* gdbarch.sh: Added new gdbarch struct
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52
53 /* Note on this file's use of signals:
54
55 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead
56 of another signal is not entirely significant; we just need for a
57 signal to be delivered, so that we can intercept it. SIGSTOP's
58 advantage is that it can not be blocked. A disadvantage is that it
59 is not a real-time signal, so it can only be queued once; we do not
60 keep track of other sources of SIGSTOP.
61
62 Two other signals that can't be blocked are SIGCONT and SIGKILL.
63 But we can't use them, because they have special behavior when the
64 signal is generated - not when it is delivered. SIGCONT resumes
65 the entire thread group and SIGKILL kills the entire thread group.
66
67 A delivered SIGSTOP would stop the entire thread group, not just the
68 thread we tkill'd. But we never let the SIGSTOP deliver; we always
69 intercept and cancel it (by PTRACE_CONT without passing SIGSTOP).
70
71 We could use a real-time signal instead. This would solve those
72 problems; we could use PTRACE_GETSIGINFO to locate the specific
73 stop signals sent by GDB. But we would still have to have some
74 support for SIGSTOP, since PTRACE_ATTACH generates it, and there
75 are races with trying to find a signal that is not blocked. */
76
77 #ifndef O_LARGEFILE
78 #define O_LARGEFILE 0
79 #endif
80
81 /* If the system headers did not provide the constants, hard-code the normal
82 values. */
83 #ifndef PTRACE_EVENT_FORK
84
85 #define PTRACE_SETOPTIONS 0x4200
86 #define PTRACE_GETEVENTMSG 0x4201
87
88 /* options set using PTRACE_SETOPTIONS */
89 #define PTRACE_O_TRACESYSGOOD 0x00000001
90 #define PTRACE_O_TRACEFORK 0x00000002
91 #define PTRACE_O_TRACEVFORK 0x00000004
92 #define PTRACE_O_TRACECLONE 0x00000008
93 #define PTRACE_O_TRACEEXEC 0x00000010
94 #define PTRACE_O_TRACEVFORKDONE 0x00000020
95 #define PTRACE_O_TRACEEXIT 0x00000040
96
97 /* Wait extended result codes for the above trace options. */
98 #define PTRACE_EVENT_FORK 1
99 #define PTRACE_EVENT_VFORK 2
100 #define PTRACE_EVENT_CLONE 3
101 #define PTRACE_EVENT_EXEC 4
102 #define PTRACE_EVENT_VFORK_DONE 5
103 #define PTRACE_EVENT_EXIT 6
104
105 #endif /* PTRACE_EVENT_FORK */
106
107 /* We can't always assume that this flag is available, but all systems
108 with the ptrace event handlers also have __WALL, so it's safe to use
109 here. */
110 #ifndef __WALL
111 #define __WALL 0x40000000 /* Wait for any child. */
112 #endif
113
114 #ifndef PTRACE_GETSIGINFO
115 #define PTRACE_GETSIGINFO 0x4202
116 #endif
117
118 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
119 the use of the multi-threaded target. */
120 static struct target_ops *linux_ops;
121 static struct target_ops linux_ops_saved;
122
123 /* The method to call, if any, when a new thread is attached. */
124 static void (*linux_nat_new_thread) (ptid_t);
125
126 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
127 Called by our to_xfer_partial. */
128 static LONGEST (*super_xfer_partial) (struct target_ops *,
129 enum target_object,
130 const char *, gdb_byte *,
131 const gdb_byte *,
132 ULONGEST, LONGEST);
133
134 static int debug_linux_nat;
135 static void
136 show_debug_linux_nat (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
140 value);
141 }
142
143 static int debug_linux_nat_async = 0;
144 static void
145 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
149 value);
150 }
151
152 static int linux_parent_pid;
153
154 struct simple_pid_list
155 {
156 int pid;
157 int status;
158 struct simple_pid_list *next;
159 };
160 struct simple_pid_list *stopped_pids;
161
162 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
163 can not be used, 1 if it can. */
164
165 static int linux_supports_tracefork_flag = -1;
166
167 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
168 PTRACE_O_TRACEVFORKDONE. */
169
170 static int linux_supports_tracevforkdone_flag = -1;
171
172 /* Async mode support */
173
174 /* To listen to target events asynchronously, we install a SIGCHLD
175 handler whose duty is to call waitpid (-1, ..., WNOHANG) to get all
176 the pending events into a pipe. Whenever we're ready to handle
177 events asynchronously, this pipe is registered as the waitable file
178 handle in the event loop. When we get to entry target points
179 coming out of the common code (target_wait, target_resume, ...),
180 that are going to call waitpid, we block SIGCHLD signals, and
181 remove all the events placed in the pipe into a local queue. All
182 the subsequent calls to my_waitpid (a waitpid wrapper) check this
183 local queue first. */
184
185 /* True if async mode is currently on. */
186 static int linux_nat_async_enabled;
187
188 /* Zero if the async mode, although enabled, is masked, which means
189 linux_nat_wait should behave as if async mode was off. */
190 static int linux_nat_async_mask_value = 1;
191
192 /* The read/write ends of the pipe registered as waitable file in the
193 event loop. */
194 static int linux_nat_event_pipe[2] = { -1, -1 };
195
196 /* Number of queued events in the pipe. */
197 static volatile int linux_nat_num_queued_events;
198
199 /* If async mode is on, true if we're listening for events; false if
200 target events are blocked. */
201 static int linux_nat_async_events_enabled;
202
203 static int linux_nat_async_events (int enable);
204 static void pipe_to_local_event_queue (void);
205 static void local_event_queue_to_pipe (void);
206 static void linux_nat_event_pipe_push (int pid, int status, int options);
207 static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
208 static void linux_nat_set_async_mode (int on);
209 static void linux_nat_async (void (*callback)
210 (enum inferior_event_type event_type, void *context),
211 void *context);
212 static int linux_nat_async_mask (int mask);
213 static int kill_lwp (int lwpid, int signo);
214
215 /* Captures the result of a successful waitpid call, along with the
216 options used in that call. */
217 struct waitpid_result
218 {
219 int pid;
220 int status;
221 int options;
222 struct waitpid_result *next;
223 };
224
225 /* A singly-linked list of the results of the waitpid calls performed
226 in the async SIGCHLD handler. */
227 static struct waitpid_result *waitpid_queue = NULL;
228
229 static int
230 queued_waitpid (int pid, int *status, int flags)
231 {
232 struct waitpid_result *msg = waitpid_queue, *prev = NULL;
233
234 if (debug_linux_nat_async)
235 fprintf_unfiltered (gdb_stdlog,
236 "\
237 QWPID: linux_nat_async_events_enabled(%d), linux_nat_num_queued_events(%d)\n",
238 linux_nat_async_events_enabled,
239 linux_nat_num_queued_events);
240
241 if (flags & __WALL)
242 {
243 for (; msg; prev = msg, msg = msg->next)
244 if (pid == -1 || pid == msg->pid)
245 break;
246 }
247 else if (flags & __WCLONE)
248 {
249 for (; msg; prev = msg, msg = msg->next)
250 if (msg->options & __WCLONE
251 && (pid == -1 || pid == msg->pid))
252 break;
253 }
254 else
255 {
256 for (; msg; prev = msg, msg = msg->next)
257 if ((msg->options & __WCLONE) == 0
258 && (pid == -1 || pid == msg->pid))
259 break;
260 }
261
262 if (msg)
263 {
264 int pid;
265
266 if (prev)
267 prev->next = msg->next;
268 else
269 waitpid_queue = msg->next;
270
271 msg->next = NULL;
272 if (status)
273 *status = msg->status;
274 pid = msg->pid;
275
276 if (debug_linux_nat_async)
277 fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
278 pid, msg->status);
279 xfree (msg);
280
281 return pid;
282 }
283
284 if (debug_linux_nat_async)
285 fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");
286
287 if (status)
288 *status = 0;
289 return -1;
290 }
291
292 static void
293 push_waitpid (int pid, int status, int options)
294 {
295 struct waitpid_result *event, *new_event;
296
297 new_event = xmalloc (sizeof (*new_event));
298 new_event->pid = pid;
299 new_event->status = status;
300 new_event->options = options;
301 new_event->next = NULL;
302
303 if (waitpid_queue)
304 {
305 for (event = waitpid_queue;
306 event && event->next;
307 event = event->next)
308 ;
309
310 event->next = new_event;
311 }
312 else
313 waitpid_queue = new_event;
314 }
315
316 /* Drain all queued events of PID. If PID is -1, the effect is of
317 draining all events. */
318 static void
319 drain_queued_events (int pid)
320 {
321 while (queued_waitpid (pid, NULL, __WALL) != -1)
322 ;
323 }
324
325 \f
326 /* Trivial list manipulation functions to keep track of a list of
327 new stopped processes. */
328 static void
329 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
330 {
331 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
332 new_pid->pid = pid;
333 new_pid->status = status;
334 new_pid->next = *listp;
335 *listp = new_pid;
336 }
337
338 static int
339 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
340 {
341 struct simple_pid_list **p;
342
343 for (p = listp; *p != NULL; p = &(*p)->next)
344 if ((*p)->pid == pid)
345 {
346 struct simple_pid_list *next = (*p)->next;
347 *status = (*p)->status;
348 xfree (*p);
349 *p = next;
350 return 1;
351 }
352 return 0;
353 }
354
355 static void
356 linux_record_stopped_pid (int pid, int status)
357 {
358 add_to_pid_list (&stopped_pids, pid, status);
359 }
360
361 \f
362 /* A helper function for linux_test_for_tracefork, called after fork (). */
363
364 static void
365 linux_tracefork_child (void)
366 {
367 int ret;
368
369 ptrace (PTRACE_TRACEME, 0, 0, 0);
370 kill (getpid (), SIGSTOP);
371 fork ();
372 _exit (0);
373 }
374
375 /* Wrapper function for waitpid which handles EINTR, and checks for
376 locally queued events. */
377
378 static int
379 my_waitpid (int pid, int *status, int flags)
380 {
381 int ret;
382
383 /* There should be no concurrent calls to waitpid. */
384 gdb_assert (!linux_nat_async_events_enabled);
385
386 ret = queued_waitpid (pid, status, flags);
387 if (ret != -1)
388 return ret;
389
390 do
391 {
392 ret = waitpid (pid, status, flags);
393 }
394 while (ret == -1 && errno == EINTR);
395
396 return ret;
397 }
398
399 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
400
401 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
402 we know that the feature is not available. This may change the tracing
403 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
404
405 However, if it succeeds, we don't know for sure that the feature is
406 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
407 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
408 fork tracing, and let it fork. If the process exits, we assume that we
409 can't use TRACEFORK; if we get the fork notification, and we can extract
410 the new child's PID, then we assume that we can. */
411
412 static void
413 linux_test_for_tracefork (int original_pid)
414 {
415 int child_pid, ret, status;
416 long second_pid;
417
418 linux_supports_tracefork_flag = 0;
419 linux_supports_tracevforkdone_flag = 0;
420
421 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
422 if (ret != 0)
423 return;
424
425 child_pid = fork ();
426 if (child_pid == -1)
427 perror_with_name (("fork"));
428
429 if (child_pid == 0)
430 linux_tracefork_child ();
431
432 ret = my_waitpid (child_pid, &status, 0);
433 if (ret == -1)
434 perror_with_name (("waitpid"));
435 else if (ret != child_pid)
436 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
437 if (! WIFSTOPPED (status))
438 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
439
440 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
441 if (ret != 0)
442 {
443 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
444 if (ret != 0)
445 {
446 warning (_("linux_test_for_tracefork: failed to kill child"));
447 return;
448 }
449
450 ret = my_waitpid (child_pid, &status, 0);
451 if (ret != child_pid)
452 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
453 else if (!WIFSIGNALED (status))
454 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
455 "killed child"), status);
456
457 return;
458 }
459
460 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
461 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
462 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
463 linux_supports_tracevforkdone_flag = (ret == 0);
464
465 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
466 if (ret != 0)
467 warning (_("linux_test_for_tracefork: failed to resume child"));
468
469 ret = my_waitpid (child_pid, &status, 0);
470
471 if (ret == child_pid && WIFSTOPPED (status)
472 && status >> 16 == PTRACE_EVENT_FORK)
473 {
474 second_pid = 0;
475 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
476 if (ret == 0 && second_pid != 0)
477 {
478 int second_status;
479
480 linux_supports_tracefork_flag = 1;
481 my_waitpid (second_pid, &second_status, 0);
482 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
483 if (ret != 0)
484 warning (_("linux_test_for_tracefork: failed to kill second child"));
485 my_waitpid (second_pid, &status, 0);
486 }
487 }
488 else
489 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
490 "(%d, status 0x%x)"), ret, status);
491
492 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
493 if (ret != 0)
494 warning (_("linux_test_for_tracefork: failed to kill child"));
495 my_waitpid (child_pid, &status, 0);
496 }
497
498 /* Return non-zero iff we have tracefork functionality available.
499 This function also sets linux_supports_tracefork_flag. */
500
501 static int
502 linux_supports_tracefork (int pid)
503 {
504 if (linux_supports_tracefork_flag == -1)
505 linux_test_for_tracefork (pid);
506 return linux_supports_tracefork_flag;
507 }
508
509 static int
510 linux_supports_tracevforkdone (int pid)
511 {
512 if (linux_supports_tracefork_flag == -1)
513 linux_test_for_tracefork (pid);
514 return linux_supports_tracevforkdone_flag;
515 }
516
517 \f
518 void
519 linux_enable_event_reporting (ptid_t ptid)
520 {
521 int pid = ptid_get_lwp (ptid);
522 int options;
523
524 if (pid == 0)
525 pid = ptid_get_pid (ptid);
526
527 if (! linux_supports_tracefork (pid))
528 return;
529
530 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
531 | PTRACE_O_TRACECLONE;
532 if (linux_supports_tracevforkdone (pid))
533 options |= PTRACE_O_TRACEVFORKDONE;
534
535 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
536 read-only process state. */
537
538 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
539 }
540
541 static void
542 linux_child_post_attach (int pid)
543 {
544 linux_enable_event_reporting (pid_to_ptid (pid));
545 check_for_thread_db ();
546 }
547
548 static void
549 linux_child_post_startup_inferior (ptid_t ptid)
550 {
551 linux_enable_event_reporting (ptid);
552 check_for_thread_db ();
553 }
554
555 static int
556 linux_child_follow_fork (struct target_ops *ops, int follow_child)
557 {
558 ptid_t last_ptid;
559 struct target_waitstatus last_status;
560 int has_vforked;
561 int parent_pid, child_pid;
562
563 if (target_can_async_p ())
564 target_async (NULL, 0);
565
566 get_last_target_status (&last_ptid, &last_status);
567 has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
568 parent_pid = ptid_get_lwp (last_ptid);
569 if (parent_pid == 0)
570 parent_pid = ptid_get_pid (last_ptid);
571 child_pid = last_status.value.related_pid;
572
573 if (! follow_child)
574 {
575 /* We're already attached to the parent, by default. */
576
577 /* Before detaching from the child, remove all breakpoints from
578 it. (This won't actually modify the breakpoint list, but will
579 physically remove the breakpoints from the child.) */
580 /* If we vforked this will remove the breakpoints from the parent
581 also, but they'll be reinserted below. */
582 detach_breakpoints (child_pid);
583
584 /* Detach new forked process? */
585 if (detach_fork)
586 {
587 if (info_verbose || debug_linux_nat)
588 {
589 target_terminal_ours ();
590 fprintf_filtered (gdb_stdlog,
591 "Detaching after fork from child process %d.\n",
592 child_pid);
593 }
594
595 ptrace (PTRACE_DETACH, child_pid, 0, 0);
596 }
597 else
598 {
599 struct fork_info *fp;
600 /* Retain child fork in ptrace (stopped) state. */
601 fp = find_fork_pid (child_pid);
602 if (!fp)
603 fp = add_fork (child_pid);
604 fork_save_infrun_state (fp, 0);
605 }
606
607 if (has_vforked)
608 {
609 gdb_assert (linux_supports_tracefork_flag >= 0);
610 if (linux_supports_tracevforkdone (0))
611 {
612 int status;
613
614 ptrace (PTRACE_CONT, parent_pid, 0, 0);
615 my_waitpid (parent_pid, &status, __WALL);
616 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
617 warning (_("Unexpected waitpid result %06x when waiting for "
618 "vfork-done"), status);
619 }
620 else
621 {
622 /* We can't insert breakpoints until the child has
623 finished with the shared memory region. We need to
624 wait until that happens. Ideal would be to just
625 call:
626 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
627 - waitpid (parent_pid, &status, __WALL);
628 However, most architectures can't handle a syscall
629 being traced on the way out if it wasn't traced on
630 the way in.
631
632 We might also think to loop, continuing the child
633 until it exits or gets a SIGTRAP. One problem is
634 that the child might call ptrace with PTRACE_TRACEME.
635
636 There's no simple and reliable way to figure out when
637 the vforked child will be done with its copy of the
638 shared memory. We could step it out of the syscall,
639 two instructions, let it go, and then single-step the
640 parent once. When we have hardware single-step, this
641 would work; with software single-step it could still
642 be made to work but we'd have to be able to insert
643 single-step breakpoints in the child, and we'd have
644 to insert -just- the single-step breakpoint in the
645 parent. Very awkward.
646
647 In the end, the best we can do is to make sure it
648 runs for a little while. Hopefully it will be out of
649 range of any breakpoints we reinsert. Usually this
650 is only the single-step breakpoint at vfork's return
651 point. */
652
653 usleep (10000);
654 }
655
656 /* Since we vforked, breakpoints were removed in the parent
657 too. Put them back. */
658 reattach_breakpoints (parent_pid);
659 }
660 }
661 else
662 {
663 char child_pid_spelling[40];
664
665 /* Needed to keep the breakpoint lists in sync. */
666 if (! has_vforked)
667 detach_breakpoints (child_pid);
668
669 /* Before detaching from the parent, remove all breakpoints from it. */
670 remove_breakpoints ();
671
672 if (info_verbose || debug_linux_nat)
673 {
674 target_terminal_ours ();
675 fprintf_filtered (gdb_stdlog,
676 "Attaching after fork to child process %d.\n",
677 child_pid);
678 }
679
680 /* If we're vforking, we may want to hold on to the parent until
681 the child exits or execs. At exec time we can remove the old
682 breakpoints from the parent and detach it; at exit time we
683 could do the same (or even, sneakily, resume debugging it - the
684 child's exec has failed, or something similar).
685
686 This doesn't clean up "properly", because we can't call
687 target_detach, but that's OK; if the current target is "child",
688 then it doesn't need any further cleanups, and lin_lwp will
689 generally not encounter vfork (vfork is defined to fork
690 in libpthread.so).
691
692 The holding part is very easy if we have VFORKDONE events;
693 but keeping track of both processes is beyond GDB at the
694 moment. So we don't expose the parent to the rest of GDB.
695 Instead we quietly hold onto it until such time as we can
696 safely resume it. */
697
698 if (has_vforked)
699 linux_parent_pid = parent_pid;
700 else if (!detach_fork)
701 {
702 struct fork_info *fp;
703 /* Retain parent fork in ptrace (stopped) state. */
704 fp = find_fork_pid (parent_pid);
705 if (!fp)
706 fp = add_fork (parent_pid);
707 fork_save_infrun_state (fp, 0);
708 }
709 else
710 target_detach (NULL, 0);
711
712 inferior_ptid = ptid_build (child_pid, child_pid, 0);
713
714 /* Reinstall ourselves, since we might have been removed in
715 target_detach (which does other necessary cleanup). */
716
717 push_target (ops);
718 linux_nat_switch_fork (inferior_ptid);
719 check_for_thread_db ();
720
721 /* Reset breakpoints in the child as appropriate. */
722 follow_inferior_reset_breakpoints ();
723 }
724
725 if (target_can_async_p ())
726 target_async (inferior_event_handler, 0);
727
728 return 0;
729 }
730
731 \f
732 static void
733 linux_child_insert_fork_catchpoint (int pid)
734 {
735 if (! linux_supports_tracefork (pid))
736 error (_("Your system does not support fork catchpoints."));
737 }
738
739 static void
740 linux_child_insert_vfork_catchpoint (int pid)
741 {
742 if (!linux_supports_tracefork (pid))
743 error (_("Your system does not support vfork catchpoints."));
744 }
745
746 static void
747 linux_child_insert_exec_catchpoint (int pid)
748 {
749 if (!linux_supports_tracefork (pid))
750 error (_("Your system does not support exec catchpoints."));
751 }
752
753 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
754 are processes sharing the same VM space. A multi-threaded process
755 is basically a group of such processes. However, such a grouping
756 is almost entirely a user-space issue; the kernel doesn't enforce
757 such a grouping at all (this might change in the future). In
758 general, we'll rely on the threads library (i.e. the GNU/Linux
759 Threads library) to provide such a grouping.
760
761 It is perfectly well possible to write a multi-threaded application
762 without the assistance of a threads library, by using the clone
763 system call directly. This module should be able to give some
764 rudimentary support for debugging such applications if developers
765 specify the CLONE_PTRACE flag in the clone system call, and are
766 using the Linux kernel 2.4 or above.
767
768 Note that there are some peculiarities in GNU/Linux that affect
769 this code:
770
771 - In general one should specify the __WCLONE flag to waitpid in
772 order to make it report events for any of the cloned processes
773 (and leave it out for the initial process). However, if a cloned
774 process has exited the exit status is only reported if the
775 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
776 we cannot use it since GDB must work on older systems too.
777
778 - When a traced, cloned process exits and is waited for by the
779 debugger, the kernel reassigns it to the original parent and
780 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
781 library doesn't notice this, which leads to the "zombie problem":
782 When debugged a multi-threaded process that spawns a lot of
783 threads will run out of processes, even if the threads exit,
784 because the "zombies" stay around. */
785
786 /* List of known LWPs. */
787 struct lwp_info *lwp_list;
788
789 /* Number of LWPs in the list. */
790 static int num_lwps;
791 \f
792
793 /* Since we cannot wait (in linux_nat_wait) for the initial process and
794 any cloned processes with a single call to waitpid, we have to use
795 the WNOHANG flag and call waitpid in a loop. To optimize
796 things a bit we use `sigsuspend' to wake us up when a process has
797 something to report (it will send us a SIGCHLD if it has). To make
798 this work we have to juggle with the signal mask. We save the
799 original signal mask such that we can restore it before creating a
800 new process in order to avoid blocking certain signals in the
801 inferior. We then block SIGCHLD during the waitpid/sigsuspend
802 loop. */
803
804 /* Original signal mask. */
805 static sigset_t normal_mask;
806
807 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
808 _initialize_linux_nat. */
809 static sigset_t suspend_mask;
810
811 /* SIGCHLD action for synchronous mode. */
812 struct sigaction sync_sigchld_action;
813
814 /* SIGCHLD action for asynchronous mode. */
815 static struct sigaction async_sigchld_action;
816 \f
817
818 /* Prototypes for local functions. */
819 static int stop_wait_callback (struct lwp_info *lp, void *data);
820 static int linux_nat_thread_alive (ptid_t ptid);
821 static char *linux_child_pid_to_exec_file (int pid);
822 static int cancel_breakpoint (struct lwp_info *lp);
823
824 \f
825 /* Convert wait status STATUS to a string. Used for printing debug
826 messages only. */
827
828 static char *
829 status_to_str (int status)
830 {
831 static char buf[64];
832
833 if (WIFSTOPPED (status))
834 snprintf (buf, sizeof (buf), "%s (stopped)",
835 strsignal (WSTOPSIG (status)));
836 else if (WIFSIGNALED (status))
837 snprintf (buf, sizeof (buf), "%s (terminated)",
838 strsignal (WSTOPSIG (status)));
839 else
840 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
841
842 return buf;
843 }
844
845 /* Initialize the list of LWPs. Note that this module, contrary to
846 what GDB's generic threads layer does for its thread list,
847 re-initializes the LWP lists whenever we mourn or detach (which
848 doesn't involve mourning) the inferior. */
849
850 static void
851 init_lwp_list (void)
852 {
853 struct lwp_info *lp, *lpnext;
854
855 for (lp = lwp_list; lp; lp = lpnext)
856 {
857 lpnext = lp->next;
858 xfree (lp);
859 }
860
861 lwp_list = NULL;
862 num_lwps = 0;
863 }
864
865 /* Add the LWP specified by PID to the list. Return a pointer to the
866 structure describing the new LWP. The LWP should already be stopped
867 (with an exception for the very first LWP). */
868
869 static struct lwp_info *
870 add_lwp (ptid_t ptid)
871 {
872 struct lwp_info *lp;
873
874 gdb_assert (is_lwp (ptid));
875
876 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
877
878 memset (lp, 0, sizeof (struct lwp_info));
879
880 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
881
882 lp->ptid = ptid;
883
884 lp->next = lwp_list;
885 lwp_list = lp;
886 ++num_lwps;
887
888 if (num_lwps > 1 && linux_nat_new_thread != NULL)
889 linux_nat_new_thread (ptid);
890
891 return lp;
892 }
893
894 /* Remove the LWP specified by PID from the list. */
895
896 static void
897 delete_lwp (ptid_t ptid)
898 {
899 struct lwp_info *lp, *lpprev;
900
901 lpprev = NULL;
902
903 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
904 if (ptid_equal (lp->ptid, ptid))
905 break;
906
907 if (!lp)
908 return;
909
910 num_lwps--;
911
912 if (lpprev)
913 lpprev->next = lp->next;
914 else
915 lwp_list = lp->next;
916
917 xfree (lp);
918 }
919
920 /* Return a pointer to the structure describing the LWP corresponding
921 to PID. If no corresponding LWP could be found, return NULL. */
922
923 static struct lwp_info *
924 find_lwp_pid (ptid_t ptid)
925 {
926 struct lwp_info *lp;
927 int lwp;
928
929 if (is_lwp (ptid))
930 lwp = GET_LWP (ptid);
931 else
932 lwp = GET_PID (ptid);
933
934 for (lp = lwp_list; lp; lp = lp->next)
935 if (lwp == GET_LWP (lp->ptid))
936 return lp;
937
938 return NULL;
939 }
940
941 /* Call CALLBACK with its second argument set to DATA for every LWP in
942 the list. If CALLBACK returns 1 for a particular LWP, return a
943 pointer to the structure describing that LWP immediately.
944 Otherwise return NULL. */
945
946 struct lwp_info *
947 iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
948 {
949 struct lwp_info *lp, *lpnext;
950
951 for (lp = lwp_list; lp; lp = lpnext)
952 {
953 lpnext = lp->next;
954 if ((*callback) (lp, data))
955 return lp;
956 }
957
958 return NULL;
959 }
960
961 /* Update our internal state when changing from one fork (checkpoint,
962 et cetera) to another indicated by NEW_PTID. We can only switch
963 single-threaded applications, so we only create one new LWP, and
964 the previous list is discarded. */
965
966 void
967 linux_nat_switch_fork (ptid_t new_ptid)
968 {
969 struct lwp_info *lp;
970
971 init_thread_list ();
972 init_lwp_list ();
973 lp = add_lwp (new_ptid);
974 add_thread_silent (new_ptid);
975 lp->stopped = 1;
976 }
977
978 /* Record a PTID for later deletion. */
979
980 struct saved_ptids
981 {
982 ptid_t ptid;
983 struct saved_ptids *next;
984 };
985 static struct saved_ptids *threads_to_delete;
986
987 static void
988 record_dead_thread (ptid_t ptid)
989 {
990 struct saved_ptids *p = xmalloc (sizeof (struct saved_ptids));
991 p->ptid = ptid;
992 p->next = threads_to_delete;
993 threads_to_delete = p;
994 }
995
996 /* Delete any dead threads which are not the current thread. */
997
998 static void
999 prune_lwps (void)
1000 {
1001 struct saved_ptids **p = &threads_to_delete;
1002
1003 while (*p)
1004 if (! ptid_equal ((*p)->ptid, inferior_ptid))
1005 {
1006 struct saved_ptids *tmp = *p;
1007 delete_thread (tmp->ptid);
1008 *p = tmp->next;
1009 xfree (tmp);
1010 }
1011 else
1012 p = &(*p)->next;
1013 }
1014
1015 /* Handle the exit of a single thread LP. */
1016
1017 static void
1018 exit_lwp (struct lwp_info *lp)
1019 {
1020 struct thread_info *th = find_thread_pid (lp->ptid);
1021
1022 if (th)
1023 {
1024 if (print_thread_events)
1025 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1026
1027 /* Core GDB cannot deal with us deleting the current thread. */
1028 if (!ptid_equal (lp->ptid, inferior_ptid))
1029 delete_thread (lp->ptid);
1030 else
1031 record_dead_thread (lp->ptid);
1032 }
1033
1034 delete_lwp (lp->ptid);
1035 }
1036
1037 /* Detect `T (stopped)' in `/proc/PID/status'.
1038 Other states including `T (tracing stop)' are reported as false. */
1039
1040 static int
1041 pid_is_stopped (pid_t pid)
1042 {
1043 FILE *status_file;
1044 char buf[100];
1045 int retval = 0;
1046
1047 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1048 status_file = fopen (buf, "r");
1049 if (status_file != NULL)
1050 {
1051 int have_state = 0;
1052
1053 while (fgets (buf, sizeof (buf), status_file))
1054 {
1055 if (strncmp (buf, "State:", 6) == 0)
1056 {
1057 have_state = 1;
1058 break;
1059 }
1060 }
1061 if (have_state && strstr (buf, "T (stopped)") != NULL)
1062 retval = 1;
1063 fclose (status_file);
1064 }
1065 return retval;
1066 }
1067
1068 /* Wait for the LWP specified by LP, which we have just attached to.
1069 Returns a wait status for that LWP, to cache. */
1070
1071 static int
1072 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1073 int *signalled)
1074 {
1075 pid_t new_pid, pid = GET_LWP (ptid);
1076 int status;
1077
1078 if (pid_is_stopped (pid))
1079 {
1080 if (debug_linux_nat)
1081 fprintf_unfiltered (gdb_stdlog,
1082 "LNPAW: Attaching to a stopped process\n");
1083
1084 /* The process is definitely stopped. It is in a job control
1085 stop, unless the kernel predates the TASK_STOPPED /
1086 TASK_TRACED distinction, in which case it might be in a
1087 ptrace stop. Make sure it is in a ptrace stop; from there we
1088 can kill it, signal it, et cetera.
1089
1090 First make sure there is a pending SIGSTOP. Since we are
1091 already attached, the process can not transition from stopped
1092 to running without a PTRACE_CONT; so we know this signal will
1093 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1094 probably already in the queue (unless this kernel is old
1095 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1096 is not an RT signal, it can only be queued once. */
1097 kill_lwp (pid, SIGSTOP);
1098
1099 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1100 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1101 ptrace (PTRACE_CONT, pid, 0, 0);
1102 }
1103
1104 /* Make sure the initial process is stopped. The user-level threads
1105 layer might want to poke around in the inferior, and that won't
1106 work if things haven't stabilized yet. */
1107 new_pid = my_waitpid (pid, &status, 0);
1108 if (new_pid == -1 && errno == ECHILD)
1109 {
1110 if (first)
1111 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1112
1113 /* Try again with __WCLONE to check cloned processes. */
1114 new_pid = my_waitpid (pid, &status, __WCLONE);
1115 *cloned = 1;
1116 }
1117
1118 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1119
1120 if (WSTOPSIG (status) != SIGSTOP)
1121 {
1122 *signalled = 1;
1123 if (debug_linux_nat)
1124 fprintf_unfiltered (gdb_stdlog,
1125 "LNPAW: Received %s after attaching\n",
1126 status_to_str (status));
1127 }
1128
1129 return status;
1130 }
1131
1132 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1133 if the new LWP could not be attached. */
1134
1135 int
1136 lin_lwp_attach_lwp (ptid_t ptid)
1137 {
1138 struct lwp_info *lp;
1139 int async_events_were_enabled = 0;
1140
1141 gdb_assert (is_lwp (ptid));
1142
1143 if (target_can_async_p ())
1144 async_events_were_enabled = linux_nat_async_events (0);
1145
1146 lp = find_lwp_pid (ptid);
1147
1148 /* We assume that we're already attached to any LWP that has an id
1149 equal to the overall process id, and to any LWP that is already
1150 in our list of LWPs. If we're not seeing exit events from threads
1151 and we've had PID wraparound since we last tried to stop all threads,
1152 this assumption might be wrong; fortunately, this is very unlikely
1153 to happen. */
1154 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1155 {
1156 int status, cloned = 0, signalled = 0;
1157
1158 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1159 {
1160 /* If we fail to attach to the thread, issue a warning,
1161 but continue. One way this can happen is if thread
1162 creation is interrupted; as of Linux kernel 2.6.19, a
1163 bug may place threads in the thread list and then fail
1164 to create them. */
1165 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1166 safe_strerror (errno));
1167 return -1;
1168 }
1169
1170 if (debug_linux_nat)
1171 fprintf_unfiltered (gdb_stdlog,
1172 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1173 target_pid_to_str (ptid));
1174
1175 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1176 lp = add_lwp (ptid);
1177 lp->stopped = 1;
1178 lp->cloned = cloned;
1179 lp->signalled = signalled;
1180 if (WSTOPSIG (status) != SIGSTOP)
1181 {
1182 lp->resumed = 1;
1183 lp->status = status;
1184 }
1185
1186 target_post_attach (GET_LWP (lp->ptid));
1187
1188 if (debug_linux_nat)
1189 {
1190 fprintf_unfiltered (gdb_stdlog,
1191 "LLAL: waitpid %s received %s\n",
1192 target_pid_to_str (ptid),
1193 status_to_str (status));
1194 }
1195 }
1196 else
1197 {
1198 /* We assume that the LWP representing the original process is
1199 already stopped. Mark it as stopped in the data structure
1200 that the GNU/linux ptrace layer uses to keep track of
1201 threads. Note that this won't have already been done since
1202 the main thread will have, we assume, been stopped by an
1203 attach from a different layer. */
1204 if (lp == NULL)
1205 lp = add_lwp (ptid);
1206 lp->stopped = 1;
1207 }
1208
1209 if (async_events_were_enabled)
1210 linux_nat_async_events (1);
1211
1212 return 0;
1213 }
1214
1215 static void
1216 linux_nat_create_inferior (char *exec_file, char *allargs, char **env,
1217 int from_tty)
1218 {
1219 int saved_async = 0;
1220
1221 /* The fork_child mechanism is synchronous and calls target_wait, so
1222 we have to mask the async mode. */
1223
1224 if (target_can_async_p ())
1225 saved_async = linux_nat_async_mask (0);
1226 else
1227 {
1228 /* Restore the original signal mask. */
1229 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1230 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1231 suspend_mask = normal_mask;
1232 sigdelset (&suspend_mask, SIGCHLD);
1233 }
1234
1235 linux_ops->to_create_inferior (exec_file, allargs, env, from_tty);
1236
1237 if (saved_async)
1238 linux_nat_async_mask (saved_async);
1239 }
1240
1241 static void
1242 linux_nat_attach (char *args, int from_tty)
1243 {
1244 struct lwp_info *lp;
1245 int status;
1246
1247 /* FIXME: We should probably accept a list of process id's, and
1248 attach all of them. */
1249 linux_ops->to_attach (args, from_tty);
1250
1251 if (!target_can_async_p ())
1252 {
1253 /* Restore the original signal mask. */
1254 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1255 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1256 suspend_mask = normal_mask;
1257 sigdelset (&suspend_mask, SIGCHLD);
1258 }
1259
1260 /* Add the initial process as the first LWP to the list. */
1261 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1262 lp = add_lwp (inferior_ptid);
1263
1264 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1265 &lp->signalled);
1266 lp->stopped = 1;
1267
1268 /* If this process is not using thread_db, then we still don't
1269 detect any other threads, but add at least this one. */
1270 add_thread_silent (lp->ptid);
1271
1272 /* Save the wait status to report later. */
1273 lp->resumed = 1;
1274 if (debug_linux_nat)
1275 fprintf_unfiltered (gdb_stdlog,
1276 "LNA: waitpid %ld, saving status %s\n",
1277 (long) GET_PID (lp->ptid), status_to_str (status));
1278
1279 if (!target_can_async_p ())
1280 lp->status = status;
1281 else
1282 {
1283 /* We already waited for this LWP, so put the wait result on the
1284 pipe. The event loop will wake up and gets us to handling
1285 this event. */
1286 linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
1287 lp->cloned ? __WCLONE : 0);
1288 /* Register in the event loop. */
1289 target_async (inferior_event_handler, 0);
1290 }
1291 }
1292
1293 /* Get pending status of LP. */
1294 static int
1295 get_pending_status (struct lwp_info *lp, int *status)
1296 {
1297 struct target_waitstatus last;
1298 ptid_t last_ptid;
1299
1300 get_last_target_status (&last_ptid, &last);
1301
1302 /* If this lwp is the ptid that GDB is processing an event from, the
1303 signal will be in stop_signal. Otherwise, in all-stop + sync
1304 mode, we may cache pending events in lp->status while trying to
1305 stop all threads (see stop_wait_callback). In async mode, the
1306 events are always cached in waitpid_queue. */
1307
1308 *status = 0;
1309 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1310 {
1311 if (stop_signal != TARGET_SIGNAL_0
1312 && signal_pass_state (stop_signal))
1313 *status = W_STOPCODE (target_signal_to_host (stop_signal));
1314 }
1315 else if (target_can_async_p ())
1316 queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
1317 else
1318 *status = lp->status;
1319
1320 return 0;
1321 }
1322
1323 static int
1324 detach_callback (struct lwp_info *lp, void *data)
1325 {
1326 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1327
1328 if (debug_linux_nat && lp->status)
1329 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1330 strsignal (WSTOPSIG (lp->status)),
1331 target_pid_to_str (lp->ptid));
1332
1333 /* If there is a pending SIGSTOP, get rid of it. */
1334 if (lp->signalled)
1335 {
1336 if (debug_linux_nat)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "DC: Sending SIGCONT to %s\n",
1339 target_pid_to_str (lp->ptid));
1340
1341 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1342 lp->signalled = 0;
1343 }
1344
1345 /* We don't actually detach from the LWP that has an id equal to the
1346 overall process id just yet. */
1347 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1348 {
1349 int status = 0;
1350
1351 /* Pass on any pending signal for this LWP. */
1352 get_pending_status (lp, &status);
1353
1354 errno = 0;
1355 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1356 WSTOPSIG (status)) < 0)
1357 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1358 safe_strerror (errno));
1359
1360 if (debug_linux_nat)
1361 fprintf_unfiltered (gdb_stdlog,
1362 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1363 target_pid_to_str (lp->ptid),
1364 strsignal (WSTOPSIG (lp->status)));
1365
1366 delete_lwp (lp->ptid);
1367 }
1368
1369 return 0;
1370 }
1371
1372 static void
1373 linux_nat_detach (char *args, int from_tty)
1374 {
1375 int pid;
1376 int status;
1377 enum target_signal sig;
1378
1379 if (target_can_async_p ())
1380 linux_nat_async (NULL, 0);
1381
1382 iterate_over_lwps (detach_callback, NULL);
1383
1384 /* Only the initial process should be left right now. */
1385 gdb_assert (num_lwps == 1);
1386
1387 /* Pass on any pending signal for the last LWP. */
1388 if ((args == NULL || *args == '\0')
1389 && get_pending_status (lwp_list, &status) != -1
1390 && WIFSTOPPED (status))
1391 {
1392 /* Put the signal number in ARGS so that inf_ptrace_detach will
1393 pass it along with PTRACE_DETACH. */
1394 args = alloca (8);
1395 sprintf (args, "%d", (int) WSTOPSIG (status));
1396 fprintf_unfiltered (gdb_stdlog,
1397 "LND: Sending signal %s to %s\n",
1398 args,
1399 target_pid_to_str (lwp_list->ptid));
1400 }
1401
1402 /* Destroy LWP info; it's no longer valid. */
1403 init_lwp_list ();
1404
1405 pid = GET_PID (inferior_ptid);
1406 inferior_ptid = pid_to_ptid (pid);
1407 linux_ops->to_detach (args, from_tty);
1408
1409 if (target_can_async_p ())
1410 drain_queued_events (pid);
1411 }
1412
1413 /* Resume LP. */
1414
1415 static int
1416 resume_callback (struct lwp_info *lp, void *data)
1417 {
1418 if (lp->stopped && lp->status == 0)
1419 {
1420 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
1421 0, TARGET_SIGNAL_0);
1422 if (debug_linux_nat)
1423 fprintf_unfiltered (gdb_stdlog,
1424 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1425 target_pid_to_str (lp->ptid));
1426 lp->stopped = 0;
1427 lp->step = 0;
1428 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1429 }
1430
1431 return 0;
1432 }
1433
1434 static int
1435 resume_clear_callback (struct lwp_info *lp, void *data)
1436 {
1437 lp->resumed = 0;
1438 return 0;
1439 }
1440
1441 static int
1442 resume_set_callback (struct lwp_info *lp, void *data)
1443 {
1444 lp->resumed = 1;
1445 return 0;
1446 }
1447
1448 static void
1449 linux_nat_resume (ptid_t ptid, int step, enum target_signal signo)
1450 {
1451 struct lwp_info *lp;
1452 int resume_all;
1453
1454 if (debug_linux_nat)
1455 fprintf_unfiltered (gdb_stdlog,
1456 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1457 step ? "step" : "resume",
1458 target_pid_to_str (ptid),
1459 signo ? strsignal (signo) : "0",
1460 target_pid_to_str (inferior_ptid));
1461
1462 prune_lwps ();
1463
1464 if (target_can_async_p ())
1465 /* Block events while we're here. */
1466 linux_nat_async_events (0);
1467
1468 /* A specific PTID means `step only this process id'. */
1469 resume_all = (PIDGET (ptid) == -1);
1470
1471 if (resume_all)
1472 iterate_over_lwps (resume_set_callback, NULL);
1473 else
1474 iterate_over_lwps (resume_clear_callback, NULL);
1475
1476 /* If PID is -1, it's the current inferior that should be
1477 handled specially. */
1478 if (PIDGET (ptid) == -1)
1479 ptid = inferior_ptid;
1480
1481 lp = find_lwp_pid (ptid);
1482 gdb_assert (lp != NULL);
1483
1484 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1485
1486 /* Remember if we're stepping. */
1487 lp->step = step;
1488
1489 /* Mark this LWP as resumed. */
1490 lp->resumed = 1;
1491
1492 /* If we have a pending wait status for this thread, there is no
1493 point in resuming the process. But first make sure that
1494 linux_nat_wait won't preemptively handle the event - we
1495 should never take this short-circuit if we are going to
1496 leave LP running, since we have skipped resuming all the
1497 other threads. This bit of code needs to be synchronized
1498 with linux_nat_wait. */
1499
1500 /* In async mode, we never have pending wait status. */
1501 if (target_can_async_p () && lp->status)
1502 internal_error (__FILE__, __LINE__, "Pending status in async mode");
1503
1504 if (lp->status && WIFSTOPPED (lp->status))
1505 {
1506 int saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1507
1508 if (signal_stop_state (saved_signo) == 0
1509 && signal_print_state (saved_signo) == 0
1510 && signal_pass_state (saved_signo) == 1)
1511 {
1512 if (debug_linux_nat)
1513 fprintf_unfiltered (gdb_stdlog,
1514 "LLR: Not short circuiting for ignored "
1515 "status 0x%x\n", lp->status);
1516
1517 /* FIXME: What should we do if we are supposed to continue
1518 this thread with a signal? */
1519 gdb_assert (signo == TARGET_SIGNAL_0);
1520 signo = saved_signo;
1521 lp->status = 0;
1522 }
1523 }
1524
1525 if (lp->status)
1526 {
1527 /* FIXME: What should we do if we are supposed to continue
1528 this thread with a signal? */
1529 gdb_assert (signo == TARGET_SIGNAL_0);
1530
1531 if (debug_linux_nat)
1532 fprintf_unfiltered (gdb_stdlog,
1533 "LLR: Short circuiting for status 0x%x\n",
1534 lp->status);
1535
1536 return;
1537 }
1538
1539 /* Mark LWP as not stopped to prevent it from being continued by
1540 resume_callback. */
1541 lp->stopped = 0;
1542
1543 if (resume_all)
1544 iterate_over_lwps (resume_callback, NULL);
1545
1546 linux_ops->to_resume (ptid, step, signo);
1547 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1548
1549 if (debug_linux_nat)
1550 fprintf_unfiltered (gdb_stdlog,
1551 "LLR: %s %s, %s (resume event thread)\n",
1552 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1553 target_pid_to_str (ptid),
1554 signo ? strsignal (signo) : "0");
1555
1556 if (target_can_async_p ())
1557 {
1558 target_executing = 1;
1559 target_async (inferior_event_handler, 0);
1560 }
1561 }
1562
1563 /* Issue kill to specified lwp. */
1564
1565 static int tkill_failed;
1566
1567 static int
1568 kill_lwp (int lwpid, int signo)
1569 {
1570 errno = 0;
1571
1572 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1573 fails, then we are not using nptl threads and we should be using kill. */
1574
1575 #ifdef HAVE_TKILL_SYSCALL
1576 if (!tkill_failed)
1577 {
1578 int ret = syscall (__NR_tkill, lwpid, signo);
1579 if (errno != ENOSYS)
1580 return ret;
1581 errno = 0;
1582 tkill_failed = 1;
1583 }
1584 #endif
1585
1586 return kill (lwpid, signo);
1587 }
1588
1589 /* Handle a GNU/Linux extended wait response. If we see a clone
1590 event, we need to add the new LWP to our list (and not report the
1591 trap to higher layers). This function returns non-zero if the
1592 event should be ignored and we should wait again. If STOPPING is
1593 true, the new LWP remains stopped, otherwise it is continued. */
1594
1595 static int
1596 linux_handle_extended_wait (struct lwp_info *lp, int status,
1597 int stopping)
1598 {
1599 int pid = GET_LWP (lp->ptid);
1600 struct target_waitstatus *ourstatus = &lp->waitstatus;
1601 struct lwp_info *new_lp = NULL;
1602 int event = status >> 16;
1603
1604 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1605 || event == PTRACE_EVENT_CLONE)
1606 {
1607 unsigned long new_pid;
1608 int ret;
1609
1610 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1611
1612 /* If we haven't already seen the new PID stop, wait for it now. */
1613 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1614 {
1615 /* The new child has a pending SIGSTOP. We can't affect it until it
1616 hits the SIGSTOP, but we're already attached. */
1617 ret = my_waitpid (new_pid, &status,
1618 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1619 if (ret == -1)
1620 perror_with_name (_("waiting for new child"));
1621 else if (ret != new_pid)
1622 internal_error (__FILE__, __LINE__,
1623 _("wait returned unexpected PID %d"), ret);
1624 else if (!WIFSTOPPED (status))
1625 internal_error (__FILE__, __LINE__,
1626 _("wait returned unexpected status 0x%x"), status);
1627 }
1628
1629 ourstatus->value.related_pid = new_pid;
1630
1631 if (event == PTRACE_EVENT_FORK)
1632 ourstatus->kind = TARGET_WAITKIND_FORKED;
1633 else if (event == PTRACE_EVENT_VFORK)
1634 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1635 else
1636 {
1637 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1638 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
1639 new_lp->cloned = 1;
1640
1641 if (WSTOPSIG (status) != SIGSTOP)
1642 {
1643 /* This can happen if someone starts sending signals to
1644 the new thread before it gets a chance to run, which
1645 have a lower number than SIGSTOP (e.g. SIGUSR1).
1646 This is an unlikely case, and harder to handle for
1647 fork / vfork than for clone, so we do not try - but
1648 we handle it for clone events here. We'll send
1649 the other signal on to the thread below. */
1650
1651 new_lp->signalled = 1;
1652 }
1653 else
1654 status = 0;
1655
1656 if (stopping)
1657 new_lp->stopped = 1;
1658 else
1659 {
1660 new_lp->resumed = 1;
1661 ptrace (PTRACE_CONT, lp->waitstatus.value.related_pid, 0,
1662 status ? WSTOPSIG (status) : 0);
1663 }
1664
1665 if (debug_linux_nat)
1666 fprintf_unfiltered (gdb_stdlog,
1667 "LHEW: Got clone event from LWP %ld, resuming\n",
1668 GET_LWP (lp->ptid));
1669 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1670
1671 return 1;
1672 }
1673
1674 return 0;
1675 }
1676
1677 if (event == PTRACE_EVENT_EXEC)
1678 {
1679 ourstatus->kind = TARGET_WAITKIND_EXECD;
1680 ourstatus->value.execd_pathname
1681 = xstrdup (linux_child_pid_to_exec_file (pid));
1682
1683 if (linux_parent_pid)
1684 {
1685 detach_breakpoints (linux_parent_pid);
1686 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1687
1688 linux_parent_pid = 0;
1689 }
1690
1691 return 0;
1692 }
1693
1694 internal_error (__FILE__, __LINE__,
1695 _("unknown ptrace event %d"), event);
1696 }
1697
1698 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
1699 exited. */
1700
1701 static int
1702 wait_lwp (struct lwp_info *lp)
1703 {
1704 pid_t pid;
1705 int status;
1706 int thread_dead = 0;
1707
1708 gdb_assert (!lp->stopped);
1709 gdb_assert (lp->status == 0);
1710
1711 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
1712 if (pid == -1 && errno == ECHILD)
1713 {
1714 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
1715 if (pid == -1 && errno == ECHILD)
1716 {
1717 /* The thread has previously exited. We need to delete it
1718 now because, for some vendor 2.4 kernels with NPTL
1719 support backported, there won't be an exit event unless
1720 it is the main thread. 2.6 kernels will report an exit
1721 event for each thread that exits, as expected. */
1722 thread_dead = 1;
1723 if (debug_linux_nat)
1724 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
1725 target_pid_to_str (lp->ptid));
1726 }
1727 }
1728
1729 if (!thread_dead)
1730 {
1731 gdb_assert (pid == GET_LWP (lp->ptid));
1732
1733 if (debug_linux_nat)
1734 {
1735 fprintf_unfiltered (gdb_stdlog,
1736 "WL: waitpid %s received %s\n",
1737 target_pid_to_str (lp->ptid),
1738 status_to_str (status));
1739 }
1740 }
1741
1742 /* Check if the thread has exited. */
1743 if (WIFEXITED (status) || WIFSIGNALED (status))
1744 {
1745 thread_dead = 1;
1746 if (debug_linux_nat)
1747 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
1748 target_pid_to_str (lp->ptid));
1749 }
1750
1751 if (thread_dead)
1752 {
1753 exit_lwp (lp);
1754 return 0;
1755 }
1756
1757 gdb_assert (WIFSTOPPED (status));
1758
1759 /* Handle GNU/Linux's extended waitstatus for trace events. */
1760 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1761 {
1762 if (debug_linux_nat)
1763 fprintf_unfiltered (gdb_stdlog,
1764 "WL: Handling extended status 0x%06x\n",
1765 status);
1766 if (linux_handle_extended_wait (lp, status, 1))
1767 return wait_lwp (lp);
1768 }
1769
1770 return status;
1771 }
1772
1773 /* Save the most recent siginfo for LP. This is currently only called
1774 for SIGTRAP; some ports use the si_addr field for
1775 target_stopped_data_address. In the future, it may also be used to
1776 restore the siginfo of requeued signals. */
1777
1778 static void
1779 save_siginfo (struct lwp_info *lp)
1780 {
1781 errno = 0;
1782 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
1783 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
1784
1785 if (errno != 0)
1786 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1787 }
1788
1789 /* Send a SIGSTOP to LP. */
1790
1791 static int
1792 stop_callback (struct lwp_info *lp, void *data)
1793 {
1794 if (!lp->stopped && !lp->signalled)
1795 {
1796 int ret;
1797
1798 if (debug_linux_nat)
1799 {
1800 fprintf_unfiltered (gdb_stdlog,
1801 "SC: kill %s **<SIGSTOP>**\n",
1802 target_pid_to_str (lp->ptid));
1803 }
1804 errno = 0;
1805 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
1806 if (debug_linux_nat)
1807 {
1808 fprintf_unfiltered (gdb_stdlog,
1809 "SC: lwp kill %d %s\n",
1810 ret,
1811 errno ? safe_strerror (errno) : "ERRNO-OK");
1812 }
1813
1814 lp->signalled = 1;
1815 gdb_assert (lp->status == 0);
1816 }
1817
1818 return 0;
1819 }
1820
1821 /* Wait until LP is stopped. If DATA is non-null it is interpreted as
1822 a pointer to a set of signals to be flushed immediately. */
1823
1824 static int
1825 stop_wait_callback (struct lwp_info *lp, void *data)
1826 {
1827 sigset_t *flush_mask = data;
1828
1829 if (!lp->stopped)
1830 {
1831 int status;
1832
1833 status = wait_lwp (lp);
1834 if (status == 0)
1835 return 0;
1836
1837 /* Ignore any signals in FLUSH_MASK. */
1838 if (flush_mask && sigismember (flush_mask, WSTOPSIG (status)))
1839 {
1840 if (!lp->signalled)
1841 {
1842 lp->stopped = 1;
1843 return 0;
1844 }
1845
1846 errno = 0;
1847 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1848 if (debug_linux_nat)
1849 fprintf_unfiltered (gdb_stdlog,
1850 "PTRACE_CONT %s, 0, 0 (%s)\n",
1851 target_pid_to_str (lp->ptid),
1852 errno ? safe_strerror (errno) : "OK");
1853
1854 return stop_wait_callback (lp, flush_mask);
1855 }
1856
1857 if (WSTOPSIG (status) != SIGSTOP)
1858 {
1859 if (WSTOPSIG (status) == SIGTRAP)
1860 {
1861 /* If a LWP other than the LWP that we're reporting an
1862 event for has hit a GDB breakpoint (as opposed to
1863 some random trap signal), then just arrange for it to
1864 hit it again later. We don't keep the SIGTRAP status
1865 and don't forward the SIGTRAP signal to the LWP. We
1866 will handle the current event, eventually we will
1867 resume all LWPs, and this one will get its breakpoint
1868 trap again.
1869
1870 If we do not do this, then we run the risk that the
1871 user will delete or disable the breakpoint, but the
1872 thread will have already tripped on it. */
1873
1874 /* Save the trap's siginfo in case we need it later. */
1875 save_siginfo (lp);
1876
1877 /* Now resume this LWP and get the SIGSTOP event. */
1878 errno = 0;
1879 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1880 if (debug_linux_nat)
1881 {
1882 fprintf_unfiltered (gdb_stdlog,
1883 "PTRACE_CONT %s, 0, 0 (%s)\n",
1884 target_pid_to_str (lp->ptid),
1885 errno ? safe_strerror (errno) : "OK");
1886
1887 fprintf_unfiltered (gdb_stdlog,
1888 "SWC: Candidate SIGTRAP event in %s\n",
1889 target_pid_to_str (lp->ptid));
1890 }
1891 /* Hold this event/waitstatus while we check to see if
1892 there are any more (we still want to get that SIGSTOP). */
1893 stop_wait_callback (lp, data);
1894
1895 if (target_can_async_p ())
1896 {
1897 /* Don't leave a pending wait status in async mode.
1898 Retrigger the breakpoint. */
1899 if (!cancel_breakpoint (lp))
1900 {
1901 /* There was no gdb breakpoint set at pc. Put
1902 the event back in the queue. */
1903 if (debug_linux_nat)
1904 fprintf_unfiltered (gdb_stdlog,
1905 "SWC: kill %s, %s\n",
1906 target_pid_to_str (lp->ptid),
1907 status_to_str ((int) status));
1908 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
1909 }
1910 }
1911 else
1912 {
1913 /* Hold the SIGTRAP for handling by
1914 linux_nat_wait. */
1915 /* If there's another event, throw it back into the
1916 queue. */
1917 if (lp->status)
1918 {
1919 if (debug_linux_nat)
1920 fprintf_unfiltered (gdb_stdlog,
1921 "SWC: kill %s, %s\n",
1922 target_pid_to_str (lp->ptid),
1923 status_to_str ((int) status));
1924 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
1925 }
1926 /* Save the sigtrap event. */
1927 lp->status = status;
1928 }
1929 return 0;
1930 }
1931 else
1932 {
1933 /* The thread was stopped with a signal other than
1934 SIGSTOP, and didn't accidentally trip a breakpoint. */
1935
1936 if (debug_linux_nat)
1937 {
1938 fprintf_unfiltered (gdb_stdlog,
1939 "SWC: Pending event %s in %s\n",
1940 status_to_str ((int) status),
1941 target_pid_to_str (lp->ptid));
1942 }
1943 /* Now resume this LWP and get the SIGSTOP event. */
1944 errno = 0;
1945 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1946 if (debug_linux_nat)
1947 fprintf_unfiltered (gdb_stdlog,
1948 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
1949 target_pid_to_str (lp->ptid),
1950 errno ? safe_strerror (errno) : "OK");
1951
1952 /* Hold this event/waitstatus while we check to see if
1953 there are any more (we still want to get that SIGSTOP). */
1954 stop_wait_callback (lp, data);
1955
1956 /* If the lp->status field is still empty, use it to
1957 hold this event. If not, then this event must be
1958 returned to the event queue of the LWP. */
1959 if (lp->status || target_can_async_p ())
1960 {
1961 if (debug_linux_nat)
1962 {
1963 fprintf_unfiltered (gdb_stdlog,
1964 "SWC: kill %s, %s\n",
1965 target_pid_to_str (lp->ptid),
1966 status_to_str ((int) status));
1967 }
1968 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
1969 }
1970 else
1971 lp->status = status;
1972 return 0;
1973 }
1974 }
1975 else
1976 {
1977 /* We caught the SIGSTOP that we intended to catch, so
1978 there's no SIGSTOP pending. */
1979 lp->stopped = 1;
1980 lp->signalled = 0;
1981 }
1982 }
1983
1984 return 0;
1985 }
1986
1987 /* Check whether PID has any pending signals in FLUSH_MASK. If so set
1988 the appropriate bits in PENDING, and return 1 - otherwise return 0. */
1989
1990 static int
1991 linux_nat_has_pending (int pid, sigset_t *pending, sigset_t *flush_mask)
1992 {
1993 sigset_t blocked, ignored;
1994 int i;
1995
1996 linux_proc_pending_signals (pid, pending, &blocked, &ignored);
1997
1998 if (!flush_mask)
1999 return 0;
2000
2001 for (i = 1; i < NSIG; i++)
2002 if (sigismember (pending, i))
2003 if (!sigismember (flush_mask, i)
2004 || sigismember (&blocked, i)
2005 || sigismember (&ignored, i))
2006 sigdelset (pending, i);
2007
2008 if (sigisemptyset (pending))
2009 return 0;
2010
2011 return 1;
2012 }
2013
2014 /* DATA is interpreted as a mask of signals to flush. If LP has
2015 signals pending, and they are all in the flush mask, then arrange
2016 to flush them. LP should be stopped, as should all other threads
2017 it might share a signal queue with. */
2018
2019 static int
2020 flush_callback (struct lwp_info *lp, void *data)
2021 {
2022 sigset_t *flush_mask = data;
2023 sigset_t pending, intersection, blocked, ignored;
2024 int pid, status;
2025
2026 /* Normally, when an LWP exits, it is removed from the LWP list. The
2027 last LWP isn't removed till later, however. So if there is only
2028 one LWP on the list, make sure it's alive. */
2029 if (lwp_list == lp && lp->next == NULL)
2030 if (!linux_nat_thread_alive (lp->ptid))
2031 return 0;
2032
2033 /* Just because the LWP is stopped doesn't mean that new signals
2034 can't arrive from outside, so this function must be careful of
2035 race conditions. However, because all threads are stopped, we
2036 can assume that the pending mask will not shrink unless we resume
2037 the LWP, and that it will then get another signal. We can't
2038 control which one, however. */
2039
2040 if (lp->status)
2041 {
2042 if (debug_linux_nat)
2043 printf_unfiltered (_("FC: LP has pending status %06x\n"), lp->status);
2044 if (WIFSTOPPED (lp->status) && sigismember (flush_mask, WSTOPSIG (lp->status)))
2045 lp->status = 0;
2046 }
2047
2048 /* While there is a pending signal we would like to flush, continue
2049 the inferior and collect another signal. But if there's already
2050 a saved status that we don't want to flush, we can't resume the
2051 inferior - if it stopped for some other reason we wouldn't have
2052 anywhere to save the new status. In that case, we must leave the
2053 signal unflushed (and possibly generate an extra SIGINT stop).
2054 That's much less bad than losing a signal. */
2055 while (lp->status == 0
2056 && linux_nat_has_pending (GET_LWP (lp->ptid), &pending, flush_mask))
2057 {
2058 int ret;
2059
2060 errno = 0;
2061 ret = ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2062 if (debug_linux_nat)
2063 fprintf_unfiltered (gdb_stderr,
2064 "FC: Sent PTRACE_CONT, ret %d %d\n", ret, errno);
2065
2066 lp->stopped = 0;
2067 stop_wait_callback (lp, flush_mask);
2068 if (debug_linux_nat)
2069 fprintf_unfiltered (gdb_stderr,
2070 "FC: Wait finished; saved status is %d\n",
2071 lp->status);
2072 }
2073
2074 return 0;
2075 }
2076
2077 /* Return non-zero if LP has a wait status pending. */
2078
2079 static int
2080 status_callback (struct lwp_info *lp, void *data)
2081 {
2082 /* Only report a pending wait status if we pretend that this has
2083 indeed been resumed. */
2084 return (lp->status != 0 && lp->resumed);
2085 }
2086
2087 /* Return non-zero if LP isn't stopped. */
2088
2089 static int
2090 running_callback (struct lwp_info *lp, void *data)
2091 {
2092 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2093 }
2094
2095 /* Count the LWP's that have had events. */
2096
2097 static int
2098 count_events_callback (struct lwp_info *lp, void *data)
2099 {
2100 int *count = data;
2101
2102 gdb_assert (count != NULL);
2103
2104 /* Count only LWPs that have a SIGTRAP event pending. */
2105 if (lp->status != 0
2106 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2107 (*count)++;
2108
2109 return 0;
2110 }
2111
2112 /* Select the LWP (if any) that is currently being single-stepped. */
2113
2114 static int
2115 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2116 {
2117 if (lp->step && lp->status != 0)
2118 return 1;
2119 else
2120 return 0;
2121 }
2122
2123 /* Select the Nth LWP that has had a SIGTRAP event. */
2124
2125 static int
2126 select_event_lwp_callback (struct lwp_info *lp, void *data)
2127 {
2128 int *selector = data;
2129
2130 gdb_assert (selector != NULL);
2131
2132 /* Select only LWPs that have a SIGTRAP event pending. */
2133 if (lp->status != 0
2134 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2135 if ((*selector)-- == 0)
2136 return 1;
2137
2138 return 0;
2139 }
2140
2141 static int
2142 cancel_breakpoint (struct lwp_info *lp)
2143 {
2144 /* Arrange for a breakpoint to be hit again later. We don't keep
2145 the SIGTRAP status and don't forward the SIGTRAP signal to the
2146 LWP. We will handle the current event, eventually we will resume
2147 this LWP, and this breakpoint will trap again.
2148
2149 If we do not do this, then we run the risk that the user will
2150 delete or disable the breakpoint, but the LWP will have already
2151 tripped on it. */
2152
2153 struct regcache *regcache = get_thread_regcache (lp->ptid);
2154 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2155 CORE_ADDR pc;
2156
2157 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2158 if (breakpoint_inserted_here_p (pc))
2159 {
2160 if (debug_linux_nat)
2161 fprintf_unfiltered (gdb_stdlog,
2162 "CB: Push back breakpoint for %s\n",
2163 target_pid_to_str (lp->ptid));
2164
2165 /* Back up the PC if necessary. */
2166 if (gdbarch_decr_pc_after_break (gdbarch))
2167 regcache_write_pc (regcache, pc);
2168
2169 return 1;
2170 }
2171 return 0;
2172 }
2173
2174 static int
2175 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2176 {
2177 struct lwp_info *event_lp = data;
2178
2179 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2180 if (lp == event_lp)
2181 return 0;
2182
2183 /* If a LWP other than the LWP that we're reporting an event for has
2184 hit a GDB breakpoint (as opposed to some random trap signal),
2185 then just arrange for it to hit it again later. We don't keep
2186 the SIGTRAP status and don't forward the SIGTRAP signal to the
2187 LWP. We will handle the current event, eventually we will resume
2188 all LWPs, and this one will get its breakpoint trap again.
2189
2190 If we do not do this, then we run the risk that the user will
2191 delete or disable the breakpoint, but the LWP will have already
2192 tripped on it. */
2193
2194 if (lp->status != 0
2195 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2196 && cancel_breakpoint (lp))
2197 /* Throw away the SIGTRAP. */
2198 lp->status = 0;
2199
2200 return 0;
2201 }
2202
2203 /* Select one LWP out of those that have events pending. */
2204
2205 static void
2206 select_event_lwp (struct lwp_info **orig_lp, int *status)
2207 {
2208 int num_events = 0;
2209 int random_selector;
2210 struct lwp_info *event_lp;
2211
2212 /* Record the wait status for the original LWP. */
2213 (*orig_lp)->status = *status;
2214
2215 /* Give preference to any LWP that is being single-stepped. */
2216 event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
2217 if (event_lp != NULL)
2218 {
2219 if (debug_linux_nat)
2220 fprintf_unfiltered (gdb_stdlog,
2221 "SEL: Select single-step %s\n",
2222 target_pid_to_str (event_lp->ptid));
2223 }
2224 else
2225 {
2226 /* No single-stepping LWP. Select one at random, out of those
2227 which have had SIGTRAP events. */
2228
2229 /* First see how many SIGTRAP events we have. */
2230 iterate_over_lwps (count_events_callback, &num_events);
2231
2232 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2233 random_selector = (int)
2234 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2235
2236 if (debug_linux_nat && num_events > 1)
2237 fprintf_unfiltered (gdb_stdlog,
2238 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2239 num_events, random_selector);
2240
2241 event_lp = iterate_over_lwps (select_event_lwp_callback,
2242 &random_selector);
2243 }
2244
2245 if (event_lp != NULL)
2246 {
2247 /* Switch the event LWP. */
2248 *orig_lp = event_lp;
2249 *status = event_lp->status;
2250 }
2251
2252 /* Flush the wait status for the event LWP. */
2253 (*orig_lp)->status = 0;
2254 }
2255
2256 /* Return non-zero if LP has been resumed. */
2257
2258 static int
2259 resumed_callback (struct lwp_info *lp, void *data)
2260 {
2261 return lp->resumed;
2262 }
2263
2264 /* Stop an active thread, verify it still exists, then resume it. */
2265
2266 static int
2267 stop_and_resume_callback (struct lwp_info *lp, void *data)
2268 {
2269 struct lwp_info *ptr;
2270
2271 if (!lp->stopped && !lp->signalled)
2272 {
2273 stop_callback (lp, NULL);
2274 stop_wait_callback (lp, NULL);
2275 /* Resume if the lwp still exists. */
2276 for (ptr = lwp_list; ptr; ptr = ptr->next)
2277 if (lp == ptr)
2278 {
2279 resume_callback (lp, NULL);
2280 resume_set_callback (lp, NULL);
2281 }
2282 }
2283 return 0;
2284 }
2285
2286 /* Check if we should go on and pass this event to common code.
2287 Return the affected lwp if we are, or NULL otherwise. */
2288 static struct lwp_info *
2289 linux_nat_filter_event (int lwpid, int status, int options)
2290 {
2291 struct lwp_info *lp;
2292
2293 lp = find_lwp_pid (pid_to_ptid (lwpid));
2294
2295 /* Check for stop events reported by a process we didn't already
2296 know about - anything not already in our LWP list.
2297
2298 If we're expecting to receive stopped processes after
2299 fork, vfork, and clone events, then we'll just add the
2300 new one to our list and go back to waiting for the event
2301 to be reported - the stopped process might be returned
2302 from waitpid before or after the event is. */
2303 if (WIFSTOPPED (status) && !lp)
2304 {
2305 linux_record_stopped_pid (lwpid, status);
2306 return NULL;
2307 }
2308
2309 /* Make sure we don't report an event for the exit of an LWP not in
2310 our list, i.e. not part of the current process. This can happen
2311 if we detach from a program we original forked and then it
2312 exits. */
2313 if (!WIFSTOPPED (status) && !lp)
2314 return NULL;
2315
2316 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2317 CLONE_PTRACE processes which do not use the thread library -
2318 otherwise we wouldn't find the new LWP this way. That doesn't
2319 currently work, and the following code is currently unreachable
2320 due to the two blocks above. If it's fixed some day, this code
2321 should be broken out into a function so that we can also pick up
2322 LWPs from the new interface. */
2323 if (!lp)
2324 {
2325 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2326 if (options & __WCLONE)
2327 lp->cloned = 1;
2328
2329 gdb_assert (WIFSTOPPED (status)
2330 && WSTOPSIG (status) == SIGSTOP);
2331 lp->signalled = 1;
2332
2333 if (!in_thread_list (inferior_ptid))
2334 {
2335 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2336 GET_PID (inferior_ptid));
2337 add_thread (inferior_ptid);
2338 }
2339
2340 add_thread (lp->ptid);
2341 }
2342
2343 /* Save the trap's siginfo in case we need it later. */
2344 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2345 save_siginfo (lp);
2346
2347 /* Handle GNU/Linux's extended waitstatus for trace events. */
2348 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2349 {
2350 if (debug_linux_nat)
2351 fprintf_unfiltered (gdb_stdlog,
2352 "LLW: Handling extended status 0x%06x\n",
2353 status);
2354 if (linux_handle_extended_wait (lp, status, 0))
2355 return NULL;
2356 }
2357
2358 /* Check if the thread has exited. */
2359 if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
2360 {
2361 /* If this is the main thread, we must stop all threads and
2362 verify if they are still alive. This is because in the nptl
2363 thread model, there is no signal issued for exiting LWPs
2364 other than the main thread. We only get the main thread exit
2365 signal once all child threads have already exited. If we
2366 stop all the threads and use the stop_wait_callback to check
2367 if they have exited we can determine whether this signal
2368 should be ignored or whether it means the end of the debugged
2369 application, regardless of which threading model is being
2370 used. */
2371 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2372 {
2373 lp->stopped = 1;
2374 iterate_over_lwps (stop_and_resume_callback, NULL);
2375 }
2376
2377 if (debug_linux_nat)
2378 fprintf_unfiltered (gdb_stdlog,
2379 "LLW: %s exited.\n",
2380 target_pid_to_str (lp->ptid));
2381
2382 exit_lwp (lp);
2383
2384 /* If there is at least one more LWP, then the exit signal was
2385 not the end of the debugged application and should be
2386 ignored. */
2387 if (num_lwps > 0)
2388 {
2389 /* Make sure there is at least one thread running. */
2390 gdb_assert (iterate_over_lwps (running_callback, NULL));
2391
2392 /* Discard the event. */
2393 return NULL;
2394 }
2395 }
2396
2397 /* Check if the current LWP has previously exited. In the nptl
2398 thread model, LWPs other than the main thread do not issue
2399 signals when they exit so we must check whenever the thread has
2400 stopped. A similar check is made in stop_wait_callback(). */
2401 if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid))
2402 {
2403 if (debug_linux_nat)
2404 fprintf_unfiltered (gdb_stdlog,
2405 "LLW: %s exited.\n",
2406 target_pid_to_str (lp->ptid));
2407
2408 exit_lwp (lp);
2409
2410 /* Make sure there is at least one thread running. */
2411 gdb_assert (iterate_over_lwps (running_callback, NULL));
2412
2413 /* Discard the event. */
2414 return NULL;
2415 }
2416
2417 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2418 an attempt to stop an LWP. */
2419 if (lp->signalled
2420 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2421 {
2422 if (debug_linux_nat)
2423 fprintf_unfiltered (gdb_stdlog,
2424 "LLW: Delayed SIGSTOP caught for %s.\n",
2425 target_pid_to_str (lp->ptid));
2426
2427 /* This is a delayed SIGSTOP. */
2428 lp->signalled = 0;
2429
2430 registers_changed ();
2431
2432 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2433 lp->step, TARGET_SIGNAL_0);
2434 if (debug_linux_nat)
2435 fprintf_unfiltered (gdb_stdlog,
2436 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2437 lp->step ?
2438 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2439 target_pid_to_str (lp->ptid));
2440
2441 lp->stopped = 0;
2442 gdb_assert (lp->resumed);
2443
2444 /* Discard the event. */
2445 return NULL;
2446 }
2447
2448 /* An interesting event. */
2449 gdb_assert (lp);
2450 return lp;
2451 }
2452
2453 /* Get the events stored in the pipe into the local queue, so they are
2454 accessible to queued_waitpid. We need to do this, since it is not
2455 always the case that the event at the head of the pipe is the event
2456 we want. */
2457
2458 static void
2459 pipe_to_local_event_queue (void)
2460 {
2461 if (debug_linux_nat_async)
2462 fprintf_unfiltered (gdb_stdlog,
2463 "PTLEQ: linux_nat_num_queued_events(%d)\n",
2464 linux_nat_num_queued_events);
2465 while (linux_nat_num_queued_events)
2466 {
2467 int lwpid, status, options;
2468 lwpid = linux_nat_event_pipe_pop (&status, &options);
2469 gdb_assert (lwpid > 0);
2470 push_waitpid (lwpid, status, options);
2471 }
2472 }
2473
2474 /* Get the unprocessed events stored in the local queue back into the
2475 pipe, so the event loop realizes there's something else to
2476 process. */
2477
2478 static void
2479 local_event_queue_to_pipe (void)
2480 {
2481 struct waitpid_result *w = waitpid_queue;
2482 while (w)
2483 {
2484 struct waitpid_result *next = w->next;
2485 linux_nat_event_pipe_push (w->pid,
2486 w->status,
2487 w->options);
2488 xfree (w);
2489 w = next;
2490 }
2491 waitpid_queue = NULL;
2492
2493 if (debug_linux_nat_async)
2494 fprintf_unfiltered (gdb_stdlog,
2495 "LEQTP: linux_nat_num_queued_events(%d)\n",
2496 linux_nat_num_queued_events);
2497 }
2498
2499 static ptid_t
2500 linux_nat_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
2501 {
2502 struct lwp_info *lp = NULL;
2503 int options = 0;
2504 int status = 0;
2505 pid_t pid = PIDGET (ptid);
2506 sigset_t flush_mask;
2507
2508 if (debug_linux_nat_async)
2509 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2510
2511 /* The first time we get here after starting a new inferior, we may
2512 not have added it to the LWP list yet - this is the earliest
2513 moment at which we know its PID. */
2514 if (num_lwps == 0)
2515 {
2516 gdb_assert (!is_lwp (inferior_ptid));
2517
2518 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2519 GET_PID (inferior_ptid));
2520 lp = add_lwp (inferior_ptid);
2521 lp->resumed = 1;
2522 /* Add the main thread to GDB's thread list. */
2523 add_thread_silent (lp->ptid);
2524 }
2525
2526 sigemptyset (&flush_mask);
2527
2528 if (target_can_async_p ())
2529 /* Block events while we're here. */
2530 target_async (NULL, 0);
2531
2532 retry:
2533
2534 /* Make sure there is at least one LWP that has been resumed. */
2535 gdb_assert (iterate_over_lwps (resumed_callback, NULL));
2536
2537 /* First check if there is a LWP with a wait status pending. */
2538 if (pid == -1)
2539 {
2540 /* Any LWP that's been resumed will do. */
2541 lp = iterate_over_lwps (status_callback, NULL);
2542 if (lp)
2543 {
2544 if (target_can_async_p ())
2545 internal_error (__FILE__, __LINE__,
2546 "Found an LWP with a pending status in async mode.");
2547
2548 status = lp->status;
2549 lp->status = 0;
2550
2551 if (debug_linux_nat && status)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "LLW: Using pending wait status %s for %s.\n",
2554 status_to_str (status),
2555 target_pid_to_str (lp->ptid));
2556 }
2557
2558 /* But if we don't find one, we'll have to wait, and check both
2559 cloned and uncloned processes. We start with the cloned
2560 processes. */
2561 options = __WCLONE | WNOHANG;
2562 }
2563 else if (is_lwp (ptid))
2564 {
2565 if (debug_linux_nat)
2566 fprintf_unfiltered (gdb_stdlog,
2567 "LLW: Waiting for specific LWP %s.\n",
2568 target_pid_to_str (ptid));
2569
2570 /* We have a specific LWP to check. */
2571 lp = find_lwp_pid (ptid);
2572 gdb_assert (lp);
2573 status = lp->status;
2574 lp->status = 0;
2575
2576 if (debug_linux_nat && status)
2577 fprintf_unfiltered (gdb_stdlog,
2578 "LLW: Using pending wait status %s for %s.\n",
2579 status_to_str (status),
2580 target_pid_to_str (lp->ptid));
2581
2582 /* If we have to wait, take into account whether PID is a cloned
2583 process or not. And we have to convert it to something that
2584 the layer beneath us can understand. */
2585 options = lp->cloned ? __WCLONE : 0;
2586 pid = GET_LWP (ptid);
2587 }
2588
2589 if (status && lp->signalled)
2590 {
2591 /* A pending SIGSTOP may interfere with the normal stream of
2592 events. In a typical case where interference is a problem,
2593 we have a SIGSTOP signal pending for LWP A while
2594 single-stepping it, encounter an event in LWP B, and take the
2595 pending SIGSTOP while trying to stop LWP A. After processing
2596 the event in LWP B, LWP A is continued, and we'll never see
2597 the SIGTRAP associated with the last time we were
2598 single-stepping LWP A. */
2599
2600 /* Resume the thread. It should halt immediately returning the
2601 pending SIGSTOP. */
2602 registers_changed ();
2603 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2604 lp->step, TARGET_SIGNAL_0);
2605 if (debug_linux_nat)
2606 fprintf_unfiltered (gdb_stdlog,
2607 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2608 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2609 target_pid_to_str (lp->ptid));
2610 lp->stopped = 0;
2611 gdb_assert (lp->resumed);
2612
2613 /* This should catch the pending SIGSTOP. */
2614 stop_wait_callback (lp, NULL);
2615 }
2616
2617 if (!target_can_async_p ())
2618 {
2619 /* Causes SIGINT to be passed on to the attached process. */
2620 set_sigint_trap ();
2621 set_sigio_trap ();
2622 }
2623
2624 while (status == 0)
2625 {
2626 pid_t lwpid;
2627
2628 if (target_can_async_p ())
2629 /* In async mode, don't ever block. Only look at the locally
2630 queued events. */
2631 lwpid = queued_waitpid (pid, &status, options);
2632 else
2633 lwpid = my_waitpid (pid, &status, options);
2634
2635 if (lwpid > 0)
2636 {
2637 gdb_assert (pid == -1 || lwpid == pid);
2638
2639 if (debug_linux_nat)
2640 {
2641 fprintf_unfiltered (gdb_stdlog,
2642 "LLW: waitpid %ld received %s\n",
2643 (long) lwpid, status_to_str (status));
2644 }
2645
2646 lp = linux_nat_filter_event (lwpid, status, options);
2647 if (!lp)
2648 {
2649 /* A discarded event. */
2650 status = 0;
2651 continue;
2652 }
2653
2654 break;
2655 }
2656
2657 if (pid == -1)
2658 {
2659 /* Alternate between checking cloned and uncloned processes. */
2660 options ^= __WCLONE;
2661
2662 /* And every time we have checked both:
2663 In async mode, return to event loop;
2664 In sync mode, suspend waiting for a SIGCHLD signal. */
2665 if (options & __WCLONE)
2666 {
2667 if (target_can_async_p ())
2668 {
2669 /* No interesting event. */
2670 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2671
2672 /* Get ready for the next event. */
2673 target_async (inferior_event_handler, 0);
2674
2675 if (debug_linux_nat_async)
2676 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2677
2678 return minus_one_ptid;
2679 }
2680
2681 sigsuspend (&suspend_mask);
2682 }
2683 }
2684
2685 /* We shouldn't end up here unless we want to try again. */
2686 gdb_assert (status == 0);
2687 }
2688
2689 if (!target_can_async_p ())
2690 {
2691 clear_sigio_trap ();
2692 clear_sigint_trap ();
2693 }
2694
2695 gdb_assert (lp);
2696
2697 /* Don't report signals that GDB isn't interested in, such as
2698 signals that are neither printed nor stopped upon. Stopping all
2699 threads can be a bit time-consuming so if we want decent
2700 performance with heavily multi-threaded programs, especially when
2701 they're using a high frequency timer, we'd better avoid it if we
2702 can. */
2703
2704 if (WIFSTOPPED (status))
2705 {
2706 int signo = target_signal_from_host (WSTOPSIG (status));
2707
2708 /* If we get a signal while single-stepping, we may need special
2709 care, e.g. to skip the signal handler. Defer to common code. */
2710 if (!lp->step
2711 && signal_stop_state (signo) == 0
2712 && signal_print_state (signo) == 0
2713 && signal_pass_state (signo) == 1)
2714 {
2715 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
2716 here? It is not clear we should. GDB may not expect
2717 other threads to run. On the other hand, not resuming
2718 newly attached threads may cause an unwanted delay in
2719 getting them running. */
2720 registers_changed ();
2721 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2722 lp->step, signo);
2723 if (debug_linux_nat)
2724 fprintf_unfiltered (gdb_stdlog,
2725 "LLW: %s %s, %s (preempt 'handle')\n",
2726 lp->step ?
2727 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2728 target_pid_to_str (lp->ptid),
2729 signo ? strsignal (signo) : "0");
2730 lp->stopped = 0;
2731 status = 0;
2732 goto retry;
2733 }
2734
2735 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
2736 {
2737 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
2738 forwarded to the entire process group, that is, all LWP's
2739 will receive it. Since we only want to report it once,
2740 we try to flush it from all LWPs except this one. */
2741 sigaddset (&flush_mask, SIGINT);
2742 }
2743 }
2744
2745 /* This LWP is stopped now. */
2746 lp->stopped = 1;
2747
2748 if (debug_linux_nat)
2749 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
2750 status_to_str (status), target_pid_to_str (lp->ptid));
2751
2752 /* Now stop all other LWP's ... */
2753 iterate_over_lwps (stop_callback, NULL);
2754
2755 /* ... and wait until all of them have reported back that they're no
2756 longer running. */
2757 iterate_over_lwps (stop_wait_callback, &flush_mask);
2758 iterate_over_lwps (flush_callback, &flush_mask);
2759
2760 /* If we're not waiting for a specific LWP, choose an event LWP from
2761 among those that have had events. Giving equal priority to all
2762 LWPs that have had events helps prevent starvation. */
2763 if (pid == -1)
2764 select_event_lwp (&lp, &status);
2765
2766 /* Now that we've selected our final event LWP, cancel any
2767 breakpoints in other LWPs that have hit a GDB breakpoint. See
2768 the comment in cancel_breakpoints_callback to find out why. */
2769 iterate_over_lwps (cancel_breakpoints_callback, lp);
2770
2771 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2772 {
2773 if (debug_linux_nat)
2774 fprintf_unfiltered (gdb_stdlog,
2775 "LLW: trap ptid is %s.\n",
2776 target_pid_to_str (lp->ptid));
2777 }
2778
2779 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2780 {
2781 *ourstatus = lp->waitstatus;
2782 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
2783 }
2784 else
2785 store_waitstatus (ourstatus, status);
2786
2787 /* Get ready for the next event. */
2788 if (target_can_async_p ())
2789 target_async (inferior_event_handler, 0);
2790
2791 if (debug_linux_nat_async)
2792 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
2793
2794 return lp->ptid;
2795 }
2796
2797 static int
2798 kill_callback (struct lwp_info *lp, void *data)
2799 {
2800 errno = 0;
2801 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
2802 if (debug_linux_nat)
2803 fprintf_unfiltered (gdb_stdlog,
2804 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
2805 target_pid_to_str (lp->ptid),
2806 errno ? safe_strerror (errno) : "OK");
2807
2808 return 0;
2809 }
2810
2811 static int
2812 kill_wait_callback (struct lwp_info *lp, void *data)
2813 {
2814 pid_t pid;
2815
2816 /* We must make sure that there are no pending events (delayed
2817 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
2818 program doesn't interfere with any following debugging session. */
2819
2820 /* For cloned processes we must check both with __WCLONE and
2821 without, since the exit status of a cloned process isn't reported
2822 with __WCLONE. */
2823 if (lp->cloned)
2824 {
2825 do
2826 {
2827 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
2828 if (pid != (pid_t) -1)
2829 {
2830 if (debug_linux_nat)
2831 fprintf_unfiltered (gdb_stdlog,
2832 "KWC: wait %s received unknown.\n",
2833 target_pid_to_str (lp->ptid));
2834 /* The Linux kernel sometimes fails to kill a thread
2835 completely after PTRACE_KILL; that goes from the stop
2836 point in do_fork out to the one in
2837 get_signal_to_deliever and waits again. So kill it
2838 again. */
2839 kill_callback (lp, NULL);
2840 }
2841 }
2842 while (pid == GET_LWP (lp->ptid));
2843
2844 gdb_assert (pid == -1 && errno == ECHILD);
2845 }
2846
2847 do
2848 {
2849 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
2850 if (pid != (pid_t) -1)
2851 {
2852 if (debug_linux_nat)
2853 fprintf_unfiltered (gdb_stdlog,
2854 "KWC: wait %s received unk.\n",
2855 target_pid_to_str (lp->ptid));
2856 /* See the call to kill_callback above. */
2857 kill_callback (lp, NULL);
2858 }
2859 }
2860 while (pid == GET_LWP (lp->ptid));
2861
2862 gdb_assert (pid == -1 && errno == ECHILD);
2863 return 0;
2864 }
2865
2866 static void
2867 linux_nat_kill (void)
2868 {
2869 struct target_waitstatus last;
2870 ptid_t last_ptid;
2871 int status;
2872
2873 if (target_can_async_p ())
2874 target_async (NULL, 0);
2875
2876 /* If we're stopped while forking and we haven't followed yet,
2877 kill the other task. We need to do this first because the
2878 parent will be sleeping if this is a vfork. */
2879
2880 get_last_target_status (&last_ptid, &last);
2881
2882 if (last.kind == TARGET_WAITKIND_FORKED
2883 || last.kind == TARGET_WAITKIND_VFORKED)
2884 {
2885 ptrace (PT_KILL, last.value.related_pid, 0, 0);
2886 wait (&status);
2887 }
2888
2889 if (forks_exist_p ())
2890 {
2891 linux_fork_killall ();
2892 drain_queued_events (-1);
2893 }
2894 else
2895 {
2896 /* Kill all LWP's ... */
2897 iterate_over_lwps (kill_callback, NULL);
2898
2899 /* ... and wait until we've flushed all events. */
2900 iterate_over_lwps (kill_wait_callback, NULL);
2901 }
2902
2903 target_mourn_inferior ();
2904 }
2905
2906 static void
2907 linux_nat_mourn_inferior (void)
2908 {
2909 /* Destroy LWP info; it's no longer valid. */
2910 init_lwp_list ();
2911
2912 if (! forks_exist_p ())
2913 {
2914 /* Normal case, no other forks available. */
2915 if (target_can_async_p ())
2916 linux_nat_async (NULL, 0);
2917 linux_ops->to_mourn_inferior ();
2918 }
2919 else
2920 /* Multi-fork case. The current inferior_ptid has exited, but
2921 there are other viable forks to debug. Delete the exiting
2922 one and context-switch to the first available. */
2923 linux_fork_mourn_inferior ();
2924 }
2925
2926 static LONGEST
2927 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
2928 const char *annex, gdb_byte *readbuf,
2929 const gdb_byte *writebuf,
2930 ULONGEST offset, LONGEST len)
2931 {
2932 struct cleanup *old_chain = save_inferior_ptid ();
2933 LONGEST xfer;
2934
2935 if (is_lwp (inferior_ptid))
2936 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
2937
2938 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
2939 offset, len);
2940
2941 do_cleanups (old_chain);
2942 return xfer;
2943 }
2944
2945 static int
2946 linux_nat_thread_alive (ptid_t ptid)
2947 {
2948 gdb_assert (is_lwp (ptid));
2949
2950 errno = 0;
2951 ptrace (PTRACE_PEEKUSER, GET_LWP (ptid), 0, 0);
2952 if (debug_linux_nat)
2953 fprintf_unfiltered (gdb_stdlog,
2954 "LLTA: PTRACE_PEEKUSER %s, 0, 0 (%s)\n",
2955 target_pid_to_str (ptid),
2956 errno ? safe_strerror (errno) : "OK");
2957
2958 /* Not every Linux kernel implements PTRACE_PEEKUSER. But we can
2959 handle that case gracefully since ptrace will first do a lookup
2960 for the process based upon the passed-in pid. If that fails we
2961 will get either -ESRCH or -EPERM, otherwise the child exists and
2962 is alive. */
2963 if (errno == ESRCH || errno == EPERM)
2964 return 0;
2965
2966 return 1;
2967 }
2968
2969 static char *
2970 linux_nat_pid_to_str (ptid_t ptid)
2971 {
2972 static char buf[64];
2973
2974 if (is_lwp (ptid)
2975 && ((lwp_list && lwp_list->next)
2976 || GET_PID (ptid) != GET_LWP (ptid)))
2977 {
2978 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
2979 return buf;
2980 }
2981
2982 return normal_pid_to_str (ptid);
2983 }
2984
2985 static void
2986 sigchld_handler (int signo)
2987 {
2988 if (linux_nat_async_enabled
2989 && linux_nat_async_events_enabled
2990 && signo == SIGCHLD)
2991 /* It is *always* a bug to hit this. */
2992 internal_error (__FILE__, __LINE__,
2993 "sigchld_handler called when async events are enabled");
2994
2995 /* Do nothing. The only reason for this handler is that it allows
2996 us to use sigsuspend in linux_nat_wait above to wait for the
2997 arrival of a SIGCHLD. */
2998 }
2999
3000 /* Accepts an integer PID; Returns a string representing a file that
3001 can be opened to get the symbols for the child process. */
3002
3003 static char *
3004 linux_child_pid_to_exec_file (int pid)
3005 {
3006 char *name1, *name2;
3007
3008 name1 = xmalloc (MAXPATHLEN);
3009 name2 = xmalloc (MAXPATHLEN);
3010 make_cleanup (xfree, name1);
3011 make_cleanup (xfree, name2);
3012 memset (name2, 0, MAXPATHLEN);
3013
3014 sprintf (name1, "/proc/%d/exe", pid);
3015 if (readlink (name1, name2, MAXPATHLEN) > 0)
3016 return name2;
3017 else
3018 return name1;
3019 }
3020
3021 /* Service function for corefiles and info proc. */
3022
3023 static int
3024 read_mapping (FILE *mapfile,
3025 long long *addr,
3026 long long *endaddr,
3027 char *permissions,
3028 long long *offset,
3029 char *device, long long *inode, char *filename)
3030 {
3031 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3032 addr, endaddr, permissions, offset, device, inode);
3033
3034 filename[0] = '\0';
3035 if (ret > 0 && ret != EOF)
3036 {
3037 /* Eat everything up to EOL for the filename. This will prevent
3038 weird filenames (such as one with embedded whitespace) from
3039 confusing this code. It also makes this code more robust in
3040 respect to annotations the kernel may add after the filename.
3041
3042 Note the filename is used for informational purposes
3043 only. */
3044 ret += fscanf (mapfile, "%[^\n]\n", filename);
3045 }
3046
3047 return (ret != 0 && ret != EOF);
3048 }
3049
3050 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3051 regions in the inferior for a corefile. */
3052
3053 static int
3054 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3055 unsigned long,
3056 int, int, int, void *), void *obfd)
3057 {
3058 long long pid = PIDGET (inferior_ptid);
3059 char mapsfilename[MAXPATHLEN];
3060 FILE *mapsfile;
3061 long long addr, endaddr, size, offset, inode;
3062 char permissions[8], device[8], filename[MAXPATHLEN];
3063 int read, write, exec;
3064 int ret;
3065
3066 /* Compose the filename for the /proc memory map, and open it. */
3067 sprintf (mapsfilename, "/proc/%lld/maps", pid);
3068 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3069 error (_("Could not open %s."), mapsfilename);
3070
3071 if (info_verbose)
3072 fprintf_filtered (gdb_stdout,
3073 "Reading memory regions from %s\n", mapsfilename);
3074
3075 /* Now iterate until end-of-file. */
3076 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3077 &offset, &device[0], &inode, &filename[0]))
3078 {
3079 size = endaddr - addr;
3080
3081 /* Get the segment's permissions. */
3082 read = (strchr (permissions, 'r') != 0);
3083 write = (strchr (permissions, 'w') != 0);
3084 exec = (strchr (permissions, 'x') != 0);
3085
3086 if (info_verbose)
3087 {
3088 fprintf_filtered (gdb_stdout,
3089 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3090 size, paddr_nz (addr),
3091 read ? 'r' : ' ',
3092 write ? 'w' : ' ', exec ? 'x' : ' ');
3093 if (filename[0])
3094 fprintf_filtered (gdb_stdout, " for %s", filename);
3095 fprintf_filtered (gdb_stdout, "\n");
3096 }
3097
3098 /* Invoke the callback function to create the corefile
3099 segment. */
3100 func (addr, size, read, write, exec, obfd);
3101 }
3102 fclose (mapsfile);
3103 return 0;
3104 }
3105
3106 /* Records the thread's register state for the corefile note
3107 section. */
3108
3109 static char *
3110 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3111 char *note_data, int *note_size)
3112 {
3113 gdb_gregset_t gregs;
3114 gdb_fpregset_t fpregs;
3115 unsigned long lwp = ptid_get_lwp (ptid);
3116 struct regcache *regcache = get_thread_regcache (ptid);
3117 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3118 const struct regset *regset;
3119 int core_regset_p;
3120 struct cleanup *old_chain;
3121 struct core_regset_section *sect_list;
3122 char *gdb_regset;
3123
3124 old_chain = save_inferior_ptid ();
3125 inferior_ptid = ptid;
3126 target_fetch_registers (regcache, -1);
3127 do_cleanups (old_chain);
3128
3129 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
3130 sect_list = gdbarch_core_regset_sections (gdbarch);
3131
3132 if (core_regset_p
3133 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3134 sizeof (gregs))) != NULL
3135 && regset->collect_regset != NULL)
3136 regset->collect_regset (regset, regcache, -1,
3137 &gregs, sizeof (gregs));
3138 else
3139 fill_gregset (regcache, &gregs, -1);
3140
3141 note_data = (char *) elfcore_write_prstatus (obfd,
3142 note_data,
3143 note_size,
3144 lwp,
3145 stop_signal, &gregs);
3146
3147 /* The loop below uses the new struct core_regset_section, which stores
3148 the supported section names and sizes for the core file. Note that
3149 note PRSTATUS needs to be treated specially. But the other notes are
3150 structurally the same, so they can benefit from the new struct. */
3151 if (core_regset_p && sect_list != NULL)
3152 while (sect_list->sect_name != NULL)
3153 {
3154 /* .reg was already handled above. */
3155 if (strcmp (sect_list->sect_name, ".reg") == 0)
3156 {
3157 sect_list++;
3158 continue;
3159 }
3160 regset = gdbarch_regset_from_core_section (gdbarch,
3161 sect_list->sect_name,
3162 sect_list->size);
3163 gdb_assert (regset && regset->collect_regset);
3164 gdb_regset = xmalloc (sect_list->size);
3165 regset->collect_regset (regset, regcache, -1,
3166 gdb_regset, sect_list->size);
3167 note_data = (char *) elfcore_write_register_note (obfd,
3168 note_data,
3169 note_size,
3170 sect_list->sect_name,
3171 gdb_regset,
3172 sect_list->size);
3173 xfree (gdb_regset);
3174 sect_list++;
3175 }
3176
3177 /* For architectures that does not have the struct core_regset_section
3178 implemented, we use the old method. When all the architectures have
3179 the new support, the code below should be deleted. */
3180 else
3181 {
3182 if (core_regset_p
3183 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3184 sizeof (fpregs))) != NULL
3185 && regset->collect_regset != NULL)
3186 regset->collect_regset (regset, regcache, -1,
3187 &fpregs, sizeof (fpregs));
3188 else
3189 fill_fpregset (regcache, &fpregs, -1);
3190
3191 note_data = (char *) elfcore_write_prfpreg (obfd,
3192 note_data,
3193 note_size,
3194 &fpregs, sizeof (fpregs));
3195 }
3196
3197 return note_data;
3198 }
3199
3200 struct linux_nat_corefile_thread_data
3201 {
3202 bfd *obfd;
3203 char *note_data;
3204 int *note_size;
3205 int num_notes;
3206 };
3207
3208 /* Called by gdbthread.c once per thread. Records the thread's
3209 register state for the corefile note section. */
3210
3211 static int
3212 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3213 {
3214 struct linux_nat_corefile_thread_data *args = data;
3215
3216 args->note_data = linux_nat_do_thread_registers (args->obfd,
3217 ti->ptid,
3218 args->note_data,
3219 args->note_size);
3220 args->num_notes++;
3221
3222 return 0;
3223 }
3224
3225 /* Records the register state for the corefile note section. */
3226
3227 static char *
3228 linux_nat_do_registers (bfd *obfd, ptid_t ptid,
3229 char *note_data, int *note_size)
3230 {
3231 return linux_nat_do_thread_registers (obfd,
3232 ptid_build (ptid_get_pid (inferior_ptid),
3233 ptid_get_pid (inferior_ptid),
3234 0),
3235 note_data, note_size);
3236 }
3237
3238 /* Fills the "to_make_corefile_note" target vector. Builds the note
3239 section for a corefile, and returns it in a malloc buffer. */
3240
3241 static char *
3242 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3243 {
3244 struct linux_nat_corefile_thread_data thread_args;
3245 struct cleanup *old_chain;
3246 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
3247 char fname[16] = { '\0' };
3248 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
3249 char psargs[80] = { '\0' };
3250 char *note_data = NULL;
3251 ptid_t current_ptid = inferior_ptid;
3252 gdb_byte *auxv;
3253 int auxv_len;
3254
3255 if (get_exec_file (0))
3256 {
3257 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3258 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3259 if (get_inferior_args ())
3260 {
3261 char *string_end;
3262 char *psargs_end = psargs + sizeof (psargs);
3263
3264 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3265 strings fine. */
3266 string_end = memchr (psargs, 0, sizeof (psargs));
3267 if (string_end != NULL)
3268 {
3269 *string_end++ = ' ';
3270 strncpy (string_end, get_inferior_args (),
3271 psargs_end - string_end);
3272 }
3273 }
3274 note_data = (char *) elfcore_write_prpsinfo (obfd,
3275 note_data,
3276 note_size, fname, psargs);
3277 }
3278
3279 /* Dump information for threads. */
3280 thread_args.obfd = obfd;
3281 thread_args.note_data = note_data;
3282 thread_args.note_size = note_size;
3283 thread_args.num_notes = 0;
3284 iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
3285 if (thread_args.num_notes == 0)
3286 {
3287 /* iterate_over_threads didn't come up with any threads; just
3288 use inferior_ptid. */
3289 note_data = linux_nat_do_registers (obfd, inferior_ptid,
3290 note_data, note_size);
3291 }
3292 else
3293 {
3294 note_data = thread_args.note_data;
3295 }
3296
3297 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3298 NULL, &auxv);
3299 if (auxv_len > 0)
3300 {
3301 note_data = elfcore_write_note (obfd, note_data, note_size,
3302 "CORE", NT_AUXV, auxv, auxv_len);
3303 xfree (auxv);
3304 }
3305
3306 make_cleanup (xfree, note_data);
3307 return note_data;
3308 }
3309
3310 /* Implement the "info proc" command. */
3311
3312 static void
3313 linux_nat_info_proc_cmd (char *args, int from_tty)
3314 {
3315 long long pid = PIDGET (inferior_ptid);
3316 FILE *procfile;
3317 char **argv = NULL;
3318 char buffer[MAXPATHLEN];
3319 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3320 int cmdline_f = 1;
3321 int cwd_f = 1;
3322 int exe_f = 1;
3323 int mappings_f = 0;
3324 int environ_f = 0;
3325 int status_f = 0;
3326 int stat_f = 0;
3327 int all = 0;
3328 struct stat dummy;
3329
3330 if (args)
3331 {
3332 /* Break up 'args' into an argv array. */
3333 if ((argv = buildargv (args)) == NULL)
3334 nomem (0);
3335 else
3336 make_cleanup_freeargv (argv);
3337 }
3338 while (argv != NULL && *argv != NULL)
3339 {
3340 if (isdigit (argv[0][0]))
3341 {
3342 pid = strtoul (argv[0], NULL, 10);
3343 }
3344 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3345 {
3346 mappings_f = 1;
3347 }
3348 else if (strcmp (argv[0], "status") == 0)
3349 {
3350 status_f = 1;
3351 }
3352 else if (strcmp (argv[0], "stat") == 0)
3353 {
3354 stat_f = 1;
3355 }
3356 else if (strcmp (argv[0], "cmd") == 0)
3357 {
3358 cmdline_f = 1;
3359 }
3360 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3361 {
3362 exe_f = 1;
3363 }
3364 else if (strcmp (argv[0], "cwd") == 0)
3365 {
3366 cwd_f = 1;
3367 }
3368 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3369 {
3370 all = 1;
3371 }
3372 else
3373 {
3374 /* [...] (future options here) */
3375 }
3376 argv++;
3377 }
3378 if (pid == 0)
3379 error (_("No current process: you must name one."));
3380
3381 sprintf (fname1, "/proc/%lld", pid);
3382 if (stat (fname1, &dummy) != 0)
3383 error (_("No /proc directory: '%s'"), fname1);
3384
3385 printf_filtered (_("process %lld\n"), pid);
3386 if (cmdline_f || all)
3387 {
3388 sprintf (fname1, "/proc/%lld/cmdline", pid);
3389 if ((procfile = fopen (fname1, "r")) != NULL)
3390 {
3391 fgets (buffer, sizeof (buffer), procfile);
3392 printf_filtered ("cmdline = '%s'\n", buffer);
3393 fclose (procfile);
3394 }
3395 else
3396 warning (_("unable to open /proc file '%s'"), fname1);
3397 }
3398 if (cwd_f || all)
3399 {
3400 sprintf (fname1, "/proc/%lld/cwd", pid);
3401 memset (fname2, 0, sizeof (fname2));
3402 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3403 printf_filtered ("cwd = '%s'\n", fname2);
3404 else
3405 warning (_("unable to read link '%s'"), fname1);
3406 }
3407 if (exe_f || all)
3408 {
3409 sprintf (fname1, "/proc/%lld/exe", pid);
3410 memset (fname2, 0, sizeof (fname2));
3411 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3412 printf_filtered ("exe = '%s'\n", fname2);
3413 else
3414 warning (_("unable to read link '%s'"), fname1);
3415 }
3416 if (mappings_f || all)
3417 {
3418 sprintf (fname1, "/proc/%lld/maps", pid);
3419 if ((procfile = fopen (fname1, "r")) != NULL)
3420 {
3421 long long addr, endaddr, size, offset, inode;
3422 char permissions[8], device[8], filename[MAXPATHLEN];
3423
3424 printf_filtered (_("Mapped address spaces:\n\n"));
3425 if (gdbarch_addr_bit (current_gdbarch) == 32)
3426 {
3427 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3428 "Start Addr",
3429 " End Addr",
3430 " Size", " Offset", "objfile");
3431 }
3432 else
3433 {
3434 printf_filtered (" %18s %18s %10s %10s %7s\n",
3435 "Start Addr",
3436 " End Addr",
3437 " Size", " Offset", "objfile");
3438 }
3439
3440 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3441 &offset, &device[0], &inode, &filename[0]))
3442 {
3443 size = endaddr - addr;
3444
3445 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3446 calls here (and possibly above) should be abstracted
3447 out into their own functions? Andrew suggests using
3448 a generic local_address_string instead to print out
3449 the addresses; that makes sense to me, too. */
3450
3451 if (gdbarch_addr_bit (current_gdbarch) == 32)
3452 {
3453 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3454 (unsigned long) addr, /* FIXME: pr_addr */
3455 (unsigned long) endaddr,
3456 (int) size,
3457 (unsigned int) offset,
3458 filename[0] ? filename : "");
3459 }
3460 else
3461 {
3462 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3463 (unsigned long) addr, /* FIXME: pr_addr */
3464 (unsigned long) endaddr,
3465 (int) size,
3466 (unsigned int) offset,
3467 filename[0] ? filename : "");
3468 }
3469 }
3470
3471 fclose (procfile);
3472 }
3473 else
3474 warning (_("unable to open /proc file '%s'"), fname1);
3475 }
3476 if (status_f || all)
3477 {
3478 sprintf (fname1, "/proc/%lld/status", pid);
3479 if ((procfile = fopen (fname1, "r")) != NULL)
3480 {
3481 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3482 puts_filtered (buffer);
3483 fclose (procfile);
3484 }
3485 else
3486 warning (_("unable to open /proc file '%s'"), fname1);
3487 }
3488 if (stat_f || all)
3489 {
3490 sprintf (fname1, "/proc/%lld/stat", pid);
3491 if ((procfile = fopen (fname1, "r")) != NULL)
3492 {
3493 int itmp;
3494 char ctmp;
3495 long ltmp;
3496
3497 if (fscanf (procfile, "%d ", &itmp) > 0)
3498 printf_filtered (_("Process: %d\n"), itmp);
3499 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
3500 printf_filtered (_("Exec file: %s\n"), buffer);
3501 if (fscanf (procfile, "%c ", &ctmp) > 0)
3502 printf_filtered (_("State: %c\n"), ctmp);
3503 if (fscanf (procfile, "%d ", &itmp) > 0)
3504 printf_filtered (_("Parent process: %d\n"), itmp);
3505 if (fscanf (procfile, "%d ", &itmp) > 0)
3506 printf_filtered (_("Process group: %d\n"), itmp);
3507 if (fscanf (procfile, "%d ", &itmp) > 0)
3508 printf_filtered (_("Session id: %d\n"), itmp);
3509 if (fscanf (procfile, "%d ", &itmp) > 0)
3510 printf_filtered (_("TTY: %d\n"), itmp);
3511 if (fscanf (procfile, "%d ", &itmp) > 0)
3512 printf_filtered (_("TTY owner process group: %d\n"), itmp);
3513 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3514 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3515 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3516 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3517 (unsigned long) ltmp);
3518 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3519 printf_filtered (_("Minor faults, children: %lu\n"),
3520 (unsigned long) ltmp);
3521 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3522 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3523 (unsigned long) ltmp);
3524 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3525 printf_filtered (_("Major faults, children: %lu\n"),
3526 (unsigned long) ltmp);
3527 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3528 printf_filtered (_("utime: %ld\n"), ltmp);
3529 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3530 printf_filtered (_("stime: %ld\n"), ltmp);
3531 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3532 printf_filtered (_("utime, children: %ld\n"), ltmp);
3533 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3534 printf_filtered (_("stime, children: %ld\n"), ltmp);
3535 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3536 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3537 ltmp);
3538 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3539 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3540 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3541 printf_filtered (_("jiffies until next timeout: %lu\n"),
3542 (unsigned long) ltmp);
3543 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3544 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3545 (unsigned long) ltmp);
3546 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3547 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3548 ltmp);
3549 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3550 printf_filtered (_("Virtual memory size: %lu\n"),
3551 (unsigned long) ltmp);
3552 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3553 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3554 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3555 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3556 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3557 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3558 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3559 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3560 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3561 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
3562 #if 0 /* Don't know how architecture-dependent the rest is...
3563 Anyway the signal bitmap info is available from "status". */
3564 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3565 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3566 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3567 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3568 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3569 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3570 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3571 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3572 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3573 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3574 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3575 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3576 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3577 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
3578 #endif
3579 fclose (procfile);
3580 }
3581 else
3582 warning (_("unable to open /proc file '%s'"), fname1);
3583 }
3584 }
3585
3586 /* Implement the to_xfer_partial interface for memory reads using the /proc
3587 filesystem. Because we can use a single read() call for /proc, this
3588 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3589 but it doesn't support writes. */
3590
3591 static LONGEST
3592 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3593 const char *annex, gdb_byte *readbuf,
3594 const gdb_byte *writebuf,
3595 ULONGEST offset, LONGEST len)
3596 {
3597 LONGEST ret;
3598 int fd;
3599 char filename[64];
3600
3601 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3602 return 0;
3603
3604 /* Don't bother for one word. */
3605 if (len < 3 * sizeof (long))
3606 return 0;
3607
3608 /* We could keep this file open and cache it - possibly one per
3609 thread. That requires some juggling, but is even faster. */
3610 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
3611 fd = open (filename, O_RDONLY | O_LARGEFILE);
3612 if (fd == -1)
3613 return 0;
3614
3615 /* If pread64 is available, use it. It's faster if the kernel
3616 supports it (only one syscall), and it's 64-bit safe even on
3617 32-bit platforms (for instance, SPARC debugging a SPARC64
3618 application). */
3619 #ifdef HAVE_PREAD64
3620 if (pread64 (fd, readbuf, len, offset) != len)
3621 #else
3622 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3623 #endif
3624 ret = 0;
3625 else
3626 ret = len;
3627
3628 close (fd);
3629 return ret;
3630 }
3631
3632 /* Parse LINE as a signal set and add its set bits to SIGS. */
3633
3634 static void
3635 add_line_to_sigset (const char *line, sigset_t *sigs)
3636 {
3637 int len = strlen (line) - 1;
3638 const char *p;
3639 int signum;
3640
3641 if (line[len] != '\n')
3642 error (_("Could not parse signal set: %s"), line);
3643
3644 p = line;
3645 signum = len * 4;
3646 while (len-- > 0)
3647 {
3648 int digit;
3649
3650 if (*p >= '0' && *p <= '9')
3651 digit = *p - '0';
3652 else if (*p >= 'a' && *p <= 'f')
3653 digit = *p - 'a' + 10;
3654 else
3655 error (_("Could not parse signal set: %s"), line);
3656
3657 signum -= 4;
3658
3659 if (digit & 1)
3660 sigaddset (sigs, signum + 1);
3661 if (digit & 2)
3662 sigaddset (sigs, signum + 2);
3663 if (digit & 4)
3664 sigaddset (sigs, signum + 3);
3665 if (digit & 8)
3666 sigaddset (sigs, signum + 4);
3667
3668 p++;
3669 }
3670 }
3671
3672 /* Find process PID's pending signals from /proc/pid/status and set
3673 SIGS to match. */
3674
3675 void
3676 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
3677 {
3678 FILE *procfile;
3679 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
3680 int signum;
3681
3682 sigemptyset (pending);
3683 sigemptyset (blocked);
3684 sigemptyset (ignored);
3685 sprintf (fname, "/proc/%d/status", pid);
3686 procfile = fopen (fname, "r");
3687 if (procfile == NULL)
3688 error (_("Could not open %s"), fname);
3689
3690 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
3691 {
3692 /* Normal queued signals are on the SigPnd line in the status
3693 file. However, 2.6 kernels also have a "shared" pending
3694 queue for delivering signals to a thread group, so check for
3695 a ShdPnd line also.
3696
3697 Unfortunately some Red Hat kernels include the shared pending
3698 queue but not the ShdPnd status field. */
3699
3700 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
3701 add_line_to_sigset (buffer + 8, pending);
3702 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
3703 add_line_to_sigset (buffer + 8, pending);
3704 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
3705 add_line_to_sigset (buffer + 8, blocked);
3706 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
3707 add_line_to_sigset (buffer + 8, ignored);
3708 }
3709
3710 fclose (procfile);
3711 }
3712
3713 static LONGEST
3714 linux_xfer_partial (struct target_ops *ops, enum target_object object,
3715 const char *annex, gdb_byte *readbuf,
3716 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3717 {
3718 LONGEST xfer;
3719
3720 if (object == TARGET_OBJECT_AUXV)
3721 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
3722 offset, len);
3723
3724 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
3725 offset, len);
3726 if (xfer != 0)
3727 return xfer;
3728
3729 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
3730 offset, len);
3731 }
3732
3733 /* Create a prototype generic GNU/Linux target. The client can override
3734 it with local methods. */
3735
3736 static void
3737 linux_target_install_ops (struct target_ops *t)
3738 {
3739 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
3740 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
3741 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
3742 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
3743 t->to_post_startup_inferior = linux_child_post_startup_inferior;
3744 t->to_post_attach = linux_child_post_attach;
3745 t->to_follow_fork = linux_child_follow_fork;
3746 t->to_find_memory_regions = linux_nat_find_memory_regions;
3747 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
3748
3749 super_xfer_partial = t->to_xfer_partial;
3750 t->to_xfer_partial = linux_xfer_partial;
3751 }
3752
3753 struct target_ops *
3754 linux_target (void)
3755 {
3756 struct target_ops *t;
3757
3758 t = inf_ptrace_target ();
3759 linux_target_install_ops (t);
3760
3761 return t;
3762 }
3763
3764 struct target_ops *
3765 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
3766 {
3767 struct target_ops *t;
3768
3769 t = inf_ptrace_trad_target (register_u_offset);
3770 linux_target_install_ops (t);
3771
3772 return t;
3773 }
3774
3775 /* Controls if async mode is permitted. */
3776 static int linux_async_permitted = 0;
3777
3778 /* The set command writes to this variable. If the inferior is
3779 executing, linux_nat_async_permitted is *not* updated. */
3780 static int linux_async_permitted_1 = 0;
3781
3782 static void
3783 set_maintenance_linux_async_permitted (char *args, int from_tty,
3784 struct cmd_list_element *c)
3785 {
3786 if (target_has_execution)
3787 {
3788 linux_async_permitted_1 = linux_async_permitted;
3789 error (_("Cannot change this setting while the inferior is running."));
3790 }
3791
3792 linux_async_permitted = linux_async_permitted_1;
3793 linux_nat_set_async_mode (linux_async_permitted);
3794 }
3795
3796 static void
3797 show_maintenance_linux_async_permitted (struct ui_file *file, int from_tty,
3798 struct cmd_list_element *c, const char *value)
3799 {
3800 fprintf_filtered (file, _("\
3801 Controlling the GNU/Linux inferior in asynchronous mode is %s.\n"),
3802 value);
3803 }
3804
3805 /* target_is_async_p implementation. */
3806
3807 static int
3808 linux_nat_is_async_p (void)
3809 {
3810 /* NOTE: palves 2008-03-21: We're only async when the user requests
3811 it explicitly with the "maintenance set linux-async" command.
3812 Someday, linux will always be async. */
3813 if (!linux_async_permitted)
3814 return 0;
3815
3816 return 1;
3817 }
3818
3819 /* target_can_async_p implementation. */
3820
3821 static int
3822 linux_nat_can_async_p (void)
3823 {
3824 /* NOTE: palves 2008-03-21: We're only async when the user requests
3825 it explicitly with the "maintenance set linux-async" command.
3826 Someday, linux will always be async. */
3827 if (!linux_async_permitted)
3828 return 0;
3829
3830 /* See target.h/target_async_mask. */
3831 return linux_nat_async_mask_value;
3832 }
3833
3834 /* target_async_mask implementation. */
3835
3836 static int
3837 linux_nat_async_mask (int mask)
3838 {
3839 int current_state;
3840 current_state = linux_nat_async_mask_value;
3841
3842 if (current_state != mask)
3843 {
3844 if (mask == 0)
3845 {
3846 linux_nat_async (NULL, 0);
3847 linux_nat_async_mask_value = mask;
3848 /* We're in sync mode. Make sure SIGCHLD isn't handled by
3849 async_sigchld_handler when we come out of sigsuspend in
3850 linux_nat_wait. */
3851 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
3852 }
3853 else
3854 {
3855 /* Restore the async handler. */
3856 sigaction (SIGCHLD, &async_sigchld_action, NULL);
3857 linux_nat_async_mask_value = mask;
3858 linux_nat_async (inferior_event_handler, 0);
3859 }
3860 }
3861
3862 return current_state;
3863 }
3864
3865 /* Pop an event from the event pipe. */
3866
3867 static int
3868 linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
3869 {
3870 struct waitpid_result event = {0};
3871 int ret;
3872
3873 do
3874 {
3875 ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
3876 }
3877 while (ret == -1 && errno == EINTR);
3878
3879 gdb_assert (ret == sizeof (event));
3880
3881 *ptr_status = event.status;
3882 *ptr_options = event.options;
3883
3884 linux_nat_num_queued_events--;
3885
3886 return event.pid;
3887 }
3888
3889 /* Push an event into the event pipe. */
3890
3891 static void
3892 linux_nat_event_pipe_push (int pid, int status, int options)
3893 {
3894 int ret;
3895 struct waitpid_result event = {0};
3896 event.pid = pid;
3897 event.status = status;
3898 event.options = options;
3899
3900 do
3901 {
3902 ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
3903 gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
3904 } while (ret == -1 && errno == EINTR);
3905
3906 linux_nat_num_queued_events++;
3907 }
3908
3909 static void
3910 get_pending_events (void)
3911 {
3912 int status, options, pid;
3913
3914 if (!linux_nat_async_enabled || !linux_nat_async_events_enabled)
3915 internal_error (__FILE__, __LINE__,
3916 "get_pending_events called with async masked");
3917
3918 while (1)
3919 {
3920 status = 0;
3921 options = __WCLONE | WNOHANG;
3922
3923 do
3924 {
3925 pid = waitpid (-1, &status, options);
3926 }
3927 while (pid == -1 && errno == EINTR);
3928
3929 if (pid <= 0)
3930 {
3931 options = WNOHANG;
3932 do
3933 {
3934 pid = waitpid (-1, &status, options);
3935 }
3936 while (pid == -1 && errno == EINTR);
3937 }
3938
3939 if (pid <= 0)
3940 /* No more children reporting events. */
3941 break;
3942
3943 if (debug_linux_nat_async)
3944 fprintf_unfiltered (gdb_stdlog, "\
3945 get_pending_events: pid(%d), status(%x), options (%x)\n",
3946 pid, status, options);
3947
3948 linux_nat_event_pipe_push (pid, status, options);
3949 }
3950
3951 if (debug_linux_nat_async)
3952 fprintf_unfiltered (gdb_stdlog, "\
3953 get_pending_events: linux_nat_num_queued_events(%d)\n",
3954 linux_nat_num_queued_events);
3955 }
3956
3957 /* SIGCHLD handler for async mode. */
3958
3959 static void
3960 async_sigchld_handler (int signo)
3961 {
3962 if (debug_linux_nat_async)
3963 fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");
3964
3965 get_pending_events ();
3966 }
3967
3968 /* Enable or disable async SIGCHLD handling. */
3969
3970 static int
3971 linux_nat_async_events (int enable)
3972 {
3973 int current_state = linux_nat_async_events_enabled;
3974
3975 if (debug_linux_nat_async)
3976 fprintf_unfiltered (gdb_stdlog,
3977 "LNAE: enable(%d): linux_nat_async_events_enabled(%d), "
3978 "linux_nat_num_queued_events(%d)\n",
3979 enable, linux_nat_async_events_enabled,
3980 linux_nat_num_queued_events);
3981
3982 if (current_state != enable)
3983 {
3984 sigset_t mask;
3985 sigemptyset (&mask);
3986 sigaddset (&mask, SIGCHLD);
3987 if (enable)
3988 {
3989 /* Unblock target events. */
3990 linux_nat_async_events_enabled = 1;
3991
3992 local_event_queue_to_pipe ();
3993 /* While in masked async, we may have not collected all the
3994 pending events. Get them out now. */
3995 get_pending_events ();
3996 sigprocmask (SIG_UNBLOCK, &mask, NULL);
3997 }
3998 else
3999 {
4000 /* Block target events. */
4001 sigprocmask (SIG_BLOCK, &mask, NULL);
4002 linux_nat_async_events_enabled = 0;
4003 /* Get events out of queue, and make them available to
4004 queued_waitpid / my_waitpid. */
4005 pipe_to_local_event_queue ();
4006 }
4007 }
4008
4009 return current_state;
4010 }
4011
4012 static int async_terminal_is_ours = 1;
4013
4014 /* target_terminal_inferior implementation. */
4015
4016 static void
4017 linux_nat_terminal_inferior (void)
4018 {
4019 if (!target_is_async_p ())
4020 {
4021 /* Async mode is disabled. */
4022 terminal_inferior ();
4023 return;
4024 }
4025
4026 /* GDB should never give the terminal to the inferior, if the
4027 inferior is running in the background (run&, continue&, etc.).
4028 This check can be removed when the common code is fixed. */
4029 if (!sync_execution)
4030 return;
4031
4032 terminal_inferior ();
4033
4034 if (!async_terminal_is_ours)
4035 return;
4036
4037 delete_file_handler (input_fd);
4038 async_terminal_is_ours = 0;
4039 set_sigint_trap ();
4040 }
4041
4042 /* target_terminal_ours implementation. */
4043
4044 void
4045 linux_nat_terminal_ours (void)
4046 {
4047 if (!target_is_async_p ())
4048 {
4049 /* Async mode is disabled. */
4050 terminal_ours ();
4051 return;
4052 }
4053
4054 /* GDB should never give the terminal to the inferior if the
4055 inferior is running in the background (run&, continue&, etc.),
4056 but claiming it sure should. */
4057 terminal_ours ();
4058
4059 if (!sync_execution)
4060 return;
4061
4062 if (async_terminal_is_ours)
4063 return;
4064
4065 clear_sigint_trap ();
4066 add_file_handler (input_fd, stdin_event_handler, 0);
4067 async_terminal_is_ours = 1;
4068 }
4069
4070 static void (*async_client_callback) (enum inferior_event_type event_type,
4071 void *context);
4072 static void *async_client_context;
4073
4074 static void
4075 linux_nat_async_file_handler (int error, gdb_client_data client_data)
4076 {
4077 async_client_callback (INF_REG_EVENT, async_client_context);
4078 }
4079
4080 /* target_async implementation. */
4081
4082 static void
4083 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4084 void *context), void *context)
4085 {
4086 if (linux_nat_async_mask_value == 0 || !linux_nat_async_enabled)
4087 internal_error (__FILE__, __LINE__,
4088 "Calling target_async when async is masked");
4089
4090 if (callback != NULL)
4091 {
4092 async_client_callback = callback;
4093 async_client_context = context;
4094 add_file_handler (linux_nat_event_pipe[0],
4095 linux_nat_async_file_handler, NULL);
4096
4097 linux_nat_async_events (1);
4098 }
4099 else
4100 {
4101 async_client_callback = callback;
4102 async_client_context = context;
4103
4104 linux_nat_async_events (0);
4105 delete_file_handler (linux_nat_event_pipe[0]);
4106 }
4107 return;
4108 }
4109
4110 /* Enable/Disable async mode. */
4111
4112 static void
4113 linux_nat_set_async_mode (int on)
4114 {
4115 if (linux_nat_async_enabled != on)
4116 {
4117 if (on)
4118 {
4119 gdb_assert (waitpid_queue == NULL);
4120 sigaction (SIGCHLD, &async_sigchld_action, NULL);
4121
4122 if (pipe (linux_nat_event_pipe) == -1)
4123 internal_error (__FILE__, __LINE__,
4124 "creating event pipe failed.");
4125
4126 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4127 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4128 }
4129 else
4130 {
4131 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4132
4133 drain_queued_events (-1);
4134
4135 linux_nat_num_queued_events = 0;
4136 close (linux_nat_event_pipe[0]);
4137 close (linux_nat_event_pipe[1]);
4138 linux_nat_event_pipe[0] = linux_nat_event_pipe[1] = -1;
4139
4140 }
4141 }
4142 linux_nat_async_enabled = on;
4143 }
4144
4145 void
4146 linux_nat_add_target (struct target_ops *t)
4147 {
4148 /* Save the provided single-threaded target. We save this in a separate
4149 variable because another target we've inherited from (e.g. inf-ptrace)
4150 may have saved a pointer to T; we want to use it for the final
4151 process stratum target. */
4152 linux_ops_saved = *t;
4153 linux_ops = &linux_ops_saved;
4154
4155 /* Override some methods for multithreading. */
4156 t->to_create_inferior = linux_nat_create_inferior;
4157 t->to_attach = linux_nat_attach;
4158 t->to_detach = linux_nat_detach;
4159 t->to_resume = linux_nat_resume;
4160 t->to_wait = linux_nat_wait;
4161 t->to_xfer_partial = linux_nat_xfer_partial;
4162 t->to_kill = linux_nat_kill;
4163 t->to_mourn_inferior = linux_nat_mourn_inferior;
4164 t->to_thread_alive = linux_nat_thread_alive;
4165 t->to_pid_to_str = linux_nat_pid_to_str;
4166 t->to_has_thread_control = tc_schedlock;
4167
4168 t->to_can_async_p = linux_nat_can_async_p;
4169 t->to_is_async_p = linux_nat_is_async_p;
4170 t->to_async = linux_nat_async;
4171 t->to_async_mask = linux_nat_async_mask;
4172 t->to_terminal_inferior = linux_nat_terminal_inferior;
4173 t->to_terminal_ours = linux_nat_terminal_ours;
4174
4175 /* We don't change the stratum; this target will sit at
4176 process_stratum and thread_db will set at thread_stratum. This
4177 is a little strange, since this is a multi-threaded-capable
4178 target, but we want to be on the stack below thread_db, and we
4179 also want to be used for single-threaded processes. */
4180
4181 add_target (t);
4182
4183 /* TODO: Eliminate this and have libthread_db use
4184 find_target_beneath. */
4185 thread_db_init (t);
4186 }
4187
4188 /* Register a method to call whenever a new thread is attached. */
4189 void
4190 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4191 {
4192 /* Save the pointer. We only support a single registered instance
4193 of the GNU/Linux native target, so we do not need to map this to
4194 T. */
4195 linux_nat_new_thread = new_thread;
4196 }
4197
4198 /* Return the saved siginfo associated with PTID. */
4199 struct siginfo *
4200 linux_nat_get_siginfo (ptid_t ptid)
4201 {
4202 struct lwp_info *lp = find_lwp_pid (ptid);
4203
4204 gdb_assert (lp != NULL);
4205
4206 return &lp->siginfo;
4207 }
4208
4209 void
4210 _initialize_linux_nat (void)
4211 {
4212 sigset_t mask;
4213
4214 add_info ("proc", linux_nat_info_proc_cmd, _("\
4215 Show /proc process information about any running process.\n\
4216 Specify any process id, or use the program being debugged by default.\n\
4217 Specify any of the following keywords for detailed info:\n\
4218 mappings -- list of mapped memory regions.\n\
4219 stat -- list a bunch of random process info.\n\
4220 status -- list a different bunch of random process info.\n\
4221 all -- list all available /proc info."));
4222
4223 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4224 &debug_linux_nat, _("\
4225 Set debugging of GNU/Linux lwp module."), _("\
4226 Show debugging of GNU/Linux lwp module."), _("\
4227 Enables printf debugging output."),
4228 NULL,
4229 show_debug_linux_nat,
4230 &setdebuglist, &showdebuglist);
4231
4232 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4233 &debug_linux_nat_async, _("\
4234 Set debugging of GNU/Linux async lwp module."), _("\
4235 Show debugging of GNU/Linux async lwp module."), _("\
4236 Enables printf debugging output."),
4237 NULL,
4238 show_debug_linux_nat_async,
4239 &setdebuglist, &showdebuglist);
4240
4241 add_setshow_boolean_cmd ("linux-async", class_maintenance,
4242 &linux_async_permitted_1, _("\
4243 Set whether gdb controls the GNU/Linux inferior in asynchronous mode."), _("\
4244 Show whether gdb controls the GNU/Linux inferior in asynchronous mode."), _("\
4245 Tells gdb whether to control the GNU/Linux inferior in asynchronous mode."),
4246 set_maintenance_linux_async_permitted,
4247 show_maintenance_linux_async_permitted,
4248 &maintenance_set_cmdlist,
4249 &maintenance_show_cmdlist);
4250
4251 /* Block SIGCHLD by default. Doing this early prevents it getting
4252 unblocked if an exception is thrown due to an error while the
4253 inferior is starting (sigsetjmp/siglongjmp). */
4254 sigemptyset (&mask);
4255 sigaddset (&mask, SIGCHLD);
4256 sigprocmask (SIG_BLOCK, &mask, NULL);
4257
4258 /* Save this mask as the default. */
4259 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4260
4261 /* The synchronous SIGCHLD handler. */
4262 sync_sigchld_action.sa_handler = sigchld_handler;
4263 sigemptyset (&sync_sigchld_action.sa_mask);
4264 sync_sigchld_action.sa_flags = SA_RESTART;
4265
4266 /* Make it the default. */
4267 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4268
4269 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4270 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4271 sigdelset (&suspend_mask, SIGCHLD);
4272
4273 /* SIGCHLD handler for async mode. */
4274 async_sigchld_action.sa_handler = async_sigchld_handler;
4275 sigemptyset (&async_sigchld_action.sa_mask);
4276 async_sigchld_action.sa_flags = SA_RESTART;
4277
4278 /* Install the default mode. */
4279 linux_nat_set_async_mode (linux_async_permitted);
4280 }
4281 \f
4282
4283 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4284 the GNU/Linux Threads library and therefore doesn't really belong
4285 here. */
4286
4287 /* Read variable NAME in the target and return its value if found.
4288 Otherwise return zero. It is assumed that the type of the variable
4289 is `int'. */
4290
4291 static int
4292 get_signo (const char *name)
4293 {
4294 struct minimal_symbol *ms;
4295 int signo;
4296
4297 ms = lookup_minimal_symbol (name, NULL, NULL);
4298 if (ms == NULL)
4299 return 0;
4300
4301 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4302 sizeof (signo)) != 0)
4303 return 0;
4304
4305 return signo;
4306 }
4307
4308 /* Return the set of signals used by the threads library in *SET. */
4309
4310 void
4311 lin_thread_get_thread_signals (sigset_t *set)
4312 {
4313 struct sigaction action;
4314 int restart, cancel;
4315 sigset_t blocked_mask;
4316
4317 sigemptyset (&blocked_mask);
4318 sigemptyset (set);
4319
4320 restart = get_signo ("__pthread_sig_restart");
4321 cancel = get_signo ("__pthread_sig_cancel");
4322
4323 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4324 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4325 not provide any way for the debugger to query the signal numbers -
4326 fortunately they don't change! */
4327
4328 if (restart == 0)
4329 restart = __SIGRTMIN;
4330
4331 if (cancel == 0)
4332 cancel = __SIGRTMIN + 1;
4333
4334 sigaddset (set, restart);
4335 sigaddset (set, cancel);
4336
4337 /* The GNU/Linux Threads library makes terminating threads send a
4338 special "cancel" signal instead of SIGCHLD. Make sure we catch
4339 those (to prevent them from terminating GDB itself, which is
4340 likely to be their default action) and treat them the same way as
4341 SIGCHLD. */
4342
4343 action.sa_handler = sigchld_handler;
4344 sigemptyset (&action.sa_mask);
4345 action.sa_flags = SA_RESTART;
4346 sigaction (cancel, &action, NULL);
4347
4348 /* We block the "cancel" signal throughout this code ... */
4349 sigaddset (&blocked_mask, cancel);
4350 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4351
4352 /* ... except during a sigsuspend. */
4353 sigdelset (&suspend_mask, cancel);
4354 }
This page took 0.182713 seconds and 4 git commands to generate.