1249 struct jit_unwind_private priv;
1250 struct gdb_frame_id frame_id;
1251 struct gdb_reader_funcs *funcs;
1252 struct gdb_unwind_callbacks callbacks;
1253
1254 priv.regcache = NULL;
1255 priv.this_frame = this_frame;
1256
1257 /* We don't expect the frame_id function to set any registers, so we
1258 set reg_set to NULL. */
1259 callbacks.reg_get = jit_unwind_reg_get_impl;
1260 callbacks.reg_set = NULL;
1261 callbacks.target_read = jit_target_read_impl;
1262 callbacks.priv_data = &priv;
1263
1264 gdb_assert (loaded_jit_reader);
1265 funcs = loaded_jit_reader->functions;
1266
1267 frame_id = funcs->get_frame_id (funcs, &callbacks);
1268 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1269 }
1270
1271 /* Pseudo unwinder function. Reads the previously fetched value for
1272 the register from the cache. */
1273
1274 static struct value *
1275 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1276 {
1277 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1278 struct gdbarch *gdbarch;
1279
1280 if (priv == NULL)
1281 return frame_unwind_got_optimized (this_frame, reg);
1282
1283 gdbarch = get_regcache_arch (priv->regcache);
1284 if (reg < gdbarch_num_regs (gdbarch))
1285 {
1286 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1287 enum register_status status;
1288
1289 status = regcache_raw_read (priv->regcache, reg, buf);
1290 if (status == REG_VALID)
1291 return frame_unwind_got_bytes (this_frame, reg, buf);
1292 else
1293 return frame_unwind_got_optimized (this_frame, reg);
1294 }
1295 else
1296 return gdbarch_pseudo_register_read_value (gdbarch, priv->regcache, reg);
1297 }
1298
1299 /* Relay everything back to the unwinder registered by the JIT debug
1300 info reader.*/
1301
1302 static const struct frame_unwind jit_frame_unwind =
1303 {
1304 NORMAL_FRAME,
1305 default_frame_unwind_stop_reason,
1306 jit_frame_this_id,
1307 jit_frame_prev_register,
1308 NULL,
1309 jit_frame_sniffer,
1310 jit_dealloc_cache
1311 };
1312
1313
1314 /* This is the information that is stored at jit_gdbarch_data for each
1315 architecture. */
1316
1317 struct jit_gdbarch_data_type
1318 {
1319 /* Has the (pseudo) unwinder been prepended? */
1320 int unwinder_registered;
1321 };
1322
1323 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1324
1325 static void
1326 jit_prepend_unwinder (struct gdbarch *gdbarch)
1327 {
1328 struct jit_gdbarch_data_type *data;
1329
1330 data
1331 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1332 if (!data->unwinder_registered)
1333 {
1334 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1335 data->unwinder_registered = 1;
1336 }
1337 }
1338
1339 /* Register any already created translations. */
1340
1341 static void
1342 jit_inferior_init (struct gdbarch *gdbarch)
1343 {
1344 struct jit_descriptor descriptor;
1345 struct jit_code_entry cur_entry;
1346 struct jit_program_space_data *ps_data;
1347 CORE_ADDR cur_entry_addr;
1348
1349 if (jit_debug)
1350 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1351
1352 jit_prepend_unwinder (gdbarch);
1353
1354 ps_data = get_jit_program_space_data ();
1355 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1356 return;
1357
1358 /* Read the descriptor so we can check the version number and load
1359 any already JITed functions. */
1360 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1361 return;
1362
1363 /* Check that the version number agrees with that we support. */
1364 if (descriptor.version != 1)
1365 {
1366 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1367 "in descriptor (expected 1)\n"),
1368 (long) descriptor.version);
1369 return;
1370 }
1371
1372 /* If we've attached to a running program, we need to check the descriptor
1373 to register any functions that were already generated. */
1374 for (cur_entry_addr = descriptor.first_entry;
1375 cur_entry_addr != 0;
1376 cur_entry_addr = cur_entry.next_entry)
1377 {
1378 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1379
1380 /* This hook may be called many times during setup, so make sure we don't
1381 add the same symbol file twice. */
1382 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1383 continue;
1384
1385 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1386 }
1387 }
1388
1389 /* inferior_created observer. */
1390
1391 static void
1392 jit_inferior_created (struct target_ops *ops, int from_tty)
1393 {
1394 jit_inferior_created_hook ();
1395 }
1396
1397 /* Exported routine to call when an inferior has been created. */
1398
1399 void
1400 jit_inferior_created_hook (void)
1401 {
1402 jit_inferior_init (target_gdbarch ());
1403 }
1404
1405 /* Exported routine to call to re-set the jit breakpoints,
1406 e.g. when a program is rerun. */
1407
1408 void
1409 jit_breakpoint_re_set (void)
1410 {
1411 jit_breakpoint_re_set_internal (target_gdbarch (),
1412 get_jit_program_space_data ());
1413 }
1414
1415 /* This function cleans up any code entries left over when the
1416 inferior exits. We get left over code when the inferior exits
1417 without unregistering its code, for example when it crashes. */
1418
1419 static void
1420 jit_inferior_exit_hook (struct inferior *inf)
1421 {
1422 struct objfile *objf;
1423 struct objfile *temp;
1424
1425 ALL_OBJFILES_SAFE (objf, temp)
1426 {
1427 struct jit_objfile_data *objf_data
1428 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1429
1430 if (objf_data != NULL && objf_data->addr != 0)
1431 jit_unregister_code (objf);
1432 }
1433 }
1434
1435 void
1436 jit_event_handler (struct gdbarch *gdbarch)
1437 {
1438 struct jit_descriptor descriptor;
1439 struct jit_code_entry code_entry;
1440 CORE_ADDR entry_addr;
1441 struct objfile *objf;
1442
1443 /* Read the descriptor from remote memory. */
1444 if (!jit_read_descriptor (gdbarch, &descriptor,
1445 get_jit_program_space_data ()))
1446 return;
1447 entry_addr = descriptor.relevant_entry;
1448
1449 /* Do the corresponding action. */
1450 switch (descriptor.action_flag)
1451 {
1452 case JIT_NOACTION:
1453 break;
1454 case JIT_REGISTER:
1455 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1456 jit_register_code (gdbarch, entry_addr, &code_entry);
1457 break;
1458 case JIT_UNREGISTER:
1459 objf = jit_find_objf_with_entry_addr (entry_addr);
1460 if (objf == NULL)
1461 printf_unfiltered (_("Unable to find JITed code "
1462 "entry at address: %s\n"),
1463 paddress (gdbarch, entry_addr));
1464 else
1465 jit_unregister_code (objf);
1466
1467 break;
1468 default:
1469 error (_("Unknown action_flag value in JIT descriptor!"));
1470 break;
1471 }
1472 }
1473
1474 /* Called to free the data allocated to the jit_program_space_data slot. */
1475
1476 static void
1477 free_objfile_data (struct objfile *objfile, void *data)
1478 {
1479 struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data;
1480
1481 if (objf_data->register_code != NULL)
1482 {
1483 struct jit_program_space_data *ps_data;
1484
1485 ps_data
1486 = ((struct jit_program_space_data *)
1487 program_space_data (objfile->pspace, jit_program_space_data));
1488 if (ps_data != NULL && ps_data->objfile == objfile)
1489 {
1490 ps_data->objfile = NULL;
1491 delete_breakpoint (ps_data->jit_breakpoint);
1492 ps_data->cached_code_address = 0;
1493 }
1494 }
1495
1496 xfree (data);
1497 }
1498
1499 /* Initialize the jit_gdbarch_data slot with an instance of struct
1500 jit_gdbarch_data_type */
1501
1502 static void *
1503 jit_gdbarch_data_init (struct obstack *obstack)
1504 {
1505 struct jit_gdbarch_data_type *data =
1506 XOBNEW (obstack, struct jit_gdbarch_data_type);
1507
1508 data->unwinder_registered = 0;
1509
1510 return data;
1511 }
1512
1513 /* Provide a prototype to silence -Wmissing-prototypes. */
1514
1515 extern void _initialize_jit (void);
1516
1517 void
1518 _initialize_jit (void)
1519 {
1520 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1521 JIT_READER_DIR_RELOCATABLE);
1522 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1523 _("Set JIT debugging."),
1524 _("Show JIT debugging."),
1525 _("When non-zero, JIT debugging is enabled."),
1526 NULL,
1527 show_jit_debug,
1528 &setdebuglist, &showdebuglist);
1529
1530 observer_attach_inferior_created (jit_inferior_created);
1531 observer_attach_inferior_exit (jit_inferior_exit_hook);
1532 observer_attach_breakpoint_deleted (jit_breakpoint_deleted);
1533
1534 jit_objfile_data =
1535 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1536 jit_program_space_data =
1537 register_program_space_data_with_cleanup (NULL,
1538 jit_program_space_data_cleanup);
1539 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1540 if (is_dl_available ())
1541 {
1542 struct cmd_list_element *c;
1543
1544 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1545 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1546 Usage: jit-reader-load FILE\n\
1547 Try to load file FILE as a debug info reader (and unwinder) for\n\
1548 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1549 relocated relative to the GDB executable if required."));
1550 set_cmd_completer (c, filename_completer);
1551
1552 c = add_com ("jit-reader-unload", no_class,
1553 jit_reader_unload_command, _("\
1554 Unload the currently loaded JIT debug info reader.\n\
1555 Usage: jit-reader-unload\n\n\
1556 Do \"help jit-reader-load\" for info on loading debug info readers."));
1557 set_cmd_completer (c, noop_completer);
1558 }
1559 }
This page took 0.063571 seconds and 4 git commands to generate.