0e18034994b07c45d3d3808faab4623168860b50
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 struct simple_pid_list
274 {
275 int pid;
276 int status;
277 struct simple_pid_list *next;
278 };
279 struct simple_pid_list *stopped_pids;
280
281 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
283
284 static int linux_supports_tracefork_flag = -1;
285
286 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
288
289 static int linux_supports_tracesysgood_flag = -1;
290
291 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
293
294 static int linux_supports_tracevforkdone_flag = -1;
295
296 /* Async mode support */
297
298 /* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300 static int linux_nat_async_mask_value = 1;
301
302 /* Stores the current used ptrace() options. */
303 static int current_ptrace_options = 0;
304
305 /* The read/write ends of the pipe registered as waitable file in the
306 event loop. */
307 static int linux_nat_event_pipe[2] = { -1, -1 };
308
309 /* Flush the event pipe. */
310
311 static void
312 async_file_flush (void)
313 {
314 int ret;
315 char buf;
316
317 do
318 {
319 ret = read (linux_nat_event_pipe[0], &buf, 1);
320 }
321 while (ret >= 0 || (ret == -1 && errno == EINTR));
322 }
323
324 /* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
327
328 static void
329 async_file_mark (void)
330 {
331 int ret;
332
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
335 left-overs. */
336 async_file_flush ();
337
338 do
339 {
340 ret = write (linux_nat_event_pipe[1], "+", 1);
341 }
342 while (ret == -1 && errno == EINTR);
343
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
346 }
347
348 static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
350 void *context);
351 static int linux_nat_async_mask (int mask);
352 static int kill_lwp (int lwpid, int signo);
353
354 static int stop_callback (struct lwp_info *lp, void *data);
355
356 static void block_child_signals (sigset_t *prev_mask);
357 static void restore_child_signals_mask (sigset_t *prev_mask);
358
359 struct lwp_info;
360 static struct lwp_info *add_lwp (ptid_t ptid);
361 static void purge_lwp_list (int pid);
362 static struct lwp_info *find_lwp_pid (ptid_t ptid);
363
364 \f
365 /* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
367 static void
368 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
369 {
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
371
372 new_pid->pid = pid;
373 new_pid->status = status;
374 new_pid->next = *listp;
375 *listp = new_pid;
376 }
377
378 static int
379 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
380 {
381 struct simple_pid_list **p;
382
383 for (p = listp; *p != NULL; p = &(*p)->next)
384 if ((*p)->pid == pid)
385 {
386 struct simple_pid_list *next = (*p)->next;
387
388 *statusp = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 ptrace (PTRACE_TRACEME, 0, 0, 0);
409 kill (getpid (), SIGSTOP);
410 fork ();
411 _exit (0);
412 }
413
414 /* Wrapper function for waitpid which handles EINTR. */
415
416 static int
417 my_waitpid (int pid, int *statusp, int flags)
418 {
419 int ret;
420
421 do
422 {
423 ret = waitpid (pid, statusp, flags);
424 }
425 while (ret == -1 && errno == EINTR);
426
427 return ret;
428 }
429
430 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
431
432 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
433 we know that the feature is not available. This may change the tracing
434 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
435
436 However, if it succeeds, we don't know for sure that the feature is
437 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
438 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
439 fork tracing, and let it fork. If the process exits, we assume that we
440 can't use TRACEFORK; if we get the fork notification, and we can extract
441 the new child's PID, then we assume that we can. */
442
443 static void
444 linux_test_for_tracefork (int original_pid)
445 {
446 int child_pid, ret, status;
447 long second_pid;
448 sigset_t prev_mask;
449
450 /* We don't want those ptrace calls to be interrupted. */
451 block_child_signals (&prev_mask);
452
453 linux_supports_tracefork_flag = 0;
454 linux_supports_tracevforkdone_flag = 0;
455
456 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
457 if (ret != 0)
458 {
459 restore_child_signals_mask (&prev_mask);
460 return;
461 }
462
463 child_pid = fork ();
464 if (child_pid == -1)
465 perror_with_name (("fork"));
466
467 if (child_pid == 0)
468 linux_tracefork_child ();
469
470 ret = my_waitpid (child_pid, &status, 0);
471 if (ret == -1)
472 perror_with_name (("waitpid"));
473 else if (ret != child_pid)
474 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
475 if (! WIFSTOPPED (status))
476 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
477
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
479 if (ret != 0)
480 {
481 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
482 if (ret != 0)
483 {
484 warning (_("linux_test_for_tracefork: failed to kill child"));
485 restore_child_signals_mask (&prev_mask);
486 return;
487 }
488
489 ret = my_waitpid (child_pid, &status, 0);
490 if (ret != child_pid)
491 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
492 else if (!WIFSIGNALED (status))
493 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
494 "killed child"), status);
495
496 restore_child_signals_mask (&prev_mask);
497 return;
498 }
499
500 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
501 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
502 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
503 linux_supports_tracevforkdone_flag = (ret == 0);
504
505 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
506 if (ret != 0)
507 warning (_("linux_test_for_tracefork: failed to resume child"));
508
509 ret = my_waitpid (child_pid, &status, 0);
510
511 if (ret == child_pid && WIFSTOPPED (status)
512 && status >> 16 == PTRACE_EVENT_FORK)
513 {
514 second_pid = 0;
515 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
516 if (ret == 0 && second_pid != 0)
517 {
518 int second_status;
519
520 linux_supports_tracefork_flag = 1;
521 my_waitpid (second_pid, &second_status, 0);
522 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
523 if (ret != 0)
524 warning (_("linux_test_for_tracefork: failed to kill second child"));
525 my_waitpid (second_pid, &status, 0);
526 }
527 }
528 else
529 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
530 "(%d, status 0x%x)"), ret, status);
531
532 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
533 if (ret != 0)
534 warning (_("linux_test_for_tracefork: failed to kill child"));
535 my_waitpid (child_pid, &status, 0);
536
537 restore_child_signals_mask (&prev_mask);
538 }
539
540 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
541
542 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
543 we know that the feature is not available. This may change the tracing
544 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
545
546 static void
547 linux_test_for_tracesysgood (int original_pid)
548 {
549 int ret;
550 sigset_t prev_mask;
551
552 /* We don't want those ptrace calls to be interrupted. */
553 block_child_signals (&prev_mask);
554
555 linux_supports_tracesysgood_flag = 0;
556
557 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
558 if (ret != 0)
559 goto out;
560
561 linux_supports_tracesysgood_flag = 1;
562 out:
563 restore_child_signals_mask (&prev_mask);
564 }
565
566 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
567 This function also sets linux_supports_tracesysgood_flag. */
568
569 static int
570 linux_supports_tracesysgood (int pid)
571 {
572 if (linux_supports_tracesysgood_flag == -1)
573 linux_test_for_tracesysgood (pid);
574 return linux_supports_tracesysgood_flag;
575 }
576
577 /* Return non-zero iff we have tracefork functionality available.
578 This function also sets linux_supports_tracefork_flag. */
579
580 static int
581 linux_supports_tracefork (int pid)
582 {
583 if (linux_supports_tracefork_flag == -1)
584 linux_test_for_tracefork (pid);
585 return linux_supports_tracefork_flag;
586 }
587
588 static int
589 linux_supports_tracevforkdone (int pid)
590 {
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracevforkdone_flag;
594 }
595
596 static void
597 linux_enable_tracesysgood (ptid_t ptid)
598 {
599 int pid = ptid_get_lwp (ptid);
600
601 if (pid == 0)
602 pid = ptid_get_pid (ptid);
603
604 if (linux_supports_tracesysgood (pid) == 0)
605 return;
606
607 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
608
609 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
610 }
611
612 \f
613 void
614 linux_enable_event_reporting (ptid_t ptid)
615 {
616 int pid = ptid_get_lwp (ptid);
617
618 if (pid == 0)
619 pid = ptid_get_pid (ptid);
620
621 if (! linux_supports_tracefork (pid))
622 return;
623
624 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
625 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
626
627 if (linux_supports_tracevforkdone (pid))
628 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
629
630 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
631 read-only process state. */
632
633 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
634 }
635
636 static void
637 linux_child_post_attach (int pid)
638 {
639 linux_enable_event_reporting (pid_to_ptid (pid));
640 check_for_thread_db ();
641 linux_enable_tracesysgood (pid_to_ptid (pid));
642 }
643
644 static void
645 linux_child_post_startup_inferior (ptid_t ptid)
646 {
647 linux_enable_event_reporting (ptid);
648 check_for_thread_db ();
649 linux_enable_tracesysgood (ptid);
650 }
651
652 static int
653 linux_child_follow_fork (struct target_ops *ops, int follow_child)
654 {
655 sigset_t prev_mask;
656 int has_vforked;
657 int parent_pid, child_pid;
658
659 block_child_signals (&prev_mask);
660
661 has_vforked = (inferior_thread ()->pending_follow.kind
662 == TARGET_WAITKIND_VFORKED);
663 parent_pid = ptid_get_lwp (inferior_ptid);
664 if (parent_pid == 0)
665 parent_pid = ptid_get_pid (inferior_ptid);
666 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
667
668 if (!detach_fork)
669 linux_enable_event_reporting (pid_to_ptid (child_pid));
670
671 if (has_vforked
672 && !non_stop /* Non-stop always resumes both branches. */
673 && (!target_is_async_p () || sync_execution)
674 && !(follow_child || detach_fork || sched_multi))
675 {
676 /* The parent stays blocked inside the vfork syscall until the
677 child execs or exits. If we don't let the child run, then
678 the parent stays blocked. If we're telling the parent to run
679 in the foreground, the user will not be able to ctrl-c to get
680 back the terminal, effectively hanging the debug session. */
681 fprintf_filtered (gdb_stderr, _("\
682 Can not resume the parent process over vfork in the foreground while\n\
683 holding the child stopped. Try \"set detach-on-fork\" or \
684 \"set schedule-multiple\".\n"));
685 return 1;
686 }
687
688 if (! follow_child)
689 {
690 struct lwp_info *child_lp = NULL;
691
692 /* We're already attached to the parent, by default. */
693
694 /* Detach new forked process? */
695 if (detach_fork)
696 {
697 /* Before detaching from the child, remove all breakpoints
698 from it. If we forked, then this has already been taken
699 care of by infrun.c. If we vforked however, any
700 breakpoint inserted in the parent is visible in the
701 child, even those added while stopped in a vfork
702 catchpoint. This will remove the breakpoints from the
703 parent also, but they'll be reinserted below. */
704 if (has_vforked)
705 {
706 /* keep breakpoints list in sync. */
707 remove_breakpoints_pid (GET_PID (inferior_ptid));
708 }
709
710 if (info_verbose || debug_linux_nat)
711 {
712 target_terminal_ours ();
713 fprintf_filtered (gdb_stdlog,
714 "Detaching after fork from child process %d.\n",
715 child_pid);
716 }
717
718 ptrace (PTRACE_DETACH, child_pid, 0, 0);
719 }
720 else
721 {
722 struct inferior *parent_inf, *child_inf;
723 struct cleanup *old_chain;
724
725 /* Add process to GDB's tables. */
726 child_inf = add_inferior (child_pid);
727
728 parent_inf = current_inferior ();
729 child_inf->attach_flag = parent_inf->attach_flag;
730 copy_terminal_info (child_inf, parent_inf);
731
732 old_chain = save_inferior_ptid ();
733 save_current_program_space ();
734
735 inferior_ptid = ptid_build (child_pid, child_pid, 0);
736 add_thread (inferior_ptid);
737 child_lp = add_lwp (inferior_ptid);
738 child_lp->stopped = 1;
739 child_lp->resumed = 1;
740
741 /* If this is a vfork child, then the address-space is
742 shared with the parent. */
743 if (has_vforked)
744 {
745 child_inf->pspace = parent_inf->pspace;
746 child_inf->aspace = parent_inf->aspace;
747
748 /* The parent will be frozen until the child is done
749 with the shared region. Keep track of the
750 parent. */
751 child_inf->vfork_parent = parent_inf;
752 child_inf->pending_detach = 0;
753 parent_inf->vfork_child = child_inf;
754 parent_inf->pending_detach = 0;
755 }
756 else
757 {
758 child_inf->aspace = new_address_space ();
759 child_inf->pspace = add_program_space (child_inf->aspace);
760 child_inf->removable = 1;
761 set_current_program_space (child_inf->pspace);
762 clone_program_space (child_inf->pspace, parent_inf->pspace);
763
764 /* Let the shared library layer (solib-svr4) learn about
765 this new process, relocate the cloned exec, pull in
766 shared libraries, and install the solib event
767 breakpoint. If a "cloned-VM" event was propagated
768 better throughout the core, this wouldn't be
769 required. */
770 solib_create_inferior_hook (0);
771 }
772
773 /* Let the thread_db layer learn about this new process. */
774 check_for_thread_db ();
775
776 do_cleanups (old_chain);
777 }
778
779 if (has_vforked)
780 {
781 struct lwp_info *lp;
782 struct inferior *parent_inf;
783
784 parent_inf = current_inferior ();
785
786 /* If we detached from the child, then we have to be careful
787 to not insert breakpoints in the parent until the child
788 is done with the shared memory region. However, if we're
789 staying attached to the child, then we can and should
790 insert breakpoints, so that we can debug it. A
791 subsequent child exec or exit is enough to know when does
792 the child stops using the parent's address space. */
793 parent_inf->waiting_for_vfork_done = detach_fork;
794 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
795
796 lp = find_lwp_pid (pid_to_ptid (parent_pid));
797 gdb_assert (linux_supports_tracefork_flag >= 0);
798 if (linux_supports_tracevforkdone (0))
799 {
800 if (debug_linux_nat)
801 fprintf_unfiltered (gdb_stdlog,
802 "LCFF: waiting for VFORK_DONE on %d\n",
803 parent_pid);
804
805 lp->stopped = 1;
806 lp->resumed = 1;
807
808 /* We'll handle the VFORK_DONE event like any other
809 event, in target_wait. */
810 }
811 else
812 {
813 /* We can't insert breakpoints until the child has
814 finished with the shared memory region. We need to
815 wait until that happens. Ideal would be to just
816 call:
817 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
818 - waitpid (parent_pid, &status, __WALL);
819 However, most architectures can't handle a syscall
820 being traced on the way out if it wasn't traced on
821 the way in.
822
823 We might also think to loop, continuing the child
824 until it exits or gets a SIGTRAP. One problem is
825 that the child might call ptrace with PTRACE_TRACEME.
826
827 There's no simple and reliable way to figure out when
828 the vforked child will be done with its copy of the
829 shared memory. We could step it out of the syscall,
830 two instructions, let it go, and then single-step the
831 parent once. When we have hardware single-step, this
832 would work; with software single-step it could still
833 be made to work but we'd have to be able to insert
834 single-step breakpoints in the child, and we'd have
835 to insert -just- the single-step breakpoint in the
836 parent. Very awkward.
837
838 In the end, the best we can do is to make sure it
839 runs for a little while. Hopefully it will be out of
840 range of any breakpoints we reinsert. Usually this
841 is only the single-step breakpoint at vfork's return
842 point. */
843
844 if (debug_linux_nat)
845 fprintf_unfiltered (gdb_stdlog,
846 "LCFF: no VFORK_DONE support, sleeping a bit\n");
847
848 usleep (10000);
849
850 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
851 and leave it pending. The next linux_nat_resume call
852 will notice a pending event, and bypasses actually
853 resuming the inferior. */
854 lp->status = 0;
855 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
856 lp->stopped = 0;
857 lp->resumed = 1;
858
859 /* If we're in async mode, need to tell the event loop
860 there's something here to process. */
861 if (target_can_async_p ())
862 async_file_mark ();
863 }
864 }
865 }
866 else
867 {
868 struct inferior *parent_inf, *child_inf;
869 struct lwp_info *lp;
870 struct program_space *parent_pspace;
871
872 if (info_verbose || debug_linux_nat)
873 {
874 target_terminal_ours ();
875 if (has_vforked)
876 fprintf_filtered (gdb_stdlog, _("\
877 Attaching after process %d vfork to child process %d.\n"),
878 parent_pid, child_pid);
879 else
880 fprintf_filtered (gdb_stdlog, _("\
881 Attaching after process %d fork to child process %d.\n"),
882 parent_pid, child_pid);
883 }
884
885 /* Add the new inferior first, so that the target_detach below
886 doesn't unpush the target. */
887
888 child_inf = add_inferior (child_pid);
889
890 parent_inf = current_inferior ();
891 child_inf->attach_flag = parent_inf->attach_flag;
892 copy_terminal_info (child_inf, parent_inf);
893
894 parent_pspace = parent_inf->pspace;
895
896 /* If we're vforking, we want to hold on to the parent until the
897 child exits or execs. At child exec or exit time we can
898 remove the old breakpoints from the parent and detach or
899 resume debugging it. Otherwise, detach the parent now; we'll
900 want to reuse it's program/address spaces, but we can't set
901 them to the child before removing breakpoints from the
902 parent, otherwise, the breakpoints module could decide to
903 remove breakpoints from the wrong process (since they'd be
904 assigned to the same address space). */
905
906 if (has_vforked)
907 {
908 gdb_assert (child_inf->vfork_parent == NULL);
909 gdb_assert (parent_inf->vfork_child == NULL);
910 child_inf->vfork_parent = parent_inf;
911 child_inf->pending_detach = 0;
912 parent_inf->vfork_child = child_inf;
913 parent_inf->pending_detach = detach_fork;
914 parent_inf->waiting_for_vfork_done = 0;
915 }
916 else if (detach_fork)
917 target_detach (NULL, 0);
918
919 /* Note that the detach above makes PARENT_INF dangling. */
920
921 /* Add the child thread to the appropriate lists, and switch to
922 this new thread, before cloning the program space, and
923 informing the solib layer about this new process. */
924
925 inferior_ptid = ptid_build (child_pid, child_pid, 0);
926 add_thread (inferior_ptid);
927 lp = add_lwp (inferior_ptid);
928 lp->stopped = 1;
929 lp->resumed = 1;
930
931 /* If this is a vfork child, then the address-space is shared
932 with the parent. If we detached from the parent, then we can
933 reuse the parent's program/address spaces. */
934 if (has_vforked || detach_fork)
935 {
936 child_inf->pspace = parent_pspace;
937 child_inf->aspace = child_inf->pspace->aspace;
938 }
939 else
940 {
941 child_inf->aspace = new_address_space ();
942 child_inf->pspace = add_program_space (child_inf->aspace);
943 child_inf->removable = 1;
944 set_current_program_space (child_inf->pspace);
945 clone_program_space (child_inf->pspace, parent_pspace);
946
947 /* Let the shared library layer (solib-svr4) learn about
948 this new process, relocate the cloned exec, pull in
949 shared libraries, and install the solib event breakpoint.
950 If a "cloned-VM" event was propagated better throughout
951 the core, this wouldn't be required. */
952 solib_create_inferior_hook (0);
953 }
954
955 /* Let the thread_db layer learn about this new process. */
956 check_for_thread_db ();
957 }
958
959 restore_child_signals_mask (&prev_mask);
960 return 0;
961 }
962
963 \f
964 static void
965 linux_child_insert_fork_catchpoint (int pid)
966 {
967 if (! linux_supports_tracefork (pid))
968 error (_("Your system does not support fork catchpoints."));
969 }
970
971 static void
972 linux_child_insert_vfork_catchpoint (int pid)
973 {
974 if (!linux_supports_tracefork (pid))
975 error (_("Your system does not support vfork catchpoints."));
976 }
977
978 static void
979 linux_child_insert_exec_catchpoint (int pid)
980 {
981 if (!linux_supports_tracefork (pid))
982 error (_("Your system does not support exec catchpoints."));
983 }
984
985 static int
986 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
987 int table_size, int *table)
988 {
989 if (! linux_supports_tracesysgood (pid))
990 error (_("Your system does not support syscall catchpoints."));
991 /* On GNU/Linux, we ignore the arguments. It means that we only
992 enable the syscall catchpoints, but do not disable them.
993
994 Also, we do not use the `table' information because we do not
995 filter system calls here. We let GDB do the logic for us. */
996 return 0;
997 }
998
999 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1000 are processes sharing the same VM space. A multi-threaded process
1001 is basically a group of such processes. However, such a grouping
1002 is almost entirely a user-space issue; the kernel doesn't enforce
1003 such a grouping at all (this might change in the future). In
1004 general, we'll rely on the threads library (i.e. the GNU/Linux
1005 Threads library) to provide such a grouping.
1006
1007 It is perfectly well possible to write a multi-threaded application
1008 without the assistance of a threads library, by using the clone
1009 system call directly. This module should be able to give some
1010 rudimentary support for debugging such applications if developers
1011 specify the CLONE_PTRACE flag in the clone system call, and are
1012 using the Linux kernel 2.4 or above.
1013
1014 Note that there are some peculiarities in GNU/Linux that affect
1015 this code:
1016
1017 - In general one should specify the __WCLONE flag to waitpid in
1018 order to make it report events for any of the cloned processes
1019 (and leave it out for the initial process). However, if a cloned
1020 process has exited the exit status is only reported if the
1021 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1022 we cannot use it since GDB must work on older systems too.
1023
1024 - When a traced, cloned process exits and is waited for by the
1025 debugger, the kernel reassigns it to the original parent and
1026 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1027 library doesn't notice this, which leads to the "zombie problem":
1028 When debugged a multi-threaded process that spawns a lot of
1029 threads will run out of processes, even if the threads exit,
1030 because the "zombies" stay around. */
1031
1032 /* List of known LWPs. */
1033 struct lwp_info *lwp_list;
1034 \f
1035
1036 /* Original signal mask. */
1037 static sigset_t normal_mask;
1038
1039 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1040 _initialize_linux_nat. */
1041 static sigset_t suspend_mask;
1042
1043 /* Signals to block to make that sigsuspend work. */
1044 static sigset_t blocked_mask;
1045
1046 /* SIGCHLD action. */
1047 struct sigaction sigchld_action;
1048
1049 /* Block child signals (SIGCHLD and linux threads signals), and store
1050 the previous mask in PREV_MASK. */
1051
1052 static void
1053 block_child_signals (sigset_t *prev_mask)
1054 {
1055 /* Make sure SIGCHLD is blocked. */
1056 if (!sigismember (&blocked_mask, SIGCHLD))
1057 sigaddset (&blocked_mask, SIGCHLD);
1058
1059 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1060 }
1061
1062 /* Restore child signals mask, previously returned by
1063 block_child_signals. */
1064
1065 static void
1066 restore_child_signals_mask (sigset_t *prev_mask)
1067 {
1068 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1069 }
1070 \f
1071
1072 /* Prototypes for local functions. */
1073 static int stop_wait_callback (struct lwp_info *lp, void *data);
1074 static int linux_thread_alive (ptid_t ptid);
1075 static char *linux_child_pid_to_exec_file (int pid);
1076
1077 \f
1078 /* Convert wait status STATUS to a string. Used for printing debug
1079 messages only. */
1080
1081 static char *
1082 status_to_str (int status)
1083 {
1084 static char buf[64];
1085
1086 if (WIFSTOPPED (status))
1087 {
1088 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1089 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1090 strsignal (SIGTRAP));
1091 else
1092 snprintf (buf, sizeof (buf), "%s (stopped)",
1093 strsignal (WSTOPSIG (status)));
1094 }
1095 else if (WIFSIGNALED (status))
1096 snprintf (buf, sizeof (buf), "%s (terminated)",
1097 strsignal (WTERMSIG (status)));
1098 else
1099 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1100
1101 return buf;
1102 }
1103
1104 /* Remove all LWPs belong to PID from the lwp list. */
1105
1106 static void
1107 purge_lwp_list (int pid)
1108 {
1109 struct lwp_info *lp, *lpprev, *lpnext;
1110
1111 lpprev = NULL;
1112
1113 for (lp = lwp_list; lp; lp = lpnext)
1114 {
1115 lpnext = lp->next;
1116
1117 if (ptid_get_pid (lp->ptid) == pid)
1118 {
1119 if (lp == lwp_list)
1120 lwp_list = lp->next;
1121 else
1122 lpprev->next = lp->next;
1123
1124 xfree (lp);
1125 }
1126 else
1127 lpprev = lp;
1128 }
1129 }
1130
1131 /* Return the number of known LWPs in the tgid given by PID. */
1132
1133 static int
1134 num_lwps (int pid)
1135 {
1136 int count = 0;
1137 struct lwp_info *lp;
1138
1139 for (lp = lwp_list; lp; lp = lp->next)
1140 if (ptid_get_pid (lp->ptid) == pid)
1141 count++;
1142
1143 return count;
1144 }
1145
1146 /* Add the LWP specified by PID to the list. Return a pointer to the
1147 structure describing the new LWP. The LWP should already be stopped
1148 (with an exception for the very first LWP). */
1149
1150 static struct lwp_info *
1151 add_lwp (ptid_t ptid)
1152 {
1153 struct lwp_info *lp;
1154
1155 gdb_assert (is_lwp (ptid));
1156
1157 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1158
1159 memset (lp, 0, sizeof (struct lwp_info));
1160
1161 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1162
1163 lp->ptid = ptid;
1164 lp->core = -1;
1165
1166 lp->next = lwp_list;
1167 lwp_list = lp;
1168
1169 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1170 linux_nat_new_thread (ptid);
1171
1172 return lp;
1173 }
1174
1175 /* Remove the LWP specified by PID from the list. */
1176
1177 static void
1178 delete_lwp (ptid_t ptid)
1179 {
1180 struct lwp_info *lp, *lpprev;
1181
1182 lpprev = NULL;
1183
1184 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1185 if (ptid_equal (lp->ptid, ptid))
1186 break;
1187
1188 if (!lp)
1189 return;
1190
1191 if (lpprev)
1192 lpprev->next = lp->next;
1193 else
1194 lwp_list = lp->next;
1195
1196 xfree (lp);
1197 }
1198
1199 /* Return a pointer to the structure describing the LWP corresponding
1200 to PID. If no corresponding LWP could be found, return NULL. */
1201
1202 static struct lwp_info *
1203 find_lwp_pid (ptid_t ptid)
1204 {
1205 struct lwp_info *lp;
1206 int lwp;
1207
1208 if (is_lwp (ptid))
1209 lwp = GET_LWP (ptid);
1210 else
1211 lwp = GET_PID (ptid);
1212
1213 for (lp = lwp_list; lp; lp = lp->next)
1214 if (lwp == GET_LWP (lp->ptid))
1215 return lp;
1216
1217 return NULL;
1218 }
1219
1220 /* Call CALLBACK with its second argument set to DATA for every LWP in
1221 the list. If CALLBACK returns 1 for a particular LWP, return a
1222 pointer to the structure describing that LWP immediately.
1223 Otherwise return NULL. */
1224
1225 struct lwp_info *
1226 iterate_over_lwps (ptid_t filter,
1227 int (*callback) (struct lwp_info *, void *),
1228 void *data)
1229 {
1230 struct lwp_info *lp, *lpnext;
1231
1232 for (lp = lwp_list; lp; lp = lpnext)
1233 {
1234 lpnext = lp->next;
1235
1236 if (ptid_match (lp->ptid, filter))
1237 {
1238 if ((*callback) (lp, data))
1239 return lp;
1240 }
1241 }
1242
1243 return NULL;
1244 }
1245
1246 /* Update our internal state when changing from one checkpoint to
1247 another indicated by NEW_PTID. We can only switch single-threaded
1248 applications, so we only create one new LWP, and the previous list
1249 is discarded. */
1250
1251 void
1252 linux_nat_switch_fork (ptid_t new_ptid)
1253 {
1254 struct lwp_info *lp;
1255
1256 purge_lwp_list (GET_PID (inferior_ptid));
1257
1258 lp = add_lwp (new_ptid);
1259 lp->stopped = 1;
1260
1261 /* This changes the thread's ptid while preserving the gdb thread
1262 num. Also changes the inferior pid, while preserving the
1263 inferior num. */
1264 thread_change_ptid (inferior_ptid, new_ptid);
1265
1266 /* We've just told GDB core that the thread changed target id, but,
1267 in fact, it really is a different thread, with different register
1268 contents. */
1269 registers_changed ();
1270 }
1271
1272 /* Handle the exit of a single thread LP. */
1273
1274 static void
1275 exit_lwp (struct lwp_info *lp)
1276 {
1277 struct thread_info *th = find_thread_ptid (lp->ptid);
1278
1279 if (th)
1280 {
1281 if (print_thread_events)
1282 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1283
1284 delete_thread (lp->ptid);
1285 }
1286
1287 delete_lwp (lp->ptid);
1288 }
1289
1290 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1291
1292 int
1293 linux_proc_get_tgid (int lwpid)
1294 {
1295 FILE *status_file;
1296 char buf[100];
1297 int tgid = -1;
1298
1299 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1300 status_file = fopen (buf, "r");
1301 if (status_file != NULL)
1302 {
1303 while (fgets (buf, sizeof (buf), status_file))
1304 {
1305 if (strncmp (buf, "Tgid:", 5) == 0)
1306 {
1307 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1308 break;
1309 }
1310 }
1311
1312 fclose (status_file);
1313 }
1314
1315 return tgid;
1316 }
1317
1318 /* Detect `T (stopped)' in `/proc/PID/status'.
1319 Other states including `T (tracing stop)' are reported as false. */
1320
1321 static int
1322 pid_is_stopped (pid_t pid)
1323 {
1324 FILE *status_file;
1325 char buf[100];
1326 int retval = 0;
1327
1328 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1329 status_file = fopen (buf, "r");
1330 if (status_file != NULL)
1331 {
1332 int have_state = 0;
1333
1334 while (fgets (buf, sizeof (buf), status_file))
1335 {
1336 if (strncmp (buf, "State:", 6) == 0)
1337 {
1338 have_state = 1;
1339 break;
1340 }
1341 }
1342 if (have_state && strstr (buf, "T (stopped)") != NULL)
1343 retval = 1;
1344 fclose (status_file);
1345 }
1346 return retval;
1347 }
1348
1349 /* Wait for the LWP specified by LP, which we have just attached to.
1350 Returns a wait status for that LWP, to cache. */
1351
1352 static int
1353 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1354 int *signalled)
1355 {
1356 pid_t new_pid, pid = GET_LWP (ptid);
1357 int status;
1358
1359 if (pid_is_stopped (pid))
1360 {
1361 if (debug_linux_nat)
1362 fprintf_unfiltered (gdb_stdlog,
1363 "LNPAW: Attaching to a stopped process\n");
1364
1365 /* The process is definitely stopped. It is in a job control
1366 stop, unless the kernel predates the TASK_STOPPED /
1367 TASK_TRACED distinction, in which case it might be in a
1368 ptrace stop. Make sure it is in a ptrace stop; from there we
1369 can kill it, signal it, et cetera.
1370
1371 First make sure there is a pending SIGSTOP. Since we are
1372 already attached, the process can not transition from stopped
1373 to running without a PTRACE_CONT; so we know this signal will
1374 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1375 probably already in the queue (unless this kernel is old
1376 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1377 is not an RT signal, it can only be queued once. */
1378 kill_lwp (pid, SIGSTOP);
1379
1380 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1381 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1382 ptrace (PTRACE_CONT, pid, 0, 0);
1383 }
1384
1385 /* Make sure the initial process is stopped. The user-level threads
1386 layer might want to poke around in the inferior, and that won't
1387 work if things haven't stabilized yet. */
1388 new_pid = my_waitpid (pid, &status, 0);
1389 if (new_pid == -1 && errno == ECHILD)
1390 {
1391 if (first)
1392 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1393
1394 /* Try again with __WCLONE to check cloned processes. */
1395 new_pid = my_waitpid (pid, &status, __WCLONE);
1396 *cloned = 1;
1397 }
1398
1399 gdb_assert (pid == new_pid);
1400
1401 if (!WIFSTOPPED (status))
1402 {
1403 /* The pid we tried to attach has apparently just exited. */
1404 if (debug_linux_nat)
1405 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1406 pid, status_to_str (status));
1407 return status;
1408 }
1409
1410 if (WSTOPSIG (status) != SIGSTOP)
1411 {
1412 *signalled = 1;
1413 if (debug_linux_nat)
1414 fprintf_unfiltered (gdb_stdlog,
1415 "LNPAW: Received %s after attaching\n",
1416 status_to_str (status));
1417 }
1418
1419 return status;
1420 }
1421
1422 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1423 if the new LWP could not be attached. */
1424
1425 int
1426 lin_lwp_attach_lwp (ptid_t ptid)
1427 {
1428 struct lwp_info *lp;
1429 sigset_t prev_mask;
1430
1431 gdb_assert (is_lwp (ptid));
1432
1433 block_child_signals (&prev_mask);
1434
1435 lp = find_lwp_pid (ptid);
1436
1437 /* We assume that we're already attached to any LWP that has an id
1438 equal to the overall process id, and to any LWP that is already
1439 in our list of LWPs. If we're not seeing exit events from threads
1440 and we've had PID wraparound since we last tried to stop all threads,
1441 this assumption might be wrong; fortunately, this is very unlikely
1442 to happen. */
1443 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1444 {
1445 int status, cloned = 0, signalled = 0;
1446
1447 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1448 {
1449 /* If we fail to attach to the thread, issue a warning,
1450 but continue. One way this can happen is if thread
1451 creation is interrupted; as of Linux kernel 2.6.19, a
1452 bug may place threads in the thread list and then fail
1453 to create them. */
1454 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1455 safe_strerror (errno));
1456 restore_child_signals_mask (&prev_mask);
1457 return -1;
1458 }
1459
1460 if (debug_linux_nat)
1461 fprintf_unfiltered (gdb_stdlog,
1462 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1463 target_pid_to_str (ptid));
1464
1465 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1466 if (!WIFSTOPPED (status))
1467 return -1;
1468
1469 lp = add_lwp (ptid);
1470 lp->stopped = 1;
1471 lp->cloned = cloned;
1472 lp->signalled = signalled;
1473 if (WSTOPSIG (status) != SIGSTOP)
1474 {
1475 lp->resumed = 1;
1476 lp->status = status;
1477 }
1478
1479 target_post_attach (GET_LWP (lp->ptid));
1480
1481 if (debug_linux_nat)
1482 {
1483 fprintf_unfiltered (gdb_stdlog,
1484 "LLAL: waitpid %s received %s\n",
1485 target_pid_to_str (ptid),
1486 status_to_str (status));
1487 }
1488 }
1489 else
1490 {
1491 /* We assume that the LWP representing the original process is
1492 already stopped. Mark it as stopped in the data structure
1493 that the GNU/linux ptrace layer uses to keep track of
1494 threads. Note that this won't have already been done since
1495 the main thread will have, we assume, been stopped by an
1496 attach from a different layer. */
1497 if (lp == NULL)
1498 lp = add_lwp (ptid);
1499 lp->stopped = 1;
1500 }
1501
1502 restore_child_signals_mask (&prev_mask);
1503 return 0;
1504 }
1505
1506 static void
1507 linux_nat_create_inferior (struct target_ops *ops,
1508 char *exec_file, char *allargs, char **env,
1509 int from_tty)
1510 {
1511 #ifdef HAVE_PERSONALITY
1512 int personality_orig = 0, personality_set = 0;
1513 #endif /* HAVE_PERSONALITY */
1514
1515 /* The fork_child mechanism is synchronous and calls target_wait, so
1516 we have to mask the async mode. */
1517
1518 #ifdef HAVE_PERSONALITY
1519 if (disable_randomization)
1520 {
1521 errno = 0;
1522 personality_orig = personality (0xffffffff);
1523 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1524 {
1525 personality_set = 1;
1526 personality (personality_orig | ADDR_NO_RANDOMIZE);
1527 }
1528 if (errno != 0 || (personality_set
1529 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1530 warning (_("Error disabling address space randomization: %s"),
1531 safe_strerror (errno));
1532 }
1533 #endif /* HAVE_PERSONALITY */
1534
1535 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1536
1537 #ifdef HAVE_PERSONALITY
1538 if (personality_set)
1539 {
1540 errno = 0;
1541 personality (personality_orig);
1542 if (errno != 0)
1543 warning (_("Error restoring address space randomization: %s"),
1544 safe_strerror (errno));
1545 }
1546 #endif /* HAVE_PERSONALITY */
1547 }
1548
1549 static void
1550 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1551 {
1552 struct lwp_info *lp;
1553 int status;
1554 ptid_t ptid;
1555
1556 linux_ops->to_attach (ops, args, from_tty);
1557
1558 /* The ptrace base target adds the main thread with (pid,0,0)
1559 format. Decorate it with lwp info. */
1560 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1561 thread_change_ptid (inferior_ptid, ptid);
1562
1563 /* Add the initial process as the first LWP to the list. */
1564 lp = add_lwp (ptid);
1565
1566 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1567 &lp->signalled);
1568 if (!WIFSTOPPED (status))
1569 {
1570 if (WIFEXITED (status))
1571 {
1572 int exit_code = WEXITSTATUS (status);
1573
1574 target_terminal_ours ();
1575 target_mourn_inferior ();
1576 if (exit_code == 0)
1577 error (_("Unable to attach: program exited normally."));
1578 else
1579 error (_("Unable to attach: program exited with code %d."),
1580 exit_code);
1581 }
1582 else if (WIFSIGNALED (status))
1583 {
1584 enum target_signal signo;
1585
1586 target_terminal_ours ();
1587 target_mourn_inferior ();
1588
1589 signo = target_signal_from_host (WTERMSIG (status));
1590 error (_("Unable to attach: program terminated with signal "
1591 "%s, %s."),
1592 target_signal_to_name (signo),
1593 target_signal_to_string (signo));
1594 }
1595
1596 internal_error (__FILE__, __LINE__,
1597 _("unexpected status %d for PID %ld"),
1598 status, (long) GET_LWP (ptid));
1599 }
1600
1601 lp->stopped = 1;
1602
1603 /* Save the wait status to report later. */
1604 lp->resumed = 1;
1605 if (debug_linux_nat)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "LNA: waitpid %ld, saving status %s\n",
1608 (long) GET_PID (lp->ptid), status_to_str (status));
1609
1610 lp->status = status;
1611
1612 if (target_can_async_p ())
1613 target_async (inferior_event_handler, 0);
1614 }
1615
1616 /* Get pending status of LP. */
1617 static int
1618 get_pending_status (struct lwp_info *lp, int *status)
1619 {
1620 enum target_signal signo = TARGET_SIGNAL_0;
1621
1622 /* If we paused threads momentarily, we may have stored pending
1623 events in lp->status or lp->waitstatus (see stop_wait_callback),
1624 and GDB core hasn't seen any signal for those threads.
1625 Otherwise, the last signal reported to the core is found in the
1626 thread object's stop_signal.
1627
1628 There's a corner case that isn't handled here at present. Only
1629 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1630 stop_signal make sense as a real signal to pass to the inferior.
1631 Some catchpoint related events, like
1632 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1633 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1634 those traps are debug API (ptrace in our case) related and
1635 induced; the inferior wouldn't see them if it wasn't being
1636 traced. Hence, we should never pass them to the inferior, even
1637 when set to pass state. Since this corner case isn't handled by
1638 infrun.c when proceeding with a signal, for consistency, neither
1639 do we handle it here (or elsewhere in the file we check for
1640 signal pass state). Normally SIGTRAP isn't set to pass state, so
1641 this is really a corner case. */
1642
1643 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1644 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1645 else if (lp->status)
1646 signo = target_signal_from_host (WSTOPSIG (lp->status));
1647 else if (non_stop && !is_executing (lp->ptid))
1648 {
1649 struct thread_info *tp = find_thread_ptid (lp->ptid);
1650
1651 signo = tp->stop_signal;
1652 }
1653 else if (!non_stop)
1654 {
1655 struct target_waitstatus last;
1656 ptid_t last_ptid;
1657
1658 get_last_target_status (&last_ptid, &last);
1659
1660 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1661 {
1662 struct thread_info *tp = find_thread_ptid (lp->ptid);
1663
1664 signo = tp->stop_signal;
1665 }
1666 }
1667
1668 *status = 0;
1669
1670 if (signo == TARGET_SIGNAL_0)
1671 {
1672 if (debug_linux_nat)
1673 fprintf_unfiltered (gdb_stdlog,
1674 "GPT: lwp %s has no pending signal\n",
1675 target_pid_to_str (lp->ptid));
1676 }
1677 else if (!signal_pass_state (signo))
1678 {
1679 if (debug_linux_nat)
1680 fprintf_unfiltered (gdb_stdlog, "\
1681 GPT: lwp %s had signal %s, but it is in no pass state\n",
1682 target_pid_to_str (lp->ptid),
1683 target_signal_to_string (signo));
1684 }
1685 else
1686 {
1687 *status = W_STOPCODE (target_signal_to_host (signo));
1688
1689 if (debug_linux_nat)
1690 fprintf_unfiltered (gdb_stdlog,
1691 "GPT: lwp %s has pending signal %s\n",
1692 target_pid_to_str (lp->ptid),
1693 target_signal_to_string (signo));
1694 }
1695
1696 return 0;
1697 }
1698
1699 static int
1700 detach_callback (struct lwp_info *lp, void *data)
1701 {
1702 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1703
1704 if (debug_linux_nat && lp->status)
1705 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1706 strsignal (WSTOPSIG (lp->status)),
1707 target_pid_to_str (lp->ptid));
1708
1709 /* If there is a pending SIGSTOP, get rid of it. */
1710 if (lp->signalled)
1711 {
1712 if (debug_linux_nat)
1713 fprintf_unfiltered (gdb_stdlog,
1714 "DC: Sending SIGCONT to %s\n",
1715 target_pid_to_str (lp->ptid));
1716
1717 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1718 lp->signalled = 0;
1719 }
1720
1721 /* We don't actually detach from the LWP that has an id equal to the
1722 overall process id just yet. */
1723 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1724 {
1725 int status = 0;
1726
1727 /* Pass on any pending signal for this LWP. */
1728 get_pending_status (lp, &status);
1729
1730 errno = 0;
1731 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1732 WSTOPSIG (status)) < 0)
1733 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1734 safe_strerror (errno));
1735
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1739 target_pid_to_str (lp->ptid),
1740 strsignal (WSTOPSIG (status)));
1741
1742 delete_lwp (lp->ptid);
1743 }
1744
1745 return 0;
1746 }
1747
1748 static void
1749 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1750 {
1751 int pid;
1752 int status;
1753 struct lwp_info *main_lwp;
1754
1755 pid = GET_PID (inferior_ptid);
1756
1757 if (target_can_async_p ())
1758 linux_nat_async (NULL, 0);
1759
1760 /* Stop all threads before detaching. ptrace requires that the
1761 thread is stopped to sucessfully detach. */
1762 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1763 /* ... and wait until all of them have reported back that
1764 they're no longer running. */
1765 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1766
1767 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1768
1769 /* Only the initial process should be left right now. */
1770 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1771
1772 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1773
1774 /* Pass on any pending signal for the last LWP. */
1775 if ((args == NULL || *args == '\0')
1776 && get_pending_status (main_lwp, &status) != -1
1777 && WIFSTOPPED (status))
1778 {
1779 /* Put the signal number in ARGS so that inf_ptrace_detach will
1780 pass it along with PTRACE_DETACH. */
1781 args = alloca (8);
1782 sprintf (args, "%d", (int) WSTOPSIG (status));
1783 if (debug_linux_nat)
1784 fprintf_unfiltered (gdb_stdlog,
1785 "LND: Sending signal %s to %s\n",
1786 args,
1787 target_pid_to_str (main_lwp->ptid));
1788 }
1789
1790 delete_lwp (main_lwp->ptid);
1791
1792 if (forks_exist_p ())
1793 {
1794 /* Multi-fork case. The current inferior_ptid is being detached
1795 from, but there are other viable forks to debug. Detach from
1796 the current fork, and context-switch to the first
1797 available. */
1798 linux_fork_detach (args, from_tty);
1799
1800 if (non_stop && target_can_async_p ())
1801 target_async (inferior_event_handler, 0);
1802 }
1803 else
1804 linux_ops->to_detach (ops, args, from_tty);
1805 }
1806
1807 /* Resume LP. */
1808
1809 static int
1810 resume_callback (struct lwp_info *lp, void *data)
1811 {
1812 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1813
1814 if (lp->stopped && inf->vfork_child != NULL)
1815 {
1816 if (debug_linux_nat)
1817 fprintf_unfiltered (gdb_stdlog,
1818 "RC: Not resuming %s (vfork parent)\n",
1819 target_pid_to_str (lp->ptid));
1820 }
1821 else if (lp->stopped && lp->status == 0)
1822 {
1823 if (debug_linux_nat)
1824 fprintf_unfiltered (gdb_stdlog,
1825 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1826 target_pid_to_str (lp->ptid));
1827
1828 linux_ops->to_resume (linux_ops,
1829 pid_to_ptid (GET_LWP (lp->ptid)),
1830 0, TARGET_SIGNAL_0);
1831 if (debug_linux_nat)
1832 fprintf_unfiltered (gdb_stdlog,
1833 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1834 target_pid_to_str (lp->ptid));
1835 lp->stopped = 0;
1836 lp->step = 0;
1837 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1838 lp->stopped_by_watchpoint = 0;
1839 }
1840 else if (lp->stopped && debug_linux_nat)
1841 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1842 target_pid_to_str (lp->ptid));
1843 else if (debug_linux_nat)
1844 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1845 target_pid_to_str (lp->ptid));
1846
1847 return 0;
1848 }
1849
1850 static int
1851 resume_clear_callback (struct lwp_info *lp, void *data)
1852 {
1853 lp->resumed = 0;
1854 return 0;
1855 }
1856
1857 static int
1858 resume_set_callback (struct lwp_info *lp, void *data)
1859 {
1860 lp->resumed = 1;
1861 return 0;
1862 }
1863
1864 static void
1865 linux_nat_resume (struct target_ops *ops,
1866 ptid_t ptid, int step, enum target_signal signo)
1867 {
1868 sigset_t prev_mask;
1869 struct lwp_info *lp;
1870 int resume_many;
1871
1872 if (debug_linux_nat)
1873 fprintf_unfiltered (gdb_stdlog,
1874 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1875 step ? "step" : "resume",
1876 target_pid_to_str (ptid),
1877 (signo != TARGET_SIGNAL_0
1878 ? strsignal (target_signal_to_host (signo)) : "0"),
1879 target_pid_to_str (inferior_ptid));
1880
1881 block_child_signals (&prev_mask);
1882
1883 /* A specific PTID means `step only this process id'. */
1884 resume_many = (ptid_equal (minus_one_ptid, ptid)
1885 || ptid_is_pid (ptid));
1886
1887 /* Mark the lwps we're resuming as resumed. */
1888 iterate_over_lwps (ptid, resume_set_callback, NULL);
1889
1890 /* See if it's the current inferior that should be handled
1891 specially. */
1892 if (resume_many)
1893 lp = find_lwp_pid (inferior_ptid);
1894 else
1895 lp = find_lwp_pid (ptid);
1896 gdb_assert (lp != NULL);
1897
1898 /* Remember if we're stepping. */
1899 lp->step = step;
1900
1901 /* If we have a pending wait status for this thread, there is no
1902 point in resuming the process. But first make sure that
1903 linux_nat_wait won't preemptively handle the event - we
1904 should never take this short-circuit if we are going to
1905 leave LP running, since we have skipped resuming all the
1906 other threads. This bit of code needs to be synchronized
1907 with linux_nat_wait. */
1908
1909 if (lp->status && WIFSTOPPED (lp->status))
1910 {
1911 enum target_signal saved_signo;
1912 struct inferior *inf;
1913
1914 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1915 gdb_assert (inf);
1916 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1917
1918 /* Defer to common code if we're gaining control of the
1919 inferior. */
1920 if (inf->stop_soon == NO_STOP_QUIETLY
1921 && signal_stop_state (saved_signo) == 0
1922 && signal_print_state (saved_signo) == 0
1923 && signal_pass_state (saved_signo) == 1)
1924 {
1925 if (debug_linux_nat)
1926 fprintf_unfiltered (gdb_stdlog,
1927 "LLR: Not short circuiting for ignored "
1928 "status 0x%x\n", lp->status);
1929
1930 /* FIXME: What should we do if we are supposed to continue
1931 this thread with a signal? */
1932 gdb_assert (signo == TARGET_SIGNAL_0);
1933 signo = saved_signo;
1934 lp->status = 0;
1935 }
1936 }
1937
1938 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1939 {
1940 /* FIXME: What should we do if we are supposed to continue
1941 this thread with a signal? */
1942 gdb_assert (signo == TARGET_SIGNAL_0);
1943
1944 if (debug_linux_nat)
1945 fprintf_unfiltered (gdb_stdlog,
1946 "LLR: Short circuiting for status 0x%x\n",
1947 lp->status);
1948
1949 restore_child_signals_mask (&prev_mask);
1950 if (target_can_async_p ())
1951 {
1952 target_async (inferior_event_handler, 0);
1953 /* Tell the event loop we have something to process. */
1954 async_file_mark ();
1955 }
1956 return;
1957 }
1958
1959 /* Mark LWP as not stopped to prevent it from being continued by
1960 resume_callback. */
1961 lp->stopped = 0;
1962
1963 if (resume_many)
1964 iterate_over_lwps (ptid, resume_callback, NULL);
1965
1966 /* Convert to something the lower layer understands. */
1967 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1968
1969 linux_ops->to_resume (linux_ops, ptid, step, signo);
1970 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1971 lp->stopped_by_watchpoint = 0;
1972
1973 if (debug_linux_nat)
1974 fprintf_unfiltered (gdb_stdlog,
1975 "LLR: %s %s, %s (resume event thread)\n",
1976 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1977 target_pid_to_str (ptid),
1978 (signo != TARGET_SIGNAL_0
1979 ? strsignal (target_signal_to_host (signo)) : "0"));
1980
1981 restore_child_signals_mask (&prev_mask);
1982 if (target_can_async_p ())
1983 target_async (inferior_event_handler, 0);
1984 }
1985
1986 /* Send a signal to an LWP. */
1987
1988 static int
1989 kill_lwp (int lwpid, int signo)
1990 {
1991 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1992 fails, then we are not using nptl threads and we should be using kill. */
1993
1994 #ifdef HAVE_TKILL_SYSCALL
1995 {
1996 static int tkill_failed;
1997
1998 if (!tkill_failed)
1999 {
2000 int ret;
2001
2002 errno = 0;
2003 ret = syscall (__NR_tkill, lwpid, signo);
2004 if (errno != ENOSYS)
2005 return ret;
2006 tkill_failed = 1;
2007 }
2008 }
2009 #endif
2010
2011 return kill (lwpid, signo);
2012 }
2013
2014 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2015 event, check if the core is interested in it: if not, ignore the
2016 event, and keep waiting; otherwise, we need to toggle the LWP's
2017 syscall entry/exit status, since the ptrace event itself doesn't
2018 indicate it, and report the trap to higher layers. */
2019
2020 static int
2021 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2022 {
2023 struct target_waitstatus *ourstatus = &lp->waitstatus;
2024 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2025 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2026
2027 if (stopping)
2028 {
2029 /* If we're stopping threads, there's a SIGSTOP pending, which
2030 makes it so that the LWP reports an immediate syscall return,
2031 followed by the SIGSTOP. Skip seeing that "return" using
2032 PTRACE_CONT directly, and let stop_wait_callback collect the
2033 SIGSTOP. Later when the thread is resumed, a new syscall
2034 entry event. If we didn't do this (and returned 0), we'd
2035 leave a syscall entry pending, and our caller, by using
2036 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2037 itself. Later, when the user re-resumes this LWP, we'd see
2038 another syscall entry event and we'd mistake it for a return.
2039
2040 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2041 (leaving immediately with LWP->signalled set, without issuing
2042 a PTRACE_CONT), it would still be problematic to leave this
2043 syscall enter pending, as later when the thread is resumed,
2044 it would then see the same syscall exit mentioned above,
2045 followed by the delayed SIGSTOP, while the syscall didn't
2046 actually get to execute. It seems it would be even more
2047 confusing to the user. */
2048
2049 if (debug_linux_nat)
2050 fprintf_unfiltered (gdb_stdlog,
2051 "LHST: ignoring syscall %d "
2052 "for LWP %ld (stopping threads), "
2053 "resuming with PTRACE_CONT for SIGSTOP\n",
2054 syscall_number,
2055 GET_LWP (lp->ptid));
2056
2057 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2058 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2059 return 1;
2060 }
2061
2062 if (catch_syscall_enabled ())
2063 {
2064 /* Always update the entry/return state, even if this particular
2065 syscall isn't interesting to the core now. In async mode,
2066 the user could install a new catchpoint for this syscall
2067 between syscall enter/return, and we'll need to know to
2068 report a syscall return if that happens. */
2069 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2070 ? TARGET_WAITKIND_SYSCALL_RETURN
2071 : TARGET_WAITKIND_SYSCALL_ENTRY);
2072
2073 if (catching_syscall_number (syscall_number))
2074 {
2075 /* Alright, an event to report. */
2076 ourstatus->kind = lp->syscall_state;
2077 ourstatus->value.syscall_number = syscall_number;
2078
2079 if (debug_linux_nat)
2080 fprintf_unfiltered (gdb_stdlog,
2081 "LHST: stopping for %s of syscall %d"
2082 " for LWP %ld\n",
2083 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2084 ? "entry" : "return",
2085 syscall_number,
2086 GET_LWP (lp->ptid));
2087 return 0;
2088 }
2089
2090 if (debug_linux_nat)
2091 fprintf_unfiltered (gdb_stdlog,
2092 "LHST: ignoring %s of syscall %d "
2093 "for LWP %ld\n",
2094 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2095 ? "entry" : "return",
2096 syscall_number,
2097 GET_LWP (lp->ptid));
2098 }
2099 else
2100 {
2101 /* If we had been syscall tracing, and hence used PT_SYSCALL
2102 before on this LWP, it could happen that the user removes all
2103 syscall catchpoints before we get to process this event.
2104 There are two noteworthy issues here:
2105
2106 - When stopped at a syscall entry event, resuming with
2107 PT_STEP still resumes executing the syscall and reports a
2108 syscall return.
2109
2110 - Only PT_SYSCALL catches syscall enters. If we last
2111 single-stepped this thread, then this event can't be a
2112 syscall enter. If we last single-stepped this thread, this
2113 has to be a syscall exit.
2114
2115 The points above mean that the next resume, be it PT_STEP or
2116 PT_CONTINUE, can not trigger a syscall trace event. */
2117 if (debug_linux_nat)
2118 fprintf_unfiltered (gdb_stdlog,
2119 "LHST: caught syscall event with no syscall catchpoints."
2120 " %d for LWP %ld, ignoring\n",
2121 syscall_number,
2122 GET_LWP (lp->ptid));
2123 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2124 }
2125
2126 /* The core isn't interested in this event. For efficiency, avoid
2127 stopping all threads only to have the core resume them all again.
2128 Since we're not stopping threads, if we're still syscall tracing
2129 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2130 subsequent syscall. Simply resume using the inf-ptrace layer,
2131 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2132
2133 /* Note that gdbarch_get_syscall_number may access registers, hence
2134 fill a regcache. */
2135 registers_changed ();
2136 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2137 lp->step, TARGET_SIGNAL_0);
2138 return 1;
2139 }
2140
2141 /* Handle a GNU/Linux extended wait response. If we see a clone
2142 event, we need to add the new LWP to our list (and not report the
2143 trap to higher layers). This function returns non-zero if the
2144 event should be ignored and we should wait again. If STOPPING is
2145 true, the new LWP remains stopped, otherwise it is continued. */
2146
2147 static int
2148 linux_handle_extended_wait (struct lwp_info *lp, int status,
2149 int stopping)
2150 {
2151 int pid = GET_LWP (lp->ptid);
2152 struct target_waitstatus *ourstatus = &lp->waitstatus;
2153 int event = status >> 16;
2154
2155 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2156 || event == PTRACE_EVENT_CLONE)
2157 {
2158 unsigned long new_pid;
2159 int ret;
2160
2161 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2162
2163 /* If we haven't already seen the new PID stop, wait for it now. */
2164 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2165 {
2166 /* The new child has a pending SIGSTOP. We can't affect it until it
2167 hits the SIGSTOP, but we're already attached. */
2168 ret = my_waitpid (new_pid, &status,
2169 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2170 if (ret == -1)
2171 perror_with_name (_("waiting for new child"));
2172 else if (ret != new_pid)
2173 internal_error (__FILE__, __LINE__,
2174 _("wait returned unexpected PID %d"), ret);
2175 else if (!WIFSTOPPED (status))
2176 internal_error (__FILE__, __LINE__,
2177 _("wait returned unexpected status 0x%x"), status);
2178 }
2179
2180 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2181
2182 if (event == PTRACE_EVENT_FORK
2183 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2184 {
2185 struct fork_info *fp;
2186
2187 /* Handle checkpointing by linux-fork.c here as a special
2188 case. We don't want the follow-fork-mode or 'catch fork'
2189 to interfere with this. */
2190
2191 /* This won't actually modify the breakpoint list, but will
2192 physically remove the breakpoints from the child. */
2193 detach_breakpoints (new_pid);
2194
2195 /* Retain child fork in ptrace (stopped) state. */
2196 fp = find_fork_pid (new_pid);
2197 if (!fp)
2198 fp = add_fork (new_pid);
2199
2200 /* Report as spurious, so that infrun doesn't want to follow
2201 this fork. We're actually doing an infcall in
2202 linux-fork.c. */
2203 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2204 linux_enable_event_reporting (pid_to_ptid (new_pid));
2205
2206 /* Report the stop to the core. */
2207 return 0;
2208 }
2209
2210 if (event == PTRACE_EVENT_FORK)
2211 ourstatus->kind = TARGET_WAITKIND_FORKED;
2212 else if (event == PTRACE_EVENT_VFORK)
2213 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2214 else
2215 {
2216 struct lwp_info *new_lp;
2217
2218 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2219
2220 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2221 new_lp->cloned = 1;
2222 new_lp->stopped = 1;
2223
2224 if (WSTOPSIG (status) != SIGSTOP)
2225 {
2226 /* This can happen if someone starts sending signals to
2227 the new thread before it gets a chance to run, which
2228 have a lower number than SIGSTOP (e.g. SIGUSR1).
2229 This is an unlikely case, and harder to handle for
2230 fork / vfork than for clone, so we do not try - but
2231 we handle it for clone events here. We'll send
2232 the other signal on to the thread below. */
2233
2234 new_lp->signalled = 1;
2235 }
2236 else
2237 status = 0;
2238
2239 if (non_stop)
2240 {
2241 /* Add the new thread to GDB's lists as soon as possible
2242 so that:
2243
2244 1) the frontend doesn't have to wait for a stop to
2245 display them, and,
2246
2247 2) we tag it with the correct running state. */
2248
2249 /* If the thread_db layer is active, let it know about
2250 this new thread, and add it to GDB's list. */
2251 if (!thread_db_attach_lwp (new_lp->ptid))
2252 {
2253 /* We're not using thread_db. Add it to GDB's
2254 list. */
2255 target_post_attach (GET_LWP (new_lp->ptid));
2256 add_thread (new_lp->ptid);
2257 }
2258
2259 if (!stopping)
2260 {
2261 set_running (new_lp->ptid, 1);
2262 set_executing (new_lp->ptid, 1);
2263 }
2264 }
2265
2266 /* Note the need to use the low target ops to resume, to
2267 handle resuming with PT_SYSCALL if we have syscall
2268 catchpoints. */
2269 if (!stopping)
2270 {
2271 enum target_signal signo;
2272
2273 new_lp->stopped = 0;
2274 new_lp->resumed = 1;
2275
2276 signo = (status
2277 ? target_signal_from_host (WSTOPSIG (status))
2278 : TARGET_SIGNAL_0);
2279
2280 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2281 0, signo);
2282 }
2283 else
2284 {
2285 if (status != 0)
2286 {
2287 /* We created NEW_LP so it cannot yet contain STATUS. */
2288 gdb_assert (new_lp->status == 0);
2289
2290 /* Save the wait status to report later. */
2291 if (debug_linux_nat)
2292 fprintf_unfiltered (gdb_stdlog,
2293 "LHEW: waitpid of new LWP %ld, "
2294 "saving status %s\n",
2295 (long) GET_LWP (new_lp->ptid),
2296 status_to_str (status));
2297 new_lp->status = status;
2298 }
2299 }
2300
2301 if (debug_linux_nat)
2302 fprintf_unfiltered (gdb_stdlog,
2303 "LHEW: Got clone event from LWP %ld, resuming\n",
2304 GET_LWP (lp->ptid));
2305 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2306 0, TARGET_SIGNAL_0);
2307
2308 return 1;
2309 }
2310
2311 return 0;
2312 }
2313
2314 if (event == PTRACE_EVENT_EXEC)
2315 {
2316 if (debug_linux_nat)
2317 fprintf_unfiltered (gdb_stdlog,
2318 "LHEW: Got exec event from LWP %ld\n",
2319 GET_LWP (lp->ptid));
2320
2321 ourstatus->kind = TARGET_WAITKIND_EXECD;
2322 ourstatus->value.execd_pathname
2323 = xstrdup (linux_child_pid_to_exec_file (pid));
2324
2325 return 0;
2326 }
2327
2328 if (event == PTRACE_EVENT_VFORK_DONE)
2329 {
2330 if (current_inferior ()->waiting_for_vfork_done)
2331 {
2332 if (debug_linux_nat)
2333 fprintf_unfiltered (gdb_stdlog, "\
2334 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2335 GET_LWP (lp->ptid));
2336
2337 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2338 return 0;
2339 }
2340
2341 if (debug_linux_nat)
2342 fprintf_unfiltered (gdb_stdlog, "\
2343 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2344 GET_LWP (lp->ptid));
2345 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2346 return 1;
2347 }
2348
2349 internal_error (__FILE__, __LINE__,
2350 _("unknown ptrace event %d"), event);
2351 }
2352
2353 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2354 exited. */
2355
2356 static int
2357 wait_lwp (struct lwp_info *lp)
2358 {
2359 pid_t pid;
2360 int status;
2361 int thread_dead = 0;
2362
2363 gdb_assert (!lp->stopped);
2364 gdb_assert (lp->status == 0);
2365
2366 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2367 if (pid == -1 && errno == ECHILD)
2368 {
2369 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2370 if (pid == -1 && errno == ECHILD)
2371 {
2372 /* The thread has previously exited. We need to delete it
2373 now because, for some vendor 2.4 kernels with NPTL
2374 support backported, there won't be an exit event unless
2375 it is the main thread. 2.6 kernels will report an exit
2376 event for each thread that exits, as expected. */
2377 thread_dead = 1;
2378 if (debug_linux_nat)
2379 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2380 target_pid_to_str (lp->ptid));
2381 }
2382 }
2383
2384 if (!thread_dead)
2385 {
2386 gdb_assert (pid == GET_LWP (lp->ptid));
2387
2388 if (debug_linux_nat)
2389 {
2390 fprintf_unfiltered (gdb_stdlog,
2391 "WL: waitpid %s received %s\n",
2392 target_pid_to_str (lp->ptid),
2393 status_to_str (status));
2394 }
2395 }
2396
2397 /* Check if the thread has exited. */
2398 if (WIFEXITED (status) || WIFSIGNALED (status))
2399 {
2400 thread_dead = 1;
2401 if (debug_linux_nat)
2402 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2403 target_pid_to_str (lp->ptid));
2404 }
2405
2406 if (thread_dead)
2407 {
2408 exit_lwp (lp);
2409 return 0;
2410 }
2411
2412 gdb_assert (WIFSTOPPED (status));
2413
2414 /* Handle GNU/Linux's syscall SIGTRAPs. */
2415 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2416 {
2417 /* No longer need the sysgood bit. The ptrace event ends up
2418 recorded in lp->waitstatus if we care for it. We can carry
2419 on handling the event like a regular SIGTRAP from here
2420 on. */
2421 status = W_STOPCODE (SIGTRAP);
2422 if (linux_handle_syscall_trap (lp, 1))
2423 return wait_lwp (lp);
2424 }
2425
2426 /* Handle GNU/Linux's extended waitstatus for trace events. */
2427 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2428 {
2429 if (debug_linux_nat)
2430 fprintf_unfiltered (gdb_stdlog,
2431 "WL: Handling extended status 0x%06x\n",
2432 status);
2433 if (linux_handle_extended_wait (lp, status, 1))
2434 return wait_lwp (lp);
2435 }
2436
2437 return status;
2438 }
2439
2440 /* Save the most recent siginfo for LP. This is currently only called
2441 for SIGTRAP; some ports use the si_addr field for
2442 target_stopped_data_address. In the future, it may also be used to
2443 restore the siginfo of requeued signals. */
2444
2445 static void
2446 save_siginfo (struct lwp_info *lp)
2447 {
2448 errno = 0;
2449 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2450 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2451
2452 if (errno != 0)
2453 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2454 }
2455
2456 /* Send a SIGSTOP to LP. */
2457
2458 static int
2459 stop_callback (struct lwp_info *lp, void *data)
2460 {
2461 if (!lp->stopped && !lp->signalled)
2462 {
2463 int ret;
2464
2465 if (debug_linux_nat)
2466 {
2467 fprintf_unfiltered (gdb_stdlog,
2468 "SC: kill %s **<SIGSTOP>**\n",
2469 target_pid_to_str (lp->ptid));
2470 }
2471 errno = 0;
2472 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2473 if (debug_linux_nat)
2474 {
2475 fprintf_unfiltered (gdb_stdlog,
2476 "SC: lwp kill %d %s\n",
2477 ret,
2478 errno ? safe_strerror (errno) : "ERRNO-OK");
2479 }
2480
2481 lp->signalled = 1;
2482 gdb_assert (lp->status == 0);
2483 }
2484
2485 return 0;
2486 }
2487
2488 /* Return non-zero if LWP PID has a pending SIGINT. */
2489
2490 static int
2491 linux_nat_has_pending_sigint (int pid)
2492 {
2493 sigset_t pending, blocked, ignored;
2494
2495 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2496
2497 if (sigismember (&pending, SIGINT)
2498 && !sigismember (&ignored, SIGINT))
2499 return 1;
2500
2501 return 0;
2502 }
2503
2504 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2505
2506 static int
2507 set_ignore_sigint (struct lwp_info *lp, void *data)
2508 {
2509 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2510 flag to consume the next one. */
2511 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2512 && WSTOPSIG (lp->status) == SIGINT)
2513 lp->status = 0;
2514 else
2515 lp->ignore_sigint = 1;
2516
2517 return 0;
2518 }
2519
2520 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2521 This function is called after we know the LWP has stopped; if the LWP
2522 stopped before the expected SIGINT was delivered, then it will never have
2523 arrived. Also, if the signal was delivered to a shared queue and consumed
2524 by a different thread, it will never be delivered to this LWP. */
2525
2526 static void
2527 maybe_clear_ignore_sigint (struct lwp_info *lp)
2528 {
2529 if (!lp->ignore_sigint)
2530 return;
2531
2532 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2533 {
2534 if (debug_linux_nat)
2535 fprintf_unfiltered (gdb_stdlog,
2536 "MCIS: Clearing bogus flag for %s\n",
2537 target_pid_to_str (lp->ptid));
2538 lp->ignore_sigint = 0;
2539 }
2540 }
2541
2542 /* Fetch the possible triggered data watchpoint info and store it in
2543 LP.
2544
2545 On some archs, like x86, that use debug registers to set
2546 watchpoints, it's possible that the way to know which watched
2547 address trapped, is to check the register that is used to select
2548 which address to watch. Problem is, between setting the watchpoint
2549 and reading back which data address trapped, the user may change
2550 the set of watchpoints, and, as a consequence, GDB changes the
2551 debug registers in the inferior. To avoid reading back a stale
2552 stopped-data-address when that happens, we cache in LP the fact
2553 that a watchpoint trapped, and the corresponding data address, as
2554 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2555 registers meanwhile, we have the cached data we can rely on. */
2556
2557 static void
2558 save_sigtrap (struct lwp_info *lp)
2559 {
2560 struct cleanup *old_chain;
2561
2562 if (linux_ops->to_stopped_by_watchpoint == NULL)
2563 {
2564 lp->stopped_by_watchpoint = 0;
2565 return;
2566 }
2567
2568 old_chain = save_inferior_ptid ();
2569 inferior_ptid = lp->ptid;
2570
2571 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2572
2573 if (lp->stopped_by_watchpoint)
2574 {
2575 if (linux_ops->to_stopped_data_address != NULL)
2576 lp->stopped_data_address_p =
2577 linux_ops->to_stopped_data_address (&current_target,
2578 &lp->stopped_data_address);
2579 else
2580 lp->stopped_data_address_p = 0;
2581 }
2582
2583 do_cleanups (old_chain);
2584 }
2585
2586 /* See save_sigtrap. */
2587
2588 static int
2589 linux_nat_stopped_by_watchpoint (void)
2590 {
2591 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2592
2593 gdb_assert (lp != NULL);
2594
2595 return lp->stopped_by_watchpoint;
2596 }
2597
2598 static int
2599 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2600 {
2601 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2602
2603 gdb_assert (lp != NULL);
2604
2605 *addr_p = lp->stopped_data_address;
2606
2607 return lp->stopped_data_address_p;
2608 }
2609
2610 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2611
2612 static int
2613 sigtrap_is_event (int status)
2614 {
2615 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2616 }
2617
2618 /* SIGTRAP-like events recognizer. */
2619
2620 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2621
2622 /* Check for SIGTRAP-like events in LP. */
2623
2624 static int
2625 linux_nat_lp_status_is_event (struct lwp_info *lp)
2626 {
2627 /* We check for lp->waitstatus in addition to lp->status, because we can
2628 have pending process exits recorded in lp->status
2629 and W_EXITCODE(0,0) == 0. We should probably have an additional
2630 lp->status_p flag. */
2631
2632 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2633 && linux_nat_status_is_event (lp->status));
2634 }
2635
2636 /* Set alternative SIGTRAP-like events recognizer. If
2637 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2638 applied. */
2639
2640 void
2641 linux_nat_set_status_is_event (struct target_ops *t,
2642 int (*status_is_event) (int status))
2643 {
2644 linux_nat_status_is_event = status_is_event;
2645 }
2646
2647 /* Wait until LP is stopped. */
2648
2649 static int
2650 stop_wait_callback (struct lwp_info *lp, void *data)
2651 {
2652 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2653
2654 /* If this is a vfork parent, bail out, it is not going to report
2655 any SIGSTOP until the vfork is done with. */
2656 if (inf->vfork_child != NULL)
2657 return 0;
2658
2659 if (!lp->stopped)
2660 {
2661 int status;
2662
2663 status = wait_lwp (lp);
2664 if (status == 0)
2665 return 0;
2666
2667 if (lp->ignore_sigint && WIFSTOPPED (status)
2668 && WSTOPSIG (status) == SIGINT)
2669 {
2670 lp->ignore_sigint = 0;
2671
2672 errno = 0;
2673 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2674 if (debug_linux_nat)
2675 fprintf_unfiltered (gdb_stdlog,
2676 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2677 target_pid_to_str (lp->ptid),
2678 errno ? safe_strerror (errno) : "OK");
2679
2680 return stop_wait_callback (lp, NULL);
2681 }
2682
2683 maybe_clear_ignore_sigint (lp);
2684
2685 if (WSTOPSIG (status) != SIGSTOP)
2686 {
2687 if (linux_nat_status_is_event (status))
2688 {
2689 /* If a LWP other than the LWP that we're reporting an
2690 event for has hit a GDB breakpoint (as opposed to
2691 some random trap signal), then just arrange for it to
2692 hit it again later. We don't keep the SIGTRAP status
2693 and don't forward the SIGTRAP signal to the LWP. We
2694 will handle the current event, eventually we will
2695 resume all LWPs, and this one will get its breakpoint
2696 trap again.
2697
2698 If we do not do this, then we run the risk that the
2699 user will delete or disable the breakpoint, but the
2700 thread will have already tripped on it. */
2701
2702 /* Save the trap's siginfo in case we need it later. */
2703 save_siginfo (lp);
2704
2705 save_sigtrap (lp);
2706
2707 /* Now resume this LWP and get the SIGSTOP event. */
2708 errno = 0;
2709 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2710 if (debug_linux_nat)
2711 {
2712 fprintf_unfiltered (gdb_stdlog,
2713 "PTRACE_CONT %s, 0, 0 (%s)\n",
2714 target_pid_to_str (lp->ptid),
2715 errno ? safe_strerror (errno) : "OK");
2716
2717 fprintf_unfiltered (gdb_stdlog,
2718 "SWC: Candidate SIGTRAP event in %s\n",
2719 target_pid_to_str (lp->ptid));
2720 }
2721 /* Hold this event/waitstatus while we check to see if
2722 there are any more (we still want to get that SIGSTOP). */
2723 stop_wait_callback (lp, NULL);
2724
2725 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2726 there's another event, throw it back into the
2727 queue. */
2728 if (lp->status)
2729 {
2730 if (debug_linux_nat)
2731 fprintf_unfiltered (gdb_stdlog,
2732 "SWC: kill %s, %s\n",
2733 target_pid_to_str (lp->ptid),
2734 status_to_str ((int) status));
2735 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2736 }
2737
2738 /* Save the sigtrap event. */
2739 lp->status = status;
2740 return 0;
2741 }
2742 else
2743 {
2744 /* The thread was stopped with a signal other than
2745 SIGSTOP, and didn't accidentally trip a breakpoint. */
2746
2747 if (debug_linux_nat)
2748 {
2749 fprintf_unfiltered (gdb_stdlog,
2750 "SWC: Pending event %s in %s\n",
2751 status_to_str ((int) status),
2752 target_pid_to_str (lp->ptid));
2753 }
2754 /* Now resume this LWP and get the SIGSTOP event. */
2755 errno = 0;
2756 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2757 if (debug_linux_nat)
2758 fprintf_unfiltered (gdb_stdlog,
2759 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2760 target_pid_to_str (lp->ptid),
2761 errno ? safe_strerror (errno) : "OK");
2762
2763 /* Hold this event/waitstatus while we check to see if
2764 there are any more (we still want to get that SIGSTOP). */
2765 stop_wait_callback (lp, NULL);
2766
2767 /* If the lp->status field is still empty, use it to
2768 hold this event. If not, then this event must be
2769 returned to the event queue of the LWP. */
2770 if (lp->status)
2771 {
2772 if (debug_linux_nat)
2773 {
2774 fprintf_unfiltered (gdb_stdlog,
2775 "SWC: kill %s, %s\n",
2776 target_pid_to_str (lp->ptid),
2777 status_to_str ((int) status));
2778 }
2779 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2780 }
2781 else
2782 lp->status = status;
2783 return 0;
2784 }
2785 }
2786 else
2787 {
2788 /* We caught the SIGSTOP that we intended to catch, so
2789 there's no SIGSTOP pending. */
2790 lp->stopped = 1;
2791 lp->signalled = 0;
2792 }
2793 }
2794
2795 return 0;
2796 }
2797
2798 /* Return non-zero if LP has a wait status pending. */
2799
2800 static int
2801 status_callback (struct lwp_info *lp, void *data)
2802 {
2803 /* Only report a pending wait status if we pretend that this has
2804 indeed been resumed. */
2805 if (!lp->resumed)
2806 return 0;
2807
2808 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2809 {
2810 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2811 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2812 0', so a clean process exit can not be stored pending in
2813 lp->status, it is indistinguishable from
2814 no-pending-status. */
2815 return 1;
2816 }
2817
2818 if (lp->status != 0)
2819 return 1;
2820
2821 return 0;
2822 }
2823
2824 /* Return non-zero if LP isn't stopped. */
2825
2826 static int
2827 running_callback (struct lwp_info *lp, void *data)
2828 {
2829 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2830 }
2831
2832 /* Count the LWP's that have had events. */
2833
2834 static int
2835 count_events_callback (struct lwp_info *lp, void *data)
2836 {
2837 int *count = data;
2838
2839 gdb_assert (count != NULL);
2840
2841 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2842 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2843 (*count)++;
2844
2845 return 0;
2846 }
2847
2848 /* Select the LWP (if any) that is currently being single-stepped. */
2849
2850 static int
2851 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2852 {
2853 if (lp->step && lp->status != 0)
2854 return 1;
2855 else
2856 return 0;
2857 }
2858
2859 /* Select the Nth LWP that has had a SIGTRAP event. */
2860
2861 static int
2862 select_event_lwp_callback (struct lwp_info *lp, void *data)
2863 {
2864 int *selector = data;
2865
2866 gdb_assert (selector != NULL);
2867
2868 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2869 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2870 if ((*selector)-- == 0)
2871 return 1;
2872
2873 return 0;
2874 }
2875
2876 static int
2877 cancel_breakpoint (struct lwp_info *lp)
2878 {
2879 /* Arrange for a breakpoint to be hit again later. We don't keep
2880 the SIGTRAP status and don't forward the SIGTRAP signal to the
2881 LWP. We will handle the current event, eventually we will resume
2882 this LWP, and this breakpoint will trap again.
2883
2884 If we do not do this, then we run the risk that the user will
2885 delete or disable the breakpoint, but the LWP will have already
2886 tripped on it. */
2887
2888 struct regcache *regcache = get_thread_regcache (lp->ptid);
2889 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2890 CORE_ADDR pc;
2891
2892 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2893 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2894 {
2895 if (debug_linux_nat)
2896 fprintf_unfiltered (gdb_stdlog,
2897 "CB: Push back breakpoint for %s\n",
2898 target_pid_to_str (lp->ptid));
2899
2900 /* Back up the PC if necessary. */
2901 if (gdbarch_decr_pc_after_break (gdbarch))
2902 regcache_write_pc (regcache, pc);
2903
2904 return 1;
2905 }
2906 return 0;
2907 }
2908
2909 static int
2910 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2911 {
2912 struct lwp_info *event_lp = data;
2913
2914 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2915 if (lp == event_lp)
2916 return 0;
2917
2918 /* If a LWP other than the LWP that we're reporting an event for has
2919 hit a GDB breakpoint (as opposed to some random trap signal),
2920 then just arrange for it to hit it again later. We don't keep
2921 the SIGTRAP status and don't forward the SIGTRAP signal to the
2922 LWP. We will handle the current event, eventually we will resume
2923 all LWPs, and this one will get its breakpoint trap again.
2924
2925 If we do not do this, then we run the risk that the user will
2926 delete or disable the breakpoint, but the LWP will have already
2927 tripped on it. */
2928
2929 if (linux_nat_lp_status_is_event (lp)
2930 && cancel_breakpoint (lp))
2931 /* Throw away the SIGTRAP. */
2932 lp->status = 0;
2933
2934 return 0;
2935 }
2936
2937 /* Select one LWP out of those that have events pending. */
2938
2939 static void
2940 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2941 {
2942 int num_events = 0;
2943 int random_selector;
2944 struct lwp_info *event_lp;
2945
2946 /* Record the wait status for the original LWP. */
2947 (*orig_lp)->status = *status;
2948
2949 /* Give preference to any LWP that is being single-stepped. */
2950 event_lp = iterate_over_lwps (filter,
2951 select_singlestep_lwp_callback, NULL);
2952 if (event_lp != NULL)
2953 {
2954 if (debug_linux_nat)
2955 fprintf_unfiltered (gdb_stdlog,
2956 "SEL: Select single-step %s\n",
2957 target_pid_to_str (event_lp->ptid));
2958 }
2959 else
2960 {
2961 /* No single-stepping LWP. Select one at random, out of those
2962 which have had SIGTRAP events. */
2963
2964 /* First see how many SIGTRAP events we have. */
2965 iterate_over_lwps (filter, count_events_callback, &num_events);
2966
2967 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2968 random_selector = (int)
2969 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2970
2971 if (debug_linux_nat && num_events > 1)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2974 num_events, random_selector);
2975
2976 event_lp = iterate_over_lwps (filter,
2977 select_event_lwp_callback,
2978 &random_selector);
2979 }
2980
2981 if (event_lp != NULL)
2982 {
2983 /* Switch the event LWP. */
2984 *orig_lp = event_lp;
2985 *status = event_lp->status;
2986 }
2987
2988 /* Flush the wait status for the event LWP. */
2989 (*orig_lp)->status = 0;
2990 }
2991
2992 /* Return non-zero if LP has been resumed. */
2993
2994 static int
2995 resumed_callback (struct lwp_info *lp, void *data)
2996 {
2997 return lp->resumed;
2998 }
2999
3000 /* Stop an active thread, verify it still exists, then resume it. */
3001
3002 static int
3003 stop_and_resume_callback (struct lwp_info *lp, void *data)
3004 {
3005 struct lwp_info *ptr;
3006
3007 if (!lp->stopped && !lp->signalled)
3008 {
3009 stop_callback (lp, NULL);
3010 stop_wait_callback (lp, NULL);
3011 /* Resume if the lwp still exists. */
3012 for (ptr = lwp_list; ptr; ptr = ptr->next)
3013 if (lp == ptr)
3014 {
3015 resume_callback (lp, NULL);
3016 resume_set_callback (lp, NULL);
3017 }
3018 }
3019 return 0;
3020 }
3021
3022 /* Check if we should go on and pass this event to common code.
3023 Return the affected lwp if we are, or NULL otherwise. */
3024 static struct lwp_info *
3025 linux_nat_filter_event (int lwpid, int status, int options)
3026 {
3027 struct lwp_info *lp;
3028
3029 lp = find_lwp_pid (pid_to_ptid (lwpid));
3030
3031 /* Check for stop events reported by a process we didn't already
3032 know about - anything not already in our LWP list.
3033
3034 If we're expecting to receive stopped processes after
3035 fork, vfork, and clone events, then we'll just add the
3036 new one to our list and go back to waiting for the event
3037 to be reported - the stopped process might be returned
3038 from waitpid before or after the event is. */
3039 if (WIFSTOPPED (status) && !lp)
3040 {
3041 linux_record_stopped_pid (lwpid, status);
3042 return NULL;
3043 }
3044
3045 /* Make sure we don't report an event for the exit of an LWP not in
3046 our list, i.e. not part of the current process. This can happen
3047 if we detach from a program we original forked and then it
3048 exits. */
3049 if (!WIFSTOPPED (status) && !lp)
3050 return NULL;
3051
3052 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3053 CLONE_PTRACE processes which do not use the thread library -
3054 otherwise we wouldn't find the new LWP this way. That doesn't
3055 currently work, and the following code is currently unreachable
3056 due to the two blocks above. If it's fixed some day, this code
3057 should be broken out into a function so that we can also pick up
3058 LWPs from the new interface. */
3059 if (!lp)
3060 {
3061 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3062 if (options & __WCLONE)
3063 lp->cloned = 1;
3064
3065 gdb_assert (WIFSTOPPED (status)
3066 && WSTOPSIG (status) == SIGSTOP);
3067 lp->signalled = 1;
3068
3069 if (!in_thread_list (inferior_ptid))
3070 {
3071 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3072 GET_PID (inferior_ptid));
3073 add_thread (inferior_ptid);
3074 }
3075
3076 add_thread (lp->ptid);
3077 }
3078
3079 /* Handle GNU/Linux's syscall SIGTRAPs. */
3080 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3081 {
3082 /* No longer need the sysgood bit. The ptrace event ends up
3083 recorded in lp->waitstatus if we care for it. We can carry
3084 on handling the event like a regular SIGTRAP from here
3085 on. */
3086 status = W_STOPCODE (SIGTRAP);
3087 if (linux_handle_syscall_trap (lp, 0))
3088 return NULL;
3089 }
3090
3091 /* Handle GNU/Linux's extended waitstatus for trace events. */
3092 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3093 {
3094 if (debug_linux_nat)
3095 fprintf_unfiltered (gdb_stdlog,
3096 "LLW: Handling extended status 0x%06x\n",
3097 status);
3098 if (linux_handle_extended_wait (lp, status, 0))
3099 return NULL;
3100 }
3101
3102 if (linux_nat_status_is_event (status))
3103 {
3104 /* Save the trap's siginfo in case we need it later. */
3105 save_siginfo (lp);
3106
3107 save_sigtrap (lp);
3108 }
3109
3110 /* Check if the thread has exited. */
3111 if ((WIFEXITED (status) || WIFSIGNALED (status))
3112 && num_lwps (GET_PID (lp->ptid)) > 1)
3113 {
3114 /* If this is the main thread, we must stop all threads and verify
3115 if they are still alive. This is because in the nptl thread model
3116 on Linux 2.4, there is no signal issued for exiting LWPs
3117 other than the main thread. We only get the main thread exit
3118 signal once all child threads have already exited. If we
3119 stop all the threads and use the stop_wait_callback to check
3120 if they have exited we can determine whether this signal
3121 should be ignored or whether it means the end of the debugged
3122 application, regardless of which threading model is being
3123 used. */
3124 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3125 {
3126 lp->stopped = 1;
3127 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3128 stop_and_resume_callback, NULL);
3129 }
3130
3131 if (debug_linux_nat)
3132 fprintf_unfiltered (gdb_stdlog,
3133 "LLW: %s exited.\n",
3134 target_pid_to_str (lp->ptid));
3135
3136 if (num_lwps (GET_PID (lp->ptid)) > 1)
3137 {
3138 /* If there is at least one more LWP, then the exit signal
3139 was not the end of the debugged application and should be
3140 ignored. */
3141 exit_lwp (lp);
3142 return NULL;
3143 }
3144 }
3145
3146 /* Check if the current LWP has previously exited. In the nptl
3147 thread model, LWPs other than the main thread do not issue
3148 signals when they exit so we must check whenever the thread has
3149 stopped. A similar check is made in stop_wait_callback(). */
3150 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3151 {
3152 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3153
3154 if (debug_linux_nat)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "LLW: %s exited.\n",
3157 target_pid_to_str (lp->ptid));
3158
3159 exit_lwp (lp);
3160
3161 /* Make sure there is at least one thread running. */
3162 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3163
3164 /* Discard the event. */
3165 return NULL;
3166 }
3167
3168 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3169 an attempt to stop an LWP. */
3170 if (lp->signalled
3171 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3172 {
3173 if (debug_linux_nat)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "LLW: Delayed SIGSTOP caught for %s.\n",
3176 target_pid_to_str (lp->ptid));
3177
3178 /* This is a delayed SIGSTOP. */
3179 lp->signalled = 0;
3180
3181 registers_changed ();
3182
3183 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3184 lp->step, TARGET_SIGNAL_0);
3185 if (debug_linux_nat)
3186 fprintf_unfiltered (gdb_stdlog,
3187 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3188 lp->step ?
3189 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3190 target_pid_to_str (lp->ptid));
3191
3192 lp->stopped = 0;
3193 gdb_assert (lp->resumed);
3194
3195 /* Discard the event. */
3196 return NULL;
3197 }
3198
3199 /* Make sure we don't report a SIGINT that we have already displayed
3200 for another thread. */
3201 if (lp->ignore_sigint
3202 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3203 {
3204 if (debug_linux_nat)
3205 fprintf_unfiltered (gdb_stdlog,
3206 "LLW: Delayed SIGINT caught for %s.\n",
3207 target_pid_to_str (lp->ptid));
3208
3209 /* This is a delayed SIGINT. */
3210 lp->ignore_sigint = 0;
3211
3212 registers_changed ();
3213 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3214 lp->step, TARGET_SIGNAL_0);
3215 if (debug_linux_nat)
3216 fprintf_unfiltered (gdb_stdlog,
3217 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3218 lp->step ?
3219 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3220 target_pid_to_str (lp->ptid));
3221
3222 lp->stopped = 0;
3223 gdb_assert (lp->resumed);
3224
3225 /* Discard the event. */
3226 return NULL;
3227 }
3228
3229 /* An interesting event. */
3230 gdb_assert (lp);
3231 lp->status = status;
3232 return lp;
3233 }
3234
3235 static ptid_t
3236 linux_nat_wait_1 (struct target_ops *ops,
3237 ptid_t ptid, struct target_waitstatus *ourstatus,
3238 int target_options)
3239 {
3240 static sigset_t prev_mask;
3241 struct lwp_info *lp = NULL;
3242 int options = 0;
3243 int status = 0;
3244 pid_t pid;
3245
3246 if (debug_linux_nat_async)
3247 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3248
3249 /* The first time we get here after starting a new inferior, we may
3250 not have added it to the LWP list yet - this is the earliest
3251 moment at which we know its PID. */
3252 if (ptid_is_pid (inferior_ptid))
3253 {
3254 /* Upgrade the main thread's ptid. */
3255 thread_change_ptid (inferior_ptid,
3256 BUILD_LWP (GET_PID (inferior_ptid),
3257 GET_PID (inferior_ptid)));
3258
3259 lp = add_lwp (inferior_ptid);
3260 lp->resumed = 1;
3261 }
3262
3263 /* Make sure SIGCHLD is blocked. */
3264 block_child_signals (&prev_mask);
3265
3266 if (ptid_equal (ptid, minus_one_ptid))
3267 pid = -1;
3268 else if (ptid_is_pid (ptid))
3269 /* A request to wait for a specific tgid. This is not possible
3270 with waitpid, so instead, we wait for any child, and leave
3271 children we're not interested in right now with a pending
3272 status to report later. */
3273 pid = -1;
3274 else
3275 pid = GET_LWP (ptid);
3276
3277 retry:
3278 lp = NULL;
3279 status = 0;
3280
3281 /* Make sure that of those LWPs we want to get an event from, there
3282 is at least one LWP that has been resumed. If there's none, just
3283 bail out. The core may just be flushing asynchronously all
3284 events. */
3285 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3286 {
3287 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3288
3289 if (debug_linux_nat_async)
3290 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3291
3292 restore_child_signals_mask (&prev_mask);
3293 return minus_one_ptid;
3294 }
3295
3296 /* First check if there is a LWP with a wait status pending. */
3297 if (pid == -1)
3298 {
3299 /* Any LWP that's been resumed will do. */
3300 lp = iterate_over_lwps (ptid, status_callback, NULL);
3301 if (lp)
3302 {
3303 if (debug_linux_nat && lp->status)
3304 fprintf_unfiltered (gdb_stdlog,
3305 "LLW: Using pending wait status %s for %s.\n",
3306 status_to_str (lp->status),
3307 target_pid_to_str (lp->ptid));
3308 }
3309
3310 /* But if we don't find one, we'll have to wait, and check both
3311 cloned and uncloned processes. We start with the cloned
3312 processes. */
3313 options = __WCLONE | WNOHANG;
3314 }
3315 else if (is_lwp (ptid))
3316 {
3317 if (debug_linux_nat)
3318 fprintf_unfiltered (gdb_stdlog,
3319 "LLW: Waiting for specific LWP %s.\n",
3320 target_pid_to_str (ptid));
3321
3322 /* We have a specific LWP to check. */
3323 lp = find_lwp_pid (ptid);
3324 gdb_assert (lp);
3325
3326 if (debug_linux_nat && lp->status)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "LLW: Using pending wait status %s for %s.\n",
3329 status_to_str (lp->status),
3330 target_pid_to_str (lp->ptid));
3331
3332 /* If we have to wait, take into account whether PID is a cloned
3333 process or not. And we have to convert it to something that
3334 the layer beneath us can understand. */
3335 options = lp->cloned ? __WCLONE : 0;
3336 pid = GET_LWP (ptid);
3337
3338 /* We check for lp->waitstatus in addition to lp->status,
3339 because we can have pending process exits recorded in
3340 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3341 an additional lp->status_p flag. */
3342 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3343 lp = NULL;
3344 }
3345
3346 if (lp && lp->signalled)
3347 {
3348 /* A pending SIGSTOP may interfere with the normal stream of
3349 events. In a typical case where interference is a problem,
3350 we have a SIGSTOP signal pending for LWP A while
3351 single-stepping it, encounter an event in LWP B, and take the
3352 pending SIGSTOP while trying to stop LWP A. After processing
3353 the event in LWP B, LWP A is continued, and we'll never see
3354 the SIGTRAP associated with the last time we were
3355 single-stepping LWP A. */
3356
3357 /* Resume the thread. It should halt immediately returning the
3358 pending SIGSTOP. */
3359 registers_changed ();
3360 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3361 lp->step, TARGET_SIGNAL_0);
3362 if (debug_linux_nat)
3363 fprintf_unfiltered (gdb_stdlog,
3364 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3365 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3366 target_pid_to_str (lp->ptid));
3367 lp->stopped = 0;
3368 gdb_assert (lp->resumed);
3369
3370 /* Catch the pending SIGSTOP. */
3371 status = lp->status;
3372 lp->status = 0;
3373
3374 stop_wait_callback (lp, NULL);
3375
3376 /* If the lp->status field isn't empty, we caught another signal
3377 while flushing the SIGSTOP. Return it back to the event
3378 queue of the LWP, as we already have an event to handle. */
3379 if (lp->status)
3380 {
3381 if (debug_linux_nat)
3382 fprintf_unfiltered (gdb_stdlog,
3383 "LLW: kill %s, %s\n",
3384 target_pid_to_str (lp->ptid),
3385 status_to_str (lp->status));
3386 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3387 }
3388
3389 lp->status = status;
3390 }
3391
3392 if (!target_can_async_p ())
3393 {
3394 /* Causes SIGINT to be passed on to the attached process. */
3395 set_sigint_trap ();
3396 }
3397
3398 /* Translate generic target_wait options into waitpid options. */
3399 if (target_options & TARGET_WNOHANG)
3400 options |= WNOHANG;
3401
3402 while (lp == NULL)
3403 {
3404 pid_t lwpid;
3405
3406 lwpid = my_waitpid (pid, &status, options);
3407
3408 if (lwpid > 0)
3409 {
3410 gdb_assert (pid == -1 || lwpid == pid);
3411
3412 if (debug_linux_nat)
3413 {
3414 fprintf_unfiltered (gdb_stdlog,
3415 "LLW: waitpid %ld received %s\n",
3416 (long) lwpid, status_to_str (status));
3417 }
3418
3419 lp = linux_nat_filter_event (lwpid, status, options);
3420
3421 /* STATUS is now no longer valid, use LP->STATUS instead. */
3422 status = 0;
3423
3424 if (lp
3425 && ptid_is_pid (ptid)
3426 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3427 {
3428 gdb_assert (lp->resumed);
3429
3430 if (debug_linux_nat)
3431 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3432 ptid_get_lwp (lp->ptid), lp->status);
3433
3434 if (WIFSTOPPED (lp->status))
3435 {
3436 if (WSTOPSIG (lp->status) != SIGSTOP)
3437 {
3438 /* Cancel breakpoint hits. The breakpoint may
3439 be removed before we fetch events from this
3440 process to report to the core. It is best
3441 not to assume the moribund breakpoints
3442 heuristic always handles these cases --- it
3443 could be too many events go through to the
3444 core before this one is handled. All-stop
3445 always cancels breakpoint hits in all
3446 threads. */
3447 if (non_stop
3448 && linux_nat_lp_status_is_event (lp)
3449 && cancel_breakpoint (lp))
3450 {
3451 /* Throw away the SIGTRAP. */
3452 lp->status = 0;
3453
3454 if (debug_linux_nat)
3455 fprintf (stderr,
3456 "LLW: LWP %ld hit a breakpoint while waiting "
3457 "for another process; cancelled it\n",
3458 ptid_get_lwp (lp->ptid));
3459 }
3460 lp->stopped = 1;
3461 }
3462 else
3463 {
3464 lp->stopped = 1;
3465 lp->signalled = 0;
3466 }
3467 }
3468 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3469 {
3470 if (debug_linux_nat)
3471 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3472 ptid_get_lwp (lp->ptid));
3473
3474 /* This was the last lwp in the process. Since
3475 events are serialized to GDB core, and we can't
3476 report this one right now, but GDB core and the
3477 other target layers will want to be notified
3478 about the exit code/signal, leave the status
3479 pending for the next time we're able to report
3480 it. */
3481
3482 /* Prevent trying to stop this thread again. We'll
3483 never try to resume it because it has a pending
3484 status. */
3485 lp->stopped = 1;
3486
3487 /* Dead LWP's aren't expected to reported a pending
3488 sigstop. */
3489 lp->signalled = 0;
3490
3491 /* Store the pending event in the waitstatus as
3492 well, because W_EXITCODE(0,0) == 0. */
3493 store_waitstatus (&lp->waitstatus, lp->status);
3494 }
3495
3496 /* Keep looking. */
3497 lp = NULL;
3498 continue;
3499 }
3500
3501 if (lp)
3502 break;
3503 else
3504 {
3505 if (pid == -1)
3506 {
3507 /* waitpid did return something. Restart over. */
3508 options |= __WCLONE;
3509 }
3510 continue;
3511 }
3512 }
3513
3514 if (pid == -1)
3515 {
3516 /* Alternate between checking cloned and uncloned processes. */
3517 options ^= __WCLONE;
3518
3519 /* And every time we have checked both:
3520 In async mode, return to event loop;
3521 In sync mode, suspend waiting for a SIGCHLD signal. */
3522 if (options & __WCLONE)
3523 {
3524 if (target_options & TARGET_WNOHANG)
3525 {
3526 /* No interesting event. */
3527 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3528
3529 if (debug_linux_nat_async)
3530 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3531
3532 restore_child_signals_mask (&prev_mask);
3533 return minus_one_ptid;
3534 }
3535
3536 sigsuspend (&suspend_mask);
3537 }
3538 }
3539 else if (target_options & TARGET_WNOHANG)
3540 {
3541 /* No interesting event for PID yet. */
3542 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3543
3544 if (debug_linux_nat_async)
3545 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3546
3547 restore_child_signals_mask (&prev_mask);
3548 return minus_one_ptid;
3549 }
3550
3551 /* We shouldn't end up here unless we want to try again. */
3552 gdb_assert (lp == NULL);
3553 }
3554
3555 if (!target_can_async_p ())
3556 clear_sigint_trap ();
3557
3558 gdb_assert (lp);
3559
3560 status = lp->status;
3561 lp->status = 0;
3562
3563 /* Don't report signals that GDB isn't interested in, such as
3564 signals that are neither printed nor stopped upon. Stopping all
3565 threads can be a bit time-consuming so if we want decent
3566 performance with heavily multi-threaded programs, especially when
3567 they're using a high frequency timer, we'd better avoid it if we
3568 can. */
3569
3570 if (WIFSTOPPED (status))
3571 {
3572 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3573 struct inferior *inf;
3574
3575 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3576 gdb_assert (inf);
3577
3578 /* Defer to common code if we get a signal while
3579 single-stepping, since that may need special care, e.g. to
3580 skip the signal handler, or, if we're gaining control of the
3581 inferior. */
3582 if (!lp->step
3583 && inf->stop_soon == NO_STOP_QUIETLY
3584 && signal_stop_state (signo) == 0
3585 && signal_print_state (signo) == 0
3586 && signal_pass_state (signo) == 1)
3587 {
3588 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3589 here? It is not clear we should. GDB may not expect
3590 other threads to run. On the other hand, not resuming
3591 newly attached threads may cause an unwanted delay in
3592 getting them running. */
3593 registers_changed ();
3594 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3595 lp->step, signo);
3596 if (debug_linux_nat)
3597 fprintf_unfiltered (gdb_stdlog,
3598 "LLW: %s %s, %s (preempt 'handle')\n",
3599 lp->step ?
3600 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3601 target_pid_to_str (lp->ptid),
3602 (signo != TARGET_SIGNAL_0
3603 ? strsignal (target_signal_to_host (signo))
3604 : "0"));
3605 lp->stopped = 0;
3606 goto retry;
3607 }
3608
3609 if (!non_stop)
3610 {
3611 /* Only do the below in all-stop, as we currently use SIGINT
3612 to implement target_stop (see linux_nat_stop) in
3613 non-stop. */
3614 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3615 {
3616 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3617 forwarded to the entire process group, that is, all LWPs
3618 will receive it - unless they're using CLONE_THREAD to
3619 share signals. Since we only want to report it once, we
3620 mark it as ignored for all LWPs except this one. */
3621 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3622 set_ignore_sigint, NULL);
3623 lp->ignore_sigint = 0;
3624 }
3625 else
3626 maybe_clear_ignore_sigint (lp);
3627 }
3628 }
3629
3630 /* This LWP is stopped now. */
3631 lp->stopped = 1;
3632
3633 if (debug_linux_nat)
3634 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3635 status_to_str (status), target_pid_to_str (lp->ptid));
3636
3637 if (!non_stop)
3638 {
3639 /* Now stop all other LWP's ... */
3640 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3641
3642 /* ... and wait until all of them have reported back that
3643 they're no longer running. */
3644 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3645
3646 /* If we're not waiting for a specific LWP, choose an event LWP
3647 from among those that have had events. Giving equal priority
3648 to all LWPs that have had events helps prevent
3649 starvation. */
3650 if (pid == -1)
3651 select_event_lwp (ptid, &lp, &status);
3652
3653 /* Now that we've selected our final event LWP, cancel any
3654 breakpoints in other LWPs that have hit a GDB breakpoint.
3655 See the comment in cancel_breakpoints_callback to find out
3656 why. */
3657 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3658
3659 /* In all-stop, from the core's perspective, all LWPs are now
3660 stopped until a new resume action is sent over. */
3661 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3662 }
3663 else
3664 lp->resumed = 0;
3665
3666 if (linux_nat_status_is_event (status))
3667 {
3668 if (debug_linux_nat)
3669 fprintf_unfiltered (gdb_stdlog,
3670 "LLW: trap ptid is %s.\n",
3671 target_pid_to_str (lp->ptid));
3672 }
3673
3674 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3675 {
3676 *ourstatus = lp->waitstatus;
3677 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3678 }
3679 else
3680 store_waitstatus (ourstatus, status);
3681
3682 if (debug_linux_nat_async)
3683 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3684
3685 restore_child_signals_mask (&prev_mask);
3686
3687 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3688 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3689 lp->core = -1;
3690 else
3691 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3692
3693 return lp->ptid;
3694 }
3695
3696 /* Resume LWPs that are currently stopped without any pending status
3697 to report, but are resumed from the core's perspective. */
3698
3699 static int
3700 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3701 {
3702 ptid_t *wait_ptid_p = data;
3703
3704 if (lp->stopped
3705 && lp->resumed
3706 && lp->status == 0
3707 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3708 {
3709 gdb_assert (is_executing (lp->ptid));
3710
3711 /* Don't bother if there's a breakpoint at PC that we'd hit
3712 immediately, and we're not waiting for this LWP. */
3713 if (!ptid_match (lp->ptid, *wait_ptid_p))
3714 {
3715 struct regcache *regcache = get_thread_regcache (lp->ptid);
3716 CORE_ADDR pc = regcache_read_pc (regcache);
3717
3718 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3719 return 0;
3720 }
3721
3722 if (debug_linux_nat)
3723 fprintf_unfiltered (gdb_stdlog,
3724 "RSRL: resuming stopped-resumed LWP %s\n",
3725 target_pid_to_str (lp->ptid));
3726
3727 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3728 lp->step, TARGET_SIGNAL_0);
3729 lp->stopped = 0;
3730 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3731 lp->stopped_by_watchpoint = 0;
3732 }
3733
3734 return 0;
3735 }
3736
3737 static ptid_t
3738 linux_nat_wait (struct target_ops *ops,
3739 ptid_t ptid, struct target_waitstatus *ourstatus,
3740 int target_options)
3741 {
3742 ptid_t event_ptid;
3743
3744 if (debug_linux_nat)
3745 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3746
3747 /* Flush the async file first. */
3748 if (target_can_async_p ())
3749 async_file_flush ();
3750
3751 /* Resume LWPs that are currently stopped without any pending status
3752 to report, but are resumed from the core's perspective. LWPs get
3753 in this state if we find them stopping at a time we're not
3754 interested in reporting the event (target_wait on a
3755 specific_process, for example, see linux_nat_wait_1), and
3756 meanwhile the event became uninteresting. Don't bother resuming
3757 LWPs we're not going to wait for if they'd stop immediately. */
3758 if (non_stop)
3759 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3760
3761 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3762
3763 /* If we requested any event, and something came out, assume there
3764 may be more. If we requested a specific lwp or process, also
3765 assume there may be more. */
3766 if (target_can_async_p ()
3767 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3768 || !ptid_equal (ptid, minus_one_ptid)))
3769 async_file_mark ();
3770
3771 /* Get ready for the next event. */
3772 if (target_can_async_p ())
3773 target_async (inferior_event_handler, 0);
3774
3775 return event_ptid;
3776 }
3777
3778 static int
3779 kill_callback (struct lwp_info *lp, void *data)
3780 {
3781 errno = 0;
3782 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3783 if (debug_linux_nat)
3784 fprintf_unfiltered (gdb_stdlog,
3785 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3786 target_pid_to_str (lp->ptid),
3787 errno ? safe_strerror (errno) : "OK");
3788
3789 return 0;
3790 }
3791
3792 static int
3793 kill_wait_callback (struct lwp_info *lp, void *data)
3794 {
3795 pid_t pid;
3796
3797 /* We must make sure that there are no pending events (delayed
3798 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3799 program doesn't interfere with any following debugging session. */
3800
3801 /* For cloned processes we must check both with __WCLONE and
3802 without, since the exit status of a cloned process isn't reported
3803 with __WCLONE. */
3804 if (lp->cloned)
3805 {
3806 do
3807 {
3808 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3809 if (pid != (pid_t) -1)
3810 {
3811 if (debug_linux_nat)
3812 fprintf_unfiltered (gdb_stdlog,
3813 "KWC: wait %s received unknown.\n",
3814 target_pid_to_str (lp->ptid));
3815 /* The Linux kernel sometimes fails to kill a thread
3816 completely after PTRACE_KILL; that goes from the stop
3817 point in do_fork out to the one in
3818 get_signal_to_deliever and waits again. So kill it
3819 again. */
3820 kill_callback (lp, NULL);
3821 }
3822 }
3823 while (pid == GET_LWP (lp->ptid));
3824
3825 gdb_assert (pid == -1 && errno == ECHILD);
3826 }
3827
3828 do
3829 {
3830 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3831 if (pid != (pid_t) -1)
3832 {
3833 if (debug_linux_nat)
3834 fprintf_unfiltered (gdb_stdlog,
3835 "KWC: wait %s received unk.\n",
3836 target_pid_to_str (lp->ptid));
3837 /* See the call to kill_callback above. */
3838 kill_callback (lp, NULL);
3839 }
3840 }
3841 while (pid == GET_LWP (lp->ptid));
3842
3843 gdb_assert (pid == -1 && errno == ECHILD);
3844 return 0;
3845 }
3846
3847 static void
3848 linux_nat_kill (struct target_ops *ops)
3849 {
3850 struct target_waitstatus last;
3851 ptid_t last_ptid;
3852 int status;
3853
3854 /* If we're stopped while forking and we haven't followed yet,
3855 kill the other task. We need to do this first because the
3856 parent will be sleeping if this is a vfork. */
3857
3858 get_last_target_status (&last_ptid, &last);
3859
3860 if (last.kind == TARGET_WAITKIND_FORKED
3861 || last.kind == TARGET_WAITKIND_VFORKED)
3862 {
3863 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3864 wait (&status);
3865 }
3866
3867 if (forks_exist_p ())
3868 linux_fork_killall ();
3869 else
3870 {
3871 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3872
3873 /* Stop all threads before killing them, since ptrace requires
3874 that the thread is stopped to sucessfully PTRACE_KILL. */
3875 iterate_over_lwps (ptid, stop_callback, NULL);
3876 /* ... and wait until all of them have reported back that
3877 they're no longer running. */
3878 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3879
3880 /* Kill all LWP's ... */
3881 iterate_over_lwps (ptid, kill_callback, NULL);
3882
3883 /* ... and wait until we've flushed all events. */
3884 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3885 }
3886
3887 target_mourn_inferior ();
3888 }
3889
3890 static void
3891 linux_nat_mourn_inferior (struct target_ops *ops)
3892 {
3893 purge_lwp_list (ptid_get_pid (inferior_ptid));
3894
3895 if (! forks_exist_p ())
3896 /* Normal case, no other forks available. */
3897 linux_ops->to_mourn_inferior (ops);
3898 else
3899 /* Multi-fork case. The current inferior_ptid has exited, but
3900 there are other viable forks to debug. Delete the exiting
3901 one and context-switch to the first available. */
3902 linux_fork_mourn_inferior ();
3903 }
3904
3905 /* Convert a native/host siginfo object, into/from the siginfo in the
3906 layout of the inferiors' architecture. */
3907
3908 static void
3909 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3910 {
3911 int done = 0;
3912
3913 if (linux_nat_siginfo_fixup != NULL)
3914 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3915
3916 /* If there was no callback, or the callback didn't do anything,
3917 then just do a straight memcpy. */
3918 if (!done)
3919 {
3920 if (direction == 1)
3921 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3922 else
3923 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3924 }
3925 }
3926
3927 static LONGEST
3928 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3929 const char *annex, gdb_byte *readbuf,
3930 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3931 {
3932 int pid;
3933 struct siginfo siginfo;
3934 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3935
3936 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3937 gdb_assert (readbuf || writebuf);
3938
3939 pid = GET_LWP (inferior_ptid);
3940 if (pid == 0)
3941 pid = GET_PID (inferior_ptid);
3942
3943 if (offset > sizeof (siginfo))
3944 return -1;
3945
3946 errno = 0;
3947 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3948 if (errno != 0)
3949 return -1;
3950
3951 /* When GDB is built as a 64-bit application, ptrace writes into
3952 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3953 inferior with a 64-bit GDB should look the same as debugging it
3954 with a 32-bit GDB, we need to convert it. GDB core always sees
3955 the converted layout, so any read/write will have to be done
3956 post-conversion. */
3957 siginfo_fixup (&siginfo, inf_siginfo, 0);
3958
3959 if (offset + len > sizeof (siginfo))
3960 len = sizeof (siginfo) - offset;
3961
3962 if (readbuf != NULL)
3963 memcpy (readbuf, inf_siginfo + offset, len);
3964 else
3965 {
3966 memcpy (inf_siginfo + offset, writebuf, len);
3967
3968 /* Convert back to ptrace layout before flushing it out. */
3969 siginfo_fixup (&siginfo, inf_siginfo, 1);
3970
3971 errno = 0;
3972 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3973 if (errno != 0)
3974 return -1;
3975 }
3976
3977 return len;
3978 }
3979
3980 static LONGEST
3981 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3982 const char *annex, gdb_byte *readbuf,
3983 const gdb_byte *writebuf,
3984 ULONGEST offset, LONGEST len)
3985 {
3986 struct cleanup *old_chain;
3987 LONGEST xfer;
3988
3989 if (object == TARGET_OBJECT_SIGNAL_INFO)
3990 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3991 offset, len);
3992
3993 /* The target is connected but no live inferior is selected. Pass
3994 this request down to a lower stratum (e.g., the executable
3995 file). */
3996 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3997 return 0;
3998
3999 old_chain = save_inferior_ptid ();
4000
4001 if (is_lwp (inferior_ptid))
4002 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4003
4004 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4005 offset, len);
4006
4007 do_cleanups (old_chain);
4008 return xfer;
4009 }
4010
4011 static int
4012 linux_thread_alive (ptid_t ptid)
4013 {
4014 int err;
4015
4016 gdb_assert (is_lwp (ptid));
4017
4018 /* Send signal 0 instead of anything ptrace, because ptracing a
4019 running thread errors out claiming that the thread doesn't
4020 exist. */
4021 err = kill_lwp (GET_LWP (ptid), 0);
4022
4023 if (debug_linux_nat)
4024 fprintf_unfiltered (gdb_stdlog,
4025 "LLTA: KILL(SIG0) %s (%s)\n",
4026 target_pid_to_str (ptid),
4027 err ? safe_strerror (err) : "OK");
4028
4029 if (err != 0)
4030 return 0;
4031
4032 return 1;
4033 }
4034
4035 static int
4036 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4037 {
4038 return linux_thread_alive (ptid);
4039 }
4040
4041 static char *
4042 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4043 {
4044 static char buf[64];
4045
4046 if (is_lwp (ptid)
4047 && (GET_PID (ptid) != GET_LWP (ptid)
4048 || num_lwps (GET_PID (ptid)) > 1))
4049 {
4050 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4051 return buf;
4052 }
4053
4054 return normal_pid_to_str (ptid);
4055 }
4056
4057 /* Accepts an integer PID; Returns a string representing a file that
4058 can be opened to get the symbols for the child process. */
4059
4060 static char *
4061 linux_child_pid_to_exec_file (int pid)
4062 {
4063 char *name1, *name2;
4064
4065 name1 = xmalloc (MAXPATHLEN);
4066 name2 = xmalloc (MAXPATHLEN);
4067 make_cleanup (xfree, name1);
4068 make_cleanup (xfree, name2);
4069 memset (name2, 0, MAXPATHLEN);
4070
4071 sprintf (name1, "/proc/%d/exe", pid);
4072 if (readlink (name1, name2, MAXPATHLEN) > 0)
4073 return name2;
4074 else
4075 return name1;
4076 }
4077
4078 /* Service function for corefiles and info proc. */
4079
4080 static int
4081 read_mapping (FILE *mapfile,
4082 long long *addr,
4083 long long *endaddr,
4084 char *permissions,
4085 long long *offset,
4086 char *device, long long *inode, char *filename)
4087 {
4088 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4089 addr, endaddr, permissions, offset, device, inode);
4090
4091 filename[0] = '\0';
4092 if (ret > 0 && ret != EOF)
4093 {
4094 /* Eat everything up to EOL for the filename. This will prevent
4095 weird filenames (such as one with embedded whitespace) from
4096 confusing this code. It also makes this code more robust in
4097 respect to annotations the kernel may add after the filename.
4098
4099 Note the filename is used for informational purposes
4100 only. */
4101 ret += fscanf (mapfile, "%[^\n]\n", filename);
4102 }
4103
4104 return (ret != 0 && ret != EOF);
4105 }
4106
4107 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4108 regions in the inferior for a corefile. */
4109
4110 static int
4111 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4112 {
4113 int pid = PIDGET (inferior_ptid);
4114 char mapsfilename[MAXPATHLEN];
4115 FILE *mapsfile;
4116 long long addr, endaddr, size, offset, inode;
4117 char permissions[8], device[8], filename[MAXPATHLEN];
4118 int read, write, exec;
4119 struct cleanup *cleanup;
4120
4121 /* Compose the filename for the /proc memory map, and open it. */
4122 sprintf (mapsfilename, "/proc/%d/maps", pid);
4123 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4124 error (_("Could not open %s."), mapsfilename);
4125 cleanup = make_cleanup_fclose (mapsfile);
4126
4127 if (info_verbose)
4128 fprintf_filtered (gdb_stdout,
4129 "Reading memory regions from %s\n", mapsfilename);
4130
4131 /* Now iterate until end-of-file. */
4132 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4133 &offset, &device[0], &inode, &filename[0]))
4134 {
4135 size = endaddr - addr;
4136
4137 /* Get the segment's permissions. */
4138 read = (strchr (permissions, 'r') != 0);
4139 write = (strchr (permissions, 'w') != 0);
4140 exec = (strchr (permissions, 'x') != 0);
4141
4142 if (info_verbose)
4143 {
4144 fprintf_filtered (gdb_stdout,
4145 "Save segment, %s bytes at %s (%c%c%c)",
4146 plongest (size), paddress (target_gdbarch, addr),
4147 read ? 'r' : ' ',
4148 write ? 'w' : ' ', exec ? 'x' : ' ');
4149 if (filename[0])
4150 fprintf_filtered (gdb_stdout, " for %s", filename);
4151 fprintf_filtered (gdb_stdout, "\n");
4152 }
4153
4154 /* Invoke the callback function to create the corefile
4155 segment. */
4156 func (addr, size, read, write, exec, obfd);
4157 }
4158 do_cleanups (cleanup);
4159 return 0;
4160 }
4161
4162 static int
4163 find_signalled_thread (struct thread_info *info, void *data)
4164 {
4165 if (info->stop_signal != TARGET_SIGNAL_0
4166 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4167 return 1;
4168
4169 return 0;
4170 }
4171
4172 static enum target_signal
4173 find_stop_signal (void)
4174 {
4175 struct thread_info *info =
4176 iterate_over_threads (find_signalled_thread, NULL);
4177
4178 if (info)
4179 return info->stop_signal;
4180 else
4181 return TARGET_SIGNAL_0;
4182 }
4183
4184 /* Records the thread's register state for the corefile note
4185 section. */
4186
4187 static char *
4188 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4189 char *note_data, int *note_size,
4190 enum target_signal stop_signal)
4191 {
4192 unsigned long lwp = ptid_get_lwp (ptid);
4193 struct gdbarch *gdbarch = target_gdbarch;
4194 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4195 const struct regset *regset;
4196 int core_regset_p;
4197 struct cleanup *old_chain;
4198 struct core_regset_section *sect_list;
4199 char *gdb_regset;
4200
4201 old_chain = save_inferior_ptid ();
4202 inferior_ptid = ptid;
4203 target_fetch_registers (regcache, -1);
4204 do_cleanups (old_chain);
4205
4206 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4207 sect_list = gdbarch_core_regset_sections (gdbarch);
4208
4209 /* The loop below uses the new struct core_regset_section, which stores
4210 the supported section names and sizes for the core file. Note that
4211 note PRSTATUS needs to be treated specially. But the other notes are
4212 structurally the same, so they can benefit from the new struct. */
4213 if (core_regset_p && sect_list != NULL)
4214 while (sect_list->sect_name != NULL)
4215 {
4216 regset = gdbarch_regset_from_core_section (gdbarch,
4217 sect_list->sect_name,
4218 sect_list->size);
4219 gdb_assert (regset && regset->collect_regset);
4220 gdb_regset = xmalloc (sect_list->size);
4221 regset->collect_regset (regset, regcache, -1,
4222 gdb_regset, sect_list->size);
4223
4224 if (strcmp (sect_list->sect_name, ".reg") == 0)
4225 note_data = (char *) elfcore_write_prstatus
4226 (obfd, note_data, note_size,
4227 lwp, target_signal_to_host (stop_signal),
4228 gdb_regset);
4229 else
4230 note_data = (char *) elfcore_write_register_note
4231 (obfd, note_data, note_size,
4232 sect_list->sect_name, gdb_regset,
4233 sect_list->size);
4234 xfree (gdb_regset);
4235 sect_list++;
4236 }
4237
4238 /* For architectures that does not have the struct core_regset_section
4239 implemented, we use the old method. When all the architectures have
4240 the new support, the code below should be deleted. */
4241 else
4242 {
4243 gdb_gregset_t gregs;
4244 gdb_fpregset_t fpregs;
4245
4246 if (core_regset_p
4247 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4248 sizeof (gregs))) != NULL
4249 && regset->collect_regset != NULL)
4250 regset->collect_regset (regset, regcache, -1,
4251 &gregs, sizeof (gregs));
4252 else
4253 fill_gregset (regcache, &gregs, -1);
4254
4255 note_data = (char *) elfcore_write_prstatus
4256 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4257 &gregs);
4258
4259 if (core_regset_p
4260 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4261 sizeof (fpregs))) != NULL
4262 && regset->collect_regset != NULL)
4263 regset->collect_regset (regset, regcache, -1,
4264 &fpregs, sizeof (fpregs));
4265 else
4266 fill_fpregset (regcache, &fpregs, -1);
4267
4268 note_data = (char *) elfcore_write_prfpreg (obfd,
4269 note_data,
4270 note_size,
4271 &fpregs, sizeof (fpregs));
4272 }
4273
4274 return note_data;
4275 }
4276
4277 struct linux_nat_corefile_thread_data
4278 {
4279 bfd *obfd;
4280 char *note_data;
4281 int *note_size;
4282 int num_notes;
4283 enum target_signal stop_signal;
4284 };
4285
4286 /* Called by gdbthread.c once per thread. Records the thread's
4287 register state for the corefile note section. */
4288
4289 static int
4290 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4291 {
4292 struct linux_nat_corefile_thread_data *args = data;
4293
4294 args->note_data = linux_nat_do_thread_registers (args->obfd,
4295 ti->ptid,
4296 args->note_data,
4297 args->note_size,
4298 args->stop_signal);
4299 args->num_notes++;
4300
4301 return 0;
4302 }
4303
4304 /* Enumerate spufs IDs for process PID. */
4305
4306 static void
4307 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4308 {
4309 char path[128];
4310 DIR *dir;
4311 struct dirent *entry;
4312
4313 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4314 dir = opendir (path);
4315 if (!dir)
4316 return;
4317
4318 rewinddir (dir);
4319 while ((entry = readdir (dir)) != NULL)
4320 {
4321 struct stat st;
4322 struct statfs stfs;
4323 int fd;
4324
4325 fd = atoi (entry->d_name);
4326 if (!fd)
4327 continue;
4328
4329 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4330 if (stat (path, &st) != 0)
4331 continue;
4332 if (!S_ISDIR (st.st_mode))
4333 continue;
4334
4335 if (statfs (path, &stfs) != 0)
4336 continue;
4337 if (stfs.f_type != SPUFS_MAGIC)
4338 continue;
4339
4340 callback (data, fd);
4341 }
4342
4343 closedir (dir);
4344 }
4345
4346 /* Generate corefile notes for SPU contexts. */
4347
4348 struct linux_spu_corefile_data
4349 {
4350 bfd *obfd;
4351 char *note_data;
4352 int *note_size;
4353 };
4354
4355 static void
4356 linux_spu_corefile_callback (void *data, int fd)
4357 {
4358 struct linux_spu_corefile_data *args = data;
4359 int i;
4360
4361 static const char *spu_files[] =
4362 {
4363 "object-id",
4364 "mem",
4365 "regs",
4366 "fpcr",
4367 "lslr",
4368 "decr",
4369 "decr_status",
4370 "signal1",
4371 "signal1_type",
4372 "signal2",
4373 "signal2_type",
4374 "event_mask",
4375 "event_status",
4376 "mbox_info",
4377 "ibox_info",
4378 "wbox_info",
4379 "dma_info",
4380 "proxydma_info",
4381 };
4382
4383 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4384 {
4385 char annex[32], note_name[32];
4386 gdb_byte *spu_data;
4387 LONGEST spu_len;
4388
4389 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4390 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4391 annex, &spu_data);
4392 if (spu_len > 0)
4393 {
4394 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4395 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4396 args->note_size, note_name,
4397 NT_SPU, spu_data, spu_len);
4398 xfree (spu_data);
4399 }
4400 }
4401 }
4402
4403 static char *
4404 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4405 {
4406 struct linux_spu_corefile_data args;
4407
4408 args.obfd = obfd;
4409 args.note_data = note_data;
4410 args.note_size = note_size;
4411
4412 iterate_over_spus (PIDGET (inferior_ptid),
4413 linux_spu_corefile_callback, &args);
4414
4415 return args.note_data;
4416 }
4417
4418 /* Fills the "to_make_corefile_note" target vector. Builds the note
4419 section for a corefile, and returns it in a malloc buffer. */
4420
4421 static char *
4422 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4423 {
4424 struct linux_nat_corefile_thread_data thread_args;
4425 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4426 char fname[16] = { '\0' };
4427 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4428 char psargs[80] = { '\0' };
4429 char *note_data = NULL;
4430 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4431 gdb_byte *auxv;
4432 int auxv_len;
4433
4434 if (get_exec_file (0))
4435 {
4436 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4437 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4438 if (get_inferior_args ())
4439 {
4440 char *string_end;
4441 char *psargs_end = psargs + sizeof (psargs);
4442
4443 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4444 strings fine. */
4445 string_end = memchr (psargs, 0, sizeof (psargs));
4446 if (string_end != NULL)
4447 {
4448 *string_end++ = ' ';
4449 strncpy (string_end, get_inferior_args (),
4450 psargs_end - string_end);
4451 }
4452 }
4453 note_data = (char *) elfcore_write_prpsinfo (obfd,
4454 note_data,
4455 note_size, fname, psargs);
4456 }
4457
4458 /* Dump information for threads. */
4459 thread_args.obfd = obfd;
4460 thread_args.note_data = note_data;
4461 thread_args.note_size = note_size;
4462 thread_args.num_notes = 0;
4463 thread_args.stop_signal = find_stop_signal ();
4464 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4465 gdb_assert (thread_args.num_notes != 0);
4466 note_data = thread_args.note_data;
4467
4468 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4469 NULL, &auxv);
4470 if (auxv_len > 0)
4471 {
4472 note_data = elfcore_write_note (obfd, note_data, note_size,
4473 "CORE", NT_AUXV, auxv, auxv_len);
4474 xfree (auxv);
4475 }
4476
4477 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4478
4479 make_cleanup (xfree, note_data);
4480 return note_data;
4481 }
4482
4483 /* Implement the "info proc" command. */
4484
4485 static void
4486 linux_nat_info_proc_cmd (char *args, int from_tty)
4487 {
4488 /* A long is used for pid instead of an int to avoid a loss of precision
4489 compiler warning from the output of strtoul. */
4490 long pid = PIDGET (inferior_ptid);
4491 FILE *procfile;
4492 char **argv = NULL;
4493 char buffer[MAXPATHLEN];
4494 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4495 int cmdline_f = 1;
4496 int cwd_f = 1;
4497 int exe_f = 1;
4498 int mappings_f = 0;
4499 int status_f = 0;
4500 int stat_f = 0;
4501 int all = 0;
4502 struct stat dummy;
4503
4504 if (args)
4505 {
4506 /* Break up 'args' into an argv array. */
4507 argv = gdb_buildargv (args);
4508 make_cleanup_freeargv (argv);
4509 }
4510 while (argv != NULL && *argv != NULL)
4511 {
4512 if (isdigit (argv[0][0]))
4513 {
4514 pid = strtoul (argv[0], NULL, 10);
4515 }
4516 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4517 {
4518 mappings_f = 1;
4519 }
4520 else if (strcmp (argv[0], "status") == 0)
4521 {
4522 status_f = 1;
4523 }
4524 else if (strcmp (argv[0], "stat") == 0)
4525 {
4526 stat_f = 1;
4527 }
4528 else if (strcmp (argv[0], "cmd") == 0)
4529 {
4530 cmdline_f = 1;
4531 }
4532 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4533 {
4534 exe_f = 1;
4535 }
4536 else if (strcmp (argv[0], "cwd") == 0)
4537 {
4538 cwd_f = 1;
4539 }
4540 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4541 {
4542 all = 1;
4543 }
4544 else
4545 {
4546 /* [...] (future options here) */
4547 }
4548 argv++;
4549 }
4550 if (pid == 0)
4551 error (_("No current process: you must name one."));
4552
4553 sprintf (fname1, "/proc/%ld", pid);
4554 if (stat (fname1, &dummy) != 0)
4555 error (_("No /proc directory: '%s'"), fname1);
4556
4557 printf_filtered (_("process %ld\n"), pid);
4558 if (cmdline_f || all)
4559 {
4560 sprintf (fname1, "/proc/%ld/cmdline", pid);
4561 if ((procfile = fopen (fname1, "r")) != NULL)
4562 {
4563 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4564
4565 if (fgets (buffer, sizeof (buffer), procfile))
4566 printf_filtered ("cmdline = '%s'\n", buffer);
4567 else
4568 warning (_("unable to read '%s'"), fname1);
4569 do_cleanups (cleanup);
4570 }
4571 else
4572 warning (_("unable to open /proc file '%s'"), fname1);
4573 }
4574 if (cwd_f || all)
4575 {
4576 sprintf (fname1, "/proc/%ld/cwd", pid);
4577 memset (fname2, 0, sizeof (fname2));
4578 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4579 printf_filtered ("cwd = '%s'\n", fname2);
4580 else
4581 warning (_("unable to read link '%s'"), fname1);
4582 }
4583 if (exe_f || all)
4584 {
4585 sprintf (fname1, "/proc/%ld/exe", pid);
4586 memset (fname2, 0, sizeof (fname2));
4587 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4588 printf_filtered ("exe = '%s'\n", fname2);
4589 else
4590 warning (_("unable to read link '%s'"), fname1);
4591 }
4592 if (mappings_f || all)
4593 {
4594 sprintf (fname1, "/proc/%ld/maps", pid);
4595 if ((procfile = fopen (fname1, "r")) != NULL)
4596 {
4597 long long addr, endaddr, size, offset, inode;
4598 char permissions[8], device[8], filename[MAXPATHLEN];
4599 struct cleanup *cleanup;
4600
4601 cleanup = make_cleanup_fclose (procfile);
4602 printf_filtered (_("Mapped address spaces:\n\n"));
4603 if (gdbarch_addr_bit (target_gdbarch) == 32)
4604 {
4605 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4606 "Start Addr",
4607 " End Addr",
4608 " Size", " Offset", "objfile");
4609 }
4610 else
4611 {
4612 printf_filtered (" %18s %18s %10s %10s %7s\n",
4613 "Start Addr",
4614 " End Addr",
4615 " Size", " Offset", "objfile");
4616 }
4617
4618 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4619 &offset, &device[0], &inode, &filename[0]))
4620 {
4621 size = endaddr - addr;
4622
4623 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4624 calls here (and possibly above) should be abstracted
4625 out into their own functions? Andrew suggests using
4626 a generic local_address_string instead to print out
4627 the addresses; that makes sense to me, too. */
4628
4629 if (gdbarch_addr_bit (target_gdbarch) == 32)
4630 {
4631 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4632 (unsigned long) addr, /* FIXME: pr_addr */
4633 (unsigned long) endaddr,
4634 (int) size,
4635 (unsigned int) offset,
4636 filename[0] ? filename : "");
4637 }
4638 else
4639 {
4640 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4641 (unsigned long) addr, /* FIXME: pr_addr */
4642 (unsigned long) endaddr,
4643 (int) size,
4644 (unsigned int) offset,
4645 filename[0] ? filename : "");
4646 }
4647 }
4648
4649 do_cleanups (cleanup);
4650 }
4651 else
4652 warning (_("unable to open /proc file '%s'"), fname1);
4653 }
4654 if (status_f || all)
4655 {
4656 sprintf (fname1, "/proc/%ld/status", pid);
4657 if ((procfile = fopen (fname1, "r")) != NULL)
4658 {
4659 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4660
4661 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4662 puts_filtered (buffer);
4663 do_cleanups (cleanup);
4664 }
4665 else
4666 warning (_("unable to open /proc file '%s'"), fname1);
4667 }
4668 if (stat_f || all)
4669 {
4670 sprintf (fname1, "/proc/%ld/stat", pid);
4671 if ((procfile = fopen (fname1, "r")) != NULL)
4672 {
4673 int itmp;
4674 char ctmp;
4675 long ltmp;
4676 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4677
4678 if (fscanf (procfile, "%d ", &itmp) > 0)
4679 printf_filtered (_("Process: %d\n"), itmp);
4680 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4681 printf_filtered (_("Exec file: %s\n"), buffer);
4682 if (fscanf (procfile, "%c ", &ctmp) > 0)
4683 printf_filtered (_("State: %c\n"), ctmp);
4684 if (fscanf (procfile, "%d ", &itmp) > 0)
4685 printf_filtered (_("Parent process: %d\n"), itmp);
4686 if (fscanf (procfile, "%d ", &itmp) > 0)
4687 printf_filtered (_("Process group: %d\n"), itmp);
4688 if (fscanf (procfile, "%d ", &itmp) > 0)
4689 printf_filtered (_("Session id: %d\n"), itmp);
4690 if (fscanf (procfile, "%d ", &itmp) > 0)
4691 printf_filtered (_("TTY: %d\n"), itmp);
4692 if (fscanf (procfile, "%d ", &itmp) > 0)
4693 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4694 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4695 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4696 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4697 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4698 (unsigned long) ltmp);
4699 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4700 printf_filtered (_("Minor faults, children: %lu\n"),
4701 (unsigned long) ltmp);
4702 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4703 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4704 (unsigned long) ltmp);
4705 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4706 printf_filtered (_("Major faults, children: %lu\n"),
4707 (unsigned long) ltmp);
4708 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4709 printf_filtered (_("utime: %ld\n"), ltmp);
4710 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4711 printf_filtered (_("stime: %ld\n"), ltmp);
4712 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4713 printf_filtered (_("utime, children: %ld\n"), ltmp);
4714 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4715 printf_filtered (_("stime, children: %ld\n"), ltmp);
4716 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4717 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4718 ltmp);
4719 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4720 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4721 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4722 printf_filtered (_("jiffies until next timeout: %lu\n"),
4723 (unsigned long) ltmp);
4724 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4725 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4726 (unsigned long) ltmp);
4727 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4728 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4729 ltmp);
4730 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4731 printf_filtered (_("Virtual memory size: %lu\n"),
4732 (unsigned long) ltmp);
4733 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4734 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4735 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4736 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4737 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4738 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4739 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4740 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4741 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4742 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4743 #if 0 /* Don't know how architecture-dependent the rest is...
4744 Anyway the signal bitmap info is available from "status". */
4745 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4746 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4747 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4748 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4749 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4750 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4751 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4752 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4753 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4754 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4755 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4756 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4757 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4758 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4759 #endif
4760 do_cleanups (cleanup);
4761 }
4762 else
4763 warning (_("unable to open /proc file '%s'"), fname1);
4764 }
4765 }
4766
4767 /* Implement the to_xfer_partial interface for memory reads using the /proc
4768 filesystem. Because we can use a single read() call for /proc, this
4769 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4770 but it doesn't support writes. */
4771
4772 static LONGEST
4773 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4774 const char *annex, gdb_byte *readbuf,
4775 const gdb_byte *writebuf,
4776 ULONGEST offset, LONGEST len)
4777 {
4778 LONGEST ret;
4779 int fd;
4780 char filename[64];
4781
4782 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4783 return 0;
4784
4785 /* Don't bother for one word. */
4786 if (len < 3 * sizeof (long))
4787 return 0;
4788
4789 /* We could keep this file open and cache it - possibly one per
4790 thread. That requires some juggling, but is even faster. */
4791 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4792 fd = open (filename, O_RDONLY | O_LARGEFILE);
4793 if (fd == -1)
4794 return 0;
4795
4796 /* If pread64 is available, use it. It's faster if the kernel
4797 supports it (only one syscall), and it's 64-bit safe even on
4798 32-bit platforms (for instance, SPARC debugging a SPARC64
4799 application). */
4800 #ifdef HAVE_PREAD64
4801 if (pread64 (fd, readbuf, len, offset) != len)
4802 #else
4803 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4804 #endif
4805 ret = 0;
4806 else
4807 ret = len;
4808
4809 close (fd);
4810 return ret;
4811 }
4812
4813
4814 /* Enumerate spufs IDs for process PID. */
4815 static LONGEST
4816 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4817 {
4818 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4819 LONGEST pos = 0;
4820 LONGEST written = 0;
4821 char path[128];
4822 DIR *dir;
4823 struct dirent *entry;
4824
4825 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4826 dir = opendir (path);
4827 if (!dir)
4828 return -1;
4829
4830 rewinddir (dir);
4831 while ((entry = readdir (dir)) != NULL)
4832 {
4833 struct stat st;
4834 struct statfs stfs;
4835 int fd;
4836
4837 fd = atoi (entry->d_name);
4838 if (!fd)
4839 continue;
4840
4841 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4842 if (stat (path, &st) != 0)
4843 continue;
4844 if (!S_ISDIR (st.st_mode))
4845 continue;
4846
4847 if (statfs (path, &stfs) != 0)
4848 continue;
4849 if (stfs.f_type != SPUFS_MAGIC)
4850 continue;
4851
4852 if (pos >= offset && pos + 4 <= offset + len)
4853 {
4854 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4855 written += 4;
4856 }
4857 pos += 4;
4858 }
4859
4860 closedir (dir);
4861 return written;
4862 }
4863
4864 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4865 object type, using the /proc file system. */
4866 static LONGEST
4867 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4868 const char *annex, gdb_byte *readbuf,
4869 const gdb_byte *writebuf,
4870 ULONGEST offset, LONGEST len)
4871 {
4872 char buf[128];
4873 int fd = 0;
4874 int ret = -1;
4875 int pid = PIDGET (inferior_ptid);
4876
4877 if (!annex)
4878 {
4879 if (!readbuf)
4880 return -1;
4881 else
4882 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4883 }
4884
4885 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4886 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4887 if (fd <= 0)
4888 return -1;
4889
4890 if (offset != 0
4891 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4892 {
4893 close (fd);
4894 return 0;
4895 }
4896
4897 if (writebuf)
4898 ret = write (fd, writebuf, (size_t) len);
4899 else if (readbuf)
4900 ret = read (fd, readbuf, (size_t) len);
4901
4902 close (fd);
4903 return ret;
4904 }
4905
4906
4907 /* Parse LINE as a signal set and add its set bits to SIGS. */
4908
4909 static void
4910 add_line_to_sigset (const char *line, sigset_t *sigs)
4911 {
4912 int len = strlen (line) - 1;
4913 const char *p;
4914 int signum;
4915
4916 if (line[len] != '\n')
4917 error (_("Could not parse signal set: %s"), line);
4918
4919 p = line;
4920 signum = len * 4;
4921 while (len-- > 0)
4922 {
4923 int digit;
4924
4925 if (*p >= '0' && *p <= '9')
4926 digit = *p - '0';
4927 else if (*p >= 'a' && *p <= 'f')
4928 digit = *p - 'a' + 10;
4929 else
4930 error (_("Could not parse signal set: %s"), line);
4931
4932 signum -= 4;
4933
4934 if (digit & 1)
4935 sigaddset (sigs, signum + 1);
4936 if (digit & 2)
4937 sigaddset (sigs, signum + 2);
4938 if (digit & 4)
4939 sigaddset (sigs, signum + 3);
4940 if (digit & 8)
4941 sigaddset (sigs, signum + 4);
4942
4943 p++;
4944 }
4945 }
4946
4947 /* Find process PID's pending signals from /proc/pid/status and set
4948 SIGS to match. */
4949
4950 void
4951 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4952 {
4953 FILE *procfile;
4954 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4955 struct cleanup *cleanup;
4956
4957 sigemptyset (pending);
4958 sigemptyset (blocked);
4959 sigemptyset (ignored);
4960 sprintf (fname, "/proc/%d/status", pid);
4961 procfile = fopen (fname, "r");
4962 if (procfile == NULL)
4963 error (_("Could not open %s"), fname);
4964 cleanup = make_cleanup_fclose (procfile);
4965
4966 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4967 {
4968 /* Normal queued signals are on the SigPnd line in the status
4969 file. However, 2.6 kernels also have a "shared" pending
4970 queue for delivering signals to a thread group, so check for
4971 a ShdPnd line also.
4972
4973 Unfortunately some Red Hat kernels include the shared pending
4974 queue but not the ShdPnd status field. */
4975
4976 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4977 add_line_to_sigset (buffer + 8, pending);
4978 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4979 add_line_to_sigset (buffer + 8, pending);
4980 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4981 add_line_to_sigset (buffer + 8, blocked);
4982 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4983 add_line_to_sigset (buffer + 8, ignored);
4984 }
4985
4986 do_cleanups (cleanup);
4987 }
4988
4989 static LONGEST
4990 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4991 const char *annex, gdb_byte *readbuf,
4992 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4993 {
4994 /* We make the process list snapshot when the object starts to be
4995 read. */
4996 static const char *buf;
4997 static LONGEST len_avail = -1;
4998 static struct obstack obstack;
4999
5000 DIR *dirp;
5001
5002 gdb_assert (object == TARGET_OBJECT_OSDATA);
5003
5004 if (!annex)
5005 {
5006 if (offset == 0)
5007 {
5008 if (len_avail != -1 && len_avail != 0)
5009 obstack_free (&obstack, NULL);
5010 len_avail = 0;
5011 buf = NULL;
5012 obstack_init (&obstack);
5013 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
5014
5015 obstack_xml_printf (
5016 &obstack,
5017 "<item>"
5018 "<column name=\"Type\">processes</column>"
5019 "<column name=\"Description\">Listing of all processes</column>"
5020 "</item>");
5021
5022 obstack_grow_str0 (&obstack, "</osdata>\n");
5023 buf = obstack_finish (&obstack);
5024 len_avail = strlen (buf);
5025 }
5026
5027 if (offset >= len_avail)
5028 {
5029 /* Done. Get rid of the obstack. */
5030 obstack_free (&obstack, NULL);
5031 buf = NULL;
5032 len_avail = 0;
5033 return 0;
5034 }
5035
5036 if (len > len_avail - offset)
5037 len = len_avail - offset;
5038 memcpy (readbuf, buf + offset, len);
5039
5040 return len;
5041 }
5042
5043 if (strcmp (annex, "processes") != 0)
5044 return 0;
5045
5046 gdb_assert (readbuf && !writebuf);
5047
5048 if (offset == 0)
5049 {
5050 if (len_avail != -1 && len_avail != 0)
5051 obstack_free (&obstack, NULL);
5052 len_avail = 0;
5053 buf = NULL;
5054 obstack_init (&obstack);
5055 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5056
5057 dirp = opendir ("/proc");
5058 if (dirp)
5059 {
5060 struct dirent *dp;
5061
5062 while ((dp = readdir (dirp)) != NULL)
5063 {
5064 struct stat statbuf;
5065 char procentry[sizeof ("/proc/4294967295")];
5066
5067 if (!isdigit (dp->d_name[0])
5068 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5069 continue;
5070
5071 sprintf (procentry, "/proc/%s", dp->d_name);
5072 if (stat (procentry, &statbuf) == 0
5073 && S_ISDIR (statbuf.st_mode))
5074 {
5075 char *pathname;
5076 FILE *f;
5077 char cmd[MAXPATHLEN + 1];
5078 struct passwd *entry;
5079
5080 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5081 entry = getpwuid (statbuf.st_uid);
5082
5083 if ((f = fopen (pathname, "r")) != NULL)
5084 {
5085 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5086
5087 if (len > 0)
5088 {
5089 int i;
5090
5091 for (i = 0; i < len; i++)
5092 if (cmd[i] == '\0')
5093 cmd[i] = ' ';
5094 cmd[len] = '\0';
5095
5096 obstack_xml_printf (
5097 &obstack,
5098 "<item>"
5099 "<column name=\"pid\">%s</column>"
5100 "<column name=\"user\">%s</column>"
5101 "<column name=\"command\">%s</column>"
5102 "</item>",
5103 dp->d_name,
5104 entry ? entry->pw_name : "?",
5105 cmd);
5106 }
5107 fclose (f);
5108 }
5109
5110 xfree (pathname);
5111 }
5112 }
5113
5114 closedir (dirp);
5115 }
5116
5117 obstack_grow_str0 (&obstack, "</osdata>\n");
5118 buf = obstack_finish (&obstack);
5119 len_avail = strlen (buf);
5120 }
5121
5122 if (offset >= len_avail)
5123 {
5124 /* Done. Get rid of the obstack. */
5125 obstack_free (&obstack, NULL);
5126 buf = NULL;
5127 len_avail = 0;
5128 return 0;
5129 }
5130
5131 if (len > len_avail - offset)
5132 len = len_avail - offset;
5133 memcpy (readbuf, buf + offset, len);
5134
5135 return len;
5136 }
5137
5138 static LONGEST
5139 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5140 const char *annex, gdb_byte *readbuf,
5141 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5142 {
5143 LONGEST xfer;
5144
5145 if (object == TARGET_OBJECT_AUXV)
5146 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5147 offset, len);
5148
5149 if (object == TARGET_OBJECT_OSDATA)
5150 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5151 offset, len);
5152
5153 if (object == TARGET_OBJECT_SPU)
5154 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5155 offset, len);
5156
5157 /* GDB calculates all the addresses in possibly larget width of the address.
5158 Address width needs to be masked before its final use - either by
5159 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5160
5161 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5162
5163 if (object == TARGET_OBJECT_MEMORY)
5164 {
5165 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5166
5167 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5168 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5169 }
5170
5171 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5172 offset, len);
5173 if (xfer != 0)
5174 return xfer;
5175
5176 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5177 offset, len);
5178 }
5179
5180 /* Create a prototype generic GNU/Linux target. The client can override
5181 it with local methods. */
5182
5183 static void
5184 linux_target_install_ops (struct target_ops *t)
5185 {
5186 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5187 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5188 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5189 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5190 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5191 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5192 t->to_post_attach = linux_child_post_attach;
5193 t->to_follow_fork = linux_child_follow_fork;
5194 t->to_find_memory_regions = linux_nat_find_memory_regions;
5195 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5196
5197 super_xfer_partial = t->to_xfer_partial;
5198 t->to_xfer_partial = linux_xfer_partial;
5199 }
5200
5201 struct target_ops *
5202 linux_target (void)
5203 {
5204 struct target_ops *t;
5205
5206 t = inf_ptrace_target ();
5207 linux_target_install_ops (t);
5208
5209 return t;
5210 }
5211
5212 struct target_ops *
5213 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5214 {
5215 struct target_ops *t;
5216
5217 t = inf_ptrace_trad_target (register_u_offset);
5218 linux_target_install_ops (t);
5219
5220 return t;
5221 }
5222
5223 /* target_is_async_p implementation. */
5224
5225 static int
5226 linux_nat_is_async_p (void)
5227 {
5228 /* NOTE: palves 2008-03-21: We're only async when the user requests
5229 it explicitly with the "set target-async" command.
5230 Someday, linux will always be async. */
5231 if (!target_async_permitted)
5232 return 0;
5233
5234 /* See target.h/target_async_mask. */
5235 return linux_nat_async_mask_value;
5236 }
5237
5238 /* target_can_async_p implementation. */
5239
5240 static int
5241 linux_nat_can_async_p (void)
5242 {
5243 /* NOTE: palves 2008-03-21: We're only async when the user requests
5244 it explicitly with the "set target-async" command.
5245 Someday, linux will always be async. */
5246 if (!target_async_permitted)
5247 return 0;
5248
5249 /* See target.h/target_async_mask. */
5250 return linux_nat_async_mask_value;
5251 }
5252
5253 static int
5254 linux_nat_supports_non_stop (void)
5255 {
5256 return 1;
5257 }
5258
5259 /* True if we want to support multi-process. To be removed when GDB
5260 supports multi-exec. */
5261
5262 int linux_multi_process = 1;
5263
5264 static int
5265 linux_nat_supports_multi_process (void)
5266 {
5267 return linux_multi_process;
5268 }
5269
5270 /* target_async_mask implementation. */
5271
5272 static int
5273 linux_nat_async_mask (int new_mask)
5274 {
5275 int curr_mask = linux_nat_async_mask_value;
5276
5277 if (curr_mask != new_mask)
5278 {
5279 if (new_mask == 0)
5280 {
5281 linux_nat_async (NULL, 0);
5282 linux_nat_async_mask_value = new_mask;
5283 }
5284 else
5285 {
5286 linux_nat_async_mask_value = new_mask;
5287
5288 /* If we're going out of async-mask in all-stop, then the
5289 inferior is stopped. The next resume will call
5290 target_async. In non-stop, the target event source
5291 should be always registered in the event loop. Do so
5292 now. */
5293 if (non_stop)
5294 linux_nat_async (inferior_event_handler, 0);
5295 }
5296 }
5297
5298 return curr_mask;
5299 }
5300
5301 static int async_terminal_is_ours = 1;
5302
5303 /* target_terminal_inferior implementation. */
5304
5305 static void
5306 linux_nat_terminal_inferior (void)
5307 {
5308 if (!target_is_async_p ())
5309 {
5310 /* Async mode is disabled. */
5311 terminal_inferior ();
5312 return;
5313 }
5314
5315 terminal_inferior ();
5316
5317 /* Calls to target_terminal_*() are meant to be idempotent. */
5318 if (!async_terminal_is_ours)
5319 return;
5320
5321 delete_file_handler (input_fd);
5322 async_terminal_is_ours = 0;
5323 set_sigint_trap ();
5324 }
5325
5326 /* target_terminal_ours implementation. */
5327
5328 static void
5329 linux_nat_terminal_ours (void)
5330 {
5331 if (!target_is_async_p ())
5332 {
5333 /* Async mode is disabled. */
5334 terminal_ours ();
5335 return;
5336 }
5337
5338 /* GDB should never give the terminal to the inferior if the
5339 inferior is running in the background (run&, continue&, etc.),
5340 but claiming it sure should. */
5341 terminal_ours ();
5342
5343 if (async_terminal_is_ours)
5344 return;
5345
5346 clear_sigint_trap ();
5347 add_file_handler (input_fd, stdin_event_handler, 0);
5348 async_terminal_is_ours = 1;
5349 }
5350
5351 static void (*async_client_callback) (enum inferior_event_type event_type,
5352 void *context);
5353 static void *async_client_context;
5354
5355 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5356 so we notice when any child changes state, and notify the
5357 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5358 above to wait for the arrival of a SIGCHLD. */
5359
5360 static void
5361 sigchld_handler (int signo)
5362 {
5363 int old_errno = errno;
5364
5365 if (debug_linux_nat_async)
5366 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5367
5368 if (signo == SIGCHLD
5369 && linux_nat_event_pipe[0] != -1)
5370 async_file_mark (); /* Let the event loop know that there are
5371 events to handle. */
5372
5373 errno = old_errno;
5374 }
5375
5376 /* Callback registered with the target events file descriptor. */
5377
5378 static void
5379 handle_target_event (int error, gdb_client_data client_data)
5380 {
5381 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5382 }
5383
5384 /* Create/destroy the target events pipe. Returns previous state. */
5385
5386 static int
5387 linux_async_pipe (int enable)
5388 {
5389 int previous = (linux_nat_event_pipe[0] != -1);
5390
5391 if (previous != enable)
5392 {
5393 sigset_t prev_mask;
5394
5395 block_child_signals (&prev_mask);
5396
5397 if (enable)
5398 {
5399 if (pipe (linux_nat_event_pipe) == -1)
5400 internal_error (__FILE__, __LINE__,
5401 "creating event pipe failed.");
5402
5403 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5404 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5405 }
5406 else
5407 {
5408 close (linux_nat_event_pipe[0]);
5409 close (linux_nat_event_pipe[1]);
5410 linux_nat_event_pipe[0] = -1;
5411 linux_nat_event_pipe[1] = -1;
5412 }
5413
5414 restore_child_signals_mask (&prev_mask);
5415 }
5416
5417 return previous;
5418 }
5419
5420 /* target_async implementation. */
5421
5422 static void
5423 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5424 void *context), void *context)
5425 {
5426 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5427 internal_error (__FILE__, __LINE__,
5428 "Calling target_async when async is masked");
5429
5430 if (callback != NULL)
5431 {
5432 async_client_callback = callback;
5433 async_client_context = context;
5434 if (!linux_async_pipe (1))
5435 {
5436 add_file_handler (linux_nat_event_pipe[0],
5437 handle_target_event, NULL);
5438 /* There may be pending events to handle. Tell the event loop
5439 to poll them. */
5440 async_file_mark ();
5441 }
5442 }
5443 else
5444 {
5445 async_client_callback = callback;
5446 async_client_context = context;
5447 delete_file_handler (linux_nat_event_pipe[0]);
5448 linux_async_pipe (0);
5449 }
5450 return;
5451 }
5452
5453 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5454 event came out. */
5455
5456 static int
5457 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5458 {
5459 if (!lwp->stopped)
5460 {
5461 ptid_t ptid = lwp->ptid;
5462
5463 if (debug_linux_nat)
5464 fprintf_unfiltered (gdb_stdlog,
5465 "LNSL: running -> suspending %s\n",
5466 target_pid_to_str (lwp->ptid));
5467
5468
5469 stop_callback (lwp, NULL);
5470 stop_wait_callback (lwp, NULL);
5471
5472 /* If the lwp exits while we try to stop it, there's nothing
5473 else to do. */
5474 lwp = find_lwp_pid (ptid);
5475 if (lwp == NULL)
5476 return 0;
5477
5478 /* If we didn't collect any signal other than SIGSTOP while
5479 stopping the LWP, push a SIGNAL_0 event. In either case, the
5480 event-loop will end up calling target_wait which will collect
5481 these. */
5482 if (lwp->status == 0)
5483 lwp->status = W_STOPCODE (0);
5484 async_file_mark ();
5485 }
5486 else
5487 {
5488 /* Already known to be stopped; do nothing. */
5489
5490 if (debug_linux_nat)
5491 {
5492 if (find_thread_ptid (lwp->ptid)->stop_requested)
5493 fprintf_unfiltered (gdb_stdlog, "\
5494 LNSL: already stopped/stop_requested %s\n",
5495 target_pid_to_str (lwp->ptid));
5496 else
5497 fprintf_unfiltered (gdb_stdlog, "\
5498 LNSL: already stopped/no stop_requested yet %s\n",
5499 target_pid_to_str (lwp->ptid));
5500 }
5501 }
5502 return 0;
5503 }
5504
5505 static void
5506 linux_nat_stop (ptid_t ptid)
5507 {
5508 if (non_stop)
5509 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5510 else
5511 linux_ops->to_stop (ptid);
5512 }
5513
5514 static void
5515 linux_nat_close (int quitting)
5516 {
5517 /* Unregister from the event loop. */
5518 if (target_is_async_p ())
5519 target_async (NULL, 0);
5520
5521 /* Reset the async_masking. */
5522 linux_nat_async_mask_value = 1;
5523
5524 if (linux_ops->to_close)
5525 linux_ops->to_close (quitting);
5526 }
5527
5528 /* When requests are passed down from the linux-nat layer to the
5529 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5530 used. The address space pointer is stored in the inferior object,
5531 but the common code that is passed such ptid can't tell whether
5532 lwpid is a "main" process id or not (it assumes so). We reverse
5533 look up the "main" process id from the lwp here. */
5534
5535 struct address_space *
5536 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5537 {
5538 struct lwp_info *lwp;
5539 struct inferior *inf;
5540 int pid;
5541
5542 pid = GET_LWP (ptid);
5543 if (GET_LWP (ptid) == 0)
5544 {
5545 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5546 tgid. */
5547 lwp = find_lwp_pid (ptid);
5548 pid = GET_PID (lwp->ptid);
5549 }
5550 else
5551 {
5552 /* A (pid,lwpid,0) ptid. */
5553 pid = GET_PID (ptid);
5554 }
5555
5556 inf = find_inferior_pid (pid);
5557 gdb_assert (inf != NULL);
5558 return inf->aspace;
5559 }
5560
5561 int
5562 linux_nat_core_of_thread_1 (ptid_t ptid)
5563 {
5564 struct cleanup *back_to;
5565 char *filename;
5566 FILE *f;
5567 char *content = NULL;
5568 char *p;
5569 char *ts = 0;
5570 int content_read = 0;
5571 int i;
5572 int core;
5573
5574 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5575 GET_PID (ptid), GET_LWP (ptid));
5576 back_to = make_cleanup (xfree, filename);
5577
5578 f = fopen (filename, "r");
5579 if (!f)
5580 {
5581 do_cleanups (back_to);
5582 return -1;
5583 }
5584
5585 make_cleanup_fclose (f);
5586
5587 for (;;)
5588 {
5589 int n;
5590
5591 content = xrealloc (content, content_read + 1024);
5592 n = fread (content + content_read, 1, 1024, f);
5593 content_read += n;
5594 if (n < 1024)
5595 {
5596 content[content_read] = '\0';
5597 break;
5598 }
5599 }
5600
5601 make_cleanup (xfree, content);
5602
5603 p = strchr (content, '(');
5604
5605 /* Skip ")". */
5606 if (p != NULL)
5607 p = strchr (p, ')');
5608 if (p != NULL)
5609 p++;
5610
5611 /* If the first field after program name has index 0, then core number is
5612 the field with index 36. There's no constant for that anywhere. */
5613 if (p != NULL)
5614 p = strtok_r (p, " ", &ts);
5615 for (i = 0; p != NULL && i != 36; ++i)
5616 p = strtok_r (NULL, " ", &ts);
5617
5618 if (p == NULL || sscanf (p, "%d", &core) == 0)
5619 core = -1;
5620
5621 do_cleanups (back_to);
5622
5623 return core;
5624 }
5625
5626 /* Return the cached value of the processor core for thread PTID. */
5627
5628 int
5629 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5630 {
5631 struct lwp_info *info = find_lwp_pid (ptid);
5632
5633 if (info)
5634 return info->core;
5635 return -1;
5636 }
5637
5638 void
5639 linux_nat_add_target (struct target_ops *t)
5640 {
5641 /* Save the provided single-threaded target. We save this in a separate
5642 variable because another target we've inherited from (e.g. inf-ptrace)
5643 may have saved a pointer to T; we want to use it for the final
5644 process stratum target. */
5645 linux_ops_saved = *t;
5646 linux_ops = &linux_ops_saved;
5647
5648 /* Override some methods for multithreading. */
5649 t->to_create_inferior = linux_nat_create_inferior;
5650 t->to_attach = linux_nat_attach;
5651 t->to_detach = linux_nat_detach;
5652 t->to_resume = linux_nat_resume;
5653 t->to_wait = linux_nat_wait;
5654 t->to_xfer_partial = linux_nat_xfer_partial;
5655 t->to_kill = linux_nat_kill;
5656 t->to_mourn_inferior = linux_nat_mourn_inferior;
5657 t->to_thread_alive = linux_nat_thread_alive;
5658 t->to_pid_to_str = linux_nat_pid_to_str;
5659 t->to_has_thread_control = tc_schedlock;
5660 t->to_thread_address_space = linux_nat_thread_address_space;
5661 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5662 t->to_stopped_data_address = linux_nat_stopped_data_address;
5663
5664 t->to_can_async_p = linux_nat_can_async_p;
5665 t->to_is_async_p = linux_nat_is_async_p;
5666 t->to_supports_non_stop = linux_nat_supports_non_stop;
5667 t->to_async = linux_nat_async;
5668 t->to_async_mask = linux_nat_async_mask;
5669 t->to_terminal_inferior = linux_nat_terminal_inferior;
5670 t->to_terminal_ours = linux_nat_terminal_ours;
5671 t->to_close = linux_nat_close;
5672
5673 /* Methods for non-stop support. */
5674 t->to_stop = linux_nat_stop;
5675
5676 t->to_supports_multi_process = linux_nat_supports_multi_process;
5677
5678 t->to_core_of_thread = linux_nat_core_of_thread;
5679
5680 /* We don't change the stratum; this target will sit at
5681 process_stratum and thread_db will set at thread_stratum. This
5682 is a little strange, since this is a multi-threaded-capable
5683 target, but we want to be on the stack below thread_db, and we
5684 also want to be used for single-threaded processes. */
5685
5686 add_target (t);
5687 }
5688
5689 /* Register a method to call whenever a new thread is attached. */
5690 void
5691 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5692 {
5693 /* Save the pointer. We only support a single registered instance
5694 of the GNU/Linux native target, so we do not need to map this to
5695 T. */
5696 linux_nat_new_thread = new_thread;
5697 }
5698
5699 /* Register a method that converts a siginfo object between the layout
5700 that ptrace returns, and the layout in the architecture of the
5701 inferior. */
5702 void
5703 linux_nat_set_siginfo_fixup (struct target_ops *t,
5704 int (*siginfo_fixup) (struct siginfo *,
5705 gdb_byte *,
5706 int))
5707 {
5708 /* Save the pointer. */
5709 linux_nat_siginfo_fixup = siginfo_fixup;
5710 }
5711
5712 /* Return the saved siginfo associated with PTID. */
5713 struct siginfo *
5714 linux_nat_get_siginfo (ptid_t ptid)
5715 {
5716 struct lwp_info *lp = find_lwp_pid (ptid);
5717
5718 gdb_assert (lp != NULL);
5719
5720 return &lp->siginfo;
5721 }
5722
5723 /* Provide a prototype to silence -Wmissing-prototypes. */
5724 extern initialize_file_ftype _initialize_linux_nat;
5725
5726 void
5727 _initialize_linux_nat (void)
5728 {
5729 add_info ("proc", linux_nat_info_proc_cmd, _("\
5730 Show /proc process information about any running process.\n\
5731 Specify any process id, or use the program being debugged by default.\n\
5732 Specify any of the following keywords for detailed info:\n\
5733 mappings -- list of mapped memory regions.\n\
5734 stat -- list a bunch of random process info.\n\
5735 status -- list a different bunch of random process info.\n\
5736 all -- list all available /proc info."));
5737
5738 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5739 &debug_linux_nat, _("\
5740 Set debugging of GNU/Linux lwp module."), _("\
5741 Show debugging of GNU/Linux lwp module."), _("\
5742 Enables printf debugging output."),
5743 NULL,
5744 show_debug_linux_nat,
5745 &setdebuglist, &showdebuglist);
5746
5747 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5748 &debug_linux_nat_async, _("\
5749 Set debugging of GNU/Linux async lwp module."), _("\
5750 Show debugging of GNU/Linux async lwp module."), _("\
5751 Enables printf debugging output."),
5752 NULL,
5753 show_debug_linux_nat_async,
5754 &setdebuglist, &showdebuglist);
5755
5756 /* Save this mask as the default. */
5757 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5758
5759 /* Install a SIGCHLD handler. */
5760 sigchld_action.sa_handler = sigchld_handler;
5761 sigemptyset (&sigchld_action.sa_mask);
5762 sigchld_action.sa_flags = SA_RESTART;
5763
5764 /* Make it the default. */
5765 sigaction (SIGCHLD, &sigchld_action, NULL);
5766
5767 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5768 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5769 sigdelset (&suspend_mask, SIGCHLD);
5770
5771 sigemptyset (&blocked_mask);
5772
5773 add_setshow_boolean_cmd ("disable-randomization", class_support,
5774 &disable_randomization, _("\
5775 Set disabling of debuggee's virtual address space randomization."), _("\
5776 Show disabling of debuggee's virtual address space randomization."), _("\
5777 When this mode is on (which is the default), randomization of the virtual\n\
5778 address space is disabled. Standalone programs run with the randomization\n\
5779 enabled by default on some platforms."),
5780 &set_disable_randomization,
5781 &show_disable_randomization,
5782 &setlist, &showlist);
5783 }
5784 \f
5785
5786 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5787 the GNU/Linux Threads library and therefore doesn't really belong
5788 here. */
5789
5790 /* Read variable NAME in the target and return its value if found.
5791 Otherwise return zero. It is assumed that the type of the variable
5792 is `int'. */
5793
5794 static int
5795 get_signo (const char *name)
5796 {
5797 struct minimal_symbol *ms;
5798 int signo;
5799
5800 ms = lookup_minimal_symbol (name, NULL, NULL);
5801 if (ms == NULL)
5802 return 0;
5803
5804 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5805 sizeof (signo)) != 0)
5806 return 0;
5807
5808 return signo;
5809 }
5810
5811 /* Return the set of signals used by the threads library in *SET. */
5812
5813 void
5814 lin_thread_get_thread_signals (sigset_t *set)
5815 {
5816 struct sigaction action;
5817 int restart, cancel;
5818
5819 sigemptyset (&blocked_mask);
5820 sigemptyset (set);
5821
5822 restart = get_signo ("__pthread_sig_restart");
5823 cancel = get_signo ("__pthread_sig_cancel");
5824
5825 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5826 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5827 not provide any way for the debugger to query the signal numbers -
5828 fortunately they don't change! */
5829
5830 if (restart == 0)
5831 restart = __SIGRTMIN;
5832
5833 if (cancel == 0)
5834 cancel = __SIGRTMIN + 1;
5835
5836 sigaddset (set, restart);
5837 sigaddset (set, cancel);
5838
5839 /* The GNU/Linux Threads library makes terminating threads send a
5840 special "cancel" signal instead of SIGCHLD. Make sure we catch
5841 those (to prevent them from terminating GDB itself, which is
5842 likely to be their default action) and treat them the same way as
5843 SIGCHLD. */
5844
5845 action.sa_handler = sigchld_handler;
5846 sigemptyset (&action.sa_mask);
5847 action.sa_flags = SA_RESTART;
5848 sigaction (cancel, &action, NULL);
5849
5850 /* We block the "cancel" signal throughout this code ... */
5851 sigaddset (&blocked_mask, cancel);
5852 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5853
5854 /* ... except during a sigsuspend. */
5855 sigdelset (&suspend_mask, cancel);
5856 }
This page took 0.192293 seconds and 4 git commands to generate.