* gdbarch.sh (target_gdbarch): Remove macro.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdb_string.h"
24 #include "gdb_wait.h"
25 #include "gdb_assert.h"
26 #ifdef HAVE_TKILL_SYSCALL
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #endif
30 #include <sys/ptrace.h>
31 #include "linux-nat.h"
32 #include "linux-ptrace.h"
33 #include "linux-procfs.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/param.h> /* for MAXPATHLEN */
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include "gdbthread.h" /* for struct thread_info etc. */
49 #include "gdb_stat.h" /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include "gdb_dirent.h"
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62 #include "linux-tdep.h"
63 #include "symfile.h"
64 #include "agent.h"
65 #include "tracepoint.h"
66 #include "exceptions.h"
67 #include "linux-ptrace.h"
68 #include "buffer.h"
69 #include "target-descriptions.h"
70
71 #ifndef SPUFS_MAGIC
72 #define SPUFS_MAGIC 0x23c9b64e
73 #endif
74
75 #ifdef HAVE_PERSONALITY
76 # include <sys/personality.h>
77 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
78 # define ADDR_NO_RANDOMIZE 0x0040000
79 # endif
80 #endif /* HAVE_PERSONALITY */
81
82 /* This comment documents high-level logic of this file.
83
84 Waiting for events in sync mode
85 ===============================
86
87 When waiting for an event in a specific thread, we just use waitpid, passing
88 the specific pid, and not passing WNOHANG.
89
90 When waiting for an event in all threads, waitpid is not quite good. Prior to
91 version 2.4, Linux can either wait for event in main thread, or in secondary
92 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
93 miss an event. The solution is to use non-blocking waitpid, together with
94 sigsuspend. First, we use non-blocking waitpid to get an event in the main
95 process, if any. Second, we use non-blocking waitpid with the __WCLONED
96 flag to check for events in cloned processes. If nothing is found, we use
97 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
98 happened to a child process -- and SIGCHLD will be delivered both for events
99 in main debugged process and in cloned processes. As soon as we know there's
100 an event, we get back to calling nonblocking waitpid with and without
101 __WCLONED.
102
103 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
104 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
105 blocked, the signal becomes pending and sigsuspend immediately
106 notices it and returns.
107
108 Waiting for events in async mode
109 ================================
110
111 In async mode, GDB should always be ready to handle both user input
112 and target events, so neither blocking waitpid nor sigsuspend are
113 viable options. Instead, we should asynchronously notify the GDB main
114 event loop whenever there's an unprocessed event from the target. We
115 detect asynchronous target events by handling SIGCHLD signals. To
116 notify the event loop about target events, the self-pipe trick is used
117 --- a pipe is registered as waitable event source in the event loop,
118 the event loop select/poll's on the read end of this pipe (as well on
119 other event sources, e.g., stdin), and the SIGCHLD handler writes a
120 byte to this pipe. This is more portable than relying on
121 pselect/ppoll, since on kernels that lack those syscalls, libc
122 emulates them with select/poll+sigprocmask, and that is racy
123 (a.k.a. plain broken).
124
125 Obviously, if we fail to notify the event loop if there's a target
126 event, it's bad. OTOH, if we notify the event loop when there's no
127 event from the target, linux_nat_wait will detect that there's no real
128 event to report, and return event of type TARGET_WAITKIND_IGNORE.
129 This is mostly harmless, but it will waste time and is better avoided.
130
131 The main design point is that every time GDB is outside linux-nat.c,
132 we have a SIGCHLD handler installed that is called when something
133 happens to the target and notifies the GDB event loop. Whenever GDB
134 core decides to handle the event, and calls into linux-nat.c, we
135 process things as in sync mode, except that the we never block in
136 sigsuspend.
137
138 While processing an event, we may end up momentarily blocked in
139 waitpid calls. Those waitpid calls, while blocking, are guarantied to
140 return quickly. E.g., in all-stop mode, before reporting to the core
141 that an LWP hit a breakpoint, all LWPs are stopped by sending them
142 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
143 Note that this is different from blocking indefinitely waiting for the
144 next event --- here, we're already handling an event.
145
146 Use of signals
147 ==============
148
149 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
150 signal is not entirely significant; we just need for a signal to be delivered,
151 so that we can intercept it. SIGSTOP's advantage is that it can not be
152 blocked. A disadvantage is that it is not a real-time signal, so it can only
153 be queued once; we do not keep track of other sources of SIGSTOP.
154
155 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
156 use them, because they have special behavior when the signal is generated -
157 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
158 kills the entire thread group.
159
160 A delivered SIGSTOP would stop the entire thread group, not just the thread we
161 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
162 cancel it (by PTRACE_CONT without passing SIGSTOP).
163
164 We could use a real-time signal instead. This would solve those problems; we
165 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
166 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
167 generates it, and there are races with trying to find a signal that is not
168 blocked. */
169
170 #ifndef O_LARGEFILE
171 #define O_LARGEFILE 0
172 #endif
173
174 /* Unlike other extended result codes, WSTOPSIG (status) on
175 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
176 instead SIGTRAP with bit 7 set. */
177 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
178
179 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
180 the use of the multi-threaded target. */
181 static struct target_ops *linux_ops;
182 static struct target_ops linux_ops_saved;
183
184 /* The method to call, if any, when a new thread is attached. */
185 static void (*linux_nat_new_thread) (struct lwp_info *);
186
187 /* Hook to call prior to resuming a thread. */
188 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
189
190 /* The method to call, if any, when the siginfo object needs to be
191 converted between the layout returned by ptrace, and the layout in
192 the architecture of the inferior. */
193 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
194 gdb_byte *,
195 int);
196
197 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
198 Called by our to_xfer_partial. */
199 static LONGEST (*super_xfer_partial) (struct target_ops *,
200 enum target_object,
201 const char *, gdb_byte *,
202 const gdb_byte *,
203 ULONGEST, LONGEST);
204
205 static unsigned int debug_linux_nat;
206 static void
207 show_debug_linux_nat (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
211 value);
212 }
213
214 struct simple_pid_list
215 {
216 int pid;
217 int status;
218 struct simple_pid_list *next;
219 };
220 struct simple_pid_list *stopped_pids;
221
222 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
223 can not be used, 1 if it can. */
224
225 static int linux_supports_tracefork_flag = -1;
226
227 /* This variable is a tri-state flag: -1 for unknown, 0 if
228 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
229
230 static int linux_supports_tracesysgood_flag = -1;
231
232 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
233 PTRACE_O_TRACEVFORKDONE. */
234
235 static int linux_supports_tracevforkdone_flag = -1;
236
237 /* Stores the current used ptrace() options. */
238 static int current_ptrace_options = 0;
239
240 /* Async mode support. */
241
242 /* The read/write ends of the pipe registered as waitable file in the
243 event loop. */
244 static int linux_nat_event_pipe[2] = { -1, -1 };
245
246 /* Flush the event pipe. */
247
248 static void
249 async_file_flush (void)
250 {
251 int ret;
252 char buf;
253
254 do
255 {
256 ret = read (linux_nat_event_pipe[0], &buf, 1);
257 }
258 while (ret >= 0 || (ret == -1 && errno == EINTR));
259 }
260
261 /* Put something (anything, doesn't matter what, or how much) in event
262 pipe, so that the select/poll in the event-loop realizes we have
263 something to process. */
264
265 static void
266 async_file_mark (void)
267 {
268 int ret;
269
270 /* It doesn't really matter what the pipe contains, as long we end
271 up with something in it. Might as well flush the previous
272 left-overs. */
273 async_file_flush ();
274
275 do
276 {
277 ret = write (linux_nat_event_pipe[1], "+", 1);
278 }
279 while (ret == -1 && errno == EINTR);
280
281 /* Ignore EAGAIN. If the pipe is full, the event loop will already
282 be awakened anyway. */
283 }
284
285 static void linux_nat_async (void (*callback)
286 (enum inferior_event_type event_type,
287 void *context),
288 void *context);
289 static int kill_lwp (int lwpid, int signo);
290
291 static int stop_callback (struct lwp_info *lp, void *data);
292
293 static void block_child_signals (sigset_t *prev_mask);
294 static void restore_child_signals_mask (sigset_t *prev_mask);
295
296 struct lwp_info;
297 static struct lwp_info *add_lwp (ptid_t ptid);
298 static void purge_lwp_list (int pid);
299 static void delete_lwp (ptid_t ptid);
300 static struct lwp_info *find_lwp_pid (ptid_t ptid);
301
302 \f
303 /* Trivial list manipulation functions to keep track of a list of
304 new stopped processes. */
305 static void
306 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
307 {
308 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
309
310 new_pid->pid = pid;
311 new_pid->status = status;
312 new_pid->next = *listp;
313 *listp = new_pid;
314 }
315
316 static int
317 in_pid_list_p (struct simple_pid_list *list, int pid)
318 {
319 struct simple_pid_list *p;
320
321 for (p = list; p != NULL; p = p->next)
322 if (p->pid == pid)
323 return 1;
324 return 0;
325 }
326
327 static int
328 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
329 {
330 struct simple_pid_list **p;
331
332 for (p = listp; *p != NULL; p = &(*p)->next)
333 if ((*p)->pid == pid)
334 {
335 struct simple_pid_list *next = (*p)->next;
336
337 *statusp = (*p)->status;
338 xfree (*p);
339 *p = next;
340 return 1;
341 }
342 return 0;
343 }
344
345 \f
346 /* A helper function for linux_test_for_tracefork, called after fork (). */
347
348 static void
349 linux_tracefork_child (void)
350 {
351 ptrace (PTRACE_TRACEME, 0, 0, 0);
352 kill (getpid (), SIGSTOP);
353 fork ();
354 _exit (0);
355 }
356
357 /* Wrapper function for waitpid which handles EINTR. */
358
359 static int
360 my_waitpid (int pid, int *statusp, int flags)
361 {
362 int ret;
363
364 do
365 {
366 ret = waitpid (pid, statusp, flags);
367 }
368 while (ret == -1 && errno == EINTR);
369
370 return ret;
371 }
372
373 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
374
375 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
376 we know that the feature is not available. This may change the tracing
377 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
378
379 However, if it succeeds, we don't know for sure that the feature is
380 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
381 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
382 fork tracing, and let it fork. If the process exits, we assume that we
383 can't use TRACEFORK; if we get the fork notification, and we can extract
384 the new child's PID, then we assume that we can. */
385
386 static void
387 linux_test_for_tracefork (int original_pid)
388 {
389 int child_pid, ret, status;
390 long second_pid;
391 sigset_t prev_mask;
392
393 /* We don't want those ptrace calls to be interrupted. */
394 block_child_signals (&prev_mask);
395
396 linux_supports_tracefork_flag = 0;
397 linux_supports_tracevforkdone_flag = 0;
398
399 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
400 if (ret != 0)
401 {
402 restore_child_signals_mask (&prev_mask);
403 return;
404 }
405
406 child_pid = fork ();
407 if (child_pid == -1)
408 perror_with_name (("fork"));
409
410 if (child_pid == 0)
411 linux_tracefork_child ();
412
413 ret = my_waitpid (child_pid, &status, 0);
414 if (ret == -1)
415 perror_with_name (("waitpid"));
416 else if (ret != child_pid)
417 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
418 if (! WIFSTOPPED (status))
419 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
420 status);
421
422 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
423 if (ret != 0)
424 {
425 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
426 if (ret != 0)
427 {
428 warning (_("linux_test_for_tracefork: failed to kill child"));
429 restore_child_signals_mask (&prev_mask);
430 return;
431 }
432
433 ret = my_waitpid (child_pid, &status, 0);
434 if (ret != child_pid)
435 warning (_("linux_test_for_tracefork: failed "
436 "to wait for killed child"));
437 else if (!WIFSIGNALED (status))
438 warning (_("linux_test_for_tracefork: unexpected "
439 "wait status 0x%x from killed child"), status);
440
441 restore_child_signals_mask (&prev_mask);
442 return;
443 }
444
445 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
446 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
447 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
448 linux_supports_tracevforkdone_flag = (ret == 0);
449
450 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
451 if (ret != 0)
452 warning (_("linux_test_for_tracefork: failed to resume child"));
453
454 ret = my_waitpid (child_pid, &status, 0);
455
456 if (ret == child_pid && WIFSTOPPED (status)
457 && status >> 16 == PTRACE_EVENT_FORK)
458 {
459 second_pid = 0;
460 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
461 if (ret == 0 && second_pid != 0)
462 {
463 int second_status;
464
465 linux_supports_tracefork_flag = 1;
466 my_waitpid (second_pid, &second_status, 0);
467 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
468 if (ret != 0)
469 warning (_("linux_test_for_tracefork: "
470 "failed to kill second child"));
471 my_waitpid (second_pid, &status, 0);
472 }
473 }
474 else
475 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
476 "(%d, status 0x%x)"), ret, status);
477
478 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
479 if (ret != 0)
480 warning (_("linux_test_for_tracefork: failed to kill child"));
481 my_waitpid (child_pid, &status, 0);
482
483 restore_child_signals_mask (&prev_mask);
484 }
485
486 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
487
488 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
489 we know that the feature is not available. This may change the tracing
490 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
491
492 static void
493 linux_test_for_tracesysgood (int original_pid)
494 {
495 int ret;
496 sigset_t prev_mask;
497
498 /* We don't want those ptrace calls to be interrupted. */
499 block_child_signals (&prev_mask);
500
501 linux_supports_tracesysgood_flag = 0;
502
503 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
504 if (ret != 0)
505 goto out;
506
507 linux_supports_tracesysgood_flag = 1;
508 out:
509 restore_child_signals_mask (&prev_mask);
510 }
511
512 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
513 This function also sets linux_supports_tracesysgood_flag. */
514
515 static int
516 linux_supports_tracesysgood (int pid)
517 {
518 if (linux_supports_tracesysgood_flag == -1)
519 linux_test_for_tracesysgood (pid);
520 return linux_supports_tracesysgood_flag;
521 }
522
523 /* Return non-zero iff we have tracefork functionality available.
524 This function also sets linux_supports_tracefork_flag. */
525
526 static int
527 linux_supports_tracefork (int pid)
528 {
529 if (linux_supports_tracefork_flag == -1)
530 linux_test_for_tracefork (pid);
531 return linux_supports_tracefork_flag;
532 }
533
534 static int
535 linux_supports_tracevforkdone (int pid)
536 {
537 if (linux_supports_tracefork_flag == -1)
538 linux_test_for_tracefork (pid);
539 return linux_supports_tracevforkdone_flag;
540 }
541
542 static void
543 linux_enable_tracesysgood (ptid_t ptid)
544 {
545 int pid = ptid_get_lwp (ptid);
546
547 if (pid == 0)
548 pid = ptid_get_pid (ptid);
549
550 if (linux_supports_tracesysgood (pid) == 0)
551 return;
552
553 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
554
555 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
556 }
557
558 \f
559 void
560 linux_enable_event_reporting (ptid_t ptid)
561 {
562 int pid = ptid_get_lwp (ptid);
563
564 if (pid == 0)
565 pid = ptid_get_pid (ptid);
566
567 if (! linux_supports_tracefork (pid))
568 return;
569
570 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
571 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
572
573 if (linux_supports_tracevforkdone (pid))
574 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
575
576 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
577 read-only process state. */
578
579 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
580 }
581
582 static void
583 linux_child_post_attach (int pid)
584 {
585 linux_enable_event_reporting (pid_to_ptid (pid));
586 linux_enable_tracesysgood (pid_to_ptid (pid));
587 linux_ptrace_init_warnings ();
588 }
589
590 static void
591 linux_child_post_startup_inferior (ptid_t ptid)
592 {
593 linux_enable_event_reporting (ptid);
594 linux_enable_tracesysgood (ptid);
595 linux_ptrace_init_warnings ();
596 }
597
598 /* Return the number of known LWPs in the tgid given by PID. */
599
600 static int
601 num_lwps (int pid)
602 {
603 int count = 0;
604 struct lwp_info *lp;
605
606 for (lp = lwp_list; lp; lp = lp->next)
607 if (ptid_get_pid (lp->ptid) == pid)
608 count++;
609
610 return count;
611 }
612
613 /* Call delete_lwp with prototype compatible for make_cleanup. */
614
615 static void
616 delete_lwp_cleanup (void *lp_voidp)
617 {
618 struct lwp_info *lp = lp_voidp;
619
620 delete_lwp (lp->ptid);
621 }
622
623 static int
624 linux_child_follow_fork (struct target_ops *ops, int follow_child)
625 {
626 sigset_t prev_mask;
627 int has_vforked;
628 int parent_pid, child_pid;
629
630 block_child_signals (&prev_mask);
631
632 has_vforked = (inferior_thread ()->pending_follow.kind
633 == TARGET_WAITKIND_VFORKED);
634 parent_pid = ptid_get_lwp (inferior_ptid);
635 if (parent_pid == 0)
636 parent_pid = ptid_get_pid (inferior_ptid);
637 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
638
639 if (!detach_fork)
640 linux_enable_event_reporting (pid_to_ptid (child_pid));
641
642 if (has_vforked
643 && !non_stop /* Non-stop always resumes both branches. */
644 && (!target_is_async_p () || sync_execution)
645 && !(follow_child || detach_fork || sched_multi))
646 {
647 /* The parent stays blocked inside the vfork syscall until the
648 child execs or exits. If we don't let the child run, then
649 the parent stays blocked. If we're telling the parent to run
650 in the foreground, the user will not be able to ctrl-c to get
651 back the terminal, effectively hanging the debug session. */
652 fprintf_filtered (gdb_stderr, _("\
653 Can not resume the parent process over vfork in the foreground while\n\
654 holding the child stopped. Try \"set detach-on-fork\" or \
655 \"set schedule-multiple\".\n"));
656 /* FIXME output string > 80 columns. */
657 return 1;
658 }
659
660 if (! follow_child)
661 {
662 struct lwp_info *child_lp = NULL;
663
664 /* We're already attached to the parent, by default. */
665
666 /* Detach new forked process? */
667 if (detach_fork)
668 {
669 struct cleanup *old_chain;
670
671 /* Before detaching from the child, remove all breakpoints
672 from it. If we forked, then this has already been taken
673 care of by infrun.c. If we vforked however, any
674 breakpoint inserted in the parent is visible in the
675 child, even those added while stopped in a vfork
676 catchpoint. This will remove the breakpoints from the
677 parent also, but they'll be reinserted below. */
678 if (has_vforked)
679 {
680 /* keep breakpoints list in sync. */
681 remove_breakpoints_pid (GET_PID (inferior_ptid));
682 }
683
684 if (info_verbose || debug_linux_nat)
685 {
686 target_terminal_ours ();
687 fprintf_filtered (gdb_stdlog,
688 "Detaching after fork from "
689 "child process %d.\n",
690 child_pid);
691 }
692
693 old_chain = save_inferior_ptid ();
694 inferior_ptid = ptid_build (child_pid, child_pid, 0);
695
696 child_lp = add_lwp (inferior_ptid);
697 child_lp->stopped = 1;
698 child_lp->last_resume_kind = resume_stop;
699 make_cleanup (delete_lwp_cleanup, child_lp);
700
701 /* CHILD_LP has new PID, therefore linux_nat_new_thread is not called for it.
702 See i386_inferior_data_get for the Linux kernel specifics.
703 Ensure linux_nat_prepare_to_resume will reset the hardware debug
704 registers. It is done by the linux_nat_new_thread call, which is
705 being skipped in add_lwp above for the first lwp of a pid. */
706 gdb_assert (num_lwps (GET_PID (child_lp->ptid)) == 1);
707 if (linux_nat_new_thread != NULL)
708 linux_nat_new_thread (child_lp);
709
710 if (linux_nat_prepare_to_resume != NULL)
711 linux_nat_prepare_to_resume (child_lp);
712 ptrace (PTRACE_DETACH, child_pid, 0, 0);
713
714 do_cleanups (old_chain);
715 }
716 else
717 {
718 struct inferior *parent_inf, *child_inf;
719 struct cleanup *old_chain;
720
721 /* Add process to GDB's tables. */
722 child_inf = add_inferior (child_pid);
723
724 parent_inf = current_inferior ();
725 child_inf->attach_flag = parent_inf->attach_flag;
726 copy_terminal_info (child_inf, parent_inf);
727 child_inf->gdbarch = parent_inf->gdbarch;
728 copy_inferior_target_desc_info (child_inf, parent_inf);
729
730 old_chain = save_inferior_ptid ();
731 save_current_program_space ();
732
733 inferior_ptid = ptid_build (child_pid, child_pid, 0);
734 add_thread (inferior_ptid);
735 child_lp = add_lwp (inferior_ptid);
736 child_lp->stopped = 1;
737 child_lp->last_resume_kind = resume_stop;
738 child_inf->symfile_flags = SYMFILE_NO_READ;
739
740 /* If this is a vfork child, then the address-space is
741 shared with the parent. */
742 if (has_vforked)
743 {
744 child_inf->pspace = parent_inf->pspace;
745 child_inf->aspace = parent_inf->aspace;
746
747 /* The parent will be frozen until the child is done
748 with the shared region. Keep track of the
749 parent. */
750 child_inf->vfork_parent = parent_inf;
751 child_inf->pending_detach = 0;
752 parent_inf->vfork_child = child_inf;
753 parent_inf->pending_detach = 0;
754 }
755 else
756 {
757 child_inf->aspace = new_address_space ();
758 child_inf->pspace = add_program_space (child_inf->aspace);
759 child_inf->removable = 1;
760 set_current_program_space (child_inf->pspace);
761 clone_program_space (child_inf->pspace, parent_inf->pspace);
762
763 /* Let the shared library layer (solib-svr4) learn about
764 this new process, relocate the cloned exec, pull in
765 shared libraries, and install the solib event
766 breakpoint. If a "cloned-VM" event was propagated
767 better throughout the core, this wouldn't be
768 required. */
769 solib_create_inferior_hook (0);
770 }
771
772 /* Let the thread_db layer learn about this new process. */
773 check_for_thread_db ();
774
775 do_cleanups (old_chain);
776 }
777
778 if (has_vforked)
779 {
780 struct lwp_info *parent_lp;
781 struct inferior *parent_inf;
782
783 parent_inf = current_inferior ();
784
785 /* If we detached from the child, then we have to be careful
786 to not insert breakpoints in the parent until the child
787 is done with the shared memory region. However, if we're
788 staying attached to the child, then we can and should
789 insert breakpoints, so that we can debug it. A
790 subsequent child exec or exit is enough to know when does
791 the child stops using the parent's address space. */
792 parent_inf->waiting_for_vfork_done = detach_fork;
793 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
794
795 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
796 gdb_assert (linux_supports_tracefork_flag >= 0);
797
798 if (linux_supports_tracevforkdone (0))
799 {
800 if (debug_linux_nat)
801 fprintf_unfiltered (gdb_stdlog,
802 "LCFF: waiting for VFORK_DONE on %d\n",
803 parent_pid);
804 parent_lp->stopped = 1;
805
806 /* We'll handle the VFORK_DONE event like any other
807 event, in target_wait. */
808 }
809 else
810 {
811 /* We can't insert breakpoints until the child has
812 finished with the shared memory region. We need to
813 wait until that happens. Ideal would be to just
814 call:
815 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
816 - waitpid (parent_pid, &status, __WALL);
817 However, most architectures can't handle a syscall
818 being traced on the way out if it wasn't traced on
819 the way in.
820
821 We might also think to loop, continuing the child
822 until it exits or gets a SIGTRAP. One problem is
823 that the child might call ptrace with PTRACE_TRACEME.
824
825 There's no simple and reliable way to figure out when
826 the vforked child will be done with its copy of the
827 shared memory. We could step it out of the syscall,
828 two instructions, let it go, and then single-step the
829 parent once. When we have hardware single-step, this
830 would work; with software single-step it could still
831 be made to work but we'd have to be able to insert
832 single-step breakpoints in the child, and we'd have
833 to insert -just- the single-step breakpoint in the
834 parent. Very awkward.
835
836 In the end, the best we can do is to make sure it
837 runs for a little while. Hopefully it will be out of
838 range of any breakpoints we reinsert. Usually this
839 is only the single-step breakpoint at vfork's return
840 point. */
841
842 if (debug_linux_nat)
843 fprintf_unfiltered (gdb_stdlog,
844 "LCFF: no VFORK_DONE "
845 "support, sleeping a bit\n");
846
847 usleep (10000);
848
849 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
850 and leave it pending. The next linux_nat_resume call
851 will notice a pending event, and bypasses actually
852 resuming the inferior. */
853 parent_lp->status = 0;
854 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
855 parent_lp->stopped = 1;
856
857 /* If we're in async mode, need to tell the event loop
858 there's something here to process. */
859 if (target_can_async_p ())
860 async_file_mark ();
861 }
862 }
863 }
864 else
865 {
866 struct inferior *parent_inf, *child_inf;
867 struct lwp_info *child_lp;
868 struct program_space *parent_pspace;
869
870 if (info_verbose || debug_linux_nat)
871 {
872 target_terminal_ours ();
873 if (has_vforked)
874 fprintf_filtered (gdb_stdlog,
875 _("Attaching after process %d "
876 "vfork to child process %d.\n"),
877 parent_pid, child_pid);
878 else
879 fprintf_filtered (gdb_stdlog,
880 _("Attaching after process %d "
881 "fork to child process %d.\n"),
882 parent_pid, child_pid);
883 }
884
885 /* Add the new inferior first, so that the target_detach below
886 doesn't unpush the target. */
887
888 child_inf = add_inferior (child_pid);
889
890 parent_inf = current_inferior ();
891 child_inf->attach_flag = parent_inf->attach_flag;
892 copy_terminal_info (child_inf, parent_inf);
893 child_inf->gdbarch = parent_inf->gdbarch;
894 copy_inferior_target_desc_info (child_inf, parent_inf);
895
896 parent_pspace = parent_inf->pspace;
897
898 /* If we're vforking, we want to hold on to the parent until the
899 child exits or execs. At child exec or exit time we can
900 remove the old breakpoints from the parent and detach or
901 resume debugging it. Otherwise, detach the parent now; we'll
902 want to reuse it's program/address spaces, but we can't set
903 them to the child before removing breakpoints from the
904 parent, otherwise, the breakpoints module could decide to
905 remove breakpoints from the wrong process (since they'd be
906 assigned to the same address space). */
907
908 if (has_vforked)
909 {
910 gdb_assert (child_inf->vfork_parent == NULL);
911 gdb_assert (parent_inf->vfork_child == NULL);
912 child_inf->vfork_parent = parent_inf;
913 child_inf->pending_detach = 0;
914 parent_inf->vfork_child = child_inf;
915 parent_inf->pending_detach = detach_fork;
916 parent_inf->waiting_for_vfork_done = 0;
917 }
918 else if (detach_fork)
919 target_detach (NULL, 0);
920
921 /* Note that the detach above makes PARENT_INF dangling. */
922
923 /* Add the child thread to the appropriate lists, and switch to
924 this new thread, before cloning the program space, and
925 informing the solib layer about this new process. */
926
927 inferior_ptid = ptid_build (child_pid, child_pid, 0);
928 add_thread (inferior_ptid);
929 child_lp = add_lwp (inferior_ptid);
930 child_lp->stopped = 1;
931 child_lp->last_resume_kind = resume_stop;
932
933 /* If this is a vfork child, then the address-space is shared
934 with the parent. If we detached from the parent, then we can
935 reuse the parent's program/address spaces. */
936 if (has_vforked || detach_fork)
937 {
938 child_inf->pspace = parent_pspace;
939 child_inf->aspace = child_inf->pspace->aspace;
940 }
941 else
942 {
943 child_inf->aspace = new_address_space ();
944 child_inf->pspace = add_program_space (child_inf->aspace);
945 child_inf->removable = 1;
946 child_inf->symfile_flags = SYMFILE_NO_READ;
947 set_current_program_space (child_inf->pspace);
948 clone_program_space (child_inf->pspace, parent_pspace);
949
950 /* Let the shared library layer (solib-svr4) learn about
951 this new process, relocate the cloned exec, pull in
952 shared libraries, and install the solib event breakpoint.
953 If a "cloned-VM" event was propagated better throughout
954 the core, this wouldn't be required. */
955 solib_create_inferior_hook (0);
956 }
957
958 /* Let the thread_db layer learn about this new process. */
959 check_for_thread_db ();
960 }
961
962 restore_child_signals_mask (&prev_mask);
963 return 0;
964 }
965
966 \f
967 static int
968 linux_child_insert_fork_catchpoint (int pid)
969 {
970 return !linux_supports_tracefork (pid);
971 }
972
973 static int
974 linux_child_remove_fork_catchpoint (int pid)
975 {
976 return 0;
977 }
978
979 static int
980 linux_child_insert_vfork_catchpoint (int pid)
981 {
982 return !linux_supports_tracefork (pid);
983 }
984
985 static int
986 linux_child_remove_vfork_catchpoint (int pid)
987 {
988 return 0;
989 }
990
991 static int
992 linux_child_insert_exec_catchpoint (int pid)
993 {
994 return !linux_supports_tracefork (pid);
995 }
996
997 static int
998 linux_child_remove_exec_catchpoint (int pid)
999 {
1000 return 0;
1001 }
1002
1003 static int
1004 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
1005 int table_size, int *table)
1006 {
1007 if (!linux_supports_tracesysgood (pid))
1008 return 1;
1009
1010 /* On GNU/Linux, we ignore the arguments. It means that we only
1011 enable the syscall catchpoints, but do not disable them.
1012
1013 Also, we do not use the `table' information because we do not
1014 filter system calls here. We let GDB do the logic for us. */
1015 return 0;
1016 }
1017
1018 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1019 are processes sharing the same VM space. A multi-threaded process
1020 is basically a group of such processes. However, such a grouping
1021 is almost entirely a user-space issue; the kernel doesn't enforce
1022 such a grouping at all (this might change in the future). In
1023 general, we'll rely on the threads library (i.e. the GNU/Linux
1024 Threads library) to provide such a grouping.
1025
1026 It is perfectly well possible to write a multi-threaded application
1027 without the assistance of a threads library, by using the clone
1028 system call directly. This module should be able to give some
1029 rudimentary support for debugging such applications if developers
1030 specify the CLONE_PTRACE flag in the clone system call, and are
1031 using the Linux kernel 2.4 or above.
1032
1033 Note that there are some peculiarities in GNU/Linux that affect
1034 this code:
1035
1036 - In general one should specify the __WCLONE flag to waitpid in
1037 order to make it report events for any of the cloned processes
1038 (and leave it out for the initial process). However, if a cloned
1039 process has exited the exit status is only reported if the
1040 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1041 we cannot use it since GDB must work on older systems too.
1042
1043 - When a traced, cloned process exits and is waited for by the
1044 debugger, the kernel reassigns it to the original parent and
1045 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1046 library doesn't notice this, which leads to the "zombie problem":
1047 When debugged a multi-threaded process that spawns a lot of
1048 threads will run out of processes, even if the threads exit,
1049 because the "zombies" stay around. */
1050
1051 /* List of known LWPs. */
1052 struct lwp_info *lwp_list;
1053 \f
1054
1055 /* Original signal mask. */
1056 static sigset_t normal_mask;
1057
1058 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1059 _initialize_linux_nat. */
1060 static sigset_t suspend_mask;
1061
1062 /* Signals to block to make that sigsuspend work. */
1063 static sigset_t blocked_mask;
1064
1065 /* SIGCHLD action. */
1066 struct sigaction sigchld_action;
1067
1068 /* Block child signals (SIGCHLD and linux threads signals), and store
1069 the previous mask in PREV_MASK. */
1070
1071 static void
1072 block_child_signals (sigset_t *prev_mask)
1073 {
1074 /* Make sure SIGCHLD is blocked. */
1075 if (!sigismember (&blocked_mask, SIGCHLD))
1076 sigaddset (&blocked_mask, SIGCHLD);
1077
1078 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1079 }
1080
1081 /* Restore child signals mask, previously returned by
1082 block_child_signals. */
1083
1084 static void
1085 restore_child_signals_mask (sigset_t *prev_mask)
1086 {
1087 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1088 }
1089
1090 /* Mask of signals to pass directly to the inferior. */
1091 static sigset_t pass_mask;
1092
1093 /* Update signals to pass to the inferior. */
1094 static void
1095 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1096 {
1097 int signo;
1098
1099 sigemptyset (&pass_mask);
1100
1101 for (signo = 1; signo < NSIG; signo++)
1102 {
1103 int target_signo = gdb_signal_from_host (signo);
1104 if (target_signo < numsigs && pass_signals[target_signo])
1105 sigaddset (&pass_mask, signo);
1106 }
1107 }
1108
1109 \f
1110
1111 /* Prototypes for local functions. */
1112 static int stop_wait_callback (struct lwp_info *lp, void *data);
1113 static int linux_thread_alive (ptid_t ptid);
1114 static char *linux_child_pid_to_exec_file (int pid);
1115
1116 \f
1117 /* Convert wait status STATUS to a string. Used for printing debug
1118 messages only. */
1119
1120 static char *
1121 status_to_str (int status)
1122 {
1123 static char buf[64];
1124
1125 if (WIFSTOPPED (status))
1126 {
1127 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1128 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1129 strsignal (SIGTRAP));
1130 else
1131 snprintf (buf, sizeof (buf), "%s (stopped)",
1132 strsignal (WSTOPSIG (status)));
1133 }
1134 else if (WIFSIGNALED (status))
1135 snprintf (buf, sizeof (buf), "%s (terminated)",
1136 strsignal (WTERMSIG (status)));
1137 else
1138 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1139
1140 return buf;
1141 }
1142
1143 /* Destroy and free LP. */
1144
1145 static void
1146 lwp_free (struct lwp_info *lp)
1147 {
1148 xfree (lp->arch_private);
1149 xfree (lp);
1150 }
1151
1152 /* Remove all LWPs belong to PID from the lwp list. */
1153
1154 static void
1155 purge_lwp_list (int pid)
1156 {
1157 struct lwp_info *lp, *lpprev, *lpnext;
1158
1159 lpprev = NULL;
1160
1161 for (lp = lwp_list; lp; lp = lpnext)
1162 {
1163 lpnext = lp->next;
1164
1165 if (ptid_get_pid (lp->ptid) == pid)
1166 {
1167 if (lp == lwp_list)
1168 lwp_list = lp->next;
1169 else
1170 lpprev->next = lp->next;
1171
1172 lwp_free (lp);
1173 }
1174 else
1175 lpprev = lp;
1176 }
1177 }
1178
1179 /* Add the LWP specified by PID to the list. Return a pointer to the
1180 structure describing the new LWP. The LWP should already be stopped
1181 (with an exception for the very first LWP). */
1182
1183 static struct lwp_info *
1184 add_lwp (ptid_t ptid)
1185 {
1186 struct lwp_info *lp;
1187
1188 gdb_assert (is_lwp (ptid));
1189
1190 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1191
1192 memset (lp, 0, sizeof (struct lwp_info));
1193
1194 lp->last_resume_kind = resume_continue;
1195 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1196
1197 lp->ptid = ptid;
1198 lp->core = -1;
1199
1200 lp->next = lwp_list;
1201 lwp_list = lp;
1202
1203 /* Let the arch specific bits know about this new thread. Current
1204 clients of this callback take the opportunity to install
1205 watchpoints in the new thread. Don't do this for the first
1206 thread though. If we're spawning a child ("run"), the thread
1207 executes the shell wrapper first, and we shouldn't touch it until
1208 it execs the program we want to debug. For "attach", it'd be
1209 okay to call the callback, but it's not necessary, because
1210 watchpoints can't yet have been inserted into the inferior. */
1211 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1212 linux_nat_new_thread (lp);
1213
1214 return lp;
1215 }
1216
1217 /* Remove the LWP specified by PID from the list. */
1218
1219 static void
1220 delete_lwp (ptid_t ptid)
1221 {
1222 struct lwp_info *lp, *lpprev;
1223
1224 lpprev = NULL;
1225
1226 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1227 if (ptid_equal (lp->ptid, ptid))
1228 break;
1229
1230 if (!lp)
1231 return;
1232
1233 if (lpprev)
1234 lpprev->next = lp->next;
1235 else
1236 lwp_list = lp->next;
1237
1238 lwp_free (lp);
1239 }
1240
1241 /* Return a pointer to the structure describing the LWP corresponding
1242 to PID. If no corresponding LWP could be found, return NULL. */
1243
1244 static struct lwp_info *
1245 find_lwp_pid (ptid_t ptid)
1246 {
1247 struct lwp_info *lp;
1248 int lwp;
1249
1250 if (is_lwp (ptid))
1251 lwp = GET_LWP (ptid);
1252 else
1253 lwp = GET_PID (ptid);
1254
1255 for (lp = lwp_list; lp; lp = lp->next)
1256 if (lwp == GET_LWP (lp->ptid))
1257 return lp;
1258
1259 return NULL;
1260 }
1261
1262 /* Call CALLBACK with its second argument set to DATA for every LWP in
1263 the list. If CALLBACK returns 1 for a particular LWP, return a
1264 pointer to the structure describing that LWP immediately.
1265 Otherwise return NULL. */
1266
1267 struct lwp_info *
1268 iterate_over_lwps (ptid_t filter,
1269 int (*callback) (struct lwp_info *, void *),
1270 void *data)
1271 {
1272 struct lwp_info *lp, *lpnext;
1273
1274 for (lp = lwp_list; lp; lp = lpnext)
1275 {
1276 lpnext = lp->next;
1277
1278 if (ptid_match (lp->ptid, filter))
1279 {
1280 if ((*callback) (lp, data))
1281 return lp;
1282 }
1283 }
1284
1285 return NULL;
1286 }
1287
1288 /* Iterate like iterate_over_lwps does except when forking-off a child call
1289 CALLBACK with CALLBACK_DATA specifically only for that new child PID. */
1290
1291 void
1292 linux_nat_iterate_watchpoint_lwps
1293 (linux_nat_iterate_watchpoint_lwps_ftype callback, void *callback_data)
1294 {
1295 int inferior_pid = ptid_get_pid (inferior_ptid);
1296 struct inferior *inf = current_inferior ();
1297
1298 if (inf->pid == inferior_pid)
1299 {
1300 /* Iterate all the threads of the current inferior. Without specifying
1301 INFERIOR_PID it would iterate all threads of all inferiors, which is
1302 inappropriate for watchpoints. */
1303
1304 iterate_over_lwps (pid_to_ptid (inferior_pid), callback, callback_data);
1305 }
1306 else
1307 {
1308 /* Detaching a new child PID temporarily present in INFERIOR_PID. */
1309
1310 struct lwp_info *child_lp;
1311 struct cleanup *old_chain;
1312 pid_t child_pid = GET_PID (inferior_ptid);
1313 ptid_t child_ptid = ptid_build (child_pid, child_pid, 0);
1314
1315 gdb_assert (find_lwp_pid (child_ptid) == NULL);
1316 child_lp = add_lwp (child_ptid);
1317 child_lp->stopped = 1;
1318 child_lp->last_resume_kind = resume_stop;
1319 old_chain = make_cleanup (delete_lwp_cleanup, child_lp);
1320
1321 callback (child_lp, callback_data);
1322
1323 do_cleanups (old_chain);
1324 }
1325 }
1326
1327 /* Update our internal state when changing from one checkpoint to
1328 another indicated by NEW_PTID. We can only switch single-threaded
1329 applications, so we only create one new LWP, and the previous list
1330 is discarded. */
1331
1332 void
1333 linux_nat_switch_fork (ptid_t new_ptid)
1334 {
1335 struct lwp_info *lp;
1336
1337 purge_lwp_list (GET_PID (inferior_ptid));
1338
1339 lp = add_lwp (new_ptid);
1340 lp->stopped = 1;
1341
1342 /* This changes the thread's ptid while preserving the gdb thread
1343 num. Also changes the inferior pid, while preserving the
1344 inferior num. */
1345 thread_change_ptid (inferior_ptid, new_ptid);
1346
1347 /* We've just told GDB core that the thread changed target id, but,
1348 in fact, it really is a different thread, with different register
1349 contents. */
1350 registers_changed ();
1351 }
1352
1353 /* Handle the exit of a single thread LP. */
1354
1355 static void
1356 exit_lwp (struct lwp_info *lp)
1357 {
1358 struct thread_info *th = find_thread_ptid (lp->ptid);
1359
1360 if (th)
1361 {
1362 if (print_thread_events)
1363 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1364
1365 delete_thread (lp->ptid);
1366 }
1367
1368 delete_lwp (lp->ptid);
1369 }
1370
1371 /* Wait for the LWP specified by LP, which we have just attached to.
1372 Returns a wait status for that LWP, to cache. */
1373
1374 static int
1375 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1376 int *signalled)
1377 {
1378 pid_t new_pid, pid = GET_LWP (ptid);
1379 int status;
1380
1381 if (linux_proc_pid_is_stopped (pid))
1382 {
1383 if (debug_linux_nat)
1384 fprintf_unfiltered (gdb_stdlog,
1385 "LNPAW: Attaching to a stopped process\n");
1386
1387 /* The process is definitely stopped. It is in a job control
1388 stop, unless the kernel predates the TASK_STOPPED /
1389 TASK_TRACED distinction, in which case it might be in a
1390 ptrace stop. Make sure it is in a ptrace stop; from there we
1391 can kill it, signal it, et cetera.
1392
1393 First make sure there is a pending SIGSTOP. Since we are
1394 already attached, the process can not transition from stopped
1395 to running without a PTRACE_CONT; so we know this signal will
1396 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1397 probably already in the queue (unless this kernel is old
1398 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1399 is not an RT signal, it can only be queued once. */
1400 kill_lwp (pid, SIGSTOP);
1401
1402 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1403 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1404 ptrace (PTRACE_CONT, pid, 0, 0);
1405 }
1406
1407 /* Make sure the initial process is stopped. The user-level threads
1408 layer might want to poke around in the inferior, and that won't
1409 work if things haven't stabilized yet. */
1410 new_pid = my_waitpid (pid, &status, 0);
1411 if (new_pid == -1 && errno == ECHILD)
1412 {
1413 if (first)
1414 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1415
1416 /* Try again with __WCLONE to check cloned processes. */
1417 new_pid = my_waitpid (pid, &status, __WCLONE);
1418 *cloned = 1;
1419 }
1420
1421 gdb_assert (pid == new_pid);
1422
1423 if (!WIFSTOPPED (status))
1424 {
1425 /* The pid we tried to attach has apparently just exited. */
1426 if (debug_linux_nat)
1427 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1428 pid, status_to_str (status));
1429 return status;
1430 }
1431
1432 if (WSTOPSIG (status) != SIGSTOP)
1433 {
1434 *signalled = 1;
1435 if (debug_linux_nat)
1436 fprintf_unfiltered (gdb_stdlog,
1437 "LNPAW: Received %s after attaching\n",
1438 status_to_str (status));
1439 }
1440
1441 return status;
1442 }
1443
1444 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1445 the new LWP could not be attached, or 1 if we're already auto
1446 attached to this thread, but haven't processed the
1447 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1448 its existance, without considering it an error. */
1449
1450 int
1451 lin_lwp_attach_lwp (ptid_t ptid)
1452 {
1453 struct lwp_info *lp;
1454 sigset_t prev_mask;
1455 int lwpid;
1456
1457 gdb_assert (is_lwp (ptid));
1458
1459 block_child_signals (&prev_mask);
1460
1461 lp = find_lwp_pid (ptid);
1462 lwpid = GET_LWP (ptid);
1463
1464 /* We assume that we're already attached to any LWP that has an id
1465 equal to the overall process id, and to any LWP that is already
1466 in our list of LWPs. If we're not seeing exit events from threads
1467 and we've had PID wraparound since we last tried to stop all threads,
1468 this assumption might be wrong; fortunately, this is very unlikely
1469 to happen. */
1470 if (lwpid != GET_PID (ptid) && lp == NULL)
1471 {
1472 int status, cloned = 0, signalled = 0;
1473
1474 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1475 {
1476 if (linux_supports_tracefork_flag)
1477 {
1478 /* If we haven't stopped all threads when we get here,
1479 we may have seen a thread listed in thread_db's list,
1480 but not processed the PTRACE_EVENT_CLONE yet. If
1481 that's the case, ignore this new thread, and let
1482 normal event handling discover it later. */
1483 if (in_pid_list_p (stopped_pids, lwpid))
1484 {
1485 /* We've already seen this thread stop, but we
1486 haven't seen the PTRACE_EVENT_CLONE extended
1487 event yet. */
1488 restore_child_signals_mask (&prev_mask);
1489 return 0;
1490 }
1491 else
1492 {
1493 int new_pid;
1494 int status;
1495
1496 /* See if we've got a stop for this new child
1497 pending. If so, we're already attached. */
1498 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1499 if (new_pid == -1 && errno == ECHILD)
1500 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1501 if (new_pid != -1)
1502 {
1503 if (WIFSTOPPED (status))
1504 add_to_pid_list (&stopped_pids, lwpid, status);
1505
1506 restore_child_signals_mask (&prev_mask);
1507 return 1;
1508 }
1509 }
1510 }
1511
1512 /* If we fail to attach to the thread, issue a warning,
1513 but continue. One way this can happen is if thread
1514 creation is interrupted; as of Linux kernel 2.6.19, a
1515 bug may place threads in the thread list and then fail
1516 to create them. */
1517 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1518 safe_strerror (errno));
1519 restore_child_signals_mask (&prev_mask);
1520 return -1;
1521 }
1522
1523 if (debug_linux_nat)
1524 fprintf_unfiltered (gdb_stdlog,
1525 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1526 target_pid_to_str (ptid));
1527
1528 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1529 if (!WIFSTOPPED (status))
1530 {
1531 restore_child_signals_mask (&prev_mask);
1532 return 1;
1533 }
1534
1535 lp = add_lwp (ptid);
1536 lp->stopped = 1;
1537 lp->cloned = cloned;
1538 lp->signalled = signalled;
1539 if (WSTOPSIG (status) != SIGSTOP)
1540 {
1541 lp->resumed = 1;
1542 lp->status = status;
1543 }
1544
1545 target_post_attach (GET_LWP (lp->ptid));
1546
1547 if (debug_linux_nat)
1548 {
1549 fprintf_unfiltered (gdb_stdlog,
1550 "LLAL: waitpid %s received %s\n",
1551 target_pid_to_str (ptid),
1552 status_to_str (status));
1553 }
1554 }
1555 else
1556 {
1557 /* We assume that the LWP representing the original process is
1558 already stopped. Mark it as stopped in the data structure
1559 that the GNU/linux ptrace layer uses to keep track of
1560 threads. Note that this won't have already been done since
1561 the main thread will have, we assume, been stopped by an
1562 attach from a different layer. */
1563 if (lp == NULL)
1564 lp = add_lwp (ptid);
1565 lp->stopped = 1;
1566 }
1567
1568 lp->last_resume_kind = resume_stop;
1569 restore_child_signals_mask (&prev_mask);
1570 return 0;
1571 }
1572
1573 static void
1574 linux_nat_create_inferior (struct target_ops *ops,
1575 char *exec_file, char *allargs, char **env,
1576 int from_tty)
1577 {
1578 #ifdef HAVE_PERSONALITY
1579 int personality_orig = 0, personality_set = 0;
1580 #endif /* HAVE_PERSONALITY */
1581
1582 /* The fork_child mechanism is synchronous and calls target_wait, so
1583 we have to mask the async mode. */
1584
1585 #ifdef HAVE_PERSONALITY
1586 if (disable_randomization)
1587 {
1588 errno = 0;
1589 personality_orig = personality (0xffffffff);
1590 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1591 {
1592 personality_set = 1;
1593 personality (personality_orig | ADDR_NO_RANDOMIZE);
1594 }
1595 if (errno != 0 || (personality_set
1596 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1597 warning (_("Error disabling address space randomization: %s"),
1598 safe_strerror (errno));
1599 }
1600 #endif /* HAVE_PERSONALITY */
1601
1602 /* Make sure we report all signals during startup. */
1603 linux_nat_pass_signals (0, NULL);
1604
1605 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1606
1607 #ifdef HAVE_PERSONALITY
1608 if (personality_set)
1609 {
1610 errno = 0;
1611 personality (personality_orig);
1612 if (errno != 0)
1613 warning (_("Error restoring address space randomization: %s"),
1614 safe_strerror (errno));
1615 }
1616 #endif /* HAVE_PERSONALITY */
1617 }
1618
1619 static void
1620 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1621 {
1622 struct lwp_info *lp;
1623 int status;
1624 ptid_t ptid;
1625 volatile struct gdb_exception ex;
1626
1627 /* Make sure we report all signals during attach. */
1628 linux_nat_pass_signals (0, NULL);
1629
1630 TRY_CATCH (ex, RETURN_MASK_ERROR)
1631 {
1632 linux_ops->to_attach (ops, args, from_tty);
1633 }
1634 if (ex.reason < 0)
1635 {
1636 pid_t pid = parse_pid_to_attach (args);
1637 struct buffer buffer;
1638 char *message, *buffer_s;
1639
1640 message = xstrdup (ex.message);
1641 make_cleanup (xfree, message);
1642
1643 buffer_init (&buffer);
1644 linux_ptrace_attach_warnings (pid, &buffer);
1645
1646 buffer_grow_str0 (&buffer, "");
1647 buffer_s = buffer_finish (&buffer);
1648 make_cleanup (xfree, buffer_s);
1649
1650 throw_error (ex.error, "%s%s", buffer_s, message);
1651 }
1652
1653 /* The ptrace base target adds the main thread with (pid,0,0)
1654 format. Decorate it with lwp info. */
1655 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1656 thread_change_ptid (inferior_ptid, ptid);
1657
1658 /* Add the initial process as the first LWP to the list. */
1659 lp = add_lwp (ptid);
1660
1661 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1662 &lp->signalled);
1663 if (!WIFSTOPPED (status))
1664 {
1665 if (WIFEXITED (status))
1666 {
1667 int exit_code = WEXITSTATUS (status);
1668
1669 target_terminal_ours ();
1670 target_mourn_inferior ();
1671 if (exit_code == 0)
1672 error (_("Unable to attach: program exited normally."));
1673 else
1674 error (_("Unable to attach: program exited with code %d."),
1675 exit_code);
1676 }
1677 else if (WIFSIGNALED (status))
1678 {
1679 enum gdb_signal signo;
1680
1681 target_terminal_ours ();
1682 target_mourn_inferior ();
1683
1684 signo = gdb_signal_from_host (WTERMSIG (status));
1685 error (_("Unable to attach: program terminated with signal "
1686 "%s, %s."),
1687 gdb_signal_to_name (signo),
1688 gdb_signal_to_string (signo));
1689 }
1690
1691 internal_error (__FILE__, __LINE__,
1692 _("unexpected status %d for PID %ld"),
1693 status, (long) GET_LWP (ptid));
1694 }
1695
1696 lp->stopped = 1;
1697
1698 /* Save the wait status to report later. */
1699 lp->resumed = 1;
1700 if (debug_linux_nat)
1701 fprintf_unfiltered (gdb_stdlog,
1702 "LNA: waitpid %ld, saving status %s\n",
1703 (long) GET_PID (lp->ptid), status_to_str (status));
1704
1705 lp->status = status;
1706
1707 if (target_can_async_p ())
1708 target_async (inferior_event_handler, 0);
1709 }
1710
1711 /* Get pending status of LP. */
1712 static int
1713 get_pending_status (struct lwp_info *lp, int *status)
1714 {
1715 enum gdb_signal signo = GDB_SIGNAL_0;
1716
1717 /* If we paused threads momentarily, we may have stored pending
1718 events in lp->status or lp->waitstatus (see stop_wait_callback),
1719 and GDB core hasn't seen any signal for those threads.
1720 Otherwise, the last signal reported to the core is found in the
1721 thread object's stop_signal.
1722
1723 There's a corner case that isn't handled here at present. Only
1724 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1725 stop_signal make sense as a real signal to pass to the inferior.
1726 Some catchpoint related events, like
1727 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1728 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1729 those traps are debug API (ptrace in our case) related and
1730 induced; the inferior wouldn't see them if it wasn't being
1731 traced. Hence, we should never pass them to the inferior, even
1732 when set to pass state. Since this corner case isn't handled by
1733 infrun.c when proceeding with a signal, for consistency, neither
1734 do we handle it here (or elsewhere in the file we check for
1735 signal pass state). Normally SIGTRAP isn't set to pass state, so
1736 this is really a corner case. */
1737
1738 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1739 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1740 else if (lp->status)
1741 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1742 else if (non_stop && !is_executing (lp->ptid))
1743 {
1744 struct thread_info *tp = find_thread_ptid (lp->ptid);
1745
1746 signo = tp->suspend.stop_signal;
1747 }
1748 else if (!non_stop)
1749 {
1750 struct target_waitstatus last;
1751 ptid_t last_ptid;
1752
1753 get_last_target_status (&last_ptid, &last);
1754
1755 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1756 {
1757 struct thread_info *tp = find_thread_ptid (lp->ptid);
1758
1759 signo = tp->suspend.stop_signal;
1760 }
1761 }
1762
1763 *status = 0;
1764
1765 if (signo == GDB_SIGNAL_0)
1766 {
1767 if (debug_linux_nat)
1768 fprintf_unfiltered (gdb_stdlog,
1769 "GPT: lwp %s has no pending signal\n",
1770 target_pid_to_str (lp->ptid));
1771 }
1772 else if (!signal_pass_state (signo))
1773 {
1774 if (debug_linux_nat)
1775 fprintf_unfiltered (gdb_stdlog,
1776 "GPT: lwp %s had signal %s, "
1777 "but it is in no pass state\n",
1778 target_pid_to_str (lp->ptid),
1779 gdb_signal_to_string (signo));
1780 }
1781 else
1782 {
1783 *status = W_STOPCODE (gdb_signal_to_host (signo));
1784
1785 if (debug_linux_nat)
1786 fprintf_unfiltered (gdb_stdlog,
1787 "GPT: lwp %s has pending signal %s\n",
1788 target_pid_to_str (lp->ptid),
1789 gdb_signal_to_string (signo));
1790 }
1791
1792 return 0;
1793 }
1794
1795 static int
1796 detach_callback (struct lwp_info *lp, void *data)
1797 {
1798 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1799
1800 if (debug_linux_nat && lp->status)
1801 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1802 strsignal (WSTOPSIG (lp->status)),
1803 target_pid_to_str (lp->ptid));
1804
1805 /* If there is a pending SIGSTOP, get rid of it. */
1806 if (lp->signalled)
1807 {
1808 if (debug_linux_nat)
1809 fprintf_unfiltered (gdb_stdlog,
1810 "DC: Sending SIGCONT to %s\n",
1811 target_pid_to_str (lp->ptid));
1812
1813 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1814 lp->signalled = 0;
1815 }
1816
1817 /* We don't actually detach from the LWP that has an id equal to the
1818 overall process id just yet. */
1819 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1820 {
1821 int status = 0;
1822
1823 /* Pass on any pending signal for this LWP. */
1824 get_pending_status (lp, &status);
1825
1826 if (linux_nat_prepare_to_resume != NULL)
1827 linux_nat_prepare_to_resume (lp);
1828 errno = 0;
1829 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1830 WSTOPSIG (status)) < 0)
1831 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1832 safe_strerror (errno));
1833
1834 if (debug_linux_nat)
1835 fprintf_unfiltered (gdb_stdlog,
1836 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1837 target_pid_to_str (lp->ptid),
1838 strsignal (WSTOPSIG (status)));
1839
1840 delete_lwp (lp->ptid);
1841 }
1842
1843 return 0;
1844 }
1845
1846 static void
1847 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1848 {
1849 int pid;
1850 int status;
1851 struct lwp_info *main_lwp;
1852
1853 pid = GET_PID (inferior_ptid);
1854
1855 /* Don't unregister from the event loop, as there may be other
1856 inferiors running. */
1857
1858 /* Stop all threads before detaching. ptrace requires that the
1859 thread is stopped to sucessfully detach. */
1860 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1861 /* ... and wait until all of them have reported back that
1862 they're no longer running. */
1863 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1864
1865 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1866
1867 /* Only the initial process should be left right now. */
1868 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1869
1870 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1871
1872 /* Pass on any pending signal for the last LWP. */
1873 if ((args == NULL || *args == '\0')
1874 && get_pending_status (main_lwp, &status) != -1
1875 && WIFSTOPPED (status))
1876 {
1877 /* Put the signal number in ARGS so that inf_ptrace_detach will
1878 pass it along with PTRACE_DETACH. */
1879 args = alloca (8);
1880 sprintf (args, "%d", (int) WSTOPSIG (status));
1881 if (debug_linux_nat)
1882 fprintf_unfiltered (gdb_stdlog,
1883 "LND: Sending signal %s to %s\n",
1884 args,
1885 target_pid_to_str (main_lwp->ptid));
1886 }
1887
1888 if (linux_nat_prepare_to_resume != NULL)
1889 linux_nat_prepare_to_resume (main_lwp);
1890 delete_lwp (main_lwp->ptid);
1891
1892 if (forks_exist_p ())
1893 {
1894 /* Multi-fork case. The current inferior_ptid is being detached
1895 from, but there are other viable forks to debug. Detach from
1896 the current fork, and context-switch to the first
1897 available. */
1898 linux_fork_detach (args, from_tty);
1899 }
1900 else
1901 linux_ops->to_detach (ops, args, from_tty);
1902 }
1903
1904 /* Resume LP. */
1905
1906 static void
1907 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1908 {
1909 if (lp->stopped)
1910 {
1911 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1912
1913 if (inf->vfork_child != NULL)
1914 {
1915 if (debug_linux_nat)
1916 fprintf_unfiltered (gdb_stdlog,
1917 "RC: Not resuming %s (vfork parent)\n",
1918 target_pid_to_str (lp->ptid));
1919 }
1920 else if (lp->status == 0
1921 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1922 {
1923 if (debug_linux_nat)
1924 fprintf_unfiltered (gdb_stdlog,
1925 "RC: Resuming sibling %s, %s, %s\n",
1926 target_pid_to_str (lp->ptid),
1927 (signo != GDB_SIGNAL_0
1928 ? strsignal (gdb_signal_to_host (signo))
1929 : "0"),
1930 step ? "step" : "resume");
1931
1932 if (linux_nat_prepare_to_resume != NULL)
1933 linux_nat_prepare_to_resume (lp);
1934 linux_ops->to_resume (linux_ops,
1935 pid_to_ptid (GET_LWP (lp->ptid)),
1936 step, signo);
1937 lp->stopped = 0;
1938 lp->step = step;
1939 lp->stopped_by_watchpoint = 0;
1940 }
1941 else
1942 {
1943 if (debug_linux_nat)
1944 fprintf_unfiltered (gdb_stdlog,
1945 "RC: Not resuming sibling %s (has pending)\n",
1946 target_pid_to_str (lp->ptid));
1947 }
1948 }
1949 else
1950 {
1951 if (debug_linux_nat)
1952 fprintf_unfiltered (gdb_stdlog,
1953 "RC: Not resuming sibling %s (not stopped)\n",
1954 target_pid_to_str (lp->ptid));
1955 }
1956 }
1957
1958 /* Resume LWP, with the last stop signal, if it is in pass state. */
1959
1960 static int
1961 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1962 {
1963 enum gdb_signal signo = GDB_SIGNAL_0;
1964
1965 if (lp->stopped)
1966 {
1967 struct thread_info *thread;
1968
1969 thread = find_thread_ptid (lp->ptid);
1970 if (thread != NULL)
1971 {
1972 if (signal_pass_state (thread->suspend.stop_signal))
1973 signo = thread->suspend.stop_signal;
1974 thread->suspend.stop_signal = GDB_SIGNAL_0;
1975 }
1976 }
1977
1978 resume_lwp (lp, 0, signo);
1979 return 0;
1980 }
1981
1982 static int
1983 resume_clear_callback (struct lwp_info *lp, void *data)
1984 {
1985 lp->resumed = 0;
1986 lp->last_resume_kind = resume_stop;
1987 return 0;
1988 }
1989
1990 static int
1991 resume_set_callback (struct lwp_info *lp, void *data)
1992 {
1993 lp->resumed = 1;
1994 lp->last_resume_kind = resume_continue;
1995 return 0;
1996 }
1997
1998 static void
1999 linux_nat_resume (struct target_ops *ops,
2000 ptid_t ptid, int step, enum gdb_signal signo)
2001 {
2002 sigset_t prev_mask;
2003 struct lwp_info *lp;
2004 int resume_many;
2005
2006 if (debug_linux_nat)
2007 fprintf_unfiltered (gdb_stdlog,
2008 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
2009 step ? "step" : "resume",
2010 target_pid_to_str (ptid),
2011 (signo != GDB_SIGNAL_0
2012 ? strsignal (gdb_signal_to_host (signo)) : "0"),
2013 target_pid_to_str (inferior_ptid));
2014
2015 block_child_signals (&prev_mask);
2016
2017 /* A specific PTID means `step only this process id'. */
2018 resume_many = (ptid_equal (minus_one_ptid, ptid)
2019 || ptid_is_pid (ptid));
2020
2021 /* Mark the lwps we're resuming as resumed. */
2022 iterate_over_lwps (ptid, resume_set_callback, NULL);
2023
2024 /* See if it's the current inferior that should be handled
2025 specially. */
2026 if (resume_many)
2027 lp = find_lwp_pid (inferior_ptid);
2028 else
2029 lp = find_lwp_pid (ptid);
2030 gdb_assert (lp != NULL);
2031
2032 /* Remember if we're stepping. */
2033 lp->step = step;
2034 lp->last_resume_kind = step ? resume_step : resume_continue;
2035
2036 /* If we have a pending wait status for this thread, there is no
2037 point in resuming the process. But first make sure that
2038 linux_nat_wait won't preemptively handle the event - we
2039 should never take this short-circuit if we are going to
2040 leave LP running, since we have skipped resuming all the
2041 other threads. This bit of code needs to be synchronized
2042 with linux_nat_wait. */
2043
2044 if (lp->status && WIFSTOPPED (lp->status))
2045 {
2046 if (!lp->step
2047 && WSTOPSIG (lp->status)
2048 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
2049 {
2050 if (debug_linux_nat)
2051 fprintf_unfiltered (gdb_stdlog,
2052 "LLR: Not short circuiting for ignored "
2053 "status 0x%x\n", lp->status);
2054
2055 /* FIXME: What should we do if we are supposed to continue
2056 this thread with a signal? */
2057 gdb_assert (signo == GDB_SIGNAL_0);
2058 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
2059 lp->status = 0;
2060 }
2061 }
2062
2063 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2064 {
2065 /* FIXME: What should we do if we are supposed to continue
2066 this thread with a signal? */
2067 gdb_assert (signo == GDB_SIGNAL_0);
2068
2069 if (debug_linux_nat)
2070 fprintf_unfiltered (gdb_stdlog,
2071 "LLR: Short circuiting for status 0x%x\n",
2072 lp->status);
2073
2074 restore_child_signals_mask (&prev_mask);
2075 if (target_can_async_p ())
2076 {
2077 target_async (inferior_event_handler, 0);
2078 /* Tell the event loop we have something to process. */
2079 async_file_mark ();
2080 }
2081 return;
2082 }
2083
2084 /* Mark LWP as not stopped to prevent it from being continued by
2085 linux_nat_resume_callback. */
2086 lp->stopped = 0;
2087
2088 if (resume_many)
2089 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
2090
2091 /* Convert to something the lower layer understands. */
2092 ptid = pid_to_ptid (GET_LWP (lp->ptid));
2093
2094 if (linux_nat_prepare_to_resume != NULL)
2095 linux_nat_prepare_to_resume (lp);
2096 linux_ops->to_resume (linux_ops, ptid, step, signo);
2097 lp->stopped_by_watchpoint = 0;
2098
2099 if (debug_linux_nat)
2100 fprintf_unfiltered (gdb_stdlog,
2101 "LLR: %s %s, %s (resume event thread)\n",
2102 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2103 target_pid_to_str (ptid),
2104 (signo != GDB_SIGNAL_0
2105 ? strsignal (gdb_signal_to_host (signo)) : "0"));
2106
2107 restore_child_signals_mask (&prev_mask);
2108 if (target_can_async_p ())
2109 target_async (inferior_event_handler, 0);
2110 }
2111
2112 /* Send a signal to an LWP. */
2113
2114 static int
2115 kill_lwp (int lwpid, int signo)
2116 {
2117 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2118 fails, then we are not using nptl threads and we should be using kill. */
2119
2120 #ifdef HAVE_TKILL_SYSCALL
2121 {
2122 static int tkill_failed;
2123
2124 if (!tkill_failed)
2125 {
2126 int ret;
2127
2128 errno = 0;
2129 ret = syscall (__NR_tkill, lwpid, signo);
2130 if (errno != ENOSYS)
2131 return ret;
2132 tkill_failed = 1;
2133 }
2134 }
2135 #endif
2136
2137 return kill (lwpid, signo);
2138 }
2139
2140 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2141 event, check if the core is interested in it: if not, ignore the
2142 event, and keep waiting; otherwise, we need to toggle the LWP's
2143 syscall entry/exit status, since the ptrace event itself doesn't
2144 indicate it, and report the trap to higher layers. */
2145
2146 static int
2147 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2148 {
2149 struct target_waitstatus *ourstatus = &lp->waitstatus;
2150 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2151 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2152
2153 if (stopping)
2154 {
2155 /* If we're stopping threads, there's a SIGSTOP pending, which
2156 makes it so that the LWP reports an immediate syscall return,
2157 followed by the SIGSTOP. Skip seeing that "return" using
2158 PTRACE_CONT directly, and let stop_wait_callback collect the
2159 SIGSTOP. Later when the thread is resumed, a new syscall
2160 entry event. If we didn't do this (and returned 0), we'd
2161 leave a syscall entry pending, and our caller, by using
2162 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2163 itself. Later, when the user re-resumes this LWP, we'd see
2164 another syscall entry event and we'd mistake it for a return.
2165
2166 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2167 (leaving immediately with LWP->signalled set, without issuing
2168 a PTRACE_CONT), it would still be problematic to leave this
2169 syscall enter pending, as later when the thread is resumed,
2170 it would then see the same syscall exit mentioned above,
2171 followed by the delayed SIGSTOP, while the syscall didn't
2172 actually get to execute. It seems it would be even more
2173 confusing to the user. */
2174
2175 if (debug_linux_nat)
2176 fprintf_unfiltered (gdb_stdlog,
2177 "LHST: ignoring syscall %d "
2178 "for LWP %ld (stopping threads), "
2179 "resuming with PTRACE_CONT for SIGSTOP\n",
2180 syscall_number,
2181 GET_LWP (lp->ptid));
2182
2183 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2184 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2185 return 1;
2186 }
2187
2188 if (catch_syscall_enabled ())
2189 {
2190 /* Always update the entry/return state, even if this particular
2191 syscall isn't interesting to the core now. In async mode,
2192 the user could install a new catchpoint for this syscall
2193 between syscall enter/return, and we'll need to know to
2194 report a syscall return if that happens. */
2195 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2196 ? TARGET_WAITKIND_SYSCALL_RETURN
2197 : TARGET_WAITKIND_SYSCALL_ENTRY);
2198
2199 if (catching_syscall_number (syscall_number))
2200 {
2201 /* Alright, an event to report. */
2202 ourstatus->kind = lp->syscall_state;
2203 ourstatus->value.syscall_number = syscall_number;
2204
2205 if (debug_linux_nat)
2206 fprintf_unfiltered (gdb_stdlog,
2207 "LHST: stopping for %s of syscall %d"
2208 " for LWP %ld\n",
2209 lp->syscall_state
2210 == TARGET_WAITKIND_SYSCALL_ENTRY
2211 ? "entry" : "return",
2212 syscall_number,
2213 GET_LWP (lp->ptid));
2214 return 0;
2215 }
2216
2217 if (debug_linux_nat)
2218 fprintf_unfiltered (gdb_stdlog,
2219 "LHST: ignoring %s of syscall %d "
2220 "for LWP %ld\n",
2221 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2222 ? "entry" : "return",
2223 syscall_number,
2224 GET_LWP (lp->ptid));
2225 }
2226 else
2227 {
2228 /* If we had been syscall tracing, and hence used PT_SYSCALL
2229 before on this LWP, it could happen that the user removes all
2230 syscall catchpoints before we get to process this event.
2231 There are two noteworthy issues here:
2232
2233 - When stopped at a syscall entry event, resuming with
2234 PT_STEP still resumes executing the syscall and reports a
2235 syscall return.
2236
2237 - Only PT_SYSCALL catches syscall enters. If we last
2238 single-stepped this thread, then this event can't be a
2239 syscall enter. If we last single-stepped this thread, this
2240 has to be a syscall exit.
2241
2242 The points above mean that the next resume, be it PT_STEP or
2243 PT_CONTINUE, can not trigger a syscall trace event. */
2244 if (debug_linux_nat)
2245 fprintf_unfiltered (gdb_stdlog,
2246 "LHST: caught syscall event "
2247 "with no syscall catchpoints."
2248 " %d for LWP %ld, ignoring\n",
2249 syscall_number,
2250 GET_LWP (lp->ptid));
2251 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2252 }
2253
2254 /* The core isn't interested in this event. For efficiency, avoid
2255 stopping all threads only to have the core resume them all again.
2256 Since we're not stopping threads, if we're still syscall tracing
2257 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2258 subsequent syscall. Simply resume using the inf-ptrace layer,
2259 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2260
2261 /* Note that gdbarch_get_syscall_number may access registers, hence
2262 fill a regcache. */
2263 registers_changed ();
2264 if (linux_nat_prepare_to_resume != NULL)
2265 linux_nat_prepare_to_resume (lp);
2266 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2267 lp->step, GDB_SIGNAL_0);
2268 return 1;
2269 }
2270
2271 /* Handle a GNU/Linux extended wait response. If we see a clone
2272 event, we need to add the new LWP to our list (and not report the
2273 trap to higher layers). This function returns non-zero if the
2274 event should be ignored and we should wait again. If STOPPING is
2275 true, the new LWP remains stopped, otherwise it is continued. */
2276
2277 static int
2278 linux_handle_extended_wait (struct lwp_info *lp, int status,
2279 int stopping)
2280 {
2281 int pid = GET_LWP (lp->ptid);
2282 struct target_waitstatus *ourstatus = &lp->waitstatus;
2283 int event = status >> 16;
2284
2285 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2286 || event == PTRACE_EVENT_CLONE)
2287 {
2288 unsigned long new_pid;
2289 int ret;
2290
2291 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2292
2293 /* If we haven't already seen the new PID stop, wait for it now. */
2294 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2295 {
2296 /* The new child has a pending SIGSTOP. We can't affect it until it
2297 hits the SIGSTOP, but we're already attached. */
2298 ret = my_waitpid (new_pid, &status,
2299 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2300 if (ret == -1)
2301 perror_with_name (_("waiting for new child"));
2302 else if (ret != new_pid)
2303 internal_error (__FILE__, __LINE__,
2304 _("wait returned unexpected PID %d"), ret);
2305 else if (!WIFSTOPPED (status))
2306 internal_error (__FILE__, __LINE__,
2307 _("wait returned unexpected status 0x%x"), status);
2308 }
2309
2310 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2311
2312 if (event == PTRACE_EVENT_FORK
2313 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2314 {
2315 /* Handle checkpointing by linux-fork.c here as a special
2316 case. We don't want the follow-fork-mode or 'catch fork'
2317 to interfere with this. */
2318
2319 /* This won't actually modify the breakpoint list, but will
2320 physically remove the breakpoints from the child. */
2321 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2322
2323 /* Retain child fork in ptrace (stopped) state. */
2324 if (!find_fork_pid (new_pid))
2325 add_fork (new_pid);
2326
2327 /* Report as spurious, so that infrun doesn't want to follow
2328 this fork. We're actually doing an infcall in
2329 linux-fork.c. */
2330 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2331 linux_enable_event_reporting (pid_to_ptid (new_pid));
2332
2333 /* Report the stop to the core. */
2334 return 0;
2335 }
2336
2337 if (event == PTRACE_EVENT_FORK)
2338 ourstatus->kind = TARGET_WAITKIND_FORKED;
2339 else if (event == PTRACE_EVENT_VFORK)
2340 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2341 else
2342 {
2343 struct lwp_info *new_lp;
2344
2345 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2346
2347 if (debug_linux_nat)
2348 fprintf_unfiltered (gdb_stdlog,
2349 "LHEW: Got clone event "
2350 "from LWP %d, new child is LWP %ld\n",
2351 pid, new_pid);
2352
2353 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2354 new_lp->cloned = 1;
2355 new_lp->stopped = 1;
2356
2357 if (WSTOPSIG (status) != SIGSTOP)
2358 {
2359 /* This can happen if someone starts sending signals to
2360 the new thread before it gets a chance to run, which
2361 have a lower number than SIGSTOP (e.g. SIGUSR1).
2362 This is an unlikely case, and harder to handle for
2363 fork / vfork than for clone, so we do not try - but
2364 we handle it for clone events here. We'll send
2365 the other signal on to the thread below. */
2366
2367 new_lp->signalled = 1;
2368 }
2369 else
2370 {
2371 struct thread_info *tp;
2372
2373 /* When we stop for an event in some other thread, and
2374 pull the thread list just as this thread has cloned,
2375 we'll have seen the new thread in the thread_db list
2376 before handling the CLONE event (glibc's
2377 pthread_create adds the new thread to the thread list
2378 before clone'ing, and has the kernel fill in the
2379 thread's tid on the clone call with
2380 CLONE_PARENT_SETTID). If that happened, and the core
2381 had requested the new thread to stop, we'll have
2382 killed it with SIGSTOP. But since SIGSTOP is not an
2383 RT signal, it can only be queued once. We need to be
2384 careful to not resume the LWP if we wanted it to
2385 stop. In that case, we'll leave the SIGSTOP pending.
2386 It will later be reported as GDB_SIGNAL_0. */
2387 tp = find_thread_ptid (new_lp->ptid);
2388 if (tp != NULL && tp->stop_requested)
2389 new_lp->last_resume_kind = resume_stop;
2390 else
2391 status = 0;
2392 }
2393
2394 if (non_stop)
2395 {
2396 /* Add the new thread to GDB's lists as soon as possible
2397 so that:
2398
2399 1) the frontend doesn't have to wait for a stop to
2400 display them, and,
2401
2402 2) we tag it with the correct running state. */
2403
2404 /* If the thread_db layer is active, let it know about
2405 this new thread, and add it to GDB's list. */
2406 if (!thread_db_attach_lwp (new_lp->ptid))
2407 {
2408 /* We're not using thread_db. Add it to GDB's
2409 list. */
2410 target_post_attach (GET_LWP (new_lp->ptid));
2411 add_thread (new_lp->ptid);
2412 }
2413
2414 if (!stopping)
2415 {
2416 set_running (new_lp->ptid, 1);
2417 set_executing (new_lp->ptid, 1);
2418 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2419 resume_stop. */
2420 new_lp->last_resume_kind = resume_continue;
2421 }
2422 }
2423
2424 if (status != 0)
2425 {
2426 /* We created NEW_LP so it cannot yet contain STATUS. */
2427 gdb_assert (new_lp->status == 0);
2428
2429 /* Save the wait status to report later. */
2430 if (debug_linux_nat)
2431 fprintf_unfiltered (gdb_stdlog,
2432 "LHEW: waitpid of new LWP %ld, "
2433 "saving status %s\n",
2434 (long) GET_LWP (new_lp->ptid),
2435 status_to_str (status));
2436 new_lp->status = status;
2437 }
2438
2439 /* Note the need to use the low target ops to resume, to
2440 handle resuming with PT_SYSCALL if we have syscall
2441 catchpoints. */
2442 if (!stopping)
2443 {
2444 new_lp->resumed = 1;
2445
2446 if (status == 0)
2447 {
2448 gdb_assert (new_lp->last_resume_kind == resume_continue);
2449 if (debug_linux_nat)
2450 fprintf_unfiltered (gdb_stdlog,
2451 "LHEW: resuming new LWP %ld\n",
2452 GET_LWP (new_lp->ptid));
2453 if (linux_nat_prepare_to_resume != NULL)
2454 linux_nat_prepare_to_resume (new_lp);
2455 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2456 0, GDB_SIGNAL_0);
2457 new_lp->stopped = 0;
2458 }
2459 }
2460
2461 if (debug_linux_nat)
2462 fprintf_unfiltered (gdb_stdlog,
2463 "LHEW: resuming parent LWP %d\n", pid);
2464 if (linux_nat_prepare_to_resume != NULL)
2465 linux_nat_prepare_to_resume (lp);
2466 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2467 0, GDB_SIGNAL_0);
2468
2469 return 1;
2470 }
2471
2472 return 0;
2473 }
2474
2475 if (event == PTRACE_EVENT_EXEC)
2476 {
2477 if (debug_linux_nat)
2478 fprintf_unfiltered (gdb_stdlog,
2479 "LHEW: Got exec event from LWP %ld\n",
2480 GET_LWP (lp->ptid));
2481
2482 ourstatus->kind = TARGET_WAITKIND_EXECD;
2483 ourstatus->value.execd_pathname
2484 = xstrdup (linux_child_pid_to_exec_file (pid));
2485
2486 return 0;
2487 }
2488
2489 if (event == PTRACE_EVENT_VFORK_DONE)
2490 {
2491 if (current_inferior ()->waiting_for_vfork_done)
2492 {
2493 if (debug_linux_nat)
2494 fprintf_unfiltered (gdb_stdlog,
2495 "LHEW: Got expected PTRACE_EVENT_"
2496 "VFORK_DONE from LWP %ld: stopping\n",
2497 GET_LWP (lp->ptid));
2498
2499 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2500 return 0;
2501 }
2502
2503 if (debug_linux_nat)
2504 fprintf_unfiltered (gdb_stdlog,
2505 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2506 "from LWP %ld: resuming\n",
2507 GET_LWP (lp->ptid));
2508 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2509 return 1;
2510 }
2511
2512 internal_error (__FILE__, __LINE__,
2513 _("unknown ptrace event %d"), event);
2514 }
2515
2516 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2517 exited. */
2518
2519 static int
2520 wait_lwp (struct lwp_info *lp)
2521 {
2522 pid_t pid;
2523 int status = 0;
2524 int thread_dead = 0;
2525 sigset_t prev_mask;
2526
2527 gdb_assert (!lp->stopped);
2528 gdb_assert (lp->status == 0);
2529
2530 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2531 block_child_signals (&prev_mask);
2532
2533 for (;;)
2534 {
2535 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2536 was right and we should just call sigsuspend. */
2537
2538 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2539 if (pid == -1 && errno == ECHILD)
2540 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2541 if (pid == -1 && errno == ECHILD)
2542 {
2543 /* The thread has previously exited. We need to delete it
2544 now because, for some vendor 2.4 kernels with NPTL
2545 support backported, there won't be an exit event unless
2546 it is the main thread. 2.6 kernels will report an exit
2547 event for each thread that exits, as expected. */
2548 thread_dead = 1;
2549 if (debug_linux_nat)
2550 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2551 target_pid_to_str (lp->ptid));
2552 }
2553 if (pid != 0)
2554 break;
2555
2556 /* Bugs 10970, 12702.
2557 Thread group leader may have exited in which case we'll lock up in
2558 waitpid if there are other threads, even if they are all zombies too.
2559 Basically, we're not supposed to use waitpid this way.
2560 __WCLONE is not applicable for the leader so we can't use that.
2561 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2562 process; it gets ESRCH both for the zombie and for running processes.
2563
2564 As a workaround, check if we're waiting for the thread group leader and
2565 if it's a zombie, and avoid calling waitpid if it is.
2566
2567 This is racy, what if the tgl becomes a zombie right after we check?
2568 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2569 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2570
2571 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2572 && linux_proc_pid_is_zombie (GET_LWP (lp->ptid)))
2573 {
2574 thread_dead = 1;
2575 if (debug_linux_nat)
2576 fprintf_unfiltered (gdb_stdlog,
2577 "WL: Thread group leader %s vanished.\n",
2578 target_pid_to_str (lp->ptid));
2579 break;
2580 }
2581
2582 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2583 get invoked despite our caller had them intentionally blocked by
2584 block_child_signals. This is sensitive only to the loop of
2585 linux_nat_wait_1 and there if we get called my_waitpid gets called
2586 again before it gets to sigsuspend so we can safely let the handlers
2587 get executed here. */
2588
2589 sigsuspend (&suspend_mask);
2590 }
2591
2592 restore_child_signals_mask (&prev_mask);
2593
2594 if (!thread_dead)
2595 {
2596 gdb_assert (pid == GET_LWP (lp->ptid));
2597
2598 if (debug_linux_nat)
2599 {
2600 fprintf_unfiltered (gdb_stdlog,
2601 "WL: waitpid %s received %s\n",
2602 target_pid_to_str (lp->ptid),
2603 status_to_str (status));
2604 }
2605
2606 /* Check if the thread has exited. */
2607 if (WIFEXITED (status) || WIFSIGNALED (status))
2608 {
2609 thread_dead = 1;
2610 if (debug_linux_nat)
2611 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2612 target_pid_to_str (lp->ptid));
2613 }
2614 }
2615
2616 if (thread_dead)
2617 {
2618 exit_lwp (lp);
2619 return 0;
2620 }
2621
2622 gdb_assert (WIFSTOPPED (status));
2623
2624 /* Handle GNU/Linux's syscall SIGTRAPs. */
2625 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2626 {
2627 /* No longer need the sysgood bit. The ptrace event ends up
2628 recorded in lp->waitstatus if we care for it. We can carry
2629 on handling the event like a regular SIGTRAP from here
2630 on. */
2631 status = W_STOPCODE (SIGTRAP);
2632 if (linux_handle_syscall_trap (lp, 1))
2633 return wait_lwp (lp);
2634 }
2635
2636 /* Handle GNU/Linux's extended waitstatus for trace events. */
2637 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2638 {
2639 if (debug_linux_nat)
2640 fprintf_unfiltered (gdb_stdlog,
2641 "WL: Handling extended status 0x%06x\n",
2642 status);
2643 if (linux_handle_extended_wait (lp, status, 1))
2644 return wait_lwp (lp);
2645 }
2646
2647 return status;
2648 }
2649
2650 /* Send a SIGSTOP to LP. */
2651
2652 static int
2653 stop_callback (struct lwp_info *lp, void *data)
2654 {
2655 if (!lp->stopped && !lp->signalled)
2656 {
2657 int ret;
2658
2659 if (debug_linux_nat)
2660 {
2661 fprintf_unfiltered (gdb_stdlog,
2662 "SC: kill %s **<SIGSTOP>**\n",
2663 target_pid_to_str (lp->ptid));
2664 }
2665 errno = 0;
2666 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2667 if (debug_linux_nat)
2668 {
2669 fprintf_unfiltered (gdb_stdlog,
2670 "SC: lwp kill %d %s\n",
2671 ret,
2672 errno ? safe_strerror (errno) : "ERRNO-OK");
2673 }
2674
2675 lp->signalled = 1;
2676 gdb_assert (lp->status == 0);
2677 }
2678
2679 return 0;
2680 }
2681
2682 /* Request a stop on LWP. */
2683
2684 void
2685 linux_stop_lwp (struct lwp_info *lwp)
2686 {
2687 stop_callback (lwp, NULL);
2688 }
2689
2690 /* Return non-zero if LWP PID has a pending SIGINT. */
2691
2692 static int
2693 linux_nat_has_pending_sigint (int pid)
2694 {
2695 sigset_t pending, blocked, ignored;
2696
2697 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2698
2699 if (sigismember (&pending, SIGINT)
2700 && !sigismember (&ignored, SIGINT))
2701 return 1;
2702
2703 return 0;
2704 }
2705
2706 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2707
2708 static int
2709 set_ignore_sigint (struct lwp_info *lp, void *data)
2710 {
2711 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2712 flag to consume the next one. */
2713 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2714 && WSTOPSIG (lp->status) == SIGINT)
2715 lp->status = 0;
2716 else
2717 lp->ignore_sigint = 1;
2718
2719 return 0;
2720 }
2721
2722 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2723 This function is called after we know the LWP has stopped; if the LWP
2724 stopped before the expected SIGINT was delivered, then it will never have
2725 arrived. Also, if the signal was delivered to a shared queue and consumed
2726 by a different thread, it will never be delivered to this LWP. */
2727
2728 static void
2729 maybe_clear_ignore_sigint (struct lwp_info *lp)
2730 {
2731 if (!lp->ignore_sigint)
2732 return;
2733
2734 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2735 {
2736 if (debug_linux_nat)
2737 fprintf_unfiltered (gdb_stdlog,
2738 "MCIS: Clearing bogus flag for %s\n",
2739 target_pid_to_str (lp->ptid));
2740 lp->ignore_sigint = 0;
2741 }
2742 }
2743
2744 /* Fetch the possible triggered data watchpoint info and store it in
2745 LP.
2746
2747 On some archs, like x86, that use debug registers to set
2748 watchpoints, it's possible that the way to know which watched
2749 address trapped, is to check the register that is used to select
2750 which address to watch. Problem is, between setting the watchpoint
2751 and reading back which data address trapped, the user may change
2752 the set of watchpoints, and, as a consequence, GDB changes the
2753 debug registers in the inferior. To avoid reading back a stale
2754 stopped-data-address when that happens, we cache in LP the fact
2755 that a watchpoint trapped, and the corresponding data address, as
2756 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2757 registers meanwhile, we have the cached data we can rely on. */
2758
2759 static void
2760 save_sigtrap (struct lwp_info *lp)
2761 {
2762 struct cleanup *old_chain;
2763
2764 if (linux_ops->to_stopped_by_watchpoint == NULL)
2765 {
2766 lp->stopped_by_watchpoint = 0;
2767 return;
2768 }
2769
2770 old_chain = save_inferior_ptid ();
2771 inferior_ptid = lp->ptid;
2772
2773 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2774
2775 if (lp->stopped_by_watchpoint)
2776 {
2777 if (linux_ops->to_stopped_data_address != NULL)
2778 lp->stopped_data_address_p =
2779 linux_ops->to_stopped_data_address (&current_target,
2780 &lp->stopped_data_address);
2781 else
2782 lp->stopped_data_address_p = 0;
2783 }
2784
2785 do_cleanups (old_chain);
2786 }
2787
2788 /* See save_sigtrap. */
2789
2790 static int
2791 linux_nat_stopped_by_watchpoint (void)
2792 {
2793 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2794
2795 gdb_assert (lp != NULL);
2796
2797 return lp->stopped_by_watchpoint;
2798 }
2799
2800 static int
2801 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2802 {
2803 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2804
2805 gdb_assert (lp != NULL);
2806
2807 *addr_p = lp->stopped_data_address;
2808
2809 return lp->stopped_data_address_p;
2810 }
2811
2812 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2813
2814 static int
2815 sigtrap_is_event (int status)
2816 {
2817 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2818 }
2819
2820 /* SIGTRAP-like events recognizer. */
2821
2822 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2823
2824 /* Check for SIGTRAP-like events in LP. */
2825
2826 static int
2827 linux_nat_lp_status_is_event (struct lwp_info *lp)
2828 {
2829 /* We check for lp->waitstatus in addition to lp->status, because we can
2830 have pending process exits recorded in lp->status
2831 and W_EXITCODE(0,0) == 0. We should probably have an additional
2832 lp->status_p flag. */
2833
2834 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2835 && linux_nat_status_is_event (lp->status));
2836 }
2837
2838 /* Set alternative SIGTRAP-like events recognizer. If
2839 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2840 applied. */
2841
2842 void
2843 linux_nat_set_status_is_event (struct target_ops *t,
2844 int (*status_is_event) (int status))
2845 {
2846 linux_nat_status_is_event = status_is_event;
2847 }
2848
2849 /* Wait until LP is stopped. */
2850
2851 static int
2852 stop_wait_callback (struct lwp_info *lp, void *data)
2853 {
2854 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2855
2856 /* If this is a vfork parent, bail out, it is not going to report
2857 any SIGSTOP until the vfork is done with. */
2858 if (inf->vfork_child != NULL)
2859 return 0;
2860
2861 if (!lp->stopped)
2862 {
2863 int status;
2864
2865 status = wait_lwp (lp);
2866 if (status == 0)
2867 return 0;
2868
2869 if (lp->ignore_sigint && WIFSTOPPED (status)
2870 && WSTOPSIG (status) == SIGINT)
2871 {
2872 lp->ignore_sigint = 0;
2873
2874 errno = 0;
2875 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2876 if (debug_linux_nat)
2877 fprintf_unfiltered (gdb_stdlog,
2878 "PTRACE_CONT %s, 0, 0 (%s) "
2879 "(discarding SIGINT)\n",
2880 target_pid_to_str (lp->ptid),
2881 errno ? safe_strerror (errno) : "OK");
2882
2883 return stop_wait_callback (lp, NULL);
2884 }
2885
2886 maybe_clear_ignore_sigint (lp);
2887
2888 if (WSTOPSIG (status) != SIGSTOP)
2889 {
2890 /* The thread was stopped with a signal other than SIGSTOP. */
2891
2892 save_sigtrap (lp);
2893
2894 if (debug_linux_nat)
2895 fprintf_unfiltered (gdb_stdlog,
2896 "SWC: Pending event %s in %s\n",
2897 status_to_str ((int) status),
2898 target_pid_to_str (lp->ptid));
2899
2900 /* Save the sigtrap event. */
2901 lp->status = status;
2902 gdb_assert (!lp->stopped);
2903 gdb_assert (lp->signalled);
2904 lp->stopped = 1;
2905 }
2906 else
2907 {
2908 /* We caught the SIGSTOP that we intended to catch, so
2909 there's no SIGSTOP pending. */
2910
2911 if (debug_linux_nat)
2912 fprintf_unfiltered (gdb_stdlog,
2913 "SWC: Delayed SIGSTOP caught for %s.\n",
2914 target_pid_to_str (lp->ptid));
2915
2916 lp->stopped = 1;
2917
2918 /* Reset SIGNALLED only after the stop_wait_callback call
2919 above as it does gdb_assert on SIGNALLED. */
2920 lp->signalled = 0;
2921 }
2922 }
2923
2924 return 0;
2925 }
2926
2927 /* Return non-zero if LP has a wait status pending. */
2928
2929 static int
2930 status_callback (struct lwp_info *lp, void *data)
2931 {
2932 /* Only report a pending wait status if we pretend that this has
2933 indeed been resumed. */
2934 if (!lp->resumed)
2935 return 0;
2936
2937 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2938 {
2939 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2940 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2941 0', so a clean process exit can not be stored pending in
2942 lp->status, it is indistinguishable from
2943 no-pending-status. */
2944 return 1;
2945 }
2946
2947 if (lp->status != 0)
2948 return 1;
2949
2950 return 0;
2951 }
2952
2953 /* Return non-zero if LP isn't stopped. */
2954
2955 static int
2956 running_callback (struct lwp_info *lp, void *data)
2957 {
2958 return (!lp->stopped
2959 || ((lp->status != 0
2960 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2961 && lp->resumed));
2962 }
2963
2964 /* Count the LWP's that have had events. */
2965
2966 static int
2967 count_events_callback (struct lwp_info *lp, void *data)
2968 {
2969 int *count = data;
2970
2971 gdb_assert (count != NULL);
2972
2973 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2974 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2975 (*count)++;
2976
2977 return 0;
2978 }
2979
2980 /* Select the LWP (if any) that is currently being single-stepped. */
2981
2982 static int
2983 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2984 {
2985 if (lp->last_resume_kind == resume_step
2986 && lp->status != 0)
2987 return 1;
2988 else
2989 return 0;
2990 }
2991
2992 /* Select the Nth LWP that has had a SIGTRAP event. */
2993
2994 static int
2995 select_event_lwp_callback (struct lwp_info *lp, void *data)
2996 {
2997 int *selector = data;
2998
2999 gdb_assert (selector != NULL);
3000
3001 /* Select only resumed LWPs that have a SIGTRAP event pending. */
3002 if (lp->resumed && linux_nat_lp_status_is_event (lp))
3003 if ((*selector)-- == 0)
3004 return 1;
3005
3006 return 0;
3007 }
3008
3009 static int
3010 cancel_breakpoint (struct lwp_info *lp)
3011 {
3012 /* Arrange for a breakpoint to be hit again later. We don't keep
3013 the SIGTRAP status and don't forward the SIGTRAP signal to the
3014 LWP. We will handle the current event, eventually we will resume
3015 this LWP, and this breakpoint will trap again.
3016
3017 If we do not do this, then we run the risk that the user will
3018 delete or disable the breakpoint, but the LWP will have already
3019 tripped on it. */
3020
3021 struct regcache *regcache = get_thread_regcache (lp->ptid);
3022 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3023 CORE_ADDR pc;
3024
3025 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
3026 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3027 {
3028 if (debug_linux_nat)
3029 fprintf_unfiltered (gdb_stdlog,
3030 "CB: Push back breakpoint for %s\n",
3031 target_pid_to_str (lp->ptid));
3032
3033 /* Back up the PC if necessary. */
3034 if (gdbarch_decr_pc_after_break (gdbarch))
3035 regcache_write_pc (regcache, pc);
3036
3037 return 1;
3038 }
3039 return 0;
3040 }
3041
3042 static int
3043 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3044 {
3045 struct lwp_info *event_lp = data;
3046
3047 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3048 if (lp == event_lp)
3049 return 0;
3050
3051 /* If a LWP other than the LWP that we're reporting an event for has
3052 hit a GDB breakpoint (as opposed to some random trap signal),
3053 then just arrange for it to hit it again later. We don't keep
3054 the SIGTRAP status and don't forward the SIGTRAP signal to the
3055 LWP. We will handle the current event, eventually we will resume
3056 all LWPs, and this one will get its breakpoint trap again.
3057
3058 If we do not do this, then we run the risk that the user will
3059 delete or disable the breakpoint, but the LWP will have already
3060 tripped on it. */
3061
3062 if (linux_nat_lp_status_is_event (lp)
3063 && cancel_breakpoint (lp))
3064 /* Throw away the SIGTRAP. */
3065 lp->status = 0;
3066
3067 return 0;
3068 }
3069
3070 /* Select one LWP out of those that have events pending. */
3071
3072 static void
3073 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3074 {
3075 int num_events = 0;
3076 int random_selector;
3077 struct lwp_info *event_lp;
3078
3079 /* Record the wait status for the original LWP. */
3080 (*orig_lp)->status = *status;
3081
3082 /* Give preference to any LWP that is being single-stepped. */
3083 event_lp = iterate_over_lwps (filter,
3084 select_singlestep_lwp_callback, NULL);
3085 if (event_lp != NULL)
3086 {
3087 if (debug_linux_nat)
3088 fprintf_unfiltered (gdb_stdlog,
3089 "SEL: Select single-step %s\n",
3090 target_pid_to_str (event_lp->ptid));
3091 }
3092 else
3093 {
3094 /* No single-stepping LWP. Select one at random, out of those
3095 which have had SIGTRAP events. */
3096
3097 /* First see how many SIGTRAP events we have. */
3098 iterate_over_lwps (filter, count_events_callback, &num_events);
3099
3100 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3101 random_selector = (int)
3102 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3103
3104 if (debug_linux_nat && num_events > 1)
3105 fprintf_unfiltered (gdb_stdlog,
3106 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3107 num_events, random_selector);
3108
3109 event_lp = iterate_over_lwps (filter,
3110 select_event_lwp_callback,
3111 &random_selector);
3112 }
3113
3114 if (event_lp != NULL)
3115 {
3116 /* Switch the event LWP. */
3117 *orig_lp = event_lp;
3118 *status = event_lp->status;
3119 }
3120
3121 /* Flush the wait status for the event LWP. */
3122 (*orig_lp)->status = 0;
3123 }
3124
3125 /* Return non-zero if LP has been resumed. */
3126
3127 static int
3128 resumed_callback (struct lwp_info *lp, void *data)
3129 {
3130 return lp->resumed;
3131 }
3132
3133 /* Stop an active thread, verify it still exists, then resume it. If
3134 the thread ends up with a pending status, then it is not resumed,
3135 and *DATA (really a pointer to int), is set. */
3136
3137 static int
3138 stop_and_resume_callback (struct lwp_info *lp, void *data)
3139 {
3140 int *new_pending_p = data;
3141
3142 if (!lp->stopped)
3143 {
3144 ptid_t ptid = lp->ptid;
3145
3146 stop_callback (lp, NULL);
3147 stop_wait_callback (lp, NULL);
3148
3149 /* Resume if the lwp still exists, and the core wanted it
3150 running. */
3151 lp = find_lwp_pid (ptid);
3152 if (lp != NULL)
3153 {
3154 if (lp->last_resume_kind == resume_stop
3155 && lp->status == 0)
3156 {
3157 /* The core wanted the LWP to stop. Even if it stopped
3158 cleanly (with SIGSTOP), leave the event pending. */
3159 if (debug_linux_nat)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "SARC: core wanted LWP %ld stopped "
3162 "(leaving SIGSTOP pending)\n",
3163 GET_LWP (lp->ptid));
3164 lp->status = W_STOPCODE (SIGSTOP);
3165 }
3166
3167 if (lp->status == 0)
3168 {
3169 if (debug_linux_nat)
3170 fprintf_unfiltered (gdb_stdlog,
3171 "SARC: re-resuming LWP %ld\n",
3172 GET_LWP (lp->ptid));
3173 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
3174 }
3175 else
3176 {
3177 if (debug_linux_nat)
3178 fprintf_unfiltered (gdb_stdlog,
3179 "SARC: not re-resuming LWP %ld "
3180 "(has pending)\n",
3181 GET_LWP (lp->ptid));
3182 if (new_pending_p)
3183 *new_pending_p = 1;
3184 }
3185 }
3186 }
3187 return 0;
3188 }
3189
3190 /* Check if we should go on and pass this event to common code.
3191 Return the affected lwp if we are, or NULL otherwise. If we stop
3192 all lwps temporarily, we may end up with new pending events in some
3193 other lwp. In that case set *NEW_PENDING_P to true. */
3194
3195 static struct lwp_info *
3196 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
3197 {
3198 struct lwp_info *lp;
3199
3200 *new_pending_p = 0;
3201
3202 lp = find_lwp_pid (pid_to_ptid (lwpid));
3203
3204 /* Check for stop events reported by a process we didn't already
3205 know about - anything not already in our LWP list.
3206
3207 If we're expecting to receive stopped processes after
3208 fork, vfork, and clone events, then we'll just add the
3209 new one to our list and go back to waiting for the event
3210 to be reported - the stopped process might be returned
3211 from waitpid before or after the event is.
3212
3213 But note the case of a non-leader thread exec'ing after the
3214 leader having exited, and gone from our lists. The non-leader
3215 thread changes its tid to the tgid. */
3216
3217 if (WIFSTOPPED (status) && lp == NULL
3218 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
3219 {
3220 /* A multi-thread exec after we had seen the leader exiting. */
3221 if (debug_linux_nat)
3222 fprintf_unfiltered (gdb_stdlog,
3223 "LLW: Re-adding thread group leader LWP %d.\n",
3224 lwpid);
3225
3226 lp = add_lwp (BUILD_LWP (lwpid, lwpid));
3227 lp->stopped = 1;
3228 lp->resumed = 1;
3229 add_thread (lp->ptid);
3230 }
3231
3232 if (WIFSTOPPED (status) && !lp)
3233 {
3234 add_to_pid_list (&stopped_pids, lwpid, status);
3235 return NULL;
3236 }
3237
3238 /* Make sure we don't report an event for the exit of an LWP not in
3239 our list, i.e. not part of the current process. This can happen
3240 if we detach from a program we originally forked and then it
3241 exits. */
3242 if (!WIFSTOPPED (status) && !lp)
3243 return NULL;
3244
3245 /* Handle GNU/Linux's syscall SIGTRAPs. */
3246 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3247 {
3248 /* No longer need the sysgood bit. The ptrace event ends up
3249 recorded in lp->waitstatus if we care for it. We can carry
3250 on handling the event like a regular SIGTRAP from here
3251 on. */
3252 status = W_STOPCODE (SIGTRAP);
3253 if (linux_handle_syscall_trap (lp, 0))
3254 return NULL;
3255 }
3256
3257 /* Handle GNU/Linux's extended waitstatus for trace events. */
3258 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3259 {
3260 if (debug_linux_nat)
3261 fprintf_unfiltered (gdb_stdlog,
3262 "LLW: Handling extended status 0x%06x\n",
3263 status);
3264 if (linux_handle_extended_wait (lp, status, 0))
3265 return NULL;
3266 }
3267
3268 if (linux_nat_status_is_event (status))
3269 save_sigtrap (lp);
3270
3271 /* Check if the thread has exited. */
3272 if ((WIFEXITED (status) || WIFSIGNALED (status))
3273 && num_lwps (GET_PID (lp->ptid)) > 1)
3274 {
3275 /* If this is the main thread, we must stop all threads and verify
3276 if they are still alive. This is because in the nptl thread model
3277 on Linux 2.4, there is no signal issued for exiting LWPs
3278 other than the main thread. We only get the main thread exit
3279 signal once all child threads have already exited. If we
3280 stop all the threads and use the stop_wait_callback to check
3281 if they have exited we can determine whether this signal
3282 should be ignored or whether it means the end of the debugged
3283 application, regardless of which threading model is being
3284 used. */
3285 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3286 {
3287 lp->stopped = 1;
3288 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3289 stop_and_resume_callback, new_pending_p);
3290 }
3291
3292 if (debug_linux_nat)
3293 fprintf_unfiltered (gdb_stdlog,
3294 "LLW: %s exited.\n",
3295 target_pid_to_str (lp->ptid));
3296
3297 if (num_lwps (GET_PID (lp->ptid)) > 1)
3298 {
3299 /* If there is at least one more LWP, then the exit signal
3300 was not the end of the debugged application and should be
3301 ignored. */
3302 exit_lwp (lp);
3303 return NULL;
3304 }
3305 }
3306
3307 /* Check if the current LWP has previously exited. In the nptl
3308 thread model, LWPs other than the main thread do not issue
3309 signals when they exit so we must check whenever the thread has
3310 stopped. A similar check is made in stop_wait_callback(). */
3311 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3312 {
3313 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3314
3315 if (debug_linux_nat)
3316 fprintf_unfiltered (gdb_stdlog,
3317 "LLW: %s exited.\n",
3318 target_pid_to_str (lp->ptid));
3319
3320 exit_lwp (lp);
3321
3322 /* Make sure there is at least one thread running. */
3323 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3324
3325 /* Discard the event. */
3326 return NULL;
3327 }
3328
3329 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3330 an attempt to stop an LWP. */
3331 if (lp->signalled
3332 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3333 {
3334 if (debug_linux_nat)
3335 fprintf_unfiltered (gdb_stdlog,
3336 "LLW: Delayed SIGSTOP caught for %s.\n",
3337 target_pid_to_str (lp->ptid));
3338
3339 lp->signalled = 0;
3340
3341 if (lp->last_resume_kind != resume_stop)
3342 {
3343 /* This is a delayed SIGSTOP. */
3344
3345 registers_changed ();
3346
3347 if (linux_nat_prepare_to_resume != NULL)
3348 linux_nat_prepare_to_resume (lp);
3349 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3350 lp->step, GDB_SIGNAL_0);
3351 if (debug_linux_nat)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3354 lp->step ?
3355 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3356 target_pid_to_str (lp->ptid));
3357
3358 lp->stopped = 0;
3359 gdb_assert (lp->resumed);
3360
3361 /* Discard the event. */
3362 return NULL;
3363 }
3364 }
3365
3366 /* Make sure we don't report a SIGINT that we have already displayed
3367 for another thread. */
3368 if (lp->ignore_sigint
3369 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3370 {
3371 if (debug_linux_nat)
3372 fprintf_unfiltered (gdb_stdlog,
3373 "LLW: Delayed SIGINT caught for %s.\n",
3374 target_pid_to_str (lp->ptid));
3375
3376 /* This is a delayed SIGINT. */
3377 lp->ignore_sigint = 0;
3378
3379 registers_changed ();
3380 if (linux_nat_prepare_to_resume != NULL)
3381 linux_nat_prepare_to_resume (lp);
3382 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3383 lp->step, GDB_SIGNAL_0);
3384 if (debug_linux_nat)
3385 fprintf_unfiltered (gdb_stdlog,
3386 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3387 lp->step ?
3388 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3389 target_pid_to_str (lp->ptid));
3390
3391 lp->stopped = 0;
3392 gdb_assert (lp->resumed);
3393
3394 /* Discard the event. */
3395 return NULL;
3396 }
3397
3398 /* An interesting event. */
3399 gdb_assert (lp);
3400 lp->status = status;
3401 return lp;
3402 }
3403
3404 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3405 their exits until all other threads in the group have exited. */
3406
3407 static void
3408 check_zombie_leaders (void)
3409 {
3410 struct inferior *inf;
3411
3412 ALL_INFERIORS (inf)
3413 {
3414 struct lwp_info *leader_lp;
3415
3416 if (inf->pid == 0)
3417 continue;
3418
3419 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3420 if (leader_lp != NULL
3421 /* Check if there are other threads in the group, as we may
3422 have raced with the inferior simply exiting. */
3423 && num_lwps (inf->pid) > 1
3424 && linux_proc_pid_is_zombie (inf->pid))
3425 {
3426 if (debug_linux_nat)
3427 fprintf_unfiltered (gdb_stdlog,
3428 "CZL: Thread group leader %d zombie "
3429 "(it exited, or another thread execd).\n",
3430 inf->pid);
3431
3432 /* A leader zombie can mean one of two things:
3433
3434 - It exited, and there's an exit status pending
3435 available, or only the leader exited (not the whole
3436 program). In the latter case, we can't waitpid the
3437 leader's exit status until all other threads are gone.
3438
3439 - There are 3 or more threads in the group, and a thread
3440 other than the leader exec'd. On an exec, the Linux
3441 kernel destroys all other threads (except the execing
3442 one) in the thread group, and resets the execing thread's
3443 tid to the tgid. No exit notification is sent for the
3444 execing thread -- from the ptracer's perspective, it
3445 appears as though the execing thread just vanishes.
3446 Until we reap all other threads except the leader and the
3447 execing thread, the leader will be zombie, and the
3448 execing thread will be in `D (disc sleep)'. As soon as
3449 all other threads are reaped, the execing thread changes
3450 it's tid to the tgid, and the previous (zombie) leader
3451 vanishes, giving place to the "new" leader. We could try
3452 distinguishing the exit and exec cases, by waiting once
3453 more, and seeing if something comes out, but it doesn't
3454 sound useful. The previous leader _does_ go away, and
3455 we'll re-add the new one once we see the exec event
3456 (which is just the same as what would happen if the
3457 previous leader did exit voluntarily before some other
3458 thread execs). */
3459
3460 if (debug_linux_nat)
3461 fprintf_unfiltered (gdb_stdlog,
3462 "CZL: Thread group leader %d vanished.\n",
3463 inf->pid);
3464 exit_lwp (leader_lp);
3465 }
3466 }
3467 }
3468
3469 static ptid_t
3470 linux_nat_wait_1 (struct target_ops *ops,
3471 ptid_t ptid, struct target_waitstatus *ourstatus,
3472 int target_options)
3473 {
3474 static sigset_t prev_mask;
3475 enum resume_kind last_resume_kind;
3476 struct lwp_info *lp;
3477 int status;
3478
3479 if (debug_linux_nat)
3480 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3481
3482 /* The first time we get here after starting a new inferior, we may
3483 not have added it to the LWP list yet - this is the earliest
3484 moment at which we know its PID. */
3485 if (ptid_is_pid (inferior_ptid))
3486 {
3487 /* Upgrade the main thread's ptid. */
3488 thread_change_ptid (inferior_ptid,
3489 BUILD_LWP (GET_PID (inferior_ptid),
3490 GET_PID (inferior_ptid)));
3491
3492 lp = add_lwp (inferior_ptid);
3493 lp->resumed = 1;
3494 }
3495
3496 /* Make sure SIGCHLD is blocked. */
3497 block_child_signals (&prev_mask);
3498
3499 retry:
3500 lp = NULL;
3501 status = 0;
3502
3503 /* First check if there is a LWP with a wait status pending. */
3504 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3505 {
3506 /* Any LWP in the PTID group that's been resumed will do. */
3507 lp = iterate_over_lwps (ptid, status_callback, NULL);
3508 if (lp)
3509 {
3510 if (debug_linux_nat && lp->status)
3511 fprintf_unfiltered (gdb_stdlog,
3512 "LLW: Using pending wait status %s for %s.\n",
3513 status_to_str (lp->status),
3514 target_pid_to_str (lp->ptid));
3515 }
3516 }
3517 else if (is_lwp (ptid))
3518 {
3519 if (debug_linux_nat)
3520 fprintf_unfiltered (gdb_stdlog,
3521 "LLW: Waiting for specific LWP %s.\n",
3522 target_pid_to_str (ptid));
3523
3524 /* We have a specific LWP to check. */
3525 lp = find_lwp_pid (ptid);
3526 gdb_assert (lp);
3527
3528 if (debug_linux_nat && lp->status)
3529 fprintf_unfiltered (gdb_stdlog,
3530 "LLW: Using pending wait status %s for %s.\n",
3531 status_to_str (lp->status),
3532 target_pid_to_str (lp->ptid));
3533
3534 /* We check for lp->waitstatus in addition to lp->status,
3535 because we can have pending process exits recorded in
3536 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3537 an additional lp->status_p flag. */
3538 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3539 lp = NULL;
3540 }
3541
3542 if (!target_can_async_p ())
3543 {
3544 /* Causes SIGINT to be passed on to the attached process. */
3545 set_sigint_trap ();
3546 }
3547
3548 /* But if we don't find a pending event, we'll have to wait. */
3549
3550 while (lp == NULL)
3551 {
3552 pid_t lwpid;
3553
3554 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3555 quirks:
3556
3557 - If the thread group leader exits while other threads in the
3558 thread group still exist, waitpid(TGID, ...) hangs. That
3559 waitpid won't return an exit status until the other threads
3560 in the group are reapped.
3561
3562 - When a non-leader thread execs, that thread just vanishes
3563 without reporting an exit (so we'd hang if we waited for it
3564 explicitly in that case). The exec event is reported to
3565 the TGID pid. */
3566
3567 errno = 0;
3568 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3569 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3570 lwpid = my_waitpid (-1, &status, WNOHANG);
3571
3572 if (debug_linux_nat)
3573 fprintf_unfiltered (gdb_stdlog,
3574 "LNW: waitpid(-1, ...) returned %d, %s\n",
3575 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3576
3577 if (lwpid > 0)
3578 {
3579 /* If this is true, then we paused LWPs momentarily, and may
3580 now have pending events to handle. */
3581 int new_pending;
3582
3583 if (debug_linux_nat)
3584 {
3585 fprintf_unfiltered (gdb_stdlog,
3586 "LLW: waitpid %ld received %s\n",
3587 (long) lwpid, status_to_str (status));
3588 }
3589
3590 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3591
3592 /* STATUS is now no longer valid, use LP->STATUS instead. */
3593 status = 0;
3594
3595 if (lp && !ptid_match (lp->ptid, ptid))
3596 {
3597 gdb_assert (lp->resumed);
3598
3599 if (debug_linux_nat)
3600 fprintf (stderr,
3601 "LWP %ld got an event %06x, leaving pending.\n",
3602 ptid_get_lwp (lp->ptid), lp->status);
3603
3604 if (WIFSTOPPED (lp->status))
3605 {
3606 if (WSTOPSIG (lp->status) != SIGSTOP)
3607 {
3608 /* Cancel breakpoint hits. The breakpoint may
3609 be removed before we fetch events from this
3610 process to report to the core. It is best
3611 not to assume the moribund breakpoints
3612 heuristic always handles these cases --- it
3613 could be too many events go through to the
3614 core before this one is handled. All-stop
3615 always cancels breakpoint hits in all
3616 threads. */
3617 if (non_stop
3618 && linux_nat_lp_status_is_event (lp)
3619 && cancel_breakpoint (lp))
3620 {
3621 /* Throw away the SIGTRAP. */
3622 lp->status = 0;
3623
3624 if (debug_linux_nat)
3625 fprintf (stderr,
3626 "LLW: LWP %ld hit a breakpoint while"
3627 " waiting for another process;"
3628 " cancelled it\n",
3629 ptid_get_lwp (lp->ptid));
3630 }
3631 lp->stopped = 1;
3632 }
3633 else
3634 {
3635 lp->stopped = 1;
3636 lp->signalled = 0;
3637 }
3638 }
3639 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3640 {
3641 if (debug_linux_nat)
3642 fprintf (stderr,
3643 "Process %ld exited while stopping LWPs\n",
3644 ptid_get_lwp (lp->ptid));
3645
3646 /* This was the last lwp in the process. Since
3647 events are serialized to GDB core, and we can't
3648 report this one right now, but GDB core and the
3649 other target layers will want to be notified
3650 about the exit code/signal, leave the status
3651 pending for the next time we're able to report
3652 it. */
3653
3654 /* Prevent trying to stop this thread again. We'll
3655 never try to resume it because it has a pending
3656 status. */
3657 lp->stopped = 1;
3658
3659 /* Dead LWP's aren't expected to reported a pending
3660 sigstop. */
3661 lp->signalled = 0;
3662
3663 /* Store the pending event in the waitstatus as
3664 well, because W_EXITCODE(0,0) == 0. */
3665 store_waitstatus (&lp->waitstatus, lp->status);
3666 }
3667
3668 /* Keep looking. */
3669 lp = NULL;
3670 }
3671
3672 if (new_pending)
3673 {
3674 /* Some LWP now has a pending event. Go all the way
3675 back to check it. */
3676 goto retry;
3677 }
3678
3679 if (lp)
3680 {
3681 /* We got an event to report to the core. */
3682 break;
3683 }
3684
3685 /* Retry until nothing comes out of waitpid. A single
3686 SIGCHLD can indicate more than one child stopped. */
3687 continue;
3688 }
3689
3690 /* Check for zombie thread group leaders. Those can't be reaped
3691 until all other threads in the thread group are. */
3692 check_zombie_leaders ();
3693
3694 /* If there are no resumed children left, bail. We'd be stuck
3695 forever in the sigsuspend call below otherwise. */
3696 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3697 {
3698 if (debug_linux_nat)
3699 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3700
3701 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3702
3703 if (!target_can_async_p ())
3704 clear_sigint_trap ();
3705
3706 restore_child_signals_mask (&prev_mask);
3707 return minus_one_ptid;
3708 }
3709
3710 /* No interesting event to report to the core. */
3711
3712 if (target_options & TARGET_WNOHANG)
3713 {
3714 if (debug_linux_nat)
3715 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3716
3717 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3718 restore_child_signals_mask (&prev_mask);
3719 return minus_one_ptid;
3720 }
3721
3722 /* We shouldn't end up here unless we want to try again. */
3723 gdb_assert (lp == NULL);
3724
3725 /* Block until we get an event reported with SIGCHLD. */
3726 sigsuspend (&suspend_mask);
3727 }
3728
3729 if (!target_can_async_p ())
3730 clear_sigint_trap ();
3731
3732 gdb_assert (lp);
3733
3734 status = lp->status;
3735 lp->status = 0;
3736
3737 /* Don't report signals that GDB isn't interested in, such as
3738 signals that are neither printed nor stopped upon. Stopping all
3739 threads can be a bit time-consuming so if we want decent
3740 performance with heavily multi-threaded programs, especially when
3741 they're using a high frequency timer, we'd better avoid it if we
3742 can. */
3743
3744 if (WIFSTOPPED (status))
3745 {
3746 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3747
3748 /* When using hardware single-step, we need to report every signal.
3749 Otherwise, signals in pass_mask may be short-circuited. */
3750 if (!lp->step
3751 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3752 {
3753 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3754 here? It is not clear we should. GDB may not expect
3755 other threads to run. On the other hand, not resuming
3756 newly attached threads may cause an unwanted delay in
3757 getting them running. */
3758 registers_changed ();
3759 if (linux_nat_prepare_to_resume != NULL)
3760 linux_nat_prepare_to_resume (lp);
3761 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3762 lp->step, signo);
3763 if (debug_linux_nat)
3764 fprintf_unfiltered (gdb_stdlog,
3765 "LLW: %s %s, %s (preempt 'handle')\n",
3766 lp->step ?
3767 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3768 target_pid_to_str (lp->ptid),
3769 (signo != GDB_SIGNAL_0
3770 ? strsignal (gdb_signal_to_host (signo))
3771 : "0"));
3772 lp->stopped = 0;
3773 goto retry;
3774 }
3775
3776 if (!non_stop)
3777 {
3778 /* Only do the below in all-stop, as we currently use SIGINT
3779 to implement target_stop (see linux_nat_stop) in
3780 non-stop. */
3781 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3782 {
3783 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3784 forwarded to the entire process group, that is, all LWPs
3785 will receive it - unless they're using CLONE_THREAD to
3786 share signals. Since we only want to report it once, we
3787 mark it as ignored for all LWPs except this one. */
3788 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3789 set_ignore_sigint, NULL);
3790 lp->ignore_sigint = 0;
3791 }
3792 else
3793 maybe_clear_ignore_sigint (lp);
3794 }
3795 }
3796
3797 /* This LWP is stopped now. */
3798 lp->stopped = 1;
3799
3800 if (debug_linux_nat)
3801 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3802 status_to_str (status), target_pid_to_str (lp->ptid));
3803
3804 if (!non_stop)
3805 {
3806 /* Now stop all other LWP's ... */
3807 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3808
3809 /* ... and wait until all of them have reported back that
3810 they're no longer running. */
3811 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3812
3813 /* If we're not waiting for a specific LWP, choose an event LWP
3814 from among those that have had events. Giving equal priority
3815 to all LWPs that have had events helps prevent
3816 starvation. */
3817 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3818 select_event_lwp (ptid, &lp, &status);
3819
3820 /* Now that we've selected our final event LWP, cancel any
3821 breakpoints in other LWPs that have hit a GDB breakpoint.
3822 See the comment in cancel_breakpoints_callback to find out
3823 why. */
3824 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3825
3826 /* We'll need this to determine whether to report a SIGSTOP as
3827 TARGET_WAITKIND_0. Need to take a copy because
3828 resume_clear_callback clears it. */
3829 last_resume_kind = lp->last_resume_kind;
3830
3831 /* In all-stop, from the core's perspective, all LWPs are now
3832 stopped until a new resume action is sent over. */
3833 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3834 }
3835 else
3836 {
3837 /* See above. */
3838 last_resume_kind = lp->last_resume_kind;
3839 resume_clear_callback (lp, NULL);
3840 }
3841
3842 if (linux_nat_status_is_event (status))
3843 {
3844 if (debug_linux_nat)
3845 fprintf_unfiltered (gdb_stdlog,
3846 "LLW: trap ptid is %s.\n",
3847 target_pid_to_str (lp->ptid));
3848 }
3849
3850 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3851 {
3852 *ourstatus = lp->waitstatus;
3853 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3854 }
3855 else
3856 store_waitstatus (ourstatus, status);
3857
3858 if (debug_linux_nat)
3859 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3860
3861 restore_child_signals_mask (&prev_mask);
3862
3863 if (last_resume_kind == resume_stop
3864 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3865 && WSTOPSIG (status) == SIGSTOP)
3866 {
3867 /* A thread that has been requested to stop by GDB with
3868 target_stop, and it stopped cleanly, so report as SIG0. The
3869 use of SIGSTOP is an implementation detail. */
3870 ourstatus->value.sig = GDB_SIGNAL_0;
3871 }
3872
3873 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3874 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3875 lp->core = -1;
3876 else
3877 lp->core = linux_common_core_of_thread (lp->ptid);
3878
3879 return lp->ptid;
3880 }
3881
3882 /* Resume LWPs that are currently stopped without any pending status
3883 to report, but are resumed from the core's perspective. */
3884
3885 static int
3886 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3887 {
3888 ptid_t *wait_ptid_p = data;
3889
3890 if (lp->stopped
3891 && lp->resumed
3892 && lp->status == 0
3893 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3894 {
3895 struct regcache *regcache = get_thread_regcache (lp->ptid);
3896 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3897 CORE_ADDR pc = regcache_read_pc (regcache);
3898
3899 gdb_assert (is_executing (lp->ptid));
3900
3901 /* Don't bother if there's a breakpoint at PC that we'd hit
3902 immediately, and we're not waiting for this LWP. */
3903 if (!ptid_match (lp->ptid, *wait_ptid_p))
3904 {
3905 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3906 return 0;
3907 }
3908
3909 if (debug_linux_nat)
3910 fprintf_unfiltered (gdb_stdlog,
3911 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3912 target_pid_to_str (lp->ptid),
3913 paddress (gdbarch, pc),
3914 lp->step);
3915
3916 registers_changed ();
3917 if (linux_nat_prepare_to_resume != NULL)
3918 linux_nat_prepare_to_resume (lp);
3919 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3920 lp->step, GDB_SIGNAL_0);
3921 lp->stopped = 0;
3922 lp->stopped_by_watchpoint = 0;
3923 }
3924
3925 return 0;
3926 }
3927
3928 static ptid_t
3929 linux_nat_wait (struct target_ops *ops,
3930 ptid_t ptid, struct target_waitstatus *ourstatus,
3931 int target_options)
3932 {
3933 ptid_t event_ptid;
3934
3935 if (debug_linux_nat)
3936 {
3937 char *options_string;
3938
3939 options_string = target_options_to_string (target_options);
3940 fprintf_unfiltered (gdb_stdlog,
3941 "linux_nat_wait: [%s], [%s]\n",
3942 target_pid_to_str (ptid),
3943 options_string);
3944 xfree (options_string);
3945 }
3946
3947 /* Flush the async file first. */
3948 if (target_can_async_p ())
3949 async_file_flush ();
3950
3951 /* Resume LWPs that are currently stopped without any pending status
3952 to report, but are resumed from the core's perspective. LWPs get
3953 in this state if we find them stopping at a time we're not
3954 interested in reporting the event (target_wait on a
3955 specific_process, for example, see linux_nat_wait_1), and
3956 meanwhile the event became uninteresting. Don't bother resuming
3957 LWPs we're not going to wait for if they'd stop immediately. */
3958 if (non_stop)
3959 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3960
3961 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3962
3963 /* If we requested any event, and something came out, assume there
3964 may be more. If we requested a specific lwp or process, also
3965 assume there may be more. */
3966 if (target_can_async_p ()
3967 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3968 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3969 || !ptid_equal (ptid, minus_one_ptid)))
3970 async_file_mark ();
3971
3972 /* Get ready for the next event. */
3973 if (target_can_async_p ())
3974 target_async (inferior_event_handler, 0);
3975
3976 return event_ptid;
3977 }
3978
3979 static int
3980 kill_callback (struct lwp_info *lp, void *data)
3981 {
3982 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3983
3984 errno = 0;
3985 kill (GET_LWP (lp->ptid), SIGKILL);
3986 if (debug_linux_nat)
3987 fprintf_unfiltered (gdb_stdlog,
3988 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3989 target_pid_to_str (lp->ptid),
3990 errno ? safe_strerror (errno) : "OK");
3991
3992 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3993
3994 errno = 0;
3995 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3996 if (debug_linux_nat)
3997 fprintf_unfiltered (gdb_stdlog,
3998 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3999 target_pid_to_str (lp->ptid),
4000 errno ? safe_strerror (errno) : "OK");
4001
4002 return 0;
4003 }
4004
4005 static int
4006 kill_wait_callback (struct lwp_info *lp, void *data)
4007 {
4008 pid_t pid;
4009
4010 /* We must make sure that there are no pending events (delayed
4011 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
4012 program doesn't interfere with any following debugging session. */
4013
4014 /* For cloned processes we must check both with __WCLONE and
4015 without, since the exit status of a cloned process isn't reported
4016 with __WCLONE. */
4017 if (lp->cloned)
4018 {
4019 do
4020 {
4021 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
4022 if (pid != (pid_t) -1)
4023 {
4024 if (debug_linux_nat)
4025 fprintf_unfiltered (gdb_stdlog,
4026 "KWC: wait %s received unknown.\n",
4027 target_pid_to_str (lp->ptid));
4028 /* The Linux kernel sometimes fails to kill a thread
4029 completely after PTRACE_KILL; that goes from the stop
4030 point in do_fork out to the one in
4031 get_signal_to_deliever and waits again. So kill it
4032 again. */
4033 kill_callback (lp, NULL);
4034 }
4035 }
4036 while (pid == GET_LWP (lp->ptid));
4037
4038 gdb_assert (pid == -1 && errno == ECHILD);
4039 }
4040
4041 do
4042 {
4043 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
4044 if (pid != (pid_t) -1)
4045 {
4046 if (debug_linux_nat)
4047 fprintf_unfiltered (gdb_stdlog,
4048 "KWC: wait %s received unk.\n",
4049 target_pid_to_str (lp->ptid));
4050 /* See the call to kill_callback above. */
4051 kill_callback (lp, NULL);
4052 }
4053 }
4054 while (pid == GET_LWP (lp->ptid));
4055
4056 gdb_assert (pid == -1 && errno == ECHILD);
4057 return 0;
4058 }
4059
4060 static void
4061 linux_nat_kill (struct target_ops *ops)
4062 {
4063 struct target_waitstatus last;
4064 ptid_t last_ptid;
4065 int status;
4066
4067 /* If we're stopped while forking and we haven't followed yet,
4068 kill the other task. We need to do this first because the
4069 parent will be sleeping if this is a vfork. */
4070
4071 get_last_target_status (&last_ptid, &last);
4072
4073 if (last.kind == TARGET_WAITKIND_FORKED
4074 || last.kind == TARGET_WAITKIND_VFORKED)
4075 {
4076 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4077 wait (&status);
4078 }
4079
4080 if (forks_exist_p ())
4081 linux_fork_killall ();
4082 else
4083 {
4084 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4085
4086 /* Stop all threads before killing them, since ptrace requires
4087 that the thread is stopped to sucessfully PTRACE_KILL. */
4088 iterate_over_lwps (ptid, stop_callback, NULL);
4089 /* ... and wait until all of them have reported back that
4090 they're no longer running. */
4091 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4092
4093 /* Kill all LWP's ... */
4094 iterate_over_lwps (ptid, kill_callback, NULL);
4095
4096 /* ... and wait until we've flushed all events. */
4097 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4098 }
4099
4100 target_mourn_inferior ();
4101 }
4102
4103 static void
4104 linux_nat_mourn_inferior (struct target_ops *ops)
4105 {
4106 purge_lwp_list (ptid_get_pid (inferior_ptid));
4107
4108 if (! forks_exist_p ())
4109 /* Normal case, no other forks available. */
4110 linux_ops->to_mourn_inferior (ops);
4111 else
4112 /* Multi-fork case. The current inferior_ptid has exited, but
4113 there are other viable forks to debug. Delete the exiting
4114 one and context-switch to the first available. */
4115 linux_fork_mourn_inferior ();
4116 }
4117
4118 /* Convert a native/host siginfo object, into/from the siginfo in the
4119 layout of the inferiors' architecture. */
4120
4121 static void
4122 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
4123 {
4124 int done = 0;
4125
4126 if (linux_nat_siginfo_fixup != NULL)
4127 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4128
4129 /* If there was no callback, or the callback didn't do anything,
4130 then just do a straight memcpy. */
4131 if (!done)
4132 {
4133 if (direction == 1)
4134 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
4135 else
4136 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
4137 }
4138 }
4139
4140 static LONGEST
4141 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4142 const char *annex, gdb_byte *readbuf,
4143 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4144 {
4145 int pid;
4146 siginfo_t siginfo;
4147 gdb_byte inf_siginfo[sizeof (siginfo_t)];
4148
4149 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4150 gdb_assert (readbuf || writebuf);
4151
4152 pid = GET_LWP (inferior_ptid);
4153 if (pid == 0)
4154 pid = GET_PID (inferior_ptid);
4155
4156 if (offset > sizeof (siginfo))
4157 return -1;
4158
4159 errno = 0;
4160 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4161 if (errno != 0)
4162 return -1;
4163
4164 /* When GDB is built as a 64-bit application, ptrace writes into
4165 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4166 inferior with a 64-bit GDB should look the same as debugging it
4167 with a 32-bit GDB, we need to convert it. GDB core always sees
4168 the converted layout, so any read/write will have to be done
4169 post-conversion. */
4170 siginfo_fixup (&siginfo, inf_siginfo, 0);
4171
4172 if (offset + len > sizeof (siginfo))
4173 len = sizeof (siginfo) - offset;
4174
4175 if (readbuf != NULL)
4176 memcpy (readbuf, inf_siginfo + offset, len);
4177 else
4178 {
4179 memcpy (inf_siginfo + offset, writebuf, len);
4180
4181 /* Convert back to ptrace layout before flushing it out. */
4182 siginfo_fixup (&siginfo, inf_siginfo, 1);
4183
4184 errno = 0;
4185 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4186 if (errno != 0)
4187 return -1;
4188 }
4189
4190 return len;
4191 }
4192
4193 static LONGEST
4194 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4195 const char *annex, gdb_byte *readbuf,
4196 const gdb_byte *writebuf,
4197 ULONGEST offset, LONGEST len)
4198 {
4199 struct cleanup *old_chain;
4200 LONGEST xfer;
4201
4202 if (object == TARGET_OBJECT_SIGNAL_INFO)
4203 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4204 offset, len);
4205
4206 /* The target is connected but no live inferior is selected. Pass
4207 this request down to a lower stratum (e.g., the executable
4208 file). */
4209 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4210 return 0;
4211
4212 old_chain = save_inferior_ptid ();
4213
4214 if (is_lwp (inferior_ptid))
4215 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4216
4217 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4218 offset, len);
4219
4220 do_cleanups (old_chain);
4221 return xfer;
4222 }
4223
4224 static int
4225 linux_thread_alive (ptid_t ptid)
4226 {
4227 int err, tmp_errno;
4228
4229 gdb_assert (is_lwp (ptid));
4230
4231 /* Send signal 0 instead of anything ptrace, because ptracing a
4232 running thread errors out claiming that the thread doesn't
4233 exist. */
4234 err = kill_lwp (GET_LWP (ptid), 0);
4235 tmp_errno = errno;
4236 if (debug_linux_nat)
4237 fprintf_unfiltered (gdb_stdlog,
4238 "LLTA: KILL(SIG0) %s (%s)\n",
4239 target_pid_to_str (ptid),
4240 err ? safe_strerror (tmp_errno) : "OK");
4241
4242 if (err != 0)
4243 return 0;
4244
4245 return 1;
4246 }
4247
4248 static int
4249 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4250 {
4251 return linux_thread_alive (ptid);
4252 }
4253
4254 static char *
4255 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4256 {
4257 static char buf[64];
4258
4259 if (is_lwp (ptid)
4260 && (GET_PID (ptid) != GET_LWP (ptid)
4261 || num_lwps (GET_PID (ptid)) > 1))
4262 {
4263 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4264 return buf;
4265 }
4266
4267 return normal_pid_to_str (ptid);
4268 }
4269
4270 static char *
4271 linux_nat_thread_name (struct thread_info *thr)
4272 {
4273 int pid = ptid_get_pid (thr->ptid);
4274 long lwp = ptid_get_lwp (thr->ptid);
4275 #define FORMAT "/proc/%d/task/%ld/comm"
4276 char buf[sizeof (FORMAT) + 30];
4277 FILE *comm_file;
4278 char *result = NULL;
4279
4280 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4281 comm_file = fopen (buf, "r");
4282 if (comm_file)
4283 {
4284 /* Not exported by the kernel, so we define it here. */
4285 #define COMM_LEN 16
4286 static char line[COMM_LEN + 1];
4287
4288 if (fgets (line, sizeof (line), comm_file))
4289 {
4290 char *nl = strchr (line, '\n');
4291
4292 if (nl)
4293 *nl = '\0';
4294 if (*line != '\0')
4295 result = line;
4296 }
4297
4298 fclose (comm_file);
4299 }
4300
4301 #undef COMM_LEN
4302 #undef FORMAT
4303
4304 return result;
4305 }
4306
4307 /* Accepts an integer PID; Returns a string representing a file that
4308 can be opened to get the symbols for the child process. */
4309
4310 static char *
4311 linux_child_pid_to_exec_file (int pid)
4312 {
4313 char *name1, *name2;
4314
4315 name1 = xmalloc (MAXPATHLEN);
4316 name2 = xmalloc (MAXPATHLEN);
4317 make_cleanup (xfree, name1);
4318 make_cleanup (xfree, name2);
4319 memset (name2, 0, MAXPATHLEN);
4320
4321 sprintf (name1, "/proc/%d/exe", pid);
4322 if (readlink (name1, name2, MAXPATHLEN) > 0)
4323 return name2;
4324 else
4325 return name1;
4326 }
4327
4328 /* Records the thread's register state for the corefile note
4329 section. */
4330
4331 static char *
4332 linux_nat_collect_thread_registers (const struct regcache *regcache,
4333 ptid_t ptid, bfd *obfd,
4334 char *note_data, int *note_size,
4335 enum gdb_signal stop_signal)
4336 {
4337 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4338 const struct regset *regset;
4339 int core_regset_p;
4340 gdb_gregset_t gregs;
4341 gdb_fpregset_t fpregs;
4342
4343 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4344
4345 if (core_regset_p
4346 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4347 sizeof (gregs)))
4348 != NULL && regset->collect_regset != NULL)
4349 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4350 else
4351 fill_gregset (regcache, &gregs, -1);
4352
4353 note_data = (char *) elfcore_write_prstatus
4354 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4355 gdb_signal_to_host (stop_signal), &gregs);
4356
4357 if (core_regset_p
4358 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4359 sizeof (fpregs)))
4360 != NULL && regset->collect_regset != NULL)
4361 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4362 else
4363 fill_fpregset (regcache, &fpregs, -1);
4364
4365 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4366 &fpregs, sizeof (fpregs));
4367
4368 return note_data;
4369 }
4370
4371 /* Fills the "to_make_corefile_note" target vector. Builds the note
4372 section for a corefile, and returns it in a malloc buffer. */
4373
4374 static char *
4375 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4376 {
4377 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4378 converted to gdbarch_core_regset_sections, this function can go away. */
4379 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4380 linux_nat_collect_thread_registers);
4381 }
4382
4383 /* Implement the to_xfer_partial interface for memory reads using the /proc
4384 filesystem. Because we can use a single read() call for /proc, this
4385 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4386 but it doesn't support writes. */
4387
4388 static LONGEST
4389 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4390 const char *annex, gdb_byte *readbuf,
4391 const gdb_byte *writebuf,
4392 ULONGEST offset, LONGEST len)
4393 {
4394 LONGEST ret;
4395 int fd;
4396 char filename[64];
4397
4398 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4399 return 0;
4400
4401 /* Don't bother for one word. */
4402 if (len < 3 * sizeof (long))
4403 return 0;
4404
4405 /* We could keep this file open and cache it - possibly one per
4406 thread. That requires some juggling, but is even faster. */
4407 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4408 fd = open (filename, O_RDONLY | O_LARGEFILE);
4409 if (fd == -1)
4410 return 0;
4411
4412 /* If pread64 is available, use it. It's faster if the kernel
4413 supports it (only one syscall), and it's 64-bit safe even on
4414 32-bit platforms (for instance, SPARC debugging a SPARC64
4415 application). */
4416 #ifdef HAVE_PREAD64
4417 if (pread64 (fd, readbuf, len, offset) != len)
4418 #else
4419 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4420 #endif
4421 ret = 0;
4422 else
4423 ret = len;
4424
4425 close (fd);
4426 return ret;
4427 }
4428
4429
4430 /* Enumerate spufs IDs for process PID. */
4431 static LONGEST
4432 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4433 {
4434 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4435 LONGEST pos = 0;
4436 LONGEST written = 0;
4437 char path[128];
4438 DIR *dir;
4439 struct dirent *entry;
4440
4441 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4442 dir = opendir (path);
4443 if (!dir)
4444 return -1;
4445
4446 rewinddir (dir);
4447 while ((entry = readdir (dir)) != NULL)
4448 {
4449 struct stat st;
4450 struct statfs stfs;
4451 int fd;
4452
4453 fd = atoi (entry->d_name);
4454 if (!fd)
4455 continue;
4456
4457 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4458 if (stat (path, &st) != 0)
4459 continue;
4460 if (!S_ISDIR (st.st_mode))
4461 continue;
4462
4463 if (statfs (path, &stfs) != 0)
4464 continue;
4465 if (stfs.f_type != SPUFS_MAGIC)
4466 continue;
4467
4468 if (pos >= offset && pos + 4 <= offset + len)
4469 {
4470 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4471 written += 4;
4472 }
4473 pos += 4;
4474 }
4475
4476 closedir (dir);
4477 return written;
4478 }
4479
4480 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4481 object type, using the /proc file system. */
4482 static LONGEST
4483 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4484 const char *annex, gdb_byte *readbuf,
4485 const gdb_byte *writebuf,
4486 ULONGEST offset, LONGEST len)
4487 {
4488 char buf[128];
4489 int fd = 0;
4490 int ret = -1;
4491 int pid = PIDGET (inferior_ptid);
4492
4493 if (!annex)
4494 {
4495 if (!readbuf)
4496 return -1;
4497 else
4498 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4499 }
4500
4501 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4502 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4503 if (fd <= 0)
4504 return -1;
4505
4506 if (offset != 0
4507 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4508 {
4509 close (fd);
4510 return 0;
4511 }
4512
4513 if (writebuf)
4514 ret = write (fd, writebuf, (size_t) len);
4515 else if (readbuf)
4516 ret = read (fd, readbuf, (size_t) len);
4517
4518 close (fd);
4519 return ret;
4520 }
4521
4522
4523 /* Parse LINE as a signal set and add its set bits to SIGS. */
4524
4525 static void
4526 add_line_to_sigset (const char *line, sigset_t *sigs)
4527 {
4528 int len = strlen (line) - 1;
4529 const char *p;
4530 int signum;
4531
4532 if (line[len] != '\n')
4533 error (_("Could not parse signal set: %s"), line);
4534
4535 p = line;
4536 signum = len * 4;
4537 while (len-- > 0)
4538 {
4539 int digit;
4540
4541 if (*p >= '0' && *p <= '9')
4542 digit = *p - '0';
4543 else if (*p >= 'a' && *p <= 'f')
4544 digit = *p - 'a' + 10;
4545 else
4546 error (_("Could not parse signal set: %s"), line);
4547
4548 signum -= 4;
4549
4550 if (digit & 1)
4551 sigaddset (sigs, signum + 1);
4552 if (digit & 2)
4553 sigaddset (sigs, signum + 2);
4554 if (digit & 4)
4555 sigaddset (sigs, signum + 3);
4556 if (digit & 8)
4557 sigaddset (sigs, signum + 4);
4558
4559 p++;
4560 }
4561 }
4562
4563 /* Find process PID's pending signals from /proc/pid/status and set
4564 SIGS to match. */
4565
4566 void
4567 linux_proc_pending_signals (int pid, sigset_t *pending,
4568 sigset_t *blocked, sigset_t *ignored)
4569 {
4570 FILE *procfile;
4571 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4572 struct cleanup *cleanup;
4573
4574 sigemptyset (pending);
4575 sigemptyset (blocked);
4576 sigemptyset (ignored);
4577 sprintf (fname, "/proc/%d/status", pid);
4578 procfile = fopen (fname, "r");
4579 if (procfile == NULL)
4580 error (_("Could not open %s"), fname);
4581 cleanup = make_cleanup_fclose (procfile);
4582
4583 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4584 {
4585 /* Normal queued signals are on the SigPnd line in the status
4586 file. However, 2.6 kernels also have a "shared" pending
4587 queue for delivering signals to a thread group, so check for
4588 a ShdPnd line also.
4589
4590 Unfortunately some Red Hat kernels include the shared pending
4591 queue but not the ShdPnd status field. */
4592
4593 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4594 add_line_to_sigset (buffer + 8, pending);
4595 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4596 add_line_to_sigset (buffer + 8, pending);
4597 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4598 add_line_to_sigset (buffer + 8, blocked);
4599 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4600 add_line_to_sigset (buffer + 8, ignored);
4601 }
4602
4603 do_cleanups (cleanup);
4604 }
4605
4606 static LONGEST
4607 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4608 const char *annex, gdb_byte *readbuf,
4609 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4610 {
4611 gdb_assert (object == TARGET_OBJECT_OSDATA);
4612
4613 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4614 }
4615
4616 static LONGEST
4617 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4618 const char *annex, gdb_byte *readbuf,
4619 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4620 {
4621 LONGEST xfer;
4622
4623 if (object == TARGET_OBJECT_AUXV)
4624 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4625 offset, len);
4626
4627 if (object == TARGET_OBJECT_OSDATA)
4628 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4629 offset, len);
4630
4631 if (object == TARGET_OBJECT_SPU)
4632 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4633 offset, len);
4634
4635 /* GDB calculates all the addresses in possibly larget width of the address.
4636 Address width needs to be masked before its final use - either by
4637 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4638
4639 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4640
4641 if (object == TARGET_OBJECT_MEMORY)
4642 {
4643 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4644
4645 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4646 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4647 }
4648
4649 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4650 offset, len);
4651 if (xfer != 0)
4652 return xfer;
4653
4654 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4655 offset, len);
4656 }
4657
4658 static void
4659 cleanup_target_stop (void *arg)
4660 {
4661 ptid_t *ptid = (ptid_t *) arg;
4662
4663 gdb_assert (arg != NULL);
4664
4665 /* Unpause all */
4666 target_resume (*ptid, 0, GDB_SIGNAL_0);
4667 }
4668
4669 static VEC(static_tracepoint_marker_p) *
4670 linux_child_static_tracepoint_markers_by_strid (const char *strid)
4671 {
4672 char s[IPA_CMD_BUF_SIZE];
4673 struct cleanup *old_chain;
4674 int pid = ptid_get_pid (inferior_ptid);
4675 VEC(static_tracepoint_marker_p) *markers = NULL;
4676 struct static_tracepoint_marker *marker = NULL;
4677 char *p = s;
4678 ptid_t ptid = ptid_build (pid, 0, 0);
4679
4680 /* Pause all */
4681 target_stop (ptid);
4682
4683 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4684 s[sizeof ("qTfSTM")] = 0;
4685
4686 agent_run_command (pid, s, strlen (s) + 1);
4687
4688 old_chain = make_cleanup (free_current_marker, &marker);
4689 make_cleanup (cleanup_target_stop, &ptid);
4690
4691 while (*p++ == 'm')
4692 {
4693 if (marker == NULL)
4694 marker = XCNEW (struct static_tracepoint_marker);
4695
4696 do
4697 {
4698 parse_static_tracepoint_marker_definition (p, &p, marker);
4699
4700 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4701 {
4702 VEC_safe_push (static_tracepoint_marker_p,
4703 markers, marker);
4704 marker = NULL;
4705 }
4706 else
4707 {
4708 release_static_tracepoint_marker (marker);
4709 memset (marker, 0, sizeof (*marker));
4710 }
4711 }
4712 while (*p++ == ','); /* comma-separated list */
4713
4714 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4715 s[sizeof ("qTsSTM")] = 0;
4716 agent_run_command (pid, s, strlen (s) + 1);
4717 p = s;
4718 }
4719
4720 do_cleanups (old_chain);
4721
4722 return markers;
4723 }
4724
4725 /* Create a prototype generic GNU/Linux target. The client can override
4726 it with local methods. */
4727
4728 static void
4729 linux_target_install_ops (struct target_ops *t)
4730 {
4731 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4732 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4733 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4734 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4735 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4736 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4737 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4738 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4739 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4740 t->to_post_attach = linux_child_post_attach;
4741 t->to_follow_fork = linux_child_follow_fork;
4742 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4743
4744 super_xfer_partial = t->to_xfer_partial;
4745 t->to_xfer_partial = linux_xfer_partial;
4746
4747 t->to_static_tracepoint_markers_by_strid
4748 = linux_child_static_tracepoint_markers_by_strid;
4749 }
4750
4751 struct target_ops *
4752 linux_target (void)
4753 {
4754 struct target_ops *t;
4755
4756 t = inf_ptrace_target ();
4757 linux_target_install_ops (t);
4758
4759 return t;
4760 }
4761
4762 struct target_ops *
4763 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4764 {
4765 struct target_ops *t;
4766
4767 t = inf_ptrace_trad_target (register_u_offset);
4768 linux_target_install_ops (t);
4769
4770 return t;
4771 }
4772
4773 /* target_is_async_p implementation. */
4774
4775 static int
4776 linux_nat_is_async_p (void)
4777 {
4778 /* NOTE: palves 2008-03-21: We're only async when the user requests
4779 it explicitly with the "set target-async" command.
4780 Someday, linux will always be async. */
4781 return target_async_permitted;
4782 }
4783
4784 /* target_can_async_p implementation. */
4785
4786 static int
4787 linux_nat_can_async_p (void)
4788 {
4789 /* NOTE: palves 2008-03-21: We're only async when the user requests
4790 it explicitly with the "set target-async" command.
4791 Someday, linux will always be async. */
4792 return target_async_permitted;
4793 }
4794
4795 static int
4796 linux_nat_supports_non_stop (void)
4797 {
4798 return 1;
4799 }
4800
4801 /* True if we want to support multi-process. To be removed when GDB
4802 supports multi-exec. */
4803
4804 int linux_multi_process = 1;
4805
4806 static int
4807 linux_nat_supports_multi_process (void)
4808 {
4809 return linux_multi_process;
4810 }
4811
4812 static int
4813 linux_nat_supports_disable_randomization (void)
4814 {
4815 #ifdef HAVE_PERSONALITY
4816 return 1;
4817 #else
4818 return 0;
4819 #endif
4820 }
4821
4822 static int async_terminal_is_ours = 1;
4823
4824 /* target_terminal_inferior implementation. */
4825
4826 static void
4827 linux_nat_terminal_inferior (void)
4828 {
4829 if (!target_is_async_p ())
4830 {
4831 /* Async mode is disabled. */
4832 terminal_inferior ();
4833 return;
4834 }
4835
4836 terminal_inferior ();
4837
4838 /* Calls to target_terminal_*() are meant to be idempotent. */
4839 if (!async_terminal_is_ours)
4840 return;
4841
4842 delete_file_handler (input_fd);
4843 async_terminal_is_ours = 0;
4844 set_sigint_trap ();
4845 }
4846
4847 /* target_terminal_ours implementation. */
4848
4849 static void
4850 linux_nat_terminal_ours (void)
4851 {
4852 if (!target_is_async_p ())
4853 {
4854 /* Async mode is disabled. */
4855 terminal_ours ();
4856 return;
4857 }
4858
4859 /* GDB should never give the terminal to the inferior if the
4860 inferior is running in the background (run&, continue&, etc.),
4861 but claiming it sure should. */
4862 terminal_ours ();
4863
4864 if (async_terminal_is_ours)
4865 return;
4866
4867 clear_sigint_trap ();
4868 add_file_handler (input_fd, stdin_event_handler, 0);
4869 async_terminal_is_ours = 1;
4870 }
4871
4872 static void (*async_client_callback) (enum inferior_event_type event_type,
4873 void *context);
4874 static void *async_client_context;
4875
4876 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4877 so we notice when any child changes state, and notify the
4878 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4879 above to wait for the arrival of a SIGCHLD. */
4880
4881 static void
4882 sigchld_handler (int signo)
4883 {
4884 int old_errno = errno;
4885
4886 if (debug_linux_nat)
4887 ui_file_write_async_safe (gdb_stdlog,
4888 "sigchld\n", sizeof ("sigchld\n") - 1);
4889
4890 if (signo == SIGCHLD
4891 && linux_nat_event_pipe[0] != -1)
4892 async_file_mark (); /* Let the event loop know that there are
4893 events to handle. */
4894
4895 errno = old_errno;
4896 }
4897
4898 /* Callback registered with the target events file descriptor. */
4899
4900 static void
4901 handle_target_event (int error, gdb_client_data client_data)
4902 {
4903 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4904 }
4905
4906 /* Create/destroy the target events pipe. Returns previous state. */
4907
4908 static int
4909 linux_async_pipe (int enable)
4910 {
4911 int previous = (linux_nat_event_pipe[0] != -1);
4912
4913 if (previous != enable)
4914 {
4915 sigset_t prev_mask;
4916
4917 block_child_signals (&prev_mask);
4918
4919 if (enable)
4920 {
4921 if (pipe (linux_nat_event_pipe) == -1)
4922 internal_error (__FILE__, __LINE__,
4923 "creating event pipe failed.");
4924
4925 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4926 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4927 }
4928 else
4929 {
4930 close (linux_nat_event_pipe[0]);
4931 close (linux_nat_event_pipe[1]);
4932 linux_nat_event_pipe[0] = -1;
4933 linux_nat_event_pipe[1] = -1;
4934 }
4935
4936 restore_child_signals_mask (&prev_mask);
4937 }
4938
4939 return previous;
4940 }
4941
4942 /* target_async implementation. */
4943
4944 static void
4945 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4946 void *context), void *context)
4947 {
4948 if (callback != NULL)
4949 {
4950 async_client_callback = callback;
4951 async_client_context = context;
4952 if (!linux_async_pipe (1))
4953 {
4954 add_file_handler (linux_nat_event_pipe[0],
4955 handle_target_event, NULL);
4956 /* There may be pending events to handle. Tell the event loop
4957 to poll them. */
4958 async_file_mark ();
4959 }
4960 }
4961 else
4962 {
4963 async_client_callback = callback;
4964 async_client_context = context;
4965 delete_file_handler (linux_nat_event_pipe[0]);
4966 linux_async_pipe (0);
4967 }
4968 return;
4969 }
4970
4971 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4972 event came out. */
4973
4974 static int
4975 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4976 {
4977 if (!lwp->stopped)
4978 {
4979 ptid_t ptid = lwp->ptid;
4980
4981 if (debug_linux_nat)
4982 fprintf_unfiltered (gdb_stdlog,
4983 "LNSL: running -> suspending %s\n",
4984 target_pid_to_str (lwp->ptid));
4985
4986
4987 if (lwp->last_resume_kind == resume_stop)
4988 {
4989 if (debug_linux_nat)
4990 fprintf_unfiltered (gdb_stdlog,
4991 "linux-nat: already stopping LWP %ld at "
4992 "GDB's request\n",
4993 ptid_get_lwp (lwp->ptid));
4994 return 0;
4995 }
4996
4997 stop_callback (lwp, NULL);
4998 lwp->last_resume_kind = resume_stop;
4999 }
5000 else
5001 {
5002 /* Already known to be stopped; do nothing. */
5003
5004 if (debug_linux_nat)
5005 {
5006 if (find_thread_ptid (lwp->ptid)->stop_requested)
5007 fprintf_unfiltered (gdb_stdlog,
5008 "LNSL: already stopped/stop_requested %s\n",
5009 target_pid_to_str (lwp->ptid));
5010 else
5011 fprintf_unfiltered (gdb_stdlog,
5012 "LNSL: already stopped/no "
5013 "stop_requested yet %s\n",
5014 target_pid_to_str (lwp->ptid));
5015 }
5016 }
5017 return 0;
5018 }
5019
5020 static void
5021 linux_nat_stop (ptid_t ptid)
5022 {
5023 if (non_stop)
5024 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5025 else
5026 linux_ops->to_stop (ptid);
5027 }
5028
5029 static void
5030 linux_nat_close (int quitting)
5031 {
5032 /* Unregister from the event loop. */
5033 if (linux_nat_is_async_p ())
5034 linux_nat_async (NULL, 0);
5035
5036 if (linux_ops->to_close)
5037 linux_ops->to_close (quitting);
5038 }
5039
5040 /* When requests are passed down from the linux-nat layer to the
5041 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5042 used. The address space pointer is stored in the inferior object,
5043 but the common code that is passed such ptid can't tell whether
5044 lwpid is a "main" process id or not (it assumes so). We reverse
5045 look up the "main" process id from the lwp here. */
5046
5047 static struct address_space *
5048 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5049 {
5050 struct lwp_info *lwp;
5051 struct inferior *inf;
5052 int pid;
5053
5054 pid = GET_LWP (ptid);
5055 if (GET_LWP (ptid) == 0)
5056 {
5057 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5058 tgid. */
5059 lwp = find_lwp_pid (ptid);
5060 pid = GET_PID (lwp->ptid);
5061 }
5062 else
5063 {
5064 /* A (pid,lwpid,0) ptid. */
5065 pid = GET_PID (ptid);
5066 }
5067
5068 inf = find_inferior_pid (pid);
5069 gdb_assert (inf != NULL);
5070 return inf->aspace;
5071 }
5072
5073 /* Return the cached value of the processor core for thread PTID. */
5074
5075 static int
5076 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5077 {
5078 struct lwp_info *info = find_lwp_pid (ptid);
5079
5080 if (info)
5081 return info->core;
5082 return -1;
5083 }
5084
5085 void
5086 linux_nat_add_target (struct target_ops *t)
5087 {
5088 /* Save the provided single-threaded target. We save this in a separate
5089 variable because another target we've inherited from (e.g. inf-ptrace)
5090 may have saved a pointer to T; we want to use it for the final
5091 process stratum target. */
5092 linux_ops_saved = *t;
5093 linux_ops = &linux_ops_saved;
5094
5095 /* Override some methods for multithreading. */
5096 t->to_create_inferior = linux_nat_create_inferior;
5097 t->to_attach = linux_nat_attach;
5098 t->to_detach = linux_nat_detach;
5099 t->to_resume = linux_nat_resume;
5100 t->to_wait = linux_nat_wait;
5101 t->to_pass_signals = linux_nat_pass_signals;
5102 t->to_xfer_partial = linux_nat_xfer_partial;
5103 t->to_kill = linux_nat_kill;
5104 t->to_mourn_inferior = linux_nat_mourn_inferior;
5105 t->to_thread_alive = linux_nat_thread_alive;
5106 t->to_pid_to_str = linux_nat_pid_to_str;
5107 t->to_thread_name = linux_nat_thread_name;
5108 t->to_has_thread_control = tc_schedlock;
5109 t->to_thread_address_space = linux_nat_thread_address_space;
5110 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5111 t->to_stopped_data_address = linux_nat_stopped_data_address;
5112
5113 t->to_can_async_p = linux_nat_can_async_p;
5114 t->to_is_async_p = linux_nat_is_async_p;
5115 t->to_supports_non_stop = linux_nat_supports_non_stop;
5116 t->to_async = linux_nat_async;
5117 t->to_terminal_inferior = linux_nat_terminal_inferior;
5118 t->to_terminal_ours = linux_nat_terminal_ours;
5119 t->to_close = linux_nat_close;
5120
5121 /* Methods for non-stop support. */
5122 t->to_stop = linux_nat_stop;
5123
5124 t->to_supports_multi_process = linux_nat_supports_multi_process;
5125
5126 t->to_supports_disable_randomization
5127 = linux_nat_supports_disable_randomization;
5128
5129 t->to_core_of_thread = linux_nat_core_of_thread;
5130
5131 /* We don't change the stratum; this target will sit at
5132 process_stratum and thread_db will set at thread_stratum. This
5133 is a little strange, since this is a multi-threaded-capable
5134 target, but we want to be on the stack below thread_db, and we
5135 also want to be used for single-threaded processes. */
5136
5137 add_target (t);
5138 }
5139
5140 /* Register a method to call whenever a new thread is attached. */
5141 void
5142 linux_nat_set_new_thread (struct target_ops *t,
5143 void (*new_thread) (struct lwp_info *))
5144 {
5145 /* Save the pointer. We only support a single registered instance
5146 of the GNU/Linux native target, so we do not need to map this to
5147 T. */
5148 linux_nat_new_thread = new_thread;
5149 }
5150
5151 /* Register a method that converts a siginfo object between the layout
5152 that ptrace returns, and the layout in the architecture of the
5153 inferior. */
5154 void
5155 linux_nat_set_siginfo_fixup (struct target_ops *t,
5156 int (*siginfo_fixup) (siginfo_t *,
5157 gdb_byte *,
5158 int))
5159 {
5160 /* Save the pointer. */
5161 linux_nat_siginfo_fixup = siginfo_fixup;
5162 }
5163
5164 /* Register a method to call prior to resuming a thread. */
5165
5166 void
5167 linux_nat_set_prepare_to_resume (struct target_ops *t,
5168 void (*prepare_to_resume) (struct lwp_info *))
5169 {
5170 /* Save the pointer. */
5171 linux_nat_prepare_to_resume = prepare_to_resume;
5172 }
5173
5174 /* See linux-nat.h. */
5175
5176 int
5177 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
5178 {
5179 int pid;
5180
5181 pid = GET_LWP (ptid);
5182 if (pid == 0)
5183 pid = GET_PID (ptid);
5184
5185 errno = 0;
5186 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
5187 if (errno != 0)
5188 {
5189 memset (siginfo, 0, sizeof (*siginfo));
5190 return 0;
5191 }
5192 return 1;
5193 }
5194
5195 /* Provide a prototype to silence -Wmissing-prototypes. */
5196 extern initialize_file_ftype _initialize_linux_nat;
5197
5198 void
5199 _initialize_linux_nat (void)
5200 {
5201 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
5202 &debug_linux_nat, _("\
5203 Set debugging of GNU/Linux lwp module."), _("\
5204 Show debugging of GNU/Linux lwp module."), _("\
5205 Enables printf debugging output."),
5206 NULL,
5207 show_debug_linux_nat,
5208 &setdebuglist, &showdebuglist);
5209
5210 /* Save this mask as the default. */
5211 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5212
5213 /* Install a SIGCHLD handler. */
5214 sigchld_action.sa_handler = sigchld_handler;
5215 sigemptyset (&sigchld_action.sa_mask);
5216 sigchld_action.sa_flags = SA_RESTART;
5217
5218 /* Make it the default. */
5219 sigaction (SIGCHLD, &sigchld_action, NULL);
5220
5221 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5222 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5223 sigdelset (&suspend_mask, SIGCHLD);
5224
5225 sigemptyset (&blocked_mask);
5226 }
5227 \f
5228
5229 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5230 the GNU/Linux Threads library and therefore doesn't really belong
5231 here. */
5232
5233 /* Read variable NAME in the target and return its value if found.
5234 Otherwise return zero. It is assumed that the type of the variable
5235 is `int'. */
5236
5237 static int
5238 get_signo (const char *name)
5239 {
5240 struct minimal_symbol *ms;
5241 int signo;
5242
5243 ms = lookup_minimal_symbol (name, NULL, NULL);
5244 if (ms == NULL)
5245 return 0;
5246
5247 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5248 sizeof (signo)) != 0)
5249 return 0;
5250
5251 return signo;
5252 }
5253
5254 /* Return the set of signals used by the threads library in *SET. */
5255
5256 void
5257 lin_thread_get_thread_signals (sigset_t *set)
5258 {
5259 struct sigaction action;
5260 int restart, cancel;
5261
5262 sigemptyset (&blocked_mask);
5263 sigemptyset (set);
5264
5265 restart = get_signo ("__pthread_sig_restart");
5266 cancel = get_signo ("__pthread_sig_cancel");
5267
5268 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5269 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5270 not provide any way for the debugger to query the signal numbers -
5271 fortunately they don't change! */
5272
5273 if (restart == 0)
5274 restart = __SIGRTMIN;
5275
5276 if (cancel == 0)
5277 cancel = __SIGRTMIN + 1;
5278
5279 sigaddset (set, restart);
5280 sigaddset (set, cancel);
5281
5282 /* The GNU/Linux Threads library makes terminating threads send a
5283 special "cancel" signal instead of SIGCHLD. Make sure we catch
5284 those (to prevent them from terminating GDB itself, which is
5285 likely to be their default action) and treat them the same way as
5286 SIGCHLD. */
5287
5288 action.sa_handler = sigchld_handler;
5289 sigemptyset (&action.sa_mask);
5290 action.sa_flags = SA_RESTART;
5291 sigaction (cancel, &action, NULL);
5292
5293 /* We block the "cancel" signal throughout this code ... */
5294 sigaddset (&blocked_mask, cancel);
5295 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5296
5297 /* ... except during a sigsuspend. */
5298 sigdelset (&suspend_mask, cancel);
5299 }
This page took 0.142646 seconds and 4 git commands to generate.