Use gdb::byte_vector when reading section data
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good:
83
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
87 reaped.
88
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
92
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167
168 Exec events
169 ===========
170
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader. */
184
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191
192 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
193 the use of the multi-threaded target. */
194 static struct target_ops *linux_ops;
195 static struct target_ops linux_ops_saved;
196
197 /* The method to call, if any, when a new thread is attached. */
198 static void (*linux_nat_new_thread) (struct lwp_info *);
199
200 /* The method to call, if any, when a thread is destroyed. */
201 static void (*linux_nat_delete_thread) (struct arch_lwp_info *);
202
203 /* The method to call, if any, when a new fork is attached. */
204 static linux_nat_new_fork_ftype *linux_nat_new_fork;
205
206 /* The method to call, if any, when a process is no longer
207 attached. */
208 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
209
210 /* Hook to call prior to resuming a thread. */
211 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static target_xfer_partial_ftype *super_xfer_partial;
223
224 /* The saved to_close method, inherited from inf-ptrace.c.
225 Called by our to_close. */
226 static void (*super_close) (struct target_ops *);
227
228 static unsigned int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 struct simple_pid_list
238 {
239 int pid;
240 int status;
241 struct simple_pid_list *next;
242 };
243 struct simple_pid_list *stopped_pids;
244
245 /* Whether target_thread_events is in effect. */
246 static int report_thread_events;
247
248 /* Async mode support. */
249
250 /* The read/write ends of the pipe registered as waitable file in the
251 event loop. */
252 static int linux_nat_event_pipe[2] = { -1, -1 };
253
254 /* True if we're currently in async mode. */
255 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
256
257 /* Flush the event pipe. */
258
259 static void
260 async_file_flush (void)
261 {
262 int ret;
263 char buf;
264
265 do
266 {
267 ret = read (linux_nat_event_pipe[0], &buf, 1);
268 }
269 while (ret >= 0 || (ret == -1 && errno == EINTR));
270 }
271
272 /* Put something (anything, doesn't matter what, or how much) in event
273 pipe, so that the select/poll in the event-loop realizes we have
274 something to process. */
275
276 static void
277 async_file_mark (void)
278 {
279 int ret;
280
281 /* It doesn't really matter what the pipe contains, as long we end
282 up with something in it. Might as well flush the previous
283 left-overs. */
284 async_file_flush ();
285
286 do
287 {
288 ret = write (linux_nat_event_pipe[1], "+", 1);
289 }
290 while (ret == -1 && errno == EINTR);
291
292 /* Ignore EAGAIN. If the pipe is full, the event loop will already
293 be awakened anyway. */
294 }
295
296 static int kill_lwp (int lwpid, int signo);
297
298 static int stop_callback (struct lwp_info *lp, void *data);
299 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
300
301 static void block_child_signals (sigset_t *prev_mask);
302 static void restore_child_signals_mask (sigset_t *prev_mask);
303
304 struct lwp_info;
305 static struct lwp_info *add_lwp (ptid_t ptid);
306 static void purge_lwp_list (int pid);
307 static void delete_lwp (ptid_t ptid);
308 static struct lwp_info *find_lwp_pid (ptid_t ptid);
309
310 static int lwp_status_pending_p (struct lwp_info *lp);
311
312 static int sigtrap_is_event (int status);
313 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
314
315 static void save_stop_reason (struct lwp_info *lp);
316
317 \f
318 /* LWP accessors. */
319
320 /* See nat/linux-nat.h. */
321
322 ptid_t
323 ptid_of_lwp (struct lwp_info *lwp)
324 {
325 return lwp->ptid;
326 }
327
328 /* See nat/linux-nat.h. */
329
330 void
331 lwp_set_arch_private_info (struct lwp_info *lwp,
332 struct arch_lwp_info *info)
333 {
334 lwp->arch_private = info;
335 }
336
337 /* See nat/linux-nat.h. */
338
339 struct arch_lwp_info *
340 lwp_arch_private_info (struct lwp_info *lwp)
341 {
342 return lwp->arch_private;
343 }
344
345 /* See nat/linux-nat.h. */
346
347 int
348 lwp_is_stopped (struct lwp_info *lwp)
349 {
350 return lwp->stopped;
351 }
352
353 /* See nat/linux-nat.h. */
354
355 enum target_stop_reason
356 lwp_stop_reason (struct lwp_info *lwp)
357 {
358 return lwp->stop_reason;
359 }
360
361 /* See nat/linux-nat.h. */
362
363 int
364 lwp_is_stepping (struct lwp_info *lwp)
365 {
366 return lwp->step;
367 }
368
369 \f
370 /* Trivial list manipulation functions to keep track of a list of
371 new stopped processes. */
372 static void
373 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
374 {
375 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
376
377 new_pid->pid = pid;
378 new_pid->status = status;
379 new_pid->next = *listp;
380 *listp = new_pid;
381 }
382
383 static int
384 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
385 {
386 struct simple_pid_list **p;
387
388 for (p = listp; *p != NULL; p = &(*p)->next)
389 if ((*p)->pid == pid)
390 {
391 struct simple_pid_list *next = (*p)->next;
392
393 *statusp = (*p)->status;
394 xfree (*p);
395 *p = next;
396 return 1;
397 }
398 return 0;
399 }
400
401 /* Return the ptrace options that we want to try to enable. */
402
403 static int
404 linux_nat_ptrace_options (int attached)
405 {
406 int options = 0;
407
408 if (!attached)
409 options |= PTRACE_O_EXITKILL;
410
411 options |= (PTRACE_O_TRACESYSGOOD
412 | PTRACE_O_TRACEVFORKDONE
413 | PTRACE_O_TRACEVFORK
414 | PTRACE_O_TRACEFORK
415 | PTRACE_O_TRACEEXEC);
416
417 return options;
418 }
419
420 /* Initialize ptrace warnings and check for supported ptrace
421 features given PID.
422
423 ATTACHED should be nonzero iff we attached to the inferior. */
424
425 static void
426 linux_init_ptrace (pid_t pid, int attached)
427 {
428 int options = linux_nat_ptrace_options (attached);
429
430 linux_enable_event_reporting (pid, options);
431 linux_ptrace_init_warnings ();
432 }
433
434 static void
435 linux_child_post_attach (struct target_ops *self, int pid)
436 {
437 linux_init_ptrace (pid, 1);
438 }
439
440 static void
441 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
442 {
443 linux_init_ptrace (ptid_get_pid (ptid), 0);
444 }
445
446 /* Return the number of known LWPs in the tgid given by PID. */
447
448 static int
449 num_lwps (int pid)
450 {
451 int count = 0;
452 struct lwp_info *lp;
453
454 for (lp = lwp_list; lp; lp = lp->next)
455 if (ptid_get_pid (lp->ptid) == pid)
456 count++;
457
458 return count;
459 }
460
461 /* Call delete_lwp with prototype compatible for make_cleanup. */
462
463 static void
464 delete_lwp_cleanup (void *lp_voidp)
465 {
466 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
467
468 delete_lwp (lp->ptid);
469 }
470
471 /* Target hook for follow_fork. On entry inferior_ptid must be the
472 ptid of the followed inferior. At return, inferior_ptid will be
473 unchanged. */
474
475 static int
476 linux_child_follow_fork (struct target_ops *ops, int follow_child,
477 int detach_fork)
478 {
479 if (!follow_child)
480 {
481 struct lwp_info *child_lp = NULL;
482 int status = W_STOPCODE (0);
483 int has_vforked;
484 ptid_t parent_ptid, child_ptid;
485 int parent_pid, child_pid;
486
487 has_vforked = (inferior_thread ()->pending_follow.kind
488 == TARGET_WAITKIND_VFORKED);
489 parent_ptid = inferior_ptid;
490 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
491 parent_pid = ptid_get_lwp (parent_ptid);
492 child_pid = ptid_get_lwp (child_ptid);
493
494 /* We're already attached to the parent, by default. */
495 child_lp = add_lwp (child_ptid);
496 child_lp->stopped = 1;
497 child_lp->last_resume_kind = resume_stop;
498
499 /* Detach new forked process? */
500 if (detach_fork)
501 {
502 struct cleanup *old_chain = make_cleanup (delete_lwp_cleanup,
503 child_lp);
504
505 if (linux_nat_prepare_to_resume != NULL)
506 linux_nat_prepare_to_resume (child_lp);
507
508 /* When debugging an inferior in an architecture that supports
509 hardware single stepping on a kernel without commit
510 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
511 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
512 set if the parent process had them set.
513 To work around this, single step the child process
514 once before detaching to clear the flags. */
515
516 /* Note that we consult the parent's architecture instead of
517 the child's because there's no inferior for the child at
518 this point. */
519 if (!gdbarch_software_single_step_p (target_thread_architecture
520 (parent_ptid)))
521 {
522 linux_disable_event_reporting (child_pid);
523 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
524 perror_with_name (_("Couldn't do single step"));
525 if (my_waitpid (child_pid, &status, 0) < 0)
526 perror_with_name (_("Couldn't wait vfork process"));
527 }
528
529 if (WIFSTOPPED (status))
530 {
531 int signo;
532
533 signo = WSTOPSIG (status);
534 if (signo != 0
535 && !signal_pass_state (gdb_signal_from_host (signo)))
536 signo = 0;
537 ptrace (PTRACE_DETACH, child_pid, 0, signo);
538 }
539
540 do_cleanups (old_chain);
541 }
542 else
543 {
544 scoped_restore save_inferior_ptid
545 = make_scoped_restore (&inferior_ptid);
546 inferior_ptid = child_ptid;
547
548 /* Let the thread_db layer learn about this new process. */
549 check_for_thread_db ();
550 }
551
552 if (has_vforked)
553 {
554 struct lwp_info *parent_lp;
555
556 parent_lp = find_lwp_pid (parent_ptid);
557 gdb_assert (linux_supports_tracefork () >= 0);
558
559 if (linux_supports_tracevforkdone ())
560 {
561 if (debug_linux_nat)
562 fprintf_unfiltered (gdb_stdlog,
563 "LCFF: waiting for VFORK_DONE on %d\n",
564 parent_pid);
565 parent_lp->stopped = 1;
566
567 /* We'll handle the VFORK_DONE event like any other
568 event, in target_wait. */
569 }
570 else
571 {
572 /* We can't insert breakpoints until the child has
573 finished with the shared memory region. We need to
574 wait until that happens. Ideal would be to just
575 call:
576 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
577 - waitpid (parent_pid, &status, __WALL);
578 However, most architectures can't handle a syscall
579 being traced on the way out if it wasn't traced on
580 the way in.
581
582 We might also think to loop, continuing the child
583 until it exits or gets a SIGTRAP. One problem is
584 that the child might call ptrace with PTRACE_TRACEME.
585
586 There's no simple and reliable way to figure out when
587 the vforked child will be done with its copy of the
588 shared memory. We could step it out of the syscall,
589 two instructions, let it go, and then single-step the
590 parent once. When we have hardware single-step, this
591 would work; with software single-step it could still
592 be made to work but we'd have to be able to insert
593 single-step breakpoints in the child, and we'd have
594 to insert -just- the single-step breakpoint in the
595 parent. Very awkward.
596
597 In the end, the best we can do is to make sure it
598 runs for a little while. Hopefully it will be out of
599 range of any breakpoints we reinsert. Usually this
600 is only the single-step breakpoint at vfork's return
601 point. */
602
603 if (debug_linux_nat)
604 fprintf_unfiltered (gdb_stdlog,
605 "LCFF: no VFORK_DONE "
606 "support, sleeping a bit\n");
607
608 usleep (10000);
609
610 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
611 and leave it pending. The next linux_nat_resume call
612 will notice a pending event, and bypasses actually
613 resuming the inferior. */
614 parent_lp->status = 0;
615 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
616 parent_lp->stopped = 1;
617
618 /* If we're in async mode, need to tell the event loop
619 there's something here to process. */
620 if (target_is_async_p ())
621 async_file_mark ();
622 }
623 }
624 }
625 else
626 {
627 struct lwp_info *child_lp;
628
629 child_lp = add_lwp (inferior_ptid);
630 child_lp->stopped = 1;
631 child_lp->last_resume_kind = resume_stop;
632
633 /* Let the thread_db layer learn about this new process. */
634 check_for_thread_db ();
635 }
636
637 return 0;
638 }
639
640 \f
641 static int
642 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
643 {
644 return !linux_supports_tracefork ();
645 }
646
647 static int
648 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
649 {
650 return 0;
651 }
652
653 static int
654 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
655 {
656 return !linux_supports_tracefork ();
657 }
658
659 static int
660 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
661 {
662 return 0;
663 }
664
665 static int
666 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
667 {
668 return !linux_supports_tracefork ();
669 }
670
671 static int
672 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
673 {
674 return 0;
675 }
676
677 static int
678 linux_child_set_syscall_catchpoint (struct target_ops *self,
679 int pid, bool needed, int any_count,
680 gdb::array_view<const int> syscall_counts)
681 {
682 if (!linux_supports_tracesysgood ())
683 return 1;
684
685 /* On GNU/Linux, we ignore the arguments. It means that we only
686 enable the syscall catchpoints, but do not disable them.
687
688 Also, we do not use the `syscall_counts' information because we do not
689 filter system calls here. We let GDB do the logic for us. */
690 return 0;
691 }
692
693 /* List of known LWPs, keyed by LWP PID. This speeds up the common
694 case of mapping a PID returned from the kernel to our corresponding
695 lwp_info data structure. */
696 static htab_t lwp_lwpid_htab;
697
698 /* Calculate a hash from a lwp_info's LWP PID. */
699
700 static hashval_t
701 lwp_info_hash (const void *ap)
702 {
703 const struct lwp_info *lp = (struct lwp_info *) ap;
704 pid_t pid = ptid_get_lwp (lp->ptid);
705
706 return iterative_hash_object (pid, 0);
707 }
708
709 /* Equality function for the lwp_info hash table. Compares the LWP's
710 PID. */
711
712 static int
713 lwp_lwpid_htab_eq (const void *a, const void *b)
714 {
715 const struct lwp_info *entry = (const struct lwp_info *) a;
716 const struct lwp_info *element = (const struct lwp_info *) b;
717
718 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
719 }
720
721 /* Create the lwp_lwpid_htab hash table. */
722
723 static void
724 lwp_lwpid_htab_create (void)
725 {
726 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
727 }
728
729 /* Add LP to the hash table. */
730
731 static void
732 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
733 {
734 void **slot;
735
736 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
737 gdb_assert (slot != NULL && *slot == NULL);
738 *slot = lp;
739 }
740
741 /* Head of doubly-linked list of known LWPs. Sorted by reverse
742 creation order. This order is assumed in some cases. E.g.,
743 reaping status after killing alls lwps of a process: the leader LWP
744 must be reaped last. */
745 struct lwp_info *lwp_list;
746
747 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
748
749 static void
750 lwp_list_add (struct lwp_info *lp)
751 {
752 lp->next = lwp_list;
753 if (lwp_list != NULL)
754 lwp_list->prev = lp;
755 lwp_list = lp;
756 }
757
758 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
759 list. */
760
761 static void
762 lwp_list_remove (struct lwp_info *lp)
763 {
764 /* Remove from sorted-by-creation-order list. */
765 if (lp->next != NULL)
766 lp->next->prev = lp->prev;
767 if (lp->prev != NULL)
768 lp->prev->next = lp->next;
769 if (lp == lwp_list)
770 lwp_list = lp->next;
771 }
772
773 \f
774
775 /* Original signal mask. */
776 static sigset_t normal_mask;
777
778 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
779 _initialize_linux_nat. */
780 static sigset_t suspend_mask;
781
782 /* Signals to block to make that sigsuspend work. */
783 static sigset_t blocked_mask;
784
785 /* SIGCHLD action. */
786 struct sigaction sigchld_action;
787
788 /* Block child signals (SIGCHLD and linux threads signals), and store
789 the previous mask in PREV_MASK. */
790
791 static void
792 block_child_signals (sigset_t *prev_mask)
793 {
794 /* Make sure SIGCHLD is blocked. */
795 if (!sigismember (&blocked_mask, SIGCHLD))
796 sigaddset (&blocked_mask, SIGCHLD);
797
798 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
799 }
800
801 /* Restore child signals mask, previously returned by
802 block_child_signals. */
803
804 static void
805 restore_child_signals_mask (sigset_t *prev_mask)
806 {
807 sigprocmask (SIG_SETMASK, prev_mask, NULL);
808 }
809
810 /* Mask of signals to pass directly to the inferior. */
811 static sigset_t pass_mask;
812
813 /* Update signals to pass to the inferior. */
814 static void
815 linux_nat_pass_signals (struct target_ops *self,
816 int numsigs, unsigned char *pass_signals)
817 {
818 int signo;
819
820 sigemptyset (&pass_mask);
821
822 for (signo = 1; signo < NSIG; signo++)
823 {
824 int target_signo = gdb_signal_from_host (signo);
825 if (target_signo < numsigs && pass_signals[target_signo])
826 sigaddset (&pass_mask, signo);
827 }
828 }
829
830 \f
831
832 /* Prototypes for local functions. */
833 static int stop_wait_callback (struct lwp_info *lp, void *data);
834 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
835 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
836 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
837
838 \f
839
840 /* Destroy and free LP. */
841
842 static void
843 lwp_free (struct lwp_info *lp)
844 {
845 /* Let the arch specific bits release arch_lwp_info. */
846 if (linux_nat_delete_thread != NULL)
847 linux_nat_delete_thread (lp->arch_private);
848 else
849 gdb_assert (lp->arch_private == NULL);
850
851 xfree (lp);
852 }
853
854 /* Traversal function for purge_lwp_list. */
855
856 static int
857 lwp_lwpid_htab_remove_pid (void **slot, void *info)
858 {
859 struct lwp_info *lp = (struct lwp_info *) *slot;
860 int pid = *(int *) info;
861
862 if (ptid_get_pid (lp->ptid) == pid)
863 {
864 htab_clear_slot (lwp_lwpid_htab, slot);
865 lwp_list_remove (lp);
866 lwp_free (lp);
867 }
868
869 return 1;
870 }
871
872 /* Remove all LWPs belong to PID from the lwp list. */
873
874 static void
875 purge_lwp_list (int pid)
876 {
877 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
878 }
879
880 /* Add the LWP specified by PTID to the list. PTID is the first LWP
881 in the process. Return a pointer to the structure describing the
882 new LWP.
883
884 This differs from add_lwp in that we don't let the arch specific
885 bits know about this new thread. Current clients of this callback
886 take the opportunity to install watchpoints in the new thread, and
887 we shouldn't do that for the first thread. If we're spawning a
888 child ("run"), the thread executes the shell wrapper first, and we
889 shouldn't touch it until it execs the program we want to debug.
890 For "attach", it'd be okay to call the callback, but it's not
891 necessary, because watchpoints can't yet have been inserted into
892 the inferior. */
893
894 static struct lwp_info *
895 add_initial_lwp (ptid_t ptid)
896 {
897 struct lwp_info *lp;
898
899 gdb_assert (ptid_lwp_p (ptid));
900
901 lp = XNEW (struct lwp_info);
902
903 memset (lp, 0, sizeof (struct lwp_info));
904
905 lp->last_resume_kind = resume_continue;
906 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
907
908 lp->ptid = ptid;
909 lp->core = -1;
910
911 /* Add to sorted-by-reverse-creation-order list. */
912 lwp_list_add (lp);
913
914 /* Add to keyed-by-pid htab. */
915 lwp_lwpid_htab_add_lwp (lp);
916
917 return lp;
918 }
919
920 /* Add the LWP specified by PID to the list. Return a pointer to the
921 structure describing the new LWP. The LWP should already be
922 stopped. */
923
924 static struct lwp_info *
925 add_lwp (ptid_t ptid)
926 {
927 struct lwp_info *lp;
928
929 lp = add_initial_lwp (ptid);
930
931 /* Let the arch specific bits know about this new thread. Current
932 clients of this callback take the opportunity to install
933 watchpoints in the new thread. We don't do this for the first
934 thread though. See add_initial_lwp. */
935 if (linux_nat_new_thread != NULL)
936 linux_nat_new_thread (lp);
937
938 return lp;
939 }
940
941 /* Remove the LWP specified by PID from the list. */
942
943 static void
944 delete_lwp (ptid_t ptid)
945 {
946 struct lwp_info *lp;
947 void **slot;
948 struct lwp_info dummy;
949
950 dummy.ptid = ptid;
951 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
952 if (slot == NULL)
953 return;
954
955 lp = *(struct lwp_info **) slot;
956 gdb_assert (lp != NULL);
957
958 htab_clear_slot (lwp_lwpid_htab, slot);
959
960 /* Remove from sorted-by-creation-order list. */
961 lwp_list_remove (lp);
962
963 /* Release. */
964 lwp_free (lp);
965 }
966
967 /* Return a pointer to the structure describing the LWP corresponding
968 to PID. If no corresponding LWP could be found, return NULL. */
969
970 static struct lwp_info *
971 find_lwp_pid (ptid_t ptid)
972 {
973 struct lwp_info *lp;
974 int lwp;
975 struct lwp_info dummy;
976
977 if (ptid_lwp_p (ptid))
978 lwp = ptid_get_lwp (ptid);
979 else
980 lwp = ptid_get_pid (ptid);
981
982 dummy.ptid = ptid_build (0, lwp, 0);
983 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
984 return lp;
985 }
986
987 /* See nat/linux-nat.h. */
988
989 struct lwp_info *
990 iterate_over_lwps (ptid_t filter,
991 iterate_over_lwps_ftype callback,
992 void *data)
993 {
994 struct lwp_info *lp, *lpnext;
995
996 for (lp = lwp_list; lp; lp = lpnext)
997 {
998 lpnext = lp->next;
999
1000 if (ptid_match (lp->ptid, filter))
1001 {
1002 if ((*callback) (lp, data) != 0)
1003 return lp;
1004 }
1005 }
1006
1007 return NULL;
1008 }
1009
1010 /* Update our internal state when changing from one checkpoint to
1011 another indicated by NEW_PTID. We can only switch single-threaded
1012 applications, so we only create one new LWP, and the previous list
1013 is discarded. */
1014
1015 void
1016 linux_nat_switch_fork (ptid_t new_ptid)
1017 {
1018 struct lwp_info *lp;
1019
1020 purge_lwp_list (ptid_get_pid (inferior_ptid));
1021
1022 lp = add_lwp (new_ptid);
1023 lp->stopped = 1;
1024
1025 /* This changes the thread's ptid while preserving the gdb thread
1026 num. Also changes the inferior pid, while preserving the
1027 inferior num. */
1028 thread_change_ptid (inferior_ptid, new_ptid);
1029
1030 /* We've just told GDB core that the thread changed target id, but,
1031 in fact, it really is a different thread, with different register
1032 contents. */
1033 registers_changed ();
1034 }
1035
1036 /* Handle the exit of a single thread LP. */
1037
1038 static void
1039 exit_lwp (struct lwp_info *lp)
1040 {
1041 struct thread_info *th = find_thread_ptid (lp->ptid);
1042
1043 if (th)
1044 {
1045 if (print_thread_events)
1046 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1047
1048 delete_thread (lp->ptid);
1049 }
1050
1051 delete_lwp (lp->ptid);
1052 }
1053
1054 /* Wait for the LWP specified by LP, which we have just attached to.
1055 Returns a wait status for that LWP, to cache. */
1056
1057 static int
1058 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1059 {
1060 pid_t new_pid, pid = ptid_get_lwp (ptid);
1061 int status;
1062
1063 if (linux_proc_pid_is_stopped (pid))
1064 {
1065 if (debug_linux_nat)
1066 fprintf_unfiltered (gdb_stdlog,
1067 "LNPAW: Attaching to a stopped process\n");
1068
1069 /* The process is definitely stopped. It is in a job control
1070 stop, unless the kernel predates the TASK_STOPPED /
1071 TASK_TRACED distinction, in which case it might be in a
1072 ptrace stop. Make sure it is in a ptrace stop; from there we
1073 can kill it, signal it, et cetera.
1074
1075 First make sure there is a pending SIGSTOP. Since we are
1076 already attached, the process can not transition from stopped
1077 to running without a PTRACE_CONT; so we know this signal will
1078 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1079 probably already in the queue (unless this kernel is old
1080 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1081 is not an RT signal, it can only be queued once. */
1082 kill_lwp (pid, SIGSTOP);
1083
1084 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1085 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1086 ptrace (PTRACE_CONT, pid, 0, 0);
1087 }
1088
1089 /* Make sure the initial process is stopped. The user-level threads
1090 layer might want to poke around in the inferior, and that won't
1091 work if things haven't stabilized yet. */
1092 new_pid = my_waitpid (pid, &status, __WALL);
1093 gdb_assert (pid == new_pid);
1094
1095 if (!WIFSTOPPED (status))
1096 {
1097 /* The pid we tried to attach has apparently just exited. */
1098 if (debug_linux_nat)
1099 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1100 pid, status_to_str (status));
1101 return status;
1102 }
1103
1104 if (WSTOPSIG (status) != SIGSTOP)
1105 {
1106 *signalled = 1;
1107 if (debug_linux_nat)
1108 fprintf_unfiltered (gdb_stdlog,
1109 "LNPAW: Received %s after attaching\n",
1110 status_to_str (status));
1111 }
1112
1113 return status;
1114 }
1115
1116 static void
1117 linux_nat_create_inferior (struct target_ops *ops,
1118 const char *exec_file, const std::string &allargs,
1119 char **env, int from_tty)
1120 {
1121 maybe_disable_address_space_randomization restore_personality
1122 (disable_randomization);
1123
1124 /* The fork_child mechanism is synchronous and calls target_wait, so
1125 we have to mask the async mode. */
1126
1127 /* Make sure we report all signals during startup. */
1128 linux_nat_pass_signals (ops, 0, NULL);
1129
1130 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1131 }
1132
1133 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1134 already attached. Returns true if a new LWP is found, false
1135 otherwise. */
1136
1137 static int
1138 attach_proc_task_lwp_callback (ptid_t ptid)
1139 {
1140 struct lwp_info *lp;
1141
1142 /* Ignore LWPs we're already attached to. */
1143 lp = find_lwp_pid (ptid);
1144 if (lp == NULL)
1145 {
1146 int lwpid = ptid_get_lwp (ptid);
1147
1148 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1149 {
1150 int err = errno;
1151
1152 /* Be quiet if we simply raced with the thread exiting.
1153 EPERM is returned if the thread's task still exists, and
1154 is marked as exited or zombie, as well as other
1155 conditions, so in that case, confirm the status in
1156 /proc/PID/status. */
1157 if (err == ESRCH
1158 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1159 {
1160 if (debug_linux_nat)
1161 {
1162 fprintf_unfiltered (gdb_stdlog,
1163 "Cannot attach to lwp %d: "
1164 "thread is gone (%d: %s)\n",
1165 lwpid, err, safe_strerror (err));
1166 }
1167 }
1168 else
1169 {
1170 std::string reason
1171 = linux_ptrace_attach_fail_reason_string (ptid, err);
1172
1173 warning (_("Cannot attach to lwp %d: %s"),
1174 lwpid, reason.c_str ());
1175 }
1176 }
1177 else
1178 {
1179 if (debug_linux_nat)
1180 fprintf_unfiltered (gdb_stdlog,
1181 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1182 target_pid_to_str (ptid));
1183
1184 lp = add_lwp (ptid);
1185
1186 /* The next time we wait for this LWP we'll see a SIGSTOP as
1187 PTRACE_ATTACH brings it to a halt. */
1188 lp->signalled = 1;
1189
1190 /* We need to wait for a stop before being able to make the
1191 next ptrace call on this LWP. */
1192 lp->must_set_ptrace_flags = 1;
1193
1194 /* So that wait collects the SIGSTOP. */
1195 lp->resumed = 1;
1196
1197 /* Also add the LWP to gdb's thread list, in case a
1198 matching libthread_db is not found (or the process uses
1199 raw clone). */
1200 add_thread (lp->ptid);
1201 set_running (lp->ptid, 1);
1202 set_executing (lp->ptid, 1);
1203 }
1204
1205 return 1;
1206 }
1207 return 0;
1208 }
1209
1210 static void
1211 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1212 {
1213 struct lwp_info *lp;
1214 int status;
1215 ptid_t ptid;
1216
1217 /* Make sure we report all signals during attach. */
1218 linux_nat_pass_signals (ops, 0, NULL);
1219
1220 TRY
1221 {
1222 linux_ops->to_attach (ops, args, from_tty);
1223 }
1224 CATCH (ex, RETURN_MASK_ERROR)
1225 {
1226 pid_t pid = parse_pid_to_attach (args);
1227 std::string reason = linux_ptrace_attach_fail_reason (pid);
1228
1229 if (!reason.empty ())
1230 throw_error (ex.error, "warning: %s\n%s", reason.c_str (), ex.message);
1231 else
1232 throw_error (ex.error, "%s", ex.message);
1233 }
1234 END_CATCH
1235
1236 /* The ptrace base target adds the main thread with (pid,0,0)
1237 format. Decorate it with lwp info. */
1238 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1239 ptid_get_pid (inferior_ptid),
1240 0);
1241 thread_change_ptid (inferior_ptid, ptid);
1242
1243 /* Add the initial process as the first LWP to the list. */
1244 lp = add_initial_lwp (ptid);
1245
1246 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1247 if (!WIFSTOPPED (status))
1248 {
1249 if (WIFEXITED (status))
1250 {
1251 int exit_code = WEXITSTATUS (status);
1252
1253 target_terminal::ours ();
1254 target_mourn_inferior (inferior_ptid);
1255 if (exit_code == 0)
1256 error (_("Unable to attach: program exited normally."));
1257 else
1258 error (_("Unable to attach: program exited with code %d."),
1259 exit_code);
1260 }
1261 else if (WIFSIGNALED (status))
1262 {
1263 enum gdb_signal signo;
1264
1265 target_terminal::ours ();
1266 target_mourn_inferior (inferior_ptid);
1267
1268 signo = gdb_signal_from_host (WTERMSIG (status));
1269 error (_("Unable to attach: program terminated with signal "
1270 "%s, %s."),
1271 gdb_signal_to_name (signo),
1272 gdb_signal_to_string (signo));
1273 }
1274
1275 internal_error (__FILE__, __LINE__,
1276 _("unexpected status %d for PID %ld"),
1277 status, (long) ptid_get_lwp (ptid));
1278 }
1279
1280 lp->stopped = 1;
1281
1282 /* Save the wait status to report later. */
1283 lp->resumed = 1;
1284 if (debug_linux_nat)
1285 fprintf_unfiltered (gdb_stdlog,
1286 "LNA: waitpid %ld, saving status %s\n",
1287 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1288
1289 lp->status = status;
1290
1291 /* We must attach to every LWP. If /proc is mounted, use that to
1292 find them now. The inferior may be using raw clone instead of
1293 using pthreads. But even if it is using pthreads, thread_db
1294 walks structures in the inferior's address space to find the list
1295 of threads/LWPs, and those structures may well be corrupted.
1296 Note that once thread_db is loaded, we'll still use it to list
1297 threads and associate pthread info with each LWP. */
1298 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1299 attach_proc_task_lwp_callback);
1300
1301 if (target_can_async_p ())
1302 target_async (1);
1303 }
1304
1305 /* Get pending signal of THREAD as a host signal number, for detaching
1306 purposes. This is the signal the thread last stopped for, which we
1307 need to deliver to the thread when detaching, otherwise, it'd be
1308 suppressed/lost. */
1309
1310 static int
1311 get_detach_signal (struct lwp_info *lp)
1312 {
1313 enum gdb_signal signo = GDB_SIGNAL_0;
1314
1315 /* If we paused threads momentarily, we may have stored pending
1316 events in lp->status or lp->waitstatus (see stop_wait_callback),
1317 and GDB core hasn't seen any signal for those threads.
1318 Otherwise, the last signal reported to the core is found in the
1319 thread object's stop_signal.
1320
1321 There's a corner case that isn't handled here at present. Only
1322 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1323 stop_signal make sense as a real signal to pass to the inferior.
1324 Some catchpoint related events, like
1325 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1326 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1327 those traps are debug API (ptrace in our case) related and
1328 induced; the inferior wouldn't see them if it wasn't being
1329 traced. Hence, we should never pass them to the inferior, even
1330 when set to pass state. Since this corner case isn't handled by
1331 infrun.c when proceeding with a signal, for consistency, neither
1332 do we handle it here (or elsewhere in the file we check for
1333 signal pass state). Normally SIGTRAP isn't set to pass state, so
1334 this is really a corner case. */
1335
1336 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1337 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1338 else if (lp->status)
1339 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1340 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1341 {
1342 struct thread_info *tp = find_thread_ptid (lp->ptid);
1343
1344 if (tp->suspend.waitstatus_pending_p)
1345 signo = tp->suspend.waitstatus.value.sig;
1346 else
1347 signo = tp->suspend.stop_signal;
1348 }
1349 else if (!target_is_non_stop_p ())
1350 {
1351 struct target_waitstatus last;
1352 ptid_t last_ptid;
1353
1354 get_last_target_status (&last_ptid, &last);
1355
1356 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1357 {
1358 struct thread_info *tp = find_thread_ptid (lp->ptid);
1359
1360 signo = tp->suspend.stop_signal;
1361 }
1362 }
1363
1364 if (signo == GDB_SIGNAL_0)
1365 {
1366 if (debug_linux_nat)
1367 fprintf_unfiltered (gdb_stdlog,
1368 "GPT: lwp %s has no pending signal\n",
1369 target_pid_to_str (lp->ptid));
1370 }
1371 else if (!signal_pass_state (signo))
1372 {
1373 if (debug_linux_nat)
1374 fprintf_unfiltered (gdb_stdlog,
1375 "GPT: lwp %s had signal %s, "
1376 "but it is in no pass state\n",
1377 target_pid_to_str (lp->ptid),
1378 gdb_signal_to_string (signo));
1379 }
1380 else
1381 {
1382 if (debug_linux_nat)
1383 fprintf_unfiltered (gdb_stdlog,
1384 "GPT: lwp %s has pending signal %s\n",
1385 target_pid_to_str (lp->ptid),
1386 gdb_signal_to_string (signo));
1387
1388 return gdb_signal_to_host (signo);
1389 }
1390
1391 return 0;
1392 }
1393
1394 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1395 signal number that should be passed to the LWP when detaching.
1396 Otherwise pass any pending signal the LWP may have, if any. */
1397
1398 static void
1399 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1400 {
1401 int lwpid = ptid_get_lwp (lp->ptid);
1402 int signo;
1403
1404 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1405
1406 if (debug_linux_nat && lp->status)
1407 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1408 strsignal (WSTOPSIG (lp->status)),
1409 target_pid_to_str (lp->ptid));
1410
1411 /* If there is a pending SIGSTOP, get rid of it. */
1412 if (lp->signalled)
1413 {
1414 if (debug_linux_nat)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "DC: Sending SIGCONT to %s\n",
1417 target_pid_to_str (lp->ptid));
1418
1419 kill_lwp (lwpid, SIGCONT);
1420 lp->signalled = 0;
1421 }
1422
1423 if (signo_p == NULL)
1424 {
1425 /* Pass on any pending signal for this LWP. */
1426 signo = get_detach_signal (lp);
1427 }
1428 else
1429 signo = *signo_p;
1430
1431 /* Preparing to resume may try to write registers, and fail if the
1432 lwp is zombie. If that happens, ignore the error. We'll handle
1433 it below, when detach fails with ESRCH. */
1434 TRY
1435 {
1436 if (linux_nat_prepare_to_resume != NULL)
1437 linux_nat_prepare_to_resume (lp);
1438 }
1439 CATCH (ex, RETURN_MASK_ERROR)
1440 {
1441 if (!check_ptrace_stopped_lwp_gone (lp))
1442 throw_exception (ex);
1443 }
1444 END_CATCH
1445
1446 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1447 {
1448 int save_errno = errno;
1449
1450 /* We know the thread exists, so ESRCH must mean the lwp is
1451 zombie. This can happen if one of the already-detached
1452 threads exits the whole thread group. In that case we're
1453 still attached, and must reap the lwp. */
1454 if (save_errno == ESRCH)
1455 {
1456 int ret, status;
1457
1458 ret = my_waitpid (lwpid, &status, __WALL);
1459 if (ret == -1)
1460 {
1461 warning (_("Couldn't reap LWP %d while detaching: %s"),
1462 lwpid, strerror (errno));
1463 }
1464 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1465 {
1466 warning (_("Reaping LWP %d while detaching "
1467 "returned unexpected status 0x%x"),
1468 lwpid, status);
1469 }
1470 }
1471 else
1472 {
1473 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1474 safe_strerror (save_errno));
1475 }
1476 }
1477 else if (debug_linux_nat)
1478 {
1479 fprintf_unfiltered (gdb_stdlog,
1480 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1481 target_pid_to_str (lp->ptid),
1482 strsignal (signo));
1483 }
1484
1485 delete_lwp (lp->ptid);
1486 }
1487
1488 static int
1489 detach_callback (struct lwp_info *lp, void *data)
1490 {
1491 /* We don't actually detach from the thread group leader just yet.
1492 If the thread group exits, we must reap the zombie clone lwps
1493 before we're able to reap the leader. */
1494 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1495 detach_one_lwp (lp, NULL);
1496 return 0;
1497 }
1498
1499 static void
1500 linux_nat_detach (struct target_ops *ops, inferior *inf, int from_tty)
1501 {
1502 struct lwp_info *main_lwp;
1503 int pid = inf->pid;
1504
1505 /* Don't unregister from the event loop, as there may be other
1506 inferiors running. */
1507
1508 /* Stop all threads before detaching. ptrace requires that the
1509 thread is stopped to sucessfully detach. */
1510 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1511 /* ... and wait until all of them have reported back that
1512 they're no longer running. */
1513 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1514
1515 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1516
1517 /* Only the initial process should be left right now. */
1518 gdb_assert (num_lwps (pid) == 1);
1519
1520 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1521
1522 if (forks_exist_p ())
1523 {
1524 /* Multi-fork case. The current inferior_ptid is being detached
1525 from, but there are other viable forks to debug. Detach from
1526 the current fork, and context-switch to the first
1527 available. */
1528 linux_fork_detach (from_tty);
1529 }
1530 else
1531 {
1532 target_announce_detach (from_tty);
1533
1534 /* Pass on any pending signal for the last LWP. */
1535 int signo = get_detach_signal (main_lwp);
1536
1537 detach_one_lwp (main_lwp, &signo);
1538
1539 inf_ptrace_detach_success (ops, inf);
1540 }
1541 }
1542
1543 /* Resume execution of the inferior process. If STEP is nonzero,
1544 single-step it. If SIGNAL is nonzero, give it that signal. */
1545
1546 static void
1547 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1548 enum gdb_signal signo)
1549 {
1550 lp->step = step;
1551
1552 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1553 We only presently need that if the LWP is stepped though (to
1554 handle the case of stepping a breakpoint instruction). */
1555 if (step)
1556 {
1557 struct regcache *regcache = get_thread_regcache (lp->ptid);
1558
1559 lp->stop_pc = regcache_read_pc (regcache);
1560 }
1561 else
1562 lp->stop_pc = 0;
1563
1564 if (linux_nat_prepare_to_resume != NULL)
1565 linux_nat_prepare_to_resume (lp);
1566 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1567
1568 /* Successfully resumed. Clear state that no longer makes sense,
1569 and mark the LWP as running. Must not do this before resuming
1570 otherwise if that fails other code will be confused. E.g., we'd
1571 later try to stop the LWP and hang forever waiting for a stop
1572 status. Note that we must not throw after this is cleared,
1573 otherwise handle_zombie_lwp_error would get confused. */
1574 lp->stopped = 0;
1575 lp->core = -1;
1576 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1577 registers_changed_ptid (lp->ptid);
1578 }
1579
1580 /* Called when we try to resume a stopped LWP and that errors out. If
1581 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1582 or about to become), discard the error, clear any pending status
1583 the LWP may have, and return true (we'll collect the exit status
1584 soon enough). Otherwise, return false. */
1585
1586 static int
1587 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1588 {
1589 /* If we get an error after resuming the LWP successfully, we'd
1590 confuse !T state for the LWP being gone. */
1591 gdb_assert (lp->stopped);
1592
1593 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1594 because even if ptrace failed with ESRCH, the tracee may be "not
1595 yet fully dead", but already refusing ptrace requests. In that
1596 case the tracee has 'R (Running)' state for a little bit
1597 (observed in Linux 3.18). See also the note on ESRCH in the
1598 ptrace(2) man page. Instead, check whether the LWP has any state
1599 other than ptrace-stopped. */
1600
1601 /* Don't assume anything if /proc/PID/status can't be read. */
1602 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1603 {
1604 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1605 lp->status = 0;
1606 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1607 return 1;
1608 }
1609 return 0;
1610 }
1611
1612 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1613 disappears while we try to resume it. */
1614
1615 static void
1616 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1617 {
1618 TRY
1619 {
1620 linux_resume_one_lwp_throw (lp, step, signo);
1621 }
1622 CATCH (ex, RETURN_MASK_ERROR)
1623 {
1624 if (!check_ptrace_stopped_lwp_gone (lp))
1625 throw_exception (ex);
1626 }
1627 END_CATCH
1628 }
1629
1630 /* Resume LP. */
1631
1632 static void
1633 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1634 {
1635 if (lp->stopped)
1636 {
1637 struct inferior *inf = find_inferior_ptid (lp->ptid);
1638
1639 if (inf->vfork_child != NULL)
1640 {
1641 if (debug_linux_nat)
1642 fprintf_unfiltered (gdb_stdlog,
1643 "RC: Not resuming %s (vfork parent)\n",
1644 target_pid_to_str (lp->ptid));
1645 }
1646 else if (!lwp_status_pending_p (lp))
1647 {
1648 if (debug_linux_nat)
1649 fprintf_unfiltered (gdb_stdlog,
1650 "RC: Resuming sibling %s, %s, %s\n",
1651 target_pid_to_str (lp->ptid),
1652 (signo != GDB_SIGNAL_0
1653 ? strsignal (gdb_signal_to_host (signo))
1654 : "0"),
1655 step ? "step" : "resume");
1656
1657 linux_resume_one_lwp (lp, step, signo);
1658 }
1659 else
1660 {
1661 if (debug_linux_nat)
1662 fprintf_unfiltered (gdb_stdlog,
1663 "RC: Not resuming sibling %s (has pending)\n",
1664 target_pid_to_str (lp->ptid));
1665 }
1666 }
1667 else
1668 {
1669 if (debug_linux_nat)
1670 fprintf_unfiltered (gdb_stdlog,
1671 "RC: Not resuming sibling %s (not stopped)\n",
1672 target_pid_to_str (lp->ptid));
1673 }
1674 }
1675
1676 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1677 Resume LWP with the last stop signal, if it is in pass state. */
1678
1679 static int
1680 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1681 {
1682 enum gdb_signal signo = GDB_SIGNAL_0;
1683
1684 if (lp == except)
1685 return 0;
1686
1687 if (lp->stopped)
1688 {
1689 struct thread_info *thread;
1690
1691 thread = find_thread_ptid (lp->ptid);
1692 if (thread != NULL)
1693 {
1694 signo = thread->suspend.stop_signal;
1695 thread->suspend.stop_signal = GDB_SIGNAL_0;
1696 }
1697 }
1698
1699 resume_lwp (lp, 0, signo);
1700 return 0;
1701 }
1702
1703 static int
1704 resume_clear_callback (struct lwp_info *lp, void *data)
1705 {
1706 lp->resumed = 0;
1707 lp->last_resume_kind = resume_stop;
1708 return 0;
1709 }
1710
1711 static int
1712 resume_set_callback (struct lwp_info *lp, void *data)
1713 {
1714 lp->resumed = 1;
1715 lp->last_resume_kind = resume_continue;
1716 return 0;
1717 }
1718
1719 static void
1720 linux_nat_resume (struct target_ops *ops,
1721 ptid_t ptid, int step, enum gdb_signal signo)
1722 {
1723 struct lwp_info *lp;
1724 int resume_many;
1725
1726 if (debug_linux_nat)
1727 fprintf_unfiltered (gdb_stdlog,
1728 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1729 step ? "step" : "resume",
1730 target_pid_to_str (ptid),
1731 (signo != GDB_SIGNAL_0
1732 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1733 target_pid_to_str (inferior_ptid));
1734
1735 /* A specific PTID means `step only this process id'. */
1736 resume_many = (ptid_equal (minus_one_ptid, ptid)
1737 || ptid_is_pid (ptid));
1738
1739 /* Mark the lwps we're resuming as resumed. */
1740 iterate_over_lwps (ptid, resume_set_callback, NULL);
1741
1742 /* See if it's the current inferior that should be handled
1743 specially. */
1744 if (resume_many)
1745 lp = find_lwp_pid (inferior_ptid);
1746 else
1747 lp = find_lwp_pid (ptid);
1748 gdb_assert (lp != NULL);
1749
1750 /* Remember if we're stepping. */
1751 lp->last_resume_kind = step ? resume_step : resume_continue;
1752
1753 /* If we have a pending wait status for this thread, there is no
1754 point in resuming the process. But first make sure that
1755 linux_nat_wait won't preemptively handle the event - we
1756 should never take this short-circuit if we are going to
1757 leave LP running, since we have skipped resuming all the
1758 other threads. This bit of code needs to be synchronized
1759 with linux_nat_wait. */
1760
1761 if (lp->status && WIFSTOPPED (lp->status))
1762 {
1763 if (!lp->step
1764 && WSTOPSIG (lp->status)
1765 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1766 {
1767 if (debug_linux_nat)
1768 fprintf_unfiltered (gdb_stdlog,
1769 "LLR: Not short circuiting for ignored "
1770 "status 0x%x\n", lp->status);
1771
1772 /* FIXME: What should we do if we are supposed to continue
1773 this thread with a signal? */
1774 gdb_assert (signo == GDB_SIGNAL_0);
1775 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1776 lp->status = 0;
1777 }
1778 }
1779
1780 if (lwp_status_pending_p (lp))
1781 {
1782 /* FIXME: What should we do if we are supposed to continue
1783 this thread with a signal? */
1784 gdb_assert (signo == GDB_SIGNAL_0);
1785
1786 if (debug_linux_nat)
1787 fprintf_unfiltered (gdb_stdlog,
1788 "LLR: Short circuiting for status 0x%x\n",
1789 lp->status);
1790
1791 if (target_can_async_p ())
1792 {
1793 target_async (1);
1794 /* Tell the event loop we have something to process. */
1795 async_file_mark ();
1796 }
1797 return;
1798 }
1799
1800 if (resume_many)
1801 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1802
1803 if (debug_linux_nat)
1804 fprintf_unfiltered (gdb_stdlog,
1805 "LLR: %s %s, %s (resume event thread)\n",
1806 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1807 target_pid_to_str (lp->ptid),
1808 (signo != GDB_SIGNAL_0
1809 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1810
1811 linux_resume_one_lwp (lp, step, signo);
1812
1813 if (target_can_async_p ())
1814 target_async (1);
1815 }
1816
1817 /* Send a signal to an LWP. */
1818
1819 static int
1820 kill_lwp (int lwpid, int signo)
1821 {
1822 int ret;
1823
1824 errno = 0;
1825 ret = syscall (__NR_tkill, lwpid, signo);
1826 if (errno == ENOSYS)
1827 {
1828 /* If tkill fails, then we are not using nptl threads, a
1829 configuration we no longer support. */
1830 perror_with_name (("tkill"));
1831 }
1832 return ret;
1833 }
1834
1835 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1836 event, check if the core is interested in it: if not, ignore the
1837 event, and keep waiting; otherwise, we need to toggle the LWP's
1838 syscall entry/exit status, since the ptrace event itself doesn't
1839 indicate it, and report the trap to higher layers. */
1840
1841 static int
1842 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1843 {
1844 struct target_waitstatus *ourstatus = &lp->waitstatus;
1845 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1846 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1847
1848 if (stopping)
1849 {
1850 /* If we're stopping threads, there's a SIGSTOP pending, which
1851 makes it so that the LWP reports an immediate syscall return,
1852 followed by the SIGSTOP. Skip seeing that "return" using
1853 PTRACE_CONT directly, and let stop_wait_callback collect the
1854 SIGSTOP. Later when the thread is resumed, a new syscall
1855 entry event. If we didn't do this (and returned 0), we'd
1856 leave a syscall entry pending, and our caller, by using
1857 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1858 itself. Later, when the user re-resumes this LWP, we'd see
1859 another syscall entry event and we'd mistake it for a return.
1860
1861 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1862 (leaving immediately with LWP->signalled set, without issuing
1863 a PTRACE_CONT), it would still be problematic to leave this
1864 syscall enter pending, as later when the thread is resumed,
1865 it would then see the same syscall exit mentioned above,
1866 followed by the delayed SIGSTOP, while the syscall didn't
1867 actually get to execute. It seems it would be even more
1868 confusing to the user. */
1869
1870 if (debug_linux_nat)
1871 fprintf_unfiltered (gdb_stdlog,
1872 "LHST: ignoring syscall %d "
1873 "for LWP %ld (stopping threads), "
1874 "resuming with PTRACE_CONT for SIGSTOP\n",
1875 syscall_number,
1876 ptid_get_lwp (lp->ptid));
1877
1878 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1879 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1880 lp->stopped = 0;
1881 return 1;
1882 }
1883
1884 /* Always update the entry/return state, even if this particular
1885 syscall isn't interesting to the core now. In async mode,
1886 the user could install a new catchpoint for this syscall
1887 between syscall enter/return, and we'll need to know to
1888 report a syscall return if that happens. */
1889 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1890 ? TARGET_WAITKIND_SYSCALL_RETURN
1891 : TARGET_WAITKIND_SYSCALL_ENTRY);
1892
1893 if (catch_syscall_enabled ())
1894 {
1895 if (catching_syscall_number (syscall_number))
1896 {
1897 /* Alright, an event to report. */
1898 ourstatus->kind = lp->syscall_state;
1899 ourstatus->value.syscall_number = syscall_number;
1900
1901 if (debug_linux_nat)
1902 fprintf_unfiltered (gdb_stdlog,
1903 "LHST: stopping for %s of syscall %d"
1904 " for LWP %ld\n",
1905 lp->syscall_state
1906 == TARGET_WAITKIND_SYSCALL_ENTRY
1907 ? "entry" : "return",
1908 syscall_number,
1909 ptid_get_lwp (lp->ptid));
1910 return 0;
1911 }
1912
1913 if (debug_linux_nat)
1914 fprintf_unfiltered (gdb_stdlog,
1915 "LHST: ignoring %s of syscall %d "
1916 "for LWP %ld\n",
1917 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1918 ? "entry" : "return",
1919 syscall_number,
1920 ptid_get_lwp (lp->ptid));
1921 }
1922 else
1923 {
1924 /* If we had been syscall tracing, and hence used PT_SYSCALL
1925 before on this LWP, it could happen that the user removes all
1926 syscall catchpoints before we get to process this event.
1927 There are two noteworthy issues here:
1928
1929 - When stopped at a syscall entry event, resuming with
1930 PT_STEP still resumes executing the syscall and reports a
1931 syscall return.
1932
1933 - Only PT_SYSCALL catches syscall enters. If we last
1934 single-stepped this thread, then this event can't be a
1935 syscall enter. If we last single-stepped this thread, this
1936 has to be a syscall exit.
1937
1938 The points above mean that the next resume, be it PT_STEP or
1939 PT_CONTINUE, can not trigger a syscall trace event. */
1940 if (debug_linux_nat)
1941 fprintf_unfiltered (gdb_stdlog,
1942 "LHST: caught syscall event "
1943 "with no syscall catchpoints."
1944 " %d for LWP %ld, ignoring\n",
1945 syscall_number,
1946 ptid_get_lwp (lp->ptid));
1947 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1948 }
1949
1950 /* The core isn't interested in this event. For efficiency, avoid
1951 stopping all threads only to have the core resume them all again.
1952 Since we're not stopping threads, if we're still syscall tracing
1953 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1954 subsequent syscall. Simply resume using the inf-ptrace layer,
1955 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1956
1957 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1958 return 1;
1959 }
1960
1961 /* Handle a GNU/Linux extended wait response. If we see a clone
1962 event, we need to add the new LWP to our list (and not report the
1963 trap to higher layers). This function returns non-zero if the
1964 event should be ignored and we should wait again. If STOPPING is
1965 true, the new LWP remains stopped, otherwise it is continued. */
1966
1967 static int
1968 linux_handle_extended_wait (struct lwp_info *lp, int status)
1969 {
1970 int pid = ptid_get_lwp (lp->ptid);
1971 struct target_waitstatus *ourstatus = &lp->waitstatus;
1972 int event = linux_ptrace_get_extended_event (status);
1973
1974 /* All extended events we currently use are mid-syscall. Only
1975 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1976 you have to be using PTRACE_SEIZE to get that. */
1977 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1978
1979 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1980 || event == PTRACE_EVENT_CLONE)
1981 {
1982 unsigned long new_pid;
1983 int ret;
1984
1985 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1986
1987 /* If we haven't already seen the new PID stop, wait for it now. */
1988 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1989 {
1990 /* The new child has a pending SIGSTOP. We can't affect it until it
1991 hits the SIGSTOP, but we're already attached. */
1992 ret = my_waitpid (new_pid, &status, __WALL);
1993 if (ret == -1)
1994 perror_with_name (_("waiting for new child"));
1995 else if (ret != new_pid)
1996 internal_error (__FILE__, __LINE__,
1997 _("wait returned unexpected PID %d"), ret);
1998 else if (!WIFSTOPPED (status))
1999 internal_error (__FILE__, __LINE__,
2000 _("wait returned unexpected status 0x%x"), status);
2001 }
2002
2003 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2004
2005 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2006 {
2007 /* The arch-specific native code may need to know about new
2008 forks even if those end up never mapped to an
2009 inferior. */
2010 if (linux_nat_new_fork != NULL)
2011 linux_nat_new_fork (lp, new_pid);
2012 }
2013
2014 if (event == PTRACE_EVENT_FORK
2015 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2016 {
2017 /* Handle checkpointing by linux-fork.c here as a special
2018 case. We don't want the follow-fork-mode or 'catch fork'
2019 to interfere with this. */
2020
2021 /* This won't actually modify the breakpoint list, but will
2022 physically remove the breakpoints from the child. */
2023 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2024
2025 /* Retain child fork in ptrace (stopped) state. */
2026 if (!find_fork_pid (new_pid))
2027 add_fork (new_pid);
2028
2029 /* Report as spurious, so that infrun doesn't want to follow
2030 this fork. We're actually doing an infcall in
2031 linux-fork.c. */
2032 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2033
2034 /* Report the stop to the core. */
2035 return 0;
2036 }
2037
2038 if (event == PTRACE_EVENT_FORK)
2039 ourstatus->kind = TARGET_WAITKIND_FORKED;
2040 else if (event == PTRACE_EVENT_VFORK)
2041 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2042 else if (event == PTRACE_EVENT_CLONE)
2043 {
2044 struct lwp_info *new_lp;
2045
2046 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2047
2048 if (debug_linux_nat)
2049 fprintf_unfiltered (gdb_stdlog,
2050 "LHEW: Got clone event "
2051 "from LWP %d, new child is LWP %ld\n",
2052 pid, new_pid);
2053
2054 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2055 new_lp->stopped = 1;
2056 new_lp->resumed = 1;
2057
2058 /* If the thread_db layer is active, let it record the user
2059 level thread id and status, and add the thread to GDB's
2060 list. */
2061 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2062 {
2063 /* The process is not using thread_db. Add the LWP to
2064 GDB's list. */
2065 target_post_attach (ptid_get_lwp (new_lp->ptid));
2066 add_thread (new_lp->ptid);
2067 }
2068
2069 /* Even if we're stopping the thread for some reason
2070 internal to this module, from the perspective of infrun
2071 and the user/frontend, this new thread is running until
2072 it next reports a stop. */
2073 set_running (new_lp->ptid, 1);
2074 set_executing (new_lp->ptid, 1);
2075
2076 if (WSTOPSIG (status) != SIGSTOP)
2077 {
2078 /* This can happen if someone starts sending signals to
2079 the new thread before it gets a chance to run, which
2080 have a lower number than SIGSTOP (e.g. SIGUSR1).
2081 This is an unlikely case, and harder to handle for
2082 fork / vfork than for clone, so we do not try - but
2083 we handle it for clone events here. */
2084
2085 new_lp->signalled = 1;
2086
2087 /* We created NEW_LP so it cannot yet contain STATUS. */
2088 gdb_assert (new_lp->status == 0);
2089
2090 /* Save the wait status to report later. */
2091 if (debug_linux_nat)
2092 fprintf_unfiltered (gdb_stdlog,
2093 "LHEW: waitpid of new LWP %ld, "
2094 "saving status %s\n",
2095 (long) ptid_get_lwp (new_lp->ptid),
2096 status_to_str (status));
2097 new_lp->status = status;
2098 }
2099 else if (report_thread_events)
2100 {
2101 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2102 new_lp->status = status;
2103 }
2104
2105 return 1;
2106 }
2107
2108 return 0;
2109 }
2110
2111 if (event == PTRACE_EVENT_EXEC)
2112 {
2113 if (debug_linux_nat)
2114 fprintf_unfiltered (gdb_stdlog,
2115 "LHEW: Got exec event from LWP %ld\n",
2116 ptid_get_lwp (lp->ptid));
2117
2118 ourstatus->kind = TARGET_WAITKIND_EXECD;
2119 ourstatus->value.execd_pathname
2120 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2121
2122 /* The thread that execed must have been resumed, but, when a
2123 thread execs, it changes its tid to the tgid, and the old
2124 tgid thread might have not been resumed. */
2125 lp->resumed = 1;
2126 return 0;
2127 }
2128
2129 if (event == PTRACE_EVENT_VFORK_DONE)
2130 {
2131 if (current_inferior ()->waiting_for_vfork_done)
2132 {
2133 if (debug_linux_nat)
2134 fprintf_unfiltered (gdb_stdlog,
2135 "LHEW: Got expected PTRACE_EVENT_"
2136 "VFORK_DONE from LWP %ld: stopping\n",
2137 ptid_get_lwp (lp->ptid));
2138
2139 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2140 return 0;
2141 }
2142
2143 if (debug_linux_nat)
2144 fprintf_unfiltered (gdb_stdlog,
2145 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2146 "from LWP %ld: ignoring\n",
2147 ptid_get_lwp (lp->ptid));
2148 return 1;
2149 }
2150
2151 internal_error (__FILE__, __LINE__,
2152 _("unknown ptrace event %d"), event);
2153 }
2154
2155 /* Suspend waiting for a signal. We're mostly interested in
2156 SIGCHLD/SIGINT. */
2157
2158 static void
2159 wait_for_signal ()
2160 {
2161 if (debug_linux_nat)
2162 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2163 sigsuspend (&suspend_mask);
2164
2165 /* If the quit flag is set, it means that the user pressed Ctrl-C
2166 and we're debugging a process that is running on a separate
2167 terminal, so we must forward the Ctrl-C to the inferior. (If the
2168 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2169 inferior directly.) We must do this here because functions that
2170 need to block waiting for a signal loop forever until there's an
2171 event to report before returning back to the event loop. */
2172 if (!target_terminal::is_ours ())
2173 {
2174 if (check_quit_flag ())
2175 target_pass_ctrlc ();
2176 }
2177 }
2178
2179 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2180 exited. */
2181
2182 static int
2183 wait_lwp (struct lwp_info *lp)
2184 {
2185 pid_t pid;
2186 int status = 0;
2187 int thread_dead = 0;
2188 sigset_t prev_mask;
2189
2190 gdb_assert (!lp->stopped);
2191 gdb_assert (lp->status == 0);
2192
2193 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2194 block_child_signals (&prev_mask);
2195
2196 for (;;)
2197 {
2198 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2199 if (pid == -1 && errno == ECHILD)
2200 {
2201 /* The thread has previously exited. We need to delete it
2202 now because if this was a non-leader thread execing, we
2203 won't get an exit event. See comments on exec events at
2204 the top of the file. */
2205 thread_dead = 1;
2206 if (debug_linux_nat)
2207 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2208 target_pid_to_str (lp->ptid));
2209 }
2210 if (pid != 0)
2211 break;
2212
2213 /* Bugs 10970, 12702.
2214 Thread group leader may have exited in which case we'll lock up in
2215 waitpid if there are other threads, even if they are all zombies too.
2216 Basically, we're not supposed to use waitpid this way.
2217 tkill(pid,0) cannot be used here as it gets ESRCH for both
2218 for zombie and running processes.
2219
2220 As a workaround, check if we're waiting for the thread group leader and
2221 if it's a zombie, and avoid calling waitpid if it is.
2222
2223 This is racy, what if the tgl becomes a zombie right after we check?
2224 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2225 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2226
2227 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2228 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2229 {
2230 thread_dead = 1;
2231 if (debug_linux_nat)
2232 fprintf_unfiltered (gdb_stdlog,
2233 "WL: Thread group leader %s vanished.\n",
2234 target_pid_to_str (lp->ptid));
2235 break;
2236 }
2237
2238 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2239 get invoked despite our caller had them intentionally blocked by
2240 block_child_signals. This is sensitive only to the loop of
2241 linux_nat_wait_1 and there if we get called my_waitpid gets called
2242 again before it gets to sigsuspend so we can safely let the handlers
2243 get executed here. */
2244 wait_for_signal ();
2245 }
2246
2247 restore_child_signals_mask (&prev_mask);
2248
2249 if (!thread_dead)
2250 {
2251 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2252
2253 if (debug_linux_nat)
2254 {
2255 fprintf_unfiltered (gdb_stdlog,
2256 "WL: waitpid %s received %s\n",
2257 target_pid_to_str (lp->ptid),
2258 status_to_str (status));
2259 }
2260
2261 /* Check if the thread has exited. */
2262 if (WIFEXITED (status) || WIFSIGNALED (status))
2263 {
2264 if (report_thread_events
2265 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2266 {
2267 if (debug_linux_nat)
2268 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2269 ptid_get_pid (lp->ptid));
2270
2271 /* If this is the leader exiting, it means the whole
2272 process is gone. Store the status to report to the
2273 core. Store it in lp->waitstatus, because lp->status
2274 would be ambiguous (W_EXITCODE(0,0) == 0). */
2275 store_waitstatus (&lp->waitstatus, status);
2276 return 0;
2277 }
2278
2279 thread_dead = 1;
2280 if (debug_linux_nat)
2281 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2282 target_pid_to_str (lp->ptid));
2283 }
2284 }
2285
2286 if (thread_dead)
2287 {
2288 exit_lwp (lp);
2289 return 0;
2290 }
2291
2292 gdb_assert (WIFSTOPPED (status));
2293 lp->stopped = 1;
2294
2295 if (lp->must_set_ptrace_flags)
2296 {
2297 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2298 int options = linux_nat_ptrace_options (inf->attach_flag);
2299
2300 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2301 lp->must_set_ptrace_flags = 0;
2302 }
2303
2304 /* Handle GNU/Linux's syscall SIGTRAPs. */
2305 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2306 {
2307 /* No longer need the sysgood bit. The ptrace event ends up
2308 recorded in lp->waitstatus if we care for it. We can carry
2309 on handling the event like a regular SIGTRAP from here
2310 on. */
2311 status = W_STOPCODE (SIGTRAP);
2312 if (linux_handle_syscall_trap (lp, 1))
2313 return wait_lwp (lp);
2314 }
2315 else
2316 {
2317 /* Almost all other ptrace-stops are known to be outside of system
2318 calls, with further exceptions in linux_handle_extended_wait. */
2319 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2320 }
2321
2322 /* Handle GNU/Linux's extended waitstatus for trace events. */
2323 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2324 && linux_is_extended_waitstatus (status))
2325 {
2326 if (debug_linux_nat)
2327 fprintf_unfiltered (gdb_stdlog,
2328 "WL: Handling extended status 0x%06x\n",
2329 status);
2330 linux_handle_extended_wait (lp, status);
2331 return 0;
2332 }
2333
2334 return status;
2335 }
2336
2337 /* Send a SIGSTOP to LP. */
2338
2339 static int
2340 stop_callback (struct lwp_info *lp, void *data)
2341 {
2342 if (!lp->stopped && !lp->signalled)
2343 {
2344 int ret;
2345
2346 if (debug_linux_nat)
2347 {
2348 fprintf_unfiltered (gdb_stdlog,
2349 "SC: kill %s **<SIGSTOP>**\n",
2350 target_pid_to_str (lp->ptid));
2351 }
2352 errno = 0;
2353 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2354 if (debug_linux_nat)
2355 {
2356 fprintf_unfiltered (gdb_stdlog,
2357 "SC: lwp kill %d %s\n",
2358 ret,
2359 errno ? safe_strerror (errno) : "ERRNO-OK");
2360 }
2361
2362 lp->signalled = 1;
2363 gdb_assert (lp->status == 0);
2364 }
2365
2366 return 0;
2367 }
2368
2369 /* Request a stop on LWP. */
2370
2371 void
2372 linux_stop_lwp (struct lwp_info *lwp)
2373 {
2374 stop_callback (lwp, NULL);
2375 }
2376
2377 /* See linux-nat.h */
2378
2379 void
2380 linux_stop_and_wait_all_lwps (void)
2381 {
2382 /* Stop all LWP's ... */
2383 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2384
2385 /* ... and wait until all of them have reported back that
2386 they're no longer running. */
2387 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2388 }
2389
2390 /* See linux-nat.h */
2391
2392 void
2393 linux_unstop_all_lwps (void)
2394 {
2395 iterate_over_lwps (minus_one_ptid,
2396 resume_stopped_resumed_lwps, &minus_one_ptid);
2397 }
2398
2399 /* Return non-zero if LWP PID has a pending SIGINT. */
2400
2401 static int
2402 linux_nat_has_pending_sigint (int pid)
2403 {
2404 sigset_t pending, blocked, ignored;
2405
2406 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2407
2408 if (sigismember (&pending, SIGINT)
2409 && !sigismember (&ignored, SIGINT))
2410 return 1;
2411
2412 return 0;
2413 }
2414
2415 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2416
2417 static int
2418 set_ignore_sigint (struct lwp_info *lp, void *data)
2419 {
2420 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2421 flag to consume the next one. */
2422 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2423 && WSTOPSIG (lp->status) == SIGINT)
2424 lp->status = 0;
2425 else
2426 lp->ignore_sigint = 1;
2427
2428 return 0;
2429 }
2430
2431 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2432 This function is called after we know the LWP has stopped; if the LWP
2433 stopped before the expected SIGINT was delivered, then it will never have
2434 arrived. Also, if the signal was delivered to a shared queue and consumed
2435 by a different thread, it will never be delivered to this LWP. */
2436
2437 static void
2438 maybe_clear_ignore_sigint (struct lwp_info *lp)
2439 {
2440 if (!lp->ignore_sigint)
2441 return;
2442
2443 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2444 {
2445 if (debug_linux_nat)
2446 fprintf_unfiltered (gdb_stdlog,
2447 "MCIS: Clearing bogus flag for %s\n",
2448 target_pid_to_str (lp->ptid));
2449 lp->ignore_sigint = 0;
2450 }
2451 }
2452
2453 /* Fetch the possible triggered data watchpoint info and store it in
2454 LP.
2455
2456 On some archs, like x86, that use debug registers to set
2457 watchpoints, it's possible that the way to know which watched
2458 address trapped, is to check the register that is used to select
2459 which address to watch. Problem is, between setting the watchpoint
2460 and reading back which data address trapped, the user may change
2461 the set of watchpoints, and, as a consequence, GDB changes the
2462 debug registers in the inferior. To avoid reading back a stale
2463 stopped-data-address when that happens, we cache in LP the fact
2464 that a watchpoint trapped, and the corresponding data address, as
2465 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2466 registers meanwhile, we have the cached data we can rely on. */
2467
2468 static int
2469 check_stopped_by_watchpoint (struct lwp_info *lp)
2470 {
2471 if (linux_ops->to_stopped_by_watchpoint == NULL)
2472 return 0;
2473
2474 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2475 inferior_ptid = lp->ptid;
2476
2477 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2478 {
2479 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2480
2481 if (linux_ops->to_stopped_data_address != NULL)
2482 lp->stopped_data_address_p =
2483 linux_ops->to_stopped_data_address (&current_target,
2484 &lp->stopped_data_address);
2485 else
2486 lp->stopped_data_address_p = 0;
2487 }
2488
2489 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2490 }
2491
2492 /* Returns true if the LWP had stopped for a watchpoint. */
2493
2494 static int
2495 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2496 {
2497 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2498
2499 gdb_assert (lp != NULL);
2500
2501 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2502 }
2503
2504 static int
2505 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2506 {
2507 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2508
2509 gdb_assert (lp != NULL);
2510
2511 *addr_p = lp->stopped_data_address;
2512
2513 return lp->stopped_data_address_p;
2514 }
2515
2516 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2517
2518 static int
2519 sigtrap_is_event (int status)
2520 {
2521 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2522 }
2523
2524 /* Set alternative SIGTRAP-like events recognizer. If
2525 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2526 applied. */
2527
2528 void
2529 linux_nat_set_status_is_event (struct target_ops *t,
2530 int (*status_is_event) (int status))
2531 {
2532 linux_nat_status_is_event = status_is_event;
2533 }
2534
2535 /* Wait until LP is stopped. */
2536
2537 static int
2538 stop_wait_callback (struct lwp_info *lp, void *data)
2539 {
2540 struct inferior *inf = find_inferior_ptid (lp->ptid);
2541
2542 /* If this is a vfork parent, bail out, it is not going to report
2543 any SIGSTOP until the vfork is done with. */
2544 if (inf->vfork_child != NULL)
2545 return 0;
2546
2547 if (!lp->stopped)
2548 {
2549 int status;
2550
2551 status = wait_lwp (lp);
2552 if (status == 0)
2553 return 0;
2554
2555 if (lp->ignore_sigint && WIFSTOPPED (status)
2556 && WSTOPSIG (status) == SIGINT)
2557 {
2558 lp->ignore_sigint = 0;
2559
2560 errno = 0;
2561 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2562 lp->stopped = 0;
2563 if (debug_linux_nat)
2564 fprintf_unfiltered (gdb_stdlog,
2565 "PTRACE_CONT %s, 0, 0 (%s) "
2566 "(discarding SIGINT)\n",
2567 target_pid_to_str (lp->ptid),
2568 errno ? safe_strerror (errno) : "OK");
2569
2570 return stop_wait_callback (lp, NULL);
2571 }
2572
2573 maybe_clear_ignore_sigint (lp);
2574
2575 if (WSTOPSIG (status) != SIGSTOP)
2576 {
2577 /* The thread was stopped with a signal other than SIGSTOP. */
2578
2579 if (debug_linux_nat)
2580 fprintf_unfiltered (gdb_stdlog,
2581 "SWC: Pending event %s in %s\n",
2582 status_to_str ((int) status),
2583 target_pid_to_str (lp->ptid));
2584
2585 /* Save the sigtrap event. */
2586 lp->status = status;
2587 gdb_assert (lp->signalled);
2588 save_stop_reason (lp);
2589 }
2590 else
2591 {
2592 /* We caught the SIGSTOP that we intended to catch, so
2593 there's no SIGSTOP pending. */
2594
2595 if (debug_linux_nat)
2596 fprintf_unfiltered (gdb_stdlog,
2597 "SWC: Expected SIGSTOP caught for %s.\n",
2598 target_pid_to_str (lp->ptid));
2599
2600 /* Reset SIGNALLED only after the stop_wait_callback call
2601 above as it does gdb_assert on SIGNALLED. */
2602 lp->signalled = 0;
2603 }
2604 }
2605
2606 return 0;
2607 }
2608
2609 /* Return non-zero if LP has a wait status pending. Discard the
2610 pending event and resume the LWP if the event that originally
2611 caused the stop became uninteresting. */
2612
2613 static int
2614 status_callback (struct lwp_info *lp, void *data)
2615 {
2616 /* Only report a pending wait status if we pretend that this has
2617 indeed been resumed. */
2618 if (!lp->resumed)
2619 return 0;
2620
2621 if (!lwp_status_pending_p (lp))
2622 return 0;
2623
2624 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2625 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2626 {
2627 struct regcache *regcache = get_thread_regcache (lp->ptid);
2628 CORE_ADDR pc;
2629 int discard = 0;
2630
2631 pc = regcache_read_pc (regcache);
2632
2633 if (pc != lp->stop_pc)
2634 {
2635 if (debug_linux_nat)
2636 fprintf_unfiltered (gdb_stdlog,
2637 "SC: PC of %s changed. was=%s, now=%s\n",
2638 target_pid_to_str (lp->ptid),
2639 paddress (target_gdbarch (), lp->stop_pc),
2640 paddress (target_gdbarch (), pc));
2641 discard = 1;
2642 }
2643
2644 #if !USE_SIGTRAP_SIGINFO
2645 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2646 {
2647 if (debug_linux_nat)
2648 fprintf_unfiltered (gdb_stdlog,
2649 "SC: previous breakpoint of %s, at %s gone\n",
2650 target_pid_to_str (lp->ptid),
2651 paddress (target_gdbarch (), lp->stop_pc));
2652
2653 discard = 1;
2654 }
2655 #endif
2656
2657 if (discard)
2658 {
2659 if (debug_linux_nat)
2660 fprintf_unfiltered (gdb_stdlog,
2661 "SC: pending event of %s cancelled.\n",
2662 target_pid_to_str (lp->ptid));
2663
2664 lp->status = 0;
2665 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2666 return 0;
2667 }
2668 }
2669
2670 return 1;
2671 }
2672
2673 /* Count the LWP's that have had events. */
2674
2675 static int
2676 count_events_callback (struct lwp_info *lp, void *data)
2677 {
2678 int *count = (int *) data;
2679
2680 gdb_assert (count != NULL);
2681
2682 /* Select only resumed LWPs that have an event pending. */
2683 if (lp->resumed && lwp_status_pending_p (lp))
2684 (*count)++;
2685
2686 return 0;
2687 }
2688
2689 /* Select the LWP (if any) that is currently being single-stepped. */
2690
2691 static int
2692 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2693 {
2694 if (lp->last_resume_kind == resume_step
2695 && lp->status != 0)
2696 return 1;
2697 else
2698 return 0;
2699 }
2700
2701 /* Returns true if LP has a status pending. */
2702
2703 static int
2704 lwp_status_pending_p (struct lwp_info *lp)
2705 {
2706 /* We check for lp->waitstatus in addition to lp->status, because we
2707 can have pending process exits recorded in lp->status and
2708 W_EXITCODE(0,0) happens to be 0. */
2709 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2710 }
2711
2712 /* Select the Nth LWP that has had an event. */
2713
2714 static int
2715 select_event_lwp_callback (struct lwp_info *lp, void *data)
2716 {
2717 int *selector = (int *) data;
2718
2719 gdb_assert (selector != NULL);
2720
2721 /* Select only resumed LWPs that have an event pending. */
2722 if (lp->resumed && lwp_status_pending_p (lp))
2723 if ((*selector)-- == 0)
2724 return 1;
2725
2726 return 0;
2727 }
2728
2729 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2730 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2731 and save the result in the LWP's stop_reason field. If it stopped
2732 for a breakpoint, decrement the PC if necessary on the lwp's
2733 architecture. */
2734
2735 static void
2736 save_stop_reason (struct lwp_info *lp)
2737 {
2738 struct regcache *regcache;
2739 struct gdbarch *gdbarch;
2740 CORE_ADDR pc;
2741 CORE_ADDR sw_bp_pc;
2742 #if USE_SIGTRAP_SIGINFO
2743 siginfo_t siginfo;
2744 #endif
2745
2746 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2747 gdb_assert (lp->status != 0);
2748
2749 if (!linux_nat_status_is_event (lp->status))
2750 return;
2751
2752 regcache = get_thread_regcache (lp->ptid);
2753 gdbarch = regcache->arch ();
2754
2755 pc = regcache_read_pc (regcache);
2756 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2757
2758 #if USE_SIGTRAP_SIGINFO
2759 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2760 {
2761 if (siginfo.si_signo == SIGTRAP)
2762 {
2763 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2764 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2765 {
2766 /* The si_code is ambiguous on this arch -- check debug
2767 registers. */
2768 if (!check_stopped_by_watchpoint (lp))
2769 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2770 }
2771 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2772 {
2773 /* If we determine the LWP stopped for a SW breakpoint,
2774 trust it. Particularly don't check watchpoint
2775 registers, because at least on s390, we'd find
2776 stopped-by-watchpoint as long as there's a watchpoint
2777 set. */
2778 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2779 }
2780 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2781 {
2782 /* This can indicate either a hardware breakpoint or
2783 hardware watchpoint. Check debug registers. */
2784 if (!check_stopped_by_watchpoint (lp))
2785 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2786 }
2787 else if (siginfo.si_code == TRAP_TRACE)
2788 {
2789 if (debug_linux_nat)
2790 fprintf_unfiltered (gdb_stdlog,
2791 "CSBB: %s stopped by trace\n",
2792 target_pid_to_str (lp->ptid));
2793
2794 /* We may have single stepped an instruction that
2795 triggered a watchpoint. In that case, on some
2796 architectures (such as x86), instead of TRAP_HWBKPT,
2797 si_code indicates TRAP_TRACE, and we need to check
2798 the debug registers separately. */
2799 check_stopped_by_watchpoint (lp);
2800 }
2801 }
2802 }
2803 #else
2804 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2805 && software_breakpoint_inserted_here_p (regcache->aspace (),
2806 sw_bp_pc))
2807 {
2808 /* The LWP was either continued, or stepped a software
2809 breakpoint instruction. */
2810 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2811 }
2812
2813 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2814 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2815
2816 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2817 check_stopped_by_watchpoint (lp);
2818 #endif
2819
2820 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2821 {
2822 if (debug_linux_nat)
2823 fprintf_unfiltered (gdb_stdlog,
2824 "CSBB: %s stopped by software breakpoint\n",
2825 target_pid_to_str (lp->ptid));
2826
2827 /* Back up the PC if necessary. */
2828 if (pc != sw_bp_pc)
2829 regcache_write_pc (regcache, sw_bp_pc);
2830
2831 /* Update this so we record the correct stop PC below. */
2832 pc = sw_bp_pc;
2833 }
2834 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2835 {
2836 if (debug_linux_nat)
2837 fprintf_unfiltered (gdb_stdlog,
2838 "CSBB: %s stopped by hardware breakpoint\n",
2839 target_pid_to_str (lp->ptid));
2840 }
2841 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2842 {
2843 if (debug_linux_nat)
2844 fprintf_unfiltered (gdb_stdlog,
2845 "CSBB: %s stopped by hardware watchpoint\n",
2846 target_pid_to_str (lp->ptid));
2847 }
2848
2849 lp->stop_pc = pc;
2850 }
2851
2852
2853 /* Returns true if the LWP had stopped for a software breakpoint. */
2854
2855 static int
2856 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2857 {
2858 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2859
2860 gdb_assert (lp != NULL);
2861
2862 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2863 }
2864
2865 /* Implement the supports_stopped_by_sw_breakpoint method. */
2866
2867 static int
2868 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2869 {
2870 return USE_SIGTRAP_SIGINFO;
2871 }
2872
2873 /* Returns true if the LWP had stopped for a hardware
2874 breakpoint/watchpoint. */
2875
2876 static int
2877 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2878 {
2879 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2880
2881 gdb_assert (lp != NULL);
2882
2883 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2884 }
2885
2886 /* Implement the supports_stopped_by_hw_breakpoint method. */
2887
2888 static int
2889 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2890 {
2891 return USE_SIGTRAP_SIGINFO;
2892 }
2893
2894 /* Select one LWP out of those that have events pending. */
2895
2896 static void
2897 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2898 {
2899 int num_events = 0;
2900 int random_selector;
2901 struct lwp_info *event_lp = NULL;
2902
2903 /* Record the wait status for the original LWP. */
2904 (*orig_lp)->status = *status;
2905
2906 /* In all-stop, give preference to the LWP that is being
2907 single-stepped. There will be at most one, and it will be the
2908 LWP that the core is most interested in. If we didn't do this,
2909 then we'd have to handle pending step SIGTRAPs somehow in case
2910 the core later continues the previously-stepped thread, as
2911 otherwise we'd report the pending SIGTRAP then, and the core, not
2912 having stepped the thread, wouldn't understand what the trap was
2913 for, and therefore would report it to the user as a random
2914 signal. */
2915 if (!target_is_non_stop_p ())
2916 {
2917 event_lp = iterate_over_lwps (filter,
2918 select_singlestep_lwp_callback, NULL);
2919 if (event_lp != NULL)
2920 {
2921 if (debug_linux_nat)
2922 fprintf_unfiltered (gdb_stdlog,
2923 "SEL: Select single-step %s\n",
2924 target_pid_to_str (event_lp->ptid));
2925 }
2926 }
2927
2928 if (event_lp == NULL)
2929 {
2930 /* Pick one at random, out of those which have had events. */
2931
2932 /* First see how many events we have. */
2933 iterate_over_lwps (filter, count_events_callback, &num_events);
2934 gdb_assert (num_events > 0);
2935
2936 /* Now randomly pick a LWP out of those that have had
2937 events. */
2938 random_selector = (int)
2939 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2940
2941 if (debug_linux_nat && num_events > 1)
2942 fprintf_unfiltered (gdb_stdlog,
2943 "SEL: Found %d events, selecting #%d\n",
2944 num_events, random_selector);
2945
2946 event_lp = iterate_over_lwps (filter,
2947 select_event_lwp_callback,
2948 &random_selector);
2949 }
2950
2951 if (event_lp != NULL)
2952 {
2953 /* Switch the event LWP. */
2954 *orig_lp = event_lp;
2955 *status = event_lp->status;
2956 }
2957
2958 /* Flush the wait status for the event LWP. */
2959 (*orig_lp)->status = 0;
2960 }
2961
2962 /* Return non-zero if LP has been resumed. */
2963
2964 static int
2965 resumed_callback (struct lwp_info *lp, void *data)
2966 {
2967 return lp->resumed;
2968 }
2969
2970 /* Check if we should go on and pass this event to common code.
2971 Return the affected lwp if we are, or NULL otherwise. */
2972
2973 static struct lwp_info *
2974 linux_nat_filter_event (int lwpid, int status)
2975 {
2976 struct lwp_info *lp;
2977 int event = linux_ptrace_get_extended_event (status);
2978
2979 lp = find_lwp_pid (pid_to_ptid (lwpid));
2980
2981 /* Check for stop events reported by a process we didn't already
2982 know about - anything not already in our LWP list.
2983
2984 If we're expecting to receive stopped processes after
2985 fork, vfork, and clone events, then we'll just add the
2986 new one to our list and go back to waiting for the event
2987 to be reported - the stopped process might be returned
2988 from waitpid before or after the event is.
2989
2990 But note the case of a non-leader thread exec'ing after the
2991 leader having exited, and gone from our lists. The non-leader
2992 thread changes its tid to the tgid. */
2993
2994 if (WIFSTOPPED (status) && lp == NULL
2995 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2996 {
2997 /* A multi-thread exec after we had seen the leader exiting. */
2998 if (debug_linux_nat)
2999 fprintf_unfiltered (gdb_stdlog,
3000 "LLW: Re-adding thread group leader LWP %d.\n",
3001 lwpid);
3002
3003 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
3004 lp->stopped = 1;
3005 lp->resumed = 1;
3006 add_thread (lp->ptid);
3007 }
3008
3009 if (WIFSTOPPED (status) && !lp)
3010 {
3011 if (debug_linux_nat)
3012 fprintf_unfiltered (gdb_stdlog,
3013 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3014 (long) lwpid, status_to_str (status));
3015 add_to_pid_list (&stopped_pids, lwpid, status);
3016 return NULL;
3017 }
3018
3019 /* Make sure we don't report an event for the exit of an LWP not in
3020 our list, i.e. not part of the current process. This can happen
3021 if we detach from a program we originally forked and then it
3022 exits. */
3023 if (!WIFSTOPPED (status) && !lp)
3024 return NULL;
3025
3026 /* This LWP is stopped now. (And if dead, this prevents it from
3027 ever being continued.) */
3028 lp->stopped = 1;
3029
3030 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3031 {
3032 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3033 int options = linux_nat_ptrace_options (inf->attach_flag);
3034
3035 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3036 lp->must_set_ptrace_flags = 0;
3037 }
3038
3039 /* Handle GNU/Linux's syscall SIGTRAPs. */
3040 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3041 {
3042 /* No longer need the sysgood bit. The ptrace event ends up
3043 recorded in lp->waitstatus if we care for it. We can carry
3044 on handling the event like a regular SIGTRAP from here
3045 on. */
3046 status = W_STOPCODE (SIGTRAP);
3047 if (linux_handle_syscall_trap (lp, 0))
3048 return NULL;
3049 }
3050 else
3051 {
3052 /* Almost all other ptrace-stops are known to be outside of system
3053 calls, with further exceptions in linux_handle_extended_wait. */
3054 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3055 }
3056
3057 /* Handle GNU/Linux's extended waitstatus for trace events. */
3058 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3059 && linux_is_extended_waitstatus (status))
3060 {
3061 if (debug_linux_nat)
3062 fprintf_unfiltered (gdb_stdlog,
3063 "LLW: Handling extended status 0x%06x\n",
3064 status);
3065 if (linux_handle_extended_wait (lp, status))
3066 return NULL;
3067 }
3068
3069 /* Check if the thread has exited. */
3070 if (WIFEXITED (status) || WIFSIGNALED (status))
3071 {
3072 if (!report_thread_events
3073 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3074 {
3075 if (debug_linux_nat)
3076 fprintf_unfiltered (gdb_stdlog,
3077 "LLW: %s exited.\n",
3078 target_pid_to_str (lp->ptid));
3079
3080 /* If there is at least one more LWP, then the exit signal
3081 was not the end of the debugged application and should be
3082 ignored. */
3083 exit_lwp (lp);
3084 return NULL;
3085 }
3086
3087 /* Note that even if the leader was ptrace-stopped, it can still
3088 exit, if e.g., some other thread brings down the whole
3089 process (calls `exit'). So don't assert that the lwp is
3090 resumed. */
3091 if (debug_linux_nat)
3092 fprintf_unfiltered (gdb_stdlog,
3093 "LWP %ld exited (resumed=%d)\n",
3094 ptid_get_lwp (lp->ptid), lp->resumed);
3095
3096 /* Dead LWP's aren't expected to reported a pending sigstop. */
3097 lp->signalled = 0;
3098
3099 /* Store the pending event in the waitstatus, because
3100 W_EXITCODE(0,0) == 0. */
3101 store_waitstatus (&lp->waitstatus, status);
3102 return lp;
3103 }
3104
3105 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3106 an attempt to stop an LWP. */
3107 if (lp->signalled
3108 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3109 {
3110 lp->signalled = 0;
3111
3112 if (lp->last_resume_kind == resume_stop)
3113 {
3114 if (debug_linux_nat)
3115 fprintf_unfiltered (gdb_stdlog,
3116 "LLW: resume_stop SIGSTOP caught for %s.\n",
3117 target_pid_to_str (lp->ptid));
3118 }
3119 else
3120 {
3121 /* This is a delayed SIGSTOP. Filter out the event. */
3122
3123 if (debug_linux_nat)
3124 fprintf_unfiltered (gdb_stdlog,
3125 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3126 lp->step ?
3127 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3128 target_pid_to_str (lp->ptid));
3129
3130 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3131 gdb_assert (lp->resumed);
3132 return NULL;
3133 }
3134 }
3135
3136 /* Make sure we don't report a SIGINT that we have already displayed
3137 for another thread. */
3138 if (lp->ignore_sigint
3139 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3140 {
3141 if (debug_linux_nat)
3142 fprintf_unfiltered (gdb_stdlog,
3143 "LLW: Delayed SIGINT caught for %s.\n",
3144 target_pid_to_str (lp->ptid));
3145
3146 /* This is a delayed SIGINT. */
3147 lp->ignore_sigint = 0;
3148
3149 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3150 if (debug_linux_nat)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3153 lp->step ?
3154 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3155 target_pid_to_str (lp->ptid));
3156 gdb_assert (lp->resumed);
3157
3158 /* Discard the event. */
3159 return NULL;
3160 }
3161
3162 /* Don't report signals that GDB isn't interested in, such as
3163 signals that are neither printed nor stopped upon. Stopping all
3164 threads can be a bit time-consuming so if we want decent
3165 performance with heavily multi-threaded programs, especially when
3166 they're using a high frequency timer, we'd better avoid it if we
3167 can. */
3168 if (WIFSTOPPED (status))
3169 {
3170 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3171
3172 if (!target_is_non_stop_p ())
3173 {
3174 /* Only do the below in all-stop, as we currently use SIGSTOP
3175 to implement target_stop (see linux_nat_stop) in
3176 non-stop. */
3177 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3178 {
3179 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3180 forwarded to the entire process group, that is, all LWPs
3181 will receive it - unless they're using CLONE_THREAD to
3182 share signals. Since we only want to report it once, we
3183 mark it as ignored for all LWPs except this one. */
3184 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3185 set_ignore_sigint, NULL);
3186 lp->ignore_sigint = 0;
3187 }
3188 else
3189 maybe_clear_ignore_sigint (lp);
3190 }
3191
3192 /* When using hardware single-step, we need to report every signal.
3193 Otherwise, signals in pass_mask may be short-circuited
3194 except signals that might be caused by a breakpoint. */
3195 if (!lp->step
3196 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3197 && !linux_wstatus_maybe_breakpoint (status))
3198 {
3199 linux_resume_one_lwp (lp, lp->step, signo);
3200 if (debug_linux_nat)
3201 fprintf_unfiltered (gdb_stdlog,
3202 "LLW: %s %s, %s (preempt 'handle')\n",
3203 lp->step ?
3204 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3205 target_pid_to_str (lp->ptid),
3206 (signo != GDB_SIGNAL_0
3207 ? strsignal (gdb_signal_to_host (signo))
3208 : "0"));
3209 return NULL;
3210 }
3211 }
3212
3213 /* An interesting event. */
3214 gdb_assert (lp);
3215 lp->status = status;
3216 save_stop_reason (lp);
3217 return lp;
3218 }
3219
3220 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3221 their exits until all other threads in the group have exited. */
3222
3223 static void
3224 check_zombie_leaders (void)
3225 {
3226 struct inferior *inf;
3227
3228 ALL_INFERIORS (inf)
3229 {
3230 struct lwp_info *leader_lp;
3231
3232 if (inf->pid == 0)
3233 continue;
3234
3235 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3236 if (leader_lp != NULL
3237 /* Check if there are other threads in the group, as we may
3238 have raced with the inferior simply exiting. */
3239 && num_lwps (inf->pid) > 1
3240 && linux_proc_pid_is_zombie (inf->pid))
3241 {
3242 if (debug_linux_nat)
3243 fprintf_unfiltered (gdb_stdlog,
3244 "CZL: Thread group leader %d zombie "
3245 "(it exited, or another thread execd).\n",
3246 inf->pid);
3247
3248 /* A leader zombie can mean one of two things:
3249
3250 - It exited, and there's an exit status pending
3251 available, or only the leader exited (not the whole
3252 program). In the latter case, we can't waitpid the
3253 leader's exit status until all other threads are gone.
3254
3255 - There are 3 or more threads in the group, and a thread
3256 other than the leader exec'd. See comments on exec
3257 events at the top of the file. We could try
3258 distinguishing the exit and exec cases, by waiting once
3259 more, and seeing if something comes out, but it doesn't
3260 sound useful. The previous leader _does_ go away, and
3261 we'll re-add the new one once we see the exec event
3262 (which is just the same as what would happen if the
3263 previous leader did exit voluntarily before some other
3264 thread execs). */
3265
3266 if (debug_linux_nat)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "CZL: Thread group leader %d vanished.\n",
3269 inf->pid);
3270 exit_lwp (leader_lp);
3271 }
3272 }
3273 }
3274
3275 /* Convenience function that is called when the kernel reports an exit
3276 event. This decides whether to report the event to GDB as a
3277 process exit event, a thread exit event, or to suppress the
3278 event. */
3279
3280 static ptid_t
3281 filter_exit_event (struct lwp_info *event_child,
3282 struct target_waitstatus *ourstatus)
3283 {
3284 ptid_t ptid = event_child->ptid;
3285
3286 if (num_lwps (ptid_get_pid (ptid)) > 1)
3287 {
3288 if (report_thread_events)
3289 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3290 else
3291 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3292
3293 exit_lwp (event_child);
3294 }
3295
3296 return ptid;
3297 }
3298
3299 static ptid_t
3300 linux_nat_wait_1 (struct target_ops *ops,
3301 ptid_t ptid, struct target_waitstatus *ourstatus,
3302 int target_options)
3303 {
3304 sigset_t prev_mask;
3305 enum resume_kind last_resume_kind;
3306 struct lwp_info *lp;
3307 int status;
3308
3309 if (debug_linux_nat)
3310 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3311
3312 /* The first time we get here after starting a new inferior, we may
3313 not have added it to the LWP list yet - this is the earliest
3314 moment at which we know its PID. */
3315 if (ptid_is_pid (inferior_ptid))
3316 {
3317 /* Upgrade the main thread's ptid. */
3318 thread_change_ptid (inferior_ptid,
3319 ptid_build (ptid_get_pid (inferior_ptid),
3320 ptid_get_pid (inferior_ptid), 0));
3321
3322 lp = add_initial_lwp (inferior_ptid);
3323 lp->resumed = 1;
3324 }
3325
3326 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3327 block_child_signals (&prev_mask);
3328
3329 /* First check if there is a LWP with a wait status pending. */
3330 lp = iterate_over_lwps (ptid, status_callback, NULL);
3331 if (lp != NULL)
3332 {
3333 if (debug_linux_nat)
3334 fprintf_unfiltered (gdb_stdlog,
3335 "LLW: Using pending wait status %s for %s.\n",
3336 status_to_str (lp->status),
3337 target_pid_to_str (lp->ptid));
3338 }
3339
3340 /* But if we don't find a pending event, we'll have to wait. Always
3341 pull all events out of the kernel. We'll randomly select an
3342 event LWP out of all that have events, to prevent starvation. */
3343
3344 while (lp == NULL)
3345 {
3346 pid_t lwpid;
3347
3348 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3349 quirks:
3350
3351 - If the thread group leader exits while other threads in the
3352 thread group still exist, waitpid(TGID, ...) hangs. That
3353 waitpid won't return an exit status until the other threads
3354 in the group are reapped.
3355
3356 - When a non-leader thread execs, that thread just vanishes
3357 without reporting an exit (so we'd hang if we waited for it
3358 explicitly in that case). The exec event is reported to
3359 the TGID pid. */
3360
3361 errno = 0;
3362 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3363
3364 if (debug_linux_nat)
3365 fprintf_unfiltered (gdb_stdlog,
3366 "LNW: waitpid(-1, ...) returned %d, %s\n",
3367 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3368
3369 if (lwpid > 0)
3370 {
3371 if (debug_linux_nat)
3372 {
3373 fprintf_unfiltered (gdb_stdlog,
3374 "LLW: waitpid %ld received %s\n",
3375 (long) lwpid, status_to_str (status));
3376 }
3377
3378 linux_nat_filter_event (lwpid, status);
3379 /* Retry until nothing comes out of waitpid. A single
3380 SIGCHLD can indicate more than one child stopped. */
3381 continue;
3382 }
3383
3384 /* Now that we've pulled all events out of the kernel, resume
3385 LWPs that don't have an interesting event to report. */
3386 iterate_over_lwps (minus_one_ptid,
3387 resume_stopped_resumed_lwps, &minus_one_ptid);
3388
3389 /* ... and find an LWP with a status to report to the core, if
3390 any. */
3391 lp = iterate_over_lwps (ptid, status_callback, NULL);
3392 if (lp != NULL)
3393 break;
3394
3395 /* Check for zombie thread group leaders. Those can't be reaped
3396 until all other threads in the thread group are. */
3397 check_zombie_leaders ();
3398
3399 /* If there are no resumed children left, bail. We'd be stuck
3400 forever in the sigsuspend call below otherwise. */
3401 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3402 {
3403 if (debug_linux_nat)
3404 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3405
3406 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3407
3408 restore_child_signals_mask (&prev_mask);
3409 return minus_one_ptid;
3410 }
3411
3412 /* No interesting event to report to the core. */
3413
3414 if (target_options & TARGET_WNOHANG)
3415 {
3416 if (debug_linux_nat)
3417 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3418
3419 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3420 restore_child_signals_mask (&prev_mask);
3421 return minus_one_ptid;
3422 }
3423
3424 /* We shouldn't end up here unless we want to try again. */
3425 gdb_assert (lp == NULL);
3426
3427 /* Block until we get an event reported with SIGCHLD. */
3428 wait_for_signal ();
3429 }
3430
3431 gdb_assert (lp);
3432
3433 status = lp->status;
3434 lp->status = 0;
3435
3436 if (!target_is_non_stop_p ())
3437 {
3438 /* Now stop all other LWP's ... */
3439 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3440
3441 /* ... and wait until all of them have reported back that
3442 they're no longer running. */
3443 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3444 }
3445
3446 /* If we're not waiting for a specific LWP, choose an event LWP from
3447 among those that have had events. Giving equal priority to all
3448 LWPs that have had events helps prevent starvation. */
3449 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3450 select_event_lwp (ptid, &lp, &status);
3451
3452 gdb_assert (lp != NULL);
3453
3454 /* Now that we've selected our final event LWP, un-adjust its PC if
3455 it was a software breakpoint, and we can't reliably support the
3456 "stopped by software breakpoint" stop reason. */
3457 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3458 && !USE_SIGTRAP_SIGINFO)
3459 {
3460 struct regcache *regcache = get_thread_regcache (lp->ptid);
3461 struct gdbarch *gdbarch = regcache->arch ();
3462 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3463
3464 if (decr_pc != 0)
3465 {
3466 CORE_ADDR pc;
3467
3468 pc = regcache_read_pc (regcache);
3469 regcache_write_pc (regcache, pc + decr_pc);
3470 }
3471 }
3472
3473 /* We'll need this to determine whether to report a SIGSTOP as
3474 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3475 clears it. */
3476 last_resume_kind = lp->last_resume_kind;
3477
3478 if (!target_is_non_stop_p ())
3479 {
3480 /* In all-stop, from the core's perspective, all LWPs are now
3481 stopped until a new resume action is sent over. */
3482 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3483 }
3484 else
3485 {
3486 resume_clear_callback (lp, NULL);
3487 }
3488
3489 if (linux_nat_status_is_event (status))
3490 {
3491 if (debug_linux_nat)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "LLW: trap ptid is %s.\n",
3494 target_pid_to_str (lp->ptid));
3495 }
3496
3497 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3498 {
3499 *ourstatus = lp->waitstatus;
3500 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3501 }
3502 else
3503 store_waitstatus (ourstatus, status);
3504
3505 if (debug_linux_nat)
3506 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3507
3508 restore_child_signals_mask (&prev_mask);
3509
3510 if (last_resume_kind == resume_stop
3511 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3512 && WSTOPSIG (status) == SIGSTOP)
3513 {
3514 /* A thread that has been requested to stop by GDB with
3515 target_stop, and it stopped cleanly, so report as SIG0. The
3516 use of SIGSTOP is an implementation detail. */
3517 ourstatus->value.sig = GDB_SIGNAL_0;
3518 }
3519
3520 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3521 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3522 lp->core = -1;
3523 else
3524 lp->core = linux_common_core_of_thread (lp->ptid);
3525
3526 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3527 return filter_exit_event (lp, ourstatus);
3528
3529 return lp->ptid;
3530 }
3531
3532 /* Resume LWPs that are currently stopped without any pending status
3533 to report, but are resumed from the core's perspective. */
3534
3535 static int
3536 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3537 {
3538 ptid_t *wait_ptid_p = (ptid_t *) data;
3539
3540 if (!lp->stopped)
3541 {
3542 if (debug_linux_nat)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "RSRL: NOT resuming LWP %s, not stopped\n",
3545 target_pid_to_str (lp->ptid));
3546 }
3547 else if (!lp->resumed)
3548 {
3549 if (debug_linux_nat)
3550 fprintf_unfiltered (gdb_stdlog,
3551 "RSRL: NOT resuming LWP %s, not resumed\n",
3552 target_pid_to_str (lp->ptid));
3553 }
3554 else if (lwp_status_pending_p (lp))
3555 {
3556 if (debug_linux_nat)
3557 fprintf_unfiltered (gdb_stdlog,
3558 "RSRL: NOT resuming LWP %s, has pending status\n",
3559 target_pid_to_str (lp->ptid));
3560 }
3561 else
3562 {
3563 struct regcache *regcache = get_thread_regcache (lp->ptid);
3564 struct gdbarch *gdbarch = regcache->arch ();
3565
3566 TRY
3567 {
3568 CORE_ADDR pc = regcache_read_pc (regcache);
3569 int leave_stopped = 0;
3570
3571 /* Don't bother if there's a breakpoint at PC that we'd hit
3572 immediately, and we're not waiting for this LWP. */
3573 if (!ptid_match (lp->ptid, *wait_ptid_p))
3574 {
3575 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3576 leave_stopped = 1;
3577 }
3578
3579 if (!leave_stopped)
3580 {
3581 if (debug_linux_nat)
3582 fprintf_unfiltered (gdb_stdlog,
3583 "RSRL: resuming stopped-resumed LWP %s at "
3584 "%s: step=%d\n",
3585 target_pid_to_str (lp->ptid),
3586 paddress (gdbarch, pc),
3587 lp->step);
3588
3589 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3590 }
3591 }
3592 CATCH (ex, RETURN_MASK_ERROR)
3593 {
3594 if (!check_ptrace_stopped_lwp_gone (lp))
3595 throw_exception (ex);
3596 }
3597 END_CATCH
3598 }
3599
3600 return 0;
3601 }
3602
3603 static ptid_t
3604 linux_nat_wait (struct target_ops *ops,
3605 ptid_t ptid, struct target_waitstatus *ourstatus,
3606 int target_options)
3607 {
3608 ptid_t event_ptid;
3609
3610 if (debug_linux_nat)
3611 {
3612 char *options_string;
3613
3614 options_string = target_options_to_string (target_options);
3615 fprintf_unfiltered (gdb_stdlog,
3616 "linux_nat_wait: [%s], [%s]\n",
3617 target_pid_to_str (ptid),
3618 options_string);
3619 xfree (options_string);
3620 }
3621
3622 /* Flush the async file first. */
3623 if (target_is_async_p ())
3624 async_file_flush ();
3625
3626 /* Resume LWPs that are currently stopped without any pending status
3627 to report, but are resumed from the core's perspective. LWPs get
3628 in this state if we find them stopping at a time we're not
3629 interested in reporting the event (target_wait on a
3630 specific_process, for example, see linux_nat_wait_1), and
3631 meanwhile the event became uninteresting. Don't bother resuming
3632 LWPs we're not going to wait for if they'd stop immediately. */
3633 if (target_is_non_stop_p ())
3634 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3635
3636 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3637
3638 /* If we requested any event, and something came out, assume there
3639 may be more. If we requested a specific lwp or process, also
3640 assume there may be more. */
3641 if (target_is_async_p ()
3642 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3643 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3644 || !ptid_equal (ptid, minus_one_ptid)))
3645 async_file_mark ();
3646
3647 return event_ptid;
3648 }
3649
3650 /* Kill one LWP. */
3651
3652 static void
3653 kill_one_lwp (pid_t pid)
3654 {
3655 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3656
3657 errno = 0;
3658 kill_lwp (pid, SIGKILL);
3659 if (debug_linux_nat)
3660 {
3661 int save_errno = errno;
3662
3663 fprintf_unfiltered (gdb_stdlog,
3664 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3665 save_errno ? safe_strerror (save_errno) : "OK");
3666 }
3667
3668 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3669
3670 errno = 0;
3671 ptrace (PTRACE_KILL, pid, 0, 0);
3672 if (debug_linux_nat)
3673 {
3674 int save_errno = errno;
3675
3676 fprintf_unfiltered (gdb_stdlog,
3677 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3678 save_errno ? safe_strerror (save_errno) : "OK");
3679 }
3680 }
3681
3682 /* Wait for an LWP to die. */
3683
3684 static void
3685 kill_wait_one_lwp (pid_t pid)
3686 {
3687 pid_t res;
3688
3689 /* We must make sure that there are no pending events (delayed
3690 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3691 program doesn't interfere with any following debugging session. */
3692
3693 do
3694 {
3695 res = my_waitpid (pid, NULL, __WALL);
3696 if (res != (pid_t) -1)
3697 {
3698 if (debug_linux_nat)
3699 fprintf_unfiltered (gdb_stdlog,
3700 "KWC: wait %ld received unknown.\n",
3701 (long) pid);
3702 /* The Linux kernel sometimes fails to kill a thread
3703 completely after PTRACE_KILL; that goes from the stop
3704 point in do_fork out to the one in get_signal_to_deliver
3705 and waits again. So kill it again. */
3706 kill_one_lwp (pid);
3707 }
3708 }
3709 while (res == pid);
3710
3711 gdb_assert (res == -1 && errno == ECHILD);
3712 }
3713
3714 /* Callback for iterate_over_lwps. */
3715
3716 static int
3717 kill_callback (struct lwp_info *lp, void *data)
3718 {
3719 kill_one_lwp (ptid_get_lwp (lp->ptid));
3720 return 0;
3721 }
3722
3723 /* Callback for iterate_over_lwps. */
3724
3725 static int
3726 kill_wait_callback (struct lwp_info *lp, void *data)
3727 {
3728 kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3729 return 0;
3730 }
3731
3732 /* Kill the fork children of any threads of inferior INF that are
3733 stopped at a fork event. */
3734
3735 static void
3736 kill_unfollowed_fork_children (struct inferior *inf)
3737 {
3738 struct thread_info *thread;
3739
3740 ALL_NON_EXITED_THREADS (thread)
3741 if (thread->inf == inf)
3742 {
3743 struct target_waitstatus *ws = &thread->pending_follow;
3744
3745 if (ws->kind == TARGET_WAITKIND_FORKED
3746 || ws->kind == TARGET_WAITKIND_VFORKED)
3747 {
3748 ptid_t child_ptid = ws->value.related_pid;
3749 int child_pid = ptid_get_pid (child_ptid);
3750 int child_lwp = ptid_get_lwp (child_ptid);
3751
3752 kill_one_lwp (child_lwp);
3753 kill_wait_one_lwp (child_lwp);
3754
3755 /* Let the arch-specific native code know this process is
3756 gone. */
3757 linux_nat_forget_process (child_pid);
3758 }
3759 }
3760 }
3761
3762 static void
3763 linux_nat_kill (struct target_ops *ops)
3764 {
3765 /* If we're stopped while forking and we haven't followed yet,
3766 kill the other task. We need to do this first because the
3767 parent will be sleeping if this is a vfork. */
3768 kill_unfollowed_fork_children (current_inferior ());
3769
3770 if (forks_exist_p ())
3771 linux_fork_killall ();
3772 else
3773 {
3774 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3775
3776 /* Stop all threads before killing them, since ptrace requires
3777 that the thread is stopped to sucessfully PTRACE_KILL. */
3778 iterate_over_lwps (ptid, stop_callback, NULL);
3779 /* ... and wait until all of them have reported back that
3780 they're no longer running. */
3781 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3782
3783 /* Kill all LWP's ... */
3784 iterate_over_lwps (ptid, kill_callback, NULL);
3785
3786 /* ... and wait until we've flushed all events. */
3787 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3788 }
3789
3790 target_mourn_inferior (inferior_ptid);
3791 }
3792
3793 static void
3794 linux_nat_mourn_inferior (struct target_ops *ops)
3795 {
3796 int pid = ptid_get_pid (inferior_ptid);
3797
3798 purge_lwp_list (pid);
3799
3800 if (! forks_exist_p ())
3801 /* Normal case, no other forks available. */
3802 linux_ops->to_mourn_inferior (ops);
3803 else
3804 /* Multi-fork case. The current inferior_ptid has exited, but
3805 there are other viable forks to debug. Delete the exiting
3806 one and context-switch to the first available. */
3807 linux_fork_mourn_inferior ();
3808
3809 /* Let the arch-specific native code know this process is gone. */
3810 linux_nat_forget_process (pid);
3811 }
3812
3813 /* Convert a native/host siginfo object, into/from the siginfo in the
3814 layout of the inferiors' architecture. */
3815
3816 static void
3817 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3818 {
3819 int done = 0;
3820
3821 if (linux_nat_siginfo_fixup != NULL)
3822 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3823
3824 /* If there was no callback, or the callback didn't do anything,
3825 then just do a straight memcpy. */
3826 if (!done)
3827 {
3828 if (direction == 1)
3829 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3830 else
3831 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3832 }
3833 }
3834
3835 static enum target_xfer_status
3836 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3837 const char *annex, gdb_byte *readbuf,
3838 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3839 ULONGEST *xfered_len)
3840 {
3841 int pid;
3842 siginfo_t siginfo;
3843 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3844
3845 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3846 gdb_assert (readbuf || writebuf);
3847
3848 pid = ptid_get_lwp (inferior_ptid);
3849 if (pid == 0)
3850 pid = ptid_get_pid (inferior_ptid);
3851
3852 if (offset > sizeof (siginfo))
3853 return TARGET_XFER_E_IO;
3854
3855 errno = 0;
3856 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3857 if (errno != 0)
3858 return TARGET_XFER_E_IO;
3859
3860 /* When GDB is built as a 64-bit application, ptrace writes into
3861 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3862 inferior with a 64-bit GDB should look the same as debugging it
3863 with a 32-bit GDB, we need to convert it. GDB core always sees
3864 the converted layout, so any read/write will have to be done
3865 post-conversion. */
3866 siginfo_fixup (&siginfo, inf_siginfo, 0);
3867
3868 if (offset + len > sizeof (siginfo))
3869 len = sizeof (siginfo) - offset;
3870
3871 if (readbuf != NULL)
3872 memcpy (readbuf, inf_siginfo + offset, len);
3873 else
3874 {
3875 memcpy (inf_siginfo + offset, writebuf, len);
3876
3877 /* Convert back to ptrace layout before flushing it out. */
3878 siginfo_fixup (&siginfo, inf_siginfo, 1);
3879
3880 errno = 0;
3881 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3882 if (errno != 0)
3883 return TARGET_XFER_E_IO;
3884 }
3885
3886 *xfered_len = len;
3887 return TARGET_XFER_OK;
3888 }
3889
3890 static enum target_xfer_status
3891 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3892 const char *annex, gdb_byte *readbuf,
3893 const gdb_byte *writebuf,
3894 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3895 {
3896 enum target_xfer_status xfer;
3897
3898 if (object == TARGET_OBJECT_SIGNAL_INFO)
3899 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3900 offset, len, xfered_len);
3901
3902 /* The target is connected but no live inferior is selected. Pass
3903 this request down to a lower stratum (e.g., the executable
3904 file). */
3905 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3906 return TARGET_XFER_EOF;
3907
3908 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3909 offset, len, xfered_len);
3910
3911 return xfer;
3912 }
3913
3914 static int
3915 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3916 {
3917 /* As long as a PTID is in lwp list, consider it alive. */
3918 return find_lwp_pid (ptid) != NULL;
3919 }
3920
3921 /* Implement the to_update_thread_list target method for this
3922 target. */
3923
3924 static void
3925 linux_nat_update_thread_list (struct target_ops *ops)
3926 {
3927 struct lwp_info *lwp;
3928
3929 /* We add/delete threads from the list as clone/exit events are
3930 processed, so just try deleting exited threads still in the
3931 thread list. */
3932 delete_exited_threads ();
3933
3934 /* Update the processor core that each lwp/thread was last seen
3935 running on. */
3936 ALL_LWPS (lwp)
3937 {
3938 /* Avoid accessing /proc if the thread hasn't run since we last
3939 time we fetched the thread's core. Accessing /proc becomes
3940 noticeably expensive when we have thousands of LWPs. */
3941 if (lwp->core == -1)
3942 lwp->core = linux_common_core_of_thread (lwp->ptid);
3943 }
3944 }
3945
3946 static const char *
3947 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3948 {
3949 static char buf[64];
3950
3951 if (ptid_lwp_p (ptid)
3952 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3953 || num_lwps (ptid_get_pid (ptid)) > 1))
3954 {
3955 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3956 return buf;
3957 }
3958
3959 return normal_pid_to_str (ptid);
3960 }
3961
3962 static const char *
3963 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3964 {
3965 return linux_proc_tid_get_name (thr->ptid);
3966 }
3967
3968 /* Accepts an integer PID; Returns a string representing a file that
3969 can be opened to get the symbols for the child process. */
3970
3971 static char *
3972 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3973 {
3974 return linux_proc_pid_to_exec_file (pid);
3975 }
3976
3977 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3978 Because we can use a single read/write call, this can be much more
3979 efficient than banging away at PTRACE_PEEKTEXT. */
3980
3981 static enum target_xfer_status
3982 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3983 const char *annex, gdb_byte *readbuf,
3984 const gdb_byte *writebuf,
3985 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3986 {
3987 LONGEST ret;
3988 int fd;
3989 char filename[64];
3990
3991 if (object != TARGET_OBJECT_MEMORY)
3992 return TARGET_XFER_EOF;
3993
3994 /* Don't bother for one word. */
3995 if (len < 3 * sizeof (long))
3996 return TARGET_XFER_EOF;
3997
3998 /* We could keep this file open and cache it - possibly one per
3999 thread. That requires some juggling, but is even faster. */
4000 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
4001 ptid_get_lwp (inferior_ptid));
4002 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
4003 | O_LARGEFILE), 0);
4004 if (fd == -1)
4005 return TARGET_XFER_EOF;
4006
4007 /* Use pread64/pwrite64 if available, since they save a syscall and can
4008 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
4009 debugging a SPARC64 application). */
4010 #ifdef HAVE_PREAD64
4011 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4012 : pwrite64 (fd, writebuf, len, offset));
4013 #else
4014 ret = lseek (fd, offset, SEEK_SET);
4015 if (ret != -1)
4016 ret = (readbuf ? read (fd, readbuf, len)
4017 : write (fd, writebuf, len));
4018 #endif
4019
4020 close (fd);
4021
4022 if (ret == -1 || ret == 0)
4023 return TARGET_XFER_EOF;
4024 else
4025 {
4026 *xfered_len = ret;
4027 return TARGET_XFER_OK;
4028 }
4029 }
4030
4031
4032 /* Enumerate spufs IDs for process PID. */
4033 static LONGEST
4034 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4035 {
4036 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4037 LONGEST pos = 0;
4038 LONGEST written = 0;
4039 char path[128];
4040 DIR *dir;
4041 struct dirent *entry;
4042
4043 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4044 dir = opendir (path);
4045 if (!dir)
4046 return -1;
4047
4048 rewinddir (dir);
4049 while ((entry = readdir (dir)) != NULL)
4050 {
4051 struct stat st;
4052 struct statfs stfs;
4053 int fd;
4054
4055 fd = atoi (entry->d_name);
4056 if (!fd)
4057 continue;
4058
4059 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4060 if (stat (path, &st) != 0)
4061 continue;
4062 if (!S_ISDIR (st.st_mode))
4063 continue;
4064
4065 if (statfs (path, &stfs) != 0)
4066 continue;
4067 if (stfs.f_type != SPUFS_MAGIC)
4068 continue;
4069
4070 if (pos >= offset && pos + 4 <= offset + len)
4071 {
4072 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4073 written += 4;
4074 }
4075 pos += 4;
4076 }
4077
4078 closedir (dir);
4079 return written;
4080 }
4081
4082 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4083 object type, using the /proc file system. */
4084
4085 static enum target_xfer_status
4086 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4087 const char *annex, gdb_byte *readbuf,
4088 const gdb_byte *writebuf,
4089 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4090 {
4091 char buf[128];
4092 int fd = 0;
4093 int ret = -1;
4094 int pid = ptid_get_lwp (inferior_ptid);
4095
4096 if (!annex)
4097 {
4098 if (!readbuf)
4099 return TARGET_XFER_E_IO;
4100 else
4101 {
4102 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4103
4104 if (l < 0)
4105 return TARGET_XFER_E_IO;
4106 else if (l == 0)
4107 return TARGET_XFER_EOF;
4108 else
4109 {
4110 *xfered_len = (ULONGEST) l;
4111 return TARGET_XFER_OK;
4112 }
4113 }
4114 }
4115
4116 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4117 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4118 if (fd <= 0)
4119 return TARGET_XFER_E_IO;
4120
4121 if (offset != 0
4122 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4123 {
4124 close (fd);
4125 return TARGET_XFER_EOF;
4126 }
4127
4128 if (writebuf)
4129 ret = write (fd, writebuf, (size_t) len);
4130 else if (readbuf)
4131 ret = read (fd, readbuf, (size_t) len);
4132
4133 close (fd);
4134
4135 if (ret < 0)
4136 return TARGET_XFER_E_IO;
4137 else if (ret == 0)
4138 return TARGET_XFER_EOF;
4139 else
4140 {
4141 *xfered_len = (ULONGEST) ret;
4142 return TARGET_XFER_OK;
4143 }
4144 }
4145
4146
4147 /* Parse LINE as a signal set and add its set bits to SIGS. */
4148
4149 static void
4150 add_line_to_sigset (const char *line, sigset_t *sigs)
4151 {
4152 int len = strlen (line) - 1;
4153 const char *p;
4154 int signum;
4155
4156 if (line[len] != '\n')
4157 error (_("Could not parse signal set: %s"), line);
4158
4159 p = line;
4160 signum = len * 4;
4161 while (len-- > 0)
4162 {
4163 int digit;
4164
4165 if (*p >= '0' && *p <= '9')
4166 digit = *p - '0';
4167 else if (*p >= 'a' && *p <= 'f')
4168 digit = *p - 'a' + 10;
4169 else
4170 error (_("Could not parse signal set: %s"), line);
4171
4172 signum -= 4;
4173
4174 if (digit & 1)
4175 sigaddset (sigs, signum + 1);
4176 if (digit & 2)
4177 sigaddset (sigs, signum + 2);
4178 if (digit & 4)
4179 sigaddset (sigs, signum + 3);
4180 if (digit & 8)
4181 sigaddset (sigs, signum + 4);
4182
4183 p++;
4184 }
4185 }
4186
4187 /* Find process PID's pending signals from /proc/pid/status and set
4188 SIGS to match. */
4189
4190 void
4191 linux_proc_pending_signals (int pid, sigset_t *pending,
4192 sigset_t *blocked, sigset_t *ignored)
4193 {
4194 char buffer[PATH_MAX], fname[PATH_MAX];
4195
4196 sigemptyset (pending);
4197 sigemptyset (blocked);
4198 sigemptyset (ignored);
4199 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4200 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4201 if (procfile == NULL)
4202 error (_("Could not open %s"), fname);
4203
4204 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4205 {
4206 /* Normal queued signals are on the SigPnd line in the status
4207 file. However, 2.6 kernels also have a "shared" pending
4208 queue for delivering signals to a thread group, so check for
4209 a ShdPnd line also.
4210
4211 Unfortunately some Red Hat kernels include the shared pending
4212 queue but not the ShdPnd status field. */
4213
4214 if (startswith (buffer, "SigPnd:\t"))
4215 add_line_to_sigset (buffer + 8, pending);
4216 else if (startswith (buffer, "ShdPnd:\t"))
4217 add_line_to_sigset (buffer + 8, pending);
4218 else if (startswith (buffer, "SigBlk:\t"))
4219 add_line_to_sigset (buffer + 8, blocked);
4220 else if (startswith (buffer, "SigIgn:\t"))
4221 add_line_to_sigset (buffer + 8, ignored);
4222 }
4223 }
4224
4225 static enum target_xfer_status
4226 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4227 const char *annex, gdb_byte *readbuf,
4228 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4229 ULONGEST *xfered_len)
4230 {
4231 gdb_assert (object == TARGET_OBJECT_OSDATA);
4232
4233 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4234 if (*xfered_len == 0)
4235 return TARGET_XFER_EOF;
4236 else
4237 return TARGET_XFER_OK;
4238 }
4239
4240 static enum target_xfer_status
4241 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4242 const char *annex, gdb_byte *readbuf,
4243 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4244 ULONGEST *xfered_len)
4245 {
4246 enum target_xfer_status xfer;
4247
4248 if (object == TARGET_OBJECT_AUXV)
4249 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4250 offset, len, xfered_len);
4251
4252 if (object == TARGET_OBJECT_OSDATA)
4253 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4254 offset, len, xfered_len);
4255
4256 if (object == TARGET_OBJECT_SPU)
4257 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4258 offset, len, xfered_len);
4259
4260 /* GDB calculates all the addresses in possibly larget width of the address.
4261 Address width needs to be masked before its final use - either by
4262 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4263
4264 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4265
4266 if (object == TARGET_OBJECT_MEMORY)
4267 {
4268 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4269
4270 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4271 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4272 }
4273
4274 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4275 offset, len, xfered_len);
4276 if (xfer != TARGET_XFER_EOF)
4277 return xfer;
4278
4279 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4280 offset, len, xfered_len);
4281 }
4282
4283 static void
4284 cleanup_target_stop (void *arg)
4285 {
4286 ptid_t *ptid = (ptid_t *) arg;
4287
4288 gdb_assert (arg != NULL);
4289
4290 /* Unpause all */
4291 target_continue_no_signal (*ptid);
4292 }
4293
4294 static VEC(static_tracepoint_marker_p) *
4295 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4296 const char *strid)
4297 {
4298 char s[IPA_CMD_BUF_SIZE];
4299 struct cleanup *old_chain;
4300 int pid = ptid_get_pid (inferior_ptid);
4301 VEC(static_tracepoint_marker_p) *markers = NULL;
4302 struct static_tracepoint_marker *marker = NULL;
4303 const char *p = s;
4304 ptid_t ptid = ptid_build (pid, 0, 0);
4305
4306 /* Pause all */
4307 target_stop (ptid);
4308
4309 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4310 s[sizeof ("qTfSTM")] = 0;
4311
4312 agent_run_command (pid, s, strlen (s) + 1);
4313
4314 old_chain = make_cleanup (free_current_marker, &marker);
4315 make_cleanup (cleanup_target_stop, &ptid);
4316
4317 while (*p++ == 'm')
4318 {
4319 if (marker == NULL)
4320 marker = XCNEW (struct static_tracepoint_marker);
4321
4322 do
4323 {
4324 parse_static_tracepoint_marker_definition (p, &p, marker);
4325
4326 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4327 {
4328 VEC_safe_push (static_tracepoint_marker_p,
4329 markers, marker);
4330 marker = NULL;
4331 }
4332 else
4333 {
4334 release_static_tracepoint_marker (marker);
4335 memset (marker, 0, sizeof (*marker));
4336 }
4337 }
4338 while (*p++ == ','); /* comma-separated list */
4339
4340 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4341 s[sizeof ("qTsSTM")] = 0;
4342 agent_run_command (pid, s, strlen (s) + 1);
4343 p = s;
4344 }
4345
4346 do_cleanups (old_chain);
4347
4348 return markers;
4349 }
4350
4351 /* Create a prototype generic GNU/Linux target. The client can override
4352 it with local methods. */
4353
4354 static void
4355 linux_target_install_ops (struct target_ops *t)
4356 {
4357 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4358 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4359 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4360 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4361 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4362 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4363 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4364 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4365 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4366 t->to_post_attach = linux_child_post_attach;
4367 t->to_follow_fork = linux_child_follow_fork;
4368
4369 super_xfer_partial = t->to_xfer_partial;
4370 t->to_xfer_partial = linux_xfer_partial;
4371
4372 t->to_static_tracepoint_markers_by_strid
4373 = linux_child_static_tracepoint_markers_by_strid;
4374 }
4375
4376 struct target_ops *
4377 linux_target (void)
4378 {
4379 struct target_ops *t;
4380
4381 t = inf_ptrace_target ();
4382 linux_target_install_ops (t);
4383
4384 return t;
4385 }
4386
4387 struct target_ops *
4388 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4389 {
4390 struct target_ops *t;
4391
4392 t = inf_ptrace_trad_target (register_u_offset);
4393 linux_target_install_ops (t);
4394
4395 return t;
4396 }
4397
4398 /* target_is_async_p implementation. */
4399
4400 static int
4401 linux_nat_is_async_p (struct target_ops *ops)
4402 {
4403 return linux_is_async_p ();
4404 }
4405
4406 /* target_can_async_p implementation. */
4407
4408 static int
4409 linux_nat_can_async_p (struct target_ops *ops)
4410 {
4411 /* We're always async, unless the user explicitly prevented it with the
4412 "maint set target-async" command. */
4413 return target_async_permitted;
4414 }
4415
4416 static int
4417 linux_nat_supports_non_stop (struct target_ops *self)
4418 {
4419 return 1;
4420 }
4421
4422 /* to_always_non_stop_p implementation. */
4423
4424 static int
4425 linux_nat_always_non_stop_p (struct target_ops *self)
4426 {
4427 return 1;
4428 }
4429
4430 /* True if we want to support multi-process. To be removed when GDB
4431 supports multi-exec. */
4432
4433 int linux_multi_process = 1;
4434
4435 static int
4436 linux_nat_supports_multi_process (struct target_ops *self)
4437 {
4438 return linux_multi_process;
4439 }
4440
4441 static int
4442 linux_nat_supports_disable_randomization (struct target_ops *self)
4443 {
4444 #ifdef HAVE_PERSONALITY
4445 return 1;
4446 #else
4447 return 0;
4448 #endif
4449 }
4450
4451 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4452 so we notice when any child changes state, and notify the
4453 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4454 above to wait for the arrival of a SIGCHLD. */
4455
4456 static void
4457 sigchld_handler (int signo)
4458 {
4459 int old_errno = errno;
4460
4461 if (debug_linux_nat)
4462 ui_file_write_async_safe (gdb_stdlog,
4463 "sigchld\n", sizeof ("sigchld\n") - 1);
4464
4465 if (signo == SIGCHLD
4466 && linux_nat_event_pipe[0] != -1)
4467 async_file_mark (); /* Let the event loop know that there are
4468 events to handle. */
4469
4470 errno = old_errno;
4471 }
4472
4473 /* Callback registered with the target events file descriptor. */
4474
4475 static void
4476 handle_target_event (int error, gdb_client_data client_data)
4477 {
4478 inferior_event_handler (INF_REG_EVENT, NULL);
4479 }
4480
4481 /* Create/destroy the target events pipe. Returns previous state. */
4482
4483 static int
4484 linux_async_pipe (int enable)
4485 {
4486 int previous = linux_is_async_p ();
4487
4488 if (previous != enable)
4489 {
4490 sigset_t prev_mask;
4491
4492 /* Block child signals while we create/destroy the pipe, as
4493 their handler writes to it. */
4494 block_child_signals (&prev_mask);
4495
4496 if (enable)
4497 {
4498 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4499 internal_error (__FILE__, __LINE__,
4500 "creating event pipe failed.");
4501
4502 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4503 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4504 }
4505 else
4506 {
4507 close (linux_nat_event_pipe[0]);
4508 close (linux_nat_event_pipe[1]);
4509 linux_nat_event_pipe[0] = -1;
4510 linux_nat_event_pipe[1] = -1;
4511 }
4512
4513 restore_child_signals_mask (&prev_mask);
4514 }
4515
4516 return previous;
4517 }
4518
4519 /* target_async implementation. */
4520
4521 static void
4522 linux_nat_async (struct target_ops *ops, int enable)
4523 {
4524 if (enable)
4525 {
4526 if (!linux_async_pipe (1))
4527 {
4528 add_file_handler (linux_nat_event_pipe[0],
4529 handle_target_event, NULL);
4530 /* There may be pending events to handle. Tell the event loop
4531 to poll them. */
4532 async_file_mark ();
4533 }
4534 }
4535 else
4536 {
4537 delete_file_handler (linux_nat_event_pipe[0]);
4538 linux_async_pipe (0);
4539 }
4540 return;
4541 }
4542
4543 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4544 event came out. */
4545
4546 static int
4547 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4548 {
4549 if (!lwp->stopped)
4550 {
4551 if (debug_linux_nat)
4552 fprintf_unfiltered (gdb_stdlog,
4553 "LNSL: running -> suspending %s\n",
4554 target_pid_to_str (lwp->ptid));
4555
4556
4557 if (lwp->last_resume_kind == resume_stop)
4558 {
4559 if (debug_linux_nat)
4560 fprintf_unfiltered (gdb_stdlog,
4561 "linux-nat: already stopping LWP %ld at "
4562 "GDB's request\n",
4563 ptid_get_lwp (lwp->ptid));
4564 return 0;
4565 }
4566
4567 stop_callback (lwp, NULL);
4568 lwp->last_resume_kind = resume_stop;
4569 }
4570 else
4571 {
4572 /* Already known to be stopped; do nothing. */
4573
4574 if (debug_linux_nat)
4575 {
4576 if (find_thread_ptid (lwp->ptid)->stop_requested)
4577 fprintf_unfiltered (gdb_stdlog,
4578 "LNSL: already stopped/stop_requested %s\n",
4579 target_pid_to_str (lwp->ptid));
4580 else
4581 fprintf_unfiltered (gdb_stdlog,
4582 "LNSL: already stopped/no "
4583 "stop_requested yet %s\n",
4584 target_pid_to_str (lwp->ptid));
4585 }
4586 }
4587 return 0;
4588 }
4589
4590 static void
4591 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4592 {
4593 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4594 }
4595
4596 static void
4597 linux_nat_close (struct target_ops *self)
4598 {
4599 /* Unregister from the event loop. */
4600 if (linux_nat_is_async_p (self))
4601 linux_nat_async (self, 0);
4602
4603 if (linux_ops->to_close)
4604 linux_ops->to_close (linux_ops);
4605
4606 super_close (self);
4607 }
4608
4609 /* When requests are passed down from the linux-nat layer to the
4610 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4611 used. The address space pointer is stored in the inferior object,
4612 but the common code that is passed such ptid can't tell whether
4613 lwpid is a "main" process id or not (it assumes so). We reverse
4614 look up the "main" process id from the lwp here. */
4615
4616 static struct address_space *
4617 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4618 {
4619 struct lwp_info *lwp;
4620 struct inferior *inf;
4621 int pid;
4622
4623 if (ptid_get_lwp (ptid) == 0)
4624 {
4625 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4626 tgid. */
4627 lwp = find_lwp_pid (ptid);
4628 pid = ptid_get_pid (lwp->ptid);
4629 }
4630 else
4631 {
4632 /* A (pid,lwpid,0) ptid. */
4633 pid = ptid_get_pid (ptid);
4634 }
4635
4636 inf = find_inferior_pid (pid);
4637 gdb_assert (inf != NULL);
4638 return inf->aspace;
4639 }
4640
4641 /* Return the cached value of the processor core for thread PTID. */
4642
4643 static int
4644 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4645 {
4646 struct lwp_info *info = find_lwp_pid (ptid);
4647
4648 if (info)
4649 return info->core;
4650 return -1;
4651 }
4652
4653 /* Implementation of to_filesystem_is_local. */
4654
4655 static int
4656 linux_nat_filesystem_is_local (struct target_ops *ops)
4657 {
4658 struct inferior *inf = current_inferior ();
4659
4660 if (inf->fake_pid_p || inf->pid == 0)
4661 return 1;
4662
4663 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4664 }
4665
4666 /* Convert the INF argument passed to a to_fileio_* method
4667 to a process ID suitable for passing to its corresponding
4668 linux_mntns_* function. If INF is non-NULL then the
4669 caller is requesting the filesystem seen by INF. If INF
4670 is NULL then the caller is requesting the filesystem seen
4671 by the GDB. We fall back to GDB's filesystem in the case
4672 that INF is non-NULL but its PID is unknown. */
4673
4674 static pid_t
4675 linux_nat_fileio_pid_of (struct inferior *inf)
4676 {
4677 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4678 return getpid ();
4679 else
4680 return inf->pid;
4681 }
4682
4683 /* Implementation of to_fileio_open. */
4684
4685 static int
4686 linux_nat_fileio_open (struct target_ops *self,
4687 struct inferior *inf, const char *filename,
4688 int flags, int mode, int warn_if_slow,
4689 int *target_errno)
4690 {
4691 int nat_flags;
4692 mode_t nat_mode;
4693 int fd;
4694
4695 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4696 || fileio_to_host_mode (mode, &nat_mode) == -1)
4697 {
4698 *target_errno = FILEIO_EINVAL;
4699 return -1;
4700 }
4701
4702 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4703 filename, nat_flags, nat_mode);
4704 if (fd == -1)
4705 *target_errno = host_to_fileio_error (errno);
4706
4707 return fd;
4708 }
4709
4710 /* Implementation of to_fileio_readlink. */
4711
4712 static gdb::optional<std::string>
4713 linux_nat_fileio_readlink (struct target_ops *self,
4714 struct inferior *inf, const char *filename,
4715 int *target_errno)
4716 {
4717 char buf[PATH_MAX];
4718 int len;
4719
4720 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4721 filename, buf, sizeof (buf));
4722 if (len < 0)
4723 {
4724 *target_errno = host_to_fileio_error (errno);
4725 return {};
4726 }
4727
4728 return std::string (buf, len);
4729 }
4730
4731 /* Implementation of to_fileio_unlink. */
4732
4733 static int
4734 linux_nat_fileio_unlink (struct target_ops *self,
4735 struct inferior *inf, const char *filename,
4736 int *target_errno)
4737 {
4738 int ret;
4739
4740 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4741 filename);
4742 if (ret == -1)
4743 *target_errno = host_to_fileio_error (errno);
4744
4745 return ret;
4746 }
4747
4748 /* Implementation of the to_thread_events method. */
4749
4750 static void
4751 linux_nat_thread_events (struct target_ops *ops, int enable)
4752 {
4753 report_thread_events = enable;
4754 }
4755
4756 void
4757 linux_nat_add_target (struct target_ops *t)
4758 {
4759 /* Save the provided single-threaded target. We save this in a separate
4760 variable because another target we've inherited from (e.g. inf-ptrace)
4761 may have saved a pointer to T; we want to use it for the final
4762 process stratum target. */
4763 linux_ops_saved = *t;
4764 linux_ops = &linux_ops_saved;
4765
4766 /* Override some methods for multithreading. */
4767 t->to_create_inferior = linux_nat_create_inferior;
4768 t->to_attach = linux_nat_attach;
4769 t->to_detach = linux_nat_detach;
4770 t->to_resume = linux_nat_resume;
4771 t->to_wait = linux_nat_wait;
4772 t->to_pass_signals = linux_nat_pass_signals;
4773 t->to_xfer_partial = linux_nat_xfer_partial;
4774 t->to_kill = linux_nat_kill;
4775 t->to_mourn_inferior = linux_nat_mourn_inferior;
4776 t->to_thread_alive = linux_nat_thread_alive;
4777 t->to_update_thread_list = linux_nat_update_thread_list;
4778 t->to_pid_to_str = linux_nat_pid_to_str;
4779 t->to_thread_name = linux_nat_thread_name;
4780 t->to_has_thread_control = tc_schedlock;
4781 t->to_thread_address_space = linux_nat_thread_address_space;
4782 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4783 t->to_stopped_data_address = linux_nat_stopped_data_address;
4784 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4785 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4786 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4787 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4788 t->to_thread_events = linux_nat_thread_events;
4789
4790 t->to_can_async_p = linux_nat_can_async_p;
4791 t->to_is_async_p = linux_nat_is_async_p;
4792 t->to_supports_non_stop = linux_nat_supports_non_stop;
4793 t->to_always_non_stop_p = linux_nat_always_non_stop_p;
4794 t->to_async = linux_nat_async;
4795
4796 super_close = t->to_close;
4797 t->to_close = linux_nat_close;
4798
4799 t->to_stop = linux_nat_stop;
4800
4801 t->to_supports_multi_process = linux_nat_supports_multi_process;
4802
4803 t->to_supports_disable_randomization
4804 = linux_nat_supports_disable_randomization;
4805
4806 t->to_core_of_thread = linux_nat_core_of_thread;
4807
4808 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
4809 t->to_fileio_open = linux_nat_fileio_open;
4810 t->to_fileio_readlink = linux_nat_fileio_readlink;
4811 t->to_fileio_unlink = linux_nat_fileio_unlink;
4812
4813 /* We don't change the stratum; this target will sit at
4814 process_stratum and thread_db will set at thread_stratum. This
4815 is a little strange, since this is a multi-threaded-capable
4816 target, but we want to be on the stack below thread_db, and we
4817 also want to be used for single-threaded processes. */
4818
4819 add_target (t);
4820 }
4821
4822 /* Register a method to call whenever a new thread is attached. */
4823 void
4824 linux_nat_set_new_thread (struct target_ops *t,
4825 void (*new_thread) (struct lwp_info *))
4826 {
4827 /* Save the pointer. We only support a single registered instance
4828 of the GNU/Linux native target, so we do not need to map this to
4829 T. */
4830 linux_nat_new_thread = new_thread;
4831 }
4832
4833 /* Register a method to call whenever a new thread is attached. */
4834 void
4835 linux_nat_set_delete_thread (struct target_ops *t,
4836 void (*delete_thread) (struct arch_lwp_info *))
4837 {
4838 /* Save the pointer. We only support a single registered instance
4839 of the GNU/Linux native target, so we do not need to map this to
4840 T. */
4841 linux_nat_delete_thread = delete_thread;
4842 }
4843
4844 /* See declaration in linux-nat.h. */
4845
4846 void
4847 linux_nat_set_new_fork (struct target_ops *t,
4848 linux_nat_new_fork_ftype *new_fork)
4849 {
4850 /* Save the pointer. */
4851 linux_nat_new_fork = new_fork;
4852 }
4853
4854 /* See declaration in linux-nat.h. */
4855
4856 void
4857 linux_nat_set_forget_process (struct target_ops *t,
4858 linux_nat_forget_process_ftype *fn)
4859 {
4860 /* Save the pointer. */
4861 linux_nat_forget_process_hook = fn;
4862 }
4863
4864 /* See declaration in linux-nat.h. */
4865
4866 void
4867 linux_nat_forget_process (pid_t pid)
4868 {
4869 if (linux_nat_forget_process_hook != NULL)
4870 linux_nat_forget_process_hook (pid);
4871 }
4872
4873 /* Register a method that converts a siginfo object between the layout
4874 that ptrace returns, and the layout in the architecture of the
4875 inferior. */
4876 void
4877 linux_nat_set_siginfo_fixup (struct target_ops *t,
4878 int (*siginfo_fixup) (siginfo_t *,
4879 gdb_byte *,
4880 int))
4881 {
4882 /* Save the pointer. */
4883 linux_nat_siginfo_fixup = siginfo_fixup;
4884 }
4885
4886 /* Register a method to call prior to resuming a thread. */
4887
4888 void
4889 linux_nat_set_prepare_to_resume (struct target_ops *t,
4890 void (*prepare_to_resume) (struct lwp_info *))
4891 {
4892 /* Save the pointer. */
4893 linux_nat_prepare_to_resume = prepare_to_resume;
4894 }
4895
4896 /* See linux-nat.h. */
4897
4898 int
4899 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4900 {
4901 int pid;
4902
4903 pid = ptid_get_lwp (ptid);
4904 if (pid == 0)
4905 pid = ptid_get_pid (ptid);
4906
4907 errno = 0;
4908 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4909 if (errno != 0)
4910 {
4911 memset (siginfo, 0, sizeof (*siginfo));
4912 return 0;
4913 }
4914 return 1;
4915 }
4916
4917 /* See nat/linux-nat.h. */
4918
4919 ptid_t
4920 current_lwp_ptid (void)
4921 {
4922 gdb_assert (ptid_lwp_p (inferior_ptid));
4923 return inferior_ptid;
4924 }
4925
4926 void
4927 _initialize_linux_nat (void)
4928 {
4929 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4930 &debug_linux_nat, _("\
4931 Set debugging of GNU/Linux lwp module."), _("\
4932 Show debugging of GNU/Linux lwp module."), _("\
4933 Enables printf debugging output."),
4934 NULL,
4935 show_debug_linux_nat,
4936 &setdebuglist, &showdebuglist);
4937
4938 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4939 &debug_linux_namespaces, _("\
4940 Set debugging of GNU/Linux namespaces module."), _("\
4941 Show debugging of GNU/Linux namespaces module."), _("\
4942 Enables printf debugging output."),
4943 NULL,
4944 NULL,
4945 &setdebuglist, &showdebuglist);
4946
4947 /* Save this mask as the default. */
4948 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4949
4950 /* Install a SIGCHLD handler. */
4951 sigchld_action.sa_handler = sigchld_handler;
4952 sigemptyset (&sigchld_action.sa_mask);
4953 sigchld_action.sa_flags = SA_RESTART;
4954
4955 /* Make it the default. */
4956 sigaction (SIGCHLD, &sigchld_action, NULL);
4957
4958 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4959 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4960 sigdelset (&suspend_mask, SIGCHLD);
4961
4962 sigemptyset (&blocked_mask);
4963
4964 lwp_lwpid_htab_create ();
4965 }
4966 \f
4967
4968 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4969 the GNU/Linux Threads library and therefore doesn't really belong
4970 here. */
4971
4972 /* Return the set of signals used by the threads library in *SET. */
4973
4974 void
4975 lin_thread_get_thread_signals (sigset_t *set)
4976 {
4977 sigemptyset (set);
4978
4979 /* NPTL reserves the first two RT signals, but does not provide any
4980 way for the debugger to query the signal numbers - fortunately
4981 they don't change. */
4982 sigaddset (set, __SIGRTMIN);
4983 sigaddset (set, __SIGRTMIN + 1);
4984 }
This page took 0.160491 seconds and 4 git commands to generate.