gdb: Remove unused signal mask
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "common/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "common/agent.h"
62 #include "tracepoint.h"
63 #include "common/buffer.h"
64 #include "target-descriptions.h"
65 #include "common/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "common/fileio.h"
69 #include "common/scope-exit.h"
70
71 #ifndef SPUFS_MAGIC
72 #define SPUFS_MAGIC 0x23c9b64e
73 #endif
74
75 /* This comment documents high-level logic of this file.
76
77 Waiting for events in sync mode
78 ===============================
79
80 When waiting for an event in a specific thread, we just use waitpid,
81 passing the specific pid, and not passing WNOHANG.
82
83 When waiting for an event in all threads, waitpid is not quite good:
84
85 - If the thread group leader exits while other threads in the thread
86 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
87 return an exit status until the other threads in the group are
88 reaped.
89
90 - When a non-leader thread execs, that thread just vanishes without
91 reporting an exit (so we'd hang if we waited for it explicitly in
92 that case). The exec event is instead reported to the TGID pid.
93
94 The solution is to always use -1 and WNOHANG, together with
95 sigsuspend.
96
97 First, we use non-blocking waitpid to check for events. If nothing is
98 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
99 it means something happened to a child process. As soon as we know
100 there's an event, we get back to calling nonblocking waitpid.
101
102 Note that SIGCHLD should be blocked between waitpid and sigsuspend
103 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
104 when it's blocked, the signal becomes pending and sigsuspend
105 immediately notices it and returns.
106
107 Waiting for events in async mode (TARGET_WNOHANG)
108 =================================================
109
110 In async mode, GDB should always be ready to handle both user input
111 and target events, so neither blocking waitpid nor sigsuspend are
112 viable options. Instead, we should asynchronously notify the GDB main
113 event loop whenever there's an unprocessed event from the target. We
114 detect asynchronous target events by handling SIGCHLD signals. To
115 notify the event loop about target events, the self-pipe trick is used
116 --- a pipe is registered as waitable event source in the event loop,
117 the event loop select/poll's on the read end of this pipe (as well on
118 other event sources, e.g., stdin), and the SIGCHLD handler writes a
119 byte to this pipe. This is more portable than relying on
120 pselect/ppoll, since on kernels that lack those syscalls, libc
121 emulates them with select/poll+sigprocmask, and that is racy
122 (a.k.a. plain broken).
123
124 Obviously, if we fail to notify the event loop if there's a target
125 event, it's bad. OTOH, if we notify the event loop when there's no
126 event from the target, linux_nat_wait will detect that there's no real
127 event to report, and return event of type TARGET_WAITKIND_IGNORE.
128 This is mostly harmless, but it will waste time and is better avoided.
129
130 The main design point is that every time GDB is outside linux-nat.c,
131 we have a SIGCHLD handler installed that is called when something
132 happens to the target and notifies the GDB event loop. Whenever GDB
133 core decides to handle the event, and calls into linux-nat.c, we
134 process things as in sync mode, except that the we never block in
135 sigsuspend.
136
137 While processing an event, we may end up momentarily blocked in
138 waitpid calls. Those waitpid calls, while blocking, are guarantied to
139 return quickly. E.g., in all-stop mode, before reporting to the core
140 that an LWP hit a breakpoint, all LWPs are stopped by sending them
141 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
142 Note that this is different from blocking indefinitely waiting for the
143 next event --- here, we're already handling an event.
144
145 Use of signals
146 ==============
147
148 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
149 signal is not entirely significant; we just need for a signal to be delivered,
150 so that we can intercept it. SIGSTOP's advantage is that it can not be
151 blocked. A disadvantage is that it is not a real-time signal, so it can only
152 be queued once; we do not keep track of other sources of SIGSTOP.
153
154 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
155 use them, because they have special behavior when the signal is generated -
156 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
157 kills the entire thread group.
158
159 A delivered SIGSTOP would stop the entire thread group, not just the thread we
160 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
161 cancel it (by PTRACE_CONT without passing SIGSTOP).
162
163 We could use a real-time signal instead. This would solve those problems; we
164 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
165 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
166 generates it, and there are races with trying to find a signal that is not
167 blocked.
168
169 Exec events
170 ===========
171
172 The case of a thread group (process) with 3 or more threads, and a
173 thread other than the leader execs is worth detailing:
174
175 On an exec, the Linux kernel destroys all threads except the execing
176 one in the thread group, and resets the execing thread's tid to the
177 tgid. No exit notification is sent for the execing thread -- from the
178 ptracer's perspective, it appears as though the execing thread just
179 vanishes. Until we reap all other threads except the leader and the
180 execing thread, the leader will be zombie, and the execing thread will
181 be in `D (disc sleep)' state. As soon as all other threads are
182 reaped, the execing thread changes its tid to the tgid, and the
183 previous (zombie) leader vanishes, giving place to the "new"
184 leader. */
185
186 #ifndef O_LARGEFILE
187 #define O_LARGEFILE 0
188 #endif
189
190 struct linux_nat_target *linux_target;
191
192 /* Does the current host support PTRACE_GETREGSET? */
193 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
194
195 static unsigned int debug_linux_nat;
196 static void
197 show_debug_linux_nat (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
201 value);
202 }
203
204 struct simple_pid_list
205 {
206 int pid;
207 int status;
208 struct simple_pid_list *next;
209 };
210 struct simple_pid_list *stopped_pids;
211
212 /* Whether target_thread_events is in effect. */
213 static int report_thread_events;
214
215 /* Async mode support. */
216
217 /* The read/write ends of the pipe registered as waitable file in the
218 event loop. */
219 static int linux_nat_event_pipe[2] = { -1, -1 };
220
221 /* True if we're currently in async mode. */
222 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
223
224 /* Flush the event pipe. */
225
226 static void
227 async_file_flush (void)
228 {
229 int ret;
230 char buf;
231
232 do
233 {
234 ret = read (linux_nat_event_pipe[0], &buf, 1);
235 }
236 while (ret >= 0 || (ret == -1 && errno == EINTR));
237 }
238
239 /* Put something (anything, doesn't matter what, or how much) in event
240 pipe, so that the select/poll in the event-loop realizes we have
241 something to process. */
242
243 static void
244 async_file_mark (void)
245 {
246 int ret;
247
248 /* It doesn't really matter what the pipe contains, as long we end
249 up with something in it. Might as well flush the previous
250 left-overs. */
251 async_file_flush ();
252
253 do
254 {
255 ret = write (linux_nat_event_pipe[1], "+", 1);
256 }
257 while (ret == -1 && errno == EINTR);
258
259 /* Ignore EAGAIN. If the pipe is full, the event loop will already
260 be awakened anyway. */
261 }
262
263 static int kill_lwp (int lwpid, int signo);
264
265 static int stop_callback (struct lwp_info *lp);
266
267 static void block_child_signals (sigset_t *prev_mask);
268 static void restore_child_signals_mask (sigset_t *prev_mask);
269
270 struct lwp_info;
271 static struct lwp_info *add_lwp (ptid_t ptid);
272 static void purge_lwp_list (int pid);
273 static void delete_lwp (ptid_t ptid);
274 static struct lwp_info *find_lwp_pid (ptid_t ptid);
275
276 static int lwp_status_pending_p (struct lwp_info *lp);
277
278 static void save_stop_reason (struct lwp_info *lp);
279
280 \f
281 /* LWP accessors. */
282
283 /* See nat/linux-nat.h. */
284
285 ptid_t
286 ptid_of_lwp (struct lwp_info *lwp)
287 {
288 return lwp->ptid;
289 }
290
291 /* See nat/linux-nat.h. */
292
293 void
294 lwp_set_arch_private_info (struct lwp_info *lwp,
295 struct arch_lwp_info *info)
296 {
297 lwp->arch_private = info;
298 }
299
300 /* See nat/linux-nat.h. */
301
302 struct arch_lwp_info *
303 lwp_arch_private_info (struct lwp_info *lwp)
304 {
305 return lwp->arch_private;
306 }
307
308 /* See nat/linux-nat.h. */
309
310 int
311 lwp_is_stopped (struct lwp_info *lwp)
312 {
313 return lwp->stopped;
314 }
315
316 /* See nat/linux-nat.h. */
317
318 enum target_stop_reason
319 lwp_stop_reason (struct lwp_info *lwp)
320 {
321 return lwp->stop_reason;
322 }
323
324 /* See nat/linux-nat.h. */
325
326 int
327 lwp_is_stepping (struct lwp_info *lwp)
328 {
329 return lwp->step;
330 }
331
332 \f
333 /* Trivial list manipulation functions to keep track of a list of
334 new stopped processes. */
335 static void
336 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
337 {
338 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
339
340 new_pid->pid = pid;
341 new_pid->status = status;
342 new_pid->next = *listp;
343 *listp = new_pid;
344 }
345
346 static int
347 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
348 {
349 struct simple_pid_list **p;
350
351 for (p = listp; *p != NULL; p = &(*p)->next)
352 if ((*p)->pid == pid)
353 {
354 struct simple_pid_list *next = (*p)->next;
355
356 *statusp = (*p)->status;
357 xfree (*p);
358 *p = next;
359 return 1;
360 }
361 return 0;
362 }
363
364 /* Return the ptrace options that we want to try to enable. */
365
366 static int
367 linux_nat_ptrace_options (int attached)
368 {
369 int options = 0;
370
371 if (!attached)
372 options |= PTRACE_O_EXITKILL;
373
374 options |= (PTRACE_O_TRACESYSGOOD
375 | PTRACE_O_TRACEVFORKDONE
376 | PTRACE_O_TRACEVFORK
377 | PTRACE_O_TRACEFORK
378 | PTRACE_O_TRACEEXEC);
379
380 return options;
381 }
382
383 /* Initialize ptrace and procfs warnings and check for supported
384 ptrace features given PID.
385
386 ATTACHED should be nonzero iff we attached to the inferior. */
387
388 static void
389 linux_init_ptrace_procfs (pid_t pid, int attached)
390 {
391 int options = linux_nat_ptrace_options (attached);
392
393 linux_enable_event_reporting (pid, options);
394 linux_ptrace_init_warnings ();
395 linux_proc_init_warnings ();
396 }
397
398 linux_nat_target::~linux_nat_target ()
399 {}
400
401 void
402 linux_nat_target::post_attach (int pid)
403 {
404 linux_init_ptrace_procfs (pid, 1);
405 }
406
407 void
408 linux_nat_target::post_startup_inferior (ptid_t ptid)
409 {
410 linux_init_ptrace_procfs (ptid.pid (), 0);
411 }
412
413 /* Return the number of known LWPs in the tgid given by PID. */
414
415 static int
416 num_lwps (int pid)
417 {
418 int count = 0;
419 struct lwp_info *lp;
420
421 for (lp = lwp_list; lp; lp = lp->next)
422 if (lp->ptid.pid () == pid)
423 count++;
424
425 return count;
426 }
427
428 /* Deleter for lwp_info unique_ptr specialisation. */
429
430 struct lwp_deleter
431 {
432 void operator() (struct lwp_info *lwp) const
433 {
434 delete_lwp (lwp->ptid);
435 }
436 };
437
438 /* A unique_ptr specialisation for lwp_info. */
439
440 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
441
442 /* Target hook for follow_fork. On entry inferior_ptid must be the
443 ptid of the followed inferior. At return, inferior_ptid will be
444 unchanged. */
445
446 int
447 linux_nat_target::follow_fork (int follow_child, int detach_fork)
448 {
449 if (!follow_child)
450 {
451 struct lwp_info *child_lp = NULL;
452 int has_vforked;
453 ptid_t parent_ptid, child_ptid;
454 int parent_pid, child_pid;
455
456 has_vforked = (inferior_thread ()->pending_follow.kind
457 == TARGET_WAITKIND_VFORKED);
458 parent_ptid = inferior_ptid;
459 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
460 parent_pid = parent_ptid.lwp ();
461 child_pid = child_ptid.lwp ();
462
463 /* We're already attached to the parent, by default. */
464 child_lp = add_lwp (child_ptid);
465 child_lp->stopped = 1;
466 child_lp->last_resume_kind = resume_stop;
467
468 /* Detach new forked process? */
469 if (detach_fork)
470 {
471 int child_stop_signal = 0;
472 bool detach_child = true;
473
474 /* Move CHILD_LP into a unique_ptr and clear the source pointer
475 to prevent us doing anything stupid with it. */
476 lwp_info_up child_lp_ptr (child_lp);
477 child_lp = nullptr;
478
479 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
480
481 /* When debugging an inferior in an architecture that supports
482 hardware single stepping on a kernel without commit
483 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
484 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
485 set if the parent process had them set.
486 To work around this, single step the child process
487 once before detaching to clear the flags. */
488
489 /* Note that we consult the parent's architecture instead of
490 the child's because there's no inferior for the child at
491 this point. */
492 if (!gdbarch_software_single_step_p (target_thread_architecture
493 (parent_ptid)))
494 {
495 int status;
496
497 linux_disable_event_reporting (child_pid);
498 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
499 perror_with_name (_("Couldn't do single step"));
500 if (my_waitpid (child_pid, &status, 0) < 0)
501 perror_with_name (_("Couldn't wait vfork process"));
502 else
503 {
504 detach_child = WIFSTOPPED (status);
505 child_stop_signal = WSTOPSIG (status);
506 }
507 }
508
509 if (detach_child)
510 {
511 int signo = child_stop_signal;
512
513 if (signo != 0
514 && !signal_pass_state (gdb_signal_from_host (signo)))
515 signo = 0;
516 ptrace (PTRACE_DETACH, child_pid, 0, signo);
517 }
518 }
519 else
520 {
521 scoped_restore save_inferior_ptid
522 = make_scoped_restore (&inferior_ptid);
523 inferior_ptid = child_ptid;
524
525 /* Let the thread_db layer learn about this new process. */
526 check_for_thread_db ();
527 }
528
529 if (has_vforked)
530 {
531 struct lwp_info *parent_lp;
532
533 parent_lp = find_lwp_pid (parent_ptid);
534 gdb_assert (linux_supports_tracefork () >= 0);
535
536 if (linux_supports_tracevforkdone ())
537 {
538 if (debug_linux_nat)
539 fprintf_unfiltered (gdb_stdlog,
540 "LCFF: waiting for VFORK_DONE on %d\n",
541 parent_pid);
542 parent_lp->stopped = 1;
543
544 /* We'll handle the VFORK_DONE event like any other
545 event, in target_wait. */
546 }
547 else
548 {
549 /* We can't insert breakpoints until the child has
550 finished with the shared memory region. We need to
551 wait until that happens. Ideal would be to just
552 call:
553 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
554 - waitpid (parent_pid, &status, __WALL);
555 However, most architectures can't handle a syscall
556 being traced on the way out if it wasn't traced on
557 the way in.
558
559 We might also think to loop, continuing the child
560 until it exits or gets a SIGTRAP. One problem is
561 that the child might call ptrace with PTRACE_TRACEME.
562
563 There's no simple and reliable way to figure out when
564 the vforked child will be done with its copy of the
565 shared memory. We could step it out of the syscall,
566 two instructions, let it go, and then single-step the
567 parent once. When we have hardware single-step, this
568 would work; with software single-step it could still
569 be made to work but we'd have to be able to insert
570 single-step breakpoints in the child, and we'd have
571 to insert -just- the single-step breakpoint in the
572 parent. Very awkward.
573
574 In the end, the best we can do is to make sure it
575 runs for a little while. Hopefully it will be out of
576 range of any breakpoints we reinsert. Usually this
577 is only the single-step breakpoint at vfork's return
578 point. */
579
580 if (debug_linux_nat)
581 fprintf_unfiltered (gdb_stdlog,
582 "LCFF: no VFORK_DONE "
583 "support, sleeping a bit\n");
584
585 usleep (10000);
586
587 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
588 and leave it pending. The next linux_nat_resume call
589 will notice a pending event, and bypasses actually
590 resuming the inferior. */
591 parent_lp->status = 0;
592 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
593 parent_lp->stopped = 1;
594
595 /* If we're in async mode, need to tell the event loop
596 there's something here to process. */
597 if (target_is_async_p ())
598 async_file_mark ();
599 }
600 }
601 }
602 else
603 {
604 struct lwp_info *child_lp;
605
606 child_lp = add_lwp (inferior_ptid);
607 child_lp->stopped = 1;
608 child_lp->last_resume_kind = resume_stop;
609
610 /* Let the thread_db layer learn about this new process. */
611 check_for_thread_db ();
612 }
613
614 return 0;
615 }
616
617 \f
618 int
619 linux_nat_target::insert_fork_catchpoint (int pid)
620 {
621 return !linux_supports_tracefork ();
622 }
623
624 int
625 linux_nat_target::remove_fork_catchpoint (int pid)
626 {
627 return 0;
628 }
629
630 int
631 linux_nat_target::insert_vfork_catchpoint (int pid)
632 {
633 return !linux_supports_tracefork ();
634 }
635
636 int
637 linux_nat_target::remove_vfork_catchpoint (int pid)
638 {
639 return 0;
640 }
641
642 int
643 linux_nat_target::insert_exec_catchpoint (int pid)
644 {
645 return !linux_supports_tracefork ();
646 }
647
648 int
649 linux_nat_target::remove_exec_catchpoint (int pid)
650 {
651 return 0;
652 }
653
654 int
655 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
656 gdb::array_view<const int> syscall_counts)
657 {
658 if (!linux_supports_tracesysgood ())
659 return 1;
660
661 /* On GNU/Linux, we ignore the arguments. It means that we only
662 enable the syscall catchpoints, but do not disable them.
663
664 Also, we do not use the `syscall_counts' information because we do not
665 filter system calls here. We let GDB do the logic for us. */
666 return 0;
667 }
668
669 /* List of known LWPs, keyed by LWP PID. This speeds up the common
670 case of mapping a PID returned from the kernel to our corresponding
671 lwp_info data structure. */
672 static htab_t lwp_lwpid_htab;
673
674 /* Calculate a hash from a lwp_info's LWP PID. */
675
676 static hashval_t
677 lwp_info_hash (const void *ap)
678 {
679 const struct lwp_info *lp = (struct lwp_info *) ap;
680 pid_t pid = lp->ptid.lwp ();
681
682 return iterative_hash_object (pid, 0);
683 }
684
685 /* Equality function for the lwp_info hash table. Compares the LWP's
686 PID. */
687
688 static int
689 lwp_lwpid_htab_eq (const void *a, const void *b)
690 {
691 const struct lwp_info *entry = (const struct lwp_info *) a;
692 const struct lwp_info *element = (const struct lwp_info *) b;
693
694 return entry->ptid.lwp () == element->ptid.lwp ();
695 }
696
697 /* Create the lwp_lwpid_htab hash table. */
698
699 static void
700 lwp_lwpid_htab_create (void)
701 {
702 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
703 }
704
705 /* Add LP to the hash table. */
706
707 static void
708 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
709 {
710 void **slot;
711
712 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
713 gdb_assert (slot != NULL && *slot == NULL);
714 *slot = lp;
715 }
716
717 /* Head of doubly-linked list of known LWPs. Sorted by reverse
718 creation order. This order is assumed in some cases. E.g.,
719 reaping status after killing alls lwps of a process: the leader LWP
720 must be reaped last. */
721 struct lwp_info *lwp_list;
722
723 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
724
725 static void
726 lwp_list_add (struct lwp_info *lp)
727 {
728 lp->next = lwp_list;
729 if (lwp_list != NULL)
730 lwp_list->prev = lp;
731 lwp_list = lp;
732 }
733
734 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
735 list. */
736
737 static void
738 lwp_list_remove (struct lwp_info *lp)
739 {
740 /* Remove from sorted-by-creation-order list. */
741 if (lp->next != NULL)
742 lp->next->prev = lp->prev;
743 if (lp->prev != NULL)
744 lp->prev->next = lp->next;
745 if (lp == lwp_list)
746 lwp_list = lp->next;
747 }
748
749 \f
750
751 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
752 _initialize_linux_nat. */
753 static sigset_t suspend_mask;
754
755 /* Signals to block to make that sigsuspend work. */
756 static sigset_t blocked_mask;
757
758 /* SIGCHLD action. */
759 struct sigaction sigchld_action;
760
761 /* Block child signals (SIGCHLD and linux threads signals), and store
762 the previous mask in PREV_MASK. */
763
764 static void
765 block_child_signals (sigset_t *prev_mask)
766 {
767 /* Make sure SIGCHLD is blocked. */
768 if (!sigismember (&blocked_mask, SIGCHLD))
769 sigaddset (&blocked_mask, SIGCHLD);
770
771 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
772 }
773
774 /* Restore child signals mask, previously returned by
775 block_child_signals. */
776
777 static void
778 restore_child_signals_mask (sigset_t *prev_mask)
779 {
780 sigprocmask (SIG_SETMASK, prev_mask, NULL);
781 }
782
783 /* Mask of signals to pass directly to the inferior. */
784 static sigset_t pass_mask;
785
786 /* Update signals to pass to the inferior. */
787 void
788 linux_nat_target::pass_signals
789 (gdb::array_view<const unsigned char> pass_signals)
790 {
791 int signo;
792
793 sigemptyset (&pass_mask);
794
795 for (signo = 1; signo < NSIG; signo++)
796 {
797 int target_signo = gdb_signal_from_host (signo);
798 if (target_signo < pass_signals.size () && pass_signals[target_signo])
799 sigaddset (&pass_mask, signo);
800 }
801 }
802
803 \f
804
805 /* Prototypes for local functions. */
806 static int stop_wait_callback (struct lwp_info *lp);
807 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
808 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
809
810 \f
811
812 /* Destroy and free LP. */
813
814 static void
815 lwp_free (struct lwp_info *lp)
816 {
817 /* Let the arch specific bits release arch_lwp_info. */
818 linux_target->low_delete_thread (lp->arch_private);
819
820 xfree (lp);
821 }
822
823 /* Traversal function for purge_lwp_list. */
824
825 static int
826 lwp_lwpid_htab_remove_pid (void **slot, void *info)
827 {
828 struct lwp_info *lp = (struct lwp_info *) *slot;
829 int pid = *(int *) info;
830
831 if (lp->ptid.pid () == pid)
832 {
833 htab_clear_slot (lwp_lwpid_htab, slot);
834 lwp_list_remove (lp);
835 lwp_free (lp);
836 }
837
838 return 1;
839 }
840
841 /* Remove all LWPs belong to PID from the lwp list. */
842
843 static void
844 purge_lwp_list (int pid)
845 {
846 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
847 }
848
849 /* Add the LWP specified by PTID to the list. PTID is the first LWP
850 in the process. Return a pointer to the structure describing the
851 new LWP.
852
853 This differs from add_lwp in that we don't let the arch specific
854 bits know about this new thread. Current clients of this callback
855 take the opportunity to install watchpoints in the new thread, and
856 we shouldn't do that for the first thread. If we're spawning a
857 child ("run"), the thread executes the shell wrapper first, and we
858 shouldn't touch it until it execs the program we want to debug.
859 For "attach", it'd be okay to call the callback, but it's not
860 necessary, because watchpoints can't yet have been inserted into
861 the inferior. */
862
863 static struct lwp_info *
864 add_initial_lwp (ptid_t ptid)
865 {
866 struct lwp_info *lp;
867
868 gdb_assert (ptid.lwp_p ());
869
870 lp = XNEW (struct lwp_info);
871
872 memset (lp, 0, sizeof (struct lwp_info));
873
874 lp->last_resume_kind = resume_continue;
875 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
876
877 lp->ptid = ptid;
878 lp->core = -1;
879
880 /* Add to sorted-by-reverse-creation-order list. */
881 lwp_list_add (lp);
882
883 /* Add to keyed-by-pid htab. */
884 lwp_lwpid_htab_add_lwp (lp);
885
886 return lp;
887 }
888
889 /* Add the LWP specified by PID to the list. Return a pointer to the
890 structure describing the new LWP. The LWP should already be
891 stopped. */
892
893 static struct lwp_info *
894 add_lwp (ptid_t ptid)
895 {
896 struct lwp_info *lp;
897
898 lp = add_initial_lwp (ptid);
899
900 /* Let the arch specific bits know about this new thread. Current
901 clients of this callback take the opportunity to install
902 watchpoints in the new thread. We don't do this for the first
903 thread though. See add_initial_lwp. */
904 linux_target->low_new_thread (lp);
905
906 return lp;
907 }
908
909 /* Remove the LWP specified by PID from the list. */
910
911 static void
912 delete_lwp (ptid_t ptid)
913 {
914 struct lwp_info *lp;
915 void **slot;
916 struct lwp_info dummy;
917
918 dummy.ptid = ptid;
919 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
920 if (slot == NULL)
921 return;
922
923 lp = *(struct lwp_info **) slot;
924 gdb_assert (lp != NULL);
925
926 htab_clear_slot (lwp_lwpid_htab, slot);
927
928 /* Remove from sorted-by-creation-order list. */
929 lwp_list_remove (lp);
930
931 /* Release. */
932 lwp_free (lp);
933 }
934
935 /* Return a pointer to the structure describing the LWP corresponding
936 to PID. If no corresponding LWP could be found, return NULL. */
937
938 static struct lwp_info *
939 find_lwp_pid (ptid_t ptid)
940 {
941 struct lwp_info *lp;
942 int lwp;
943 struct lwp_info dummy;
944
945 if (ptid.lwp_p ())
946 lwp = ptid.lwp ();
947 else
948 lwp = ptid.pid ();
949
950 dummy.ptid = ptid_t (0, lwp, 0);
951 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
952 return lp;
953 }
954
955 /* See nat/linux-nat.h. */
956
957 struct lwp_info *
958 iterate_over_lwps (ptid_t filter,
959 gdb::function_view<iterate_over_lwps_ftype> callback)
960 {
961 struct lwp_info *lp, *lpnext;
962
963 for (lp = lwp_list; lp; lp = lpnext)
964 {
965 lpnext = lp->next;
966
967 if (lp->ptid.matches (filter))
968 {
969 if (callback (lp) != 0)
970 return lp;
971 }
972 }
973
974 return NULL;
975 }
976
977 /* Update our internal state when changing from one checkpoint to
978 another indicated by NEW_PTID. We can only switch single-threaded
979 applications, so we only create one new LWP, and the previous list
980 is discarded. */
981
982 void
983 linux_nat_switch_fork (ptid_t new_ptid)
984 {
985 struct lwp_info *lp;
986
987 purge_lwp_list (inferior_ptid.pid ());
988
989 lp = add_lwp (new_ptid);
990 lp->stopped = 1;
991
992 /* This changes the thread's ptid while preserving the gdb thread
993 num. Also changes the inferior pid, while preserving the
994 inferior num. */
995 thread_change_ptid (inferior_ptid, new_ptid);
996
997 /* We've just told GDB core that the thread changed target id, but,
998 in fact, it really is a different thread, with different register
999 contents. */
1000 registers_changed ();
1001 }
1002
1003 /* Handle the exit of a single thread LP. */
1004
1005 static void
1006 exit_lwp (struct lwp_info *lp)
1007 {
1008 struct thread_info *th = find_thread_ptid (lp->ptid);
1009
1010 if (th)
1011 {
1012 if (print_thread_events)
1013 printf_unfiltered (_("[%s exited]\n"),
1014 target_pid_to_str (lp->ptid).c_str ());
1015
1016 delete_thread (th);
1017 }
1018
1019 delete_lwp (lp->ptid);
1020 }
1021
1022 /* Wait for the LWP specified by LP, which we have just attached to.
1023 Returns a wait status for that LWP, to cache. */
1024
1025 static int
1026 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1027 {
1028 pid_t new_pid, pid = ptid.lwp ();
1029 int status;
1030
1031 if (linux_proc_pid_is_stopped (pid))
1032 {
1033 if (debug_linux_nat)
1034 fprintf_unfiltered (gdb_stdlog,
1035 "LNPAW: Attaching to a stopped process\n");
1036
1037 /* The process is definitely stopped. It is in a job control
1038 stop, unless the kernel predates the TASK_STOPPED /
1039 TASK_TRACED distinction, in which case it might be in a
1040 ptrace stop. Make sure it is in a ptrace stop; from there we
1041 can kill it, signal it, et cetera.
1042
1043 First make sure there is a pending SIGSTOP. Since we are
1044 already attached, the process can not transition from stopped
1045 to running without a PTRACE_CONT; so we know this signal will
1046 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1047 probably already in the queue (unless this kernel is old
1048 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1049 is not an RT signal, it can only be queued once. */
1050 kill_lwp (pid, SIGSTOP);
1051
1052 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1053 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1054 ptrace (PTRACE_CONT, pid, 0, 0);
1055 }
1056
1057 /* Make sure the initial process is stopped. The user-level threads
1058 layer might want to poke around in the inferior, and that won't
1059 work if things haven't stabilized yet. */
1060 new_pid = my_waitpid (pid, &status, __WALL);
1061 gdb_assert (pid == new_pid);
1062
1063 if (!WIFSTOPPED (status))
1064 {
1065 /* The pid we tried to attach has apparently just exited. */
1066 if (debug_linux_nat)
1067 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1068 pid, status_to_str (status));
1069 return status;
1070 }
1071
1072 if (WSTOPSIG (status) != SIGSTOP)
1073 {
1074 *signalled = 1;
1075 if (debug_linux_nat)
1076 fprintf_unfiltered (gdb_stdlog,
1077 "LNPAW: Received %s after attaching\n",
1078 status_to_str (status));
1079 }
1080
1081 return status;
1082 }
1083
1084 void
1085 linux_nat_target::create_inferior (const char *exec_file,
1086 const std::string &allargs,
1087 char **env, int from_tty)
1088 {
1089 maybe_disable_address_space_randomization restore_personality
1090 (disable_randomization);
1091
1092 /* The fork_child mechanism is synchronous and calls target_wait, so
1093 we have to mask the async mode. */
1094
1095 /* Make sure we report all signals during startup. */
1096 pass_signals ({});
1097
1098 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1099 }
1100
1101 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1102 already attached. Returns true if a new LWP is found, false
1103 otherwise. */
1104
1105 static int
1106 attach_proc_task_lwp_callback (ptid_t ptid)
1107 {
1108 struct lwp_info *lp;
1109
1110 /* Ignore LWPs we're already attached to. */
1111 lp = find_lwp_pid (ptid);
1112 if (lp == NULL)
1113 {
1114 int lwpid = ptid.lwp ();
1115
1116 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1117 {
1118 int err = errno;
1119
1120 /* Be quiet if we simply raced with the thread exiting.
1121 EPERM is returned if the thread's task still exists, and
1122 is marked as exited or zombie, as well as other
1123 conditions, so in that case, confirm the status in
1124 /proc/PID/status. */
1125 if (err == ESRCH
1126 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1127 {
1128 if (debug_linux_nat)
1129 {
1130 fprintf_unfiltered (gdb_stdlog,
1131 "Cannot attach to lwp %d: "
1132 "thread is gone (%d: %s)\n",
1133 lwpid, err, safe_strerror (err));
1134 }
1135 }
1136 else
1137 {
1138 std::string reason
1139 = linux_ptrace_attach_fail_reason_string (ptid, err);
1140
1141 warning (_("Cannot attach to lwp %d: %s"),
1142 lwpid, reason.c_str ());
1143 }
1144 }
1145 else
1146 {
1147 if (debug_linux_nat)
1148 fprintf_unfiltered (gdb_stdlog,
1149 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1150 target_pid_to_str (ptid).c_str ());
1151
1152 lp = add_lwp (ptid);
1153
1154 /* The next time we wait for this LWP we'll see a SIGSTOP as
1155 PTRACE_ATTACH brings it to a halt. */
1156 lp->signalled = 1;
1157
1158 /* We need to wait for a stop before being able to make the
1159 next ptrace call on this LWP. */
1160 lp->must_set_ptrace_flags = 1;
1161
1162 /* So that wait collects the SIGSTOP. */
1163 lp->resumed = 1;
1164
1165 /* Also add the LWP to gdb's thread list, in case a
1166 matching libthread_db is not found (or the process uses
1167 raw clone). */
1168 add_thread (lp->ptid);
1169 set_running (lp->ptid, 1);
1170 set_executing (lp->ptid, 1);
1171 }
1172
1173 return 1;
1174 }
1175 return 0;
1176 }
1177
1178 void
1179 linux_nat_target::attach (const char *args, int from_tty)
1180 {
1181 struct lwp_info *lp;
1182 int status;
1183 ptid_t ptid;
1184
1185 /* Make sure we report all signals during attach. */
1186 pass_signals ({});
1187
1188 try
1189 {
1190 inf_ptrace_target::attach (args, from_tty);
1191 }
1192 catch (const gdb_exception_error &ex)
1193 {
1194 pid_t pid = parse_pid_to_attach (args);
1195 std::string reason = linux_ptrace_attach_fail_reason (pid);
1196
1197 if (!reason.empty ())
1198 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1199 ex.what ());
1200 else
1201 throw_error (ex.error, "%s", ex.what ());
1202 }
1203
1204 /* The ptrace base target adds the main thread with (pid,0,0)
1205 format. Decorate it with lwp info. */
1206 ptid = ptid_t (inferior_ptid.pid (),
1207 inferior_ptid.pid (),
1208 0);
1209 thread_change_ptid (inferior_ptid, ptid);
1210
1211 /* Add the initial process as the first LWP to the list. */
1212 lp = add_initial_lwp (ptid);
1213
1214 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1215 if (!WIFSTOPPED (status))
1216 {
1217 if (WIFEXITED (status))
1218 {
1219 int exit_code = WEXITSTATUS (status);
1220
1221 target_terminal::ours ();
1222 target_mourn_inferior (inferior_ptid);
1223 if (exit_code == 0)
1224 error (_("Unable to attach: program exited normally."));
1225 else
1226 error (_("Unable to attach: program exited with code %d."),
1227 exit_code);
1228 }
1229 else if (WIFSIGNALED (status))
1230 {
1231 enum gdb_signal signo;
1232
1233 target_terminal::ours ();
1234 target_mourn_inferior (inferior_ptid);
1235
1236 signo = gdb_signal_from_host (WTERMSIG (status));
1237 error (_("Unable to attach: program terminated with signal "
1238 "%s, %s."),
1239 gdb_signal_to_name (signo),
1240 gdb_signal_to_string (signo));
1241 }
1242
1243 internal_error (__FILE__, __LINE__,
1244 _("unexpected status %d for PID %ld"),
1245 status, (long) ptid.lwp ());
1246 }
1247
1248 lp->stopped = 1;
1249
1250 /* Save the wait status to report later. */
1251 lp->resumed = 1;
1252 if (debug_linux_nat)
1253 fprintf_unfiltered (gdb_stdlog,
1254 "LNA: waitpid %ld, saving status %s\n",
1255 (long) lp->ptid.pid (), status_to_str (status));
1256
1257 lp->status = status;
1258
1259 /* We must attach to every LWP. If /proc is mounted, use that to
1260 find them now. The inferior may be using raw clone instead of
1261 using pthreads. But even if it is using pthreads, thread_db
1262 walks structures in the inferior's address space to find the list
1263 of threads/LWPs, and those structures may well be corrupted.
1264 Note that once thread_db is loaded, we'll still use it to list
1265 threads and associate pthread info with each LWP. */
1266 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1267 attach_proc_task_lwp_callback);
1268
1269 if (target_can_async_p ())
1270 target_async (1);
1271 }
1272
1273 /* Get pending signal of THREAD as a host signal number, for detaching
1274 purposes. This is the signal the thread last stopped for, which we
1275 need to deliver to the thread when detaching, otherwise, it'd be
1276 suppressed/lost. */
1277
1278 static int
1279 get_detach_signal (struct lwp_info *lp)
1280 {
1281 enum gdb_signal signo = GDB_SIGNAL_0;
1282
1283 /* If we paused threads momentarily, we may have stored pending
1284 events in lp->status or lp->waitstatus (see stop_wait_callback),
1285 and GDB core hasn't seen any signal for those threads.
1286 Otherwise, the last signal reported to the core is found in the
1287 thread object's stop_signal.
1288
1289 There's a corner case that isn't handled here at present. Only
1290 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1291 stop_signal make sense as a real signal to pass to the inferior.
1292 Some catchpoint related events, like
1293 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1294 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1295 those traps are debug API (ptrace in our case) related and
1296 induced; the inferior wouldn't see them if it wasn't being
1297 traced. Hence, we should never pass them to the inferior, even
1298 when set to pass state. Since this corner case isn't handled by
1299 infrun.c when proceeding with a signal, for consistency, neither
1300 do we handle it here (or elsewhere in the file we check for
1301 signal pass state). Normally SIGTRAP isn't set to pass state, so
1302 this is really a corner case. */
1303
1304 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1305 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1306 else if (lp->status)
1307 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1308 else
1309 {
1310 struct thread_info *tp = find_thread_ptid (lp->ptid);
1311
1312 if (target_is_non_stop_p () && !tp->executing)
1313 {
1314 if (tp->suspend.waitstatus_pending_p)
1315 signo = tp->suspend.waitstatus.value.sig;
1316 else
1317 signo = tp->suspend.stop_signal;
1318 }
1319 else if (!target_is_non_stop_p ())
1320 {
1321 struct target_waitstatus last;
1322 ptid_t last_ptid;
1323
1324 get_last_target_status (&last_ptid, &last);
1325
1326 if (lp->ptid.lwp () == last_ptid.lwp ())
1327 signo = tp->suspend.stop_signal;
1328 }
1329 }
1330
1331 if (signo == GDB_SIGNAL_0)
1332 {
1333 if (debug_linux_nat)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "GPT: lwp %s has no pending signal\n",
1336 target_pid_to_str (lp->ptid).c_str ());
1337 }
1338 else if (!signal_pass_state (signo))
1339 {
1340 if (debug_linux_nat)
1341 fprintf_unfiltered (gdb_stdlog,
1342 "GPT: lwp %s had signal %s, "
1343 "but it is in no pass state\n",
1344 target_pid_to_str (lp->ptid).c_str (),
1345 gdb_signal_to_string (signo));
1346 }
1347 else
1348 {
1349 if (debug_linux_nat)
1350 fprintf_unfiltered (gdb_stdlog,
1351 "GPT: lwp %s has pending signal %s\n",
1352 target_pid_to_str (lp->ptid).c_str (),
1353 gdb_signal_to_string (signo));
1354
1355 return gdb_signal_to_host (signo);
1356 }
1357
1358 return 0;
1359 }
1360
1361 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1362 signal number that should be passed to the LWP when detaching.
1363 Otherwise pass any pending signal the LWP may have, if any. */
1364
1365 static void
1366 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1367 {
1368 int lwpid = lp->ptid.lwp ();
1369 int signo;
1370
1371 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1372
1373 if (debug_linux_nat && lp->status)
1374 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1375 strsignal (WSTOPSIG (lp->status)),
1376 target_pid_to_str (lp->ptid).c_str ());
1377
1378 /* If there is a pending SIGSTOP, get rid of it. */
1379 if (lp->signalled)
1380 {
1381 if (debug_linux_nat)
1382 fprintf_unfiltered (gdb_stdlog,
1383 "DC: Sending SIGCONT to %s\n",
1384 target_pid_to_str (lp->ptid).c_str ());
1385
1386 kill_lwp (lwpid, SIGCONT);
1387 lp->signalled = 0;
1388 }
1389
1390 if (signo_p == NULL)
1391 {
1392 /* Pass on any pending signal for this LWP. */
1393 signo = get_detach_signal (lp);
1394 }
1395 else
1396 signo = *signo_p;
1397
1398 /* Preparing to resume may try to write registers, and fail if the
1399 lwp is zombie. If that happens, ignore the error. We'll handle
1400 it below, when detach fails with ESRCH. */
1401 try
1402 {
1403 linux_target->low_prepare_to_resume (lp);
1404 }
1405 catch (const gdb_exception_error &ex)
1406 {
1407 if (!check_ptrace_stopped_lwp_gone (lp))
1408 throw;
1409 }
1410
1411 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1412 {
1413 int save_errno = errno;
1414
1415 /* We know the thread exists, so ESRCH must mean the lwp is
1416 zombie. This can happen if one of the already-detached
1417 threads exits the whole thread group. In that case we're
1418 still attached, and must reap the lwp. */
1419 if (save_errno == ESRCH)
1420 {
1421 int ret, status;
1422
1423 ret = my_waitpid (lwpid, &status, __WALL);
1424 if (ret == -1)
1425 {
1426 warning (_("Couldn't reap LWP %d while detaching: %s"),
1427 lwpid, strerror (errno));
1428 }
1429 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1430 {
1431 warning (_("Reaping LWP %d while detaching "
1432 "returned unexpected status 0x%x"),
1433 lwpid, status);
1434 }
1435 }
1436 else
1437 {
1438 error (_("Can't detach %s: %s"),
1439 target_pid_to_str (lp->ptid).c_str (),
1440 safe_strerror (save_errno));
1441 }
1442 }
1443 else if (debug_linux_nat)
1444 {
1445 fprintf_unfiltered (gdb_stdlog,
1446 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1447 target_pid_to_str (lp->ptid).c_str (),
1448 strsignal (signo));
1449 }
1450
1451 delete_lwp (lp->ptid);
1452 }
1453
1454 static int
1455 detach_callback (struct lwp_info *lp)
1456 {
1457 /* We don't actually detach from the thread group leader just yet.
1458 If the thread group exits, we must reap the zombie clone lwps
1459 before we're able to reap the leader. */
1460 if (lp->ptid.lwp () != lp->ptid.pid ())
1461 detach_one_lwp (lp, NULL);
1462 return 0;
1463 }
1464
1465 void
1466 linux_nat_target::detach (inferior *inf, int from_tty)
1467 {
1468 struct lwp_info *main_lwp;
1469 int pid = inf->pid;
1470
1471 /* Don't unregister from the event loop, as there may be other
1472 inferiors running. */
1473
1474 /* Stop all threads before detaching. ptrace requires that the
1475 thread is stopped to sucessfully detach. */
1476 iterate_over_lwps (ptid_t (pid), stop_callback);
1477 /* ... and wait until all of them have reported back that
1478 they're no longer running. */
1479 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1480
1481 iterate_over_lwps (ptid_t (pid), detach_callback);
1482
1483 /* Only the initial process should be left right now. */
1484 gdb_assert (num_lwps (pid) == 1);
1485
1486 main_lwp = find_lwp_pid (ptid_t (pid));
1487
1488 if (forks_exist_p ())
1489 {
1490 /* Multi-fork case. The current inferior_ptid is being detached
1491 from, but there are other viable forks to debug. Detach from
1492 the current fork, and context-switch to the first
1493 available. */
1494 linux_fork_detach (from_tty);
1495 }
1496 else
1497 {
1498 target_announce_detach (from_tty);
1499
1500 /* Pass on any pending signal for the last LWP. */
1501 int signo = get_detach_signal (main_lwp);
1502
1503 detach_one_lwp (main_lwp, &signo);
1504
1505 detach_success (inf);
1506 }
1507 }
1508
1509 /* Resume execution of the inferior process. If STEP is nonzero,
1510 single-step it. If SIGNAL is nonzero, give it that signal. */
1511
1512 static void
1513 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1514 enum gdb_signal signo)
1515 {
1516 lp->step = step;
1517
1518 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1519 We only presently need that if the LWP is stepped though (to
1520 handle the case of stepping a breakpoint instruction). */
1521 if (step)
1522 {
1523 struct regcache *regcache = get_thread_regcache (lp->ptid);
1524
1525 lp->stop_pc = regcache_read_pc (regcache);
1526 }
1527 else
1528 lp->stop_pc = 0;
1529
1530 linux_target->low_prepare_to_resume (lp);
1531 linux_target->low_resume (lp->ptid, step, signo);
1532
1533 /* Successfully resumed. Clear state that no longer makes sense,
1534 and mark the LWP as running. Must not do this before resuming
1535 otherwise if that fails other code will be confused. E.g., we'd
1536 later try to stop the LWP and hang forever waiting for a stop
1537 status. Note that we must not throw after this is cleared,
1538 otherwise handle_zombie_lwp_error would get confused. */
1539 lp->stopped = 0;
1540 lp->core = -1;
1541 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1542 registers_changed_ptid (lp->ptid);
1543 }
1544
1545 /* Called when we try to resume a stopped LWP and that errors out. If
1546 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1547 or about to become), discard the error, clear any pending status
1548 the LWP may have, and return true (we'll collect the exit status
1549 soon enough). Otherwise, return false. */
1550
1551 static int
1552 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1553 {
1554 /* If we get an error after resuming the LWP successfully, we'd
1555 confuse !T state for the LWP being gone. */
1556 gdb_assert (lp->stopped);
1557
1558 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1559 because even if ptrace failed with ESRCH, the tracee may be "not
1560 yet fully dead", but already refusing ptrace requests. In that
1561 case the tracee has 'R (Running)' state for a little bit
1562 (observed in Linux 3.18). See also the note on ESRCH in the
1563 ptrace(2) man page. Instead, check whether the LWP has any state
1564 other than ptrace-stopped. */
1565
1566 /* Don't assume anything if /proc/PID/status can't be read. */
1567 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1568 {
1569 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1570 lp->status = 0;
1571 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1572 return 1;
1573 }
1574 return 0;
1575 }
1576
1577 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1578 disappears while we try to resume it. */
1579
1580 static void
1581 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1582 {
1583 try
1584 {
1585 linux_resume_one_lwp_throw (lp, step, signo);
1586 }
1587 catch (const gdb_exception_error &ex)
1588 {
1589 if (!check_ptrace_stopped_lwp_gone (lp))
1590 throw;
1591 }
1592 }
1593
1594 /* Resume LP. */
1595
1596 static void
1597 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1598 {
1599 if (lp->stopped)
1600 {
1601 struct inferior *inf = find_inferior_ptid (lp->ptid);
1602
1603 if (inf->vfork_child != NULL)
1604 {
1605 if (debug_linux_nat)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "RC: Not resuming %s (vfork parent)\n",
1608 target_pid_to_str (lp->ptid).c_str ());
1609 }
1610 else if (!lwp_status_pending_p (lp))
1611 {
1612 if (debug_linux_nat)
1613 fprintf_unfiltered (gdb_stdlog,
1614 "RC: Resuming sibling %s, %s, %s\n",
1615 target_pid_to_str (lp->ptid).c_str (),
1616 (signo != GDB_SIGNAL_0
1617 ? strsignal (gdb_signal_to_host (signo))
1618 : "0"),
1619 step ? "step" : "resume");
1620
1621 linux_resume_one_lwp (lp, step, signo);
1622 }
1623 else
1624 {
1625 if (debug_linux_nat)
1626 fprintf_unfiltered (gdb_stdlog,
1627 "RC: Not resuming sibling %s (has pending)\n",
1628 target_pid_to_str (lp->ptid).c_str ());
1629 }
1630 }
1631 else
1632 {
1633 if (debug_linux_nat)
1634 fprintf_unfiltered (gdb_stdlog,
1635 "RC: Not resuming sibling %s (not stopped)\n",
1636 target_pid_to_str (lp->ptid).c_str ());
1637 }
1638 }
1639
1640 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1641 Resume LWP with the last stop signal, if it is in pass state. */
1642
1643 static int
1644 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1645 {
1646 enum gdb_signal signo = GDB_SIGNAL_0;
1647
1648 if (lp == except)
1649 return 0;
1650
1651 if (lp->stopped)
1652 {
1653 struct thread_info *thread;
1654
1655 thread = find_thread_ptid (lp->ptid);
1656 if (thread != NULL)
1657 {
1658 signo = thread->suspend.stop_signal;
1659 thread->suspend.stop_signal = GDB_SIGNAL_0;
1660 }
1661 }
1662
1663 resume_lwp (lp, 0, signo);
1664 return 0;
1665 }
1666
1667 static int
1668 resume_clear_callback (struct lwp_info *lp)
1669 {
1670 lp->resumed = 0;
1671 lp->last_resume_kind = resume_stop;
1672 return 0;
1673 }
1674
1675 static int
1676 resume_set_callback (struct lwp_info *lp)
1677 {
1678 lp->resumed = 1;
1679 lp->last_resume_kind = resume_continue;
1680 return 0;
1681 }
1682
1683 void
1684 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1685 {
1686 struct lwp_info *lp;
1687 int resume_many;
1688
1689 if (debug_linux_nat)
1690 fprintf_unfiltered (gdb_stdlog,
1691 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1692 step ? "step" : "resume",
1693 target_pid_to_str (ptid).c_str (),
1694 (signo != GDB_SIGNAL_0
1695 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1696 target_pid_to_str (inferior_ptid).c_str ());
1697
1698 /* A specific PTID means `step only this process id'. */
1699 resume_many = (minus_one_ptid == ptid
1700 || ptid.is_pid ());
1701
1702 /* Mark the lwps we're resuming as resumed. */
1703 iterate_over_lwps (ptid, resume_set_callback);
1704
1705 /* See if it's the current inferior that should be handled
1706 specially. */
1707 if (resume_many)
1708 lp = find_lwp_pid (inferior_ptid);
1709 else
1710 lp = find_lwp_pid (ptid);
1711 gdb_assert (lp != NULL);
1712
1713 /* Remember if we're stepping. */
1714 lp->last_resume_kind = step ? resume_step : resume_continue;
1715
1716 /* If we have a pending wait status for this thread, there is no
1717 point in resuming the process. But first make sure that
1718 linux_nat_wait won't preemptively handle the event - we
1719 should never take this short-circuit if we are going to
1720 leave LP running, since we have skipped resuming all the
1721 other threads. This bit of code needs to be synchronized
1722 with linux_nat_wait. */
1723
1724 if (lp->status && WIFSTOPPED (lp->status))
1725 {
1726 if (!lp->step
1727 && WSTOPSIG (lp->status)
1728 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1729 {
1730 if (debug_linux_nat)
1731 fprintf_unfiltered (gdb_stdlog,
1732 "LLR: Not short circuiting for ignored "
1733 "status 0x%x\n", lp->status);
1734
1735 /* FIXME: What should we do if we are supposed to continue
1736 this thread with a signal? */
1737 gdb_assert (signo == GDB_SIGNAL_0);
1738 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1739 lp->status = 0;
1740 }
1741 }
1742
1743 if (lwp_status_pending_p (lp))
1744 {
1745 /* FIXME: What should we do if we are supposed to continue
1746 this thread with a signal? */
1747 gdb_assert (signo == GDB_SIGNAL_0);
1748
1749 if (debug_linux_nat)
1750 fprintf_unfiltered (gdb_stdlog,
1751 "LLR: Short circuiting for status 0x%x\n",
1752 lp->status);
1753
1754 if (target_can_async_p ())
1755 {
1756 target_async (1);
1757 /* Tell the event loop we have something to process. */
1758 async_file_mark ();
1759 }
1760 return;
1761 }
1762
1763 if (resume_many)
1764 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1765 {
1766 return linux_nat_resume_callback (info, lp);
1767 });
1768
1769 if (debug_linux_nat)
1770 fprintf_unfiltered (gdb_stdlog,
1771 "LLR: %s %s, %s (resume event thread)\n",
1772 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1773 target_pid_to_str (lp->ptid).c_str (),
1774 (signo != GDB_SIGNAL_0
1775 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1776
1777 linux_resume_one_lwp (lp, step, signo);
1778
1779 if (target_can_async_p ())
1780 target_async (1);
1781 }
1782
1783 /* Send a signal to an LWP. */
1784
1785 static int
1786 kill_lwp (int lwpid, int signo)
1787 {
1788 int ret;
1789
1790 errno = 0;
1791 ret = syscall (__NR_tkill, lwpid, signo);
1792 if (errno == ENOSYS)
1793 {
1794 /* If tkill fails, then we are not using nptl threads, a
1795 configuration we no longer support. */
1796 perror_with_name (("tkill"));
1797 }
1798 return ret;
1799 }
1800
1801 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1802 event, check if the core is interested in it: if not, ignore the
1803 event, and keep waiting; otherwise, we need to toggle the LWP's
1804 syscall entry/exit status, since the ptrace event itself doesn't
1805 indicate it, and report the trap to higher layers. */
1806
1807 static int
1808 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1809 {
1810 struct target_waitstatus *ourstatus = &lp->waitstatus;
1811 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1812 thread_info *thread = find_thread_ptid (lp->ptid);
1813 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1814
1815 if (stopping)
1816 {
1817 /* If we're stopping threads, there's a SIGSTOP pending, which
1818 makes it so that the LWP reports an immediate syscall return,
1819 followed by the SIGSTOP. Skip seeing that "return" using
1820 PTRACE_CONT directly, and let stop_wait_callback collect the
1821 SIGSTOP. Later when the thread is resumed, a new syscall
1822 entry event. If we didn't do this (and returned 0), we'd
1823 leave a syscall entry pending, and our caller, by using
1824 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1825 itself. Later, when the user re-resumes this LWP, we'd see
1826 another syscall entry event and we'd mistake it for a return.
1827
1828 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1829 (leaving immediately with LWP->signalled set, without issuing
1830 a PTRACE_CONT), it would still be problematic to leave this
1831 syscall enter pending, as later when the thread is resumed,
1832 it would then see the same syscall exit mentioned above,
1833 followed by the delayed SIGSTOP, while the syscall didn't
1834 actually get to execute. It seems it would be even more
1835 confusing to the user. */
1836
1837 if (debug_linux_nat)
1838 fprintf_unfiltered (gdb_stdlog,
1839 "LHST: ignoring syscall %d "
1840 "for LWP %ld (stopping threads), "
1841 "resuming with PTRACE_CONT for SIGSTOP\n",
1842 syscall_number,
1843 lp->ptid.lwp ());
1844
1845 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1846 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1847 lp->stopped = 0;
1848 return 1;
1849 }
1850
1851 /* Always update the entry/return state, even if this particular
1852 syscall isn't interesting to the core now. In async mode,
1853 the user could install a new catchpoint for this syscall
1854 between syscall enter/return, and we'll need to know to
1855 report a syscall return if that happens. */
1856 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1857 ? TARGET_WAITKIND_SYSCALL_RETURN
1858 : TARGET_WAITKIND_SYSCALL_ENTRY);
1859
1860 if (catch_syscall_enabled ())
1861 {
1862 if (catching_syscall_number (syscall_number))
1863 {
1864 /* Alright, an event to report. */
1865 ourstatus->kind = lp->syscall_state;
1866 ourstatus->value.syscall_number = syscall_number;
1867
1868 if (debug_linux_nat)
1869 fprintf_unfiltered (gdb_stdlog,
1870 "LHST: stopping for %s of syscall %d"
1871 " for LWP %ld\n",
1872 lp->syscall_state
1873 == TARGET_WAITKIND_SYSCALL_ENTRY
1874 ? "entry" : "return",
1875 syscall_number,
1876 lp->ptid.lwp ());
1877 return 0;
1878 }
1879
1880 if (debug_linux_nat)
1881 fprintf_unfiltered (gdb_stdlog,
1882 "LHST: ignoring %s of syscall %d "
1883 "for LWP %ld\n",
1884 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1885 ? "entry" : "return",
1886 syscall_number,
1887 lp->ptid.lwp ());
1888 }
1889 else
1890 {
1891 /* If we had been syscall tracing, and hence used PT_SYSCALL
1892 before on this LWP, it could happen that the user removes all
1893 syscall catchpoints before we get to process this event.
1894 There are two noteworthy issues here:
1895
1896 - When stopped at a syscall entry event, resuming with
1897 PT_STEP still resumes executing the syscall and reports a
1898 syscall return.
1899
1900 - Only PT_SYSCALL catches syscall enters. If we last
1901 single-stepped this thread, then this event can't be a
1902 syscall enter. If we last single-stepped this thread, this
1903 has to be a syscall exit.
1904
1905 The points above mean that the next resume, be it PT_STEP or
1906 PT_CONTINUE, can not trigger a syscall trace event. */
1907 if (debug_linux_nat)
1908 fprintf_unfiltered (gdb_stdlog,
1909 "LHST: caught syscall event "
1910 "with no syscall catchpoints."
1911 " %d for LWP %ld, ignoring\n",
1912 syscall_number,
1913 lp->ptid.lwp ());
1914 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1915 }
1916
1917 /* The core isn't interested in this event. For efficiency, avoid
1918 stopping all threads only to have the core resume them all again.
1919 Since we're not stopping threads, if we're still syscall tracing
1920 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1921 subsequent syscall. Simply resume using the inf-ptrace layer,
1922 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1923
1924 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1925 return 1;
1926 }
1927
1928 /* Handle a GNU/Linux extended wait response. If we see a clone
1929 event, we need to add the new LWP to our list (and not report the
1930 trap to higher layers). This function returns non-zero if the
1931 event should be ignored and we should wait again. If STOPPING is
1932 true, the new LWP remains stopped, otherwise it is continued. */
1933
1934 static int
1935 linux_handle_extended_wait (struct lwp_info *lp, int status)
1936 {
1937 int pid = lp->ptid.lwp ();
1938 struct target_waitstatus *ourstatus = &lp->waitstatus;
1939 int event = linux_ptrace_get_extended_event (status);
1940
1941 /* All extended events we currently use are mid-syscall. Only
1942 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1943 you have to be using PTRACE_SEIZE to get that. */
1944 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1945
1946 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1947 || event == PTRACE_EVENT_CLONE)
1948 {
1949 unsigned long new_pid;
1950 int ret;
1951
1952 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1953
1954 /* If we haven't already seen the new PID stop, wait for it now. */
1955 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1956 {
1957 /* The new child has a pending SIGSTOP. We can't affect it until it
1958 hits the SIGSTOP, but we're already attached. */
1959 ret = my_waitpid (new_pid, &status, __WALL);
1960 if (ret == -1)
1961 perror_with_name (_("waiting for new child"));
1962 else if (ret != new_pid)
1963 internal_error (__FILE__, __LINE__,
1964 _("wait returned unexpected PID %d"), ret);
1965 else if (!WIFSTOPPED (status))
1966 internal_error (__FILE__, __LINE__,
1967 _("wait returned unexpected status 0x%x"), status);
1968 }
1969
1970 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1971
1972 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1973 {
1974 /* The arch-specific native code may need to know about new
1975 forks even if those end up never mapped to an
1976 inferior. */
1977 linux_target->low_new_fork (lp, new_pid);
1978 }
1979
1980 if (event == PTRACE_EVENT_FORK
1981 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1982 {
1983 /* Handle checkpointing by linux-fork.c here as a special
1984 case. We don't want the follow-fork-mode or 'catch fork'
1985 to interfere with this. */
1986
1987 /* This won't actually modify the breakpoint list, but will
1988 physically remove the breakpoints from the child. */
1989 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1990
1991 /* Retain child fork in ptrace (stopped) state. */
1992 if (!find_fork_pid (new_pid))
1993 add_fork (new_pid);
1994
1995 /* Report as spurious, so that infrun doesn't want to follow
1996 this fork. We're actually doing an infcall in
1997 linux-fork.c. */
1998 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1999
2000 /* Report the stop to the core. */
2001 return 0;
2002 }
2003
2004 if (event == PTRACE_EVENT_FORK)
2005 ourstatus->kind = TARGET_WAITKIND_FORKED;
2006 else if (event == PTRACE_EVENT_VFORK)
2007 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2008 else if (event == PTRACE_EVENT_CLONE)
2009 {
2010 struct lwp_info *new_lp;
2011
2012 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2013
2014 if (debug_linux_nat)
2015 fprintf_unfiltered (gdb_stdlog,
2016 "LHEW: Got clone event "
2017 "from LWP %d, new child is LWP %ld\n",
2018 pid, new_pid);
2019
2020 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
2021 new_lp->stopped = 1;
2022 new_lp->resumed = 1;
2023
2024 /* If the thread_db layer is active, let it record the user
2025 level thread id and status, and add the thread to GDB's
2026 list. */
2027 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2028 {
2029 /* The process is not using thread_db. Add the LWP to
2030 GDB's list. */
2031 target_post_attach (new_lp->ptid.lwp ());
2032 add_thread (new_lp->ptid);
2033 }
2034
2035 /* Even if we're stopping the thread for some reason
2036 internal to this module, from the perspective of infrun
2037 and the user/frontend, this new thread is running until
2038 it next reports a stop. */
2039 set_running (new_lp->ptid, 1);
2040 set_executing (new_lp->ptid, 1);
2041
2042 if (WSTOPSIG (status) != SIGSTOP)
2043 {
2044 /* This can happen if someone starts sending signals to
2045 the new thread before it gets a chance to run, which
2046 have a lower number than SIGSTOP (e.g. SIGUSR1).
2047 This is an unlikely case, and harder to handle for
2048 fork / vfork than for clone, so we do not try - but
2049 we handle it for clone events here. */
2050
2051 new_lp->signalled = 1;
2052
2053 /* We created NEW_LP so it cannot yet contain STATUS. */
2054 gdb_assert (new_lp->status == 0);
2055
2056 /* Save the wait status to report later. */
2057 if (debug_linux_nat)
2058 fprintf_unfiltered (gdb_stdlog,
2059 "LHEW: waitpid of new LWP %ld, "
2060 "saving status %s\n",
2061 (long) new_lp->ptid.lwp (),
2062 status_to_str (status));
2063 new_lp->status = status;
2064 }
2065 else if (report_thread_events)
2066 {
2067 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2068 new_lp->status = status;
2069 }
2070
2071 return 1;
2072 }
2073
2074 return 0;
2075 }
2076
2077 if (event == PTRACE_EVENT_EXEC)
2078 {
2079 if (debug_linux_nat)
2080 fprintf_unfiltered (gdb_stdlog,
2081 "LHEW: Got exec event from LWP %ld\n",
2082 lp->ptid.lwp ());
2083
2084 ourstatus->kind = TARGET_WAITKIND_EXECD;
2085 ourstatus->value.execd_pathname
2086 = xstrdup (linux_proc_pid_to_exec_file (pid));
2087
2088 /* The thread that execed must have been resumed, but, when a
2089 thread execs, it changes its tid to the tgid, and the old
2090 tgid thread might have not been resumed. */
2091 lp->resumed = 1;
2092 return 0;
2093 }
2094
2095 if (event == PTRACE_EVENT_VFORK_DONE)
2096 {
2097 if (current_inferior ()->waiting_for_vfork_done)
2098 {
2099 if (debug_linux_nat)
2100 fprintf_unfiltered (gdb_stdlog,
2101 "LHEW: Got expected PTRACE_EVENT_"
2102 "VFORK_DONE from LWP %ld: stopping\n",
2103 lp->ptid.lwp ());
2104
2105 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2106 return 0;
2107 }
2108
2109 if (debug_linux_nat)
2110 fprintf_unfiltered (gdb_stdlog,
2111 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2112 "from LWP %ld: ignoring\n",
2113 lp->ptid.lwp ());
2114 return 1;
2115 }
2116
2117 internal_error (__FILE__, __LINE__,
2118 _("unknown ptrace event %d"), event);
2119 }
2120
2121 /* Suspend waiting for a signal. We're mostly interested in
2122 SIGCHLD/SIGINT. */
2123
2124 static void
2125 wait_for_signal ()
2126 {
2127 if (debug_linux_nat)
2128 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2129 sigsuspend (&suspend_mask);
2130
2131 /* If the quit flag is set, it means that the user pressed Ctrl-C
2132 and we're debugging a process that is running on a separate
2133 terminal, so we must forward the Ctrl-C to the inferior. (If the
2134 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2135 inferior directly.) We must do this here because functions that
2136 need to block waiting for a signal loop forever until there's an
2137 event to report before returning back to the event loop. */
2138 if (!target_terminal::is_ours ())
2139 {
2140 if (check_quit_flag ())
2141 target_pass_ctrlc ();
2142 }
2143 }
2144
2145 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2146 exited. */
2147
2148 static int
2149 wait_lwp (struct lwp_info *lp)
2150 {
2151 pid_t pid;
2152 int status = 0;
2153 int thread_dead = 0;
2154 sigset_t prev_mask;
2155
2156 gdb_assert (!lp->stopped);
2157 gdb_assert (lp->status == 0);
2158
2159 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2160 block_child_signals (&prev_mask);
2161
2162 for (;;)
2163 {
2164 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2165 if (pid == -1 && errno == ECHILD)
2166 {
2167 /* The thread has previously exited. We need to delete it
2168 now because if this was a non-leader thread execing, we
2169 won't get an exit event. See comments on exec events at
2170 the top of the file. */
2171 thread_dead = 1;
2172 if (debug_linux_nat)
2173 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2174 target_pid_to_str (lp->ptid).c_str ());
2175 }
2176 if (pid != 0)
2177 break;
2178
2179 /* Bugs 10970, 12702.
2180 Thread group leader may have exited in which case we'll lock up in
2181 waitpid if there are other threads, even if they are all zombies too.
2182 Basically, we're not supposed to use waitpid this way.
2183 tkill(pid,0) cannot be used here as it gets ESRCH for both
2184 for zombie and running processes.
2185
2186 As a workaround, check if we're waiting for the thread group leader and
2187 if it's a zombie, and avoid calling waitpid if it is.
2188
2189 This is racy, what if the tgl becomes a zombie right after we check?
2190 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2191 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2192
2193 if (lp->ptid.pid () == lp->ptid.lwp ()
2194 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2195 {
2196 thread_dead = 1;
2197 if (debug_linux_nat)
2198 fprintf_unfiltered (gdb_stdlog,
2199 "WL: Thread group leader %s vanished.\n",
2200 target_pid_to_str (lp->ptid).c_str ());
2201 break;
2202 }
2203
2204 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2205 get invoked despite our caller had them intentionally blocked by
2206 block_child_signals. This is sensitive only to the loop of
2207 linux_nat_wait_1 and there if we get called my_waitpid gets called
2208 again before it gets to sigsuspend so we can safely let the handlers
2209 get executed here. */
2210 wait_for_signal ();
2211 }
2212
2213 restore_child_signals_mask (&prev_mask);
2214
2215 if (!thread_dead)
2216 {
2217 gdb_assert (pid == lp->ptid.lwp ());
2218
2219 if (debug_linux_nat)
2220 {
2221 fprintf_unfiltered (gdb_stdlog,
2222 "WL: waitpid %s received %s\n",
2223 target_pid_to_str (lp->ptid).c_str (),
2224 status_to_str (status));
2225 }
2226
2227 /* Check if the thread has exited. */
2228 if (WIFEXITED (status) || WIFSIGNALED (status))
2229 {
2230 if (report_thread_events
2231 || lp->ptid.pid () == lp->ptid.lwp ())
2232 {
2233 if (debug_linux_nat)
2234 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2235 lp->ptid.pid ());
2236
2237 /* If this is the leader exiting, it means the whole
2238 process is gone. Store the status to report to the
2239 core. Store it in lp->waitstatus, because lp->status
2240 would be ambiguous (W_EXITCODE(0,0) == 0). */
2241 store_waitstatus (&lp->waitstatus, status);
2242 return 0;
2243 }
2244
2245 thread_dead = 1;
2246 if (debug_linux_nat)
2247 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2248 target_pid_to_str (lp->ptid).c_str ());
2249 }
2250 }
2251
2252 if (thread_dead)
2253 {
2254 exit_lwp (lp);
2255 return 0;
2256 }
2257
2258 gdb_assert (WIFSTOPPED (status));
2259 lp->stopped = 1;
2260
2261 if (lp->must_set_ptrace_flags)
2262 {
2263 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2264 int options = linux_nat_ptrace_options (inf->attach_flag);
2265
2266 linux_enable_event_reporting (lp->ptid.lwp (), options);
2267 lp->must_set_ptrace_flags = 0;
2268 }
2269
2270 /* Handle GNU/Linux's syscall SIGTRAPs. */
2271 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2272 {
2273 /* No longer need the sysgood bit. The ptrace event ends up
2274 recorded in lp->waitstatus if we care for it. We can carry
2275 on handling the event like a regular SIGTRAP from here
2276 on. */
2277 status = W_STOPCODE (SIGTRAP);
2278 if (linux_handle_syscall_trap (lp, 1))
2279 return wait_lwp (lp);
2280 }
2281 else
2282 {
2283 /* Almost all other ptrace-stops are known to be outside of system
2284 calls, with further exceptions in linux_handle_extended_wait. */
2285 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2286 }
2287
2288 /* Handle GNU/Linux's extended waitstatus for trace events. */
2289 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2290 && linux_is_extended_waitstatus (status))
2291 {
2292 if (debug_linux_nat)
2293 fprintf_unfiltered (gdb_stdlog,
2294 "WL: Handling extended status 0x%06x\n",
2295 status);
2296 linux_handle_extended_wait (lp, status);
2297 return 0;
2298 }
2299
2300 return status;
2301 }
2302
2303 /* Send a SIGSTOP to LP. */
2304
2305 static int
2306 stop_callback (struct lwp_info *lp)
2307 {
2308 if (!lp->stopped && !lp->signalled)
2309 {
2310 int ret;
2311
2312 if (debug_linux_nat)
2313 {
2314 fprintf_unfiltered (gdb_stdlog,
2315 "SC: kill %s **<SIGSTOP>**\n",
2316 target_pid_to_str (lp->ptid).c_str ());
2317 }
2318 errno = 0;
2319 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2320 if (debug_linux_nat)
2321 {
2322 fprintf_unfiltered (gdb_stdlog,
2323 "SC: lwp kill %d %s\n",
2324 ret,
2325 errno ? safe_strerror (errno) : "ERRNO-OK");
2326 }
2327
2328 lp->signalled = 1;
2329 gdb_assert (lp->status == 0);
2330 }
2331
2332 return 0;
2333 }
2334
2335 /* Request a stop on LWP. */
2336
2337 void
2338 linux_stop_lwp (struct lwp_info *lwp)
2339 {
2340 stop_callback (lwp);
2341 }
2342
2343 /* See linux-nat.h */
2344
2345 void
2346 linux_stop_and_wait_all_lwps (void)
2347 {
2348 /* Stop all LWP's ... */
2349 iterate_over_lwps (minus_one_ptid, stop_callback);
2350
2351 /* ... and wait until all of them have reported back that
2352 they're no longer running. */
2353 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2354 }
2355
2356 /* See linux-nat.h */
2357
2358 void
2359 linux_unstop_all_lwps (void)
2360 {
2361 iterate_over_lwps (minus_one_ptid,
2362 [] (struct lwp_info *info)
2363 {
2364 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2365 });
2366 }
2367
2368 /* Return non-zero if LWP PID has a pending SIGINT. */
2369
2370 static int
2371 linux_nat_has_pending_sigint (int pid)
2372 {
2373 sigset_t pending, blocked, ignored;
2374
2375 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2376
2377 if (sigismember (&pending, SIGINT)
2378 && !sigismember (&ignored, SIGINT))
2379 return 1;
2380
2381 return 0;
2382 }
2383
2384 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2385
2386 static int
2387 set_ignore_sigint (struct lwp_info *lp)
2388 {
2389 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2390 flag to consume the next one. */
2391 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2392 && WSTOPSIG (lp->status) == SIGINT)
2393 lp->status = 0;
2394 else
2395 lp->ignore_sigint = 1;
2396
2397 return 0;
2398 }
2399
2400 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2401 This function is called after we know the LWP has stopped; if the LWP
2402 stopped before the expected SIGINT was delivered, then it will never have
2403 arrived. Also, if the signal was delivered to a shared queue and consumed
2404 by a different thread, it will never be delivered to this LWP. */
2405
2406 static void
2407 maybe_clear_ignore_sigint (struct lwp_info *lp)
2408 {
2409 if (!lp->ignore_sigint)
2410 return;
2411
2412 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2413 {
2414 if (debug_linux_nat)
2415 fprintf_unfiltered (gdb_stdlog,
2416 "MCIS: Clearing bogus flag for %s\n",
2417 target_pid_to_str (lp->ptid).c_str ());
2418 lp->ignore_sigint = 0;
2419 }
2420 }
2421
2422 /* Fetch the possible triggered data watchpoint info and store it in
2423 LP.
2424
2425 On some archs, like x86, that use debug registers to set
2426 watchpoints, it's possible that the way to know which watched
2427 address trapped, is to check the register that is used to select
2428 which address to watch. Problem is, between setting the watchpoint
2429 and reading back which data address trapped, the user may change
2430 the set of watchpoints, and, as a consequence, GDB changes the
2431 debug registers in the inferior. To avoid reading back a stale
2432 stopped-data-address when that happens, we cache in LP the fact
2433 that a watchpoint trapped, and the corresponding data address, as
2434 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2435 registers meanwhile, we have the cached data we can rely on. */
2436
2437 static int
2438 check_stopped_by_watchpoint (struct lwp_info *lp)
2439 {
2440 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2441 inferior_ptid = lp->ptid;
2442
2443 if (linux_target->low_stopped_by_watchpoint ())
2444 {
2445 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2446 lp->stopped_data_address_p
2447 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2448 }
2449
2450 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2451 }
2452
2453 /* Returns true if the LWP had stopped for a watchpoint. */
2454
2455 bool
2456 linux_nat_target::stopped_by_watchpoint ()
2457 {
2458 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2459
2460 gdb_assert (lp != NULL);
2461
2462 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2463 }
2464
2465 bool
2466 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2467 {
2468 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2469
2470 gdb_assert (lp != NULL);
2471
2472 *addr_p = lp->stopped_data_address;
2473
2474 return lp->stopped_data_address_p;
2475 }
2476
2477 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2478
2479 bool
2480 linux_nat_target::low_status_is_event (int status)
2481 {
2482 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2483 }
2484
2485 /* Wait until LP is stopped. */
2486
2487 static int
2488 stop_wait_callback (struct lwp_info *lp)
2489 {
2490 struct inferior *inf = find_inferior_ptid (lp->ptid);
2491
2492 /* If this is a vfork parent, bail out, it is not going to report
2493 any SIGSTOP until the vfork is done with. */
2494 if (inf->vfork_child != NULL)
2495 return 0;
2496
2497 if (!lp->stopped)
2498 {
2499 int status;
2500
2501 status = wait_lwp (lp);
2502 if (status == 0)
2503 return 0;
2504
2505 if (lp->ignore_sigint && WIFSTOPPED (status)
2506 && WSTOPSIG (status) == SIGINT)
2507 {
2508 lp->ignore_sigint = 0;
2509
2510 errno = 0;
2511 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2512 lp->stopped = 0;
2513 if (debug_linux_nat)
2514 fprintf_unfiltered (gdb_stdlog,
2515 "PTRACE_CONT %s, 0, 0 (%s) "
2516 "(discarding SIGINT)\n",
2517 target_pid_to_str (lp->ptid).c_str (),
2518 errno ? safe_strerror (errno) : "OK");
2519
2520 return stop_wait_callback (lp);
2521 }
2522
2523 maybe_clear_ignore_sigint (lp);
2524
2525 if (WSTOPSIG (status) != SIGSTOP)
2526 {
2527 /* The thread was stopped with a signal other than SIGSTOP. */
2528
2529 if (debug_linux_nat)
2530 fprintf_unfiltered (gdb_stdlog,
2531 "SWC: Pending event %s in %s\n",
2532 status_to_str ((int) status),
2533 target_pid_to_str (lp->ptid).c_str ());
2534
2535 /* Save the sigtrap event. */
2536 lp->status = status;
2537 gdb_assert (lp->signalled);
2538 save_stop_reason (lp);
2539 }
2540 else
2541 {
2542 /* We caught the SIGSTOP that we intended to catch. */
2543
2544 if (debug_linux_nat)
2545 fprintf_unfiltered (gdb_stdlog,
2546 "SWC: Expected SIGSTOP caught for %s.\n",
2547 target_pid_to_str (lp->ptid).c_str ());
2548
2549 lp->signalled = 0;
2550
2551 /* If we are waiting for this stop so we can report the thread
2552 stopped then we need to record this status. Otherwise, we can
2553 now discard this stop event. */
2554 if (lp->last_resume_kind == resume_stop)
2555 {
2556 lp->status = status;
2557 save_stop_reason (lp);
2558 }
2559 }
2560 }
2561
2562 return 0;
2563 }
2564
2565 /* Return non-zero if LP has a wait status pending. Discard the
2566 pending event and resume the LWP if the event that originally
2567 caused the stop became uninteresting. */
2568
2569 static int
2570 status_callback (struct lwp_info *lp)
2571 {
2572 /* Only report a pending wait status if we pretend that this has
2573 indeed been resumed. */
2574 if (!lp->resumed)
2575 return 0;
2576
2577 if (!lwp_status_pending_p (lp))
2578 return 0;
2579
2580 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2581 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2582 {
2583 struct regcache *regcache = get_thread_regcache (lp->ptid);
2584 CORE_ADDR pc;
2585 int discard = 0;
2586
2587 pc = regcache_read_pc (regcache);
2588
2589 if (pc != lp->stop_pc)
2590 {
2591 if (debug_linux_nat)
2592 fprintf_unfiltered (gdb_stdlog,
2593 "SC: PC of %s changed. was=%s, now=%s\n",
2594 target_pid_to_str (lp->ptid).c_str (),
2595 paddress (target_gdbarch (), lp->stop_pc),
2596 paddress (target_gdbarch (), pc));
2597 discard = 1;
2598 }
2599
2600 #if !USE_SIGTRAP_SIGINFO
2601 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2602 {
2603 if (debug_linux_nat)
2604 fprintf_unfiltered (gdb_stdlog,
2605 "SC: previous breakpoint of %s, at %s gone\n",
2606 target_pid_to_str (lp->ptid).c_str (),
2607 paddress (target_gdbarch (), lp->stop_pc));
2608
2609 discard = 1;
2610 }
2611 #endif
2612
2613 if (discard)
2614 {
2615 if (debug_linux_nat)
2616 fprintf_unfiltered (gdb_stdlog,
2617 "SC: pending event of %s cancelled.\n",
2618 target_pid_to_str (lp->ptid).c_str ());
2619
2620 lp->status = 0;
2621 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2622 return 0;
2623 }
2624 }
2625
2626 return 1;
2627 }
2628
2629 /* Count the LWP's that have had events. */
2630
2631 static int
2632 count_events_callback (struct lwp_info *lp, int *count)
2633 {
2634 gdb_assert (count != NULL);
2635
2636 /* Select only resumed LWPs that have an event pending. */
2637 if (lp->resumed && lwp_status_pending_p (lp))
2638 (*count)++;
2639
2640 return 0;
2641 }
2642
2643 /* Select the LWP (if any) that is currently being single-stepped. */
2644
2645 static int
2646 select_singlestep_lwp_callback (struct lwp_info *lp)
2647 {
2648 if (lp->last_resume_kind == resume_step
2649 && lp->status != 0)
2650 return 1;
2651 else
2652 return 0;
2653 }
2654
2655 /* Returns true if LP has a status pending. */
2656
2657 static int
2658 lwp_status_pending_p (struct lwp_info *lp)
2659 {
2660 /* We check for lp->waitstatus in addition to lp->status, because we
2661 can have pending process exits recorded in lp->status and
2662 W_EXITCODE(0,0) happens to be 0. */
2663 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2664 }
2665
2666 /* Select the Nth LWP that has had an event. */
2667
2668 static int
2669 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2670 {
2671 gdb_assert (selector != NULL);
2672
2673 /* Select only resumed LWPs that have an event pending. */
2674 if (lp->resumed && lwp_status_pending_p (lp))
2675 if ((*selector)-- == 0)
2676 return 1;
2677
2678 return 0;
2679 }
2680
2681 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2682 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2683 and save the result in the LWP's stop_reason field. If it stopped
2684 for a breakpoint, decrement the PC if necessary on the lwp's
2685 architecture. */
2686
2687 static void
2688 save_stop_reason (struct lwp_info *lp)
2689 {
2690 struct regcache *regcache;
2691 struct gdbarch *gdbarch;
2692 CORE_ADDR pc;
2693 CORE_ADDR sw_bp_pc;
2694 #if USE_SIGTRAP_SIGINFO
2695 siginfo_t siginfo;
2696 #endif
2697
2698 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2699 gdb_assert (lp->status != 0);
2700
2701 if (!linux_target->low_status_is_event (lp->status))
2702 return;
2703
2704 regcache = get_thread_regcache (lp->ptid);
2705 gdbarch = regcache->arch ();
2706
2707 pc = regcache_read_pc (regcache);
2708 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2709
2710 #if USE_SIGTRAP_SIGINFO
2711 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2712 {
2713 if (siginfo.si_signo == SIGTRAP)
2714 {
2715 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2716 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2717 {
2718 /* The si_code is ambiguous on this arch -- check debug
2719 registers. */
2720 if (!check_stopped_by_watchpoint (lp))
2721 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2722 }
2723 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2724 {
2725 /* If we determine the LWP stopped for a SW breakpoint,
2726 trust it. Particularly don't check watchpoint
2727 registers, because at least on s390, we'd find
2728 stopped-by-watchpoint as long as there's a watchpoint
2729 set. */
2730 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2731 }
2732 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2733 {
2734 /* This can indicate either a hardware breakpoint or
2735 hardware watchpoint. Check debug registers. */
2736 if (!check_stopped_by_watchpoint (lp))
2737 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2738 }
2739 else if (siginfo.si_code == TRAP_TRACE)
2740 {
2741 if (debug_linux_nat)
2742 fprintf_unfiltered (gdb_stdlog,
2743 "CSBB: %s stopped by trace\n",
2744 target_pid_to_str (lp->ptid).c_str ());
2745
2746 /* We may have single stepped an instruction that
2747 triggered a watchpoint. In that case, on some
2748 architectures (such as x86), instead of TRAP_HWBKPT,
2749 si_code indicates TRAP_TRACE, and we need to check
2750 the debug registers separately. */
2751 check_stopped_by_watchpoint (lp);
2752 }
2753 }
2754 }
2755 #else
2756 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2757 && software_breakpoint_inserted_here_p (regcache->aspace (),
2758 sw_bp_pc))
2759 {
2760 /* The LWP was either continued, or stepped a software
2761 breakpoint instruction. */
2762 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2763 }
2764
2765 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2766 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2767
2768 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2769 check_stopped_by_watchpoint (lp);
2770 #endif
2771
2772 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2773 {
2774 if (debug_linux_nat)
2775 fprintf_unfiltered (gdb_stdlog,
2776 "CSBB: %s stopped by software breakpoint\n",
2777 target_pid_to_str (lp->ptid).c_str ());
2778
2779 /* Back up the PC if necessary. */
2780 if (pc != sw_bp_pc)
2781 regcache_write_pc (regcache, sw_bp_pc);
2782
2783 /* Update this so we record the correct stop PC below. */
2784 pc = sw_bp_pc;
2785 }
2786 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2787 {
2788 if (debug_linux_nat)
2789 fprintf_unfiltered (gdb_stdlog,
2790 "CSBB: %s stopped by hardware breakpoint\n",
2791 target_pid_to_str (lp->ptid).c_str ());
2792 }
2793 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2794 {
2795 if (debug_linux_nat)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "CSBB: %s stopped by hardware watchpoint\n",
2798 target_pid_to_str (lp->ptid).c_str ());
2799 }
2800
2801 lp->stop_pc = pc;
2802 }
2803
2804
2805 /* Returns true if the LWP had stopped for a software breakpoint. */
2806
2807 bool
2808 linux_nat_target::stopped_by_sw_breakpoint ()
2809 {
2810 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2811
2812 gdb_assert (lp != NULL);
2813
2814 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2815 }
2816
2817 /* Implement the supports_stopped_by_sw_breakpoint method. */
2818
2819 bool
2820 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2821 {
2822 return USE_SIGTRAP_SIGINFO;
2823 }
2824
2825 /* Returns true if the LWP had stopped for a hardware
2826 breakpoint/watchpoint. */
2827
2828 bool
2829 linux_nat_target::stopped_by_hw_breakpoint ()
2830 {
2831 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2832
2833 gdb_assert (lp != NULL);
2834
2835 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2836 }
2837
2838 /* Implement the supports_stopped_by_hw_breakpoint method. */
2839
2840 bool
2841 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2842 {
2843 return USE_SIGTRAP_SIGINFO;
2844 }
2845
2846 /* Select one LWP out of those that have events pending. */
2847
2848 static void
2849 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2850 {
2851 int num_events = 0;
2852 int random_selector;
2853 struct lwp_info *event_lp = NULL;
2854
2855 /* Record the wait status for the original LWP. */
2856 (*orig_lp)->status = *status;
2857
2858 /* In all-stop, give preference to the LWP that is being
2859 single-stepped. There will be at most one, and it will be the
2860 LWP that the core is most interested in. If we didn't do this,
2861 then we'd have to handle pending step SIGTRAPs somehow in case
2862 the core later continues the previously-stepped thread, as
2863 otherwise we'd report the pending SIGTRAP then, and the core, not
2864 having stepped the thread, wouldn't understand what the trap was
2865 for, and therefore would report it to the user as a random
2866 signal. */
2867 if (!target_is_non_stop_p ())
2868 {
2869 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2870 if (event_lp != NULL)
2871 {
2872 if (debug_linux_nat)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "SEL: Select single-step %s\n",
2875 target_pid_to_str (event_lp->ptid).c_str ());
2876 }
2877 }
2878
2879 if (event_lp == NULL)
2880 {
2881 /* Pick one at random, out of those which have had events. */
2882
2883 /* First see how many events we have. */
2884 iterate_over_lwps (filter,
2885 [&] (struct lwp_info *info)
2886 {
2887 return count_events_callback (info, &num_events);
2888 });
2889 gdb_assert (num_events > 0);
2890
2891 /* Now randomly pick a LWP out of those that have had
2892 events. */
2893 random_selector = (int)
2894 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2895
2896 if (debug_linux_nat && num_events > 1)
2897 fprintf_unfiltered (gdb_stdlog,
2898 "SEL: Found %d events, selecting #%d\n",
2899 num_events, random_selector);
2900
2901 event_lp
2902 = (iterate_over_lwps
2903 (filter,
2904 [&] (struct lwp_info *info)
2905 {
2906 return select_event_lwp_callback (info,
2907 &random_selector);
2908 }));
2909 }
2910
2911 if (event_lp != NULL)
2912 {
2913 /* Switch the event LWP. */
2914 *orig_lp = event_lp;
2915 *status = event_lp->status;
2916 }
2917
2918 /* Flush the wait status for the event LWP. */
2919 (*orig_lp)->status = 0;
2920 }
2921
2922 /* Return non-zero if LP has been resumed. */
2923
2924 static int
2925 resumed_callback (struct lwp_info *lp)
2926 {
2927 return lp->resumed;
2928 }
2929
2930 /* Check if we should go on and pass this event to common code.
2931 Return the affected lwp if we are, or NULL otherwise. */
2932
2933 static struct lwp_info *
2934 linux_nat_filter_event (int lwpid, int status)
2935 {
2936 struct lwp_info *lp;
2937 int event = linux_ptrace_get_extended_event (status);
2938
2939 lp = find_lwp_pid (ptid_t (lwpid));
2940
2941 /* Check for stop events reported by a process we didn't already
2942 know about - anything not already in our LWP list.
2943
2944 If we're expecting to receive stopped processes after
2945 fork, vfork, and clone events, then we'll just add the
2946 new one to our list and go back to waiting for the event
2947 to be reported - the stopped process might be returned
2948 from waitpid before or after the event is.
2949
2950 But note the case of a non-leader thread exec'ing after the
2951 leader having exited, and gone from our lists. The non-leader
2952 thread changes its tid to the tgid. */
2953
2954 if (WIFSTOPPED (status) && lp == NULL
2955 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2956 {
2957 /* A multi-thread exec after we had seen the leader exiting. */
2958 if (debug_linux_nat)
2959 fprintf_unfiltered (gdb_stdlog,
2960 "LLW: Re-adding thread group leader LWP %d.\n",
2961 lwpid);
2962
2963 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2964 lp->stopped = 1;
2965 lp->resumed = 1;
2966 add_thread (lp->ptid);
2967 }
2968
2969 if (WIFSTOPPED (status) && !lp)
2970 {
2971 if (debug_linux_nat)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2974 (long) lwpid, status_to_str (status));
2975 add_to_pid_list (&stopped_pids, lwpid, status);
2976 return NULL;
2977 }
2978
2979 /* Make sure we don't report an event for the exit of an LWP not in
2980 our list, i.e. not part of the current process. This can happen
2981 if we detach from a program we originally forked and then it
2982 exits. */
2983 if (!WIFSTOPPED (status) && !lp)
2984 return NULL;
2985
2986 /* This LWP is stopped now. (And if dead, this prevents it from
2987 ever being continued.) */
2988 lp->stopped = 1;
2989
2990 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2991 {
2992 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2993 int options = linux_nat_ptrace_options (inf->attach_flag);
2994
2995 linux_enable_event_reporting (lp->ptid.lwp (), options);
2996 lp->must_set_ptrace_flags = 0;
2997 }
2998
2999 /* Handle GNU/Linux's syscall SIGTRAPs. */
3000 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3001 {
3002 /* No longer need the sysgood bit. The ptrace event ends up
3003 recorded in lp->waitstatus if we care for it. We can carry
3004 on handling the event like a regular SIGTRAP from here
3005 on. */
3006 status = W_STOPCODE (SIGTRAP);
3007 if (linux_handle_syscall_trap (lp, 0))
3008 return NULL;
3009 }
3010 else
3011 {
3012 /* Almost all other ptrace-stops are known to be outside of system
3013 calls, with further exceptions in linux_handle_extended_wait. */
3014 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3015 }
3016
3017 /* Handle GNU/Linux's extended waitstatus for trace events. */
3018 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3019 && linux_is_extended_waitstatus (status))
3020 {
3021 if (debug_linux_nat)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "LLW: Handling extended status 0x%06x\n",
3024 status);
3025 if (linux_handle_extended_wait (lp, status))
3026 return NULL;
3027 }
3028
3029 /* Check if the thread has exited. */
3030 if (WIFEXITED (status) || WIFSIGNALED (status))
3031 {
3032 if (!report_thread_events
3033 && num_lwps (lp->ptid.pid ()) > 1)
3034 {
3035 if (debug_linux_nat)
3036 fprintf_unfiltered (gdb_stdlog,
3037 "LLW: %s exited.\n",
3038 target_pid_to_str (lp->ptid).c_str ());
3039
3040 /* If there is at least one more LWP, then the exit signal
3041 was not the end of the debugged application and should be
3042 ignored. */
3043 exit_lwp (lp);
3044 return NULL;
3045 }
3046
3047 /* Note that even if the leader was ptrace-stopped, it can still
3048 exit, if e.g., some other thread brings down the whole
3049 process (calls `exit'). So don't assert that the lwp is
3050 resumed. */
3051 if (debug_linux_nat)
3052 fprintf_unfiltered (gdb_stdlog,
3053 "LWP %ld exited (resumed=%d)\n",
3054 lp->ptid.lwp (), lp->resumed);
3055
3056 /* Dead LWP's aren't expected to reported a pending sigstop. */
3057 lp->signalled = 0;
3058
3059 /* Store the pending event in the waitstatus, because
3060 W_EXITCODE(0,0) == 0. */
3061 store_waitstatus (&lp->waitstatus, status);
3062 return lp;
3063 }
3064
3065 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3066 an attempt to stop an LWP. */
3067 if (lp->signalled
3068 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3069 {
3070 lp->signalled = 0;
3071
3072 if (lp->last_resume_kind == resume_stop)
3073 {
3074 if (debug_linux_nat)
3075 fprintf_unfiltered (gdb_stdlog,
3076 "LLW: resume_stop SIGSTOP caught for %s.\n",
3077 target_pid_to_str (lp->ptid).c_str ());
3078 }
3079 else
3080 {
3081 /* This is a delayed SIGSTOP. Filter out the event. */
3082
3083 if (debug_linux_nat)
3084 fprintf_unfiltered (gdb_stdlog,
3085 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3086 lp->step ?
3087 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3088 target_pid_to_str (lp->ptid).c_str ());
3089
3090 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3091 gdb_assert (lp->resumed);
3092 return NULL;
3093 }
3094 }
3095
3096 /* Make sure we don't report a SIGINT that we have already displayed
3097 for another thread. */
3098 if (lp->ignore_sigint
3099 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3100 {
3101 if (debug_linux_nat)
3102 fprintf_unfiltered (gdb_stdlog,
3103 "LLW: Delayed SIGINT caught for %s.\n",
3104 target_pid_to_str (lp->ptid).c_str ());
3105
3106 /* This is a delayed SIGINT. */
3107 lp->ignore_sigint = 0;
3108
3109 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3110 if (debug_linux_nat)
3111 fprintf_unfiltered (gdb_stdlog,
3112 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3113 lp->step ?
3114 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3115 target_pid_to_str (lp->ptid).c_str ());
3116 gdb_assert (lp->resumed);
3117
3118 /* Discard the event. */
3119 return NULL;
3120 }
3121
3122 /* Don't report signals that GDB isn't interested in, such as
3123 signals that are neither printed nor stopped upon. Stopping all
3124 threads can be a bit time-consuming so if we want decent
3125 performance with heavily multi-threaded programs, especially when
3126 they're using a high frequency timer, we'd better avoid it if we
3127 can. */
3128 if (WIFSTOPPED (status))
3129 {
3130 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3131
3132 if (!target_is_non_stop_p ())
3133 {
3134 /* Only do the below in all-stop, as we currently use SIGSTOP
3135 to implement target_stop (see linux_nat_stop) in
3136 non-stop. */
3137 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3138 {
3139 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3140 forwarded to the entire process group, that is, all LWPs
3141 will receive it - unless they're using CLONE_THREAD to
3142 share signals. Since we only want to report it once, we
3143 mark it as ignored for all LWPs except this one. */
3144 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3145 lp->ignore_sigint = 0;
3146 }
3147 else
3148 maybe_clear_ignore_sigint (lp);
3149 }
3150
3151 /* When using hardware single-step, we need to report every signal.
3152 Otherwise, signals in pass_mask may be short-circuited
3153 except signals that might be caused by a breakpoint. */
3154 if (!lp->step
3155 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3156 && !linux_wstatus_maybe_breakpoint (status))
3157 {
3158 linux_resume_one_lwp (lp, lp->step, signo);
3159 if (debug_linux_nat)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "LLW: %s %s, %s (preempt 'handle')\n",
3162 lp->step ?
3163 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3164 target_pid_to_str (lp->ptid).c_str (),
3165 (signo != GDB_SIGNAL_0
3166 ? strsignal (gdb_signal_to_host (signo))
3167 : "0"));
3168 return NULL;
3169 }
3170 }
3171
3172 /* An interesting event. */
3173 gdb_assert (lp);
3174 lp->status = status;
3175 save_stop_reason (lp);
3176 return lp;
3177 }
3178
3179 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3180 their exits until all other threads in the group have exited. */
3181
3182 static void
3183 check_zombie_leaders (void)
3184 {
3185 for (inferior *inf : all_inferiors ())
3186 {
3187 struct lwp_info *leader_lp;
3188
3189 if (inf->pid == 0)
3190 continue;
3191
3192 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3193 if (leader_lp != NULL
3194 /* Check if there are other threads in the group, as we may
3195 have raced with the inferior simply exiting. */
3196 && num_lwps (inf->pid) > 1
3197 && linux_proc_pid_is_zombie (inf->pid))
3198 {
3199 if (debug_linux_nat)
3200 fprintf_unfiltered (gdb_stdlog,
3201 "CZL: Thread group leader %d zombie "
3202 "(it exited, or another thread execd).\n",
3203 inf->pid);
3204
3205 /* A leader zombie can mean one of two things:
3206
3207 - It exited, and there's an exit status pending
3208 available, or only the leader exited (not the whole
3209 program). In the latter case, we can't waitpid the
3210 leader's exit status until all other threads are gone.
3211
3212 - There are 3 or more threads in the group, and a thread
3213 other than the leader exec'd. See comments on exec
3214 events at the top of the file. We could try
3215 distinguishing the exit and exec cases, by waiting once
3216 more, and seeing if something comes out, but it doesn't
3217 sound useful. The previous leader _does_ go away, and
3218 we'll re-add the new one once we see the exec event
3219 (which is just the same as what would happen if the
3220 previous leader did exit voluntarily before some other
3221 thread execs). */
3222
3223 if (debug_linux_nat)
3224 fprintf_unfiltered (gdb_stdlog,
3225 "CZL: Thread group leader %d vanished.\n",
3226 inf->pid);
3227 exit_lwp (leader_lp);
3228 }
3229 }
3230 }
3231
3232 /* Convenience function that is called when the kernel reports an exit
3233 event. This decides whether to report the event to GDB as a
3234 process exit event, a thread exit event, or to suppress the
3235 event. */
3236
3237 static ptid_t
3238 filter_exit_event (struct lwp_info *event_child,
3239 struct target_waitstatus *ourstatus)
3240 {
3241 ptid_t ptid = event_child->ptid;
3242
3243 if (num_lwps (ptid.pid ()) > 1)
3244 {
3245 if (report_thread_events)
3246 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3247 else
3248 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3249
3250 exit_lwp (event_child);
3251 }
3252
3253 return ptid;
3254 }
3255
3256 static ptid_t
3257 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3258 int target_options)
3259 {
3260 sigset_t prev_mask;
3261 enum resume_kind last_resume_kind;
3262 struct lwp_info *lp;
3263 int status;
3264
3265 if (debug_linux_nat)
3266 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3267
3268 /* The first time we get here after starting a new inferior, we may
3269 not have added it to the LWP list yet - this is the earliest
3270 moment at which we know its PID. */
3271 if (inferior_ptid.is_pid ())
3272 {
3273 /* Upgrade the main thread's ptid. */
3274 thread_change_ptid (inferior_ptid,
3275 ptid_t (inferior_ptid.pid (),
3276 inferior_ptid.pid (), 0));
3277
3278 lp = add_initial_lwp (inferior_ptid);
3279 lp->resumed = 1;
3280 }
3281
3282 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3283 block_child_signals (&prev_mask);
3284
3285 /* First check if there is a LWP with a wait status pending. */
3286 lp = iterate_over_lwps (ptid, status_callback);
3287 if (lp != NULL)
3288 {
3289 if (debug_linux_nat)
3290 fprintf_unfiltered (gdb_stdlog,
3291 "LLW: Using pending wait status %s for %s.\n",
3292 status_to_str (lp->status),
3293 target_pid_to_str (lp->ptid).c_str ());
3294 }
3295
3296 /* But if we don't find a pending event, we'll have to wait. Always
3297 pull all events out of the kernel. We'll randomly select an
3298 event LWP out of all that have events, to prevent starvation. */
3299
3300 while (lp == NULL)
3301 {
3302 pid_t lwpid;
3303
3304 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3305 quirks:
3306
3307 - If the thread group leader exits while other threads in the
3308 thread group still exist, waitpid(TGID, ...) hangs. That
3309 waitpid won't return an exit status until the other threads
3310 in the group are reapped.
3311
3312 - When a non-leader thread execs, that thread just vanishes
3313 without reporting an exit (so we'd hang if we waited for it
3314 explicitly in that case). The exec event is reported to
3315 the TGID pid. */
3316
3317 errno = 0;
3318 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3319
3320 if (debug_linux_nat)
3321 fprintf_unfiltered (gdb_stdlog,
3322 "LNW: waitpid(-1, ...) returned %d, %s\n",
3323 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3324
3325 if (lwpid > 0)
3326 {
3327 if (debug_linux_nat)
3328 {
3329 fprintf_unfiltered (gdb_stdlog,
3330 "LLW: waitpid %ld received %s\n",
3331 (long) lwpid, status_to_str (status));
3332 }
3333
3334 linux_nat_filter_event (lwpid, status);
3335 /* Retry until nothing comes out of waitpid. A single
3336 SIGCHLD can indicate more than one child stopped. */
3337 continue;
3338 }
3339
3340 /* Now that we've pulled all events out of the kernel, resume
3341 LWPs that don't have an interesting event to report. */
3342 iterate_over_lwps (minus_one_ptid,
3343 [] (struct lwp_info *info)
3344 {
3345 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3346 });
3347
3348 /* ... and find an LWP with a status to report to the core, if
3349 any. */
3350 lp = iterate_over_lwps (ptid, status_callback);
3351 if (lp != NULL)
3352 break;
3353
3354 /* Check for zombie thread group leaders. Those can't be reaped
3355 until all other threads in the thread group are. */
3356 check_zombie_leaders ();
3357
3358 /* If there are no resumed children left, bail. We'd be stuck
3359 forever in the sigsuspend call below otherwise. */
3360 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3361 {
3362 if (debug_linux_nat)
3363 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3364
3365 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3366
3367 restore_child_signals_mask (&prev_mask);
3368 return minus_one_ptid;
3369 }
3370
3371 /* No interesting event to report to the core. */
3372
3373 if (target_options & TARGET_WNOHANG)
3374 {
3375 if (debug_linux_nat)
3376 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3377
3378 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3379 restore_child_signals_mask (&prev_mask);
3380 return minus_one_ptid;
3381 }
3382
3383 /* We shouldn't end up here unless we want to try again. */
3384 gdb_assert (lp == NULL);
3385
3386 /* Block until we get an event reported with SIGCHLD. */
3387 wait_for_signal ();
3388 }
3389
3390 gdb_assert (lp);
3391
3392 status = lp->status;
3393 lp->status = 0;
3394
3395 if (!target_is_non_stop_p ())
3396 {
3397 /* Now stop all other LWP's ... */
3398 iterate_over_lwps (minus_one_ptid, stop_callback);
3399
3400 /* ... and wait until all of them have reported back that
3401 they're no longer running. */
3402 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3403 }
3404
3405 /* If we're not waiting for a specific LWP, choose an event LWP from
3406 among those that have had events. Giving equal priority to all
3407 LWPs that have had events helps prevent starvation. */
3408 if (ptid == minus_one_ptid || ptid.is_pid ())
3409 select_event_lwp (ptid, &lp, &status);
3410
3411 gdb_assert (lp != NULL);
3412
3413 /* Now that we've selected our final event LWP, un-adjust its PC if
3414 it was a software breakpoint, and we can't reliably support the
3415 "stopped by software breakpoint" stop reason. */
3416 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3417 && !USE_SIGTRAP_SIGINFO)
3418 {
3419 struct regcache *regcache = get_thread_regcache (lp->ptid);
3420 struct gdbarch *gdbarch = regcache->arch ();
3421 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3422
3423 if (decr_pc != 0)
3424 {
3425 CORE_ADDR pc;
3426
3427 pc = regcache_read_pc (regcache);
3428 regcache_write_pc (regcache, pc + decr_pc);
3429 }
3430 }
3431
3432 /* We'll need this to determine whether to report a SIGSTOP as
3433 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3434 clears it. */
3435 last_resume_kind = lp->last_resume_kind;
3436
3437 if (!target_is_non_stop_p ())
3438 {
3439 /* In all-stop, from the core's perspective, all LWPs are now
3440 stopped until a new resume action is sent over. */
3441 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3442 }
3443 else
3444 {
3445 resume_clear_callback (lp);
3446 }
3447
3448 if (linux_target->low_status_is_event (status))
3449 {
3450 if (debug_linux_nat)
3451 fprintf_unfiltered (gdb_stdlog,
3452 "LLW: trap ptid is %s.\n",
3453 target_pid_to_str (lp->ptid).c_str ());
3454 }
3455
3456 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3457 {
3458 *ourstatus = lp->waitstatus;
3459 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3460 }
3461 else
3462 store_waitstatus (ourstatus, status);
3463
3464 if (debug_linux_nat)
3465 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3466
3467 restore_child_signals_mask (&prev_mask);
3468
3469 if (last_resume_kind == resume_stop
3470 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3471 && WSTOPSIG (status) == SIGSTOP)
3472 {
3473 /* A thread that has been requested to stop by GDB with
3474 target_stop, and it stopped cleanly, so report as SIG0. The
3475 use of SIGSTOP is an implementation detail. */
3476 ourstatus->value.sig = GDB_SIGNAL_0;
3477 }
3478
3479 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3480 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3481 lp->core = -1;
3482 else
3483 lp->core = linux_common_core_of_thread (lp->ptid);
3484
3485 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3486 return filter_exit_event (lp, ourstatus);
3487
3488 return lp->ptid;
3489 }
3490
3491 /* Resume LWPs that are currently stopped without any pending status
3492 to report, but are resumed from the core's perspective. */
3493
3494 static int
3495 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3496 {
3497 if (!lp->stopped)
3498 {
3499 if (debug_linux_nat)
3500 fprintf_unfiltered (gdb_stdlog,
3501 "RSRL: NOT resuming LWP %s, not stopped\n",
3502 target_pid_to_str (lp->ptid).c_str ());
3503 }
3504 else if (!lp->resumed)
3505 {
3506 if (debug_linux_nat)
3507 fprintf_unfiltered (gdb_stdlog,
3508 "RSRL: NOT resuming LWP %s, not resumed\n",
3509 target_pid_to_str (lp->ptid).c_str ());
3510 }
3511 else if (lwp_status_pending_p (lp))
3512 {
3513 if (debug_linux_nat)
3514 fprintf_unfiltered (gdb_stdlog,
3515 "RSRL: NOT resuming LWP %s, has pending status\n",
3516 target_pid_to_str (lp->ptid).c_str ());
3517 }
3518 else
3519 {
3520 struct regcache *regcache = get_thread_regcache (lp->ptid);
3521 struct gdbarch *gdbarch = regcache->arch ();
3522
3523 try
3524 {
3525 CORE_ADDR pc = regcache_read_pc (regcache);
3526 int leave_stopped = 0;
3527
3528 /* Don't bother if there's a breakpoint at PC that we'd hit
3529 immediately, and we're not waiting for this LWP. */
3530 if (!lp->ptid.matches (wait_ptid))
3531 {
3532 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3533 leave_stopped = 1;
3534 }
3535
3536 if (!leave_stopped)
3537 {
3538 if (debug_linux_nat)
3539 fprintf_unfiltered (gdb_stdlog,
3540 "RSRL: resuming stopped-resumed LWP %s at "
3541 "%s: step=%d\n",
3542 target_pid_to_str (lp->ptid).c_str (),
3543 paddress (gdbarch, pc),
3544 lp->step);
3545
3546 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3547 }
3548 }
3549 catch (const gdb_exception_error &ex)
3550 {
3551 if (!check_ptrace_stopped_lwp_gone (lp))
3552 throw;
3553 }
3554 }
3555
3556 return 0;
3557 }
3558
3559 ptid_t
3560 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3561 int target_options)
3562 {
3563 ptid_t event_ptid;
3564
3565 if (debug_linux_nat)
3566 {
3567 std::string options_string = target_options_to_string (target_options);
3568 fprintf_unfiltered (gdb_stdlog,
3569 "linux_nat_wait: [%s], [%s]\n",
3570 target_pid_to_str (ptid).c_str (),
3571 options_string.c_str ());
3572 }
3573
3574 /* Flush the async file first. */
3575 if (target_is_async_p ())
3576 async_file_flush ();
3577
3578 /* Resume LWPs that are currently stopped without any pending status
3579 to report, but are resumed from the core's perspective. LWPs get
3580 in this state if we find them stopping at a time we're not
3581 interested in reporting the event (target_wait on a
3582 specific_process, for example, see linux_nat_wait_1), and
3583 meanwhile the event became uninteresting. Don't bother resuming
3584 LWPs we're not going to wait for if they'd stop immediately. */
3585 if (target_is_non_stop_p ())
3586 iterate_over_lwps (minus_one_ptid,
3587 [=] (struct lwp_info *info)
3588 {
3589 return resume_stopped_resumed_lwps (info, ptid);
3590 });
3591
3592 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3593
3594 /* If we requested any event, and something came out, assume there
3595 may be more. If we requested a specific lwp or process, also
3596 assume there may be more. */
3597 if (target_is_async_p ()
3598 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3599 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3600 || ptid != minus_one_ptid))
3601 async_file_mark ();
3602
3603 return event_ptid;
3604 }
3605
3606 /* Kill one LWP. */
3607
3608 static void
3609 kill_one_lwp (pid_t pid)
3610 {
3611 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3612
3613 errno = 0;
3614 kill_lwp (pid, SIGKILL);
3615 if (debug_linux_nat)
3616 {
3617 int save_errno = errno;
3618
3619 fprintf_unfiltered (gdb_stdlog,
3620 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3621 save_errno ? safe_strerror (save_errno) : "OK");
3622 }
3623
3624 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3625
3626 errno = 0;
3627 ptrace (PTRACE_KILL, pid, 0, 0);
3628 if (debug_linux_nat)
3629 {
3630 int save_errno = errno;
3631
3632 fprintf_unfiltered (gdb_stdlog,
3633 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3634 save_errno ? safe_strerror (save_errno) : "OK");
3635 }
3636 }
3637
3638 /* Wait for an LWP to die. */
3639
3640 static void
3641 kill_wait_one_lwp (pid_t pid)
3642 {
3643 pid_t res;
3644
3645 /* We must make sure that there are no pending events (delayed
3646 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3647 program doesn't interfere with any following debugging session. */
3648
3649 do
3650 {
3651 res = my_waitpid (pid, NULL, __WALL);
3652 if (res != (pid_t) -1)
3653 {
3654 if (debug_linux_nat)
3655 fprintf_unfiltered (gdb_stdlog,
3656 "KWC: wait %ld received unknown.\n",
3657 (long) pid);
3658 /* The Linux kernel sometimes fails to kill a thread
3659 completely after PTRACE_KILL; that goes from the stop
3660 point in do_fork out to the one in get_signal_to_deliver
3661 and waits again. So kill it again. */
3662 kill_one_lwp (pid);
3663 }
3664 }
3665 while (res == pid);
3666
3667 gdb_assert (res == -1 && errno == ECHILD);
3668 }
3669
3670 /* Callback for iterate_over_lwps. */
3671
3672 static int
3673 kill_callback (struct lwp_info *lp)
3674 {
3675 kill_one_lwp (lp->ptid.lwp ());
3676 return 0;
3677 }
3678
3679 /* Callback for iterate_over_lwps. */
3680
3681 static int
3682 kill_wait_callback (struct lwp_info *lp)
3683 {
3684 kill_wait_one_lwp (lp->ptid.lwp ());
3685 return 0;
3686 }
3687
3688 /* Kill the fork children of any threads of inferior INF that are
3689 stopped at a fork event. */
3690
3691 static void
3692 kill_unfollowed_fork_children (struct inferior *inf)
3693 {
3694 for (thread_info *thread : inf->non_exited_threads ())
3695 {
3696 struct target_waitstatus *ws = &thread->pending_follow;
3697
3698 if (ws->kind == TARGET_WAITKIND_FORKED
3699 || ws->kind == TARGET_WAITKIND_VFORKED)
3700 {
3701 ptid_t child_ptid = ws->value.related_pid;
3702 int child_pid = child_ptid.pid ();
3703 int child_lwp = child_ptid.lwp ();
3704
3705 kill_one_lwp (child_lwp);
3706 kill_wait_one_lwp (child_lwp);
3707
3708 /* Let the arch-specific native code know this process is
3709 gone. */
3710 linux_target->low_forget_process (child_pid);
3711 }
3712 }
3713 }
3714
3715 void
3716 linux_nat_target::kill ()
3717 {
3718 /* If we're stopped while forking and we haven't followed yet,
3719 kill the other task. We need to do this first because the
3720 parent will be sleeping if this is a vfork. */
3721 kill_unfollowed_fork_children (current_inferior ());
3722
3723 if (forks_exist_p ())
3724 linux_fork_killall ();
3725 else
3726 {
3727 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3728
3729 /* Stop all threads before killing them, since ptrace requires
3730 that the thread is stopped to sucessfully PTRACE_KILL. */
3731 iterate_over_lwps (ptid, stop_callback);
3732 /* ... and wait until all of them have reported back that
3733 they're no longer running. */
3734 iterate_over_lwps (ptid, stop_wait_callback);
3735
3736 /* Kill all LWP's ... */
3737 iterate_over_lwps (ptid, kill_callback);
3738
3739 /* ... and wait until we've flushed all events. */
3740 iterate_over_lwps (ptid, kill_wait_callback);
3741 }
3742
3743 target_mourn_inferior (inferior_ptid);
3744 }
3745
3746 void
3747 linux_nat_target::mourn_inferior ()
3748 {
3749 int pid = inferior_ptid.pid ();
3750
3751 purge_lwp_list (pid);
3752
3753 if (! forks_exist_p ())
3754 /* Normal case, no other forks available. */
3755 inf_ptrace_target::mourn_inferior ();
3756 else
3757 /* Multi-fork case. The current inferior_ptid has exited, but
3758 there are other viable forks to debug. Delete the exiting
3759 one and context-switch to the first available. */
3760 linux_fork_mourn_inferior ();
3761
3762 /* Let the arch-specific native code know this process is gone. */
3763 linux_target->low_forget_process (pid);
3764 }
3765
3766 /* Convert a native/host siginfo object, into/from the siginfo in the
3767 layout of the inferiors' architecture. */
3768
3769 static void
3770 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3771 {
3772 /* If the low target didn't do anything, then just do a straight
3773 memcpy. */
3774 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3775 {
3776 if (direction == 1)
3777 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3778 else
3779 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3780 }
3781 }
3782
3783 static enum target_xfer_status
3784 linux_xfer_siginfo (enum target_object object,
3785 const char *annex, gdb_byte *readbuf,
3786 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3787 ULONGEST *xfered_len)
3788 {
3789 int pid;
3790 siginfo_t siginfo;
3791 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3792
3793 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3794 gdb_assert (readbuf || writebuf);
3795
3796 pid = inferior_ptid.lwp ();
3797 if (pid == 0)
3798 pid = inferior_ptid.pid ();
3799
3800 if (offset > sizeof (siginfo))
3801 return TARGET_XFER_E_IO;
3802
3803 errno = 0;
3804 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3805 if (errno != 0)
3806 return TARGET_XFER_E_IO;
3807
3808 /* When GDB is built as a 64-bit application, ptrace writes into
3809 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3810 inferior with a 64-bit GDB should look the same as debugging it
3811 with a 32-bit GDB, we need to convert it. GDB core always sees
3812 the converted layout, so any read/write will have to be done
3813 post-conversion. */
3814 siginfo_fixup (&siginfo, inf_siginfo, 0);
3815
3816 if (offset + len > sizeof (siginfo))
3817 len = sizeof (siginfo) - offset;
3818
3819 if (readbuf != NULL)
3820 memcpy (readbuf, inf_siginfo + offset, len);
3821 else
3822 {
3823 memcpy (inf_siginfo + offset, writebuf, len);
3824
3825 /* Convert back to ptrace layout before flushing it out. */
3826 siginfo_fixup (&siginfo, inf_siginfo, 1);
3827
3828 errno = 0;
3829 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3830 if (errno != 0)
3831 return TARGET_XFER_E_IO;
3832 }
3833
3834 *xfered_len = len;
3835 return TARGET_XFER_OK;
3836 }
3837
3838 static enum target_xfer_status
3839 linux_nat_xfer_osdata (enum target_object object,
3840 const char *annex, gdb_byte *readbuf,
3841 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3842 ULONGEST *xfered_len);
3843
3844 static enum target_xfer_status
3845 linux_proc_xfer_spu (enum target_object object,
3846 const char *annex, gdb_byte *readbuf,
3847 const gdb_byte *writebuf,
3848 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
3849
3850 static enum target_xfer_status
3851 linux_proc_xfer_partial (enum target_object object,
3852 const char *annex, gdb_byte *readbuf,
3853 const gdb_byte *writebuf,
3854 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3855
3856 enum target_xfer_status
3857 linux_nat_target::xfer_partial (enum target_object object,
3858 const char *annex, gdb_byte *readbuf,
3859 const gdb_byte *writebuf,
3860 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3861 {
3862 enum target_xfer_status xfer;
3863
3864 if (object == TARGET_OBJECT_SIGNAL_INFO)
3865 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3866 offset, len, xfered_len);
3867
3868 /* The target is connected but no live inferior is selected. Pass
3869 this request down to a lower stratum (e.g., the executable
3870 file). */
3871 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3872 return TARGET_XFER_EOF;
3873
3874 if (object == TARGET_OBJECT_AUXV)
3875 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3876 offset, len, xfered_len);
3877
3878 if (object == TARGET_OBJECT_OSDATA)
3879 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3880 offset, len, xfered_len);
3881
3882 if (object == TARGET_OBJECT_SPU)
3883 return linux_proc_xfer_spu (object, annex, readbuf, writebuf,
3884 offset, len, xfered_len);
3885
3886 /* GDB calculates all addresses in the largest possible address
3887 width.
3888 The address width must be masked before its final use - either by
3889 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3890
3891 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3892
3893 if (object == TARGET_OBJECT_MEMORY)
3894 {
3895 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3896
3897 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3898 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3899 }
3900
3901 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3902 offset, len, xfered_len);
3903 if (xfer != TARGET_XFER_EOF)
3904 return xfer;
3905
3906 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3907 offset, len, xfered_len);
3908 }
3909
3910 bool
3911 linux_nat_target::thread_alive (ptid_t ptid)
3912 {
3913 /* As long as a PTID is in lwp list, consider it alive. */
3914 return find_lwp_pid (ptid) != NULL;
3915 }
3916
3917 /* Implement the to_update_thread_list target method for this
3918 target. */
3919
3920 void
3921 linux_nat_target::update_thread_list ()
3922 {
3923 struct lwp_info *lwp;
3924
3925 /* We add/delete threads from the list as clone/exit events are
3926 processed, so just try deleting exited threads still in the
3927 thread list. */
3928 delete_exited_threads ();
3929
3930 /* Update the processor core that each lwp/thread was last seen
3931 running on. */
3932 ALL_LWPS (lwp)
3933 {
3934 /* Avoid accessing /proc if the thread hasn't run since we last
3935 time we fetched the thread's core. Accessing /proc becomes
3936 noticeably expensive when we have thousands of LWPs. */
3937 if (lwp->core == -1)
3938 lwp->core = linux_common_core_of_thread (lwp->ptid);
3939 }
3940 }
3941
3942 std::string
3943 linux_nat_target::pid_to_str (ptid_t ptid)
3944 {
3945 if (ptid.lwp_p ()
3946 && (ptid.pid () != ptid.lwp ()
3947 || num_lwps (ptid.pid ()) > 1))
3948 return string_printf ("LWP %ld", ptid.lwp ());
3949
3950 return normal_pid_to_str (ptid);
3951 }
3952
3953 const char *
3954 linux_nat_target::thread_name (struct thread_info *thr)
3955 {
3956 return linux_proc_tid_get_name (thr->ptid);
3957 }
3958
3959 /* Accepts an integer PID; Returns a string representing a file that
3960 can be opened to get the symbols for the child process. */
3961
3962 char *
3963 linux_nat_target::pid_to_exec_file (int pid)
3964 {
3965 return linux_proc_pid_to_exec_file (pid);
3966 }
3967
3968 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3969 Because we can use a single read/write call, this can be much more
3970 efficient than banging away at PTRACE_PEEKTEXT. */
3971
3972 static enum target_xfer_status
3973 linux_proc_xfer_partial (enum target_object object,
3974 const char *annex, gdb_byte *readbuf,
3975 const gdb_byte *writebuf,
3976 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3977 {
3978 LONGEST ret;
3979 int fd;
3980 char filename[64];
3981
3982 if (object != TARGET_OBJECT_MEMORY)
3983 return TARGET_XFER_EOF;
3984
3985 /* Don't bother for one word. */
3986 if (len < 3 * sizeof (long))
3987 return TARGET_XFER_EOF;
3988
3989 /* We could keep this file open and cache it - possibly one per
3990 thread. That requires some juggling, but is even faster. */
3991 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3992 inferior_ptid.lwp ());
3993 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3994 | O_LARGEFILE), 0);
3995 if (fd == -1)
3996 return TARGET_XFER_EOF;
3997
3998 /* Use pread64/pwrite64 if available, since they save a syscall and can
3999 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
4000 debugging a SPARC64 application). */
4001 #ifdef HAVE_PREAD64
4002 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4003 : pwrite64 (fd, writebuf, len, offset));
4004 #else
4005 ret = lseek (fd, offset, SEEK_SET);
4006 if (ret != -1)
4007 ret = (readbuf ? read (fd, readbuf, len)
4008 : write (fd, writebuf, len));
4009 #endif
4010
4011 close (fd);
4012
4013 if (ret == -1 || ret == 0)
4014 return TARGET_XFER_EOF;
4015 else
4016 {
4017 *xfered_len = ret;
4018 return TARGET_XFER_OK;
4019 }
4020 }
4021
4022
4023 /* Enumerate spufs IDs for process PID. */
4024 static LONGEST
4025 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4026 {
4027 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4028 LONGEST pos = 0;
4029 LONGEST written = 0;
4030 char path[128];
4031 DIR *dir;
4032 struct dirent *entry;
4033
4034 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4035 dir = opendir (path);
4036 if (!dir)
4037 return -1;
4038
4039 rewinddir (dir);
4040 while ((entry = readdir (dir)) != NULL)
4041 {
4042 struct stat st;
4043 struct statfs stfs;
4044 int fd;
4045
4046 fd = atoi (entry->d_name);
4047 if (!fd)
4048 continue;
4049
4050 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4051 if (stat (path, &st) != 0)
4052 continue;
4053 if (!S_ISDIR (st.st_mode))
4054 continue;
4055
4056 if (statfs (path, &stfs) != 0)
4057 continue;
4058 if (stfs.f_type != SPUFS_MAGIC)
4059 continue;
4060
4061 if (pos >= offset && pos + 4 <= offset + len)
4062 {
4063 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4064 written += 4;
4065 }
4066 pos += 4;
4067 }
4068
4069 closedir (dir);
4070 return written;
4071 }
4072
4073 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4074 object type, using the /proc file system. */
4075
4076 static enum target_xfer_status
4077 linux_proc_xfer_spu (enum target_object object,
4078 const char *annex, gdb_byte *readbuf,
4079 const gdb_byte *writebuf,
4080 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4081 {
4082 char buf[128];
4083 int fd = 0;
4084 int ret = -1;
4085 int pid = inferior_ptid.lwp ();
4086
4087 if (!annex)
4088 {
4089 if (!readbuf)
4090 return TARGET_XFER_E_IO;
4091 else
4092 {
4093 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4094
4095 if (l < 0)
4096 return TARGET_XFER_E_IO;
4097 else if (l == 0)
4098 return TARGET_XFER_EOF;
4099 else
4100 {
4101 *xfered_len = (ULONGEST) l;
4102 return TARGET_XFER_OK;
4103 }
4104 }
4105 }
4106
4107 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4108 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4109 if (fd <= 0)
4110 return TARGET_XFER_E_IO;
4111
4112 if (offset != 0
4113 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4114 {
4115 close (fd);
4116 return TARGET_XFER_EOF;
4117 }
4118
4119 if (writebuf)
4120 ret = write (fd, writebuf, (size_t) len);
4121 else if (readbuf)
4122 ret = read (fd, readbuf, (size_t) len);
4123
4124 close (fd);
4125
4126 if (ret < 0)
4127 return TARGET_XFER_E_IO;
4128 else if (ret == 0)
4129 return TARGET_XFER_EOF;
4130 else
4131 {
4132 *xfered_len = (ULONGEST) ret;
4133 return TARGET_XFER_OK;
4134 }
4135 }
4136
4137
4138 /* Parse LINE as a signal set and add its set bits to SIGS. */
4139
4140 static void
4141 add_line_to_sigset (const char *line, sigset_t *sigs)
4142 {
4143 int len = strlen (line) - 1;
4144 const char *p;
4145 int signum;
4146
4147 if (line[len] != '\n')
4148 error (_("Could not parse signal set: %s"), line);
4149
4150 p = line;
4151 signum = len * 4;
4152 while (len-- > 0)
4153 {
4154 int digit;
4155
4156 if (*p >= '0' && *p <= '9')
4157 digit = *p - '0';
4158 else if (*p >= 'a' && *p <= 'f')
4159 digit = *p - 'a' + 10;
4160 else
4161 error (_("Could not parse signal set: %s"), line);
4162
4163 signum -= 4;
4164
4165 if (digit & 1)
4166 sigaddset (sigs, signum + 1);
4167 if (digit & 2)
4168 sigaddset (sigs, signum + 2);
4169 if (digit & 4)
4170 sigaddset (sigs, signum + 3);
4171 if (digit & 8)
4172 sigaddset (sigs, signum + 4);
4173
4174 p++;
4175 }
4176 }
4177
4178 /* Find process PID's pending signals from /proc/pid/status and set
4179 SIGS to match. */
4180
4181 void
4182 linux_proc_pending_signals (int pid, sigset_t *pending,
4183 sigset_t *blocked, sigset_t *ignored)
4184 {
4185 char buffer[PATH_MAX], fname[PATH_MAX];
4186
4187 sigemptyset (pending);
4188 sigemptyset (blocked);
4189 sigemptyset (ignored);
4190 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4191 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4192 if (procfile == NULL)
4193 error (_("Could not open %s"), fname);
4194
4195 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4196 {
4197 /* Normal queued signals are on the SigPnd line in the status
4198 file. However, 2.6 kernels also have a "shared" pending
4199 queue for delivering signals to a thread group, so check for
4200 a ShdPnd line also.
4201
4202 Unfortunately some Red Hat kernels include the shared pending
4203 queue but not the ShdPnd status field. */
4204
4205 if (startswith (buffer, "SigPnd:\t"))
4206 add_line_to_sigset (buffer + 8, pending);
4207 else if (startswith (buffer, "ShdPnd:\t"))
4208 add_line_to_sigset (buffer + 8, pending);
4209 else if (startswith (buffer, "SigBlk:\t"))
4210 add_line_to_sigset (buffer + 8, blocked);
4211 else if (startswith (buffer, "SigIgn:\t"))
4212 add_line_to_sigset (buffer + 8, ignored);
4213 }
4214 }
4215
4216 static enum target_xfer_status
4217 linux_nat_xfer_osdata (enum target_object object,
4218 const char *annex, gdb_byte *readbuf,
4219 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4220 ULONGEST *xfered_len)
4221 {
4222 gdb_assert (object == TARGET_OBJECT_OSDATA);
4223
4224 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4225 if (*xfered_len == 0)
4226 return TARGET_XFER_EOF;
4227 else
4228 return TARGET_XFER_OK;
4229 }
4230
4231 std::vector<static_tracepoint_marker>
4232 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4233 {
4234 char s[IPA_CMD_BUF_SIZE];
4235 int pid = inferior_ptid.pid ();
4236 std::vector<static_tracepoint_marker> markers;
4237 const char *p = s;
4238 ptid_t ptid = ptid_t (pid, 0, 0);
4239 static_tracepoint_marker marker;
4240
4241 /* Pause all */
4242 target_stop (ptid);
4243
4244 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4245 s[sizeof ("qTfSTM")] = 0;
4246
4247 agent_run_command (pid, s, strlen (s) + 1);
4248
4249 /* Unpause all. */
4250 SCOPE_EXIT { target_continue_no_signal (ptid); };
4251
4252 while (*p++ == 'm')
4253 {
4254 do
4255 {
4256 parse_static_tracepoint_marker_definition (p, &p, &marker);
4257
4258 if (strid == NULL || marker.str_id == strid)
4259 markers.push_back (std::move (marker));
4260 }
4261 while (*p++ == ','); /* comma-separated list */
4262
4263 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4264 s[sizeof ("qTsSTM")] = 0;
4265 agent_run_command (pid, s, strlen (s) + 1);
4266 p = s;
4267 }
4268
4269 return markers;
4270 }
4271
4272 /* target_is_async_p implementation. */
4273
4274 bool
4275 linux_nat_target::is_async_p ()
4276 {
4277 return linux_is_async_p ();
4278 }
4279
4280 /* target_can_async_p implementation. */
4281
4282 bool
4283 linux_nat_target::can_async_p ()
4284 {
4285 /* We're always async, unless the user explicitly prevented it with the
4286 "maint set target-async" command. */
4287 return target_async_permitted;
4288 }
4289
4290 bool
4291 linux_nat_target::supports_non_stop ()
4292 {
4293 return 1;
4294 }
4295
4296 /* to_always_non_stop_p implementation. */
4297
4298 bool
4299 linux_nat_target::always_non_stop_p ()
4300 {
4301 return 1;
4302 }
4303
4304 /* True if we want to support multi-process. To be removed when GDB
4305 supports multi-exec. */
4306
4307 int linux_multi_process = 1;
4308
4309 bool
4310 linux_nat_target::supports_multi_process ()
4311 {
4312 return linux_multi_process;
4313 }
4314
4315 bool
4316 linux_nat_target::supports_disable_randomization ()
4317 {
4318 #ifdef HAVE_PERSONALITY
4319 return 1;
4320 #else
4321 return 0;
4322 #endif
4323 }
4324
4325 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4326 so we notice when any child changes state, and notify the
4327 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4328 above to wait for the arrival of a SIGCHLD. */
4329
4330 static void
4331 sigchld_handler (int signo)
4332 {
4333 int old_errno = errno;
4334
4335 if (debug_linux_nat)
4336 ui_file_write_async_safe (gdb_stdlog,
4337 "sigchld\n", sizeof ("sigchld\n") - 1);
4338
4339 if (signo == SIGCHLD
4340 && linux_nat_event_pipe[0] != -1)
4341 async_file_mark (); /* Let the event loop know that there are
4342 events to handle. */
4343
4344 errno = old_errno;
4345 }
4346
4347 /* Callback registered with the target events file descriptor. */
4348
4349 static void
4350 handle_target_event (int error, gdb_client_data client_data)
4351 {
4352 inferior_event_handler (INF_REG_EVENT, NULL);
4353 }
4354
4355 /* Create/destroy the target events pipe. Returns previous state. */
4356
4357 static int
4358 linux_async_pipe (int enable)
4359 {
4360 int previous = linux_is_async_p ();
4361
4362 if (previous != enable)
4363 {
4364 sigset_t prev_mask;
4365
4366 /* Block child signals while we create/destroy the pipe, as
4367 their handler writes to it. */
4368 block_child_signals (&prev_mask);
4369
4370 if (enable)
4371 {
4372 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4373 internal_error (__FILE__, __LINE__,
4374 "creating event pipe failed.");
4375
4376 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4377 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4378 }
4379 else
4380 {
4381 close (linux_nat_event_pipe[0]);
4382 close (linux_nat_event_pipe[1]);
4383 linux_nat_event_pipe[0] = -1;
4384 linux_nat_event_pipe[1] = -1;
4385 }
4386
4387 restore_child_signals_mask (&prev_mask);
4388 }
4389
4390 return previous;
4391 }
4392
4393 /* target_async implementation. */
4394
4395 void
4396 linux_nat_target::async (int enable)
4397 {
4398 if (enable)
4399 {
4400 if (!linux_async_pipe (1))
4401 {
4402 add_file_handler (linux_nat_event_pipe[0],
4403 handle_target_event, NULL);
4404 /* There may be pending events to handle. Tell the event loop
4405 to poll them. */
4406 async_file_mark ();
4407 }
4408 }
4409 else
4410 {
4411 delete_file_handler (linux_nat_event_pipe[0]);
4412 linux_async_pipe (0);
4413 }
4414 return;
4415 }
4416
4417 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4418 event came out. */
4419
4420 static int
4421 linux_nat_stop_lwp (struct lwp_info *lwp)
4422 {
4423 if (!lwp->stopped)
4424 {
4425 if (debug_linux_nat)
4426 fprintf_unfiltered (gdb_stdlog,
4427 "LNSL: running -> suspending %s\n",
4428 target_pid_to_str (lwp->ptid).c_str ());
4429
4430
4431 if (lwp->last_resume_kind == resume_stop)
4432 {
4433 if (debug_linux_nat)
4434 fprintf_unfiltered (gdb_stdlog,
4435 "linux-nat: already stopping LWP %ld at "
4436 "GDB's request\n",
4437 lwp->ptid.lwp ());
4438 return 0;
4439 }
4440
4441 stop_callback (lwp);
4442 lwp->last_resume_kind = resume_stop;
4443 }
4444 else
4445 {
4446 /* Already known to be stopped; do nothing. */
4447
4448 if (debug_linux_nat)
4449 {
4450 if (find_thread_ptid (lwp->ptid)->stop_requested)
4451 fprintf_unfiltered (gdb_stdlog,
4452 "LNSL: already stopped/stop_requested %s\n",
4453 target_pid_to_str (lwp->ptid).c_str ());
4454 else
4455 fprintf_unfiltered (gdb_stdlog,
4456 "LNSL: already stopped/no "
4457 "stop_requested yet %s\n",
4458 target_pid_to_str (lwp->ptid).c_str ());
4459 }
4460 }
4461 return 0;
4462 }
4463
4464 void
4465 linux_nat_target::stop (ptid_t ptid)
4466 {
4467 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4468 }
4469
4470 void
4471 linux_nat_target::close ()
4472 {
4473 /* Unregister from the event loop. */
4474 if (is_async_p ())
4475 async (0);
4476
4477 inf_ptrace_target::close ();
4478 }
4479
4480 /* When requests are passed down from the linux-nat layer to the
4481 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4482 used. The address space pointer is stored in the inferior object,
4483 but the common code that is passed such ptid can't tell whether
4484 lwpid is a "main" process id or not (it assumes so). We reverse
4485 look up the "main" process id from the lwp here. */
4486
4487 struct address_space *
4488 linux_nat_target::thread_address_space (ptid_t ptid)
4489 {
4490 struct lwp_info *lwp;
4491 struct inferior *inf;
4492 int pid;
4493
4494 if (ptid.lwp () == 0)
4495 {
4496 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4497 tgid. */
4498 lwp = find_lwp_pid (ptid);
4499 pid = lwp->ptid.pid ();
4500 }
4501 else
4502 {
4503 /* A (pid,lwpid,0) ptid. */
4504 pid = ptid.pid ();
4505 }
4506
4507 inf = find_inferior_pid (pid);
4508 gdb_assert (inf != NULL);
4509 return inf->aspace;
4510 }
4511
4512 /* Return the cached value of the processor core for thread PTID. */
4513
4514 int
4515 linux_nat_target::core_of_thread (ptid_t ptid)
4516 {
4517 struct lwp_info *info = find_lwp_pid (ptid);
4518
4519 if (info)
4520 return info->core;
4521 return -1;
4522 }
4523
4524 /* Implementation of to_filesystem_is_local. */
4525
4526 bool
4527 linux_nat_target::filesystem_is_local ()
4528 {
4529 struct inferior *inf = current_inferior ();
4530
4531 if (inf->fake_pid_p || inf->pid == 0)
4532 return true;
4533
4534 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4535 }
4536
4537 /* Convert the INF argument passed to a to_fileio_* method
4538 to a process ID suitable for passing to its corresponding
4539 linux_mntns_* function. If INF is non-NULL then the
4540 caller is requesting the filesystem seen by INF. If INF
4541 is NULL then the caller is requesting the filesystem seen
4542 by the GDB. We fall back to GDB's filesystem in the case
4543 that INF is non-NULL but its PID is unknown. */
4544
4545 static pid_t
4546 linux_nat_fileio_pid_of (struct inferior *inf)
4547 {
4548 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4549 return getpid ();
4550 else
4551 return inf->pid;
4552 }
4553
4554 /* Implementation of to_fileio_open. */
4555
4556 int
4557 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4558 int flags, int mode, int warn_if_slow,
4559 int *target_errno)
4560 {
4561 int nat_flags;
4562 mode_t nat_mode;
4563 int fd;
4564
4565 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4566 || fileio_to_host_mode (mode, &nat_mode) == -1)
4567 {
4568 *target_errno = FILEIO_EINVAL;
4569 return -1;
4570 }
4571
4572 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4573 filename, nat_flags, nat_mode);
4574 if (fd == -1)
4575 *target_errno = host_to_fileio_error (errno);
4576
4577 return fd;
4578 }
4579
4580 /* Implementation of to_fileio_readlink. */
4581
4582 gdb::optional<std::string>
4583 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4584 int *target_errno)
4585 {
4586 char buf[PATH_MAX];
4587 int len;
4588
4589 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4590 filename, buf, sizeof (buf));
4591 if (len < 0)
4592 {
4593 *target_errno = host_to_fileio_error (errno);
4594 return {};
4595 }
4596
4597 return std::string (buf, len);
4598 }
4599
4600 /* Implementation of to_fileio_unlink. */
4601
4602 int
4603 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4604 int *target_errno)
4605 {
4606 int ret;
4607
4608 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4609 filename);
4610 if (ret == -1)
4611 *target_errno = host_to_fileio_error (errno);
4612
4613 return ret;
4614 }
4615
4616 /* Implementation of the to_thread_events method. */
4617
4618 void
4619 linux_nat_target::thread_events (int enable)
4620 {
4621 report_thread_events = enable;
4622 }
4623
4624 linux_nat_target::linux_nat_target ()
4625 {
4626 /* We don't change the stratum; this target will sit at
4627 process_stratum and thread_db will set at thread_stratum. This
4628 is a little strange, since this is a multi-threaded-capable
4629 target, but we want to be on the stack below thread_db, and we
4630 also want to be used for single-threaded processes. */
4631 }
4632
4633 /* See linux-nat.h. */
4634
4635 int
4636 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4637 {
4638 int pid;
4639
4640 pid = ptid.lwp ();
4641 if (pid == 0)
4642 pid = ptid.pid ();
4643
4644 errno = 0;
4645 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4646 if (errno != 0)
4647 {
4648 memset (siginfo, 0, sizeof (*siginfo));
4649 return 0;
4650 }
4651 return 1;
4652 }
4653
4654 /* See nat/linux-nat.h. */
4655
4656 ptid_t
4657 current_lwp_ptid (void)
4658 {
4659 gdb_assert (inferior_ptid.lwp_p ());
4660 return inferior_ptid;
4661 }
4662
4663 void
4664 _initialize_linux_nat (void)
4665 {
4666 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4667 &debug_linux_nat, _("\
4668 Set debugging of GNU/Linux lwp module."), _("\
4669 Show debugging of GNU/Linux lwp module."), _("\
4670 Enables printf debugging output."),
4671 NULL,
4672 show_debug_linux_nat,
4673 &setdebuglist, &showdebuglist);
4674
4675 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4676 &debug_linux_namespaces, _("\
4677 Set debugging of GNU/Linux namespaces module."), _("\
4678 Show debugging of GNU/Linux namespaces module."), _("\
4679 Enables printf debugging output."),
4680 NULL,
4681 NULL,
4682 &setdebuglist, &showdebuglist);
4683
4684 /* Install a SIGCHLD handler. */
4685 sigchld_action.sa_handler = sigchld_handler;
4686 sigemptyset (&sigchld_action.sa_mask);
4687 sigchld_action.sa_flags = SA_RESTART;
4688
4689 /* Make it the default. */
4690 sigaction (SIGCHLD, &sigchld_action, NULL);
4691
4692 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4693 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4694 sigdelset (&suspend_mask, SIGCHLD);
4695
4696 sigemptyset (&blocked_mask);
4697
4698 lwp_lwpid_htab_create ();
4699 }
4700 \f
4701
4702 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4703 the GNU/Linux Threads library and therefore doesn't really belong
4704 here. */
4705
4706 /* Return the set of signals used by the threads library in *SET. */
4707
4708 void
4709 lin_thread_get_thread_signals (sigset_t *set)
4710 {
4711 sigemptyset (set);
4712
4713 /* NPTL reserves the first two RT signals, but does not provide any
4714 way for the debugger to query the signal numbers - fortunately
4715 they don't change. */
4716 sigaddset (set, __SIGRTMIN);
4717 sigaddset (set, __SIGRTMIN + 1);
4718 }
This page took 0.128014 seconds and 4 git commands to generate.