Linux process record and replay support.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56
57 #ifdef HAVE_PERSONALITY
58 # include <sys/personality.h>
59 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
60 # define ADDR_NO_RANDOMIZE 0x0040000
61 # endif
62 #endif /* HAVE_PERSONALITY */
63
64 /* This comment documents high-level logic of this file.
65
66 Waiting for events in sync mode
67 ===============================
68
69 When waiting for an event in a specific thread, we just use waitpid, passing
70 the specific pid, and not passing WNOHANG.
71
72 When waiting for an event in all threads, waitpid is not quite good. Prior to
73 version 2.4, Linux can either wait for event in main thread, or in secondary
74 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
75 miss an event. The solution is to use non-blocking waitpid, together with
76 sigsuspend. First, we use non-blocking waitpid to get an event in the main
77 process, if any. Second, we use non-blocking waitpid with the __WCLONED
78 flag to check for events in cloned processes. If nothing is found, we use
79 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
80 happened to a child process -- and SIGCHLD will be delivered both for events
81 in main debugged process and in cloned processes. As soon as we know there's
82 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
83
84 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
85 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
86 blocked, the signal becomes pending and sigsuspend immediately
87 notices it and returns.
88
89 Waiting for events in async mode
90 ================================
91
92 In async mode, GDB should always be ready to handle both user input and target
93 events, so neither blocking waitpid nor sigsuspend are viable
94 options. Instead, we should notify the GDB main event loop whenever there's
95 unprocessed event from the target. The only way to notify this event loop is
96 to make it wait on input from a pipe, and write something to the pipe whenever
97 there's event. Obviously, if we fail to notify the event loop if there's
98 target event, it's bad. If we notify the event loop when there's no event
99 from target, linux-nat.c will detect that there's no event, actually, and
100 report event of type TARGET_WAITKIND_IGNORE, but it will waste time and
101 better avoided.
102
103 The main design point is that every time GDB is outside linux-nat.c, we have a
104 SIGCHLD handler installed that is called when something happens to the target
105 and notifies the GDB event loop. Also, the event is extracted from the target
106 using waitpid and stored for future use. Whenever GDB core decides to handle
107 the event, and calls into linux-nat.c, we disable SIGCHLD and process things
108 as in sync mode, except that before waitpid call we check if there are any
109 previously read events.
110
111 It could happen that during event processing, we'll try to get more events
112 than there are events in the local queue, which will result to waitpid call.
113 Those waitpid calls, while blocking, are guarantied to always have
114 something for waitpid to return. E.g., stopping a thread with SIGSTOP, and
115 waiting for the lwp to stop.
116
117 The event loop is notified about new events using a pipe. SIGCHLD handler does
118 waitpid and writes the results in to a pipe. GDB event loop has the other end
119 of the pipe among the sources. When event loop starts to process the event
120 and calls a function in linux-nat.c, all events from the pipe are transferred
121 into a local queue and SIGCHLD is blocked. Further processing goes as in sync
122 mode. Before we return from linux_nat_wait, we transfer all unprocessed events
123 from local queue back to the pipe, so that when we get back to event loop,
124 event loop will notice there's something more to do.
125
126 SIGCHLD is blocked when we're inside target_wait, so that should we actually
127 want to wait for some more events, SIGCHLD handler does not steal them from
128 us. Technically, it would be possible to add new events to the local queue but
129 it's about the same amount of work as blocking SIGCHLD.
130
131 This moving of events from pipe into local queue and back into pipe when we
132 enter/leave linux-nat.c is somewhat ugly. Unfortunately, GDB event loop is
133 home-grown and incapable to wait on any queue.
134
135 Use of signals
136 ==============
137
138 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
139 signal is not entirely significant; we just need for a signal to be delivered,
140 so that we can intercept it. SIGSTOP's advantage is that it can not be
141 blocked. A disadvantage is that it is not a real-time signal, so it can only
142 be queued once; we do not keep track of other sources of SIGSTOP.
143
144 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
145 use them, because they have special behavior when the signal is generated -
146 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
147 kills the entire thread group.
148
149 A delivered SIGSTOP would stop the entire thread group, not just the thread we
150 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
151 cancel it (by PTRACE_CONT without passing SIGSTOP).
152
153 We could use a real-time signal instead. This would solve those problems; we
154 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
155 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
156 generates it, and there are races with trying to find a signal that is not
157 blocked. */
158
159 #ifndef O_LARGEFILE
160 #define O_LARGEFILE 0
161 #endif
162
163 /* If the system headers did not provide the constants, hard-code the normal
164 values. */
165 #ifndef PTRACE_EVENT_FORK
166
167 #define PTRACE_SETOPTIONS 0x4200
168 #define PTRACE_GETEVENTMSG 0x4201
169
170 /* options set using PTRACE_SETOPTIONS */
171 #define PTRACE_O_TRACESYSGOOD 0x00000001
172 #define PTRACE_O_TRACEFORK 0x00000002
173 #define PTRACE_O_TRACEVFORK 0x00000004
174 #define PTRACE_O_TRACECLONE 0x00000008
175 #define PTRACE_O_TRACEEXEC 0x00000010
176 #define PTRACE_O_TRACEVFORKDONE 0x00000020
177 #define PTRACE_O_TRACEEXIT 0x00000040
178
179 /* Wait extended result codes for the above trace options. */
180 #define PTRACE_EVENT_FORK 1
181 #define PTRACE_EVENT_VFORK 2
182 #define PTRACE_EVENT_CLONE 3
183 #define PTRACE_EVENT_EXEC 4
184 #define PTRACE_EVENT_VFORK_DONE 5
185 #define PTRACE_EVENT_EXIT 6
186
187 #endif /* PTRACE_EVENT_FORK */
188
189 /* We can't always assume that this flag is available, but all systems
190 with the ptrace event handlers also have __WALL, so it's safe to use
191 here. */
192 #ifndef __WALL
193 #define __WALL 0x40000000 /* Wait for any child. */
194 #endif
195
196 #ifndef PTRACE_GETSIGINFO
197 # define PTRACE_GETSIGINFO 0x4202
198 # define PTRACE_SETSIGINFO 0x4203
199 #endif
200
201 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
202 the use of the multi-threaded target. */
203 static struct target_ops *linux_ops;
204 static struct target_ops linux_ops_saved;
205
206 /* The method to call, if any, when a new thread is attached. */
207 static void (*linux_nat_new_thread) (ptid_t);
208
209 /* The method to call, if any, when the siginfo object needs to be
210 converted between the layout returned by ptrace, and the layout in
211 the architecture of the inferior. */
212 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
213 gdb_byte *,
214 int);
215
216 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
217 Called by our to_xfer_partial. */
218 static LONGEST (*super_xfer_partial) (struct target_ops *,
219 enum target_object,
220 const char *, gdb_byte *,
221 const gdb_byte *,
222 ULONGEST, LONGEST);
223
224 static int debug_linux_nat;
225 static void
226 show_debug_linux_nat (struct ui_file *file, int from_tty,
227 struct cmd_list_element *c, const char *value)
228 {
229 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
230 value);
231 }
232
233 static int debug_linux_nat_async = 0;
234 static void
235 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
236 struct cmd_list_element *c, const char *value)
237 {
238 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
239 value);
240 }
241
242 static int disable_randomization = 1;
243
244 static void
245 show_disable_randomization (struct ui_file *file, int from_tty,
246 struct cmd_list_element *c, const char *value)
247 {
248 #ifdef HAVE_PERSONALITY
249 fprintf_filtered (file, _("\
250 Disabling randomization of debuggee's virtual address space is %s.\n"),
251 value);
252 #else /* !HAVE_PERSONALITY */
253 fputs_filtered (_("\
254 Disabling randomization of debuggee's virtual address space is unsupported on\n\
255 this platform.\n"), file);
256 #endif /* !HAVE_PERSONALITY */
257 }
258
259 static void
260 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
261 {
262 #ifndef HAVE_PERSONALITY
263 error (_("\
264 Disabling randomization of debuggee's virtual address space is unsupported on\n\
265 this platform."));
266 #endif /* !HAVE_PERSONALITY */
267 }
268
269 static int linux_parent_pid;
270
271 struct simple_pid_list
272 {
273 int pid;
274 int status;
275 struct simple_pid_list *next;
276 };
277 struct simple_pid_list *stopped_pids;
278
279 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
280 can not be used, 1 if it can. */
281
282 static int linux_supports_tracefork_flag = -1;
283
284 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
285 PTRACE_O_TRACEVFORKDONE. */
286
287 static int linux_supports_tracevforkdone_flag = -1;
288
289 /* Async mode support */
290
291 /* Zero if the async mode, although enabled, is masked, which means
292 linux_nat_wait should behave as if async mode was off. */
293 static int linux_nat_async_mask_value = 1;
294
295 /* The read/write ends of the pipe registered as waitable file in the
296 event loop. */
297 static int linux_nat_event_pipe[2] = { -1, -1 };
298
299 /* Number of queued events in the pipe. */
300 static volatile int linux_nat_num_queued_events;
301
302 /* The possible SIGCHLD handling states. */
303
304 enum sigchld_state
305 {
306 /* SIGCHLD disabled, with action set to sigchld_handler, for the
307 sigsuspend in linux_nat_wait. */
308 sigchld_sync,
309 /* SIGCHLD enabled, with action set to async_sigchld_handler. */
310 sigchld_async,
311 /* Set SIGCHLD to default action. Used while creating an
312 inferior. */
313 sigchld_default
314 };
315
316 /* The current SIGCHLD handling state. */
317 static enum sigchld_state linux_nat_async_events_state;
318
319 static enum sigchld_state linux_nat_async_events (enum sigchld_state enable);
320 static void pipe_to_local_event_queue (void);
321 static void local_event_queue_to_pipe (void);
322 static void linux_nat_event_pipe_push (int pid, int status, int options);
323 static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
324 static void linux_nat_set_async_mode (int on);
325 static void linux_nat_async (void (*callback)
326 (enum inferior_event_type event_type, void *context),
327 void *context);
328 static int linux_nat_async_mask (int mask);
329 static int kill_lwp (int lwpid, int signo);
330
331 static int stop_callback (struct lwp_info *lp, void *data);
332
333 /* Captures the result of a successful waitpid call, along with the
334 options used in that call. */
335 struct waitpid_result
336 {
337 int pid;
338 int status;
339 int options;
340 struct waitpid_result *next;
341 };
342
343 /* A singly-linked list of the results of the waitpid calls performed
344 in the async SIGCHLD handler. */
345 static struct waitpid_result *waitpid_queue = NULL;
346
347 /* Similarly to `waitpid', but check the local event queue instead of
348 querying the kernel queue. If PEEK, don't remove the event found
349 from the queue. */
350
351 static int
352 queued_waitpid_1 (int pid, int *status, int flags, int peek)
353 {
354 struct waitpid_result *msg = waitpid_queue, *prev = NULL;
355
356 if (debug_linux_nat_async)
357 fprintf_unfiltered (gdb_stdlog,
358 "\
359 QWPID: linux_nat_async_events_state(%d), linux_nat_num_queued_events(%d)\n",
360 linux_nat_async_events_state,
361 linux_nat_num_queued_events);
362
363 if (flags & __WALL)
364 {
365 for (; msg; prev = msg, msg = msg->next)
366 if (pid == -1 || pid == msg->pid)
367 break;
368 }
369 else if (flags & __WCLONE)
370 {
371 for (; msg; prev = msg, msg = msg->next)
372 if (msg->options & __WCLONE
373 && (pid == -1 || pid == msg->pid))
374 break;
375 }
376 else
377 {
378 for (; msg; prev = msg, msg = msg->next)
379 if ((msg->options & __WCLONE) == 0
380 && (pid == -1 || pid == msg->pid))
381 break;
382 }
383
384 if (msg)
385 {
386 int pid;
387
388 if (status)
389 *status = msg->status;
390 pid = msg->pid;
391
392 if (debug_linux_nat_async)
393 fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
394 pid, msg->status);
395
396 if (!peek)
397 {
398 if (prev)
399 prev->next = msg->next;
400 else
401 waitpid_queue = msg->next;
402
403 msg->next = NULL;
404 xfree (msg);
405 }
406
407 return pid;
408 }
409
410 if (debug_linux_nat_async)
411 fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");
412
413 if (status)
414 *status = 0;
415 return -1;
416 }
417
418 /* Similarly to `waitpid', but check the local event queue. */
419
420 static int
421 queued_waitpid (int pid, int *status, int flags)
422 {
423 return queued_waitpid_1 (pid, status, flags, 0);
424 }
425
426 static void
427 push_waitpid (int pid, int status, int options)
428 {
429 struct waitpid_result *event, *new_event;
430
431 new_event = xmalloc (sizeof (*new_event));
432 new_event->pid = pid;
433 new_event->status = status;
434 new_event->options = options;
435 new_event->next = NULL;
436
437 if (waitpid_queue)
438 {
439 for (event = waitpid_queue;
440 event && event->next;
441 event = event->next)
442 ;
443
444 event->next = new_event;
445 }
446 else
447 waitpid_queue = new_event;
448 }
449
450 /* Drain all queued events of PID. If PID is -1, the effect is of
451 draining all events. */
452 static void
453 drain_queued_events (int pid)
454 {
455 while (queued_waitpid (pid, NULL, __WALL) != -1)
456 ;
457 }
458
459 \f
460 /* Trivial list manipulation functions to keep track of a list of
461 new stopped processes. */
462 static void
463 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
464 {
465 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
466 new_pid->pid = pid;
467 new_pid->status = status;
468 new_pid->next = *listp;
469 *listp = new_pid;
470 }
471
472 static int
473 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
474 {
475 struct simple_pid_list **p;
476
477 for (p = listp; *p != NULL; p = &(*p)->next)
478 if ((*p)->pid == pid)
479 {
480 struct simple_pid_list *next = (*p)->next;
481 *status = (*p)->status;
482 xfree (*p);
483 *p = next;
484 return 1;
485 }
486 return 0;
487 }
488
489 static void
490 linux_record_stopped_pid (int pid, int status)
491 {
492 add_to_pid_list (&stopped_pids, pid, status);
493 }
494
495 \f
496 /* A helper function for linux_test_for_tracefork, called after fork (). */
497
498 static void
499 linux_tracefork_child (void)
500 {
501 int ret;
502
503 ptrace (PTRACE_TRACEME, 0, 0, 0);
504 kill (getpid (), SIGSTOP);
505 fork ();
506 _exit (0);
507 }
508
509 /* Wrapper function for waitpid which handles EINTR, and checks for
510 locally queued events. */
511
512 static int
513 my_waitpid (int pid, int *status, int flags)
514 {
515 int ret;
516
517 /* There should be no concurrent calls to waitpid. */
518 gdb_assert (linux_nat_async_events_state == sigchld_sync);
519
520 ret = queued_waitpid (pid, status, flags);
521 if (ret != -1)
522 return ret;
523
524 do
525 {
526 ret = waitpid (pid, status, flags);
527 }
528 while (ret == -1 && errno == EINTR);
529
530 return ret;
531 }
532
533 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
534
535 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
536 we know that the feature is not available. This may change the tracing
537 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
538
539 However, if it succeeds, we don't know for sure that the feature is
540 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
541 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
542 fork tracing, and let it fork. If the process exits, we assume that we
543 can't use TRACEFORK; if we get the fork notification, and we can extract
544 the new child's PID, then we assume that we can. */
545
546 static void
547 linux_test_for_tracefork (int original_pid)
548 {
549 int child_pid, ret, status;
550 long second_pid;
551 enum sigchld_state async_events_original_state;
552
553 async_events_original_state = linux_nat_async_events (sigchld_sync);
554
555 linux_supports_tracefork_flag = 0;
556 linux_supports_tracevforkdone_flag = 0;
557
558 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
559 if (ret != 0)
560 return;
561
562 child_pid = fork ();
563 if (child_pid == -1)
564 perror_with_name (("fork"));
565
566 if (child_pid == 0)
567 linux_tracefork_child ();
568
569 ret = my_waitpid (child_pid, &status, 0);
570 if (ret == -1)
571 perror_with_name (("waitpid"));
572 else if (ret != child_pid)
573 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
574 if (! WIFSTOPPED (status))
575 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
576
577 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
578 if (ret != 0)
579 {
580 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
581 if (ret != 0)
582 {
583 warning (_("linux_test_for_tracefork: failed to kill child"));
584 linux_nat_async_events (async_events_original_state);
585 return;
586 }
587
588 ret = my_waitpid (child_pid, &status, 0);
589 if (ret != child_pid)
590 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
591 else if (!WIFSIGNALED (status))
592 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
593 "killed child"), status);
594
595 linux_nat_async_events (async_events_original_state);
596 return;
597 }
598
599 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
600 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
601 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
602 linux_supports_tracevforkdone_flag = (ret == 0);
603
604 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
605 if (ret != 0)
606 warning (_("linux_test_for_tracefork: failed to resume child"));
607
608 ret = my_waitpid (child_pid, &status, 0);
609
610 if (ret == child_pid && WIFSTOPPED (status)
611 && status >> 16 == PTRACE_EVENT_FORK)
612 {
613 second_pid = 0;
614 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
615 if (ret == 0 && second_pid != 0)
616 {
617 int second_status;
618
619 linux_supports_tracefork_flag = 1;
620 my_waitpid (second_pid, &second_status, 0);
621 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
622 if (ret != 0)
623 warning (_("linux_test_for_tracefork: failed to kill second child"));
624 my_waitpid (second_pid, &status, 0);
625 }
626 }
627 else
628 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
629 "(%d, status 0x%x)"), ret, status);
630
631 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
632 if (ret != 0)
633 warning (_("linux_test_for_tracefork: failed to kill child"));
634 my_waitpid (child_pid, &status, 0);
635
636 linux_nat_async_events (async_events_original_state);
637 }
638
639 /* Return non-zero iff we have tracefork functionality available.
640 This function also sets linux_supports_tracefork_flag. */
641
642 static int
643 linux_supports_tracefork (int pid)
644 {
645 if (linux_supports_tracefork_flag == -1)
646 linux_test_for_tracefork (pid);
647 return linux_supports_tracefork_flag;
648 }
649
650 static int
651 linux_supports_tracevforkdone (int pid)
652 {
653 if (linux_supports_tracefork_flag == -1)
654 linux_test_for_tracefork (pid);
655 return linux_supports_tracevforkdone_flag;
656 }
657
658 \f
659 void
660 linux_enable_event_reporting (ptid_t ptid)
661 {
662 int pid = ptid_get_lwp (ptid);
663 int options;
664
665 if (pid == 0)
666 pid = ptid_get_pid (ptid);
667
668 if (! linux_supports_tracefork (pid))
669 return;
670
671 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
672 | PTRACE_O_TRACECLONE;
673 if (linux_supports_tracevforkdone (pid))
674 options |= PTRACE_O_TRACEVFORKDONE;
675
676 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
677 read-only process state. */
678
679 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
680 }
681
682 static void
683 linux_child_post_attach (int pid)
684 {
685 linux_enable_event_reporting (pid_to_ptid (pid));
686 check_for_thread_db ();
687 }
688
689 static void
690 linux_child_post_startup_inferior (ptid_t ptid)
691 {
692 linux_enable_event_reporting (ptid);
693 check_for_thread_db ();
694 }
695
696 static int
697 linux_child_follow_fork (struct target_ops *ops, int follow_child)
698 {
699 ptid_t last_ptid;
700 struct target_waitstatus last_status;
701 int has_vforked;
702 int parent_pid, child_pid;
703
704 if (target_can_async_p ())
705 target_async (NULL, 0);
706
707 get_last_target_status (&last_ptid, &last_status);
708 has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
709 parent_pid = ptid_get_lwp (last_ptid);
710 if (parent_pid == 0)
711 parent_pid = ptid_get_pid (last_ptid);
712 child_pid = PIDGET (last_status.value.related_pid);
713
714 if (! follow_child)
715 {
716 /* We're already attached to the parent, by default. */
717
718 /* Before detaching from the child, remove all breakpoints from
719 it. (This won't actually modify the breakpoint list, but will
720 physically remove the breakpoints from the child.) */
721 /* If we vforked this will remove the breakpoints from the parent
722 also, but they'll be reinserted below. */
723 detach_breakpoints (child_pid);
724
725 /* Detach new forked process? */
726 if (detach_fork)
727 {
728 if (info_verbose || debug_linux_nat)
729 {
730 target_terminal_ours ();
731 fprintf_filtered (gdb_stdlog,
732 "Detaching after fork from child process %d.\n",
733 child_pid);
734 }
735
736 ptrace (PTRACE_DETACH, child_pid, 0, 0);
737 }
738 else
739 {
740 struct fork_info *fp;
741 struct inferior *parent_inf, *child_inf;
742
743 /* Add process to GDB's tables. */
744 child_inf = add_inferior (child_pid);
745
746 parent_inf = find_inferior_pid (GET_PID (last_ptid));
747 child_inf->attach_flag = parent_inf->attach_flag;
748
749 /* Retain child fork in ptrace (stopped) state. */
750 fp = find_fork_pid (child_pid);
751 if (!fp)
752 fp = add_fork (child_pid);
753 fork_save_infrun_state (fp, 0);
754 }
755
756 if (has_vforked)
757 {
758 gdb_assert (linux_supports_tracefork_flag >= 0);
759 if (linux_supports_tracevforkdone (0))
760 {
761 int status;
762
763 ptrace (PTRACE_CONT, parent_pid, 0, 0);
764 my_waitpid (parent_pid, &status, __WALL);
765 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
766 warning (_("Unexpected waitpid result %06x when waiting for "
767 "vfork-done"), status);
768 }
769 else
770 {
771 /* We can't insert breakpoints until the child has
772 finished with the shared memory region. We need to
773 wait until that happens. Ideal would be to just
774 call:
775 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
776 - waitpid (parent_pid, &status, __WALL);
777 However, most architectures can't handle a syscall
778 being traced on the way out if it wasn't traced on
779 the way in.
780
781 We might also think to loop, continuing the child
782 until it exits or gets a SIGTRAP. One problem is
783 that the child might call ptrace with PTRACE_TRACEME.
784
785 There's no simple and reliable way to figure out when
786 the vforked child will be done with its copy of the
787 shared memory. We could step it out of the syscall,
788 two instructions, let it go, and then single-step the
789 parent once. When we have hardware single-step, this
790 would work; with software single-step it could still
791 be made to work but we'd have to be able to insert
792 single-step breakpoints in the child, and we'd have
793 to insert -just- the single-step breakpoint in the
794 parent. Very awkward.
795
796 In the end, the best we can do is to make sure it
797 runs for a little while. Hopefully it will be out of
798 range of any breakpoints we reinsert. Usually this
799 is only the single-step breakpoint at vfork's return
800 point. */
801
802 usleep (10000);
803 }
804
805 /* Since we vforked, breakpoints were removed in the parent
806 too. Put them back. */
807 reattach_breakpoints (parent_pid);
808 }
809 }
810 else
811 {
812 struct thread_info *last_tp = find_thread_pid (last_ptid);
813 struct thread_info *tp;
814 char child_pid_spelling[40];
815 struct inferior *parent_inf, *child_inf;
816
817 /* Copy user stepping state to the new inferior thread. */
818 struct breakpoint *step_resume_breakpoint = last_tp->step_resume_breakpoint;
819 CORE_ADDR step_range_start = last_tp->step_range_start;
820 CORE_ADDR step_range_end = last_tp->step_range_end;
821 struct frame_id step_frame_id = last_tp->step_frame_id;
822
823 /* Otherwise, deleting the parent would get rid of this
824 breakpoint. */
825 last_tp->step_resume_breakpoint = NULL;
826
827 /* Needed to keep the breakpoint lists in sync. */
828 if (! has_vforked)
829 detach_breakpoints (child_pid);
830
831 /* Before detaching from the parent, remove all breakpoints from it. */
832 remove_breakpoints ();
833
834 if (info_verbose || debug_linux_nat)
835 {
836 target_terminal_ours ();
837 fprintf_filtered (gdb_stdlog,
838 "Attaching after fork to child process %d.\n",
839 child_pid);
840 }
841
842 /* Add the new inferior first, so that the target_detach below
843 doesn't unpush the target. */
844
845 child_inf = add_inferior (child_pid);
846
847 parent_inf = find_inferior_pid (GET_PID (last_ptid));
848 child_inf->attach_flag = parent_inf->attach_flag;
849
850 /* If we're vforking, we may want to hold on to the parent until
851 the child exits or execs. At exec time we can remove the old
852 breakpoints from the parent and detach it; at exit time we
853 could do the same (or even, sneakily, resume debugging it - the
854 child's exec has failed, or something similar).
855
856 This doesn't clean up "properly", because we can't call
857 target_detach, but that's OK; if the current target is "child",
858 then it doesn't need any further cleanups, and lin_lwp will
859 generally not encounter vfork (vfork is defined to fork
860 in libpthread.so).
861
862 The holding part is very easy if we have VFORKDONE events;
863 but keeping track of both processes is beyond GDB at the
864 moment. So we don't expose the parent to the rest of GDB.
865 Instead we quietly hold onto it until such time as we can
866 safely resume it. */
867
868 if (has_vforked)
869 {
870 linux_parent_pid = parent_pid;
871 detach_inferior (parent_pid);
872 }
873 else if (!detach_fork)
874 {
875 struct fork_info *fp;
876 /* Retain parent fork in ptrace (stopped) state. */
877 fp = find_fork_pid (parent_pid);
878 if (!fp)
879 fp = add_fork (parent_pid);
880 fork_save_infrun_state (fp, 0);
881
882 /* Also add an entry for the child fork. */
883 fp = find_fork_pid (child_pid);
884 if (!fp)
885 fp = add_fork (child_pid);
886 fork_save_infrun_state (fp, 0);
887 }
888 else
889 target_detach (NULL, 0);
890
891 inferior_ptid = ptid_build (child_pid, child_pid, 0);
892
893 linux_nat_switch_fork (inferior_ptid);
894 check_for_thread_db ();
895
896 tp = inferior_thread ();
897 tp->step_resume_breakpoint = step_resume_breakpoint;
898 tp->step_range_start = step_range_start;
899 tp->step_range_end = step_range_end;
900 tp->step_frame_id = step_frame_id;
901
902 /* Reset breakpoints in the child as appropriate. */
903 follow_inferior_reset_breakpoints ();
904 }
905
906 if (target_can_async_p ())
907 target_async (inferior_event_handler, 0);
908
909 return 0;
910 }
911
912 \f
913 static void
914 linux_child_insert_fork_catchpoint (int pid)
915 {
916 if (! linux_supports_tracefork (pid))
917 error (_("Your system does not support fork catchpoints."));
918 }
919
920 static void
921 linux_child_insert_vfork_catchpoint (int pid)
922 {
923 if (!linux_supports_tracefork (pid))
924 error (_("Your system does not support vfork catchpoints."));
925 }
926
927 static void
928 linux_child_insert_exec_catchpoint (int pid)
929 {
930 if (!linux_supports_tracefork (pid))
931 error (_("Your system does not support exec catchpoints."));
932 }
933
934 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
935 are processes sharing the same VM space. A multi-threaded process
936 is basically a group of such processes. However, such a grouping
937 is almost entirely a user-space issue; the kernel doesn't enforce
938 such a grouping at all (this might change in the future). In
939 general, we'll rely on the threads library (i.e. the GNU/Linux
940 Threads library) to provide such a grouping.
941
942 It is perfectly well possible to write a multi-threaded application
943 without the assistance of a threads library, by using the clone
944 system call directly. This module should be able to give some
945 rudimentary support for debugging such applications if developers
946 specify the CLONE_PTRACE flag in the clone system call, and are
947 using the Linux kernel 2.4 or above.
948
949 Note that there are some peculiarities in GNU/Linux that affect
950 this code:
951
952 - In general one should specify the __WCLONE flag to waitpid in
953 order to make it report events for any of the cloned processes
954 (and leave it out for the initial process). However, if a cloned
955 process has exited the exit status is only reported if the
956 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
957 we cannot use it since GDB must work on older systems too.
958
959 - When a traced, cloned process exits and is waited for by the
960 debugger, the kernel reassigns it to the original parent and
961 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
962 library doesn't notice this, which leads to the "zombie problem":
963 When debugged a multi-threaded process that spawns a lot of
964 threads will run out of processes, even if the threads exit,
965 because the "zombies" stay around. */
966
967 /* List of known LWPs. */
968 struct lwp_info *lwp_list;
969
970 /* Number of LWPs in the list. */
971 static int num_lwps;
972 \f
973
974 /* Original signal mask. */
975 static sigset_t normal_mask;
976
977 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
978 _initialize_linux_nat. */
979 static sigset_t suspend_mask;
980
981 /* SIGCHLD action for synchronous mode. */
982 struct sigaction sync_sigchld_action;
983
984 /* SIGCHLD action for asynchronous mode. */
985 static struct sigaction async_sigchld_action;
986
987 /* SIGCHLD default action, to pass to new inferiors. */
988 static struct sigaction sigchld_default_action;
989 \f
990
991 /* Prototypes for local functions. */
992 static int stop_wait_callback (struct lwp_info *lp, void *data);
993 static int linux_thread_alive (ptid_t ptid);
994 static char *linux_child_pid_to_exec_file (int pid);
995 static int cancel_breakpoint (struct lwp_info *lp);
996
997 \f
998 /* Convert wait status STATUS to a string. Used for printing debug
999 messages only. */
1000
1001 static char *
1002 status_to_str (int status)
1003 {
1004 static char buf[64];
1005
1006 if (WIFSTOPPED (status))
1007 snprintf (buf, sizeof (buf), "%s (stopped)",
1008 strsignal (WSTOPSIG (status)));
1009 else if (WIFSIGNALED (status))
1010 snprintf (buf, sizeof (buf), "%s (terminated)",
1011 strsignal (WSTOPSIG (status)));
1012 else
1013 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1014
1015 return buf;
1016 }
1017
1018 /* Initialize the list of LWPs. Note that this module, contrary to
1019 what GDB's generic threads layer does for its thread list,
1020 re-initializes the LWP lists whenever we mourn or detach (which
1021 doesn't involve mourning) the inferior. */
1022
1023 static void
1024 init_lwp_list (void)
1025 {
1026 struct lwp_info *lp, *lpnext;
1027
1028 for (lp = lwp_list; lp; lp = lpnext)
1029 {
1030 lpnext = lp->next;
1031 xfree (lp);
1032 }
1033
1034 lwp_list = NULL;
1035 num_lwps = 0;
1036 }
1037
1038 /* Add the LWP specified by PID to the list. Return a pointer to the
1039 structure describing the new LWP. The LWP should already be stopped
1040 (with an exception for the very first LWP). */
1041
1042 static struct lwp_info *
1043 add_lwp (ptid_t ptid)
1044 {
1045 struct lwp_info *lp;
1046
1047 gdb_assert (is_lwp (ptid));
1048
1049 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1050
1051 memset (lp, 0, sizeof (struct lwp_info));
1052
1053 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1054
1055 lp->ptid = ptid;
1056
1057 lp->next = lwp_list;
1058 lwp_list = lp;
1059 ++num_lwps;
1060
1061 if (num_lwps > 1 && linux_nat_new_thread != NULL)
1062 linux_nat_new_thread (ptid);
1063
1064 return lp;
1065 }
1066
1067 /* Remove the LWP specified by PID from the list. */
1068
1069 static void
1070 delete_lwp (ptid_t ptid)
1071 {
1072 struct lwp_info *lp, *lpprev;
1073
1074 lpprev = NULL;
1075
1076 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1077 if (ptid_equal (lp->ptid, ptid))
1078 break;
1079
1080 if (!lp)
1081 return;
1082
1083 num_lwps--;
1084
1085 if (lpprev)
1086 lpprev->next = lp->next;
1087 else
1088 lwp_list = lp->next;
1089
1090 xfree (lp);
1091 }
1092
1093 /* Return a pointer to the structure describing the LWP corresponding
1094 to PID. If no corresponding LWP could be found, return NULL. */
1095
1096 static struct lwp_info *
1097 find_lwp_pid (ptid_t ptid)
1098 {
1099 struct lwp_info *lp;
1100 int lwp;
1101
1102 if (is_lwp (ptid))
1103 lwp = GET_LWP (ptid);
1104 else
1105 lwp = GET_PID (ptid);
1106
1107 for (lp = lwp_list; lp; lp = lp->next)
1108 if (lwp == GET_LWP (lp->ptid))
1109 return lp;
1110
1111 return NULL;
1112 }
1113
1114 /* Call CALLBACK with its second argument set to DATA for every LWP in
1115 the list. If CALLBACK returns 1 for a particular LWP, return a
1116 pointer to the structure describing that LWP immediately.
1117 Otherwise return NULL. */
1118
1119 struct lwp_info *
1120 iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
1121 {
1122 struct lwp_info *lp, *lpnext;
1123
1124 for (lp = lwp_list; lp; lp = lpnext)
1125 {
1126 lpnext = lp->next;
1127 if ((*callback) (lp, data))
1128 return lp;
1129 }
1130
1131 return NULL;
1132 }
1133
1134 /* Update our internal state when changing from one fork (checkpoint,
1135 et cetera) to another indicated by NEW_PTID. We can only switch
1136 single-threaded applications, so we only create one new LWP, and
1137 the previous list is discarded. */
1138
1139 void
1140 linux_nat_switch_fork (ptid_t new_ptid)
1141 {
1142 struct lwp_info *lp;
1143
1144 init_lwp_list ();
1145 lp = add_lwp (new_ptid);
1146 lp->stopped = 1;
1147
1148 init_thread_list ();
1149 add_thread_silent (new_ptid);
1150 }
1151
1152 /* Handle the exit of a single thread LP. */
1153
1154 static void
1155 exit_lwp (struct lwp_info *lp)
1156 {
1157 struct thread_info *th = find_thread_pid (lp->ptid);
1158
1159 if (th)
1160 {
1161 if (print_thread_events)
1162 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1163
1164 delete_thread (lp->ptid);
1165 }
1166
1167 delete_lwp (lp->ptid);
1168 }
1169
1170 /* Detect `T (stopped)' in `/proc/PID/status'.
1171 Other states including `T (tracing stop)' are reported as false. */
1172
1173 static int
1174 pid_is_stopped (pid_t pid)
1175 {
1176 FILE *status_file;
1177 char buf[100];
1178 int retval = 0;
1179
1180 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1181 status_file = fopen (buf, "r");
1182 if (status_file != NULL)
1183 {
1184 int have_state = 0;
1185
1186 while (fgets (buf, sizeof (buf), status_file))
1187 {
1188 if (strncmp (buf, "State:", 6) == 0)
1189 {
1190 have_state = 1;
1191 break;
1192 }
1193 }
1194 if (have_state && strstr (buf, "T (stopped)") != NULL)
1195 retval = 1;
1196 fclose (status_file);
1197 }
1198 return retval;
1199 }
1200
1201 /* Wait for the LWP specified by LP, which we have just attached to.
1202 Returns a wait status for that LWP, to cache. */
1203
1204 static int
1205 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1206 int *signalled)
1207 {
1208 pid_t new_pid, pid = GET_LWP (ptid);
1209 int status;
1210
1211 if (pid_is_stopped (pid))
1212 {
1213 if (debug_linux_nat)
1214 fprintf_unfiltered (gdb_stdlog,
1215 "LNPAW: Attaching to a stopped process\n");
1216
1217 /* The process is definitely stopped. It is in a job control
1218 stop, unless the kernel predates the TASK_STOPPED /
1219 TASK_TRACED distinction, in which case it might be in a
1220 ptrace stop. Make sure it is in a ptrace stop; from there we
1221 can kill it, signal it, et cetera.
1222
1223 First make sure there is a pending SIGSTOP. Since we are
1224 already attached, the process can not transition from stopped
1225 to running without a PTRACE_CONT; so we know this signal will
1226 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1227 probably already in the queue (unless this kernel is old
1228 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1229 is not an RT signal, it can only be queued once. */
1230 kill_lwp (pid, SIGSTOP);
1231
1232 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1233 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1234 ptrace (PTRACE_CONT, pid, 0, 0);
1235 }
1236
1237 /* Make sure the initial process is stopped. The user-level threads
1238 layer might want to poke around in the inferior, and that won't
1239 work if things haven't stabilized yet. */
1240 new_pid = my_waitpid (pid, &status, 0);
1241 if (new_pid == -1 && errno == ECHILD)
1242 {
1243 if (first)
1244 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1245
1246 /* Try again with __WCLONE to check cloned processes. */
1247 new_pid = my_waitpid (pid, &status, __WCLONE);
1248 *cloned = 1;
1249 }
1250
1251 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1252
1253 if (WSTOPSIG (status) != SIGSTOP)
1254 {
1255 *signalled = 1;
1256 if (debug_linux_nat)
1257 fprintf_unfiltered (gdb_stdlog,
1258 "LNPAW: Received %s after attaching\n",
1259 status_to_str (status));
1260 }
1261
1262 return status;
1263 }
1264
1265 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1266 if the new LWP could not be attached. */
1267
1268 int
1269 lin_lwp_attach_lwp (ptid_t ptid)
1270 {
1271 struct lwp_info *lp;
1272 enum sigchld_state async_events_original_state;
1273
1274 gdb_assert (is_lwp (ptid));
1275
1276 async_events_original_state = linux_nat_async_events (sigchld_sync);
1277
1278 lp = find_lwp_pid (ptid);
1279
1280 /* We assume that we're already attached to any LWP that has an id
1281 equal to the overall process id, and to any LWP that is already
1282 in our list of LWPs. If we're not seeing exit events from threads
1283 and we've had PID wraparound since we last tried to stop all threads,
1284 this assumption might be wrong; fortunately, this is very unlikely
1285 to happen. */
1286 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1287 {
1288 int status, cloned = 0, signalled = 0;
1289
1290 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1291 {
1292 /* If we fail to attach to the thread, issue a warning,
1293 but continue. One way this can happen is if thread
1294 creation is interrupted; as of Linux kernel 2.6.19, a
1295 bug may place threads in the thread list and then fail
1296 to create them. */
1297 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1298 safe_strerror (errno));
1299 return -1;
1300 }
1301
1302 if (debug_linux_nat)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1305 target_pid_to_str (ptid));
1306
1307 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1308 lp = add_lwp (ptid);
1309 lp->stopped = 1;
1310 lp->cloned = cloned;
1311 lp->signalled = signalled;
1312 if (WSTOPSIG (status) != SIGSTOP)
1313 {
1314 lp->resumed = 1;
1315 lp->status = status;
1316 }
1317
1318 target_post_attach (GET_LWP (lp->ptid));
1319
1320 if (debug_linux_nat)
1321 {
1322 fprintf_unfiltered (gdb_stdlog,
1323 "LLAL: waitpid %s received %s\n",
1324 target_pid_to_str (ptid),
1325 status_to_str (status));
1326 }
1327 }
1328 else
1329 {
1330 /* We assume that the LWP representing the original process is
1331 already stopped. Mark it as stopped in the data structure
1332 that the GNU/linux ptrace layer uses to keep track of
1333 threads. Note that this won't have already been done since
1334 the main thread will have, we assume, been stopped by an
1335 attach from a different layer. */
1336 if (lp == NULL)
1337 lp = add_lwp (ptid);
1338 lp->stopped = 1;
1339 }
1340
1341 linux_nat_async_events (async_events_original_state);
1342 return 0;
1343 }
1344
1345 static void
1346 linux_nat_create_inferior (struct target_ops *ops,
1347 char *exec_file, char *allargs, char **env,
1348 int from_tty)
1349 {
1350 int saved_async = 0;
1351 #ifdef HAVE_PERSONALITY
1352 int personality_orig = 0, personality_set = 0;
1353 #endif /* HAVE_PERSONALITY */
1354
1355 /* The fork_child mechanism is synchronous and calls target_wait, so
1356 we have to mask the async mode. */
1357
1358 if (target_can_async_p ())
1359 /* Mask async mode. Creating a child requires a loop calling
1360 wait_for_inferior currently. */
1361 saved_async = linux_nat_async_mask (0);
1362 else
1363 {
1364 /* Restore the original signal mask. */
1365 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1366 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1367 suspend_mask = normal_mask;
1368 sigdelset (&suspend_mask, SIGCHLD);
1369 }
1370
1371 /* Set SIGCHLD to the default action, until after execing the child,
1372 since the inferior inherits the superior's signal mask. It will
1373 be blocked again in linux_nat_wait, which is only reached after
1374 the inferior execing. */
1375 linux_nat_async_events (sigchld_default);
1376
1377 #ifdef HAVE_PERSONALITY
1378 if (disable_randomization)
1379 {
1380 errno = 0;
1381 personality_orig = personality (0xffffffff);
1382 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1383 {
1384 personality_set = 1;
1385 personality (personality_orig | ADDR_NO_RANDOMIZE);
1386 }
1387 if (errno != 0 || (personality_set
1388 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1389 warning (_("Error disabling address space randomization: %s"),
1390 safe_strerror (errno));
1391 }
1392 #endif /* HAVE_PERSONALITY */
1393
1394 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1395
1396 #ifdef HAVE_PERSONALITY
1397 if (personality_set)
1398 {
1399 errno = 0;
1400 personality (personality_orig);
1401 if (errno != 0)
1402 warning (_("Error restoring address space randomization: %s"),
1403 safe_strerror (errno));
1404 }
1405 #endif /* HAVE_PERSONALITY */
1406
1407 if (saved_async)
1408 linux_nat_async_mask (saved_async);
1409 }
1410
1411 static void
1412 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1413 {
1414 struct lwp_info *lp;
1415 int status;
1416 ptid_t ptid;
1417
1418 /* FIXME: We should probably accept a list of process id's, and
1419 attach all of them. */
1420 linux_ops->to_attach (ops, args, from_tty);
1421
1422 if (!target_can_async_p ())
1423 {
1424 /* Restore the original signal mask. */
1425 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1426 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1427 suspend_mask = normal_mask;
1428 sigdelset (&suspend_mask, SIGCHLD);
1429 }
1430
1431 /* The ptrace base target adds the main thread with (pid,0,0)
1432 format. Decorate it with lwp info. */
1433 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1434 thread_change_ptid (inferior_ptid, ptid);
1435
1436 /* Add the initial process as the first LWP to the list. */
1437 lp = add_lwp (ptid);
1438
1439 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1440 &lp->signalled);
1441 lp->stopped = 1;
1442
1443 /* Save the wait status to report later. */
1444 lp->resumed = 1;
1445 if (debug_linux_nat)
1446 fprintf_unfiltered (gdb_stdlog,
1447 "LNA: waitpid %ld, saving status %s\n",
1448 (long) GET_PID (lp->ptid), status_to_str (status));
1449
1450 if (!target_can_async_p ())
1451 lp->status = status;
1452 else
1453 {
1454 /* We already waited for this LWP, so put the wait result on the
1455 pipe. The event loop will wake up and gets us to handling
1456 this event. */
1457 linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
1458 lp->cloned ? __WCLONE : 0);
1459 /* Register in the event loop. */
1460 target_async (inferior_event_handler, 0);
1461 }
1462 }
1463
1464 /* Get pending status of LP. */
1465 static int
1466 get_pending_status (struct lwp_info *lp, int *status)
1467 {
1468 struct target_waitstatus last;
1469 ptid_t last_ptid;
1470
1471 get_last_target_status (&last_ptid, &last);
1472
1473 /* If this lwp is the ptid that GDB is processing an event from, the
1474 signal will be in stop_signal. Otherwise, in all-stop + sync
1475 mode, we may cache pending events in lp->status while trying to
1476 stop all threads (see stop_wait_callback). In async mode, the
1477 events are always cached in waitpid_queue. */
1478
1479 *status = 0;
1480
1481 if (non_stop)
1482 {
1483 enum target_signal signo = TARGET_SIGNAL_0;
1484
1485 if (is_executing (lp->ptid))
1486 {
1487 /* If the core thought this lwp was executing --- e.g., the
1488 executing property hasn't been updated yet, but the
1489 thread has been stopped with a stop_callback /
1490 stop_wait_callback sequence (see linux_nat_detach for
1491 example) --- we can only have pending events in the local
1492 queue. */
1493 if (queued_waitpid (GET_LWP (lp->ptid), status, __WALL) != -1)
1494 {
1495 if (WIFSTOPPED (*status))
1496 signo = target_signal_from_host (WSTOPSIG (*status));
1497
1498 /* If not stopped, then the lwp is gone, no use in
1499 resending a signal. */
1500 }
1501 }
1502 else
1503 {
1504 /* If the core knows the thread is not executing, then we
1505 have the last signal recorded in
1506 thread_info->stop_signal. */
1507
1508 struct thread_info *tp = find_thread_pid (lp->ptid);
1509 signo = tp->stop_signal;
1510 }
1511
1512 if (signo != TARGET_SIGNAL_0
1513 && !signal_pass_state (signo))
1514 {
1515 if (debug_linux_nat)
1516 fprintf_unfiltered (gdb_stdlog, "\
1517 GPT: lwp %s had signal %s, but it is in no pass state\n",
1518 target_pid_to_str (lp->ptid),
1519 target_signal_to_string (signo));
1520 }
1521 else
1522 {
1523 if (signo != TARGET_SIGNAL_0)
1524 *status = W_STOPCODE (target_signal_to_host (signo));
1525
1526 if (debug_linux_nat)
1527 fprintf_unfiltered (gdb_stdlog,
1528 "GPT: lwp %s as pending signal %s\n",
1529 target_pid_to_str (lp->ptid),
1530 target_signal_to_string (signo));
1531 }
1532 }
1533 else
1534 {
1535 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1536 {
1537 struct thread_info *tp = find_thread_pid (lp->ptid);
1538 if (tp->stop_signal != TARGET_SIGNAL_0
1539 && signal_pass_state (tp->stop_signal))
1540 *status = W_STOPCODE (target_signal_to_host (tp->stop_signal));
1541 }
1542 else if (target_can_async_p ())
1543 queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
1544 else
1545 *status = lp->status;
1546 }
1547
1548 return 0;
1549 }
1550
1551 static int
1552 detach_callback (struct lwp_info *lp, void *data)
1553 {
1554 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1555
1556 if (debug_linux_nat && lp->status)
1557 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1558 strsignal (WSTOPSIG (lp->status)),
1559 target_pid_to_str (lp->ptid));
1560
1561 /* If there is a pending SIGSTOP, get rid of it. */
1562 if (lp->signalled)
1563 {
1564 if (debug_linux_nat)
1565 fprintf_unfiltered (gdb_stdlog,
1566 "DC: Sending SIGCONT to %s\n",
1567 target_pid_to_str (lp->ptid));
1568
1569 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1570 lp->signalled = 0;
1571 }
1572
1573 /* We don't actually detach from the LWP that has an id equal to the
1574 overall process id just yet. */
1575 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1576 {
1577 int status = 0;
1578
1579 /* Pass on any pending signal for this LWP. */
1580 get_pending_status (lp, &status);
1581
1582 errno = 0;
1583 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1584 WSTOPSIG (status)) < 0)
1585 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1586 safe_strerror (errno));
1587
1588 if (debug_linux_nat)
1589 fprintf_unfiltered (gdb_stdlog,
1590 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1591 target_pid_to_str (lp->ptid),
1592 strsignal (WSTOPSIG (lp->status)));
1593
1594 delete_lwp (lp->ptid);
1595 }
1596
1597 return 0;
1598 }
1599
1600 static void
1601 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1602 {
1603 int pid;
1604 int status;
1605 enum target_signal sig;
1606
1607 if (target_can_async_p ())
1608 linux_nat_async (NULL, 0);
1609
1610 /* Stop all threads before detaching. ptrace requires that the
1611 thread is stopped to sucessfully detach. */
1612 iterate_over_lwps (stop_callback, NULL);
1613 /* ... and wait until all of them have reported back that
1614 they're no longer running. */
1615 iterate_over_lwps (stop_wait_callback, NULL);
1616
1617 iterate_over_lwps (detach_callback, NULL);
1618
1619 /* Only the initial process should be left right now. */
1620 gdb_assert (num_lwps == 1);
1621
1622 /* Pass on any pending signal for the last LWP. */
1623 if ((args == NULL || *args == '\0')
1624 && get_pending_status (lwp_list, &status) != -1
1625 && WIFSTOPPED (status))
1626 {
1627 /* Put the signal number in ARGS so that inf_ptrace_detach will
1628 pass it along with PTRACE_DETACH. */
1629 args = alloca (8);
1630 sprintf (args, "%d", (int) WSTOPSIG (status));
1631 fprintf_unfiltered (gdb_stdlog,
1632 "LND: Sending signal %s to %s\n",
1633 args,
1634 target_pid_to_str (lwp_list->ptid));
1635 }
1636
1637 /* Destroy LWP info; it's no longer valid. */
1638 init_lwp_list ();
1639
1640 pid = ptid_get_pid (inferior_ptid);
1641
1642 if (target_can_async_p ())
1643 drain_queued_events (pid);
1644
1645 if (forks_exist_p ())
1646 {
1647 /* Multi-fork case. The current inferior_ptid is being detached
1648 from, but there are other viable forks to debug. Detach from
1649 the current fork, and context-switch to the first
1650 available. */
1651 linux_fork_detach (args, from_tty);
1652
1653 if (non_stop && target_can_async_p ())
1654 target_async (inferior_event_handler, 0);
1655 }
1656 else
1657 linux_ops->to_detach (ops, args, from_tty);
1658 }
1659
1660 /* Resume LP. */
1661
1662 static int
1663 resume_callback (struct lwp_info *lp, void *data)
1664 {
1665 if (lp->stopped && lp->status == 0)
1666 {
1667 linux_ops->to_resume (linux_ops,
1668 pid_to_ptid (GET_LWP (lp->ptid)),
1669 0, TARGET_SIGNAL_0);
1670 if (debug_linux_nat)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1673 target_pid_to_str (lp->ptid));
1674 lp->stopped = 0;
1675 lp->step = 0;
1676 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1677 }
1678 else if (lp->stopped && debug_linux_nat)
1679 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1680 target_pid_to_str (lp->ptid));
1681 else if (debug_linux_nat)
1682 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1683 target_pid_to_str (lp->ptid));
1684
1685 return 0;
1686 }
1687
1688 static int
1689 resume_clear_callback (struct lwp_info *lp, void *data)
1690 {
1691 lp->resumed = 0;
1692 return 0;
1693 }
1694
1695 static int
1696 resume_set_callback (struct lwp_info *lp, void *data)
1697 {
1698 lp->resumed = 1;
1699 return 0;
1700 }
1701
1702 static void
1703 linux_nat_resume (struct target_ops *ops,
1704 ptid_t ptid, int step, enum target_signal signo)
1705 {
1706 struct lwp_info *lp;
1707 int resume_all;
1708
1709 if (debug_linux_nat)
1710 fprintf_unfiltered (gdb_stdlog,
1711 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1712 step ? "step" : "resume",
1713 target_pid_to_str (ptid),
1714 signo ? strsignal (signo) : "0",
1715 target_pid_to_str (inferior_ptid));
1716
1717 if (target_can_async_p ())
1718 /* Block events while we're here. */
1719 linux_nat_async_events (sigchld_sync);
1720
1721 /* A specific PTID means `step only this process id'. */
1722 resume_all = (PIDGET (ptid) == -1);
1723
1724 if (non_stop && resume_all)
1725 internal_error (__FILE__, __LINE__,
1726 "can't resume all in non-stop mode");
1727
1728 if (!non_stop)
1729 {
1730 if (resume_all)
1731 iterate_over_lwps (resume_set_callback, NULL);
1732 else
1733 iterate_over_lwps (resume_clear_callback, NULL);
1734 }
1735
1736 /* If PID is -1, it's the current inferior that should be
1737 handled specially. */
1738 if (PIDGET (ptid) == -1)
1739 ptid = inferior_ptid;
1740
1741 lp = find_lwp_pid (ptid);
1742 gdb_assert (lp != NULL);
1743
1744 /* Convert to something the lower layer understands. */
1745 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1746
1747 /* Remember if we're stepping. */
1748 lp->step = step;
1749
1750 /* Mark this LWP as resumed. */
1751 lp->resumed = 1;
1752
1753 /* If we have a pending wait status for this thread, there is no
1754 point in resuming the process. But first make sure that
1755 linux_nat_wait won't preemptively handle the event - we
1756 should never take this short-circuit if we are going to
1757 leave LP running, since we have skipped resuming all the
1758 other threads. This bit of code needs to be synchronized
1759 with linux_nat_wait. */
1760
1761 /* In async mode, we never have pending wait status. */
1762 if (target_can_async_p () && lp->status)
1763 internal_error (__FILE__, __LINE__, "Pending status in async mode");
1764
1765 if (lp->status && WIFSTOPPED (lp->status))
1766 {
1767 int saved_signo;
1768 struct inferior *inf;
1769
1770 inf = find_inferior_pid (ptid_get_pid (ptid));
1771 gdb_assert (inf);
1772 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1773
1774 /* Defer to common code if we're gaining control of the
1775 inferior. */
1776 if (inf->stop_soon == NO_STOP_QUIETLY
1777 && signal_stop_state (saved_signo) == 0
1778 && signal_print_state (saved_signo) == 0
1779 && signal_pass_state (saved_signo) == 1)
1780 {
1781 if (debug_linux_nat)
1782 fprintf_unfiltered (gdb_stdlog,
1783 "LLR: Not short circuiting for ignored "
1784 "status 0x%x\n", lp->status);
1785
1786 /* FIXME: What should we do if we are supposed to continue
1787 this thread with a signal? */
1788 gdb_assert (signo == TARGET_SIGNAL_0);
1789 signo = saved_signo;
1790 lp->status = 0;
1791 }
1792 }
1793
1794 if (lp->status)
1795 {
1796 /* FIXME: What should we do if we are supposed to continue
1797 this thread with a signal? */
1798 gdb_assert (signo == TARGET_SIGNAL_0);
1799
1800 if (debug_linux_nat)
1801 fprintf_unfiltered (gdb_stdlog,
1802 "LLR: Short circuiting for status 0x%x\n",
1803 lp->status);
1804
1805 return;
1806 }
1807
1808 /* Mark LWP as not stopped to prevent it from being continued by
1809 resume_callback. */
1810 lp->stopped = 0;
1811
1812 if (resume_all)
1813 iterate_over_lwps (resume_callback, NULL);
1814
1815 linux_ops->to_resume (linux_ops, ptid, step, signo);
1816 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1817
1818 if (debug_linux_nat)
1819 fprintf_unfiltered (gdb_stdlog,
1820 "LLR: %s %s, %s (resume event thread)\n",
1821 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1822 target_pid_to_str (ptid),
1823 signo ? strsignal (signo) : "0");
1824
1825 if (target_can_async_p ())
1826 target_async (inferior_event_handler, 0);
1827 }
1828
1829 /* Issue kill to specified lwp. */
1830
1831 static int tkill_failed;
1832
1833 static int
1834 kill_lwp (int lwpid, int signo)
1835 {
1836 errno = 0;
1837
1838 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1839 fails, then we are not using nptl threads and we should be using kill. */
1840
1841 #ifdef HAVE_TKILL_SYSCALL
1842 if (!tkill_failed)
1843 {
1844 int ret = syscall (__NR_tkill, lwpid, signo);
1845 if (errno != ENOSYS)
1846 return ret;
1847 errno = 0;
1848 tkill_failed = 1;
1849 }
1850 #endif
1851
1852 return kill (lwpid, signo);
1853 }
1854
1855 /* Handle a GNU/Linux extended wait response. If we see a clone
1856 event, we need to add the new LWP to our list (and not report the
1857 trap to higher layers). This function returns non-zero if the
1858 event should be ignored and we should wait again. If STOPPING is
1859 true, the new LWP remains stopped, otherwise it is continued. */
1860
1861 static int
1862 linux_handle_extended_wait (struct lwp_info *lp, int status,
1863 int stopping)
1864 {
1865 int pid = GET_LWP (lp->ptid);
1866 struct target_waitstatus *ourstatus = &lp->waitstatus;
1867 struct lwp_info *new_lp = NULL;
1868 int event = status >> 16;
1869
1870 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1871 || event == PTRACE_EVENT_CLONE)
1872 {
1873 unsigned long new_pid;
1874 int ret;
1875
1876 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1877
1878 /* If we haven't already seen the new PID stop, wait for it now. */
1879 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1880 {
1881 /* The new child has a pending SIGSTOP. We can't affect it until it
1882 hits the SIGSTOP, but we're already attached. */
1883 ret = my_waitpid (new_pid, &status,
1884 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1885 if (ret == -1)
1886 perror_with_name (_("waiting for new child"));
1887 else if (ret != new_pid)
1888 internal_error (__FILE__, __LINE__,
1889 _("wait returned unexpected PID %d"), ret);
1890 else if (!WIFSTOPPED (status))
1891 internal_error (__FILE__, __LINE__,
1892 _("wait returned unexpected status 0x%x"), status);
1893 }
1894
1895 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1896
1897 if (event == PTRACE_EVENT_FORK)
1898 ourstatus->kind = TARGET_WAITKIND_FORKED;
1899 else if (event == PTRACE_EVENT_VFORK)
1900 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1901 else
1902 {
1903 struct cleanup *old_chain;
1904
1905 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1906 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
1907 new_lp->cloned = 1;
1908 new_lp->stopped = 1;
1909
1910 if (WSTOPSIG (status) != SIGSTOP)
1911 {
1912 /* This can happen if someone starts sending signals to
1913 the new thread before it gets a chance to run, which
1914 have a lower number than SIGSTOP (e.g. SIGUSR1).
1915 This is an unlikely case, and harder to handle for
1916 fork / vfork than for clone, so we do not try - but
1917 we handle it for clone events here. We'll send
1918 the other signal on to the thread below. */
1919
1920 new_lp->signalled = 1;
1921 }
1922 else
1923 status = 0;
1924
1925 if (non_stop)
1926 {
1927 /* Add the new thread to GDB's lists as soon as possible
1928 so that:
1929
1930 1) the frontend doesn't have to wait for a stop to
1931 display them, and,
1932
1933 2) we tag it with the correct running state. */
1934
1935 /* If the thread_db layer is active, let it know about
1936 this new thread, and add it to GDB's list. */
1937 if (!thread_db_attach_lwp (new_lp->ptid))
1938 {
1939 /* We're not using thread_db. Add it to GDB's
1940 list. */
1941 target_post_attach (GET_LWP (new_lp->ptid));
1942 add_thread (new_lp->ptid);
1943 }
1944
1945 if (!stopping)
1946 {
1947 set_running (new_lp->ptid, 1);
1948 set_executing (new_lp->ptid, 1);
1949 }
1950 }
1951
1952 if (!stopping)
1953 {
1954 new_lp->stopped = 0;
1955 new_lp->resumed = 1;
1956 ptrace (PTRACE_CONT, new_pid, 0,
1957 status ? WSTOPSIG (status) : 0);
1958 }
1959
1960 if (debug_linux_nat)
1961 fprintf_unfiltered (gdb_stdlog,
1962 "LHEW: Got clone event from LWP %ld, resuming\n",
1963 GET_LWP (lp->ptid));
1964 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1965
1966 return 1;
1967 }
1968
1969 return 0;
1970 }
1971
1972 if (event == PTRACE_EVENT_EXEC)
1973 {
1974 ourstatus->kind = TARGET_WAITKIND_EXECD;
1975 ourstatus->value.execd_pathname
1976 = xstrdup (linux_child_pid_to_exec_file (pid));
1977
1978 if (linux_parent_pid)
1979 {
1980 detach_breakpoints (linux_parent_pid);
1981 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1982
1983 linux_parent_pid = 0;
1984 }
1985
1986 /* At this point, all inserted breakpoints are gone. Doing this
1987 as soon as we detect an exec prevents the badness of deleting
1988 a breakpoint writing the current "shadow contents" to lift
1989 the bp. That shadow is NOT valid after an exec.
1990
1991 Note that we have to do this after the detach_breakpoints
1992 call above, otherwise breakpoints wouldn't be lifted from the
1993 parent on a vfork, because detach_breakpoints would think
1994 that breakpoints are not inserted. */
1995 mark_breakpoints_out ();
1996 return 0;
1997 }
1998
1999 internal_error (__FILE__, __LINE__,
2000 _("unknown ptrace event %d"), event);
2001 }
2002
2003 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2004 exited. */
2005
2006 static int
2007 wait_lwp (struct lwp_info *lp)
2008 {
2009 pid_t pid;
2010 int status;
2011 int thread_dead = 0;
2012
2013 gdb_assert (!lp->stopped);
2014 gdb_assert (lp->status == 0);
2015
2016 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2017 if (pid == -1 && errno == ECHILD)
2018 {
2019 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2020 if (pid == -1 && errno == ECHILD)
2021 {
2022 /* The thread has previously exited. We need to delete it
2023 now because, for some vendor 2.4 kernels with NPTL
2024 support backported, there won't be an exit event unless
2025 it is the main thread. 2.6 kernels will report an exit
2026 event for each thread that exits, as expected. */
2027 thread_dead = 1;
2028 if (debug_linux_nat)
2029 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2030 target_pid_to_str (lp->ptid));
2031 }
2032 }
2033
2034 if (!thread_dead)
2035 {
2036 gdb_assert (pid == GET_LWP (lp->ptid));
2037
2038 if (debug_linux_nat)
2039 {
2040 fprintf_unfiltered (gdb_stdlog,
2041 "WL: waitpid %s received %s\n",
2042 target_pid_to_str (lp->ptid),
2043 status_to_str (status));
2044 }
2045 }
2046
2047 /* Check if the thread has exited. */
2048 if (WIFEXITED (status) || WIFSIGNALED (status))
2049 {
2050 thread_dead = 1;
2051 if (debug_linux_nat)
2052 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2053 target_pid_to_str (lp->ptid));
2054 }
2055
2056 if (thread_dead)
2057 {
2058 exit_lwp (lp);
2059 return 0;
2060 }
2061
2062 gdb_assert (WIFSTOPPED (status));
2063
2064 /* Handle GNU/Linux's extended waitstatus for trace events. */
2065 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2066 {
2067 if (debug_linux_nat)
2068 fprintf_unfiltered (gdb_stdlog,
2069 "WL: Handling extended status 0x%06x\n",
2070 status);
2071 if (linux_handle_extended_wait (lp, status, 1))
2072 return wait_lwp (lp);
2073 }
2074
2075 return status;
2076 }
2077
2078 /* Save the most recent siginfo for LP. This is currently only called
2079 for SIGTRAP; some ports use the si_addr field for
2080 target_stopped_data_address. In the future, it may also be used to
2081 restore the siginfo of requeued signals. */
2082
2083 static void
2084 save_siginfo (struct lwp_info *lp)
2085 {
2086 errno = 0;
2087 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2088 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2089
2090 if (errno != 0)
2091 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2092 }
2093
2094 /* Send a SIGSTOP to LP. */
2095
2096 static int
2097 stop_callback (struct lwp_info *lp, void *data)
2098 {
2099 if (!lp->stopped && !lp->signalled)
2100 {
2101 int ret;
2102
2103 if (debug_linux_nat)
2104 {
2105 fprintf_unfiltered (gdb_stdlog,
2106 "SC: kill %s **<SIGSTOP>**\n",
2107 target_pid_to_str (lp->ptid));
2108 }
2109 errno = 0;
2110 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2111 if (debug_linux_nat)
2112 {
2113 fprintf_unfiltered (gdb_stdlog,
2114 "SC: lwp kill %d %s\n",
2115 ret,
2116 errno ? safe_strerror (errno) : "ERRNO-OK");
2117 }
2118
2119 lp->signalled = 1;
2120 gdb_assert (lp->status == 0);
2121 }
2122
2123 return 0;
2124 }
2125
2126 /* Return non-zero if LWP PID has a pending SIGINT. */
2127
2128 static int
2129 linux_nat_has_pending_sigint (int pid)
2130 {
2131 sigset_t pending, blocked, ignored;
2132 int i;
2133
2134 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2135
2136 if (sigismember (&pending, SIGINT)
2137 && !sigismember (&ignored, SIGINT))
2138 return 1;
2139
2140 return 0;
2141 }
2142
2143 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2144
2145 static int
2146 set_ignore_sigint (struct lwp_info *lp, void *data)
2147 {
2148 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2149 flag to consume the next one. */
2150 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2151 && WSTOPSIG (lp->status) == SIGINT)
2152 lp->status = 0;
2153 else
2154 lp->ignore_sigint = 1;
2155
2156 return 0;
2157 }
2158
2159 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2160 This function is called after we know the LWP has stopped; if the LWP
2161 stopped before the expected SIGINT was delivered, then it will never have
2162 arrived. Also, if the signal was delivered to a shared queue and consumed
2163 by a different thread, it will never be delivered to this LWP. */
2164
2165 static void
2166 maybe_clear_ignore_sigint (struct lwp_info *lp)
2167 {
2168 if (!lp->ignore_sigint)
2169 return;
2170
2171 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2172 {
2173 if (debug_linux_nat)
2174 fprintf_unfiltered (gdb_stdlog,
2175 "MCIS: Clearing bogus flag for %s\n",
2176 target_pid_to_str (lp->ptid));
2177 lp->ignore_sigint = 0;
2178 }
2179 }
2180
2181 /* Wait until LP is stopped. */
2182
2183 static int
2184 stop_wait_callback (struct lwp_info *lp, void *data)
2185 {
2186 if (!lp->stopped)
2187 {
2188 int status;
2189
2190 status = wait_lwp (lp);
2191 if (status == 0)
2192 return 0;
2193
2194 if (lp->ignore_sigint && WIFSTOPPED (status)
2195 && WSTOPSIG (status) == SIGINT)
2196 {
2197 lp->ignore_sigint = 0;
2198
2199 errno = 0;
2200 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2201 if (debug_linux_nat)
2202 fprintf_unfiltered (gdb_stdlog,
2203 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2204 target_pid_to_str (lp->ptid),
2205 errno ? safe_strerror (errno) : "OK");
2206
2207 return stop_wait_callback (lp, NULL);
2208 }
2209
2210 maybe_clear_ignore_sigint (lp);
2211
2212 if (WSTOPSIG (status) != SIGSTOP)
2213 {
2214 if (WSTOPSIG (status) == SIGTRAP)
2215 {
2216 /* If a LWP other than the LWP that we're reporting an
2217 event for has hit a GDB breakpoint (as opposed to
2218 some random trap signal), then just arrange for it to
2219 hit it again later. We don't keep the SIGTRAP status
2220 and don't forward the SIGTRAP signal to the LWP. We
2221 will handle the current event, eventually we will
2222 resume all LWPs, and this one will get its breakpoint
2223 trap again.
2224
2225 If we do not do this, then we run the risk that the
2226 user will delete or disable the breakpoint, but the
2227 thread will have already tripped on it. */
2228
2229 /* Save the trap's siginfo in case we need it later. */
2230 save_siginfo (lp);
2231
2232 /* Now resume this LWP and get the SIGSTOP event. */
2233 errno = 0;
2234 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2235 if (debug_linux_nat)
2236 {
2237 fprintf_unfiltered (gdb_stdlog,
2238 "PTRACE_CONT %s, 0, 0 (%s)\n",
2239 target_pid_to_str (lp->ptid),
2240 errno ? safe_strerror (errno) : "OK");
2241
2242 fprintf_unfiltered (gdb_stdlog,
2243 "SWC: Candidate SIGTRAP event in %s\n",
2244 target_pid_to_str (lp->ptid));
2245 }
2246 /* Hold this event/waitstatus while we check to see if
2247 there are any more (we still want to get that SIGSTOP). */
2248 stop_wait_callback (lp, NULL);
2249
2250 if (target_can_async_p ())
2251 {
2252 /* Don't leave a pending wait status in async mode.
2253 Retrigger the breakpoint. */
2254 if (!cancel_breakpoint (lp))
2255 {
2256 /* There was no gdb breakpoint set at pc. Put
2257 the event back in the queue. */
2258 if (debug_linux_nat)
2259 fprintf_unfiltered (gdb_stdlog, "\
2260 SWC: leaving SIGTRAP in local queue of %s\n", target_pid_to_str (lp->ptid));
2261 push_waitpid (GET_LWP (lp->ptid),
2262 W_STOPCODE (SIGTRAP),
2263 lp->cloned ? __WCLONE : 0);
2264 }
2265 }
2266 else
2267 {
2268 /* Hold the SIGTRAP for handling by
2269 linux_nat_wait. */
2270 /* If there's another event, throw it back into the
2271 queue. */
2272 if (lp->status)
2273 {
2274 if (debug_linux_nat)
2275 fprintf_unfiltered (gdb_stdlog,
2276 "SWC: kill %s, %s\n",
2277 target_pid_to_str (lp->ptid),
2278 status_to_str ((int) status));
2279 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2280 }
2281 /* Save the sigtrap event. */
2282 lp->status = status;
2283 }
2284 return 0;
2285 }
2286 else
2287 {
2288 /* The thread was stopped with a signal other than
2289 SIGSTOP, and didn't accidentally trip a breakpoint. */
2290
2291 if (debug_linux_nat)
2292 {
2293 fprintf_unfiltered (gdb_stdlog,
2294 "SWC: Pending event %s in %s\n",
2295 status_to_str ((int) status),
2296 target_pid_to_str (lp->ptid));
2297 }
2298 /* Now resume this LWP and get the SIGSTOP event. */
2299 errno = 0;
2300 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2301 if (debug_linux_nat)
2302 fprintf_unfiltered (gdb_stdlog,
2303 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2304 target_pid_to_str (lp->ptid),
2305 errno ? safe_strerror (errno) : "OK");
2306
2307 /* Hold this event/waitstatus while we check to see if
2308 there are any more (we still want to get that SIGSTOP). */
2309 stop_wait_callback (lp, NULL);
2310
2311 /* If the lp->status field is still empty, use it to
2312 hold this event. If not, then this event must be
2313 returned to the event queue of the LWP. */
2314 if (lp->status || target_can_async_p ())
2315 {
2316 if (debug_linux_nat)
2317 {
2318 fprintf_unfiltered (gdb_stdlog,
2319 "SWC: kill %s, %s\n",
2320 target_pid_to_str (lp->ptid),
2321 status_to_str ((int) status));
2322 }
2323 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2324 }
2325 else
2326 lp->status = status;
2327 return 0;
2328 }
2329 }
2330 else
2331 {
2332 /* We caught the SIGSTOP that we intended to catch, so
2333 there's no SIGSTOP pending. */
2334 lp->stopped = 1;
2335 lp->signalled = 0;
2336 }
2337 }
2338
2339 return 0;
2340 }
2341
2342 /* Return non-zero if LP has a wait status pending. */
2343
2344 static int
2345 status_callback (struct lwp_info *lp, void *data)
2346 {
2347 /* Only report a pending wait status if we pretend that this has
2348 indeed been resumed. */
2349 return (lp->status != 0 && lp->resumed);
2350 }
2351
2352 /* Return non-zero if LP isn't stopped. */
2353
2354 static int
2355 running_callback (struct lwp_info *lp, void *data)
2356 {
2357 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2358 }
2359
2360 /* Count the LWP's that have had events. */
2361
2362 static int
2363 count_events_callback (struct lwp_info *lp, void *data)
2364 {
2365 int *count = data;
2366
2367 gdb_assert (count != NULL);
2368
2369 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2370 if (lp->status != 0 && lp->resumed
2371 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2372 (*count)++;
2373
2374 return 0;
2375 }
2376
2377 /* Select the LWP (if any) that is currently being single-stepped. */
2378
2379 static int
2380 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2381 {
2382 if (lp->step && lp->status != 0)
2383 return 1;
2384 else
2385 return 0;
2386 }
2387
2388 /* Select the Nth LWP that has had a SIGTRAP event. */
2389
2390 static int
2391 select_event_lwp_callback (struct lwp_info *lp, void *data)
2392 {
2393 int *selector = data;
2394
2395 gdb_assert (selector != NULL);
2396
2397 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2398 if (lp->status != 0 && lp->resumed
2399 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2400 if ((*selector)-- == 0)
2401 return 1;
2402
2403 return 0;
2404 }
2405
2406 static int
2407 cancel_breakpoint (struct lwp_info *lp)
2408 {
2409 /* Arrange for a breakpoint to be hit again later. We don't keep
2410 the SIGTRAP status and don't forward the SIGTRAP signal to the
2411 LWP. We will handle the current event, eventually we will resume
2412 this LWP, and this breakpoint will trap again.
2413
2414 If we do not do this, then we run the risk that the user will
2415 delete or disable the breakpoint, but the LWP will have already
2416 tripped on it. */
2417
2418 struct regcache *regcache = get_thread_regcache (lp->ptid);
2419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2420 CORE_ADDR pc;
2421
2422 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2423 if (breakpoint_inserted_here_p (pc))
2424 {
2425 if (debug_linux_nat)
2426 fprintf_unfiltered (gdb_stdlog,
2427 "CB: Push back breakpoint for %s\n",
2428 target_pid_to_str (lp->ptid));
2429
2430 /* Back up the PC if necessary. */
2431 if (gdbarch_decr_pc_after_break (gdbarch))
2432 regcache_write_pc (regcache, pc);
2433
2434 return 1;
2435 }
2436 return 0;
2437 }
2438
2439 static int
2440 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2441 {
2442 struct lwp_info *event_lp = data;
2443
2444 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2445 if (lp == event_lp)
2446 return 0;
2447
2448 /* If a LWP other than the LWP that we're reporting an event for has
2449 hit a GDB breakpoint (as opposed to some random trap signal),
2450 then just arrange for it to hit it again later. We don't keep
2451 the SIGTRAP status and don't forward the SIGTRAP signal to the
2452 LWP. We will handle the current event, eventually we will resume
2453 all LWPs, and this one will get its breakpoint trap again.
2454
2455 If we do not do this, then we run the risk that the user will
2456 delete or disable the breakpoint, but the LWP will have already
2457 tripped on it. */
2458
2459 if (lp->status != 0
2460 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2461 && cancel_breakpoint (lp))
2462 /* Throw away the SIGTRAP. */
2463 lp->status = 0;
2464
2465 return 0;
2466 }
2467
2468 /* Select one LWP out of those that have events pending. */
2469
2470 static void
2471 select_event_lwp (struct lwp_info **orig_lp, int *status)
2472 {
2473 int num_events = 0;
2474 int random_selector;
2475 struct lwp_info *event_lp;
2476
2477 /* Record the wait status for the original LWP. */
2478 (*orig_lp)->status = *status;
2479
2480 /* Give preference to any LWP that is being single-stepped. */
2481 event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
2482 if (event_lp != NULL)
2483 {
2484 if (debug_linux_nat)
2485 fprintf_unfiltered (gdb_stdlog,
2486 "SEL: Select single-step %s\n",
2487 target_pid_to_str (event_lp->ptid));
2488 }
2489 else
2490 {
2491 /* No single-stepping LWP. Select one at random, out of those
2492 which have had SIGTRAP events. */
2493
2494 /* First see how many SIGTRAP events we have. */
2495 iterate_over_lwps (count_events_callback, &num_events);
2496
2497 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2498 random_selector = (int)
2499 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2500
2501 if (debug_linux_nat && num_events > 1)
2502 fprintf_unfiltered (gdb_stdlog,
2503 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2504 num_events, random_selector);
2505
2506 event_lp = iterate_over_lwps (select_event_lwp_callback,
2507 &random_selector);
2508 }
2509
2510 if (event_lp != NULL)
2511 {
2512 /* Switch the event LWP. */
2513 *orig_lp = event_lp;
2514 *status = event_lp->status;
2515 }
2516
2517 /* Flush the wait status for the event LWP. */
2518 (*orig_lp)->status = 0;
2519 }
2520
2521 /* Return non-zero if LP has been resumed. */
2522
2523 static int
2524 resumed_callback (struct lwp_info *lp, void *data)
2525 {
2526 return lp->resumed;
2527 }
2528
2529 /* Stop an active thread, verify it still exists, then resume it. */
2530
2531 static int
2532 stop_and_resume_callback (struct lwp_info *lp, void *data)
2533 {
2534 struct lwp_info *ptr;
2535
2536 if (!lp->stopped && !lp->signalled)
2537 {
2538 stop_callback (lp, NULL);
2539 stop_wait_callback (lp, NULL);
2540 /* Resume if the lwp still exists. */
2541 for (ptr = lwp_list; ptr; ptr = ptr->next)
2542 if (lp == ptr)
2543 {
2544 resume_callback (lp, NULL);
2545 resume_set_callback (lp, NULL);
2546 }
2547 }
2548 return 0;
2549 }
2550
2551 /* Check if we should go on and pass this event to common code.
2552 Return the affected lwp if we are, or NULL otherwise. */
2553 static struct lwp_info *
2554 linux_nat_filter_event (int lwpid, int status, int options)
2555 {
2556 struct lwp_info *lp;
2557
2558 lp = find_lwp_pid (pid_to_ptid (lwpid));
2559
2560 /* Check for stop events reported by a process we didn't already
2561 know about - anything not already in our LWP list.
2562
2563 If we're expecting to receive stopped processes after
2564 fork, vfork, and clone events, then we'll just add the
2565 new one to our list and go back to waiting for the event
2566 to be reported - the stopped process might be returned
2567 from waitpid before or after the event is. */
2568 if (WIFSTOPPED (status) && !lp)
2569 {
2570 linux_record_stopped_pid (lwpid, status);
2571 return NULL;
2572 }
2573
2574 /* Make sure we don't report an event for the exit of an LWP not in
2575 our list, i.e. not part of the current process. This can happen
2576 if we detach from a program we original forked and then it
2577 exits. */
2578 if (!WIFSTOPPED (status) && !lp)
2579 return NULL;
2580
2581 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2582 CLONE_PTRACE processes which do not use the thread library -
2583 otherwise we wouldn't find the new LWP this way. That doesn't
2584 currently work, and the following code is currently unreachable
2585 due to the two blocks above. If it's fixed some day, this code
2586 should be broken out into a function so that we can also pick up
2587 LWPs from the new interface. */
2588 if (!lp)
2589 {
2590 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2591 if (options & __WCLONE)
2592 lp->cloned = 1;
2593
2594 gdb_assert (WIFSTOPPED (status)
2595 && WSTOPSIG (status) == SIGSTOP);
2596 lp->signalled = 1;
2597
2598 if (!in_thread_list (inferior_ptid))
2599 {
2600 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2601 GET_PID (inferior_ptid));
2602 add_thread (inferior_ptid);
2603 }
2604
2605 add_thread (lp->ptid);
2606 }
2607
2608 /* Save the trap's siginfo in case we need it later. */
2609 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2610 save_siginfo (lp);
2611
2612 /* Handle GNU/Linux's extended waitstatus for trace events. */
2613 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2614 {
2615 if (debug_linux_nat)
2616 fprintf_unfiltered (gdb_stdlog,
2617 "LLW: Handling extended status 0x%06x\n",
2618 status);
2619 if (linux_handle_extended_wait (lp, status, 0))
2620 return NULL;
2621 }
2622
2623 /* Check if the thread has exited. */
2624 if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
2625 {
2626 /* If this is the main thread, we must stop all threads and verify
2627 if they are still alive. This is because in the nptl thread model
2628 on Linux 2.4, there is no signal issued for exiting LWPs
2629 other than the main thread. We only get the main thread exit
2630 signal once all child threads have already exited. If we
2631 stop all the threads and use the stop_wait_callback to check
2632 if they have exited we can determine whether this signal
2633 should be ignored or whether it means the end of the debugged
2634 application, regardless of which threading model is being
2635 used. */
2636 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2637 {
2638 lp->stopped = 1;
2639 iterate_over_lwps (stop_and_resume_callback, NULL);
2640 }
2641
2642 if (debug_linux_nat)
2643 fprintf_unfiltered (gdb_stdlog,
2644 "LLW: %s exited.\n",
2645 target_pid_to_str (lp->ptid));
2646
2647 if (num_lwps > 1)
2648 {
2649 /* If there is at least one more LWP, then the exit signal
2650 was not the end of the debugged application and should be
2651 ignored. */
2652 exit_lwp (lp);
2653 return NULL;
2654 }
2655 }
2656
2657 /* Check if the current LWP has previously exited. In the nptl
2658 thread model, LWPs other than the main thread do not issue
2659 signals when they exit so we must check whenever the thread has
2660 stopped. A similar check is made in stop_wait_callback(). */
2661 if (num_lwps > 1 && !linux_thread_alive (lp->ptid))
2662 {
2663 if (debug_linux_nat)
2664 fprintf_unfiltered (gdb_stdlog,
2665 "LLW: %s exited.\n",
2666 target_pid_to_str (lp->ptid));
2667
2668 exit_lwp (lp);
2669
2670 /* Make sure there is at least one thread running. */
2671 gdb_assert (iterate_over_lwps (running_callback, NULL));
2672
2673 /* Discard the event. */
2674 return NULL;
2675 }
2676
2677 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2678 an attempt to stop an LWP. */
2679 if (lp->signalled
2680 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2681 {
2682 if (debug_linux_nat)
2683 fprintf_unfiltered (gdb_stdlog,
2684 "LLW: Delayed SIGSTOP caught for %s.\n",
2685 target_pid_to_str (lp->ptid));
2686
2687 /* This is a delayed SIGSTOP. */
2688 lp->signalled = 0;
2689
2690 registers_changed ();
2691
2692 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2693 lp->step, TARGET_SIGNAL_0);
2694 if (debug_linux_nat)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2697 lp->step ?
2698 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2699 target_pid_to_str (lp->ptid));
2700
2701 lp->stopped = 0;
2702 gdb_assert (lp->resumed);
2703
2704 /* Discard the event. */
2705 return NULL;
2706 }
2707
2708 /* Make sure we don't report a SIGINT that we have already displayed
2709 for another thread. */
2710 if (lp->ignore_sigint
2711 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2712 {
2713 if (debug_linux_nat)
2714 fprintf_unfiltered (gdb_stdlog,
2715 "LLW: Delayed SIGINT caught for %s.\n",
2716 target_pid_to_str (lp->ptid));
2717
2718 /* This is a delayed SIGINT. */
2719 lp->ignore_sigint = 0;
2720
2721 registers_changed ();
2722 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2723 lp->step, TARGET_SIGNAL_0);
2724 if (debug_linux_nat)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
2727 lp->step ?
2728 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2729 target_pid_to_str (lp->ptid));
2730
2731 lp->stopped = 0;
2732 gdb_assert (lp->resumed);
2733
2734 /* Discard the event. */
2735 return NULL;
2736 }
2737
2738 /* An interesting event. */
2739 gdb_assert (lp);
2740 return lp;
2741 }
2742
2743 /* Get the events stored in the pipe into the local queue, so they are
2744 accessible to queued_waitpid. We need to do this, since it is not
2745 always the case that the event at the head of the pipe is the event
2746 we want. */
2747
2748 static void
2749 pipe_to_local_event_queue (void)
2750 {
2751 if (debug_linux_nat_async)
2752 fprintf_unfiltered (gdb_stdlog,
2753 "PTLEQ: linux_nat_num_queued_events(%d)\n",
2754 linux_nat_num_queued_events);
2755 while (linux_nat_num_queued_events)
2756 {
2757 int lwpid, status, options;
2758 lwpid = linux_nat_event_pipe_pop (&status, &options);
2759 gdb_assert (lwpid > 0);
2760 push_waitpid (lwpid, status, options);
2761 }
2762 }
2763
2764 /* Get the unprocessed events stored in the local queue back into the
2765 pipe, so the event loop realizes there's something else to
2766 process. */
2767
2768 static void
2769 local_event_queue_to_pipe (void)
2770 {
2771 struct waitpid_result *w = waitpid_queue;
2772 while (w)
2773 {
2774 struct waitpid_result *next = w->next;
2775 linux_nat_event_pipe_push (w->pid,
2776 w->status,
2777 w->options);
2778 xfree (w);
2779 w = next;
2780 }
2781 waitpid_queue = NULL;
2782
2783 if (debug_linux_nat_async)
2784 fprintf_unfiltered (gdb_stdlog,
2785 "LEQTP: linux_nat_num_queued_events(%d)\n",
2786 linux_nat_num_queued_events);
2787 }
2788
2789 static ptid_t
2790 linux_nat_wait (struct target_ops *ops,
2791 ptid_t ptid, struct target_waitstatus *ourstatus)
2792 {
2793 struct lwp_info *lp = NULL;
2794 int options = 0;
2795 int status = 0;
2796 pid_t pid = PIDGET (ptid);
2797
2798 if (debug_linux_nat_async)
2799 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2800
2801 /* The first time we get here after starting a new inferior, we may
2802 not have added it to the LWP list yet - this is the earliest
2803 moment at which we know its PID. */
2804 if (num_lwps == 0)
2805 {
2806 gdb_assert (!is_lwp (inferior_ptid));
2807
2808 /* Upgrade the main thread's ptid. */
2809 thread_change_ptid (inferior_ptid,
2810 BUILD_LWP (GET_PID (inferior_ptid),
2811 GET_PID (inferior_ptid)));
2812
2813 lp = add_lwp (inferior_ptid);
2814 lp->resumed = 1;
2815 }
2816
2817 /* Block events while we're here. */
2818 linux_nat_async_events (sigchld_sync);
2819
2820 retry:
2821
2822 /* Make sure there is at least one LWP that has been resumed. */
2823 gdb_assert (iterate_over_lwps (resumed_callback, NULL));
2824
2825 /* First check if there is a LWP with a wait status pending. */
2826 if (pid == -1)
2827 {
2828 /* Any LWP that's been resumed will do. */
2829 lp = iterate_over_lwps (status_callback, NULL);
2830 if (lp)
2831 {
2832 if (target_can_async_p ())
2833 internal_error (__FILE__, __LINE__,
2834 "Found an LWP with a pending status in async mode.");
2835
2836 status = lp->status;
2837 lp->status = 0;
2838
2839 if (debug_linux_nat && status)
2840 fprintf_unfiltered (gdb_stdlog,
2841 "LLW: Using pending wait status %s for %s.\n",
2842 status_to_str (status),
2843 target_pid_to_str (lp->ptid));
2844 }
2845
2846 /* But if we don't find one, we'll have to wait, and check both
2847 cloned and uncloned processes. We start with the cloned
2848 processes. */
2849 options = __WCLONE | WNOHANG;
2850 }
2851 else if (is_lwp (ptid))
2852 {
2853 if (debug_linux_nat)
2854 fprintf_unfiltered (gdb_stdlog,
2855 "LLW: Waiting for specific LWP %s.\n",
2856 target_pid_to_str (ptid));
2857
2858 /* We have a specific LWP to check. */
2859 lp = find_lwp_pid (ptid);
2860 gdb_assert (lp);
2861 status = lp->status;
2862 lp->status = 0;
2863
2864 if (debug_linux_nat && status)
2865 fprintf_unfiltered (gdb_stdlog,
2866 "LLW: Using pending wait status %s for %s.\n",
2867 status_to_str (status),
2868 target_pid_to_str (lp->ptid));
2869
2870 /* If we have to wait, take into account whether PID is a cloned
2871 process or not. And we have to convert it to something that
2872 the layer beneath us can understand. */
2873 options = lp->cloned ? __WCLONE : 0;
2874 pid = GET_LWP (ptid);
2875 }
2876
2877 if (status && lp->signalled)
2878 {
2879 /* A pending SIGSTOP may interfere with the normal stream of
2880 events. In a typical case where interference is a problem,
2881 we have a SIGSTOP signal pending for LWP A while
2882 single-stepping it, encounter an event in LWP B, and take the
2883 pending SIGSTOP while trying to stop LWP A. After processing
2884 the event in LWP B, LWP A is continued, and we'll never see
2885 the SIGTRAP associated with the last time we were
2886 single-stepping LWP A. */
2887
2888 /* Resume the thread. It should halt immediately returning the
2889 pending SIGSTOP. */
2890 registers_changed ();
2891 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2892 lp->step, TARGET_SIGNAL_0);
2893 if (debug_linux_nat)
2894 fprintf_unfiltered (gdb_stdlog,
2895 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2896 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2897 target_pid_to_str (lp->ptid));
2898 lp->stopped = 0;
2899 gdb_assert (lp->resumed);
2900
2901 /* This should catch the pending SIGSTOP. */
2902 stop_wait_callback (lp, NULL);
2903 }
2904
2905 if (!target_can_async_p ())
2906 {
2907 /* Causes SIGINT to be passed on to the attached process. */
2908 set_sigint_trap ();
2909 }
2910
2911 while (status == 0)
2912 {
2913 pid_t lwpid;
2914
2915 if (target_can_async_p ())
2916 /* In async mode, don't ever block. Only look at the locally
2917 queued events. */
2918 lwpid = queued_waitpid (pid, &status, options);
2919 else
2920 lwpid = my_waitpid (pid, &status, options);
2921
2922 if (lwpid > 0)
2923 {
2924 gdb_assert (pid == -1 || lwpid == pid);
2925
2926 if (debug_linux_nat)
2927 {
2928 fprintf_unfiltered (gdb_stdlog,
2929 "LLW: waitpid %ld received %s\n",
2930 (long) lwpid, status_to_str (status));
2931 }
2932
2933 lp = linux_nat_filter_event (lwpid, status, options);
2934 if (!lp)
2935 {
2936 /* A discarded event. */
2937 status = 0;
2938 continue;
2939 }
2940
2941 break;
2942 }
2943
2944 if (pid == -1)
2945 {
2946 /* Alternate between checking cloned and uncloned processes. */
2947 options ^= __WCLONE;
2948
2949 /* And every time we have checked both:
2950 In async mode, return to event loop;
2951 In sync mode, suspend waiting for a SIGCHLD signal. */
2952 if (options & __WCLONE)
2953 {
2954 if (target_can_async_p ())
2955 {
2956 /* No interesting event. */
2957 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2958
2959 /* Get ready for the next event. */
2960 target_async (inferior_event_handler, 0);
2961
2962 if (debug_linux_nat_async)
2963 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2964
2965 return minus_one_ptid;
2966 }
2967
2968 sigsuspend (&suspend_mask);
2969 }
2970 }
2971
2972 /* We shouldn't end up here unless we want to try again. */
2973 gdb_assert (status == 0);
2974 }
2975
2976 if (!target_can_async_p ())
2977 clear_sigint_trap ();
2978
2979 gdb_assert (lp);
2980
2981 /* Don't report signals that GDB isn't interested in, such as
2982 signals that are neither printed nor stopped upon. Stopping all
2983 threads can be a bit time-consuming so if we want decent
2984 performance with heavily multi-threaded programs, especially when
2985 they're using a high frequency timer, we'd better avoid it if we
2986 can. */
2987
2988 if (WIFSTOPPED (status))
2989 {
2990 int signo = target_signal_from_host (WSTOPSIG (status));
2991 struct inferior *inf;
2992
2993 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2994 gdb_assert (inf);
2995
2996 /* Defer to common code if we get a signal while
2997 single-stepping, since that may need special care, e.g. to
2998 skip the signal handler, or, if we're gaining control of the
2999 inferior. */
3000 if (!lp->step
3001 && inf->stop_soon == NO_STOP_QUIETLY
3002 && signal_stop_state (signo) == 0
3003 && signal_print_state (signo) == 0
3004 && signal_pass_state (signo) == 1)
3005 {
3006 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3007 here? It is not clear we should. GDB may not expect
3008 other threads to run. On the other hand, not resuming
3009 newly attached threads may cause an unwanted delay in
3010 getting them running. */
3011 registers_changed ();
3012 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3013 lp->step, signo);
3014 if (debug_linux_nat)
3015 fprintf_unfiltered (gdb_stdlog,
3016 "LLW: %s %s, %s (preempt 'handle')\n",
3017 lp->step ?
3018 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3019 target_pid_to_str (lp->ptid),
3020 signo ? strsignal (signo) : "0");
3021 lp->stopped = 0;
3022 status = 0;
3023 goto retry;
3024 }
3025
3026 if (!non_stop)
3027 {
3028 /* Only do the below in all-stop, as we currently use SIGINT
3029 to implement target_stop (see linux_nat_stop) in
3030 non-stop. */
3031 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3032 {
3033 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3034 forwarded to the entire process group, that is, all LWPs
3035 will receive it - unless they're using CLONE_THREAD to
3036 share signals. Since we only want to report it once, we
3037 mark it as ignored for all LWPs except this one. */
3038 iterate_over_lwps (set_ignore_sigint, NULL);
3039 lp->ignore_sigint = 0;
3040 }
3041 else
3042 maybe_clear_ignore_sigint (lp);
3043 }
3044 }
3045
3046 /* This LWP is stopped now. */
3047 lp->stopped = 1;
3048
3049 if (debug_linux_nat)
3050 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3051 status_to_str (status), target_pid_to_str (lp->ptid));
3052
3053 if (!non_stop)
3054 {
3055 /* Now stop all other LWP's ... */
3056 iterate_over_lwps (stop_callback, NULL);
3057
3058 /* ... and wait until all of them have reported back that
3059 they're no longer running. */
3060 iterate_over_lwps (stop_wait_callback, NULL);
3061
3062 /* If we're not waiting for a specific LWP, choose an event LWP
3063 from among those that have had events. Giving equal priority
3064 to all LWPs that have had events helps prevent
3065 starvation. */
3066 if (pid == -1)
3067 select_event_lwp (&lp, &status);
3068 }
3069
3070 /* Now that we've selected our final event LWP, cancel any
3071 breakpoints in other LWPs that have hit a GDB breakpoint. See
3072 the comment in cancel_breakpoints_callback to find out why. */
3073 iterate_over_lwps (cancel_breakpoints_callback, lp);
3074
3075 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3076 {
3077 if (debug_linux_nat)
3078 fprintf_unfiltered (gdb_stdlog,
3079 "LLW: trap ptid is %s.\n",
3080 target_pid_to_str (lp->ptid));
3081 }
3082
3083 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3084 {
3085 *ourstatus = lp->waitstatus;
3086 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3087 }
3088 else
3089 store_waitstatus (ourstatus, status);
3090
3091 /* Get ready for the next event. */
3092 if (target_can_async_p ())
3093 target_async (inferior_event_handler, 0);
3094
3095 if (debug_linux_nat_async)
3096 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3097
3098 return lp->ptid;
3099 }
3100
3101 static int
3102 kill_callback (struct lwp_info *lp, void *data)
3103 {
3104 errno = 0;
3105 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3106 if (debug_linux_nat)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3109 target_pid_to_str (lp->ptid),
3110 errno ? safe_strerror (errno) : "OK");
3111
3112 return 0;
3113 }
3114
3115 static int
3116 kill_wait_callback (struct lwp_info *lp, void *data)
3117 {
3118 pid_t pid;
3119
3120 /* We must make sure that there are no pending events (delayed
3121 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3122 program doesn't interfere with any following debugging session. */
3123
3124 /* For cloned processes we must check both with __WCLONE and
3125 without, since the exit status of a cloned process isn't reported
3126 with __WCLONE. */
3127 if (lp->cloned)
3128 {
3129 do
3130 {
3131 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3132 if (pid != (pid_t) -1)
3133 {
3134 if (debug_linux_nat)
3135 fprintf_unfiltered (gdb_stdlog,
3136 "KWC: wait %s received unknown.\n",
3137 target_pid_to_str (lp->ptid));
3138 /* The Linux kernel sometimes fails to kill a thread
3139 completely after PTRACE_KILL; that goes from the stop
3140 point in do_fork out to the one in
3141 get_signal_to_deliever and waits again. So kill it
3142 again. */
3143 kill_callback (lp, NULL);
3144 }
3145 }
3146 while (pid == GET_LWP (lp->ptid));
3147
3148 gdb_assert (pid == -1 && errno == ECHILD);
3149 }
3150
3151 do
3152 {
3153 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3154 if (pid != (pid_t) -1)
3155 {
3156 if (debug_linux_nat)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "KWC: wait %s received unk.\n",
3159 target_pid_to_str (lp->ptid));
3160 /* See the call to kill_callback above. */
3161 kill_callback (lp, NULL);
3162 }
3163 }
3164 while (pid == GET_LWP (lp->ptid));
3165
3166 gdb_assert (pid == -1 && errno == ECHILD);
3167 return 0;
3168 }
3169
3170 static void
3171 linux_nat_kill (struct target_ops *ops)
3172 {
3173 struct target_waitstatus last;
3174 ptid_t last_ptid;
3175 int status;
3176
3177 if (target_can_async_p ())
3178 target_async (NULL, 0);
3179
3180 /* If we're stopped while forking and we haven't followed yet,
3181 kill the other task. We need to do this first because the
3182 parent will be sleeping if this is a vfork. */
3183
3184 get_last_target_status (&last_ptid, &last);
3185
3186 if (last.kind == TARGET_WAITKIND_FORKED
3187 || last.kind == TARGET_WAITKIND_VFORKED)
3188 {
3189 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3190 wait (&status);
3191 }
3192
3193 if (forks_exist_p ())
3194 {
3195 linux_fork_killall ();
3196 drain_queued_events (-1);
3197 }
3198 else
3199 {
3200 /* Stop all threads before killing them, since ptrace requires
3201 that the thread is stopped to sucessfully PTRACE_KILL. */
3202 iterate_over_lwps (stop_callback, NULL);
3203 /* ... and wait until all of them have reported back that
3204 they're no longer running. */
3205 iterate_over_lwps (stop_wait_callback, NULL);
3206
3207 /* Kill all LWP's ... */
3208 iterate_over_lwps (kill_callback, NULL);
3209
3210 /* ... and wait until we've flushed all events. */
3211 iterate_over_lwps (kill_wait_callback, NULL);
3212 }
3213
3214 target_mourn_inferior ();
3215 }
3216
3217 static void
3218 linux_nat_mourn_inferior (struct target_ops *ops)
3219 {
3220 /* Destroy LWP info; it's no longer valid. */
3221 init_lwp_list ();
3222
3223 if (! forks_exist_p ())
3224 {
3225 /* Normal case, no other forks available. */
3226 if (target_can_async_p ())
3227 linux_nat_async (NULL, 0);
3228 linux_ops->to_mourn_inferior (ops);
3229 }
3230 else
3231 /* Multi-fork case. The current inferior_ptid has exited, but
3232 there are other viable forks to debug. Delete the exiting
3233 one and context-switch to the first available. */
3234 linux_fork_mourn_inferior ();
3235 }
3236
3237 /* Convert a native/host siginfo object, into/from the siginfo in the
3238 layout of the inferiors' architecture. */
3239
3240 static void
3241 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3242 {
3243 int done = 0;
3244
3245 if (linux_nat_siginfo_fixup != NULL)
3246 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3247
3248 /* If there was no callback, or the callback didn't do anything,
3249 then just do a straight memcpy. */
3250 if (!done)
3251 {
3252 if (direction == 1)
3253 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3254 else
3255 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3256 }
3257 }
3258
3259 static LONGEST
3260 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3261 const char *annex, gdb_byte *readbuf,
3262 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3263 {
3264 struct lwp_info *lp;
3265 LONGEST n;
3266 int pid;
3267 struct siginfo siginfo;
3268 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3269
3270 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3271 gdb_assert (readbuf || writebuf);
3272
3273 pid = GET_LWP (inferior_ptid);
3274 if (pid == 0)
3275 pid = GET_PID (inferior_ptid);
3276
3277 if (offset > sizeof (siginfo))
3278 return -1;
3279
3280 errno = 0;
3281 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3282 if (errno != 0)
3283 return -1;
3284
3285 /* When GDB is built as a 64-bit application, ptrace writes into
3286 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3287 inferior with a 64-bit GDB should look the same as debugging it
3288 with a 32-bit GDB, we need to convert it. GDB core always sees
3289 the converted layout, so any read/write will have to be done
3290 post-conversion. */
3291 siginfo_fixup (&siginfo, inf_siginfo, 0);
3292
3293 if (offset + len > sizeof (siginfo))
3294 len = sizeof (siginfo) - offset;
3295
3296 if (readbuf != NULL)
3297 memcpy (readbuf, inf_siginfo + offset, len);
3298 else
3299 {
3300 memcpy (inf_siginfo + offset, writebuf, len);
3301
3302 /* Convert back to ptrace layout before flushing it out. */
3303 siginfo_fixup (&siginfo, inf_siginfo, 1);
3304
3305 errno = 0;
3306 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3307 if (errno != 0)
3308 return -1;
3309 }
3310
3311 return len;
3312 }
3313
3314 static LONGEST
3315 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3316 const char *annex, gdb_byte *readbuf,
3317 const gdb_byte *writebuf,
3318 ULONGEST offset, LONGEST len)
3319 {
3320 struct cleanup *old_chain;
3321 LONGEST xfer;
3322
3323 if (object == TARGET_OBJECT_SIGNAL_INFO)
3324 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3325 offset, len);
3326
3327 old_chain = save_inferior_ptid ();
3328
3329 if (is_lwp (inferior_ptid))
3330 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3331
3332 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3333 offset, len);
3334
3335 do_cleanups (old_chain);
3336 return xfer;
3337 }
3338
3339 static int
3340 linux_thread_alive (ptid_t ptid)
3341 {
3342 int err;
3343
3344 gdb_assert (is_lwp (ptid));
3345
3346 /* Send signal 0 instead of anything ptrace, because ptracing a
3347 running thread errors out claiming that the thread doesn't
3348 exist. */
3349 err = kill_lwp (GET_LWP (ptid), 0);
3350
3351 if (debug_linux_nat)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "LLTA: KILL(SIG0) %s (%s)\n",
3354 target_pid_to_str (ptid),
3355 err ? safe_strerror (err) : "OK");
3356
3357 if (err != 0)
3358 return 0;
3359
3360 return 1;
3361 }
3362
3363 static int
3364 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3365 {
3366 return linux_thread_alive (ptid);
3367 }
3368
3369 static char *
3370 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3371 {
3372 static char buf[64];
3373
3374 if (is_lwp (ptid)
3375 && ((lwp_list && lwp_list->next)
3376 || GET_PID (ptid) != GET_LWP (ptid)))
3377 {
3378 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3379 return buf;
3380 }
3381
3382 return normal_pid_to_str (ptid);
3383 }
3384
3385 static void
3386 sigchld_handler (int signo)
3387 {
3388 if (target_async_permitted
3389 && linux_nat_async_events_state != sigchld_sync
3390 && signo == SIGCHLD)
3391 /* It is *always* a bug to hit this. */
3392 internal_error (__FILE__, __LINE__,
3393 "sigchld_handler called when async events are enabled");
3394
3395 /* Do nothing. The only reason for this handler is that it allows
3396 us to use sigsuspend in linux_nat_wait above to wait for the
3397 arrival of a SIGCHLD. */
3398 }
3399
3400 /* Accepts an integer PID; Returns a string representing a file that
3401 can be opened to get the symbols for the child process. */
3402
3403 static char *
3404 linux_child_pid_to_exec_file (int pid)
3405 {
3406 char *name1, *name2;
3407
3408 name1 = xmalloc (MAXPATHLEN);
3409 name2 = xmalloc (MAXPATHLEN);
3410 make_cleanup (xfree, name1);
3411 make_cleanup (xfree, name2);
3412 memset (name2, 0, MAXPATHLEN);
3413
3414 sprintf (name1, "/proc/%d/exe", pid);
3415 if (readlink (name1, name2, MAXPATHLEN) > 0)
3416 return name2;
3417 else
3418 return name1;
3419 }
3420
3421 /* Service function for corefiles and info proc. */
3422
3423 static int
3424 read_mapping (FILE *mapfile,
3425 long long *addr,
3426 long long *endaddr,
3427 char *permissions,
3428 long long *offset,
3429 char *device, long long *inode, char *filename)
3430 {
3431 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3432 addr, endaddr, permissions, offset, device, inode);
3433
3434 filename[0] = '\0';
3435 if (ret > 0 && ret != EOF)
3436 {
3437 /* Eat everything up to EOL for the filename. This will prevent
3438 weird filenames (such as one with embedded whitespace) from
3439 confusing this code. It also makes this code more robust in
3440 respect to annotations the kernel may add after the filename.
3441
3442 Note the filename is used for informational purposes
3443 only. */
3444 ret += fscanf (mapfile, "%[^\n]\n", filename);
3445 }
3446
3447 return (ret != 0 && ret != EOF);
3448 }
3449
3450 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3451 regions in the inferior for a corefile. */
3452
3453 static int
3454 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3455 unsigned long,
3456 int, int, int, void *), void *obfd)
3457 {
3458 int pid = PIDGET (inferior_ptid);
3459 char mapsfilename[MAXPATHLEN];
3460 FILE *mapsfile;
3461 long long addr, endaddr, size, offset, inode;
3462 char permissions[8], device[8], filename[MAXPATHLEN];
3463 int read, write, exec;
3464 int ret;
3465 struct cleanup *cleanup;
3466
3467 /* Compose the filename for the /proc memory map, and open it. */
3468 sprintf (mapsfilename, "/proc/%d/maps", pid);
3469 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3470 error (_("Could not open %s."), mapsfilename);
3471 cleanup = make_cleanup_fclose (mapsfile);
3472
3473 if (info_verbose)
3474 fprintf_filtered (gdb_stdout,
3475 "Reading memory regions from %s\n", mapsfilename);
3476
3477 /* Now iterate until end-of-file. */
3478 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3479 &offset, &device[0], &inode, &filename[0]))
3480 {
3481 size = endaddr - addr;
3482
3483 /* Get the segment's permissions. */
3484 read = (strchr (permissions, 'r') != 0);
3485 write = (strchr (permissions, 'w') != 0);
3486 exec = (strchr (permissions, 'x') != 0);
3487
3488 if (info_verbose)
3489 {
3490 fprintf_filtered (gdb_stdout,
3491 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3492 size, paddr_nz (addr),
3493 read ? 'r' : ' ',
3494 write ? 'w' : ' ', exec ? 'x' : ' ');
3495 if (filename[0])
3496 fprintf_filtered (gdb_stdout, " for %s", filename);
3497 fprintf_filtered (gdb_stdout, "\n");
3498 }
3499
3500 /* Invoke the callback function to create the corefile
3501 segment. */
3502 func (addr, size, read, write, exec, obfd);
3503 }
3504 do_cleanups (cleanup);
3505 return 0;
3506 }
3507
3508 static int
3509 find_signalled_thread (struct thread_info *info, void *data)
3510 {
3511 if (info->stop_signal != TARGET_SIGNAL_0
3512 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
3513 return 1;
3514
3515 return 0;
3516 }
3517
3518 static enum target_signal
3519 find_stop_signal (void)
3520 {
3521 struct thread_info *info =
3522 iterate_over_threads (find_signalled_thread, NULL);
3523
3524 if (info)
3525 return info->stop_signal;
3526 else
3527 return TARGET_SIGNAL_0;
3528 }
3529
3530 /* Records the thread's register state for the corefile note
3531 section. */
3532
3533 static char *
3534 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3535 char *note_data, int *note_size,
3536 enum target_signal stop_signal)
3537 {
3538 gdb_gregset_t gregs;
3539 gdb_fpregset_t fpregs;
3540 unsigned long lwp = ptid_get_lwp (ptid);
3541 struct regcache *regcache = get_thread_regcache (ptid);
3542 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3543 const struct regset *regset;
3544 int core_regset_p;
3545 struct cleanup *old_chain;
3546 struct core_regset_section *sect_list;
3547 char *gdb_regset;
3548
3549 old_chain = save_inferior_ptid ();
3550 inferior_ptid = ptid;
3551 target_fetch_registers (regcache, -1);
3552 do_cleanups (old_chain);
3553
3554 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
3555 sect_list = gdbarch_core_regset_sections (gdbarch);
3556
3557 if (core_regset_p
3558 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3559 sizeof (gregs))) != NULL
3560 && regset->collect_regset != NULL)
3561 regset->collect_regset (regset, regcache, -1,
3562 &gregs, sizeof (gregs));
3563 else
3564 fill_gregset (regcache, &gregs, -1);
3565
3566 note_data = (char *) elfcore_write_prstatus (obfd,
3567 note_data,
3568 note_size,
3569 lwp,
3570 stop_signal, &gregs);
3571
3572 /* The loop below uses the new struct core_regset_section, which stores
3573 the supported section names and sizes for the core file. Note that
3574 note PRSTATUS needs to be treated specially. But the other notes are
3575 structurally the same, so they can benefit from the new struct. */
3576 if (core_regset_p && sect_list != NULL)
3577 while (sect_list->sect_name != NULL)
3578 {
3579 /* .reg was already handled above. */
3580 if (strcmp (sect_list->sect_name, ".reg") == 0)
3581 {
3582 sect_list++;
3583 continue;
3584 }
3585 regset = gdbarch_regset_from_core_section (gdbarch,
3586 sect_list->sect_name,
3587 sect_list->size);
3588 gdb_assert (regset && regset->collect_regset);
3589 gdb_regset = xmalloc (sect_list->size);
3590 regset->collect_regset (regset, regcache, -1,
3591 gdb_regset, sect_list->size);
3592 note_data = (char *) elfcore_write_register_note (obfd,
3593 note_data,
3594 note_size,
3595 sect_list->sect_name,
3596 gdb_regset,
3597 sect_list->size);
3598 xfree (gdb_regset);
3599 sect_list++;
3600 }
3601
3602 /* For architectures that does not have the struct core_regset_section
3603 implemented, we use the old method. When all the architectures have
3604 the new support, the code below should be deleted. */
3605 else
3606 {
3607 if (core_regset_p
3608 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3609 sizeof (fpregs))) != NULL
3610 && regset->collect_regset != NULL)
3611 regset->collect_regset (regset, regcache, -1,
3612 &fpregs, sizeof (fpregs));
3613 else
3614 fill_fpregset (regcache, &fpregs, -1);
3615
3616 note_data = (char *) elfcore_write_prfpreg (obfd,
3617 note_data,
3618 note_size,
3619 &fpregs, sizeof (fpregs));
3620 }
3621
3622 return note_data;
3623 }
3624
3625 struct linux_nat_corefile_thread_data
3626 {
3627 bfd *obfd;
3628 char *note_data;
3629 int *note_size;
3630 int num_notes;
3631 enum target_signal stop_signal;
3632 };
3633
3634 /* Called by gdbthread.c once per thread. Records the thread's
3635 register state for the corefile note section. */
3636
3637 static int
3638 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3639 {
3640 struct linux_nat_corefile_thread_data *args = data;
3641
3642 args->note_data = linux_nat_do_thread_registers (args->obfd,
3643 ti->ptid,
3644 args->note_data,
3645 args->note_size,
3646 args->stop_signal);
3647 args->num_notes++;
3648
3649 return 0;
3650 }
3651
3652 /* Fills the "to_make_corefile_note" target vector. Builds the note
3653 section for a corefile, and returns it in a malloc buffer. */
3654
3655 static char *
3656 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3657 {
3658 struct linux_nat_corefile_thread_data thread_args;
3659 struct cleanup *old_chain;
3660 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
3661 char fname[16] = { '\0' };
3662 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
3663 char psargs[80] = { '\0' };
3664 char *note_data = NULL;
3665 ptid_t current_ptid = inferior_ptid;
3666 gdb_byte *auxv;
3667 int auxv_len;
3668
3669 if (get_exec_file (0))
3670 {
3671 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3672 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3673 if (get_inferior_args ())
3674 {
3675 char *string_end;
3676 char *psargs_end = psargs + sizeof (psargs);
3677
3678 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3679 strings fine. */
3680 string_end = memchr (psargs, 0, sizeof (psargs));
3681 if (string_end != NULL)
3682 {
3683 *string_end++ = ' ';
3684 strncpy (string_end, get_inferior_args (),
3685 psargs_end - string_end);
3686 }
3687 }
3688 note_data = (char *) elfcore_write_prpsinfo (obfd,
3689 note_data,
3690 note_size, fname, psargs);
3691 }
3692
3693 /* Dump information for threads. */
3694 thread_args.obfd = obfd;
3695 thread_args.note_data = note_data;
3696 thread_args.note_size = note_size;
3697 thread_args.num_notes = 0;
3698 thread_args.stop_signal = find_stop_signal ();
3699 iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
3700 gdb_assert (thread_args.num_notes != 0);
3701 note_data = thread_args.note_data;
3702
3703 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3704 NULL, &auxv);
3705 if (auxv_len > 0)
3706 {
3707 note_data = elfcore_write_note (obfd, note_data, note_size,
3708 "CORE", NT_AUXV, auxv, auxv_len);
3709 xfree (auxv);
3710 }
3711
3712 make_cleanup (xfree, note_data);
3713 return note_data;
3714 }
3715
3716 /* Implement the "info proc" command. */
3717
3718 static void
3719 linux_nat_info_proc_cmd (char *args, int from_tty)
3720 {
3721 /* A long is used for pid instead of an int to avoid a loss of precision
3722 compiler warning from the output of strtoul. */
3723 long pid = PIDGET (inferior_ptid);
3724 FILE *procfile;
3725 char **argv = NULL;
3726 char buffer[MAXPATHLEN];
3727 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3728 int cmdline_f = 1;
3729 int cwd_f = 1;
3730 int exe_f = 1;
3731 int mappings_f = 0;
3732 int environ_f = 0;
3733 int status_f = 0;
3734 int stat_f = 0;
3735 int all = 0;
3736 struct stat dummy;
3737
3738 if (args)
3739 {
3740 /* Break up 'args' into an argv array. */
3741 argv = gdb_buildargv (args);
3742 make_cleanup_freeargv (argv);
3743 }
3744 while (argv != NULL && *argv != NULL)
3745 {
3746 if (isdigit (argv[0][0]))
3747 {
3748 pid = strtoul (argv[0], NULL, 10);
3749 }
3750 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3751 {
3752 mappings_f = 1;
3753 }
3754 else if (strcmp (argv[0], "status") == 0)
3755 {
3756 status_f = 1;
3757 }
3758 else if (strcmp (argv[0], "stat") == 0)
3759 {
3760 stat_f = 1;
3761 }
3762 else if (strcmp (argv[0], "cmd") == 0)
3763 {
3764 cmdline_f = 1;
3765 }
3766 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3767 {
3768 exe_f = 1;
3769 }
3770 else if (strcmp (argv[0], "cwd") == 0)
3771 {
3772 cwd_f = 1;
3773 }
3774 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3775 {
3776 all = 1;
3777 }
3778 else
3779 {
3780 /* [...] (future options here) */
3781 }
3782 argv++;
3783 }
3784 if (pid == 0)
3785 error (_("No current process: you must name one."));
3786
3787 sprintf (fname1, "/proc/%ld", pid);
3788 if (stat (fname1, &dummy) != 0)
3789 error (_("No /proc directory: '%s'"), fname1);
3790
3791 printf_filtered (_("process %ld\n"), pid);
3792 if (cmdline_f || all)
3793 {
3794 sprintf (fname1, "/proc/%ld/cmdline", pid);
3795 if ((procfile = fopen (fname1, "r")) != NULL)
3796 {
3797 struct cleanup *cleanup = make_cleanup_fclose (procfile);
3798 if (fgets (buffer, sizeof (buffer), procfile))
3799 printf_filtered ("cmdline = '%s'\n", buffer);
3800 else
3801 warning (_("unable to read '%s'"), fname1);
3802 do_cleanups (cleanup);
3803 }
3804 else
3805 warning (_("unable to open /proc file '%s'"), fname1);
3806 }
3807 if (cwd_f || all)
3808 {
3809 sprintf (fname1, "/proc/%ld/cwd", pid);
3810 memset (fname2, 0, sizeof (fname2));
3811 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3812 printf_filtered ("cwd = '%s'\n", fname2);
3813 else
3814 warning (_("unable to read link '%s'"), fname1);
3815 }
3816 if (exe_f || all)
3817 {
3818 sprintf (fname1, "/proc/%ld/exe", pid);
3819 memset (fname2, 0, sizeof (fname2));
3820 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3821 printf_filtered ("exe = '%s'\n", fname2);
3822 else
3823 warning (_("unable to read link '%s'"), fname1);
3824 }
3825 if (mappings_f || all)
3826 {
3827 sprintf (fname1, "/proc/%ld/maps", pid);
3828 if ((procfile = fopen (fname1, "r")) != NULL)
3829 {
3830 long long addr, endaddr, size, offset, inode;
3831 char permissions[8], device[8], filename[MAXPATHLEN];
3832 struct cleanup *cleanup;
3833
3834 cleanup = make_cleanup_fclose (procfile);
3835 printf_filtered (_("Mapped address spaces:\n\n"));
3836 if (gdbarch_addr_bit (current_gdbarch) == 32)
3837 {
3838 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3839 "Start Addr",
3840 " End Addr",
3841 " Size", " Offset", "objfile");
3842 }
3843 else
3844 {
3845 printf_filtered (" %18s %18s %10s %10s %7s\n",
3846 "Start Addr",
3847 " End Addr",
3848 " Size", " Offset", "objfile");
3849 }
3850
3851 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3852 &offset, &device[0], &inode, &filename[0]))
3853 {
3854 size = endaddr - addr;
3855
3856 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3857 calls here (and possibly above) should be abstracted
3858 out into their own functions? Andrew suggests using
3859 a generic local_address_string instead to print out
3860 the addresses; that makes sense to me, too. */
3861
3862 if (gdbarch_addr_bit (current_gdbarch) == 32)
3863 {
3864 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3865 (unsigned long) addr, /* FIXME: pr_addr */
3866 (unsigned long) endaddr,
3867 (int) size,
3868 (unsigned int) offset,
3869 filename[0] ? filename : "");
3870 }
3871 else
3872 {
3873 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3874 (unsigned long) addr, /* FIXME: pr_addr */
3875 (unsigned long) endaddr,
3876 (int) size,
3877 (unsigned int) offset,
3878 filename[0] ? filename : "");
3879 }
3880 }
3881
3882 do_cleanups (cleanup);
3883 }
3884 else
3885 warning (_("unable to open /proc file '%s'"), fname1);
3886 }
3887 if (status_f || all)
3888 {
3889 sprintf (fname1, "/proc/%ld/status", pid);
3890 if ((procfile = fopen (fname1, "r")) != NULL)
3891 {
3892 struct cleanup *cleanup = make_cleanup_fclose (procfile);
3893 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3894 puts_filtered (buffer);
3895 do_cleanups (cleanup);
3896 }
3897 else
3898 warning (_("unable to open /proc file '%s'"), fname1);
3899 }
3900 if (stat_f || all)
3901 {
3902 sprintf (fname1, "/proc/%ld/stat", pid);
3903 if ((procfile = fopen (fname1, "r")) != NULL)
3904 {
3905 int itmp;
3906 char ctmp;
3907 long ltmp;
3908 struct cleanup *cleanup = make_cleanup_fclose (procfile);
3909
3910 if (fscanf (procfile, "%d ", &itmp) > 0)
3911 printf_filtered (_("Process: %d\n"), itmp);
3912 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
3913 printf_filtered (_("Exec file: %s\n"), buffer);
3914 if (fscanf (procfile, "%c ", &ctmp) > 0)
3915 printf_filtered (_("State: %c\n"), ctmp);
3916 if (fscanf (procfile, "%d ", &itmp) > 0)
3917 printf_filtered (_("Parent process: %d\n"), itmp);
3918 if (fscanf (procfile, "%d ", &itmp) > 0)
3919 printf_filtered (_("Process group: %d\n"), itmp);
3920 if (fscanf (procfile, "%d ", &itmp) > 0)
3921 printf_filtered (_("Session id: %d\n"), itmp);
3922 if (fscanf (procfile, "%d ", &itmp) > 0)
3923 printf_filtered (_("TTY: %d\n"), itmp);
3924 if (fscanf (procfile, "%d ", &itmp) > 0)
3925 printf_filtered (_("TTY owner process group: %d\n"), itmp);
3926 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3927 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3928 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3929 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3930 (unsigned long) ltmp);
3931 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3932 printf_filtered (_("Minor faults, children: %lu\n"),
3933 (unsigned long) ltmp);
3934 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3935 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3936 (unsigned long) ltmp);
3937 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3938 printf_filtered (_("Major faults, children: %lu\n"),
3939 (unsigned long) ltmp);
3940 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3941 printf_filtered (_("utime: %ld\n"), ltmp);
3942 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3943 printf_filtered (_("stime: %ld\n"), ltmp);
3944 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3945 printf_filtered (_("utime, children: %ld\n"), ltmp);
3946 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3947 printf_filtered (_("stime, children: %ld\n"), ltmp);
3948 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3949 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3950 ltmp);
3951 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3952 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3953 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3954 printf_filtered (_("jiffies until next timeout: %lu\n"),
3955 (unsigned long) ltmp);
3956 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3957 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3958 (unsigned long) ltmp);
3959 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3960 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3961 ltmp);
3962 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3963 printf_filtered (_("Virtual memory size: %lu\n"),
3964 (unsigned long) ltmp);
3965 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3966 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3967 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3968 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3969 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3970 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3971 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3972 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3973 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3974 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
3975 #if 0 /* Don't know how architecture-dependent the rest is...
3976 Anyway the signal bitmap info is available from "status". */
3977 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3978 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3979 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3980 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3981 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3982 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3983 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3984 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3985 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3986 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3987 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3988 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3989 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3990 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
3991 #endif
3992 do_cleanups (cleanup);
3993 }
3994 else
3995 warning (_("unable to open /proc file '%s'"), fname1);
3996 }
3997 }
3998
3999 /* Implement the to_xfer_partial interface for memory reads using the /proc
4000 filesystem. Because we can use a single read() call for /proc, this
4001 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4002 but it doesn't support writes. */
4003
4004 static LONGEST
4005 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4006 const char *annex, gdb_byte *readbuf,
4007 const gdb_byte *writebuf,
4008 ULONGEST offset, LONGEST len)
4009 {
4010 LONGEST ret;
4011 int fd;
4012 char filename[64];
4013
4014 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4015 return 0;
4016
4017 /* Don't bother for one word. */
4018 if (len < 3 * sizeof (long))
4019 return 0;
4020
4021 /* We could keep this file open and cache it - possibly one per
4022 thread. That requires some juggling, but is even faster. */
4023 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4024 fd = open (filename, O_RDONLY | O_LARGEFILE);
4025 if (fd == -1)
4026 return 0;
4027
4028 /* If pread64 is available, use it. It's faster if the kernel
4029 supports it (only one syscall), and it's 64-bit safe even on
4030 32-bit platforms (for instance, SPARC debugging a SPARC64
4031 application). */
4032 #ifdef HAVE_PREAD64
4033 if (pread64 (fd, readbuf, len, offset) != len)
4034 #else
4035 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4036 #endif
4037 ret = 0;
4038 else
4039 ret = len;
4040
4041 close (fd);
4042 return ret;
4043 }
4044
4045 /* Parse LINE as a signal set and add its set bits to SIGS. */
4046
4047 static void
4048 add_line_to_sigset (const char *line, sigset_t *sigs)
4049 {
4050 int len = strlen (line) - 1;
4051 const char *p;
4052 int signum;
4053
4054 if (line[len] != '\n')
4055 error (_("Could not parse signal set: %s"), line);
4056
4057 p = line;
4058 signum = len * 4;
4059 while (len-- > 0)
4060 {
4061 int digit;
4062
4063 if (*p >= '0' && *p <= '9')
4064 digit = *p - '0';
4065 else if (*p >= 'a' && *p <= 'f')
4066 digit = *p - 'a' + 10;
4067 else
4068 error (_("Could not parse signal set: %s"), line);
4069
4070 signum -= 4;
4071
4072 if (digit & 1)
4073 sigaddset (sigs, signum + 1);
4074 if (digit & 2)
4075 sigaddset (sigs, signum + 2);
4076 if (digit & 4)
4077 sigaddset (sigs, signum + 3);
4078 if (digit & 8)
4079 sigaddset (sigs, signum + 4);
4080
4081 p++;
4082 }
4083 }
4084
4085 /* Find process PID's pending signals from /proc/pid/status and set
4086 SIGS to match. */
4087
4088 void
4089 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4090 {
4091 FILE *procfile;
4092 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4093 int signum;
4094 struct cleanup *cleanup;
4095
4096 sigemptyset (pending);
4097 sigemptyset (blocked);
4098 sigemptyset (ignored);
4099 sprintf (fname, "/proc/%d/status", pid);
4100 procfile = fopen (fname, "r");
4101 if (procfile == NULL)
4102 error (_("Could not open %s"), fname);
4103 cleanup = make_cleanup_fclose (procfile);
4104
4105 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4106 {
4107 /* Normal queued signals are on the SigPnd line in the status
4108 file. However, 2.6 kernels also have a "shared" pending
4109 queue for delivering signals to a thread group, so check for
4110 a ShdPnd line also.
4111
4112 Unfortunately some Red Hat kernels include the shared pending
4113 queue but not the ShdPnd status field. */
4114
4115 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4116 add_line_to_sigset (buffer + 8, pending);
4117 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4118 add_line_to_sigset (buffer + 8, pending);
4119 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4120 add_line_to_sigset (buffer + 8, blocked);
4121 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4122 add_line_to_sigset (buffer + 8, ignored);
4123 }
4124
4125 do_cleanups (cleanup);
4126 }
4127
4128 static LONGEST
4129 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4130 const char *annex, gdb_byte *readbuf,
4131 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4132 {
4133 /* We make the process list snapshot when the object starts to be
4134 read. */
4135 static const char *buf;
4136 static LONGEST len_avail = -1;
4137 static struct obstack obstack;
4138
4139 DIR *dirp;
4140
4141 gdb_assert (object == TARGET_OBJECT_OSDATA);
4142
4143 if (strcmp (annex, "processes") != 0)
4144 return 0;
4145
4146 gdb_assert (readbuf && !writebuf);
4147
4148 if (offset == 0)
4149 {
4150 if (len_avail != -1 && len_avail != 0)
4151 obstack_free (&obstack, NULL);
4152 len_avail = 0;
4153 buf = NULL;
4154 obstack_init (&obstack);
4155 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4156
4157 dirp = opendir ("/proc");
4158 if (dirp)
4159 {
4160 struct dirent *dp;
4161 while ((dp = readdir (dirp)) != NULL)
4162 {
4163 struct stat statbuf;
4164 char procentry[sizeof ("/proc/4294967295")];
4165
4166 if (!isdigit (dp->d_name[0])
4167 || NAMELEN (dp) > sizeof ("4294967295") - 1)
4168 continue;
4169
4170 sprintf (procentry, "/proc/%s", dp->d_name);
4171 if (stat (procentry, &statbuf) == 0
4172 && S_ISDIR (statbuf.st_mode))
4173 {
4174 char *pathname;
4175 FILE *f;
4176 char cmd[MAXPATHLEN + 1];
4177 struct passwd *entry;
4178
4179 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4180 entry = getpwuid (statbuf.st_uid);
4181
4182 if ((f = fopen (pathname, "r")) != NULL)
4183 {
4184 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4185 if (len > 0)
4186 {
4187 int i;
4188 for (i = 0; i < len; i++)
4189 if (cmd[i] == '\0')
4190 cmd[i] = ' ';
4191 cmd[len] = '\0';
4192
4193 obstack_xml_printf (
4194 &obstack,
4195 "<item>"
4196 "<column name=\"pid\">%s</column>"
4197 "<column name=\"user\">%s</column>"
4198 "<column name=\"command\">%s</column>"
4199 "</item>",
4200 dp->d_name,
4201 entry ? entry->pw_name : "?",
4202 cmd);
4203 }
4204 fclose (f);
4205 }
4206
4207 xfree (pathname);
4208 }
4209 }
4210
4211 closedir (dirp);
4212 }
4213
4214 obstack_grow_str0 (&obstack, "</osdata>\n");
4215 buf = obstack_finish (&obstack);
4216 len_avail = strlen (buf);
4217 }
4218
4219 if (offset >= len_avail)
4220 {
4221 /* Done. Get rid of the obstack. */
4222 obstack_free (&obstack, NULL);
4223 buf = NULL;
4224 len_avail = 0;
4225 return 0;
4226 }
4227
4228 if (len > len_avail - offset)
4229 len = len_avail - offset;
4230 memcpy (readbuf, buf + offset, len);
4231
4232 return len;
4233 }
4234
4235 static LONGEST
4236 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4237 const char *annex, gdb_byte *readbuf,
4238 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4239 {
4240 LONGEST xfer;
4241
4242 if (object == TARGET_OBJECT_AUXV)
4243 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
4244 offset, len);
4245
4246 if (object == TARGET_OBJECT_OSDATA)
4247 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4248 offset, len);
4249
4250 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4251 offset, len);
4252 if (xfer != 0)
4253 return xfer;
4254
4255 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4256 offset, len);
4257 }
4258
4259 /* Create a prototype generic GNU/Linux target. The client can override
4260 it with local methods. */
4261
4262 static void
4263 linux_target_install_ops (struct target_ops *t)
4264 {
4265 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4266 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4267 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4268 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4269 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4270 t->to_post_attach = linux_child_post_attach;
4271 t->to_follow_fork = linux_child_follow_fork;
4272 t->to_find_memory_regions = linux_nat_find_memory_regions;
4273 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4274
4275 super_xfer_partial = t->to_xfer_partial;
4276 t->to_xfer_partial = linux_xfer_partial;
4277 }
4278
4279 struct target_ops *
4280 linux_target (void)
4281 {
4282 struct target_ops *t;
4283
4284 t = inf_ptrace_target ();
4285 linux_target_install_ops (t);
4286
4287 return t;
4288 }
4289
4290 struct target_ops *
4291 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4292 {
4293 struct target_ops *t;
4294
4295 t = inf_ptrace_trad_target (register_u_offset);
4296 linux_target_install_ops (t);
4297
4298 return t;
4299 }
4300
4301 /* target_is_async_p implementation. */
4302
4303 static int
4304 linux_nat_is_async_p (void)
4305 {
4306 /* NOTE: palves 2008-03-21: We're only async when the user requests
4307 it explicitly with the "maintenance set target-async" command.
4308 Someday, linux will always be async. */
4309 if (!target_async_permitted)
4310 return 0;
4311
4312 return 1;
4313 }
4314
4315 /* target_can_async_p implementation. */
4316
4317 static int
4318 linux_nat_can_async_p (void)
4319 {
4320 /* NOTE: palves 2008-03-21: We're only async when the user requests
4321 it explicitly with the "maintenance set target-async" command.
4322 Someday, linux will always be async. */
4323 if (!target_async_permitted)
4324 return 0;
4325
4326 /* See target.h/target_async_mask. */
4327 return linux_nat_async_mask_value;
4328 }
4329
4330 static int
4331 linux_nat_supports_non_stop (void)
4332 {
4333 return 1;
4334 }
4335
4336 /* target_async_mask implementation. */
4337
4338 static int
4339 linux_nat_async_mask (int mask)
4340 {
4341 int current_state;
4342 current_state = linux_nat_async_mask_value;
4343
4344 if (current_state != mask)
4345 {
4346 if (mask == 0)
4347 {
4348 linux_nat_async (NULL, 0);
4349 linux_nat_async_mask_value = mask;
4350 }
4351 else
4352 {
4353 linux_nat_async_mask_value = mask;
4354 linux_nat_async (inferior_event_handler, 0);
4355 }
4356 }
4357
4358 return current_state;
4359 }
4360
4361 /* Pop an event from the event pipe. */
4362
4363 static int
4364 linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
4365 {
4366 struct waitpid_result event = {0};
4367 int ret;
4368
4369 do
4370 {
4371 ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
4372 }
4373 while (ret == -1 && errno == EINTR);
4374
4375 gdb_assert (ret == sizeof (event));
4376
4377 *ptr_status = event.status;
4378 *ptr_options = event.options;
4379
4380 linux_nat_num_queued_events--;
4381
4382 return event.pid;
4383 }
4384
4385 /* Push an event into the event pipe. */
4386
4387 static void
4388 linux_nat_event_pipe_push (int pid, int status, int options)
4389 {
4390 int ret;
4391 struct waitpid_result event = {0};
4392 event.pid = pid;
4393 event.status = status;
4394 event.options = options;
4395
4396 do
4397 {
4398 ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
4399 gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
4400 } while (ret == -1 && errno == EINTR);
4401
4402 linux_nat_num_queued_events++;
4403 }
4404
4405 static void
4406 get_pending_events (void)
4407 {
4408 int status, options, pid;
4409
4410 if (!target_async_permitted
4411 || linux_nat_async_events_state != sigchld_async)
4412 internal_error (__FILE__, __LINE__,
4413 "get_pending_events called with async masked");
4414
4415 while (1)
4416 {
4417 status = 0;
4418 options = __WCLONE | WNOHANG;
4419
4420 do
4421 {
4422 pid = waitpid (-1, &status, options);
4423 }
4424 while (pid == -1 && errno == EINTR);
4425
4426 if (pid <= 0)
4427 {
4428 options = WNOHANG;
4429 do
4430 {
4431 pid = waitpid (-1, &status, options);
4432 }
4433 while (pid == -1 && errno == EINTR);
4434 }
4435
4436 if (pid <= 0)
4437 /* No more children reporting events. */
4438 break;
4439
4440 if (debug_linux_nat_async)
4441 fprintf_unfiltered (gdb_stdlog, "\
4442 get_pending_events: pid(%d), status(%x), options (%x)\n",
4443 pid, status, options);
4444
4445 linux_nat_event_pipe_push (pid, status, options);
4446 }
4447
4448 if (debug_linux_nat_async)
4449 fprintf_unfiltered (gdb_stdlog, "\
4450 get_pending_events: linux_nat_num_queued_events(%d)\n",
4451 linux_nat_num_queued_events);
4452 }
4453
4454 /* SIGCHLD handler for async mode. */
4455
4456 static void
4457 async_sigchld_handler (int signo)
4458 {
4459 if (debug_linux_nat_async)
4460 fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");
4461
4462 get_pending_events ();
4463 }
4464
4465 /* Set SIGCHLD handling state to STATE. Returns previous state. */
4466
4467 static enum sigchld_state
4468 linux_nat_async_events (enum sigchld_state state)
4469 {
4470 enum sigchld_state current_state = linux_nat_async_events_state;
4471
4472 if (debug_linux_nat_async)
4473 fprintf_unfiltered (gdb_stdlog,
4474 "LNAE: state(%d): linux_nat_async_events_state(%d), "
4475 "linux_nat_num_queued_events(%d)\n",
4476 state, linux_nat_async_events_state,
4477 linux_nat_num_queued_events);
4478
4479 if (current_state != state)
4480 {
4481 sigset_t mask;
4482 sigemptyset (&mask);
4483 sigaddset (&mask, SIGCHLD);
4484
4485 /* Always block before changing state. */
4486 sigprocmask (SIG_BLOCK, &mask, NULL);
4487
4488 /* Set new state. */
4489 linux_nat_async_events_state = state;
4490
4491 switch (state)
4492 {
4493 case sigchld_sync:
4494 {
4495 /* Block target events. */
4496 sigprocmask (SIG_BLOCK, &mask, NULL);
4497 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4498 /* Get events out of queue, and make them available to
4499 queued_waitpid / my_waitpid. */
4500 pipe_to_local_event_queue ();
4501 }
4502 break;
4503 case sigchld_async:
4504 {
4505 /* Unblock target events for async mode. */
4506
4507 sigprocmask (SIG_BLOCK, &mask, NULL);
4508
4509 /* Put events we already waited on, in the pipe first, so
4510 events are FIFO. */
4511 local_event_queue_to_pipe ();
4512 /* While in masked async, we may have not collected all
4513 the pending events. Get them out now. */
4514 get_pending_events ();
4515
4516 /* Let'em come. */
4517 sigaction (SIGCHLD, &async_sigchld_action, NULL);
4518 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4519 }
4520 break;
4521 case sigchld_default:
4522 {
4523 /* SIGCHLD default mode. */
4524 sigaction (SIGCHLD, &sigchld_default_action, NULL);
4525
4526 /* Get events out of queue, and make them available to
4527 queued_waitpid / my_waitpid. */
4528 pipe_to_local_event_queue ();
4529
4530 /* Unblock SIGCHLD. */
4531 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4532 }
4533 break;
4534 }
4535 }
4536
4537 return current_state;
4538 }
4539
4540 static int async_terminal_is_ours = 1;
4541
4542 /* target_terminal_inferior implementation. */
4543
4544 static void
4545 linux_nat_terminal_inferior (void)
4546 {
4547 if (!target_is_async_p ())
4548 {
4549 /* Async mode is disabled. */
4550 terminal_inferior ();
4551 return;
4552 }
4553
4554 /* GDB should never give the terminal to the inferior, if the
4555 inferior is running in the background (run&, continue&, etc.).
4556 This check can be removed when the common code is fixed. */
4557 if (!sync_execution)
4558 return;
4559
4560 terminal_inferior ();
4561
4562 if (!async_terminal_is_ours)
4563 return;
4564
4565 delete_file_handler (input_fd);
4566 async_terminal_is_ours = 0;
4567 set_sigint_trap ();
4568 }
4569
4570 /* target_terminal_ours implementation. */
4571
4572 static void
4573 linux_nat_terminal_ours (void)
4574 {
4575 if (!target_is_async_p ())
4576 {
4577 /* Async mode is disabled. */
4578 terminal_ours ();
4579 return;
4580 }
4581
4582 /* GDB should never give the terminal to the inferior if the
4583 inferior is running in the background (run&, continue&, etc.),
4584 but claiming it sure should. */
4585 terminal_ours ();
4586
4587 if (!sync_execution)
4588 return;
4589
4590 if (async_terminal_is_ours)
4591 return;
4592
4593 clear_sigint_trap ();
4594 add_file_handler (input_fd, stdin_event_handler, 0);
4595 async_terminal_is_ours = 1;
4596 }
4597
4598 static void (*async_client_callback) (enum inferior_event_type event_type,
4599 void *context);
4600 static void *async_client_context;
4601
4602 static void
4603 linux_nat_async_file_handler (int error, gdb_client_data client_data)
4604 {
4605 async_client_callback (INF_REG_EVENT, async_client_context);
4606 }
4607
4608 /* target_async implementation. */
4609
4610 static void
4611 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4612 void *context), void *context)
4613 {
4614 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
4615 internal_error (__FILE__, __LINE__,
4616 "Calling target_async when async is masked");
4617
4618 if (callback != NULL)
4619 {
4620 async_client_callback = callback;
4621 async_client_context = context;
4622 add_file_handler (linux_nat_event_pipe[0],
4623 linux_nat_async_file_handler, NULL);
4624
4625 linux_nat_async_events (sigchld_async);
4626 }
4627 else
4628 {
4629 async_client_callback = callback;
4630 async_client_context = context;
4631
4632 linux_nat_async_events (sigchld_sync);
4633 delete_file_handler (linux_nat_event_pipe[0]);
4634 }
4635 return;
4636 }
4637
4638 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
4639 event came out. */
4640
4641 static int
4642 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4643 {
4644 ptid_t ptid = * (ptid_t *) data;
4645
4646 if (ptid_equal (lwp->ptid, ptid)
4647 || ptid_equal (minus_one_ptid, ptid)
4648 || (ptid_is_pid (ptid)
4649 && ptid_get_pid (ptid) == ptid_get_pid (lwp->ptid)))
4650 {
4651 if (!lwp->stopped)
4652 {
4653 int pid, status;
4654
4655 if (debug_linux_nat)
4656 fprintf_unfiltered (gdb_stdlog,
4657 "LNSL: running -> suspending %s\n",
4658 target_pid_to_str (lwp->ptid));
4659
4660 /* Peek once, to check if we've already waited for this
4661 LWP. */
4662 pid = queued_waitpid_1 (ptid_get_lwp (lwp->ptid), &status,
4663 lwp->cloned ? __WCLONE : 0, 1 /* peek */);
4664
4665 if (pid == -1)
4666 {
4667 ptid_t ptid = lwp->ptid;
4668
4669 stop_callback (lwp, NULL);
4670 stop_wait_callback (lwp, NULL);
4671
4672 /* If the lwp exits while we try to stop it, there's
4673 nothing else to do. */
4674 lwp = find_lwp_pid (ptid);
4675 if (lwp == NULL)
4676 return 0;
4677
4678 pid = queued_waitpid_1 (ptid_get_lwp (lwp->ptid), &status,
4679 lwp->cloned ? __WCLONE : 0,
4680 1 /* peek */);
4681 }
4682
4683 /* If we didn't collect any signal other than SIGSTOP while
4684 stopping the LWP, push a SIGNAL_0 event. In either case,
4685 the event-loop will end up calling target_wait which will
4686 collect these. */
4687 if (pid == -1)
4688 push_waitpid (ptid_get_lwp (lwp->ptid), W_STOPCODE (0),
4689 lwp->cloned ? __WCLONE : 0);
4690 }
4691 else
4692 {
4693 /* Already known to be stopped; do nothing. */
4694
4695 if (debug_linux_nat)
4696 {
4697 if (find_thread_pid (lwp->ptid)->stop_requested)
4698 fprintf_unfiltered (gdb_stdlog, "\
4699 LNSL: already stopped/stop_requested %s\n",
4700 target_pid_to_str (lwp->ptid));
4701 else
4702 fprintf_unfiltered (gdb_stdlog, "\
4703 LNSL: already stopped/no stop_requested yet %s\n",
4704 target_pid_to_str (lwp->ptid));
4705 }
4706 }
4707 }
4708 return 0;
4709 }
4710
4711 static void
4712 linux_nat_stop (ptid_t ptid)
4713 {
4714 if (non_stop)
4715 {
4716 linux_nat_async_events (sigchld_sync);
4717 iterate_over_lwps (linux_nat_stop_lwp, &ptid);
4718 target_async (inferior_event_handler, 0);
4719 }
4720 else
4721 linux_ops->to_stop (ptid);
4722 }
4723
4724 void
4725 linux_nat_add_target (struct target_ops *t)
4726 {
4727 /* Save the provided single-threaded target. We save this in a separate
4728 variable because another target we've inherited from (e.g. inf-ptrace)
4729 may have saved a pointer to T; we want to use it for the final
4730 process stratum target. */
4731 linux_ops_saved = *t;
4732 linux_ops = &linux_ops_saved;
4733
4734 /* Override some methods for multithreading. */
4735 t->to_create_inferior = linux_nat_create_inferior;
4736 t->to_attach = linux_nat_attach;
4737 t->to_detach = linux_nat_detach;
4738 t->to_resume = linux_nat_resume;
4739 t->to_wait = linux_nat_wait;
4740 t->to_xfer_partial = linux_nat_xfer_partial;
4741 t->to_kill = linux_nat_kill;
4742 t->to_mourn_inferior = linux_nat_mourn_inferior;
4743 t->to_thread_alive = linux_nat_thread_alive;
4744 t->to_pid_to_str = linux_nat_pid_to_str;
4745 t->to_has_thread_control = tc_schedlock;
4746
4747 t->to_can_async_p = linux_nat_can_async_p;
4748 t->to_is_async_p = linux_nat_is_async_p;
4749 t->to_supports_non_stop = linux_nat_supports_non_stop;
4750 t->to_async = linux_nat_async;
4751 t->to_async_mask = linux_nat_async_mask;
4752 t->to_terminal_inferior = linux_nat_terminal_inferior;
4753 t->to_terminal_ours = linux_nat_terminal_ours;
4754
4755 /* Methods for non-stop support. */
4756 t->to_stop = linux_nat_stop;
4757
4758 /* We don't change the stratum; this target will sit at
4759 process_stratum and thread_db will set at thread_stratum. This
4760 is a little strange, since this is a multi-threaded-capable
4761 target, but we want to be on the stack below thread_db, and we
4762 also want to be used for single-threaded processes. */
4763
4764 add_target (t);
4765 }
4766
4767 /* Register a method to call whenever a new thread is attached. */
4768 void
4769 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4770 {
4771 /* Save the pointer. We only support a single registered instance
4772 of the GNU/Linux native target, so we do not need to map this to
4773 T. */
4774 linux_nat_new_thread = new_thread;
4775 }
4776
4777 /* Register a method that converts a siginfo object between the layout
4778 that ptrace returns, and the layout in the architecture of the
4779 inferior. */
4780 void
4781 linux_nat_set_siginfo_fixup (struct target_ops *t,
4782 int (*siginfo_fixup) (struct siginfo *,
4783 gdb_byte *,
4784 int))
4785 {
4786 /* Save the pointer. */
4787 linux_nat_siginfo_fixup = siginfo_fixup;
4788 }
4789
4790 /* Return the saved siginfo associated with PTID. */
4791 struct siginfo *
4792 linux_nat_get_siginfo (ptid_t ptid)
4793 {
4794 struct lwp_info *lp = find_lwp_pid (ptid);
4795
4796 gdb_assert (lp != NULL);
4797
4798 return &lp->siginfo;
4799 }
4800
4801 /* Enable/Disable async mode. */
4802
4803 static void
4804 linux_nat_setup_async (void)
4805 {
4806 if (pipe (linux_nat_event_pipe) == -1)
4807 internal_error (__FILE__, __LINE__,
4808 "creating event pipe failed.");
4809 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4810 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4811 }
4812
4813 /* Provide a prototype to silence -Wmissing-prototypes. */
4814 extern initialize_file_ftype _initialize_linux_nat;
4815
4816 void
4817 _initialize_linux_nat (void)
4818 {
4819 sigset_t mask;
4820
4821 add_info ("proc", linux_nat_info_proc_cmd, _("\
4822 Show /proc process information about any running process.\n\
4823 Specify any process id, or use the program being debugged by default.\n\
4824 Specify any of the following keywords for detailed info:\n\
4825 mappings -- list of mapped memory regions.\n\
4826 stat -- list a bunch of random process info.\n\
4827 status -- list a different bunch of random process info.\n\
4828 all -- list all available /proc info."));
4829
4830 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4831 &debug_linux_nat, _("\
4832 Set debugging of GNU/Linux lwp module."), _("\
4833 Show debugging of GNU/Linux lwp module."), _("\
4834 Enables printf debugging output."),
4835 NULL,
4836 show_debug_linux_nat,
4837 &setdebuglist, &showdebuglist);
4838
4839 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4840 &debug_linux_nat_async, _("\
4841 Set debugging of GNU/Linux async lwp module."), _("\
4842 Show debugging of GNU/Linux async lwp module."), _("\
4843 Enables printf debugging output."),
4844 NULL,
4845 show_debug_linux_nat_async,
4846 &setdebuglist, &showdebuglist);
4847
4848 /* Get the default SIGCHLD action. Used while forking an inferior
4849 (see linux_nat_create_inferior/linux_nat_async_events). */
4850 sigaction (SIGCHLD, NULL, &sigchld_default_action);
4851
4852 /* Block SIGCHLD by default. Doing this early prevents it getting
4853 unblocked if an exception is thrown due to an error while the
4854 inferior is starting (sigsetjmp/siglongjmp). */
4855 sigemptyset (&mask);
4856 sigaddset (&mask, SIGCHLD);
4857 sigprocmask (SIG_BLOCK, &mask, NULL);
4858
4859 /* Save this mask as the default. */
4860 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4861
4862 /* The synchronous SIGCHLD handler. */
4863 sync_sigchld_action.sa_handler = sigchld_handler;
4864 sigemptyset (&sync_sigchld_action.sa_mask);
4865 sync_sigchld_action.sa_flags = SA_RESTART;
4866
4867 /* Make it the default. */
4868 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4869
4870 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4871 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4872 sigdelset (&suspend_mask, SIGCHLD);
4873
4874 /* SIGCHLD handler for async mode. */
4875 async_sigchld_action.sa_handler = async_sigchld_handler;
4876 sigemptyset (&async_sigchld_action.sa_mask);
4877 async_sigchld_action.sa_flags = SA_RESTART;
4878
4879 linux_nat_setup_async ();
4880
4881 add_setshow_boolean_cmd ("disable-randomization", class_support,
4882 &disable_randomization, _("\
4883 Set disabling of debuggee's virtual address space randomization."), _("\
4884 Show disabling of debuggee's virtual address space randomization."), _("\
4885 When this mode is on (which is the default), randomization of the virtual\n\
4886 address space is disabled. Standalone programs run with the randomization\n\
4887 enabled by default on some platforms."),
4888 &set_disable_randomization,
4889 &show_disable_randomization,
4890 &setlist, &showlist);
4891 }
4892 \f
4893
4894 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4895 the GNU/Linux Threads library and therefore doesn't really belong
4896 here. */
4897
4898 /* Read variable NAME in the target and return its value if found.
4899 Otherwise return zero. It is assumed that the type of the variable
4900 is `int'. */
4901
4902 static int
4903 get_signo (const char *name)
4904 {
4905 struct minimal_symbol *ms;
4906 int signo;
4907
4908 ms = lookup_minimal_symbol (name, NULL, NULL);
4909 if (ms == NULL)
4910 return 0;
4911
4912 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4913 sizeof (signo)) != 0)
4914 return 0;
4915
4916 return signo;
4917 }
4918
4919 /* Return the set of signals used by the threads library in *SET. */
4920
4921 void
4922 lin_thread_get_thread_signals (sigset_t *set)
4923 {
4924 struct sigaction action;
4925 int restart, cancel;
4926 sigset_t blocked_mask;
4927
4928 sigemptyset (&blocked_mask);
4929 sigemptyset (set);
4930
4931 restart = get_signo ("__pthread_sig_restart");
4932 cancel = get_signo ("__pthread_sig_cancel");
4933
4934 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4935 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4936 not provide any way for the debugger to query the signal numbers -
4937 fortunately they don't change! */
4938
4939 if (restart == 0)
4940 restart = __SIGRTMIN;
4941
4942 if (cancel == 0)
4943 cancel = __SIGRTMIN + 1;
4944
4945 sigaddset (set, restart);
4946 sigaddset (set, cancel);
4947
4948 /* The GNU/Linux Threads library makes terminating threads send a
4949 special "cancel" signal instead of SIGCHLD. Make sure we catch
4950 those (to prevent them from terminating GDB itself, which is
4951 likely to be their default action) and treat them the same way as
4952 SIGCHLD. */
4953
4954 action.sa_handler = sigchld_handler;
4955 sigemptyset (&action.sa_mask);
4956 action.sa_flags = SA_RESTART;
4957 sigaction (cancel, &action, NULL);
4958
4959 /* We block the "cancel" signal throughout this code ... */
4960 sigaddset (&blocked_mask, cancel);
4961 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4962
4963 /* ... except during a sigsuspend. */
4964 sigdelset (&suspend_mask, cancel);
4965 }
This page took 0.130655 seconds and 4 git commands to generate.