* amd64-windows-nat.c, amd64-windows-tdep.c: New files.
[deliverable/binutils-gdb.git] / gdb / jv-exp.y
1 /* YACC parser for Java expressions, for GDB.
2 Copyright (C) 1997, 1998, 1999, 2000, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /* Parse a Java expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. Well, almost always; see ArrayAccess.
30
31 Note that malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 %{
40
41 #include "defs.h"
42 #include "gdb_string.h"
43 #include <ctype.h>
44 #include "expression.h"
45 #include "value.h"
46 #include "parser-defs.h"
47 #include "language.h"
48 #include "jv-lang.h"
49 #include "bfd.h" /* Required by objfiles.h. */
50 #include "symfile.h" /* Required by objfiles.h. */
51 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
52 #include "block.h"
53
54 #define parse_type builtin_type (parse_gdbarch)
55
56 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
57 as well as gratuitiously global symbol names, so we can have multiple
58 yacc generated parsers in gdb. Note that these are only the variables
59 produced by yacc. If other parser generators (bison, byacc, etc) produce
60 additional global names that conflict at link time, then those parser
61 generators need to be fixed instead of adding those names to this list. */
62
63 #define yymaxdepth java_maxdepth
64 #define yyparse java_parse
65 #define yylex java_lex
66 #define yyerror java_error
67 #define yylval java_lval
68 #define yychar java_char
69 #define yydebug java_debug
70 #define yypact java_pact
71 #define yyr1 java_r1
72 #define yyr2 java_r2
73 #define yydef java_def
74 #define yychk java_chk
75 #define yypgo java_pgo
76 #define yyact java_act
77 #define yyexca java_exca
78 #define yyerrflag java_errflag
79 #define yynerrs java_nerrs
80 #define yyps java_ps
81 #define yypv java_pv
82 #define yys java_s
83 #define yy_yys java_yys
84 #define yystate java_state
85 #define yytmp java_tmp
86 #define yyv java_v
87 #define yy_yyv java_yyv
88 #define yyval java_val
89 #define yylloc java_lloc
90 #define yyreds java_reds /* With YYDEBUG defined */
91 #define yytoks java_toks /* With YYDEBUG defined */
92 #define yyname java_name /* With YYDEBUG defined */
93 #define yyrule java_rule /* With YYDEBUG defined */
94 #define yylhs java_yylhs
95 #define yylen java_yylen
96 #define yydefred java_yydefred
97 #define yydgoto java_yydgoto
98 #define yysindex java_yysindex
99 #define yyrindex java_yyrindex
100 #define yygindex java_yygindex
101 #define yytable java_yytable
102 #define yycheck java_yycheck
103
104 #ifndef YYDEBUG
105 #define YYDEBUG 1 /* Default to yydebug support */
106 #endif
107
108 #define YYFPRINTF parser_fprintf
109
110 int yyparse (void);
111
112 static int yylex (void);
113
114 void yyerror (char *);
115
116 static struct type *java_type_from_name (struct stoken);
117 static void push_expression_name (struct stoken);
118 static void push_fieldnames (struct stoken);
119
120 static struct expression *copy_exp (struct expression *, int);
121 static void insert_exp (int, struct expression *);
122
123 %}
124
125 /* Although the yacc "value" of an expression is not used,
126 since the result is stored in the structure being created,
127 other node types do have values. */
128
129 %union
130 {
131 LONGEST lval;
132 struct {
133 LONGEST val;
134 struct type *type;
135 } typed_val_int;
136 struct {
137 DOUBLEST dval;
138 struct type *type;
139 } typed_val_float;
140 struct symbol *sym;
141 struct type *tval;
142 struct stoken sval;
143 struct ttype tsym;
144 struct symtoken ssym;
145 struct block *bval;
146 enum exp_opcode opcode;
147 struct internalvar *ivar;
148 int *ivec;
149 }
150
151 %{
152 /* YYSTYPE gets defined by %union */
153 static int parse_number (char *, int, int, YYSTYPE *);
154 %}
155
156 %type <lval> rcurly Dims Dims_opt
157 %type <tval> ClassOrInterfaceType ClassType /* ReferenceType Type ArrayType */
158 %type <tval> IntegralType FloatingPointType NumericType PrimitiveType ArrayType PrimitiveOrArrayType
159
160 %token <typed_val_int> INTEGER_LITERAL
161 %token <typed_val_float> FLOATING_POINT_LITERAL
162
163 %token <sval> IDENTIFIER
164 %token <sval> STRING_LITERAL
165 %token <lval> BOOLEAN_LITERAL
166 %token <tsym> TYPENAME
167 %type <sval> Name SimpleName QualifiedName ForcedName
168
169 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
170 but which would parse as a valid number in the current input radix.
171 E.g. "c" when input_radix==16. Depending on the parse, it will be
172 turned into a name or into a number. */
173
174 %token <sval> NAME_OR_INT
175
176 %token ERROR
177
178 /* Special type cases, put in to allow the parser to distinguish different
179 legal basetypes. */
180 %token LONG SHORT BYTE INT CHAR BOOLEAN DOUBLE FLOAT
181
182 %token VARIABLE
183
184 %token <opcode> ASSIGN_MODIFY
185
186 %token SUPER NEW
187
188 %left ','
189 %right '=' ASSIGN_MODIFY
190 %right '?'
191 %left OROR
192 %left ANDAND
193 %left '|'
194 %left '^'
195 %left '&'
196 %left EQUAL NOTEQUAL
197 %left '<' '>' LEQ GEQ
198 %left LSH RSH
199 %left '+' '-'
200 %left '*' '/' '%'
201 %right INCREMENT DECREMENT
202 %right '.' '[' '('
203
204 \f
205 %%
206
207 start : exp1
208 | type_exp
209 ;
210
211 type_exp: PrimitiveOrArrayType
212 {
213 write_exp_elt_opcode(OP_TYPE);
214 write_exp_elt_type($1);
215 write_exp_elt_opcode(OP_TYPE);
216 }
217 ;
218
219 PrimitiveOrArrayType:
220 PrimitiveType
221 | ArrayType
222 ;
223
224 StringLiteral:
225 STRING_LITERAL
226 {
227 write_exp_elt_opcode (OP_STRING);
228 write_exp_string ($1);
229 write_exp_elt_opcode (OP_STRING);
230 }
231 ;
232
233 Literal:
234 INTEGER_LITERAL
235 { write_exp_elt_opcode (OP_LONG);
236 write_exp_elt_type ($1.type);
237 write_exp_elt_longcst ((LONGEST)($1.val));
238 write_exp_elt_opcode (OP_LONG); }
239 | NAME_OR_INT
240 { YYSTYPE val;
241 parse_number ($1.ptr, $1.length, 0, &val);
242 write_exp_elt_opcode (OP_LONG);
243 write_exp_elt_type (val.typed_val_int.type);
244 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
245 write_exp_elt_opcode (OP_LONG);
246 }
247 | FLOATING_POINT_LITERAL
248 { write_exp_elt_opcode (OP_DOUBLE);
249 write_exp_elt_type ($1.type);
250 write_exp_elt_dblcst ($1.dval);
251 write_exp_elt_opcode (OP_DOUBLE); }
252 | BOOLEAN_LITERAL
253 { write_exp_elt_opcode (OP_LONG);
254 write_exp_elt_type (java_boolean_type);
255 write_exp_elt_longcst ((LONGEST)$1);
256 write_exp_elt_opcode (OP_LONG); }
257 | StringLiteral
258 ;
259
260 /* UNUSED:
261 Type:
262 PrimitiveType
263 | ReferenceType
264 ;
265 */
266
267 PrimitiveType:
268 NumericType
269 | BOOLEAN
270 { $$ = java_boolean_type; }
271 ;
272
273 NumericType:
274 IntegralType
275 | FloatingPointType
276 ;
277
278 IntegralType:
279 BYTE
280 { $$ = java_byte_type; }
281 | SHORT
282 { $$ = java_short_type; }
283 | INT
284 { $$ = java_int_type; }
285 | LONG
286 { $$ = java_long_type; }
287 | CHAR
288 { $$ = java_char_type; }
289 ;
290
291 FloatingPointType:
292 FLOAT
293 { $$ = java_float_type; }
294 | DOUBLE
295 { $$ = java_double_type; }
296 ;
297
298 /* UNUSED:
299 ReferenceType:
300 ClassOrInterfaceType
301 | ArrayType
302 ;
303 */
304
305 ClassOrInterfaceType:
306 Name
307 { $$ = java_type_from_name ($1); }
308 ;
309
310 ClassType:
311 ClassOrInterfaceType
312 ;
313
314 ArrayType:
315 PrimitiveType Dims
316 { $$ = java_array_type ($1, $2); }
317 | Name Dims
318 { $$ = java_array_type (java_type_from_name ($1), $2); }
319 ;
320
321 Name:
322 IDENTIFIER
323 | QualifiedName
324 ;
325
326 ForcedName:
327 SimpleName
328 | QualifiedName
329 ;
330
331 SimpleName:
332 IDENTIFIER
333 | NAME_OR_INT
334 ;
335
336 QualifiedName:
337 Name '.' SimpleName
338 { $$.length = $1.length + $3.length + 1;
339 if ($1.ptr + $1.length + 1 == $3.ptr
340 && $1.ptr[$1.length] == '.')
341 $$.ptr = $1.ptr; /* Optimization. */
342 else
343 {
344 $$.ptr = (char *) malloc ($$.length + 1);
345 make_cleanup (free, $$.ptr);
346 sprintf ($$.ptr, "%.*s.%.*s",
347 $1.length, $1.ptr, $3.length, $3.ptr);
348 } }
349 ;
350
351 /*
352 type_exp: type
353 { write_exp_elt_opcode(OP_TYPE);
354 write_exp_elt_type($1);
355 write_exp_elt_opcode(OP_TYPE);}
356 ;
357 */
358
359 /* Expressions, including the comma operator. */
360 exp1 : Expression
361 | exp1 ',' Expression
362 { write_exp_elt_opcode (BINOP_COMMA); }
363 ;
364
365 Primary:
366 PrimaryNoNewArray
367 | ArrayCreationExpression
368 ;
369
370 PrimaryNoNewArray:
371 Literal
372 | '(' Expression ')'
373 | ClassInstanceCreationExpression
374 | FieldAccess
375 | MethodInvocation
376 | ArrayAccess
377 | lcurly ArgumentList rcurly
378 { write_exp_elt_opcode (OP_ARRAY);
379 write_exp_elt_longcst ((LONGEST) 0);
380 write_exp_elt_longcst ((LONGEST) $3);
381 write_exp_elt_opcode (OP_ARRAY); }
382 ;
383
384 lcurly:
385 '{'
386 { start_arglist (); }
387 ;
388
389 rcurly:
390 '}'
391 { $$ = end_arglist () - 1; }
392 ;
393
394 ClassInstanceCreationExpression:
395 NEW ClassType '(' ArgumentList_opt ')'
396 { internal_error (__FILE__, __LINE__,
397 _("FIXME - ClassInstanceCreationExpression")); }
398 ;
399
400 ArgumentList:
401 Expression
402 { arglist_len = 1; }
403 | ArgumentList ',' Expression
404 { arglist_len++; }
405 ;
406
407 ArgumentList_opt:
408 /* EMPTY */
409 { arglist_len = 0; }
410 | ArgumentList
411 ;
412
413 ArrayCreationExpression:
414 NEW PrimitiveType DimExprs Dims_opt
415 { internal_error (__FILE__, __LINE__,
416 _("FIXME - ArrayCreationExpression")); }
417 | NEW ClassOrInterfaceType DimExprs Dims_opt
418 { internal_error (__FILE__, __LINE__,
419 _("FIXME - ArrayCreationExpression")); }
420 ;
421
422 DimExprs:
423 DimExpr
424 | DimExprs DimExpr
425 ;
426
427 DimExpr:
428 '[' Expression ']'
429 ;
430
431 Dims:
432 '[' ']'
433 { $$ = 1; }
434 | Dims '[' ']'
435 { $$ = $1 + 1; }
436 ;
437
438 Dims_opt:
439 Dims
440 | /* EMPTY */
441 { $$ = 0; }
442 ;
443
444 FieldAccess:
445 Primary '.' SimpleName
446 { push_fieldnames ($3); }
447 | VARIABLE '.' SimpleName
448 { push_fieldnames ($3); }
449 /*| SUPER '.' SimpleName { FIXME } */
450 ;
451
452 FuncStart:
453 Name '('
454 { push_expression_name ($1); }
455 ;
456
457 MethodInvocation:
458 FuncStart
459 { start_arglist(); }
460 ArgumentList_opt ')'
461 { write_exp_elt_opcode (OP_FUNCALL);
462 write_exp_elt_longcst ((LONGEST) end_arglist ());
463 write_exp_elt_opcode (OP_FUNCALL); }
464 | Primary '.' SimpleName '(' ArgumentList_opt ')'
465 { error (_("Form of method invocation not implemented")); }
466 | SUPER '.' SimpleName '(' ArgumentList_opt ')'
467 { error (_("Form of method invocation not implemented")); }
468 ;
469
470 ArrayAccess:
471 Name '[' Expression ']'
472 {
473 /* Emit code for the Name now, then exchange it in the
474 expout array with the Expression's code. We could
475 introduce a OP_SWAP code or a reversed version of
476 BINOP_SUBSCRIPT, but that makes the rest of GDB pay
477 for our parsing kludges. */
478 struct expression *name_expr;
479
480 push_expression_name ($1);
481 name_expr = copy_exp (expout, expout_ptr);
482 expout_ptr -= name_expr->nelts;
483 insert_exp (expout_ptr-length_of_subexp (expout, expout_ptr),
484 name_expr);
485 free (name_expr);
486 write_exp_elt_opcode (BINOP_SUBSCRIPT);
487 }
488 | VARIABLE '[' Expression ']'
489 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
490 | PrimaryNoNewArray '[' Expression ']'
491 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
492 ;
493
494 PostfixExpression:
495 Primary
496 | Name
497 { push_expression_name ($1); }
498 | VARIABLE
499 /* Already written by write_dollar_variable. */
500 | PostIncrementExpression
501 | PostDecrementExpression
502 ;
503
504 PostIncrementExpression:
505 PostfixExpression INCREMENT
506 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
507 ;
508
509 PostDecrementExpression:
510 PostfixExpression DECREMENT
511 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
512 ;
513
514 UnaryExpression:
515 PreIncrementExpression
516 | PreDecrementExpression
517 | '+' UnaryExpression
518 | '-' UnaryExpression
519 { write_exp_elt_opcode (UNOP_NEG); }
520 | '*' UnaryExpression
521 { write_exp_elt_opcode (UNOP_IND); } /*FIXME not in Java */
522 | UnaryExpressionNotPlusMinus
523 ;
524
525 PreIncrementExpression:
526 INCREMENT UnaryExpression
527 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
528 ;
529
530 PreDecrementExpression:
531 DECREMENT UnaryExpression
532 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
533 ;
534
535 UnaryExpressionNotPlusMinus:
536 PostfixExpression
537 | '~' UnaryExpression
538 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
539 | '!' UnaryExpression
540 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
541 | CastExpression
542 ;
543
544 CastExpression:
545 '(' PrimitiveType Dims_opt ')' UnaryExpression
546 { write_exp_elt_opcode (UNOP_CAST);
547 write_exp_elt_type (java_array_type ($2, $3));
548 write_exp_elt_opcode (UNOP_CAST); }
549 | '(' Expression ')' UnaryExpressionNotPlusMinus
550 {
551 int exp_size = expout_ptr;
552 int last_exp_size = length_of_subexp(expout, expout_ptr);
553 struct type *type;
554 int i;
555 int base = expout_ptr - last_exp_size - 3;
556 if (base < 0 || expout->elts[base+2].opcode != OP_TYPE)
557 error (_("Invalid cast expression"));
558 type = expout->elts[base+1].type;
559 /* Remove the 'Expression' and slide the
560 UnaryExpressionNotPlusMinus down to replace it. */
561 for (i = 0; i < last_exp_size; i++)
562 expout->elts[base + i] = expout->elts[base + i + 3];
563 expout_ptr -= 3;
564 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
565 type = lookup_pointer_type (type);
566 write_exp_elt_opcode (UNOP_CAST);
567 write_exp_elt_type (type);
568 write_exp_elt_opcode (UNOP_CAST);
569 }
570 | '(' Name Dims ')' UnaryExpressionNotPlusMinus
571 { write_exp_elt_opcode (UNOP_CAST);
572 write_exp_elt_type (java_array_type (java_type_from_name ($2), $3));
573 write_exp_elt_opcode (UNOP_CAST); }
574 ;
575
576
577 MultiplicativeExpression:
578 UnaryExpression
579 | MultiplicativeExpression '*' UnaryExpression
580 { write_exp_elt_opcode (BINOP_MUL); }
581 | MultiplicativeExpression '/' UnaryExpression
582 { write_exp_elt_opcode (BINOP_DIV); }
583 | MultiplicativeExpression '%' UnaryExpression
584 { write_exp_elt_opcode (BINOP_REM); }
585 ;
586
587 AdditiveExpression:
588 MultiplicativeExpression
589 | AdditiveExpression '+' MultiplicativeExpression
590 { write_exp_elt_opcode (BINOP_ADD); }
591 | AdditiveExpression '-' MultiplicativeExpression
592 { write_exp_elt_opcode (BINOP_SUB); }
593 ;
594
595 ShiftExpression:
596 AdditiveExpression
597 | ShiftExpression LSH AdditiveExpression
598 { write_exp_elt_opcode (BINOP_LSH); }
599 | ShiftExpression RSH AdditiveExpression
600 { write_exp_elt_opcode (BINOP_RSH); }
601 /* | ShiftExpression >>> AdditiveExpression { FIXME } */
602 ;
603
604 RelationalExpression:
605 ShiftExpression
606 | RelationalExpression '<' ShiftExpression
607 { write_exp_elt_opcode (BINOP_LESS); }
608 | RelationalExpression '>' ShiftExpression
609 { write_exp_elt_opcode (BINOP_GTR); }
610 | RelationalExpression LEQ ShiftExpression
611 { write_exp_elt_opcode (BINOP_LEQ); }
612 | RelationalExpression GEQ ShiftExpression
613 { write_exp_elt_opcode (BINOP_GEQ); }
614 /* | RelationalExpresion INSTANCEOF ReferenceType { FIXME } */
615 ;
616
617 EqualityExpression:
618 RelationalExpression
619 | EqualityExpression EQUAL RelationalExpression
620 { write_exp_elt_opcode (BINOP_EQUAL); }
621 | EqualityExpression NOTEQUAL RelationalExpression
622 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
623 ;
624
625 AndExpression:
626 EqualityExpression
627 | AndExpression '&' EqualityExpression
628 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
629 ;
630
631 ExclusiveOrExpression:
632 AndExpression
633 | ExclusiveOrExpression '^' AndExpression
634 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
635 ;
636 InclusiveOrExpression:
637 ExclusiveOrExpression
638 | InclusiveOrExpression '|' ExclusiveOrExpression
639 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
640 ;
641
642 ConditionalAndExpression:
643 InclusiveOrExpression
644 | ConditionalAndExpression ANDAND InclusiveOrExpression
645 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
646 ;
647
648 ConditionalOrExpression:
649 ConditionalAndExpression
650 | ConditionalOrExpression OROR ConditionalAndExpression
651 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
652 ;
653
654 ConditionalExpression:
655 ConditionalOrExpression
656 | ConditionalOrExpression '?' Expression ':' ConditionalExpression
657 { write_exp_elt_opcode (TERNOP_COND); }
658 ;
659
660 AssignmentExpression:
661 ConditionalExpression
662 | Assignment
663 ;
664
665 Assignment:
666 LeftHandSide '=' ConditionalExpression
667 { write_exp_elt_opcode (BINOP_ASSIGN); }
668 | LeftHandSide ASSIGN_MODIFY ConditionalExpression
669 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
670 write_exp_elt_opcode ($2);
671 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
672 ;
673
674 LeftHandSide:
675 ForcedName
676 { push_expression_name ($1); }
677 | VARIABLE
678 /* Already written by write_dollar_variable. */
679 | FieldAccess
680 | ArrayAccess
681 ;
682
683
684 Expression:
685 AssignmentExpression
686 ;
687
688 %%
689 /* Take care of parsing a number (anything that starts with a digit).
690 Set yylval and return the token type; update lexptr.
691 LEN is the number of characters in it. */
692
693 /*** Needs some error checking for the float case ***/
694
695 static int
696 parse_number (char *p, int len, int parsed_float, YYSTYPE *putithere)
697 {
698 ULONGEST n = 0;
699 ULONGEST limit, limit_div_base;
700
701 int c;
702 int base = input_radix;
703
704 struct type *type;
705
706 if (parsed_float)
707 {
708 /* It's a float since it contains a point or an exponent. */
709 char c;
710 int num = 0; /* number of tokens scanned by scanf */
711 char saved_char = p[len];
712
713 p[len] = 0; /* null-terminate the token */
714 num = sscanf (p, "%" DOUBLEST_SCAN_FORMAT "%c",
715 &putithere->typed_val_float.dval, &c);
716 p[len] = saved_char; /* restore the input stream */
717 if (num != 1) /* check scanf found ONLY a float ... */
718 return ERROR;
719 /* See if it has `f' or `d' suffix (float or double). */
720
721 c = tolower (p[len - 1]);
722
723 if (c == 'f' || c == 'F')
724 putithere->typed_val_float.type = parse_type->builtin_float;
725 else if (isdigit (c) || c == '.' || c == 'd' || c == 'D')
726 putithere->typed_val_float.type = parse_type->builtin_double;
727 else
728 return ERROR;
729
730 return FLOATING_POINT_LITERAL;
731 }
732
733 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
734 if (p[0] == '0')
735 switch (p[1])
736 {
737 case 'x':
738 case 'X':
739 if (len >= 3)
740 {
741 p += 2;
742 base = 16;
743 len -= 2;
744 }
745 break;
746
747 case 't':
748 case 'T':
749 case 'd':
750 case 'D':
751 if (len >= 3)
752 {
753 p += 2;
754 base = 10;
755 len -= 2;
756 }
757 break;
758
759 default:
760 base = 8;
761 break;
762 }
763
764 c = p[len-1];
765 /* A paranoid calculation of (1<<64)-1. */
766 limit = (ULONGEST)0xffffffff;
767 limit = ((limit << 16) << 16) | limit;
768 if (c == 'l' || c == 'L')
769 {
770 type = java_long_type;
771 len--;
772 }
773 else
774 {
775 type = java_int_type;
776 }
777 limit_div_base = limit / (ULONGEST) base;
778
779 while (--len >= 0)
780 {
781 c = *p++;
782 if (c >= '0' && c <= '9')
783 c -= '0';
784 else if (c >= 'A' && c <= 'Z')
785 c -= 'A' - 10;
786 else if (c >= 'a' && c <= 'z')
787 c -= 'a' - 10;
788 else
789 return ERROR; /* Char not a digit */
790 if (c >= base)
791 return ERROR;
792 if (n > limit_div_base
793 || (n *= base) > limit - c)
794 error (_("Numeric constant too large"));
795 n += c;
796 }
797
798 /* If the type is bigger than a 32-bit signed integer can be, implicitly
799 promote to long. Java does not do this, so mark it as builtin_type_uint64
800 rather than java_long_type. 0x80000000 will become -0x80000000 instead
801 of 0x80000000L, because we don't know the sign at this point.
802 */
803 if (type == java_int_type && n > (ULONGEST)0x80000000)
804 type = builtin_type_uint64;
805
806 putithere->typed_val_int.val = n;
807 putithere->typed_val_int.type = type;
808
809 return INTEGER_LITERAL;
810 }
811
812 struct token
813 {
814 char *operator;
815 int token;
816 enum exp_opcode opcode;
817 };
818
819 static const struct token tokentab3[] =
820 {
821 {">>=", ASSIGN_MODIFY, BINOP_RSH},
822 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
823 };
824
825 static const struct token tokentab2[] =
826 {
827 {"+=", ASSIGN_MODIFY, BINOP_ADD},
828 {"-=", ASSIGN_MODIFY, BINOP_SUB},
829 {"*=", ASSIGN_MODIFY, BINOP_MUL},
830 {"/=", ASSIGN_MODIFY, BINOP_DIV},
831 {"%=", ASSIGN_MODIFY, BINOP_REM},
832 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
833 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
834 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
835 {"++", INCREMENT, BINOP_END},
836 {"--", DECREMENT, BINOP_END},
837 {"&&", ANDAND, BINOP_END},
838 {"||", OROR, BINOP_END},
839 {"<<", LSH, BINOP_END},
840 {">>", RSH, BINOP_END},
841 {"==", EQUAL, BINOP_END},
842 {"!=", NOTEQUAL, BINOP_END},
843 {"<=", LEQ, BINOP_END},
844 {">=", GEQ, BINOP_END}
845 };
846
847 /* Read one token, getting characters through lexptr. */
848
849 static int
850 yylex (void)
851 {
852 int c;
853 int namelen;
854 unsigned int i;
855 char *tokstart;
856 char *tokptr;
857 int tempbufindex;
858 static char *tempbuf;
859 static int tempbufsize;
860
861 retry:
862
863 prev_lexptr = lexptr;
864
865 tokstart = lexptr;
866 /* See if it is a special token of length 3. */
867 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
868 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
869 {
870 lexptr += 3;
871 yylval.opcode = tokentab3[i].opcode;
872 return tokentab3[i].token;
873 }
874
875 /* See if it is a special token of length 2. */
876 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
877 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
878 {
879 lexptr += 2;
880 yylval.opcode = tokentab2[i].opcode;
881 return tokentab2[i].token;
882 }
883
884 switch (c = *tokstart)
885 {
886 case 0:
887 return 0;
888
889 case ' ':
890 case '\t':
891 case '\n':
892 lexptr++;
893 goto retry;
894
895 case '\'':
896 /* We either have a character constant ('0' or '\177' for example)
897 or we have a quoted symbol reference ('foo(int,int)' in C++
898 for example). */
899 lexptr++;
900 c = *lexptr++;
901 if (c == '\\')
902 c = parse_escape (&lexptr);
903 else if (c == '\'')
904 error (_("Empty character constant"));
905
906 yylval.typed_val_int.val = c;
907 yylval.typed_val_int.type = java_char_type;
908
909 c = *lexptr++;
910 if (c != '\'')
911 {
912 namelen = skip_quoted (tokstart) - tokstart;
913 if (namelen > 2)
914 {
915 lexptr = tokstart + namelen;
916 if (lexptr[-1] != '\'')
917 error (_("Unmatched single quote"));
918 namelen -= 2;
919 tokstart++;
920 goto tryname;
921 }
922 error (_("Invalid character constant"));
923 }
924 return INTEGER_LITERAL;
925
926 case '(':
927 paren_depth++;
928 lexptr++;
929 return c;
930
931 case ')':
932 if (paren_depth == 0)
933 return 0;
934 paren_depth--;
935 lexptr++;
936 return c;
937
938 case ',':
939 if (comma_terminates && paren_depth == 0)
940 return 0;
941 lexptr++;
942 return c;
943
944 case '.':
945 /* Might be a floating point number. */
946 if (lexptr[1] < '0' || lexptr[1] > '9')
947 goto symbol; /* Nope, must be a symbol. */
948 /* FALL THRU into number case. */
949
950 case '0':
951 case '1':
952 case '2':
953 case '3':
954 case '4':
955 case '5':
956 case '6':
957 case '7':
958 case '8':
959 case '9':
960 {
961 /* It's a number. */
962 int got_dot = 0, got_e = 0, toktype;
963 char *p = tokstart;
964 int hex = input_radix > 10;
965
966 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
967 {
968 p += 2;
969 hex = 1;
970 }
971 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
972 {
973 p += 2;
974 hex = 0;
975 }
976
977 for (;; ++p)
978 {
979 /* This test includes !hex because 'e' is a valid hex digit
980 and thus does not indicate a floating point number when
981 the radix is hex. */
982 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
983 got_dot = got_e = 1;
984 /* This test does not include !hex, because a '.' always indicates
985 a decimal floating point number regardless of the radix. */
986 else if (!got_dot && *p == '.')
987 got_dot = 1;
988 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
989 && (*p == '-' || *p == '+'))
990 /* This is the sign of the exponent, not the end of the
991 number. */
992 continue;
993 /* We will take any letters or digits. parse_number will
994 complain if past the radix, or if L or U are not final. */
995 else if ((*p < '0' || *p > '9')
996 && ((*p < 'a' || *p > 'z')
997 && (*p < 'A' || *p > 'Z')))
998 break;
999 }
1000 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1001 if (toktype == ERROR)
1002 {
1003 char *err_copy = (char *) alloca (p - tokstart + 1);
1004
1005 memcpy (err_copy, tokstart, p - tokstart);
1006 err_copy[p - tokstart] = 0;
1007 error (_("Invalid number \"%s\""), err_copy);
1008 }
1009 lexptr = p;
1010 return toktype;
1011 }
1012
1013 case '+':
1014 case '-':
1015 case '*':
1016 case '/':
1017 case '%':
1018 case '|':
1019 case '&':
1020 case '^':
1021 case '~':
1022 case '!':
1023 case '<':
1024 case '>':
1025 case '[':
1026 case ']':
1027 case '?':
1028 case ':':
1029 case '=':
1030 case '{':
1031 case '}':
1032 symbol:
1033 lexptr++;
1034 return c;
1035
1036 case '"':
1037
1038 /* Build the gdb internal form of the input string in tempbuf,
1039 translating any standard C escape forms seen. Note that the
1040 buffer is null byte terminated *only* for the convenience of
1041 debugging gdb itself and printing the buffer contents when
1042 the buffer contains no embedded nulls. Gdb does not depend
1043 upon the buffer being null byte terminated, it uses the length
1044 string instead. This allows gdb to handle C strings (as well
1045 as strings in other languages) with embedded null bytes */
1046
1047 tokptr = ++tokstart;
1048 tempbufindex = 0;
1049
1050 do {
1051 /* Grow the static temp buffer if necessary, including allocating
1052 the first one on demand. */
1053 if (tempbufindex + 1 >= tempbufsize)
1054 {
1055 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1056 }
1057 switch (*tokptr)
1058 {
1059 case '\0':
1060 case '"':
1061 /* Do nothing, loop will terminate. */
1062 break;
1063 case '\\':
1064 tokptr++;
1065 c = parse_escape (&tokptr);
1066 if (c == -1)
1067 {
1068 continue;
1069 }
1070 tempbuf[tempbufindex++] = c;
1071 break;
1072 default:
1073 tempbuf[tempbufindex++] = *tokptr++;
1074 break;
1075 }
1076 } while ((*tokptr != '"') && (*tokptr != '\0'));
1077 if (*tokptr++ != '"')
1078 {
1079 error (_("Unterminated string in expression"));
1080 }
1081 tempbuf[tempbufindex] = '\0'; /* See note above */
1082 yylval.sval.ptr = tempbuf;
1083 yylval.sval.length = tempbufindex;
1084 lexptr = tokptr;
1085 return (STRING_LITERAL);
1086 }
1087
1088 if (!(c == '_' || c == '$'
1089 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1090 /* We must have come across a bad character (e.g. ';'). */
1091 error (_("Invalid character '%c' in expression"), c);
1092
1093 /* It's a name. See how long it is. */
1094 namelen = 0;
1095 for (c = tokstart[namelen];
1096 (c == '_'
1097 || c == '$'
1098 || (c >= '0' && c <= '9')
1099 || (c >= 'a' && c <= 'z')
1100 || (c >= 'A' && c <= 'Z')
1101 || c == '<');
1102 )
1103 {
1104 if (c == '<')
1105 {
1106 int i = namelen;
1107 while (tokstart[++i] && tokstart[i] != '>');
1108 if (tokstart[i] == '>')
1109 namelen = i;
1110 }
1111 c = tokstart[++namelen];
1112 }
1113
1114 /* The token "if" terminates the expression and is NOT
1115 removed from the input stream. */
1116 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1117 {
1118 return 0;
1119 }
1120
1121 lexptr += namelen;
1122
1123 tryname:
1124
1125 /* Catch specific keywords. Should be done with a data structure. */
1126 switch (namelen)
1127 {
1128 case 7:
1129 if (strncmp (tokstart, "boolean", 7) == 0)
1130 return BOOLEAN;
1131 break;
1132 case 6:
1133 if (strncmp (tokstart, "double", 6) == 0)
1134 return DOUBLE;
1135 break;
1136 case 5:
1137 if (strncmp (tokstart, "short", 5) == 0)
1138 return SHORT;
1139 if (strncmp (tokstart, "false", 5) == 0)
1140 {
1141 yylval.lval = 0;
1142 return BOOLEAN_LITERAL;
1143 }
1144 if (strncmp (tokstart, "super", 5) == 0)
1145 return SUPER;
1146 if (strncmp (tokstart, "float", 5) == 0)
1147 return FLOAT;
1148 break;
1149 case 4:
1150 if (strncmp (tokstart, "long", 4) == 0)
1151 return LONG;
1152 if (strncmp (tokstart, "byte", 4) == 0)
1153 return BYTE;
1154 if (strncmp (tokstart, "char", 4) == 0)
1155 return CHAR;
1156 if (strncmp (tokstart, "true", 4) == 0)
1157 {
1158 yylval.lval = 1;
1159 return BOOLEAN_LITERAL;
1160 }
1161 break;
1162 case 3:
1163 if (strncmp (tokstart, "int", 3) == 0)
1164 return INT;
1165 if (strncmp (tokstart, "new", 3) == 0)
1166 return NEW;
1167 break;
1168 default:
1169 break;
1170 }
1171
1172 yylval.sval.ptr = tokstart;
1173 yylval.sval.length = namelen;
1174
1175 if (*tokstart == '$')
1176 {
1177 write_dollar_variable (yylval.sval);
1178 return VARIABLE;
1179 }
1180
1181 /* Input names that aren't symbols but ARE valid hex numbers,
1182 when the input radix permits them, can be names or numbers
1183 depending on the parse. Note we support radixes > 16 here. */
1184 if (((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1185 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1186 {
1187 YYSTYPE newlval; /* Its value is ignored. */
1188 int hextype = parse_number (tokstart, namelen, 0, &newlval);
1189 if (hextype == INTEGER_LITERAL)
1190 return NAME_OR_INT;
1191 }
1192 return IDENTIFIER;
1193 }
1194
1195 void
1196 yyerror (char *msg)
1197 {
1198 if (prev_lexptr)
1199 lexptr = prev_lexptr;
1200
1201 if (msg)
1202 error (_("%s: near `%s'"), msg, lexptr);
1203 else
1204 error (_("error in expression, near `%s'"), lexptr);
1205 }
1206
1207 static struct type *
1208 java_type_from_name (struct stoken name)
1209 {
1210 char *tmp = copy_name (name);
1211 struct type *typ = java_lookup_class (tmp);
1212 if (typ == NULL || TYPE_CODE (typ) != TYPE_CODE_STRUCT)
1213 error (_("No class named `%s'"), tmp);
1214 return typ;
1215 }
1216
1217 /* If NAME is a valid variable name in this scope, push it and return 1.
1218 Otherwise, return 0. */
1219
1220 static int
1221 push_variable (struct stoken name)
1222 {
1223 char *tmp = copy_name (name);
1224 int is_a_field_of_this = 0;
1225 struct symbol *sym;
1226 sym = lookup_symbol (tmp, expression_context_block, VAR_DOMAIN,
1227 &is_a_field_of_this);
1228 if (sym && SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1229 {
1230 if (symbol_read_needs_frame (sym))
1231 {
1232 if (innermost_block == 0 ||
1233 contained_in (block_found, innermost_block))
1234 innermost_block = block_found;
1235 }
1236
1237 write_exp_elt_opcode (OP_VAR_VALUE);
1238 /* We want to use the selected frame, not another more inner frame
1239 which happens to be in the same block. */
1240 write_exp_elt_block (NULL);
1241 write_exp_elt_sym (sym);
1242 write_exp_elt_opcode (OP_VAR_VALUE);
1243 return 1;
1244 }
1245 if (is_a_field_of_this)
1246 {
1247 /* it hangs off of `this'. Must not inadvertently convert from a
1248 method call to data ref. */
1249 if (innermost_block == 0 ||
1250 contained_in (block_found, innermost_block))
1251 innermost_block = block_found;
1252 write_exp_elt_opcode (OP_THIS);
1253 write_exp_elt_opcode (OP_THIS);
1254 write_exp_elt_opcode (STRUCTOP_PTR);
1255 write_exp_string (name);
1256 write_exp_elt_opcode (STRUCTOP_PTR);
1257 return 1;
1258 }
1259 return 0;
1260 }
1261
1262 /* Assuming a reference expression has been pushed, emit the
1263 STRUCTOP_PTR ops to access the field named NAME. If NAME is a
1264 qualified name (has '.'), generate a field access for each part. */
1265
1266 static void
1267 push_fieldnames (struct stoken name)
1268 {
1269 int i;
1270 struct stoken token;
1271 token.ptr = name.ptr;
1272 for (i = 0; ; i++)
1273 {
1274 if (i == name.length || name.ptr[i] == '.')
1275 {
1276 /* token.ptr is start of current field name. */
1277 token.length = &name.ptr[i] - token.ptr;
1278 write_exp_elt_opcode (STRUCTOP_PTR);
1279 write_exp_string (token);
1280 write_exp_elt_opcode (STRUCTOP_PTR);
1281 token.ptr += token.length + 1;
1282 }
1283 if (i >= name.length)
1284 break;
1285 }
1286 }
1287
1288 /* Helper routine for push_expression_name.
1289 Handle a qualified name, where DOT_INDEX is the index of the first '.' */
1290
1291 static void
1292 push_qualified_expression_name (struct stoken name, int dot_index)
1293 {
1294 struct stoken token;
1295 char *tmp;
1296 struct type *typ;
1297
1298 token.ptr = name.ptr;
1299 token.length = dot_index;
1300
1301 if (push_variable (token))
1302 {
1303 token.ptr = name.ptr + dot_index + 1;
1304 token.length = name.length - dot_index - 1;
1305 push_fieldnames (token);
1306 return;
1307 }
1308
1309 token.ptr = name.ptr;
1310 for (;;)
1311 {
1312 token.length = dot_index;
1313 tmp = copy_name (token);
1314 typ = java_lookup_class (tmp);
1315 if (typ != NULL)
1316 {
1317 if (dot_index == name.length)
1318 {
1319 write_exp_elt_opcode(OP_TYPE);
1320 write_exp_elt_type(typ);
1321 write_exp_elt_opcode(OP_TYPE);
1322 return;
1323 }
1324 dot_index++; /* Skip '.' */
1325 name.ptr += dot_index;
1326 name.length -= dot_index;
1327 dot_index = 0;
1328 while (dot_index < name.length && name.ptr[dot_index] != '.')
1329 dot_index++;
1330 token.ptr = name.ptr;
1331 token.length = dot_index;
1332 write_exp_elt_opcode (OP_SCOPE);
1333 write_exp_elt_type (typ);
1334 write_exp_string (token);
1335 write_exp_elt_opcode (OP_SCOPE);
1336 if (dot_index < name.length)
1337 {
1338 dot_index++;
1339 name.ptr += dot_index;
1340 name.length -= dot_index;
1341 push_fieldnames (name);
1342 }
1343 return;
1344 }
1345 else if (dot_index >= name.length)
1346 break;
1347 dot_index++; /* Skip '.' */
1348 while (dot_index < name.length && name.ptr[dot_index] != '.')
1349 dot_index++;
1350 }
1351 error (_("unknown type `%.*s'"), name.length, name.ptr);
1352 }
1353
1354 /* Handle Name in an expression (or LHS).
1355 Handle VAR, TYPE, TYPE.FIELD1....FIELDN and VAR.FIELD1....FIELDN. */
1356
1357 static void
1358 push_expression_name (struct stoken name)
1359 {
1360 char *tmp;
1361 struct type *typ;
1362 char *ptr;
1363 int i;
1364
1365 for (i = 0; i < name.length; i++)
1366 {
1367 if (name.ptr[i] == '.')
1368 {
1369 /* It's a Qualified Expression Name. */
1370 push_qualified_expression_name (name, i);
1371 return;
1372 }
1373 }
1374
1375 /* It's a Simple Expression Name. */
1376
1377 if (push_variable (name))
1378 return;
1379 tmp = copy_name (name);
1380 typ = java_lookup_class (tmp);
1381 if (typ != NULL)
1382 {
1383 write_exp_elt_opcode(OP_TYPE);
1384 write_exp_elt_type(typ);
1385 write_exp_elt_opcode(OP_TYPE);
1386 }
1387 else
1388 {
1389 struct minimal_symbol *msymbol;
1390
1391 msymbol = lookup_minimal_symbol (tmp, NULL, NULL);
1392 if (msymbol != NULL)
1393 write_exp_msymbol (msymbol);
1394 else if (!have_full_symbols () && !have_partial_symbols ())
1395 error (_("No symbol table is loaded. Use the \"file\" command"));
1396 else
1397 error (_("No symbol \"%s\" in current context"), tmp);
1398 }
1399
1400 }
1401
1402
1403 /* The following two routines, copy_exp and insert_exp, aren't specific to
1404 Java, so they could go in parse.c, but their only purpose is to support
1405 the parsing kludges we use in this file, so maybe it's best to isolate
1406 them here. */
1407
1408 /* Copy the expression whose last element is at index ENDPOS - 1 in EXPR
1409 into a freshly malloc'ed struct expression. Its language_defn is set
1410 to null. */
1411 static struct expression *
1412 copy_exp (struct expression *expr, int endpos)
1413 {
1414 int len = length_of_subexp (expr, endpos);
1415 struct expression *new
1416 = (struct expression *) malloc (sizeof (*new) + EXP_ELEM_TO_BYTES (len));
1417 new->nelts = len;
1418 memcpy (new->elts, expr->elts + endpos - len, EXP_ELEM_TO_BYTES (len));
1419 new->language_defn = 0;
1420
1421 return new;
1422 }
1423
1424 /* Insert the expression NEW into the current expression (expout) at POS. */
1425 static void
1426 insert_exp (int pos, struct expression *new)
1427 {
1428 int newlen = new->nelts;
1429
1430 /* Grow expout if necessary. In this function's only use at present,
1431 this should never be necessary. */
1432 if (expout_ptr + newlen > expout_size)
1433 {
1434 expout_size = max (expout_size * 2, expout_ptr + newlen + 10);
1435 expout = (struct expression *)
1436 realloc ((char *) expout, (sizeof (struct expression)
1437 + EXP_ELEM_TO_BYTES (expout_size)));
1438 }
1439
1440 {
1441 int i;
1442
1443 for (i = expout_ptr - 1; i >= pos; i--)
1444 expout->elts[i + newlen] = expout->elts[i];
1445 }
1446
1447 memcpy (expout->elts + pos, new->elts, EXP_ELEM_TO_BYTES (newlen));
1448 expout_ptr += newlen;
1449 }
This page took 0.071036 seconds and 4 git commands to generate.