* linux-nat.c (debug_linux_nat_async): Delete.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-ptrace.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-ptrace.h"
40 #include "auxv.h"
41 #include <sys/param.h> /* for MAXPATHLEN */
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include "gdbthread.h" /* for struct thread_info etc. */
48 #include "gdb_stat.h" /* for struct stat */
49 #include <fcntl.h> /* for O_RDONLY */
50 #include "inf-loop.h"
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include <pwd.h>
54 #include <sys/types.h>
55 #include "gdb_dirent.h"
56 #include "xml-support.h"
57 #include "terminal.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60
61 #ifndef SPUFS_MAGIC
62 #define SPUFS_MAGIC 0x23c9b64e
63 #endif
64
65 #ifdef HAVE_PERSONALITY
66 # include <sys/personality.h>
67 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
68 # define ADDR_NO_RANDOMIZE 0x0040000
69 # endif
70 #endif /* HAVE_PERSONALITY */
71
72 /* This comment documents high-level logic of this file.
73
74 Waiting for events in sync mode
75 ===============================
76
77 When waiting for an event in a specific thread, we just use waitpid, passing
78 the specific pid, and not passing WNOHANG.
79
80 When waiting for an event in all threads, waitpid is not quite good. Prior to
81 version 2.4, Linux can either wait for event in main thread, or in secondary
82 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
83 miss an event. The solution is to use non-blocking waitpid, together with
84 sigsuspend. First, we use non-blocking waitpid to get an event in the main
85 process, if any. Second, we use non-blocking waitpid with the __WCLONED
86 flag to check for events in cloned processes. If nothing is found, we use
87 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
88 happened to a child process -- and SIGCHLD will be delivered both for events
89 in main debugged process and in cloned processes. As soon as we know there's
90 an event, we get back to calling nonblocking waitpid with and without
91 __WCLONED.
92
93 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
94 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
95 blocked, the signal becomes pending and sigsuspend immediately
96 notices it and returns.
97
98 Waiting for events in async mode
99 ================================
100
101 In async mode, GDB should always be ready to handle both user input
102 and target events, so neither blocking waitpid nor sigsuspend are
103 viable options. Instead, we should asynchronously notify the GDB main
104 event loop whenever there's an unprocessed event from the target. We
105 detect asynchronous target events by handling SIGCHLD signals. To
106 notify the event loop about target events, the self-pipe trick is used
107 --- a pipe is registered as waitable event source in the event loop,
108 the event loop select/poll's on the read end of this pipe (as well on
109 other event sources, e.g., stdin), and the SIGCHLD handler writes a
110 byte to this pipe. This is more portable than relying on
111 pselect/ppoll, since on kernels that lack those syscalls, libc
112 emulates them with select/poll+sigprocmask, and that is racy
113 (a.k.a. plain broken).
114
115 Obviously, if we fail to notify the event loop if there's a target
116 event, it's bad. OTOH, if we notify the event loop when there's no
117 event from the target, linux_nat_wait will detect that there's no real
118 event to report, and return event of type TARGET_WAITKIND_IGNORE.
119 This is mostly harmless, but it will waste time and is better avoided.
120
121 The main design point is that every time GDB is outside linux-nat.c,
122 we have a SIGCHLD handler installed that is called when something
123 happens to the target and notifies the GDB event loop. Whenever GDB
124 core decides to handle the event, and calls into linux-nat.c, we
125 process things as in sync mode, except that the we never block in
126 sigsuspend.
127
128 While processing an event, we may end up momentarily blocked in
129 waitpid calls. Those waitpid calls, while blocking, are guarantied to
130 return quickly. E.g., in all-stop mode, before reporting to the core
131 that an LWP hit a breakpoint, all LWPs are stopped by sending them
132 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
133 Note that this is different from blocking indefinitely waiting for the
134 next event --- here, we're already handling an event.
135
136 Use of signals
137 ==============
138
139 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
140 signal is not entirely significant; we just need for a signal to be delivered,
141 so that we can intercept it. SIGSTOP's advantage is that it can not be
142 blocked. A disadvantage is that it is not a real-time signal, so it can only
143 be queued once; we do not keep track of other sources of SIGSTOP.
144
145 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
146 use them, because they have special behavior when the signal is generated -
147 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
148 kills the entire thread group.
149
150 A delivered SIGSTOP would stop the entire thread group, not just the thread we
151 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
152 cancel it (by PTRACE_CONT without passing SIGSTOP).
153
154 We could use a real-time signal instead. This would solve those problems; we
155 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
156 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
157 generates it, and there are races with trying to find a signal that is not
158 blocked. */
159
160 #ifndef O_LARGEFILE
161 #define O_LARGEFILE 0
162 #endif
163
164 /* Unlike other extended result codes, WSTOPSIG (status) on
165 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
166 instead SIGTRAP with bit 7 set. */
167 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
168
169 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
170 the use of the multi-threaded target. */
171 static struct target_ops *linux_ops;
172 static struct target_ops linux_ops_saved;
173
174 /* The method to call, if any, when a new thread is attached. */
175 static void (*linux_nat_new_thread) (ptid_t);
176
177 /* The method to call, if any, when the siginfo object needs to be
178 converted between the layout returned by ptrace, and the layout in
179 the architecture of the inferior. */
180 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
181 gdb_byte *,
182 int);
183
184 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
185 Called by our to_xfer_partial. */
186 static LONGEST (*super_xfer_partial) (struct target_ops *,
187 enum target_object,
188 const char *, gdb_byte *,
189 const gdb_byte *,
190 ULONGEST, LONGEST);
191
192 static int debug_linux_nat;
193 static void
194 show_debug_linux_nat (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
198 value);
199 }
200
201 static int disable_randomization = 1;
202
203 static void
204 show_disable_randomization (struct ui_file *file, int from_tty,
205 struct cmd_list_element *c, const char *value)
206 {
207 #ifdef HAVE_PERSONALITY
208 fprintf_filtered (file,
209 _("Disabling randomization of debuggee's "
210 "virtual address space is %s.\n"),
211 value);
212 #else /* !HAVE_PERSONALITY */
213 fputs_filtered (_("Disabling randomization of debuggee's "
214 "virtual address space is unsupported on\n"
215 "this platform.\n"), file);
216 #endif /* !HAVE_PERSONALITY */
217 }
218
219 static void
220 set_disable_randomization (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 #ifndef HAVE_PERSONALITY
224 error (_("Disabling randomization of debuggee's "
225 "virtual address space is unsupported on\n"
226 "this platform."));
227 #endif /* !HAVE_PERSONALITY */
228 }
229
230 struct simple_pid_list
231 {
232 int pid;
233 int status;
234 struct simple_pid_list *next;
235 };
236 struct simple_pid_list *stopped_pids;
237
238 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
239 can not be used, 1 if it can. */
240
241 static int linux_supports_tracefork_flag = -1;
242
243 /* This variable is a tri-state flag: -1 for unknown, 0 if
244 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
245
246 static int linux_supports_tracesysgood_flag = -1;
247
248 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
249 PTRACE_O_TRACEVFORKDONE. */
250
251 static int linux_supports_tracevforkdone_flag = -1;
252
253 /* Async mode support. */
254
255 /* Zero if the async mode, although enabled, is masked, which means
256 linux_nat_wait should behave as if async mode was off. */
257 static int linux_nat_async_mask_value = 1;
258
259 /* Stores the current used ptrace() options. */
260 static int current_ptrace_options = 0;
261
262 /* The read/write ends of the pipe registered as waitable file in the
263 event loop. */
264 static int linux_nat_event_pipe[2] = { -1, -1 };
265
266 /* Flush the event pipe. */
267
268 static void
269 async_file_flush (void)
270 {
271 int ret;
272 char buf;
273
274 do
275 {
276 ret = read (linux_nat_event_pipe[0], &buf, 1);
277 }
278 while (ret >= 0 || (ret == -1 && errno == EINTR));
279 }
280
281 /* Put something (anything, doesn't matter what, or how much) in event
282 pipe, so that the select/poll in the event-loop realizes we have
283 something to process. */
284
285 static void
286 async_file_mark (void)
287 {
288 int ret;
289
290 /* It doesn't really matter what the pipe contains, as long we end
291 up with something in it. Might as well flush the previous
292 left-overs. */
293 async_file_flush ();
294
295 do
296 {
297 ret = write (linux_nat_event_pipe[1], "+", 1);
298 }
299 while (ret == -1 && errno == EINTR);
300
301 /* Ignore EAGAIN. If the pipe is full, the event loop will already
302 be awakened anyway. */
303 }
304
305 static void linux_nat_async (void (*callback)
306 (enum inferior_event_type event_type,
307 void *context),
308 void *context);
309 static int linux_nat_async_mask (int mask);
310 static int kill_lwp (int lwpid, int signo);
311
312 static int stop_callback (struct lwp_info *lp, void *data);
313
314 static void block_child_signals (sigset_t *prev_mask);
315 static void restore_child_signals_mask (sigset_t *prev_mask);
316
317 struct lwp_info;
318 static struct lwp_info *add_lwp (ptid_t ptid);
319 static void purge_lwp_list (int pid);
320 static struct lwp_info *find_lwp_pid (ptid_t ptid);
321
322 \f
323 /* Trivial list manipulation functions to keep track of a list of
324 new stopped processes. */
325 static void
326 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
327 {
328 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
329
330 new_pid->pid = pid;
331 new_pid->status = status;
332 new_pid->next = *listp;
333 *listp = new_pid;
334 }
335
336 static int
337 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
338 {
339 struct simple_pid_list **p;
340
341 for (p = listp; *p != NULL; p = &(*p)->next)
342 if ((*p)->pid == pid)
343 {
344 struct simple_pid_list *next = (*p)->next;
345
346 *statusp = (*p)->status;
347 xfree (*p);
348 *p = next;
349 return 1;
350 }
351 return 0;
352 }
353
354 static void
355 linux_record_stopped_pid (int pid, int status)
356 {
357 add_to_pid_list (&stopped_pids, pid, status);
358 }
359
360 \f
361 /* A helper function for linux_test_for_tracefork, called after fork (). */
362
363 static void
364 linux_tracefork_child (void)
365 {
366 ptrace (PTRACE_TRACEME, 0, 0, 0);
367 kill (getpid (), SIGSTOP);
368 fork ();
369 _exit (0);
370 }
371
372 /* Wrapper function for waitpid which handles EINTR. */
373
374 static int
375 my_waitpid (int pid, int *statusp, int flags)
376 {
377 int ret;
378
379 do
380 {
381 ret = waitpid (pid, statusp, flags);
382 }
383 while (ret == -1 && errno == EINTR);
384
385 return ret;
386 }
387
388 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
389
390 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
391 we know that the feature is not available. This may change the tracing
392 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
393
394 However, if it succeeds, we don't know for sure that the feature is
395 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
396 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
397 fork tracing, and let it fork. If the process exits, we assume that we
398 can't use TRACEFORK; if we get the fork notification, and we can extract
399 the new child's PID, then we assume that we can. */
400
401 static void
402 linux_test_for_tracefork (int original_pid)
403 {
404 int child_pid, ret, status;
405 long second_pid;
406 sigset_t prev_mask;
407
408 /* We don't want those ptrace calls to be interrupted. */
409 block_child_signals (&prev_mask);
410
411 linux_supports_tracefork_flag = 0;
412 linux_supports_tracevforkdone_flag = 0;
413
414 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
415 if (ret != 0)
416 {
417 restore_child_signals_mask (&prev_mask);
418 return;
419 }
420
421 child_pid = fork ();
422 if (child_pid == -1)
423 perror_with_name (("fork"));
424
425 if (child_pid == 0)
426 linux_tracefork_child ();
427
428 ret = my_waitpid (child_pid, &status, 0);
429 if (ret == -1)
430 perror_with_name (("waitpid"));
431 else if (ret != child_pid)
432 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
433 if (! WIFSTOPPED (status))
434 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
435 status);
436
437 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
438 if (ret != 0)
439 {
440 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
441 if (ret != 0)
442 {
443 warning (_("linux_test_for_tracefork: failed to kill child"));
444 restore_child_signals_mask (&prev_mask);
445 return;
446 }
447
448 ret = my_waitpid (child_pid, &status, 0);
449 if (ret != child_pid)
450 warning (_("linux_test_for_tracefork: failed "
451 "to wait for killed child"));
452 else if (!WIFSIGNALED (status))
453 warning (_("linux_test_for_tracefork: unexpected "
454 "wait status 0x%x from killed child"), status);
455
456 restore_child_signals_mask (&prev_mask);
457 return;
458 }
459
460 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
461 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
462 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
463 linux_supports_tracevforkdone_flag = (ret == 0);
464
465 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
466 if (ret != 0)
467 warning (_("linux_test_for_tracefork: failed to resume child"));
468
469 ret = my_waitpid (child_pid, &status, 0);
470
471 if (ret == child_pid && WIFSTOPPED (status)
472 && status >> 16 == PTRACE_EVENT_FORK)
473 {
474 second_pid = 0;
475 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
476 if (ret == 0 && second_pid != 0)
477 {
478 int second_status;
479
480 linux_supports_tracefork_flag = 1;
481 my_waitpid (second_pid, &second_status, 0);
482 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
483 if (ret != 0)
484 warning (_("linux_test_for_tracefork: "
485 "failed to kill second child"));
486 my_waitpid (second_pid, &status, 0);
487 }
488 }
489 else
490 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
491 "(%d, status 0x%x)"), ret, status);
492
493 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
494 if (ret != 0)
495 warning (_("linux_test_for_tracefork: failed to kill child"));
496 my_waitpid (child_pid, &status, 0);
497
498 restore_child_signals_mask (&prev_mask);
499 }
500
501 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
502
503 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
504 we know that the feature is not available. This may change the tracing
505 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
506
507 static void
508 linux_test_for_tracesysgood (int original_pid)
509 {
510 int ret;
511 sigset_t prev_mask;
512
513 /* We don't want those ptrace calls to be interrupted. */
514 block_child_signals (&prev_mask);
515
516 linux_supports_tracesysgood_flag = 0;
517
518 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
519 if (ret != 0)
520 goto out;
521
522 linux_supports_tracesysgood_flag = 1;
523 out:
524 restore_child_signals_mask (&prev_mask);
525 }
526
527 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
528 This function also sets linux_supports_tracesysgood_flag. */
529
530 static int
531 linux_supports_tracesysgood (int pid)
532 {
533 if (linux_supports_tracesysgood_flag == -1)
534 linux_test_for_tracesysgood (pid);
535 return linux_supports_tracesysgood_flag;
536 }
537
538 /* Return non-zero iff we have tracefork functionality available.
539 This function also sets linux_supports_tracefork_flag. */
540
541 static int
542 linux_supports_tracefork (int pid)
543 {
544 if (linux_supports_tracefork_flag == -1)
545 linux_test_for_tracefork (pid);
546 return linux_supports_tracefork_flag;
547 }
548
549 static int
550 linux_supports_tracevforkdone (int pid)
551 {
552 if (linux_supports_tracefork_flag == -1)
553 linux_test_for_tracefork (pid);
554 return linux_supports_tracevforkdone_flag;
555 }
556
557 static void
558 linux_enable_tracesysgood (ptid_t ptid)
559 {
560 int pid = ptid_get_lwp (ptid);
561
562 if (pid == 0)
563 pid = ptid_get_pid (ptid);
564
565 if (linux_supports_tracesysgood (pid) == 0)
566 return;
567
568 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
569
570 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
571 }
572
573 \f
574 void
575 linux_enable_event_reporting (ptid_t ptid)
576 {
577 int pid = ptid_get_lwp (ptid);
578
579 if (pid == 0)
580 pid = ptid_get_pid (ptid);
581
582 if (! linux_supports_tracefork (pid))
583 return;
584
585 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
586 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
587
588 if (linux_supports_tracevforkdone (pid))
589 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
590
591 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
592 read-only process state. */
593
594 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
595 }
596
597 static void
598 linux_child_post_attach (int pid)
599 {
600 linux_enable_event_reporting (pid_to_ptid (pid));
601 check_for_thread_db ();
602 linux_enable_tracesysgood (pid_to_ptid (pid));
603 }
604
605 static void
606 linux_child_post_startup_inferior (ptid_t ptid)
607 {
608 linux_enable_event_reporting (ptid);
609 check_for_thread_db ();
610 linux_enable_tracesysgood (ptid);
611 }
612
613 static int
614 linux_child_follow_fork (struct target_ops *ops, int follow_child)
615 {
616 sigset_t prev_mask;
617 int has_vforked;
618 int parent_pid, child_pid;
619
620 block_child_signals (&prev_mask);
621
622 has_vforked = (inferior_thread ()->pending_follow.kind
623 == TARGET_WAITKIND_VFORKED);
624 parent_pid = ptid_get_lwp (inferior_ptid);
625 if (parent_pid == 0)
626 parent_pid = ptid_get_pid (inferior_ptid);
627 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
628
629 if (!detach_fork)
630 linux_enable_event_reporting (pid_to_ptid (child_pid));
631
632 if (has_vforked
633 && !non_stop /* Non-stop always resumes both branches. */
634 && (!target_is_async_p () || sync_execution)
635 && !(follow_child || detach_fork || sched_multi))
636 {
637 /* The parent stays blocked inside the vfork syscall until the
638 child execs or exits. If we don't let the child run, then
639 the parent stays blocked. If we're telling the parent to run
640 in the foreground, the user will not be able to ctrl-c to get
641 back the terminal, effectively hanging the debug session. */
642 fprintf_filtered (gdb_stderr, _("\
643 Can not resume the parent process over vfork in the foreground while\n\
644 holding the child stopped. Try \"set detach-on-fork\" or \
645 \"set schedule-multiple\".\n"));
646 /* FIXME output string > 80 columns. */
647 return 1;
648 }
649
650 if (! follow_child)
651 {
652 struct lwp_info *child_lp = NULL;
653
654 /* We're already attached to the parent, by default. */
655
656 /* Detach new forked process? */
657 if (detach_fork)
658 {
659 /* Before detaching from the child, remove all breakpoints
660 from it. If we forked, then this has already been taken
661 care of by infrun.c. If we vforked however, any
662 breakpoint inserted in the parent is visible in the
663 child, even those added while stopped in a vfork
664 catchpoint. This will remove the breakpoints from the
665 parent also, but they'll be reinserted below. */
666 if (has_vforked)
667 {
668 /* keep breakpoints list in sync. */
669 remove_breakpoints_pid (GET_PID (inferior_ptid));
670 }
671
672 if (info_verbose || debug_linux_nat)
673 {
674 target_terminal_ours ();
675 fprintf_filtered (gdb_stdlog,
676 "Detaching after fork from "
677 "child process %d.\n",
678 child_pid);
679 }
680
681 ptrace (PTRACE_DETACH, child_pid, 0, 0);
682 }
683 else
684 {
685 struct inferior *parent_inf, *child_inf;
686 struct cleanup *old_chain;
687
688 /* Add process to GDB's tables. */
689 child_inf = add_inferior (child_pid);
690
691 parent_inf = current_inferior ();
692 child_inf->attach_flag = parent_inf->attach_flag;
693 copy_terminal_info (child_inf, parent_inf);
694
695 old_chain = save_inferior_ptid ();
696 save_current_program_space ();
697
698 inferior_ptid = ptid_build (child_pid, child_pid, 0);
699 add_thread (inferior_ptid);
700 child_lp = add_lwp (inferior_ptid);
701 child_lp->stopped = 1;
702 child_lp->resumed = 1;
703
704 /* If this is a vfork child, then the address-space is
705 shared with the parent. */
706 if (has_vforked)
707 {
708 child_inf->pspace = parent_inf->pspace;
709 child_inf->aspace = parent_inf->aspace;
710
711 /* The parent will be frozen until the child is done
712 with the shared region. Keep track of the
713 parent. */
714 child_inf->vfork_parent = parent_inf;
715 child_inf->pending_detach = 0;
716 parent_inf->vfork_child = child_inf;
717 parent_inf->pending_detach = 0;
718 }
719 else
720 {
721 child_inf->aspace = new_address_space ();
722 child_inf->pspace = add_program_space (child_inf->aspace);
723 child_inf->removable = 1;
724 set_current_program_space (child_inf->pspace);
725 clone_program_space (child_inf->pspace, parent_inf->pspace);
726
727 /* Let the shared library layer (solib-svr4) learn about
728 this new process, relocate the cloned exec, pull in
729 shared libraries, and install the solib event
730 breakpoint. If a "cloned-VM" event was propagated
731 better throughout the core, this wouldn't be
732 required. */
733 solib_create_inferior_hook (0);
734 }
735
736 /* Let the thread_db layer learn about this new process. */
737 check_for_thread_db ();
738
739 do_cleanups (old_chain);
740 }
741
742 if (has_vforked)
743 {
744 struct lwp_info *lp;
745 struct inferior *parent_inf;
746
747 parent_inf = current_inferior ();
748
749 /* If we detached from the child, then we have to be careful
750 to not insert breakpoints in the parent until the child
751 is done with the shared memory region. However, if we're
752 staying attached to the child, then we can and should
753 insert breakpoints, so that we can debug it. A
754 subsequent child exec or exit is enough to know when does
755 the child stops using the parent's address space. */
756 parent_inf->waiting_for_vfork_done = detach_fork;
757 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
758
759 lp = find_lwp_pid (pid_to_ptid (parent_pid));
760 gdb_assert (linux_supports_tracefork_flag >= 0);
761 if (linux_supports_tracevforkdone (0))
762 {
763 if (debug_linux_nat)
764 fprintf_unfiltered (gdb_stdlog,
765 "LCFF: waiting for VFORK_DONE on %d\n",
766 parent_pid);
767
768 lp->stopped = 1;
769 lp->resumed = 1;
770
771 /* We'll handle the VFORK_DONE event like any other
772 event, in target_wait. */
773 }
774 else
775 {
776 /* We can't insert breakpoints until the child has
777 finished with the shared memory region. We need to
778 wait until that happens. Ideal would be to just
779 call:
780 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
781 - waitpid (parent_pid, &status, __WALL);
782 However, most architectures can't handle a syscall
783 being traced on the way out if it wasn't traced on
784 the way in.
785
786 We might also think to loop, continuing the child
787 until it exits or gets a SIGTRAP. One problem is
788 that the child might call ptrace with PTRACE_TRACEME.
789
790 There's no simple and reliable way to figure out when
791 the vforked child will be done with its copy of the
792 shared memory. We could step it out of the syscall,
793 two instructions, let it go, and then single-step the
794 parent once. When we have hardware single-step, this
795 would work; with software single-step it could still
796 be made to work but we'd have to be able to insert
797 single-step breakpoints in the child, and we'd have
798 to insert -just- the single-step breakpoint in the
799 parent. Very awkward.
800
801 In the end, the best we can do is to make sure it
802 runs for a little while. Hopefully it will be out of
803 range of any breakpoints we reinsert. Usually this
804 is only the single-step breakpoint at vfork's return
805 point. */
806
807 if (debug_linux_nat)
808 fprintf_unfiltered (gdb_stdlog,
809 "LCFF: no VFORK_DONE "
810 "support, sleeping a bit\n");
811
812 usleep (10000);
813
814 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
815 and leave it pending. The next linux_nat_resume call
816 will notice a pending event, and bypasses actually
817 resuming the inferior. */
818 lp->status = 0;
819 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
820 lp->stopped = 0;
821 lp->resumed = 1;
822
823 /* If we're in async mode, need to tell the event loop
824 there's something here to process. */
825 if (target_can_async_p ())
826 async_file_mark ();
827 }
828 }
829 }
830 else
831 {
832 struct inferior *parent_inf, *child_inf;
833 struct lwp_info *lp;
834 struct program_space *parent_pspace;
835
836 if (info_verbose || debug_linux_nat)
837 {
838 target_terminal_ours ();
839 if (has_vforked)
840 fprintf_filtered (gdb_stdlog,
841 _("Attaching after process %d "
842 "vfork to child process %d.\n"),
843 parent_pid, child_pid);
844 else
845 fprintf_filtered (gdb_stdlog,
846 _("Attaching after process %d "
847 "fork to child process %d.\n"),
848 parent_pid, child_pid);
849 }
850
851 /* Add the new inferior first, so that the target_detach below
852 doesn't unpush the target. */
853
854 child_inf = add_inferior (child_pid);
855
856 parent_inf = current_inferior ();
857 child_inf->attach_flag = parent_inf->attach_flag;
858 copy_terminal_info (child_inf, parent_inf);
859
860 parent_pspace = parent_inf->pspace;
861
862 /* If we're vforking, we want to hold on to the parent until the
863 child exits or execs. At child exec or exit time we can
864 remove the old breakpoints from the parent and detach or
865 resume debugging it. Otherwise, detach the parent now; we'll
866 want to reuse it's program/address spaces, but we can't set
867 them to the child before removing breakpoints from the
868 parent, otherwise, the breakpoints module could decide to
869 remove breakpoints from the wrong process (since they'd be
870 assigned to the same address space). */
871
872 if (has_vforked)
873 {
874 gdb_assert (child_inf->vfork_parent == NULL);
875 gdb_assert (parent_inf->vfork_child == NULL);
876 child_inf->vfork_parent = parent_inf;
877 child_inf->pending_detach = 0;
878 parent_inf->vfork_child = child_inf;
879 parent_inf->pending_detach = detach_fork;
880 parent_inf->waiting_for_vfork_done = 0;
881 }
882 else if (detach_fork)
883 target_detach (NULL, 0);
884
885 /* Note that the detach above makes PARENT_INF dangling. */
886
887 /* Add the child thread to the appropriate lists, and switch to
888 this new thread, before cloning the program space, and
889 informing the solib layer about this new process. */
890
891 inferior_ptid = ptid_build (child_pid, child_pid, 0);
892 add_thread (inferior_ptid);
893 lp = add_lwp (inferior_ptid);
894 lp->stopped = 1;
895 lp->resumed = 1;
896
897 /* If this is a vfork child, then the address-space is shared
898 with the parent. If we detached from the parent, then we can
899 reuse the parent's program/address spaces. */
900 if (has_vforked || detach_fork)
901 {
902 child_inf->pspace = parent_pspace;
903 child_inf->aspace = child_inf->pspace->aspace;
904 }
905 else
906 {
907 child_inf->aspace = new_address_space ();
908 child_inf->pspace = add_program_space (child_inf->aspace);
909 child_inf->removable = 1;
910 set_current_program_space (child_inf->pspace);
911 clone_program_space (child_inf->pspace, parent_pspace);
912
913 /* Let the shared library layer (solib-svr4) learn about
914 this new process, relocate the cloned exec, pull in
915 shared libraries, and install the solib event breakpoint.
916 If a "cloned-VM" event was propagated better throughout
917 the core, this wouldn't be required. */
918 solib_create_inferior_hook (0);
919 }
920
921 /* Let the thread_db layer learn about this new process. */
922 check_for_thread_db ();
923 }
924
925 restore_child_signals_mask (&prev_mask);
926 return 0;
927 }
928
929 \f
930 static int
931 linux_child_insert_fork_catchpoint (int pid)
932 {
933 return !linux_supports_tracefork (pid);
934 }
935
936 static int
937 linux_child_remove_fork_catchpoint (int pid)
938 {
939 return 0;
940 }
941
942 static int
943 linux_child_insert_vfork_catchpoint (int pid)
944 {
945 return !linux_supports_tracefork (pid);
946 }
947
948 static int
949 linux_child_remove_vfork_catchpoint (int pid)
950 {
951 return 0;
952 }
953
954 static int
955 linux_child_insert_exec_catchpoint (int pid)
956 {
957 return !linux_supports_tracefork (pid);
958 }
959
960 static int
961 linux_child_remove_exec_catchpoint (int pid)
962 {
963 return 0;
964 }
965
966 static int
967 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
968 int table_size, int *table)
969 {
970 if (!linux_supports_tracesysgood (pid))
971 return 1;
972
973 /* On GNU/Linux, we ignore the arguments. It means that we only
974 enable the syscall catchpoints, but do not disable them.
975
976 Also, we do not use the `table' information because we do not
977 filter system calls here. We let GDB do the logic for us. */
978 return 0;
979 }
980
981 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
982 are processes sharing the same VM space. A multi-threaded process
983 is basically a group of such processes. However, such a grouping
984 is almost entirely a user-space issue; the kernel doesn't enforce
985 such a grouping at all (this might change in the future). In
986 general, we'll rely on the threads library (i.e. the GNU/Linux
987 Threads library) to provide such a grouping.
988
989 It is perfectly well possible to write a multi-threaded application
990 without the assistance of a threads library, by using the clone
991 system call directly. This module should be able to give some
992 rudimentary support for debugging such applications if developers
993 specify the CLONE_PTRACE flag in the clone system call, and are
994 using the Linux kernel 2.4 or above.
995
996 Note that there are some peculiarities in GNU/Linux that affect
997 this code:
998
999 - In general one should specify the __WCLONE flag to waitpid in
1000 order to make it report events for any of the cloned processes
1001 (and leave it out for the initial process). However, if a cloned
1002 process has exited the exit status is only reported if the
1003 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1004 we cannot use it since GDB must work on older systems too.
1005
1006 - When a traced, cloned process exits and is waited for by the
1007 debugger, the kernel reassigns it to the original parent and
1008 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1009 library doesn't notice this, which leads to the "zombie problem":
1010 When debugged a multi-threaded process that spawns a lot of
1011 threads will run out of processes, even if the threads exit,
1012 because the "zombies" stay around. */
1013
1014 /* List of known LWPs. */
1015 struct lwp_info *lwp_list;
1016 \f
1017
1018 /* Original signal mask. */
1019 static sigset_t normal_mask;
1020
1021 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1022 _initialize_linux_nat. */
1023 static sigset_t suspend_mask;
1024
1025 /* Signals to block to make that sigsuspend work. */
1026 static sigset_t blocked_mask;
1027
1028 /* SIGCHLD action. */
1029 struct sigaction sigchld_action;
1030
1031 /* Block child signals (SIGCHLD and linux threads signals), and store
1032 the previous mask in PREV_MASK. */
1033
1034 static void
1035 block_child_signals (sigset_t *prev_mask)
1036 {
1037 /* Make sure SIGCHLD is blocked. */
1038 if (!sigismember (&blocked_mask, SIGCHLD))
1039 sigaddset (&blocked_mask, SIGCHLD);
1040
1041 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1042 }
1043
1044 /* Restore child signals mask, previously returned by
1045 block_child_signals. */
1046
1047 static void
1048 restore_child_signals_mask (sigset_t *prev_mask)
1049 {
1050 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1051 }
1052
1053 /* Mask of signals to pass directly to the inferior. */
1054 static sigset_t pass_mask;
1055
1056 /* Update signals to pass to the inferior. */
1057 static void
1058 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1059 {
1060 int signo;
1061
1062 sigemptyset (&pass_mask);
1063
1064 for (signo = 1; signo < NSIG; signo++)
1065 {
1066 int target_signo = target_signal_from_host (signo);
1067 if (target_signo < numsigs && pass_signals[target_signo])
1068 sigaddset (&pass_mask, signo);
1069 }
1070 }
1071
1072 \f
1073
1074 /* Prototypes for local functions. */
1075 static int stop_wait_callback (struct lwp_info *lp, void *data);
1076 static int linux_thread_alive (ptid_t ptid);
1077 static char *linux_child_pid_to_exec_file (int pid);
1078
1079 \f
1080 /* Convert wait status STATUS to a string. Used for printing debug
1081 messages only. */
1082
1083 static char *
1084 status_to_str (int status)
1085 {
1086 static char buf[64];
1087
1088 if (WIFSTOPPED (status))
1089 {
1090 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1091 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1092 strsignal (SIGTRAP));
1093 else
1094 snprintf (buf, sizeof (buf), "%s (stopped)",
1095 strsignal (WSTOPSIG (status)));
1096 }
1097 else if (WIFSIGNALED (status))
1098 snprintf (buf, sizeof (buf), "%s (terminated)",
1099 strsignal (WTERMSIG (status)));
1100 else
1101 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1102
1103 return buf;
1104 }
1105
1106 /* Remove all LWPs belong to PID from the lwp list. */
1107
1108 static void
1109 purge_lwp_list (int pid)
1110 {
1111 struct lwp_info *lp, *lpprev, *lpnext;
1112
1113 lpprev = NULL;
1114
1115 for (lp = lwp_list; lp; lp = lpnext)
1116 {
1117 lpnext = lp->next;
1118
1119 if (ptid_get_pid (lp->ptid) == pid)
1120 {
1121 if (lp == lwp_list)
1122 lwp_list = lp->next;
1123 else
1124 lpprev->next = lp->next;
1125
1126 xfree (lp);
1127 }
1128 else
1129 lpprev = lp;
1130 }
1131 }
1132
1133 /* Return the number of known LWPs in the tgid given by PID. */
1134
1135 static int
1136 num_lwps (int pid)
1137 {
1138 int count = 0;
1139 struct lwp_info *lp;
1140
1141 for (lp = lwp_list; lp; lp = lp->next)
1142 if (ptid_get_pid (lp->ptid) == pid)
1143 count++;
1144
1145 return count;
1146 }
1147
1148 /* Add the LWP specified by PID to the list. Return a pointer to the
1149 structure describing the new LWP. The LWP should already be stopped
1150 (with an exception for the very first LWP). */
1151
1152 static struct lwp_info *
1153 add_lwp (ptid_t ptid)
1154 {
1155 struct lwp_info *lp;
1156
1157 gdb_assert (is_lwp (ptid));
1158
1159 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1160
1161 memset (lp, 0, sizeof (struct lwp_info));
1162
1163 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1164
1165 lp->ptid = ptid;
1166 lp->core = -1;
1167
1168 lp->next = lwp_list;
1169 lwp_list = lp;
1170
1171 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1172 linux_nat_new_thread (ptid);
1173
1174 return lp;
1175 }
1176
1177 /* Remove the LWP specified by PID from the list. */
1178
1179 static void
1180 delete_lwp (ptid_t ptid)
1181 {
1182 struct lwp_info *lp, *lpprev;
1183
1184 lpprev = NULL;
1185
1186 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1187 if (ptid_equal (lp->ptid, ptid))
1188 break;
1189
1190 if (!lp)
1191 return;
1192
1193 if (lpprev)
1194 lpprev->next = lp->next;
1195 else
1196 lwp_list = lp->next;
1197
1198 xfree (lp);
1199 }
1200
1201 /* Return a pointer to the structure describing the LWP corresponding
1202 to PID. If no corresponding LWP could be found, return NULL. */
1203
1204 static struct lwp_info *
1205 find_lwp_pid (ptid_t ptid)
1206 {
1207 struct lwp_info *lp;
1208 int lwp;
1209
1210 if (is_lwp (ptid))
1211 lwp = GET_LWP (ptid);
1212 else
1213 lwp = GET_PID (ptid);
1214
1215 for (lp = lwp_list; lp; lp = lp->next)
1216 if (lwp == GET_LWP (lp->ptid))
1217 return lp;
1218
1219 return NULL;
1220 }
1221
1222 /* Call CALLBACK with its second argument set to DATA for every LWP in
1223 the list. If CALLBACK returns 1 for a particular LWP, return a
1224 pointer to the structure describing that LWP immediately.
1225 Otherwise return NULL. */
1226
1227 struct lwp_info *
1228 iterate_over_lwps (ptid_t filter,
1229 int (*callback) (struct lwp_info *, void *),
1230 void *data)
1231 {
1232 struct lwp_info *lp, *lpnext;
1233
1234 for (lp = lwp_list; lp; lp = lpnext)
1235 {
1236 lpnext = lp->next;
1237
1238 if (ptid_match (lp->ptid, filter))
1239 {
1240 if ((*callback) (lp, data))
1241 return lp;
1242 }
1243 }
1244
1245 return NULL;
1246 }
1247
1248 /* Update our internal state when changing from one checkpoint to
1249 another indicated by NEW_PTID. We can only switch single-threaded
1250 applications, so we only create one new LWP, and the previous list
1251 is discarded. */
1252
1253 void
1254 linux_nat_switch_fork (ptid_t new_ptid)
1255 {
1256 struct lwp_info *lp;
1257
1258 purge_lwp_list (GET_PID (inferior_ptid));
1259
1260 lp = add_lwp (new_ptid);
1261 lp->stopped = 1;
1262
1263 /* This changes the thread's ptid while preserving the gdb thread
1264 num. Also changes the inferior pid, while preserving the
1265 inferior num. */
1266 thread_change_ptid (inferior_ptid, new_ptid);
1267
1268 /* We've just told GDB core that the thread changed target id, but,
1269 in fact, it really is a different thread, with different register
1270 contents. */
1271 registers_changed ();
1272 }
1273
1274 /* Handle the exit of a single thread LP. */
1275
1276 static void
1277 exit_lwp (struct lwp_info *lp)
1278 {
1279 struct thread_info *th = find_thread_ptid (lp->ptid);
1280
1281 if (th)
1282 {
1283 if (print_thread_events)
1284 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1285
1286 delete_thread (lp->ptid);
1287 }
1288
1289 delete_lwp (lp->ptid);
1290 }
1291
1292 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1293
1294 int
1295 linux_proc_get_tgid (int lwpid)
1296 {
1297 FILE *status_file;
1298 char buf[100];
1299 int tgid = -1;
1300
1301 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1302 status_file = fopen (buf, "r");
1303 if (status_file != NULL)
1304 {
1305 while (fgets (buf, sizeof (buf), status_file))
1306 {
1307 if (strncmp (buf, "Tgid:", 5) == 0)
1308 {
1309 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1310 break;
1311 }
1312 }
1313
1314 fclose (status_file);
1315 }
1316
1317 return tgid;
1318 }
1319
1320 /* Detect `T (stopped)' in `/proc/PID/status'.
1321 Other states including `T (tracing stop)' are reported as false. */
1322
1323 static int
1324 pid_is_stopped (pid_t pid)
1325 {
1326 FILE *status_file;
1327 char buf[100];
1328 int retval = 0;
1329
1330 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1331 status_file = fopen (buf, "r");
1332 if (status_file != NULL)
1333 {
1334 int have_state = 0;
1335
1336 while (fgets (buf, sizeof (buf), status_file))
1337 {
1338 if (strncmp (buf, "State:", 6) == 0)
1339 {
1340 have_state = 1;
1341 break;
1342 }
1343 }
1344 if (have_state && strstr (buf, "T (stopped)") != NULL)
1345 retval = 1;
1346 fclose (status_file);
1347 }
1348 return retval;
1349 }
1350
1351 /* Wait for the LWP specified by LP, which we have just attached to.
1352 Returns a wait status for that LWP, to cache. */
1353
1354 static int
1355 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1356 int *signalled)
1357 {
1358 pid_t new_pid, pid = GET_LWP (ptid);
1359 int status;
1360
1361 if (pid_is_stopped (pid))
1362 {
1363 if (debug_linux_nat)
1364 fprintf_unfiltered (gdb_stdlog,
1365 "LNPAW: Attaching to a stopped process\n");
1366
1367 /* The process is definitely stopped. It is in a job control
1368 stop, unless the kernel predates the TASK_STOPPED /
1369 TASK_TRACED distinction, in which case it might be in a
1370 ptrace stop. Make sure it is in a ptrace stop; from there we
1371 can kill it, signal it, et cetera.
1372
1373 First make sure there is a pending SIGSTOP. Since we are
1374 already attached, the process can not transition from stopped
1375 to running without a PTRACE_CONT; so we know this signal will
1376 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1377 probably already in the queue (unless this kernel is old
1378 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1379 is not an RT signal, it can only be queued once. */
1380 kill_lwp (pid, SIGSTOP);
1381
1382 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1383 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1384 ptrace (PTRACE_CONT, pid, 0, 0);
1385 }
1386
1387 /* Make sure the initial process is stopped. The user-level threads
1388 layer might want to poke around in the inferior, and that won't
1389 work if things haven't stabilized yet. */
1390 new_pid = my_waitpid (pid, &status, 0);
1391 if (new_pid == -1 && errno == ECHILD)
1392 {
1393 if (first)
1394 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1395
1396 /* Try again with __WCLONE to check cloned processes. */
1397 new_pid = my_waitpid (pid, &status, __WCLONE);
1398 *cloned = 1;
1399 }
1400
1401 gdb_assert (pid == new_pid);
1402
1403 if (!WIFSTOPPED (status))
1404 {
1405 /* The pid we tried to attach has apparently just exited. */
1406 if (debug_linux_nat)
1407 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1408 pid, status_to_str (status));
1409 return status;
1410 }
1411
1412 if (WSTOPSIG (status) != SIGSTOP)
1413 {
1414 *signalled = 1;
1415 if (debug_linux_nat)
1416 fprintf_unfiltered (gdb_stdlog,
1417 "LNPAW: Received %s after attaching\n",
1418 status_to_str (status));
1419 }
1420
1421 return status;
1422 }
1423
1424 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1425 if the new LWP could not be attached. */
1426
1427 int
1428 lin_lwp_attach_lwp (ptid_t ptid)
1429 {
1430 struct lwp_info *lp;
1431 sigset_t prev_mask;
1432
1433 gdb_assert (is_lwp (ptid));
1434
1435 block_child_signals (&prev_mask);
1436
1437 lp = find_lwp_pid (ptid);
1438
1439 /* We assume that we're already attached to any LWP that has an id
1440 equal to the overall process id, and to any LWP that is already
1441 in our list of LWPs. If we're not seeing exit events from threads
1442 and we've had PID wraparound since we last tried to stop all threads,
1443 this assumption might be wrong; fortunately, this is very unlikely
1444 to happen. */
1445 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1446 {
1447 int status, cloned = 0, signalled = 0;
1448
1449 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1450 {
1451 /* If we fail to attach to the thread, issue a warning,
1452 but continue. One way this can happen is if thread
1453 creation is interrupted; as of Linux kernel 2.6.19, a
1454 bug may place threads in the thread list and then fail
1455 to create them. */
1456 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1457 safe_strerror (errno));
1458 restore_child_signals_mask (&prev_mask);
1459 return -1;
1460 }
1461
1462 if (debug_linux_nat)
1463 fprintf_unfiltered (gdb_stdlog,
1464 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1465 target_pid_to_str (ptid));
1466
1467 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1468 if (!WIFSTOPPED (status))
1469 {
1470 restore_child_signals_mask (&prev_mask);
1471 return -1;
1472 }
1473
1474 lp = add_lwp (ptid);
1475 lp->stopped = 1;
1476 lp->cloned = cloned;
1477 lp->signalled = signalled;
1478 if (WSTOPSIG (status) != SIGSTOP)
1479 {
1480 lp->resumed = 1;
1481 lp->status = status;
1482 }
1483
1484 target_post_attach (GET_LWP (lp->ptid));
1485
1486 if (debug_linux_nat)
1487 {
1488 fprintf_unfiltered (gdb_stdlog,
1489 "LLAL: waitpid %s received %s\n",
1490 target_pid_to_str (ptid),
1491 status_to_str (status));
1492 }
1493 }
1494 else
1495 {
1496 /* We assume that the LWP representing the original process is
1497 already stopped. Mark it as stopped in the data structure
1498 that the GNU/linux ptrace layer uses to keep track of
1499 threads. Note that this won't have already been done since
1500 the main thread will have, we assume, been stopped by an
1501 attach from a different layer. */
1502 if (lp == NULL)
1503 lp = add_lwp (ptid);
1504 lp->stopped = 1;
1505 }
1506
1507 restore_child_signals_mask (&prev_mask);
1508 return 0;
1509 }
1510
1511 static void
1512 linux_nat_create_inferior (struct target_ops *ops,
1513 char *exec_file, char *allargs, char **env,
1514 int from_tty)
1515 {
1516 #ifdef HAVE_PERSONALITY
1517 int personality_orig = 0, personality_set = 0;
1518 #endif /* HAVE_PERSONALITY */
1519
1520 /* The fork_child mechanism is synchronous and calls target_wait, so
1521 we have to mask the async mode. */
1522
1523 #ifdef HAVE_PERSONALITY
1524 if (disable_randomization)
1525 {
1526 errno = 0;
1527 personality_orig = personality (0xffffffff);
1528 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1529 {
1530 personality_set = 1;
1531 personality (personality_orig | ADDR_NO_RANDOMIZE);
1532 }
1533 if (errno != 0 || (personality_set
1534 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1535 warning (_("Error disabling address space randomization: %s"),
1536 safe_strerror (errno));
1537 }
1538 #endif /* HAVE_PERSONALITY */
1539
1540 /* Make sure we report all signals during startup. */
1541 linux_nat_pass_signals (0, NULL);
1542
1543 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1544
1545 #ifdef HAVE_PERSONALITY
1546 if (personality_set)
1547 {
1548 errno = 0;
1549 personality (personality_orig);
1550 if (errno != 0)
1551 warning (_("Error restoring address space randomization: %s"),
1552 safe_strerror (errno));
1553 }
1554 #endif /* HAVE_PERSONALITY */
1555 }
1556
1557 static void
1558 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1559 {
1560 struct lwp_info *lp;
1561 int status;
1562 ptid_t ptid;
1563
1564 /* Make sure we report all signals during attach. */
1565 linux_nat_pass_signals (0, NULL);
1566
1567 linux_ops->to_attach (ops, args, from_tty);
1568
1569 /* The ptrace base target adds the main thread with (pid,0,0)
1570 format. Decorate it with lwp info. */
1571 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1572 thread_change_ptid (inferior_ptid, ptid);
1573
1574 /* Add the initial process as the first LWP to the list. */
1575 lp = add_lwp (ptid);
1576
1577 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1578 &lp->signalled);
1579 if (!WIFSTOPPED (status))
1580 {
1581 if (WIFEXITED (status))
1582 {
1583 int exit_code = WEXITSTATUS (status);
1584
1585 target_terminal_ours ();
1586 target_mourn_inferior ();
1587 if (exit_code == 0)
1588 error (_("Unable to attach: program exited normally."));
1589 else
1590 error (_("Unable to attach: program exited with code %d."),
1591 exit_code);
1592 }
1593 else if (WIFSIGNALED (status))
1594 {
1595 enum target_signal signo;
1596
1597 target_terminal_ours ();
1598 target_mourn_inferior ();
1599
1600 signo = target_signal_from_host (WTERMSIG (status));
1601 error (_("Unable to attach: program terminated with signal "
1602 "%s, %s."),
1603 target_signal_to_name (signo),
1604 target_signal_to_string (signo));
1605 }
1606
1607 internal_error (__FILE__, __LINE__,
1608 _("unexpected status %d for PID %ld"),
1609 status, (long) GET_LWP (ptid));
1610 }
1611
1612 lp->stopped = 1;
1613
1614 /* Save the wait status to report later. */
1615 lp->resumed = 1;
1616 if (debug_linux_nat)
1617 fprintf_unfiltered (gdb_stdlog,
1618 "LNA: waitpid %ld, saving status %s\n",
1619 (long) GET_PID (lp->ptid), status_to_str (status));
1620
1621 lp->status = status;
1622
1623 if (target_can_async_p ())
1624 target_async (inferior_event_handler, 0);
1625 }
1626
1627 /* Get pending status of LP. */
1628 static int
1629 get_pending_status (struct lwp_info *lp, int *status)
1630 {
1631 enum target_signal signo = TARGET_SIGNAL_0;
1632
1633 /* If we paused threads momentarily, we may have stored pending
1634 events in lp->status or lp->waitstatus (see stop_wait_callback),
1635 and GDB core hasn't seen any signal for those threads.
1636 Otherwise, the last signal reported to the core is found in the
1637 thread object's stop_signal.
1638
1639 There's a corner case that isn't handled here at present. Only
1640 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1641 stop_signal make sense as a real signal to pass to the inferior.
1642 Some catchpoint related events, like
1643 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1644 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1645 those traps are debug API (ptrace in our case) related and
1646 induced; the inferior wouldn't see them if it wasn't being
1647 traced. Hence, we should never pass them to the inferior, even
1648 when set to pass state. Since this corner case isn't handled by
1649 infrun.c when proceeding with a signal, for consistency, neither
1650 do we handle it here (or elsewhere in the file we check for
1651 signal pass state). Normally SIGTRAP isn't set to pass state, so
1652 this is really a corner case. */
1653
1654 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1655 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1656 else if (lp->status)
1657 signo = target_signal_from_host (WSTOPSIG (lp->status));
1658 else if (non_stop && !is_executing (lp->ptid))
1659 {
1660 struct thread_info *tp = find_thread_ptid (lp->ptid);
1661
1662 signo = tp->suspend.stop_signal;
1663 }
1664 else if (!non_stop)
1665 {
1666 struct target_waitstatus last;
1667 ptid_t last_ptid;
1668
1669 get_last_target_status (&last_ptid, &last);
1670
1671 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1672 {
1673 struct thread_info *tp = find_thread_ptid (lp->ptid);
1674
1675 signo = tp->suspend.stop_signal;
1676 }
1677 }
1678
1679 *status = 0;
1680
1681 if (signo == TARGET_SIGNAL_0)
1682 {
1683 if (debug_linux_nat)
1684 fprintf_unfiltered (gdb_stdlog,
1685 "GPT: lwp %s has no pending signal\n",
1686 target_pid_to_str (lp->ptid));
1687 }
1688 else if (!signal_pass_state (signo))
1689 {
1690 if (debug_linux_nat)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "GPT: lwp %s had signal %s, "
1693 "but it is in no pass state\n",
1694 target_pid_to_str (lp->ptid),
1695 target_signal_to_string (signo));
1696 }
1697 else
1698 {
1699 *status = W_STOPCODE (target_signal_to_host (signo));
1700
1701 if (debug_linux_nat)
1702 fprintf_unfiltered (gdb_stdlog,
1703 "GPT: lwp %s has pending signal %s\n",
1704 target_pid_to_str (lp->ptid),
1705 target_signal_to_string (signo));
1706 }
1707
1708 return 0;
1709 }
1710
1711 static int
1712 detach_callback (struct lwp_info *lp, void *data)
1713 {
1714 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1715
1716 if (debug_linux_nat && lp->status)
1717 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1718 strsignal (WSTOPSIG (lp->status)),
1719 target_pid_to_str (lp->ptid));
1720
1721 /* If there is a pending SIGSTOP, get rid of it. */
1722 if (lp->signalled)
1723 {
1724 if (debug_linux_nat)
1725 fprintf_unfiltered (gdb_stdlog,
1726 "DC: Sending SIGCONT to %s\n",
1727 target_pid_to_str (lp->ptid));
1728
1729 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1730 lp->signalled = 0;
1731 }
1732
1733 /* We don't actually detach from the LWP that has an id equal to the
1734 overall process id just yet. */
1735 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1736 {
1737 int status = 0;
1738
1739 /* Pass on any pending signal for this LWP. */
1740 get_pending_status (lp, &status);
1741
1742 errno = 0;
1743 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1744 WSTOPSIG (status)) < 0)
1745 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1746 safe_strerror (errno));
1747
1748 if (debug_linux_nat)
1749 fprintf_unfiltered (gdb_stdlog,
1750 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1751 target_pid_to_str (lp->ptid),
1752 strsignal (WSTOPSIG (status)));
1753
1754 delete_lwp (lp->ptid);
1755 }
1756
1757 return 0;
1758 }
1759
1760 static void
1761 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1762 {
1763 int pid;
1764 int status;
1765 struct lwp_info *main_lwp;
1766
1767 pid = GET_PID (inferior_ptid);
1768
1769 if (target_can_async_p ())
1770 linux_nat_async (NULL, 0);
1771
1772 /* Stop all threads before detaching. ptrace requires that the
1773 thread is stopped to sucessfully detach. */
1774 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1775 /* ... and wait until all of them have reported back that
1776 they're no longer running. */
1777 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1778
1779 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1780
1781 /* Only the initial process should be left right now. */
1782 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1783
1784 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1785
1786 /* Pass on any pending signal for the last LWP. */
1787 if ((args == NULL || *args == '\0')
1788 && get_pending_status (main_lwp, &status) != -1
1789 && WIFSTOPPED (status))
1790 {
1791 /* Put the signal number in ARGS so that inf_ptrace_detach will
1792 pass it along with PTRACE_DETACH. */
1793 args = alloca (8);
1794 sprintf (args, "%d", (int) WSTOPSIG (status));
1795 if (debug_linux_nat)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "LND: Sending signal %s to %s\n",
1798 args,
1799 target_pid_to_str (main_lwp->ptid));
1800 }
1801
1802 delete_lwp (main_lwp->ptid);
1803
1804 if (forks_exist_p ())
1805 {
1806 /* Multi-fork case. The current inferior_ptid is being detached
1807 from, but there are other viable forks to debug. Detach from
1808 the current fork, and context-switch to the first
1809 available. */
1810 linux_fork_detach (args, from_tty);
1811
1812 if (non_stop && target_can_async_p ())
1813 target_async (inferior_event_handler, 0);
1814 }
1815 else
1816 linux_ops->to_detach (ops, args, from_tty);
1817 }
1818
1819 /* Resume LP. */
1820
1821 static int
1822 resume_callback (struct lwp_info *lp, void *data)
1823 {
1824 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1825
1826 if (lp->stopped && inf->vfork_child != NULL)
1827 {
1828 if (debug_linux_nat)
1829 fprintf_unfiltered (gdb_stdlog,
1830 "RC: Not resuming %s (vfork parent)\n",
1831 target_pid_to_str (lp->ptid));
1832 }
1833 else if (lp->stopped && lp->status == 0)
1834 {
1835 if (debug_linux_nat)
1836 fprintf_unfiltered (gdb_stdlog,
1837 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1838 target_pid_to_str (lp->ptid));
1839
1840 linux_ops->to_resume (linux_ops,
1841 pid_to_ptid (GET_LWP (lp->ptid)),
1842 0, TARGET_SIGNAL_0);
1843 if (debug_linux_nat)
1844 fprintf_unfiltered (gdb_stdlog,
1845 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1846 target_pid_to_str (lp->ptid));
1847 lp->stopped = 0;
1848 lp->step = 0;
1849 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1850 lp->stopped_by_watchpoint = 0;
1851 }
1852 else if (lp->stopped && debug_linux_nat)
1853 fprintf_unfiltered (gdb_stdlog,
1854 "RC: Not resuming sibling %s (has pending)\n",
1855 target_pid_to_str (lp->ptid));
1856 else if (debug_linux_nat)
1857 fprintf_unfiltered (gdb_stdlog,
1858 "RC: Not resuming sibling %s (not stopped)\n",
1859 target_pid_to_str (lp->ptid));
1860
1861 return 0;
1862 }
1863
1864 static int
1865 resume_clear_callback (struct lwp_info *lp, void *data)
1866 {
1867 lp->resumed = 0;
1868 return 0;
1869 }
1870
1871 static int
1872 resume_set_callback (struct lwp_info *lp, void *data)
1873 {
1874 lp->resumed = 1;
1875 return 0;
1876 }
1877
1878 static void
1879 linux_nat_resume (struct target_ops *ops,
1880 ptid_t ptid, int step, enum target_signal signo)
1881 {
1882 sigset_t prev_mask;
1883 struct lwp_info *lp;
1884 int resume_many;
1885
1886 if (debug_linux_nat)
1887 fprintf_unfiltered (gdb_stdlog,
1888 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1889 step ? "step" : "resume",
1890 target_pid_to_str (ptid),
1891 (signo != TARGET_SIGNAL_0
1892 ? strsignal (target_signal_to_host (signo)) : "0"),
1893 target_pid_to_str (inferior_ptid));
1894
1895 block_child_signals (&prev_mask);
1896
1897 /* A specific PTID means `step only this process id'. */
1898 resume_many = (ptid_equal (minus_one_ptid, ptid)
1899 || ptid_is_pid (ptid));
1900
1901 /* Mark the lwps we're resuming as resumed. */
1902 iterate_over_lwps (ptid, resume_set_callback, NULL);
1903
1904 /* See if it's the current inferior that should be handled
1905 specially. */
1906 if (resume_many)
1907 lp = find_lwp_pid (inferior_ptid);
1908 else
1909 lp = find_lwp_pid (ptid);
1910 gdb_assert (lp != NULL);
1911
1912 /* Remember if we're stepping. */
1913 lp->step = step;
1914
1915 /* If we have a pending wait status for this thread, there is no
1916 point in resuming the process. But first make sure that
1917 linux_nat_wait won't preemptively handle the event - we
1918 should never take this short-circuit if we are going to
1919 leave LP running, since we have skipped resuming all the
1920 other threads. This bit of code needs to be synchronized
1921 with linux_nat_wait. */
1922
1923 if (lp->status && WIFSTOPPED (lp->status))
1924 {
1925 if (!lp->step
1926 && WSTOPSIG (lp->status)
1927 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1928 {
1929 if (debug_linux_nat)
1930 fprintf_unfiltered (gdb_stdlog,
1931 "LLR: Not short circuiting for ignored "
1932 "status 0x%x\n", lp->status);
1933
1934 /* FIXME: What should we do if we are supposed to continue
1935 this thread with a signal? */
1936 gdb_assert (signo == TARGET_SIGNAL_0);
1937 signo = target_signal_from_host (WSTOPSIG (lp->status));
1938 lp->status = 0;
1939 }
1940 }
1941
1942 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1943 {
1944 /* FIXME: What should we do if we are supposed to continue
1945 this thread with a signal? */
1946 gdb_assert (signo == TARGET_SIGNAL_0);
1947
1948 if (debug_linux_nat)
1949 fprintf_unfiltered (gdb_stdlog,
1950 "LLR: Short circuiting for status 0x%x\n",
1951 lp->status);
1952
1953 restore_child_signals_mask (&prev_mask);
1954 if (target_can_async_p ())
1955 {
1956 target_async (inferior_event_handler, 0);
1957 /* Tell the event loop we have something to process. */
1958 async_file_mark ();
1959 }
1960 return;
1961 }
1962
1963 /* Mark LWP as not stopped to prevent it from being continued by
1964 resume_callback. */
1965 lp->stopped = 0;
1966
1967 if (resume_many)
1968 iterate_over_lwps (ptid, resume_callback, NULL);
1969
1970 /* Convert to something the lower layer understands. */
1971 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1972
1973 linux_ops->to_resume (linux_ops, ptid, step, signo);
1974 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1975 lp->stopped_by_watchpoint = 0;
1976
1977 if (debug_linux_nat)
1978 fprintf_unfiltered (gdb_stdlog,
1979 "LLR: %s %s, %s (resume event thread)\n",
1980 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1981 target_pid_to_str (ptid),
1982 (signo != TARGET_SIGNAL_0
1983 ? strsignal (target_signal_to_host (signo)) : "0"));
1984
1985 restore_child_signals_mask (&prev_mask);
1986 if (target_can_async_p ())
1987 target_async (inferior_event_handler, 0);
1988 }
1989
1990 /* Send a signal to an LWP. */
1991
1992 static int
1993 kill_lwp (int lwpid, int signo)
1994 {
1995 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1996 fails, then we are not using nptl threads and we should be using kill. */
1997
1998 #ifdef HAVE_TKILL_SYSCALL
1999 {
2000 static int tkill_failed;
2001
2002 if (!tkill_failed)
2003 {
2004 int ret;
2005
2006 errno = 0;
2007 ret = syscall (__NR_tkill, lwpid, signo);
2008 if (errno != ENOSYS)
2009 return ret;
2010 tkill_failed = 1;
2011 }
2012 }
2013 #endif
2014
2015 return kill (lwpid, signo);
2016 }
2017
2018 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2019 event, check if the core is interested in it: if not, ignore the
2020 event, and keep waiting; otherwise, we need to toggle the LWP's
2021 syscall entry/exit status, since the ptrace event itself doesn't
2022 indicate it, and report the trap to higher layers. */
2023
2024 static int
2025 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2026 {
2027 struct target_waitstatus *ourstatus = &lp->waitstatus;
2028 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2029 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2030
2031 if (stopping)
2032 {
2033 /* If we're stopping threads, there's a SIGSTOP pending, which
2034 makes it so that the LWP reports an immediate syscall return,
2035 followed by the SIGSTOP. Skip seeing that "return" using
2036 PTRACE_CONT directly, and let stop_wait_callback collect the
2037 SIGSTOP. Later when the thread is resumed, a new syscall
2038 entry event. If we didn't do this (and returned 0), we'd
2039 leave a syscall entry pending, and our caller, by using
2040 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2041 itself. Later, when the user re-resumes this LWP, we'd see
2042 another syscall entry event and we'd mistake it for a return.
2043
2044 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2045 (leaving immediately with LWP->signalled set, without issuing
2046 a PTRACE_CONT), it would still be problematic to leave this
2047 syscall enter pending, as later when the thread is resumed,
2048 it would then see the same syscall exit mentioned above,
2049 followed by the delayed SIGSTOP, while the syscall didn't
2050 actually get to execute. It seems it would be even more
2051 confusing to the user. */
2052
2053 if (debug_linux_nat)
2054 fprintf_unfiltered (gdb_stdlog,
2055 "LHST: ignoring syscall %d "
2056 "for LWP %ld (stopping threads), "
2057 "resuming with PTRACE_CONT for SIGSTOP\n",
2058 syscall_number,
2059 GET_LWP (lp->ptid));
2060
2061 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2062 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2063 return 1;
2064 }
2065
2066 if (catch_syscall_enabled ())
2067 {
2068 /* Always update the entry/return state, even if this particular
2069 syscall isn't interesting to the core now. In async mode,
2070 the user could install a new catchpoint for this syscall
2071 between syscall enter/return, and we'll need to know to
2072 report a syscall return if that happens. */
2073 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2074 ? TARGET_WAITKIND_SYSCALL_RETURN
2075 : TARGET_WAITKIND_SYSCALL_ENTRY);
2076
2077 if (catching_syscall_number (syscall_number))
2078 {
2079 /* Alright, an event to report. */
2080 ourstatus->kind = lp->syscall_state;
2081 ourstatus->value.syscall_number = syscall_number;
2082
2083 if (debug_linux_nat)
2084 fprintf_unfiltered (gdb_stdlog,
2085 "LHST: stopping for %s of syscall %d"
2086 " for LWP %ld\n",
2087 lp->syscall_state
2088 == TARGET_WAITKIND_SYSCALL_ENTRY
2089 ? "entry" : "return",
2090 syscall_number,
2091 GET_LWP (lp->ptid));
2092 return 0;
2093 }
2094
2095 if (debug_linux_nat)
2096 fprintf_unfiltered (gdb_stdlog,
2097 "LHST: ignoring %s of syscall %d "
2098 "for LWP %ld\n",
2099 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2100 ? "entry" : "return",
2101 syscall_number,
2102 GET_LWP (lp->ptid));
2103 }
2104 else
2105 {
2106 /* If we had been syscall tracing, and hence used PT_SYSCALL
2107 before on this LWP, it could happen that the user removes all
2108 syscall catchpoints before we get to process this event.
2109 There are two noteworthy issues here:
2110
2111 - When stopped at a syscall entry event, resuming with
2112 PT_STEP still resumes executing the syscall and reports a
2113 syscall return.
2114
2115 - Only PT_SYSCALL catches syscall enters. If we last
2116 single-stepped this thread, then this event can't be a
2117 syscall enter. If we last single-stepped this thread, this
2118 has to be a syscall exit.
2119
2120 The points above mean that the next resume, be it PT_STEP or
2121 PT_CONTINUE, can not trigger a syscall trace event. */
2122 if (debug_linux_nat)
2123 fprintf_unfiltered (gdb_stdlog,
2124 "LHST: caught syscall event "
2125 "with no syscall catchpoints."
2126 " %d for LWP %ld, ignoring\n",
2127 syscall_number,
2128 GET_LWP (lp->ptid));
2129 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2130 }
2131
2132 /* The core isn't interested in this event. For efficiency, avoid
2133 stopping all threads only to have the core resume them all again.
2134 Since we're not stopping threads, if we're still syscall tracing
2135 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2136 subsequent syscall. Simply resume using the inf-ptrace layer,
2137 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2138
2139 /* Note that gdbarch_get_syscall_number may access registers, hence
2140 fill a regcache. */
2141 registers_changed ();
2142 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2143 lp->step, TARGET_SIGNAL_0);
2144 return 1;
2145 }
2146
2147 /* Handle a GNU/Linux extended wait response. If we see a clone
2148 event, we need to add the new LWP to our list (and not report the
2149 trap to higher layers). This function returns non-zero if the
2150 event should be ignored and we should wait again. If STOPPING is
2151 true, the new LWP remains stopped, otherwise it is continued. */
2152
2153 static int
2154 linux_handle_extended_wait (struct lwp_info *lp, int status,
2155 int stopping)
2156 {
2157 int pid = GET_LWP (lp->ptid);
2158 struct target_waitstatus *ourstatus = &lp->waitstatus;
2159 int event = status >> 16;
2160
2161 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2162 || event == PTRACE_EVENT_CLONE)
2163 {
2164 unsigned long new_pid;
2165 int ret;
2166
2167 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2168
2169 /* If we haven't already seen the new PID stop, wait for it now. */
2170 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2171 {
2172 /* The new child has a pending SIGSTOP. We can't affect it until it
2173 hits the SIGSTOP, but we're already attached. */
2174 ret = my_waitpid (new_pid, &status,
2175 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2176 if (ret == -1)
2177 perror_with_name (_("waiting for new child"));
2178 else if (ret != new_pid)
2179 internal_error (__FILE__, __LINE__,
2180 _("wait returned unexpected PID %d"), ret);
2181 else if (!WIFSTOPPED (status))
2182 internal_error (__FILE__, __LINE__,
2183 _("wait returned unexpected status 0x%x"), status);
2184 }
2185
2186 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2187
2188 if (event == PTRACE_EVENT_FORK
2189 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2190 {
2191 /* Handle checkpointing by linux-fork.c here as a special
2192 case. We don't want the follow-fork-mode or 'catch fork'
2193 to interfere with this. */
2194
2195 /* This won't actually modify the breakpoint list, but will
2196 physically remove the breakpoints from the child. */
2197 detach_breakpoints (new_pid);
2198
2199 /* Retain child fork in ptrace (stopped) state. */
2200 if (!find_fork_pid (new_pid))
2201 add_fork (new_pid);
2202
2203 /* Report as spurious, so that infrun doesn't want to follow
2204 this fork. We're actually doing an infcall in
2205 linux-fork.c. */
2206 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2207 linux_enable_event_reporting (pid_to_ptid (new_pid));
2208
2209 /* Report the stop to the core. */
2210 return 0;
2211 }
2212
2213 if (event == PTRACE_EVENT_FORK)
2214 ourstatus->kind = TARGET_WAITKIND_FORKED;
2215 else if (event == PTRACE_EVENT_VFORK)
2216 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2217 else
2218 {
2219 struct lwp_info *new_lp;
2220
2221 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2222
2223 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2224 new_lp->cloned = 1;
2225 new_lp->stopped = 1;
2226
2227 if (WSTOPSIG (status) != SIGSTOP)
2228 {
2229 /* This can happen if someone starts sending signals to
2230 the new thread before it gets a chance to run, which
2231 have a lower number than SIGSTOP (e.g. SIGUSR1).
2232 This is an unlikely case, and harder to handle for
2233 fork / vfork than for clone, so we do not try - but
2234 we handle it for clone events here. We'll send
2235 the other signal on to the thread below. */
2236
2237 new_lp->signalled = 1;
2238 }
2239 else
2240 status = 0;
2241
2242 if (non_stop)
2243 {
2244 /* Add the new thread to GDB's lists as soon as possible
2245 so that:
2246
2247 1) the frontend doesn't have to wait for a stop to
2248 display them, and,
2249
2250 2) we tag it with the correct running state. */
2251
2252 /* If the thread_db layer is active, let it know about
2253 this new thread, and add it to GDB's list. */
2254 if (!thread_db_attach_lwp (new_lp->ptid))
2255 {
2256 /* We're not using thread_db. Add it to GDB's
2257 list. */
2258 target_post_attach (GET_LWP (new_lp->ptid));
2259 add_thread (new_lp->ptid);
2260 }
2261
2262 if (!stopping)
2263 {
2264 set_running (new_lp->ptid, 1);
2265 set_executing (new_lp->ptid, 1);
2266 }
2267 }
2268
2269 /* Note the need to use the low target ops to resume, to
2270 handle resuming with PT_SYSCALL if we have syscall
2271 catchpoints. */
2272 if (!stopping)
2273 {
2274 enum target_signal signo;
2275
2276 new_lp->stopped = 0;
2277 new_lp->resumed = 1;
2278
2279 signo = (status
2280 ? target_signal_from_host (WSTOPSIG (status))
2281 : TARGET_SIGNAL_0);
2282
2283 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2284 0, signo);
2285 }
2286 else
2287 {
2288 if (status != 0)
2289 {
2290 /* We created NEW_LP so it cannot yet contain STATUS. */
2291 gdb_assert (new_lp->status == 0);
2292
2293 /* Save the wait status to report later. */
2294 if (debug_linux_nat)
2295 fprintf_unfiltered (gdb_stdlog,
2296 "LHEW: waitpid of new LWP %ld, "
2297 "saving status %s\n",
2298 (long) GET_LWP (new_lp->ptid),
2299 status_to_str (status));
2300 new_lp->status = status;
2301 }
2302 }
2303
2304 if (debug_linux_nat)
2305 fprintf_unfiltered (gdb_stdlog,
2306 "LHEW: Got clone event "
2307 "from LWP %ld, resuming\n",
2308 GET_LWP (lp->ptid));
2309 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2310 0, TARGET_SIGNAL_0);
2311
2312 return 1;
2313 }
2314
2315 return 0;
2316 }
2317
2318 if (event == PTRACE_EVENT_EXEC)
2319 {
2320 if (debug_linux_nat)
2321 fprintf_unfiltered (gdb_stdlog,
2322 "LHEW: Got exec event from LWP %ld\n",
2323 GET_LWP (lp->ptid));
2324
2325 ourstatus->kind = TARGET_WAITKIND_EXECD;
2326 ourstatus->value.execd_pathname
2327 = xstrdup (linux_child_pid_to_exec_file (pid));
2328
2329 return 0;
2330 }
2331
2332 if (event == PTRACE_EVENT_VFORK_DONE)
2333 {
2334 if (current_inferior ()->waiting_for_vfork_done)
2335 {
2336 if (debug_linux_nat)
2337 fprintf_unfiltered (gdb_stdlog,
2338 "LHEW: Got expected PTRACE_EVENT_"
2339 "VFORK_DONE from LWP %ld: stopping\n",
2340 GET_LWP (lp->ptid));
2341
2342 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2343 return 0;
2344 }
2345
2346 if (debug_linux_nat)
2347 fprintf_unfiltered (gdb_stdlog,
2348 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2349 "from LWP %ld: resuming\n",
2350 GET_LWP (lp->ptid));
2351 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2352 return 1;
2353 }
2354
2355 internal_error (__FILE__, __LINE__,
2356 _("unknown ptrace event %d"), event);
2357 }
2358
2359 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2360 exited. */
2361
2362 static int
2363 wait_lwp (struct lwp_info *lp)
2364 {
2365 pid_t pid;
2366 int status;
2367 int thread_dead = 0;
2368
2369 gdb_assert (!lp->stopped);
2370 gdb_assert (lp->status == 0);
2371
2372 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2373 if (pid == -1 && errno == ECHILD)
2374 {
2375 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2376 if (pid == -1 && errno == ECHILD)
2377 {
2378 /* The thread has previously exited. We need to delete it
2379 now because, for some vendor 2.4 kernels with NPTL
2380 support backported, there won't be an exit event unless
2381 it is the main thread. 2.6 kernels will report an exit
2382 event for each thread that exits, as expected. */
2383 thread_dead = 1;
2384 if (debug_linux_nat)
2385 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2386 target_pid_to_str (lp->ptid));
2387 }
2388 }
2389
2390 if (!thread_dead)
2391 {
2392 gdb_assert (pid == GET_LWP (lp->ptid));
2393
2394 if (debug_linux_nat)
2395 {
2396 fprintf_unfiltered (gdb_stdlog,
2397 "WL: waitpid %s received %s\n",
2398 target_pid_to_str (lp->ptid),
2399 status_to_str (status));
2400 }
2401 }
2402
2403 /* Check if the thread has exited. */
2404 if (WIFEXITED (status) || WIFSIGNALED (status))
2405 {
2406 thread_dead = 1;
2407 if (debug_linux_nat)
2408 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2409 target_pid_to_str (lp->ptid));
2410 }
2411
2412 if (thread_dead)
2413 {
2414 exit_lwp (lp);
2415 return 0;
2416 }
2417
2418 gdb_assert (WIFSTOPPED (status));
2419
2420 /* Handle GNU/Linux's syscall SIGTRAPs. */
2421 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2422 {
2423 /* No longer need the sysgood bit. The ptrace event ends up
2424 recorded in lp->waitstatus if we care for it. We can carry
2425 on handling the event like a regular SIGTRAP from here
2426 on. */
2427 status = W_STOPCODE (SIGTRAP);
2428 if (linux_handle_syscall_trap (lp, 1))
2429 return wait_lwp (lp);
2430 }
2431
2432 /* Handle GNU/Linux's extended waitstatus for trace events. */
2433 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2434 {
2435 if (debug_linux_nat)
2436 fprintf_unfiltered (gdb_stdlog,
2437 "WL: Handling extended status 0x%06x\n",
2438 status);
2439 if (linux_handle_extended_wait (lp, status, 1))
2440 return wait_lwp (lp);
2441 }
2442
2443 return status;
2444 }
2445
2446 /* Save the most recent siginfo for LP. This is currently only called
2447 for SIGTRAP; some ports use the si_addr field for
2448 target_stopped_data_address. In the future, it may also be used to
2449 restore the siginfo of requeued signals. */
2450
2451 static void
2452 save_siginfo (struct lwp_info *lp)
2453 {
2454 errno = 0;
2455 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2456 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2457
2458 if (errno != 0)
2459 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2460 }
2461
2462 /* Send a SIGSTOP to LP. */
2463
2464 static int
2465 stop_callback (struct lwp_info *lp, void *data)
2466 {
2467 if (!lp->stopped && !lp->signalled)
2468 {
2469 int ret;
2470
2471 if (debug_linux_nat)
2472 {
2473 fprintf_unfiltered (gdb_stdlog,
2474 "SC: kill %s **<SIGSTOP>**\n",
2475 target_pid_to_str (lp->ptid));
2476 }
2477 errno = 0;
2478 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2479 if (debug_linux_nat)
2480 {
2481 fprintf_unfiltered (gdb_stdlog,
2482 "SC: lwp kill %d %s\n",
2483 ret,
2484 errno ? safe_strerror (errno) : "ERRNO-OK");
2485 }
2486
2487 lp->signalled = 1;
2488 gdb_assert (lp->status == 0);
2489 }
2490
2491 return 0;
2492 }
2493
2494 /* Return non-zero if LWP PID has a pending SIGINT. */
2495
2496 static int
2497 linux_nat_has_pending_sigint (int pid)
2498 {
2499 sigset_t pending, blocked, ignored;
2500
2501 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2502
2503 if (sigismember (&pending, SIGINT)
2504 && !sigismember (&ignored, SIGINT))
2505 return 1;
2506
2507 return 0;
2508 }
2509
2510 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2511
2512 static int
2513 set_ignore_sigint (struct lwp_info *lp, void *data)
2514 {
2515 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2516 flag to consume the next one. */
2517 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2518 && WSTOPSIG (lp->status) == SIGINT)
2519 lp->status = 0;
2520 else
2521 lp->ignore_sigint = 1;
2522
2523 return 0;
2524 }
2525
2526 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2527 This function is called after we know the LWP has stopped; if the LWP
2528 stopped before the expected SIGINT was delivered, then it will never have
2529 arrived. Also, if the signal was delivered to a shared queue and consumed
2530 by a different thread, it will never be delivered to this LWP. */
2531
2532 static void
2533 maybe_clear_ignore_sigint (struct lwp_info *lp)
2534 {
2535 if (!lp->ignore_sigint)
2536 return;
2537
2538 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2539 {
2540 if (debug_linux_nat)
2541 fprintf_unfiltered (gdb_stdlog,
2542 "MCIS: Clearing bogus flag for %s\n",
2543 target_pid_to_str (lp->ptid));
2544 lp->ignore_sigint = 0;
2545 }
2546 }
2547
2548 /* Fetch the possible triggered data watchpoint info and store it in
2549 LP.
2550
2551 On some archs, like x86, that use debug registers to set
2552 watchpoints, it's possible that the way to know which watched
2553 address trapped, is to check the register that is used to select
2554 which address to watch. Problem is, between setting the watchpoint
2555 and reading back which data address trapped, the user may change
2556 the set of watchpoints, and, as a consequence, GDB changes the
2557 debug registers in the inferior. To avoid reading back a stale
2558 stopped-data-address when that happens, we cache in LP the fact
2559 that a watchpoint trapped, and the corresponding data address, as
2560 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2561 registers meanwhile, we have the cached data we can rely on. */
2562
2563 static void
2564 save_sigtrap (struct lwp_info *lp)
2565 {
2566 struct cleanup *old_chain;
2567
2568 if (linux_ops->to_stopped_by_watchpoint == NULL)
2569 {
2570 lp->stopped_by_watchpoint = 0;
2571 return;
2572 }
2573
2574 old_chain = save_inferior_ptid ();
2575 inferior_ptid = lp->ptid;
2576
2577 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2578
2579 if (lp->stopped_by_watchpoint)
2580 {
2581 if (linux_ops->to_stopped_data_address != NULL)
2582 lp->stopped_data_address_p =
2583 linux_ops->to_stopped_data_address (&current_target,
2584 &lp->stopped_data_address);
2585 else
2586 lp->stopped_data_address_p = 0;
2587 }
2588
2589 do_cleanups (old_chain);
2590 }
2591
2592 /* See save_sigtrap. */
2593
2594 static int
2595 linux_nat_stopped_by_watchpoint (void)
2596 {
2597 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2598
2599 gdb_assert (lp != NULL);
2600
2601 return lp->stopped_by_watchpoint;
2602 }
2603
2604 static int
2605 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2606 {
2607 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2608
2609 gdb_assert (lp != NULL);
2610
2611 *addr_p = lp->stopped_data_address;
2612
2613 return lp->stopped_data_address_p;
2614 }
2615
2616 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2617
2618 static int
2619 sigtrap_is_event (int status)
2620 {
2621 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2622 }
2623
2624 /* SIGTRAP-like events recognizer. */
2625
2626 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2627
2628 /* Check for SIGTRAP-like events in LP. */
2629
2630 static int
2631 linux_nat_lp_status_is_event (struct lwp_info *lp)
2632 {
2633 /* We check for lp->waitstatus in addition to lp->status, because we can
2634 have pending process exits recorded in lp->status
2635 and W_EXITCODE(0,0) == 0. We should probably have an additional
2636 lp->status_p flag. */
2637
2638 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2639 && linux_nat_status_is_event (lp->status));
2640 }
2641
2642 /* Set alternative SIGTRAP-like events recognizer. If
2643 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2644 applied. */
2645
2646 void
2647 linux_nat_set_status_is_event (struct target_ops *t,
2648 int (*status_is_event) (int status))
2649 {
2650 linux_nat_status_is_event = status_is_event;
2651 }
2652
2653 /* Wait until LP is stopped. */
2654
2655 static int
2656 stop_wait_callback (struct lwp_info *lp, void *data)
2657 {
2658 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2659
2660 /* If this is a vfork parent, bail out, it is not going to report
2661 any SIGSTOP until the vfork is done with. */
2662 if (inf->vfork_child != NULL)
2663 return 0;
2664
2665 if (!lp->stopped)
2666 {
2667 int status;
2668
2669 status = wait_lwp (lp);
2670 if (status == 0)
2671 return 0;
2672
2673 if (lp->ignore_sigint && WIFSTOPPED (status)
2674 && WSTOPSIG (status) == SIGINT)
2675 {
2676 lp->ignore_sigint = 0;
2677
2678 errno = 0;
2679 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2680 if (debug_linux_nat)
2681 fprintf_unfiltered (gdb_stdlog,
2682 "PTRACE_CONT %s, 0, 0 (%s) "
2683 "(discarding SIGINT)\n",
2684 target_pid_to_str (lp->ptid),
2685 errno ? safe_strerror (errno) : "OK");
2686
2687 return stop_wait_callback (lp, NULL);
2688 }
2689
2690 maybe_clear_ignore_sigint (lp);
2691
2692 if (WSTOPSIG (status) != SIGSTOP)
2693 {
2694 if (linux_nat_status_is_event (status))
2695 {
2696 /* If a LWP other than the LWP that we're reporting an
2697 event for has hit a GDB breakpoint (as opposed to
2698 some random trap signal), then just arrange for it to
2699 hit it again later. We don't keep the SIGTRAP status
2700 and don't forward the SIGTRAP signal to the LWP. We
2701 will handle the current event, eventually we will
2702 resume all LWPs, and this one will get its breakpoint
2703 trap again.
2704
2705 If we do not do this, then we run the risk that the
2706 user will delete or disable the breakpoint, but the
2707 thread will have already tripped on it. */
2708
2709 /* Save the trap's siginfo in case we need it later. */
2710 save_siginfo (lp);
2711
2712 save_sigtrap (lp);
2713
2714 /* Now resume this LWP and get the SIGSTOP event. */
2715 errno = 0;
2716 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2717 if (debug_linux_nat)
2718 {
2719 fprintf_unfiltered (gdb_stdlog,
2720 "PTRACE_CONT %s, 0, 0 (%s)\n",
2721 target_pid_to_str (lp->ptid),
2722 errno ? safe_strerror (errno) : "OK");
2723
2724 fprintf_unfiltered (gdb_stdlog,
2725 "SWC: Candidate SIGTRAP event in %s\n",
2726 target_pid_to_str (lp->ptid));
2727 }
2728 /* Hold this event/waitstatus while we check to see if
2729 there are any more (we still want to get that SIGSTOP). */
2730 stop_wait_callback (lp, NULL);
2731
2732 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2733 there's another event, throw it back into the
2734 queue. */
2735 if (lp->status)
2736 {
2737 if (debug_linux_nat)
2738 fprintf_unfiltered (gdb_stdlog,
2739 "SWC: kill %s, %s\n",
2740 target_pid_to_str (lp->ptid),
2741 status_to_str ((int) status));
2742 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2743 }
2744
2745 /* Save the sigtrap event. */
2746 lp->status = status;
2747 return 0;
2748 }
2749 else
2750 {
2751 /* The thread was stopped with a signal other than
2752 SIGSTOP, and didn't accidentally trip a breakpoint. */
2753
2754 if (debug_linux_nat)
2755 {
2756 fprintf_unfiltered (gdb_stdlog,
2757 "SWC: Pending event %s in %s\n",
2758 status_to_str ((int) status),
2759 target_pid_to_str (lp->ptid));
2760 }
2761 /* Now resume this LWP and get the SIGSTOP event. */
2762 errno = 0;
2763 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2764 if (debug_linux_nat)
2765 fprintf_unfiltered (gdb_stdlog,
2766 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2767 target_pid_to_str (lp->ptid),
2768 errno ? safe_strerror (errno) : "OK");
2769
2770 /* Hold this event/waitstatus while we check to see if
2771 there are any more (we still want to get that SIGSTOP). */
2772 stop_wait_callback (lp, NULL);
2773
2774 /* If the lp->status field is still empty, use it to
2775 hold this event. If not, then this event must be
2776 returned to the event queue of the LWP. */
2777 if (lp->status)
2778 {
2779 if (debug_linux_nat)
2780 {
2781 fprintf_unfiltered (gdb_stdlog,
2782 "SWC: kill %s, %s\n",
2783 target_pid_to_str (lp->ptid),
2784 status_to_str ((int) status));
2785 }
2786 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2787 }
2788 else
2789 lp->status = status;
2790 return 0;
2791 }
2792 }
2793 else
2794 {
2795 /* We caught the SIGSTOP that we intended to catch, so
2796 there's no SIGSTOP pending. */
2797 lp->stopped = 1;
2798 lp->signalled = 0;
2799 }
2800 }
2801
2802 return 0;
2803 }
2804
2805 /* Return non-zero if LP has a wait status pending. */
2806
2807 static int
2808 status_callback (struct lwp_info *lp, void *data)
2809 {
2810 /* Only report a pending wait status if we pretend that this has
2811 indeed been resumed. */
2812 if (!lp->resumed)
2813 return 0;
2814
2815 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2816 {
2817 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2818 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2819 0', so a clean process exit can not be stored pending in
2820 lp->status, it is indistinguishable from
2821 no-pending-status. */
2822 return 1;
2823 }
2824
2825 if (lp->status != 0)
2826 return 1;
2827
2828 return 0;
2829 }
2830
2831 /* Return non-zero if LP isn't stopped. */
2832
2833 static int
2834 running_callback (struct lwp_info *lp, void *data)
2835 {
2836 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2837 }
2838
2839 /* Count the LWP's that have had events. */
2840
2841 static int
2842 count_events_callback (struct lwp_info *lp, void *data)
2843 {
2844 int *count = data;
2845
2846 gdb_assert (count != NULL);
2847
2848 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2849 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2850 (*count)++;
2851
2852 return 0;
2853 }
2854
2855 /* Select the LWP (if any) that is currently being single-stepped. */
2856
2857 static int
2858 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2859 {
2860 if (lp->step && lp->status != 0)
2861 return 1;
2862 else
2863 return 0;
2864 }
2865
2866 /* Select the Nth LWP that has had a SIGTRAP event. */
2867
2868 static int
2869 select_event_lwp_callback (struct lwp_info *lp, void *data)
2870 {
2871 int *selector = data;
2872
2873 gdb_assert (selector != NULL);
2874
2875 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2876 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2877 if ((*selector)-- == 0)
2878 return 1;
2879
2880 return 0;
2881 }
2882
2883 static int
2884 cancel_breakpoint (struct lwp_info *lp)
2885 {
2886 /* Arrange for a breakpoint to be hit again later. We don't keep
2887 the SIGTRAP status and don't forward the SIGTRAP signal to the
2888 LWP. We will handle the current event, eventually we will resume
2889 this LWP, and this breakpoint will trap again.
2890
2891 If we do not do this, then we run the risk that the user will
2892 delete or disable the breakpoint, but the LWP will have already
2893 tripped on it. */
2894
2895 struct regcache *regcache = get_thread_regcache (lp->ptid);
2896 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2897 CORE_ADDR pc;
2898
2899 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2900 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2901 {
2902 if (debug_linux_nat)
2903 fprintf_unfiltered (gdb_stdlog,
2904 "CB: Push back breakpoint for %s\n",
2905 target_pid_to_str (lp->ptid));
2906
2907 /* Back up the PC if necessary. */
2908 if (gdbarch_decr_pc_after_break (gdbarch))
2909 regcache_write_pc (regcache, pc);
2910
2911 return 1;
2912 }
2913 return 0;
2914 }
2915
2916 static int
2917 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2918 {
2919 struct lwp_info *event_lp = data;
2920
2921 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2922 if (lp == event_lp)
2923 return 0;
2924
2925 /* If a LWP other than the LWP that we're reporting an event for has
2926 hit a GDB breakpoint (as opposed to some random trap signal),
2927 then just arrange for it to hit it again later. We don't keep
2928 the SIGTRAP status and don't forward the SIGTRAP signal to the
2929 LWP. We will handle the current event, eventually we will resume
2930 all LWPs, and this one will get its breakpoint trap again.
2931
2932 If we do not do this, then we run the risk that the user will
2933 delete or disable the breakpoint, but the LWP will have already
2934 tripped on it. */
2935
2936 if (linux_nat_lp_status_is_event (lp)
2937 && cancel_breakpoint (lp))
2938 /* Throw away the SIGTRAP. */
2939 lp->status = 0;
2940
2941 return 0;
2942 }
2943
2944 /* Select one LWP out of those that have events pending. */
2945
2946 static void
2947 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2948 {
2949 int num_events = 0;
2950 int random_selector;
2951 struct lwp_info *event_lp;
2952
2953 /* Record the wait status for the original LWP. */
2954 (*orig_lp)->status = *status;
2955
2956 /* Give preference to any LWP that is being single-stepped. */
2957 event_lp = iterate_over_lwps (filter,
2958 select_singlestep_lwp_callback, NULL);
2959 if (event_lp != NULL)
2960 {
2961 if (debug_linux_nat)
2962 fprintf_unfiltered (gdb_stdlog,
2963 "SEL: Select single-step %s\n",
2964 target_pid_to_str (event_lp->ptid));
2965 }
2966 else
2967 {
2968 /* No single-stepping LWP. Select one at random, out of those
2969 which have had SIGTRAP events. */
2970
2971 /* First see how many SIGTRAP events we have. */
2972 iterate_over_lwps (filter, count_events_callback, &num_events);
2973
2974 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2975 random_selector = (int)
2976 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2977
2978 if (debug_linux_nat && num_events > 1)
2979 fprintf_unfiltered (gdb_stdlog,
2980 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2981 num_events, random_selector);
2982
2983 event_lp = iterate_over_lwps (filter,
2984 select_event_lwp_callback,
2985 &random_selector);
2986 }
2987
2988 if (event_lp != NULL)
2989 {
2990 /* Switch the event LWP. */
2991 *orig_lp = event_lp;
2992 *status = event_lp->status;
2993 }
2994
2995 /* Flush the wait status for the event LWP. */
2996 (*orig_lp)->status = 0;
2997 }
2998
2999 /* Return non-zero if LP has been resumed. */
3000
3001 static int
3002 resumed_callback (struct lwp_info *lp, void *data)
3003 {
3004 return lp->resumed;
3005 }
3006
3007 /* Stop an active thread, verify it still exists, then resume it. */
3008
3009 static int
3010 stop_and_resume_callback (struct lwp_info *lp, void *data)
3011 {
3012 struct lwp_info *ptr;
3013
3014 if (!lp->stopped && !lp->signalled)
3015 {
3016 stop_callback (lp, NULL);
3017 stop_wait_callback (lp, NULL);
3018 /* Resume if the lwp still exists. */
3019 for (ptr = lwp_list; ptr; ptr = ptr->next)
3020 if (lp == ptr)
3021 {
3022 resume_callback (lp, NULL);
3023 resume_set_callback (lp, NULL);
3024 }
3025 }
3026 return 0;
3027 }
3028
3029 /* Check if we should go on and pass this event to common code.
3030 Return the affected lwp if we are, or NULL otherwise. */
3031 static struct lwp_info *
3032 linux_nat_filter_event (int lwpid, int status, int options)
3033 {
3034 struct lwp_info *lp;
3035
3036 lp = find_lwp_pid (pid_to_ptid (lwpid));
3037
3038 /* Check for stop events reported by a process we didn't already
3039 know about - anything not already in our LWP list.
3040
3041 If we're expecting to receive stopped processes after
3042 fork, vfork, and clone events, then we'll just add the
3043 new one to our list and go back to waiting for the event
3044 to be reported - the stopped process might be returned
3045 from waitpid before or after the event is. */
3046 if (WIFSTOPPED (status) && !lp)
3047 {
3048 linux_record_stopped_pid (lwpid, status);
3049 return NULL;
3050 }
3051
3052 /* Make sure we don't report an event for the exit of an LWP not in
3053 our list, i.e. not part of the current process. This can happen
3054 if we detach from a program we originally forked and then it
3055 exits. */
3056 if (!WIFSTOPPED (status) && !lp)
3057 return NULL;
3058
3059 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3060 CLONE_PTRACE processes which do not use the thread library -
3061 otherwise we wouldn't find the new LWP this way. That doesn't
3062 currently work, and the following code is currently unreachable
3063 due to the two blocks above. If it's fixed some day, this code
3064 should be broken out into a function so that we can also pick up
3065 LWPs from the new interface. */
3066 if (!lp)
3067 {
3068 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3069 if (options & __WCLONE)
3070 lp->cloned = 1;
3071
3072 gdb_assert (WIFSTOPPED (status)
3073 && WSTOPSIG (status) == SIGSTOP);
3074 lp->signalled = 1;
3075
3076 if (!in_thread_list (inferior_ptid))
3077 {
3078 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3079 GET_PID (inferior_ptid));
3080 add_thread (inferior_ptid);
3081 }
3082
3083 add_thread (lp->ptid);
3084 }
3085
3086 /* Handle GNU/Linux's syscall SIGTRAPs. */
3087 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3088 {
3089 /* No longer need the sysgood bit. The ptrace event ends up
3090 recorded in lp->waitstatus if we care for it. We can carry
3091 on handling the event like a regular SIGTRAP from here
3092 on. */
3093 status = W_STOPCODE (SIGTRAP);
3094 if (linux_handle_syscall_trap (lp, 0))
3095 return NULL;
3096 }
3097
3098 /* Handle GNU/Linux's extended waitstatus for trace events. */
3099 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3100 {
3101 if (debug_linux_nat)
3102 fprintf_unfiltered (gdb_stdlog,
3103 "LLW: Handling extended status 0x%06x\n",
3104 status);
3105 if (linux_handle_extended_wait (lp, status, 0))
3106 return NULL;
3107 }
3108
3109 if (linux_nat_status_is_event (status))
3110 {
3111 /* Save the trap's siginfo in case we need it later. */
3112 save_siginfo (lp);
3113
3114 save_sigtrap (lp);
3115 }
3116
3117 /* Check if the thread has exited. */
3118 if ((WIFEXITED (status) || WIFSIGNALED (status))
3119 && num_lwps (GET_PID (lp->ptid)) > 1)
3120 {
3121 /* If this is the main thread, we must stop all threads and verify
3122 if they are still alive. This is because in the nptl thread model
3123 on Linux 2.4, there is no signal issued for exiting LWPs
3124 other than the main thread. We only get the main thread exit
3125 signal once all child threads have already exited. If we
3126 stop all the threads and use the stop_wait_callback to check
3127 if they have exited we can determine whether this signal
3128 should be ignored or whether it means the end of the debugged
3129 application, regardless of which threading model is being
3130 used. */
3131 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3132 {
3133 lp->stopped = 1;
3134 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3135 stop_and_resume_callback, NULL);
3136 }
3137
3138 if (debug_linux_nat)
3139 fprintf_unfiltered (gdb_stdlog,
3140 "LLW: %s exited.\n",
3141 target_pid_to_str (lp->ptid));
3142
3143 if (num_lwps (GET_PID (lp->ptid)) > 1)
3144 {
3145 /* If there is at least one more LWP, then the exit signal
3146 was not the end of the debugged application and should be
3147 ignored. */
3148 exit_lwp (lp);
3149 return NULL;
3150 }
3151 }
3152
3153 /* Check if the current LWP has previously exited. In the nptl
3154 thread model, LWPs other than the main thread do not issue
3155 signals when they exit so we must check whenever the thread has
3156 stopped. A similar check is made in stop_wait_callback(). */
3157 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3158 {
3159 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3160
3161 if (debug_linux_nat)
3162 fprintf_unfiltered (gdb_stdlog,
3163 "LLW: %s exited.\n",
3164 target_pid_to_str (lp->ptid));
3165
3166 exit_lwp (lp);
3167
3168 /* Make sure there is at least one thread running. */
3169 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3170
3171 /* Discard the event. */
3172 return NULL;
3173 }
3174
3175 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3176 an attempt to stop an LWP. */
3177 if (lp->signalled
3178 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3179 {
3180 if (debug_linux_nat)
3181 fprintf_unfiltered (gdb_stdlog,
3182 "LLW: Delayed SIGSTOP caught for %s.\n",
3183 target_pid_to_str (lp->ptid));
3184
3185 /* This is a delayed SIGSTOP. */
3186 lp->signalled = 0;
3187
3188 registers_changed ();
3189
3190 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3191 lp->step, TARGET_SIGNAL_0);
3192 if (debug_linux_nat)
3193 fprintf_unfiltered (gdb_stdlog,
3194 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3195 lp->step ?
3196 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3197 target_pid_to_str (lp->ptid));
3198
3199 lp->stopped = 0;
3200 gdb_assert (lp->resumed);
3201
3202 /* Discard the event. */
3203 return NULL;
3204 }
3205
3206 /* Make sure we don't report a SIGINT that we have already displayed
3207 for another thread. */
3208 if (lp->ignore_sigint
3209 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3210 {
3211 if (debug_linux_nat)
3212 fprintf_unfiltered (gdb_stdlog,
3213 "LLW: Delayed SIGINT caught for %s.\n",
3214 target_pid_to_str (lp->ptid));
3215
3216 /* This is a delayed SIGINT. */
3217 lp->ignore_sigint = 0;
3218
3219 registers_changed ();
3220 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3221 lp->step, TARGET_SIGNAL_0);
3222 if (debug_linux_nat)
3223 fprintf_unfiltered (gdb_stdlog,
3224 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3225 lp->step ?
3226 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3227 target_pid_to_str (lp->ptid));
3228
3229 lp->stopped = 0;
3230 gdb_assert (lp->resumed);
3231
3232 /* Discard the event. */
3233 return NULL;
3234 }
3235
3236 /* An interesting event. */
3237 gdb_assert (lp);
3238 lp->status = status;
3239 return lp;
3240 }
3241
3242 static ptid_t
3243 linux_nat_wait_1 (struct target_ops *ops,
3244 ptid_t ptid, struct target_waitstatus *ourstatus,
3245 int target_options)
3246 {
3247 static sigset_t prev_mask;
3248 struct lwp_info *lp = NULL;
3249 int options = 0;
3250 int status = 0;
3251 pid_t pid;
3252
3253 if (debug_linux_nat)
3254 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3255
3256 /* The first time we get here after starting a new inferior, we may
3257 not have added it to the LWP list yet - this is the earliest
3258 moment at which we know its PID. */
3259 if (ptid_is_pid (inferior_ptid))
3260 {
3261 /* Upgrade the main thread's ptid. */
3262 thread_change_ptid (inferior_ptid,
3263 BUILD_LWP (GET_PID (inferior_ptid),
3264 GET_PID (inferior_ptid)));
3265
3266 lp = add_lwp (inferior_ptid);
3267 lp->resumed = 1;
3268 }
3269
3270 /* Make sure SIGCHLD is blocked. */
3271 block_child_signals (&prev_mask);
3272
3273 if (ptid_equal (ptid, minus_one_ptid))
3274 pid = -1;
3275 else if (ptid_is_pid (ptid))
3276 /* A request to wait for a specific tgid. This is not possible
3277 with waitpid, so instead, we wait for any child, and leave
3278 children we're not interested in right now with a pending
3279 status to report later. */
3280 pid = -1;
3281 else
3282 pid = GET_LWP (ptid);
3283
3284 retry:
3285 lp = NULL;
3286 status = 0;
3287
3288 /* Make sure that of those LWPs we want to get an event from, there
3289 is at least one LWP that has been resumed. If there's none, just
3290 bail out. The core may just be flushing asynchronously all
3291 events. */
3292 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3293 {
3294 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3295
3296 if (debug_linux_nat)
3297 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3298
3299 restore_child_signals_mask (&prev_mask);
3300 return minus_one_ptid;
3301 }
3302
3303 /* First check if there is a LWP with a wait status pending. */
3304 if (pid == -1)
3305 {
3306 /* Any LWP that's been resumed will do. */
3307 lp = iterate_over_lwps (ptid, status_callback, NULL);
3308 if (lp)
3309 {
3310 if (debug_linux_nat && lp->status)
3311 fprintf_unfiltered (gdb_stdlog,
3312 "LLW: Using pending wait status %s for %s.\n",
3313 status_to_str (lp->status),
3314 target_pid_to_str (lp->ptid));
3315 }
3316
3317 /* But if we don't find one, we'll have to wait, and check both
3318 cloned and uncloned processes. We start with the cloned
3319 processes. */
3320 options = __WCLONE | WNOHANG;
3321 }
3322 else if (is_lwp (ptid))
3323 {
3324 if (debug_linux_nat)
3325 fprintf_unfiltered (gdb_stdlog,
3326 "LLW: Waiting for specific LWP %s.\n",
3327 target_pid_to_str (ptid));
3328
3329 /* We have a specific LWP to check. */
3330 lp = find_lwp_pid (ptid);
3331 gdb_assert (lp);
3332
3333 if (debug_linux_nat && lp->status)
3334 fprintf_unfiltered (gdb_stdlog,
3335 "LLW: Using pending wait status %s for %s.\n",
3336 status_to_str (lp->status),
3337 target_pid_to_str (lp->ptid));
3338
3339 /* If we have to wait, take into account whether PID is a cloned
3340 process or not. And we have to convert it to something that
3341 the layer beneath us can understand. */
3342 options = lp->cloned ? __WCLONE : 0;
3343 pid = GET_LWP (ptid);
3344
3345 /* We check for lp->waitstatus in addition to lp->status,
3346 because we can have pending process exits recorded in
3347 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3348 an additional lp->status_p flag. */
3349 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3350 lp = NULL;
3351 }
3352
3353 if (lp && lp->signalled)
3354 {
3355 /* A pending SIGSTOP may interfere with the normal stream of
3356 events. In a typical case where interference is a problem,
3357 we have a SIGSTOP signal pending for LWP A while
3358 single-stepping it, encounter an event in LWP B, and take the
3359 pending SIGSTOP while trying to stop LWP A. After processing
3360 the event in LWP B, LWP A is continued, and we'll never see
3361 the SIGTRAP associated with the last time we were
3362 single-stepping LWP A. */
3363
3364 /* Resume the thread. It should halt immediately returning the
3365 pending SIGSTOP. */
3366 registers_changed ();
3367 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3368 lp->step, TARGET_SIGNAL_0);
3369 if (debug_linux_nat)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3372 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3373 target_pid_to_str (lp->ptid));
3374 lp->stopped = 0;
3375 gdb_assert (lp->resumed);
3376
3377 /* Catch the pending SIGSTOP. */
3378 status = lp->status;
3379 lp->status = 0;
3380
3381 stop_wait_callback (lp, NULL);
3382
3383 /* If the lp->status field isn't empty, we caught another signal
3384 while flushing the SIGSTOP. Return it back to the event
3385 queue of the LWP, as we already have an event to handle. */
3386 if (lp->status)
3387 {
3388 if (debug_linux_nat)
3389 fprintf_unfiltered (gdb_stdlog,
3390 "LLW: kill %s, %s\n",
3391 target_pid_to_str (lp->ptid),
3392 status_to_str (lp->status));
3393 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3394 }
3395
3396 lp->status = status;
3397 }
3398
3399 if (!target_can_async_p ())
3400 {
3401 /* Causes SIGINT to be passed on to the attached process. */
3402 set_sigint_trap ();
3403 }
3404
3405 /* Translate generic target_wait options into waitpid options. */
3406 if (target_options & TARGET_WNOHANG)
3407 options |= WNOHANG;
3408
3409 while (lp == NULL)
3410 {
3411 pid_t lwpid;
3412
3413 lwpid = my_waitpid (pid, &status, options);
3414
3415 if (lwpid > 0)
3416 {
3417 gdb_assert (pid == -1 || lwpid == pid);
3418
3419 if (debug_linux_nat)
3420 {
3421 fprintf_unfiltered (gdb_stdlog,
3422 "LLW: waitpid %ld received %s\n",
3423 (long) lwpid, status_to_str (status));
3424 }
3425
3426 lp = linux_nat_filter_event (lwpid, status, options);
3427
3428 /* STATUS is now no longer valid, use LP->STATUS instead. */
3429 status = 0;
3430
3431 if (lp
3432 && ptid_is_pid (ptid)
3433 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3434 {
3435 gdb_assert (lp->resumed);
3436
3437 if (debug_linux_nat)
3438 fprintf (stderr,
3439 "LWP %ld got an event %06x, leaving pending.\n",
3440 ptid_get_lwp (lp->ptid), lp->status);
3441
3442 if (WIFSTOPPED (lp->status))
3443 {
3444 if (WSTOPSIG (lp->status) != SIGSTOP)
3445 {
3446 /* Cancel breakpoint hits. The breakpoint may
3447 be removed before we fetch events from this
3448 process to report to the core. It is best
3449 not to assume the moribund breakpoints
3450 heuristic always handles these cases --- it
3451 could be too many events go through to the
3452 core before this one is handled. All-stop
3453 always cancels breakpoint hits in all
3454 threads. */
3455 if (non_stop
3456 && linux_nat_lp_status_is_event (lp)
3457 && cancel_breakpoint (lp))
3458 {
3459 /* Throw away the SIGTRAP. */
3460 lp->status = 0;
3461
3462 if (debug_linux_nat)
3463 fprintf (stderr,
3464 "LLW: LWP %ld hit a breakpoint while"
3465 " waiting for another process;"
3466 " cancelled it\n",
3467 ptid_get_lwp (lp->ptid));
3468 }
3469 lp->stopped = 1;
3470 }
3471 else
3472 {
3473 lp->stopped = 1;
3474 lp->signalled = 0;
3475 }
3476 }
3477 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3478 {
3479 if (debug_linux_nat)
3480 fprintf (stderr,
3481 "Process %ld exited while stopping LWPs\n",
3482 ptid_get_lwp (lp->ptid));
3483
3484 /* This was the last lwp in the process. Since
3485 events are serialized to GDB core, and we can't
3486 report this one right now, but GDB core and the
3487 other target layers will want to be notified
3488 about the exit code/signal, leave the status
3489 pending for the next time we're able to report
3490 it. */
3491
3492 /* Prevent trying to stop this thread again. We'll
3493 never try to resume it because it has a pending
3494 status. */
3495 lp->stopped = 1;
3496
3497 /* Dead LWP's aren't expected to reported a pending
3498 sigstop. */
3499 lp->signalled = 0;
3500
3501 /* Store the pending event in the waitstatus as
3502 well, because W_EXITCODE(0,0) == 0. */
3503 store_waitstatus (&lp->waitstatus, lp->status);
3504 }
3505
3506 /* Keep looking. */
3507 lp = NULL;
3508 continue;
3509 }
3510
3511 if (lp)
3512 break;
3513 else
3514 {
3515 if (pid == -1)
3516 {
3517 /* waitpid did return something. Restart over. */
3518 options |= __WCLONE;
3519 }
3520 continue;
3521 }
3522 }
3523
3524 if (pid == -1)
3525 {
3526 /* Alternate between checking cloned and uncloned processes. */
3527 options ^= __WCLONE;
3528
3529 /* And every time we have checked both:
3530 In async mode, return to event loop;
3531 In sync mode, suspend waiting for a SIGCHLD signal. */
3532 if (options & __WCLONE)
3533 {
3534 if (target_options & TARGET_WNOHANG)
3535 {
3536 /* No interesting event. */
3537 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3538
3539 if (debug_linux_nat)
3540 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3541
3542 restore_child_signals_mask (&prev_mask);
3543 return minus_one_ptid;
3544 }
3545
3546 sigsuspend (&suspend_mask);
3547 }
3548 }
3549 else if (target_options & TARGET_WNOHANG)
3550 {
3551 /* No interesting event for PID yet. */
3552 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3553
3554 if (debug_linux_nat)
3555 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3556
3557 restore_child_signals_mask (&prev_mask);
3558 return minus_one_ptid;
3559 }
3560
3561 /* We shouldn't end up here unless we want to try again. */
3562 gdb_assert (lp == NULL);
3563 }
3564
3565 if (!target_can_async_p ())
3566 clear_sigint_trap ();
3567
3568 gdb_assert (lp);
3569
3570 status = lp->status;
3571 lp->status = 0;
3572
3573 /* Don't report signals that GDB isn't interested in, such as
3574 signals that are neither printed nor stopped upon. Stopping all
3575 threads can be a bit time-consuming so if we want decent
3576 performance with heavily multi-threaded programs, especially when
3577 they're using a high frequency timer, we'd better avoid it if we
3578 can. */
3579
3580 if (WIFSTOPPED (status))
3581 {
3582 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3583
3584 /* When using hardware single-step, we need to report every signal.
3585 Otherwise, signals in pass_mask may be short-circuited. */
3586 if (!lp->step
3587 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3588 {
3589 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3590 here? It is not clear we should. GDB may not expect
3591 other threads to run. On the other hand, not resuming
3592 newly attached threads may cause an unwanted delay in
3593 getting them running. */
3594 registers_changed ();
3595 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3596 lp->step, signo);
3597 if (debug_linux_nat)
3598 fprintf_unfiltered (gdb_stdlog,
3599 "LLW: %s %s, %s (preempt 'handle')\n",
3600 lp->step ?
3601 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3602 target_pid_to_str (lp->ptid),
3603 (signo != TARGET_SIGNAL_0
3604 ? strsignal (target_signal_to_host (signo))
3605 : "0"));
3606 lp->stopped = 0;
3607 goto retry;
3608 }
3609
3610 if (!non_stop)
3611 {
3612 /* Only do the below in all-stop, as we currently use SIGINT
3613 to implement target_stop (see linux_nat_stop) in
3614 non-stop. */
3615 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3616 {
3617 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3618 forwarded to the entire process group, that is, all LWPs
3619 will receive it - unless they're using CLONE_THREAD to
3620 share signals. Since we only want to report it once, we
3621 mark it as ignored for all LWPs except this one. */
3622 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3623 set_ignore_sigint, NULL);
3624 lp->ignore_sigint = 0;
3625 }
3626 else
3627 maybe_clear_ignore_sigint (lp);
3628 }
3629 }
3630
3631 /* This LWP is stopped now. */
3632 lp->stopped = 1;
3633
3634 if (debug_linux_nat)
3635 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3636 status_to_str (status), target_pid_to_str (lp->ptid));
3637
3638 if (!non_stop)
3639 {
3640 /* Now stop all other LWP's ... */
3641 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3642
3643 /* ... and wait until all of them have reported back that
3644 they're no longer running. */
3645 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3646
3647 /* If we're not waiting for a specific LWP, choose an event LWP
3648 from among those that have had events. Giving equal priority
3649 to all LWPs that have had events helps prevent
3650 starvation. */
3651 if (pid == -1)
3652 select_event_lwp (ptid, &lp, &status);
3653
3654 /* Now that we've selected our final event LWP, cancel any
3655 breakpoints in other LWPs that have hit a GDB breakpoint.
3656 See the comment in cancel_breakpoints_callback to find out
3657 why. */
3658 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3659
3660 /* In all-stop, from the core's perspective, all LWPs are now
3661 stopped until a new resume action is sent over. */
3662 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3663 }
3664 else
3665 lp->resumed = 0;
3666
3667 if (linux_nat_status_is_event (status))
3668 {
3669 if (debug_linux_nat)
3670 fprintf_unfiltered (gdb_stdlog,
3671 "LLW: trap ptid is %s.\n",
3672 target_pid_to_str (lp->ptid));
3673 }
3674
3675 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3676 {
3677 *ourstatus = lp->waitstatus;
3678 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3679 }
3680 else
3681 store_waitstatus (ourstatus, status);
3682
3683 if (debug_linux_nat)
3684 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3685
3686 restore_child_signals_mask (&prev_mask);
3687
3688 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3689 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3690 lp->core = -1;
3691 else
3692 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3693
3694 return lp->ptid;
3695 }
3696
3697 /* Resume LWPs that are currently stopped without any pending status
3698 to report, but are resumed from the core's perspective. */
3699
3700 static int
3701 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3702 {
3703 ptid_t *wait_ptid_p = data;
3704
3705 if (lp->stopped
3706 && lp->resumed
3707 && lp->status == 0
3708 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3709 {
3710 gdb_assert (is_executing (lp->ptid));
3711
3712 /* Don't bother if there's a breakpoint at PC that we'd hit
3713 immediately, and we're not waiting for this LWP. */
3714 if (!ptid_match (lp->ptid, *wait_ptid_p))
3715 {
3716 struct regcache *regcache = get_thread_regcache (lp->ptid);
3717 CORE_ADDR pc = regcache_read_pc (regcache);
3718
3719 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3720 return 0;
3721 }
3722
3723 if (debug_linux_nat)
3724 fprintf_unfiltered (gdb_stdlog,
3725 "RSRL: resuming stopped-resumed LWP %s\n",
3726 target_pid_to_str (lp->ptid));
3727
3728 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3729 lp->step, TARGET_SIGNAL_0);
3730 lp->stopped = 0;
3731 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3732 lp->stopped_by_watchpoint = 0;
3733 }
3734
3735 return 0;
3736 }
3737
3738 static ptid_t
3739 linux_nat_wait (struct target_ops *ops,
3740 ptid_t ptid, struct target_waitstatus *ourstatus,
3741 int target_options)
3742 {
3743 ptid_t event_ptid;
3744
3745 if (debug_linux_nat)
3746 fprintf_unfiltered (gdb_stdlog,
3747 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3748
3749 /* Flush the async file first. */
3750 if (target_can_async_p ())
3751 async_file_flush ();
3752
3753 /* Resume LWPs that are currently stopped without any pending status
3754 to report, but are resumed from the core's perspective. LWPs get
3755 in this state if we find them stopping at a time we're not
3756 interested in reporting the event (target_wait on a
3757 specific_process, for example, see linux_nat_wait_1), and
3758 meanwhile the event became uninteresting. Don't bother resuming
3759 LWPs we're not going to wait for if they'd stop immediately. */
3760 if (non_stop)
3761 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3762
3763 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3764
3765 /* If we requested any event, and something came out, assume there
3766 may be more. If we requested a specific lwp or process, also
3767 assume there may be more. */
3768 if (target_can_async_p ()
3769 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3770 || !ptid_equal (ptid, minus_one_ptid)))
3771 async_file_mark ();
3772
3773 /* Get ready for the next event. */
3774 if (target_can_async_p ())
3775 target_async (inferior_event_handler, 0);
3776
3777 return event_ptid;
3778 }
3779
3780 static int
3781 kill_callback (struct lwp_info *lp, void *data)
3782 {
3783 errno = 0;
3784 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3785 if (debug_linux_nat)
3786 fprintf_unfiltered (gdb_stdlog,
3787 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3788 target_pid_to_str (lp->ptid),
3789 errno ? safe_strerror (errno) : "OK");
3790
3791 return 0;
3792 }
3793
3794 static int
3795 kill_wait_callback (struct lwp_info *lp, void *data)
3796 {
3797 pid_t pid;
3798
3799 /* We must make sure that there are no pending events (delayed
3800 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3801 program doesn't interfere with any following debugging session. */
3802
3803 /* For cloned processes we must check both with __WCLONE and
3804 without, since the exit status of a cloned process isn't reported
3805 with __WCLONE. */
3806 if (lp->cloned)
3807 {
3808 do
3809 {
3810 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3811 if (pid != (pid_t) -1)
3812 {
3813 if (debug_linux_nat)
3814 fprintf_unfiltered (gdb_stdlog,
3815 "KWC: wait %s received unknown.\n",
3816 target_pid_to_str (lp->ptid));
3817 /* The Linux kernel sometimes fails to kill a thread
3818 completely after PTRACE_KILL; that goes from the stop
3819 point in do_fork out to the one in
3820 get_signal_to_deliever and waits again. So kill it
3821 again. */
3822 kill_callback (lp, NULL);
3823 }
3824 }
3825 while (pid == GET_LWP (lp->ptid));
3826
3827 gdb_assert (pid == -1 && errno == ECHILD);
3828 }
3829
3830 do
3831 {
3832 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3833 if (pid != (pid_t) -1)
3834 {
3835 if (debug_linux_nat)
3836 fprintf_unfiltered (gdb_stdlog,
3837 "KWC: wait %s received unk.\n",
3838 target_pid_to_str (lp->ptid));
3839 /* See the call to kill_callback above. */
3840 kill_callback (lp, NULL);
3841 }
3842 }
3843 while (pid == GET_LWP (lp->ptid));
3844
3845 gdb_assert (pid == -1 && errno == ECHILD);
3846 return 0;
3847 }
3848
3849 static void
3850 linux_nat_kill (struct target_ops *ops)
3851 {
3852 struct target_waitstatus last;
3853 ptid_t last_ptid;
3854 int status;
3855
3856 /* If we're stopped while forking and we haven't followed yet,
3857 kill the other task. We need to do this first because the
3858 parent will be sleeping if this is a vfork. */
3859
3860 get_last_target_status (&last_ptid, &last);
3861
3862 if (last.kind == TARGET_WAITKIND_FORKED
3863 || last.kind == TARGET_WAITKIND_VFORKED)
3864 {
3865 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3866 wait (&status);
3867 }
3868
3869 if (forks_exist_p ())
3870 linux_fork_killall ();
3871 else
3872 {
3873 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3874
3875 /* Stop all threads before killing them, since ptrace requires
3876 that the thread is stopped to sucessfully PTRACE_KILL. */
3877 iterate_over_lwps (ptid, stop_callback, NULL);
3878 /* ... and wait until all of them have reported back that
3879 they're no longer running. */
3880 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3881
3882 /* Kill all LWP's ... */
3883 iterate_over_lwps (ptid, kill_callback, NULL);
3884
3885 /* ... and wait until we've flushed all events. */
3886 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3887 }
3888
3889 target_mourn_inferior ();
3890 }
3891
3892 static void
3893 linux_nat_mourn_inferior (struct target_ops *ops)
3894 {
3895 purge_lwp_list (ptid_get_pid (inferior_ptid));
3896
3897 if (! forks_exist_p ())
3898 /* Normal case, no other forks available. */
3899 linux_ops->to_mourn_inferior (ops);
3900 else
3901 /* Multi-fork case. The current inferior_ptid has exited, but
3902 there are other viable forks to debug. Delete the exiting
3903 one and context-switch to the first available. */
3904 linux_fork_mourn_inferior ();
3905 }
3906
3907 /* Convert a native/host siginfo object, into/from the siginfo in the
3908 layout of the inferiors' architecture. */
3909
3910 static void
3911 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3912 {
3913 int done = 0;
3914
3915 if (linux_nat_siginfo_fixup != NULL)
3916 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3917
3918 /* If there was no callback, or the callback didn't do anything,
3919 then just do a straight memcpy. */
3920 if (!done)
3921 {
3922 if (direction == 1)
3923 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3924 else
3925 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3926 }
3927 }
3928
3929 static LONGEST
3930 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3931 const char *annex, gdb_byte *readbuf,
3932 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3933 {
3934 int pid;
3935 struct siginfo siginfo;
3936 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3937
3938 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3939 gdb_assert (readbuf || writebuf);
3940
3941 pid = GET_LWP (inferior_ptid);
3942 if (pid == 0)
3943 pid = GET_PID (inferior_ptid);
3944
3945 if (offset > sizeof (siginfo))
3946 return -1;
3947
3948 errno = 0;
3949 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3950 if (errno != 0)
3951 return -1;
3952
3953 /* When GDB is built as a 64-bit application, ptrace writes into
3954 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3955 inferior with a 64-bit GDB should look the same as debugging it
3956 with a 32-bit GDB, we need to convert it. GDB core always sees
3957 the converted layout, so any read/write will have to be done
3958 post-conversion. */
3959 siginfo_fixup (&siginfo, inf_siginfo, 0);
3960
3961 if (offset + len > sizeof (siginfo))
3962 len = sizeof (siginfo) - offset;
3963
3964 if (readbuf != NULL)
3965 memcpy (readbuf, inf_siginfo + offset, len);
3966 else
3967 {
3968 memcpy (inf_siginfo + offset, writebuf, len);
3969
3970 /* Convert back to ptrace layout before flushing it out. */
3971 siginfo_fixup (&siginfo, inf_siginfo, 1);
3972
3973 errno = 0;
3974 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3975 if (errno != 0)
3976 return -1;
3977 }
3978
3979 return len;
3980 }
3981
3982 static LONGEST
3983 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3984 const char *annex, gdb_byte *readbuf,
3985 const gdb_byte *writebuf,
3986 ULONGEST offset, LONGEST len)
3987 {
3988 struct cleanup *old_chain;
3989 LONGEST xfer;
3990
3991 if (object == TARGET_OBJECT_SIGNAL_INFO)
3992 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3993 offset, len);
3994
3995 /* The target is connected but no live inferior is selected. Pass
3996 this request down to a lower stratum (e.g., the executable
3997 file). */
3998 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3999 return 0;
4000
4001 old_chain = save_inferior_ptid ();
4002
4003 if (is_lwp (inferior_ptid))
4004 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4005
4006 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4007 offset, len);
4008
4009 do_cleanups (old_chain);
4010 return xfer;
4011 }
4012
4013 static int
4014 linux_thread_alive (ptid_t ptid)
4015 {
4016 int err, tmp_errno;
4017
4018 gdb_assert (is_lwp (ptid));
4019
4020 /* Send signal 0 instead of anything ptrace, because ptracing a
4021 running thread errors out claiming that the thread doesn't
4022 exist. */
4023 err = kill_lwp (GET_LWP (ptid), 0);
4024 tmp_errno = errno;
4025 if (debug_linux_nat)
4026 fprintf_unfiltered (gdb_stdlog,
4027 "LLTA: KILL(SIG0) %s (%s)\n",
4028 target_pid_to_str (ptid),
4029 err ? safe_strerror (tmp_errno) : "OK");
4030
4031 if (err != 0)
4032 return 0;
4033
4034 return 1;
4035 }
4036
4037 static int
4038 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4039 {
4040 return linux_thread_alive (ptid);
4041 }
4042
4043 static char *
4044 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4045 {
4046 static char buf[64];
4047
4048 if (is_lwp (ptid)
4049 && (GET_PID (ptid) != GET_LWP (ptid)
4050 || num_lwps (GET_PID (ptid)) > 1))
4051 {
4052 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4053 return buf;
4054 }
4055
4056 return normal_pid_to_str (ptid);
4057 }
4058
4059 static char *
4060 linux_nat_thread_name (struct thread_info *thr)
4061 {
4062 int pid = ptid_get_pid (thr->ptid);
4063 long lwp = ptid_get_lwp (thr->ptid);
4064 #define FORMAT "/proc/%d/task/%ld/comm"
4065 char buf[sizeof (FORMAT) + 30];
4066 FILE *comm_file;
4067 char *result = NULL;
4068
4069 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4070 comm_file = fopen (buf, "r");
4071 if (comm_file)
4072 {
4073 /* Not exported by the kernel, so we define it here. */
4074 #define COMM_LEN 16
4075 static char line[COMM_LEN + 1];
4076
4077 if (fgets (line, sizeof (line), comm_file))
4078 {
4079 char *nl = strchr (line, '\n');
4080
4081 if (nl)
4082 *nl = '\0';
4083 if (*line != '\0')
4084 result = line;
4085 }
4086
4087 fclose (comm_file);
4088 }
4089
4090 #undef COMM_LEN
4091 #undef FORMAT
4092
4093 return result;
4094 }
4095
4096 /* Accepts an integer PID; Returns a string representing a file that
4097 can be opened to get the symbols for the child process. */
4098
4099 static char *
4100 linux_child_pid_to_exec_file (int pid)
4101 {
4102 char *name1, *name2;
4103
4104 name1 = xmalloc (MAXPATHLEN);
4105 name2 = xmalloc (MAXPATHLEN);
4106 make_cleanup (xfree, name1);
4107 make_cleanup (xfree, name2);
4108 memset (name2, 0, MAXPATHLEN);
4109
4110 sprintf (name1, "/proc/%d/exe", pid);
4111 if (readlink (name1, name2, MAXPATHLEN) > 0)
4112 return name2;
4113 else
4114 return name1;
4115 }
4116
4117 /* Service function for corefiles and info proc. */
4118
4119 static int
4120 read_mapping (FILE *mapfile,
4121 long long *addr,
4122 long long *endaddr,
4123 char *permissions,
4124 long long *offset,
4125 char *device, long long *inode, char *filename)
4126 {
4127 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4128 addr, endaddr, permissions, offset, device, inode);
4129
4130 filename[0] = '\0';
4131 if (ret > 0 && ret != EOF)
4132 {
4133 /* Eat everything up to EOL for the filename. This will prevent
4134 weird filenames (such as one with embedded whitespace) from
4135 confusing this code. It also makes this code more robust in
4136 respect to annotations the kernel may add after the filename.
4137
4138 Note the filename is used for informational purposes
4139 only. */
4140 ret += fscanf (mapfile, "%[^\n]\n", filename);
4141 }
4142
4143 return (ret != 0 && ret != EOF);
4144 }
4145
4146 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4147 regions in the inferior for a corefile. */
4148
4149 static int
4150 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4151 {
4152 int pid = PIDGET (inferior_ptid);
4153 char mapsfilename[MAXPATHLEN];
4154 FILE *mapsfile;
4155 long long addr, endaddr, size, offset, inode;
4156 char permissions[8], device[8], filename[MAXPATHLEN];
4157 int read, write, exec;
4158 struct cleanup *cleanup;
4159
4160 /* Compose the filename for the /proc memory map, and open it. */
4161 sprintf (mapsfilename, "/proc/%d/maps", pid);
4162 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4163 error (_("Could not open %s."), mapsfilename);
4164 cleanup = make_cleanup_fclose (mapsfile);
4165
4166 if (info_verbose)
4167 fprintf_filtered (gdb_stdout,
4168 "Reading memory regions from %s\n", mapsfilename);
4169
4170 /* Now iterate until end-of-file. */
4171 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4172 &offset, &device[0], &inode, &filename[0]))
4173 {
4174 size = endaddr - addr;
4175
4176 /* Get the segment's permissions. */
4177 read = (strchr (permissions, 'r') != 0);
4178 write = (strchr (permissions, 'w') != 0);
4179 exec = (strchr (permissions, 'x') != 0);
4180
4181 if (info_verbose)
4182 {
4183 fprintf_filtered (gdb_stdout,
4184 "Save segment, %s bytes at %s (%c%c%c)",
4185 plongest (size), paddress (target_gdbarch, addr),
4186 read ? 'r' : ' ',
4187 write ? 'w' : ' ', exec ? 'x' : ' ');
4188 if (filename[0])
4189 fprintf_filtered (gdb_stdout, " for %s", filename);
4190 fprintf_filtered (gdb_stdout, "\n");
4191 }
4192
4193 /* Invoke the callback function to create the corefile
4194 segment. */
4195 func (addr, size, read, write, exec, obfd);
4196 }
4197 do_cleanups (cleanup);
4198 return 0;
4199 }
4200
4201 static int
4202 find_signalled_thread (struct thread_info *info, void *data)
4203 {
4204 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4205 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4206 return 1;
4207
4208 return 0;
4209 }
4210
4211 static enum target_signal
4212 find_stop_signal (void)
4213 {
4214 struct thread_info *info =
4215 iterate_over_threads (find_signalled_thread, NULL);
4216
4217 if (info)
4218 return info->suspend.stop_signal;
4219 else
4220 return TARGET_SIGNAL_0;
4221 }
4222
4223 /* Records the thread's register state for the corefile note
4224 section. */
4225
4226 static char *
4227 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4228 char *note_data, int *note_size,
4229 enum target_signal stop_signal)
4230 {
4231 unsigned long lwp = ptid_get_lwp (ptid);
4232 struct gdbarch *gdbarch = target_gdbarch;
4233 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4234 const struct regset *regset;
4235 int core_regset_p;
4236 struct cleanup *old_chain;
4237 struct core_regset_section *sect_list;
4238 char *gdb_regset;
4239
4240 old_chain = save_inferior_ptid ();
4241 inferior_ptid = ptid;
4242 target_fetch_registers (regcache, -1);
4243 do_cleanups (old_chain);
4244
4245 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4246 sect_list = gdbarch_core_regset_sections (gdbarch);
4247
4248 /* The loop below uses the new struct core_regset_section, which stores
4249 the supported section names and sizes for the core file. Note that
4250 note PRSTATUS needs to be treated specially. But the other notes are
4251 structurally the same, so they can benefit from the new struct. */
4252 if (core_regset_p && sect_list != NULL)
4253 while (sect_list->sect_name != NULL)
4254 {
4255 regset = gdbarch_regset_from_core_section (gdbarch,
4256 sect_list->sect_name,
4257 sect_list->size);
4258 gdb_assert (regset && regset->collect_regset);
4259 gdb_regset = xmalloc (sect_list->size);
4260 regset->collect_regset (regset, regcache, -1,
4261 gdb_regset, sect_list->size);
4262
4263 if (strcmp (sect_list->sect_name, ".reg") == 0)
4264 note_data = (char *) elfcore_write_prstatus
4265 (obfd, note_data, note_size,
4266 lwp, target_signal_to_host (stop_signal),
4267 gdb_regset);
4268 else
4269 note_data = (char *) elfcore_write_register_note
4270 (obfd, note_data, note_size,
4271 sect_list->sect_name, gdb_regset,
4272 sect_list->size);
4273 xfree (gdb_regset);
4274 sect_list++;
4275 }
4276
4277 /* For architectures that does not have the struct core_regset_section
4278 implemented, we use the old method. When all the architectures have
4279 the new support, the code below should be deleted. */
4280 else
4281 {
4282 gdb_gregset_t gregs;
4283 gdb_fpregset_t fpregs;
4284
4285 if (core_regset_p
4286 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4287 sizeof (gregs)))
4288 != NULL && regset->collect_regset != NULL)
4289 regset->collect_regset (regset, regcache, -1,
4290 &gregs, sizeof (gregs));
4291 else
4292 fill_gregset (regcache, &gregs, -1);
4293
4294 note_data = (char *) elfcore_write_prstatus
4295 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4296 &gregs);
4297
4298 if (core_regset_p
4299 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4300 sizeof (fpregs)))
4301 != NULL && regset->collect_regset != NULL)
4302 regset->collect_regset (regset, regcache, -1,
4303 &fpregs, sizeof (fpregs));
4304 else
4305 fill_fpregset (regcache, &fpregs, -1);
4306
4307 note_data = (char *) elfcore_write_prfpreg (obfd,
4308 note_data,
4309 note_size,
4310 &fpregs, sizeof (fpregs));
4311 }
4312
4313 return note_data;
4314 }
4315
4316 struct linux_nat_corefile_thread_data
4317 {
4318 bfd *obfd;
4319 char *note_data;
4320 int *note_size;
4321 int num_notes;
4322 enum target_signal stop_signal;
4323 };
4324
4325 /* Called by gdbthread.c once per thread. Records the thread's
4326 register state for the corefile note section. */
4327
4328 static int
4329 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4330 {
4331 struct linux_nat_corefile_thread_data *args = data;
4332
4333 args->note_data = linux_nat_do_thread_registers (args->obfd,
4334 ti->ptid,
4335 args->note_data,
4336 args->note_size,
4337 args->stop_signal);
4338 args->num_notes++;
4339
4340 return 0;
4341 }
4342
4343 /* Enumerate spufs IDs for process PID. */
4344
4345 static void
4346 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4347 {
4348 char path[128];
4349 DIR *dir;
4350 struct dirent *entry;
4351
4352 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4353 dir = opendir (path);
4354 if (!dir)
4355 return;
4356
4357 rewinddir (dir);
4358 while ((entry = readdir (dir)) != NULL)
4359 {
4360 struct stat st;
4361 struct statfs stfs;
4362 int fd;
4363
4364 fd = atoi (entry->d_name);
4365 if (!fd)
4366 continue;
4367
4368 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4369 if (stat (path, &st) != 0)
4370 continue;
4371 if (!S_ISDIR (st.st_mode))
4372 continue;
4373
4374 if (statfs (path, &stfs) != 0)
4375 continue;
4376 if (stfs.f_type != SPUFS_MAGIC)
4377 continue;
4378
4379 callback (data, fd);
4380 }
4381
4382 closedir (dir);
4383 }
4384
4385 /* Generate corefile notes for SPU contexts. */
4386
4387 struct linux_spu_corefile_data
4388 {
4389 bfd *obfd;
4390 char *note_data;
4391 int *note_size;
4392 };
4393
4394 static void
4395 linux_spu_corefile_callback (void *data, int fd)
4396 {
4397 struct linux_spu_corefile_data *args = data;
4398 int i;
4399
4400 static const char *spu_files[] =
4401 {
4402 "object-id",
4403 "mem",
4404 "regs",
4405 "fpcr",
4406 "lslr",
4407 "decr",
4408 "decr_status",
4409 "signal1",
4410 "signal1_type",
4411 "signal2",
4412 "signal2_type",
4413 "event_mask",
4414 "event_status",
4415 "mbox_info",
4416 "ibox_info",
4417 "wbox_info",
4418 "dma_info",
4419 "proxydma_info",
4420 };
4421
4422 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4423 {
4424 char annex[32], note_name[32];
4425 gdb_byte *spu_data;
4426 LONGEST spu_len;
4427
4428 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4429 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4430 annex, &spu_data);
4431 if (spu_len > 0)
4432 {
4433 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4434 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4435 args->note_size, note_name,
4436 NT_SPU, spu_data, spu_len);
4437 xfree (spu_data);
4438 }
4439 }
4440 }
4441
4442 static char *
4443 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4444 {
4445 struct linux_spu_corefile_data args;
4446
4447 args.obfd = obfd;
4448 args.note_data = note_data;
4449 args.note_size = note_size;
4450
4451 iterate_over_spus (PIDGET (inferior_ptid),
4452 linux_spu_corefile_callback, &args);
4453
4454 return args.note_data;
4455 }
4456
4457 /* Fills the "to_make_corefile_note" target vector. Builds the note
4458 section for a corefile, and returns it in a malloc buffer. */
4459
4460 static char *
4461 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4462 {
4463 struct linux_nat_corefile_thread_data thread_args;
4464 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4465 char fname[16] = { '\0' };
4466 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4467 char psargs[80] = { '\0' };
4468 char *note_data = NULL;
4469 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4470 gdb_byte *auxv;
4471 int auxv_len;
4472
4473 if (get_exec_file (0))
4474 {
4475 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
4476 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4477 if (get_inferior_args ())
4478 {
4479 char *string_end;
4480 char *psargs_end = psargs + sizeof (psargs);
4481
4482 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4483 strings fine. */
4484 string_end = memchr (psargs, 0, sizeof (psargs));
4485 if (string_end != NULL)
4486 {
4487 *string_end++ = ' ';
4488 strncpy (string_end, get_inferior_args (),
4489 psargs_end - string_end);
4490 }
4491 }
4492 note_data = (char *) elfcore_write_prpsinfo (obfd,
4493 note_data,
4494 note_size, fname, psargs);
4495 }
4496
4497 /* Dump information for threads. */
4498 thread_args.obfd = obfd;
4499 thread_args.note_data = note_data;
4500 thread_args.note_size = note_size;
4501 thread_args.num_notes = 0;
4502 thread_args.stop_signal = find_stop_signal ();
4503 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4504 gdb_assert (thread_args.num_notes != 0);
4505 note_data = thread_args.note_data;
4506
4507 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4508 NULL, &auxv);
4509 if (auxv_len > 0)
4510 {
4511 note_data = elfcore_write_note (obfd, note_data, note_size,
4512 "CORE", NT_AUXV, auxv, auxv_len);
4513 xfree (auxv);
4514 }
4515
4516 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4517
4518 make_cleanup (xfree, note_data);
4519 return note_data;
4520 }
4521
4522 /* Implement the "info proc" command. */
4523
4524 static void
4525 linux_nat_info_proc_cmd (char *args, int from_tty)
4526 {
4527 /* A long is used for pid instead of an int to avoid a loss of precision
4528 compiler warning from the output of strtoul. */
4529 long pid = PIDGET (inferior_ptid);
4530 FILE *procfile;
4531 char **argv = NULL;
4532 char buffer[MAXPATHLEN];
4533 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4534 int cmdline_f = 1;
4535 int cwd_f = 1;
4536 int exe_f = 1;
4537 int mappings_f = 0;
4538 int status_f = 0;
4539 int stat_f = 0;
4540 int all = 0;
4541 struct stat dummy;
4542
4543 if (args)
4544 {
4545 /* Break up 'args' into an argv array. */
4546 argv = gdb_buildargv (args);
4547 make_cleanup_freeargv (argv);
4548 }
4549 while (argv != NULL && *argv != NULL)
4550 {
4551 if (isdigit (argv[0][0]))
4552 {
4553 pid = strtoul (argv[0], NULL, 10);
4554 }
4555 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4556 {
4557 mappings_f = 1;
4558 }
4559 else if (strcmp (argv[0], "status") == 0)
4560 {
4561 status_f = 1;
4562 }
4563 else if (strcmp (argv[0], "stat") == 0)
4564 {
4565 stat_f = 1;
4566 }
4567 else if (strcmp (argv[0], "cmd") == 0)
4568 {
4569 cmdline_f = 1;
4570 }
4571 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4572 {
4573 exe_f = 1;
4574 }
4575 else if (strcmp (argv[0], "cwd") == 0)
4576 {
4577 cwd_f = 1;
4578 }
4579 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4580 {
4581 all = 1;
4582 }
4583 else
4584 {
4585 /* [...] (future options here). */
4586 }
4587 argv++;
4588 }
4589 if (pid == 0)
4590 error (_("No current process: you must name one."));
4591
4592 sprintf (fname1, "/proc/%ld", pid);
4593 if (stat (fname1, &dummy) != 0)
4594 error (_("No /proc directory: '%s'"), fname1);
4595
4596 printf_filtered (_("process %ld\n"), pid);
4597 if (cmdline_f || all)
4598 {
4599 sprintf (fname1, "/proc/%ld/cmdline", pid);
4600 if ((procfile = fopen (fname1, "r")) != NULL)
4601 {
4602 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4603
4604 if (fgets (buffer, sizeof (buffer), procfile))
4605 printf_filtered ("cmdline = '%s'\n", buffer);
4606 else
4607 warning (_("unable to read '%s'"), fname1);
4608 do_cleanups (cleanup);
4609 }
4610 else
4611 warning (_("unable to open /proc file '%s'"), fname1);
4612 }
4613 if (cwd_f || all)
4614 {
4615 sprintf (fname1, "/proc/%ld/cwd", pid);
4616 memset (fname2, 0, sizeof (fname2));
4617 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4618 printf_filtered ("cwd = '%s'\n", fname2);
4619 else
4620 warning (_("unable to read link '%s'"), fname1);
4621 }
4622 if (exe_f || all)
4623 {
4624 sprintf (fname1, "/proc/%ld/exe", pid);
4625 memset (fname2, 0, sizeof (fname2));
4626 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4627 printf_filtered ("exe = '%s'\n", fname2);
4628 else
4629 warning (_("unable to read link '%s'"), fname1);
4630 }
4631 if (mappings_f || all)
4632 {
4633 sprintf (fname1, "/proc/%ld/maps", pid);
4634 if ((procfile = fopen (fname1, "r")) != NULL)
4635 {
4636 long long addr, endaddr, size, offset, inode;
4637 char permissions[8], device[8], filename[MAXPATHLEN];
4638 struct cleanup *cleanup;
4639
4640 cleanup = make_cleanup_fclose (procfile);
4641 printf_filtered (_("Mapped address spaces:\n\n"));
4642 if (gdbarch_addr_bit (target_gdbarch) == 32)
4643 {
4644 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4645 "Start Addr",
4646 " End Addr",
4647 " Size", " Offset", "objfile");
4648 }
4649 else
4650 {
4651 printf_filtered (" %18s %18s %10s %10s %7s\n",
4652 "Start Addr",
4653 " End Addr",
4654 " Size", " Offset", "objfile");
4655 }
4656
4657 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4658 &offset, &device[0], &inode, &filename[0]))
4659 {
4660 size = endaddr - addr;
4661
4662 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4663 calls here (and possibly above) should be abstracted
4664 out into their own functions? Andrew suggests using
4665 a generic local_address_string instead to print out
4666 the addresses; that makes sense to me, too. */
4667
4668 if (gdbarch_addr_bit (target_gdbarch) == 32)
4669 {
4670 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4671 (unsigned long) addr, /* FIXME: pr_addr */
4672 (unsigned long) endaddr,
4673 (int) size,
4674 (unsigned int) offset,
4675 filename[0] ? filename : "");
4676 }
4677 else
4678 {
4679 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4680 (unsigned long) addr, /* FIXME: pr_addr */
4681 (unsigned long) endaddr,
4682 (int) size,
4683 (unsigned int) offset,
4684 filename[0] ? filename : "");
4685 }
4686 }
4687
4688 do_cleanups (cleanup);
4689 }
4690 else
4691 warning (_("unable to open /proc file '%s'"), fname1);
4692 }
4693 if (status_f || all)
4694 {
4695 sprintf (fname1, "/proc/%ld/status", pid);
4696 if ((procfile = fopen (fname1, "r")) != NULL)
4697 {
4698 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4699
4700 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4701 puts_filtered (buffer);
4702 do_cleanups (cleanup);
4703 }
4704 else
4705 warning (_("unable to open /proc file '%s'"), fname1);
4706 }
4707 if (stat_f || all)
4708 {
4709 sprintf (fname1, "/proc/%ld/stat", pid);
4710 if ((procfile = fopen (fname1, "r")) != NULL)
4711 {
4712 int itmp;
4713 char ctmp;
4714 long ltmp;
4715 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4716
4717 if (fscanf (procfile, "%d ", &itmp) > 0)
4718 printf_filtered (_("Process: %d\n"), itmp);
4719 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4720 printf_filtered (_("Exec file: %s\n"), buffer);
4721 if (fscanf (procfile, "%c ", &ctmp) > 0)
4722 printf_filtered (_("State: %c\n"), ctmp);
4723 if (fscanf (procfile, "%d ", &itmp) > 0)
4724 printf_filtered (_("Parent process: %d\n"), itmp);
4725 if (fscanf (procfile, "%d ", &itmp) > 0)
4726 printf_filtered (_("Process group: %d\n"), itmp);
4727 if (fscanf (procfile, "%d ", &itmp) > 0)
4728 printf_filtered (_("Session id: %d\n"), itmp);
4729 if (fscanf (procfile, "%d ", &itmp) > 0)
4730 printf_filtered (_("TTY: %d\n"), itmp);
4731 if (fscanf (procfile, "%d ", &itmp) > 0)
4732 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4733 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4734 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4735 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4736 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4737 (unsigned long) ltmp);
4738 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4739 printf_filtered (_("Minor faults, children: %lu\n"),
4740 (unsigned long) ltmp);
4741 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4742 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4743 (unsigned long) ltmp);
4744 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4745 printf_filtered (_("Major faults, children: %lu\n"),
4746 (unsigned long) ltmp);
4747 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4748 printf_filtered (_("utime: %ld\n"), ltmp);
4749 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4750 printf_filtered (_("stime: %ld\n"), ltmp);
4751 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4752 printf_filtered (_("utime, children: %ld\n"), ltmp);
4753 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4754 printf_filtered (_("stime, children: %ld\n"), ltmp);
4755 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4756 printf_filtered (_("jiffies remaining in current "
4757 "time slice: %ld\n"), ltmp);
4758 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4759 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4760 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4761 printf_filtered (_("jiffies until next timeout: %lu\n"),
4762 (unsigned long) ltmp);
4763 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4764 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4765 (unsigned long) ltmp);
4766 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4767 printf_filtered (_("start time (jiffies since "
4768 "system boot): %ld\n"), ltmp);
4769 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4770 printf_filtered (_("Virtual memory size: %lu\n"),
4771 (unsigned long) ltmp);
4772 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4773 printf_filtered (_("Resident set size: %lu\n"),
4774 (unsigned long) ltmp);
4775 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4776 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4777 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4778 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4779 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4780 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4781 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4782 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4783 #if 0 /* Don't know how architecture-dependent the rest is...
4784 Anyway the signal bitmap info is available from "status". */
4785 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4786 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4787 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4788 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4789 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4790 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4791 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4792 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4793 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4794 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4795 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4796 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4797 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4798 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4799 #endif
4800 do_cleanups (cleanup);
4801 }
4802 else
4803 warning (_("unable to open /proc file '%s'"), fname1);
4804 }
4805 }
4806
4807 /* Implement the to_xfer_partial interface for memory reads using the /proc
4808 filesystem. Because we can use a single read() call for /proc, this
4809 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4810 but it doesn't support writes. */
4811
4812 static LONGEST
4813 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4814 const char *annex, gdb_byte *readbuf,
4815 const gdb_byte *writebuf,
4816 ULONGEST offset, LONGEST len)
4817 {
4818 LONGEST ret;
4819 int fd;
4820 char filename[64];
4821
4822 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4823 return 0;
4824
4825 /* Don't bother for one word. */
4826 if (len < 3 * sizeof (long))
4827 return 0;
4828
4829 /* We could keep this file open and cache it - possibly one per
4830 thread. That requires some juggling, but is even faster. */
4831 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4832 fd = open (filename, O_RDONLY | O_LARGEFILE);
4833 if (fd == -1)
4834 return 0;
4835
4836 /* If pread64 is available, use it. It's faster if the kernel
4837 supports it (only one syscall), and it's 64-bit safe even on
4838 32-bit platforms (for instance, SPARC debugging a SPARC64
4839 application). */
4840 #ifdef HAVE_PREAD64
4841 if (pread64 (fd, readbuf, len, offset) != len)
4842 #else
4843 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4844 #endif
4845 ret = 0;
4846 else
4847 ret = len;
4848
4849 close (fd);
4850 return ret;
4851 }
4852
4853
4854 /* Enumerate spufs IDs for process PID. */
4855 static LONGEST
4856 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4857 {
4858 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4859 LONGEST pos = 0;
4860 LONGEST written = 0;
4861 char path[128];
4862 DIR *dir;
4863 struct dirent *entry;
4864
4865 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4866 dir = opendir (path);
4867 if (!dir)
4868 return -1;
4869
4870 rewinddir (dir);
4871 while ((entry = readdir (dir)) != NULL)
4872 {
4873 struct stat st;
4874 struct statfs stfs;
4875 int fd;
4876
4877 fd = atoi (entry->d_name);
4878 if (!fd)
4879 continue;
4880
4881 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4882 if (stat (path, &st) != 0)
4883 continue;
4884 if (!S_ISDIR (st.st_mode))
4885 continue;
4886
4887 if (statfs (path, &stfs) != 0)
4888 continue;
4889 if (stfs.f_type != SPUFS_MAGIC)
4890 continue;
4891
4892 if (pos >= offset && pos + 4 <= offset + len)
4893 {
4894 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4895 written += 4;
4896 }
4897 pos += 4;
4898 }
4899
4900 closedir (dir);
4901 return written;
4902 }
4903
4904 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4905 object type, using the /proc file system. */
4906 static LONGEST
4907 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4908 const char *annex, gdb_byte *readbuf,
4909 const gdb_byte *writebuf,
4910 ULONGEST offset, LONGEST len)
4911 {
4912 char buf[128];
4913 int fd = 0;
4914 int ret = -1;
4915 int pid = PIDGET (inferior_ptid);
4916
4917 if (!annex)
4918 {
4919 if (!readbuf)
4920 return -1;
4921 else
4922 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4923 }
4924
4925 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4926 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4927 if (fd <= 0)
4928 return -1;
4929
4930 if (offset != 0
4931 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4932 {
4933 close (fd);
4934 return 0;
4935 }
4936
4937 if (writebuf)
4938 ret = write (fd, writebuf, (size_t) len);
4939 else if (readbuf)
4940 ret = read (fd, readbuf, (size_t) len);
4941
4942 close (fd);
4943 return ret;
4944 }
4945
4946
4947 /* Parse LINE as a signal set and add its set bits to SIGS. */
4948
4949 static void
4950 add_line_to_sigset (const char *line, sigset_t *sigs)
4951 {
4952 int len = strlen (line) - 1;
4953 const char *p;
4954 int signum;
4955
4956 if (line[len] != '\n')
4957 error (_("Could not parse signal set: %s"), line);
4958
4959 p = line;
4960 signum = len * 4;
4961 while (len-- > 0)
4962 {
4963 int digit;
4964
4965 if (*p >= '0' && *p <= '9')
4966 digit = *p - '0';
4967 else if (*p >= 'a' && *p <= 'f')
4968 digit = *p - 'a' + 10;
4969 else
4970 error (_("Could not parse signal set: %s"), line);
4971
4972 signum -= 4;
4973
4974 if (digit & 1)
4975 sigaddset (sigs, signum + 1);
4976 if (digit & 2)
4977 sigaddset (sigs, signum + 2);
4978 if (digit & 4)
4979 sigaddset (sigs, signum + 3);
4980 if (digit & 8)
4981 sigaddset (sigs, signum + 4);
4982
4983 p++;
4984 }
4985 }
4986
4987 /* Find process PID's pending signals from /proc/pid/status and set
4988 SIGS to match. */
4989
4990 void
4991 linux_proc_pending_signals (int pid, sigset_t *pending,
4992 sigset_t *blocked, sigset_t *ignored)
4993 {
4994 FILE *procfile;
4995 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4996 struct cleanup *cleanup;
4997
4998 sigemptyset (pending);
4999 sigemptyset (blocked);
5000 sigemptyset (ignored);
5001 sprintf (fname, "/proc/%d/status", pid);
5002 procfile = fopen (fname, "r");
5003 if (procfile == NULL)
5004 error (_("Could not open %s"), fname);
5005 cleanup = make_cleanup_fclose (procfile);
5006
5007 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
5008 {
5009 /* Normal queued signals are on the SigPnd line in the status
5010 file. However, 2.6 kernels also have a "shared" pending
5011 queue for delivering signals to a thread group, so check for
5012 a ShdPnd line also.
5013
5014 Unfortunately some Red Hat kernels include the shared pending
5015 queue but not the ShdPnd status field. */
5016
5017 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5018 add_line_to_sigset (buffer + 8, pending);
5019 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5020 add_line_to_sigset (buffer + 8, pending);
5021 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5022 add_line_to_sigset (buffer + 8, blocked);
5023 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5024 add_line_to_sigset (buffer + 8, ignored);
5025 }
5026
5027 do_cleanups (cleanup);
5028 }
5029
5030 static LONGEST
5031 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5032 const char *annex, gdb_byte *readbuf,
5033 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5034 {
5035 /* We make the process list snapshot when the object starts to be
5036 read. */
5037 static const char *buf;
5038 static LONGEST len_avail = -1;
5039 static struct obstack obstack;
5040
5041 DIR *dirp;
5042
5043 gdb_assert (object == TARGET_OBJECT_OSDATA);
5044
5045 if (!annex)
5046 {
5047 if (offset == 0)
5048 {
5049 if (len_avail != -1 && len_avail != 0)
5050 obstack_free (&obstack, NULL);
5051 len_avail = 0;
5052 buf = NULL;
5053 obstack_init (&obstack);
5054 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
5055
5056 obstack_xml_printf (&obstack,
5057 "<item>"
5058 "<column name=\"Type\">processes</column>"
5059 "<column name=\"Description\">"
5060 "Listing of all processes</column>"
5061 "</item>");
5062
5063 obstack_grow_str0 (&obstack, "</osdata>\n");
5064 buf = obstack_finish (&obstack);
5065 len_avail = strlen (buf);
5066 }
5067
5068 if (offset >= len_avail)
5069 {
5070 /* Done. Get rid of the obstack. */
5071 obstack_free (&obstack, NULL);
5072 buf = NULL;
5073 len_avail = 0;
5074 return 0;
5075 }
5076
5077 if (len > len_avail - offset)
5078 len = len_avail - offset;
5079 memcpy (readbuf, buf + offset, len);
5080
5081 return len;
5082 }
5083
5084 if (strcmp (annex, "processes") != 0)
5085 return 0;
5086
5087 gdb_assert (readbuf && !writebuf);
5088
5089 if (offset == 0)
5090 {
5091 if (len_avail != -1 && len_avail != 0)
5092 obstack_free (&obstack, NULL);
5093 len_avail = 0;
5094 buf = NULL;
5095 obstack_init (&obstack);
5096 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5097
5098 dirp = opendir ("/proc");
5099 if (dirp)
5100 {
5101 struct dirent *dp;
5102
5103 while ((dp = readdir (dirp)) != NULL)
5104 {
5105 struct stat statbuf;
5106 char procentry[sizeof ("/proc/4294967295")];
5107
5108 if (!isdigit (dp->d_name[0])
5109 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5110 continue;
5111
5112 sprintf (procentry, "/proc/%s", dp->d_name);
5113 if (stat (procentry, &statbuf) == 0
5114 && S_ISDIR (statbuf.st_mode))
5115 {
5116 char *pathname;
5117 FILE *f;
5118 char cmd[MAXPATHLEN + 1];
5119 struct passwd *entry;
5120
5121 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5122 entry = getpwuid (statbuf.st_uid);
5123
5124 if ((f = fopen (pathname, "r")) != NULL)
5125 {
5126 size_t length = fread (cmd, 1, sizeof (cmd) - 1, f);
5127
5128 if (length > 0)
5129 {
5130 int i;
5131
5132 for (i = 0; i < length; i++)
5133 if (cmd[i] == '\0')
5134 cmd[i] = ' ';
5135 cmd[length] = '\0';
5136
5137 obstack_xml_printf (
5138 &obstack,
5139 "<item>"
5140 "<column name=\"pid\">%s</column>"
5141 "<column name=\"user\">%s</column>"
5142 "<column name=\"command\">%s</column>"
5143 "</item>",
5144 dp->d_name,
5145 entry ? entry->pw_name : "?",
5146 cmd);
5147 }
5148 fclose (f);
5149 }
5150
5151 xfree (pathname);
5152 }
5153 }
5154
5155 closedir (dirp);
5156 }
5157
5158 obstack_grow_str0 (&obstack, "</osdata>\n");
5159 buf = obstack_finish (&obstack);
5160 len_avail = strlen (buf);
5161 }
5162
5163 if (offset >= len_avail)
5164 {
5165 /* Done. Get rid of the obstack. */
5166 obstack_free (&obstack, NULL);
5167 buf = NULL;
5168 len_avail = 0;
5169 return 0;
5170 }
5171
5172 if (len > len_avail - offset)
5173 len = len_avail - offset;
5174 memcpy (readbuf, buf + offset, len);
5175
5176 return len;
5177 }
5178
5179 static LONGEST
5180 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5181 const char *annex, gdb_byte *readbuf,
5182 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5183 {
5184 LONGEST xfer;
5185
5186 if (object == TARGET_OBJECT_AUXV)
5187 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5188 offset, len);
5189
5190 if (object == TARGET_OBJECT_OSDATA)
5191 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5192 offset, len);
5193
5194 if (object == TARGET_OBJECT_SPU)
5195 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5196 offset, len);
5197
5198 /* GDB calculates all the addresses in possibly larget width of the address.
5199 Address width needs to be masked before its final use - either by
5200 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5201
5202 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5203
5204 if (object == TARGET_OBJECT_MEMORY)
5205 {
5206 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5207
5208 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5209 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5210 }
5211
5212 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5213 offset, len);
5214 if (xfer != 0)
5215 return xfer;
5216
5217 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5218 offset, len);
5219 }
5220
5221 /* Create a prototype generic GNU/Linux target. The client can override
5222 it with local methods. */
5223
5224 static void
5225 linux_target_install_ops (struct target_ops *t)
5226 {
5227 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5228 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
5229 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5230 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
5231 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5232 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
5233 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5234 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5235 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5236 t->to_post_attach = linux_child_post_attach;
5237 t->to_follow_fork = linux_child_follow_fork;
5238 t->to_find_memory_regions = linux_nat_find_memory_regions;
5239 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5240
5241 super_xfer_partial = t->to_xfer_partial;
5242 t->to_xfer_partial = linux_xfer_partial;
5243 }
5244
5245 struct target_ops *
5246 linux_target (void)
5247 {
5248 struct target_ops *t;
5249
5250 t = inf_ptrace_target ();
5251 linux_target_install_ops (t);
5252
5253 return t;
5254 }
5255
5256 struct target_ops *
5257 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5258 {
5259 struct target_ops *t;
5260
5261 t = inf_ptrace_trad_target (register_u_offset);
5262 linux_target_install_ops (t);
5263
5264 return t;
5265 }
5266
5267 /* target_is_async_p implementation. */
5268
5269 static int
5270 linux_nat_is_async_p (void)
5271 {
5272 /* NOTE: palves 2008-03-21: We're only async when the user requests
5273 it explicitly with the "set target-async" command.
5274 Someday, linux will always be async. */
5275 if (!target_async_permitted)
5276 return 0;
5277
5278 /* See target.h/target_async_mask. */
5279 return linux_nat_async_mask_value;
5280 }
5281
5282 /* target_can_async_p implementation. */
5283
5284 static int
5285 linux_nat_can_async_p (void)
5286 {
5287 /* NOTE: palves 2008-03-21: We're only async when the user requests
5288 it explicitly with the "set target-async" command.
5289 Someday, linux will always be async. */
5290 if (!target_async_permitted)
5291 return 0;
5292
5293 /* See target.h/target_async_mask. */
5294 return linux_nat_async_mask_value;
5295 }
5296
5297 static int
5298 linux_nat_supports_non_stop (void)
5299 {
5300 return 1;
5301 }
5302
5303 /* True if we want to support multi-process. To be removed when GDB
5304 supports multi-exec. */
5305
5306 int linux_multi_process = 1;
5307
5308 static int
5309 linux_nat_supports_multi_process (void)
5310 {
5311 return linux_multi_process;
5312 }
5313
5314 /* target_async_mask implementation. */
5315
5316 static int
5317 linux_nat_async_mask (int new_mask)
5318 {
5319 int curr_mask = linux_nat_async_mask_value;
5320
5321 if (curr_mask != new_mask)
5322 {
5323 if (new_mask == 0)
5324 {
5325 linux_nat_async (NULL, 0);
5326 linux_nat_async_mask_value = new_mask;
5327 }
5328 else
5329 {
5330 linux_nat_async_mask_value = new_mask;
5331
5332 /* If we're going out of async-mask in all-stop, then the
5333 inferior is stopped. The next resume will call
5334 target_async. In non-stop, the target event source
5335 should be always registered in the event loop. Do so
5336 now. */
5337 if (non_stop)
5338 linux_nat_async (inferior_event_handler, 0);
5339 }
5340 }
5341
5342 return curr_mask;
5343 }
5344
5345 static int async_terminal_is_ours = 1;
5346
5347 /* target_terminal_inferior implementation. */
5348
5349 static void
5350 linux_nat_terminal_inferior (void)
5351 {
5352 if (!target_is_async_p ())
5353 {
5354 /* Async mode is disabled. */
5355 terminal_inferior ();
5356 return;
5357 }
5358
5359 terminal_inferior ();
5360
5361 /* Calls to target_terminal_*() are meant to be idempotent. */
5362 if (!async_terminal_is_ours)
5363 return;
5364
5365 delete_file_handler (input_fd);
5366 async_terminal_is_ours = 0;
5367 set_sigint_trap ();
5368 }
5369
5370 /* target_terminal_ours implementation. */
5371
5372 static void
5373 linux_nat_terminal_ours (void)
5374 {
5375 if (!target_is_async_p ())
5376 {
5377 /* Async mode is disabled. */
5378 terminal_ours ();
5379 return;
5380 }
5381
5382 /* GDB should never give the terminal to the inferior if the
5383 inferior is running in the background (run&, continue&, etc.),
5384 but claiming it sure should. */
5385 terminal_ours ();
5386
5387 if (async_terminal_is_ours)
5388 return;
5389
5390 clear_sigint_trap ();
5391 add_file_handler (input_fd, stdin_event_handler, 0);
5392 async_terminal_is_ours = 1;
5393 }
5394
5395 static void (*async_client_callback) (enum inferior_event_type event_type,
5396 void *context);
5397 static void *async_client_context;
5398
5399 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5400 so we notice when any child changes state, and notify the
5401 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5402 above to wait for the arrival of a SIGCHLD. */
5403
5404 static void
5405 sigchld_handler (int signo)
5406 {
5407 int old_errno = errno;
5408
5409 if (debug_linux_nat)
5410 ui_file_write_async_safe (gdb_stdlog,
5411 "sigchld\n", sizeof ("sigchld\n") - 1);
5412
5413 if (signo == SIGCHLD
5414 && linux_nat_event_pipe[0] != -1)
5415 async_file_mark (); /* Let the event loop know that there are
5416 events to handle. */
5417
5418 errno = old_errno;
5419 }
5420
5421 /* Callback registered with the target events file descriptor. */
5422
5423 static void
5424 handle_target_event (int error, gdb_client_data client_data)
5425 {
5426 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5427 }
5428
5429 /* Create/destroy the target events pipe. Returns previous state. */
5430
5431 static int
5432 linux_async_pipe (int enable)
5433 {
5434 int previous = (linux_nat_event_pipe[0] != -1);
5435
5436 if (previous != enable)
5437 {
5438 sigset_t prev_mask;
5439
5440 block_child_signals (&prev_mask);
5441
5442 if (enable)
5443 {
5444 if (pipe (linux_nat_event_pipe) == -1)
5445 internal_error (__FILE__, __LINE__,
5446 "creating event pipe failed.");
5447
5448 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5449 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5450 }
5451 else
5452 {
5453 close (linux_nat_event_pipe[0]);
5454 close (linux_nat_event_pipe[1]);
5455 linux_nat_event_pipe[0] = -1;
5456 linux_nat_event_pipe[1] = -1;
5457 }
5458
5459 restore_child_signals_mask (&prev_mask);
5460 }
5461
5462 return previous;
5463 }
5464
5465 /* target_async implementation. */
5466
5467 static void
5468 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5469 void *context), void *context)
5470 {
5471 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5472 internal_error (__FILE__, __LINE__,
5473 "Calling target_async when async is masked");
5474
5475 if (callback != NULL)
5476 {
5477 async_client_callback = callback;
5478 async_client_context = context;
5479 if (!linux_async_pipe (1))
5480 {
5481 add_file_handler (linux_nat_event_pipe[0],
5482 handle_target_event, NULL);
5483 /* There may be pending events to handle. Tell the event loop
5484 to poll them. */
5485 async_file_mark ();
5486 }
5487 }
5488 else
5489 {
5490 async_client_callback = callback;
5491 async_client_context = context;
5492 delete_file_handler (linux_nat_event_pipe[0]);
5493 linux_async_pipe (0);
5494 }
5495 return;
5496 }
5497
5498 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5499 event came out. */
5500
5501 static int
5502 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5503 {
5504 if (!lwp->stopped)
5505 {
5506 ptid_t ptid = lwp->ptid;
5507
5508 if (debug_linux_nat)
5509 fprintf_unfiltered (gdb_stdlog,
5510 "LNSL: running -> suspending %s\n",
5511 target_pid_to_str (lwp->ptid));
5512
5513
5514 stop_callback (lwp, NULL);
5515 stop_wait_callback (lwp, NULL);
5516
5517 /* If the lwp exits while we try to stop it, there's nothing
5518 else to do. */
5519 lwp = find_lwp_pid (ptid);
5520 if (lwp == NULL)
5521 return 0;
5522
5523 /* If we didn't collect any signal other than SIGSTOP while
5524 stopping the LWP, push a SIGNAL_0 event. In either case, the
5525 event-loop will end up calling target_wait which will collect
5526 these. */
5527 if (lwp->status == 0)
5528 lwp->status = W_STOPCODE (0);
5529 async_file_mark ();
5530 }
5531 else
5532 {
5533 /* Already known to be stopped; do nothing. */
5534
5535 if (debug_linux_nat)
5536 {
5537 if (find_thread_ptid (lwp->ptid)->stop_requested)
5538 fprintf_unfiltered (gdb_stdlog,
5539 "LNSL: already stopped/stop_requested %s\n",
5540 target_pid_to_str (lwp->ptid));
5541 else
5542 fprintf_unfiltered (gdb_stdlog,
5543 "LNSL: already stopped/no "
5544 "stop_requested yet %s\n",
5545 target_pid_to_str (lwp->ptid));
5546 }
5547 }
5548 return 0;
5549 }
5550
5551 static void
5552 linux_nat_stop (ptid_t ptid)
5553 {
5554 if (non_stop)
5555 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5556 else
5557 linux_ops->to_stop (ptid);
5558 }
5559
5560 static void
5561 linux_nat_close (int quitting)
5562 {
5563 /* Unregister from the event loop. */
5564 if (target_is_async_p ())
5565 target_async (NULL, 0);
5566
5567 /* Reset the async_masking. */
5568 linux_nat_async_mask_value = 1;
5569
5570 if (linux_ops->to_close)
5571 linux_ops->to_close (quitting);
5572 }
5573
5574 /* When requests are passed down from the linux-nat layer to the
5575 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5576 used. The address space pointer is stored in the inferior object,
5577 but the common code that is passed such ptid can't tell whether
5578 lwpid is a "main" process id or not (it assumes so). We reverse
5579 look up the "main" process id from the lwp here. */
5580
5581 struct address_space *
5582 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5583 {
5584 struct lwp_info *lwp;
5585 struct inferior *inf;
5586 int pid;
5587
5588 pid = GET_LWP (ptid);
5589 if (GET_LWP (ptid) == 0)
5590 {
5591 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5592 tgid. */
5593 lwp = find_lwp_pid (ptid);
5594 pid = GET_PID (lwp->ptid);
5595 }
5596 else
5597 {
5598 /* A (pid,lwpid,0) ptid. */
5599 pid = GET_PID (ptid);
5600 }
5601
5602 inf = find_inferior_pid (pid);
5603 gdb_assert (inf != NULL);
5604 return inf->aspace;
5605 }
5606
5607 int
5608 linux_nat_core_of_thread_1 (ptid_t ptid)
5609 {
5610 struct cleanup *back_to;
5611 char *filename;
5612 FILE *f;
5613 char *content = NULL;
5614 char *p;
5615 char *ts = 0;
5616 int content_read = 0;
5617 int i;
5618 int core;
5619
5620 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5621 GET_PID (ptid), GET_LWP (ptid));
5622 back_to = make_cleanup (xfree, filename);
5623
5624 f = fopen (filename, "r");
5625 if (!f)
5626 {
5627 do_cleanups (back_to);
5628 return -1;
5629 }
5630
5631 make_cleanup_fclose (f);
5632
5633 for (;;)
5634 {
5635 int n;
5636
5637 content = xrealloc (content, content_read + 1024);
5638 n = fread (content + content_read, 1, 1024, f);
5639 content_read += n;
5640 if (n < 1024)
5641 {
5642 content[content_read] = '\0';
5643 break;
5644 }
5645 }
5646
5647 make_cleanup (xfree, content);
5648
5649 p = strchr (content, '(');
5650
5651 /* Skip ")". */
5652 if (p != NULL)
5653 p = strchr (p, ')');
5654 if (p != NULL)
5655 p++;
5656
5657 /* If the first field after program name has index 0, then core number is
5658 the field with index 36. There's no constant for that anywhere. */
5659 if (p != NULL)
5660 p = strtok_r (p, " ", &ts);
5661 for (i = 0; p != NULL && i != 36; ++i)
5662 p = strtok_r (NULL, " ", &ts);
5663
5664 if (p == NULL || sscanf (p, "%d", &core) == 0)
5665 core = -1;
5666
5667 do_cleanups (back_to);
5668
5669 return core;
5670 }
5671
5672 /* Return the cached value of the processor core for thread PTID. */
5673
5674 int
5675 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5676 {
5677 struct lwp_info *info = find_lwp_pid (ptid);
5678
5679 if (info)
5680 return info->core;
5681 return -1;
5682 }
5683
5684 void
5685 linux_nat_add_target (struct target_ops *t)
5686 {
5687 /* Save the provided single-threaded target. We save this in a separate
5688 variable because another target we've inherited from (e.g. inf-ptrace)
5689 may have saved a pointer to T; we want to use it for the final
5690 process stratum target. */
5691 linux_ops_saved = *t;
5692 linux_ops = &linux_ops_saved;
5693
5694 /* Override some methods for multithreading. */
5695 t->to_create_inferior = linux_nat_create_inferior;
5696 t->to_attach = linux_nat_attach;
5697 t->to_detach = linux_nat_detach;
5698 t->to_resume = linux_nat_resume;
5699 t->to_wait = linux_nat_wait;
5700 t->to_pass_signals = linux_nat_pass_signals;
5701 t->to_xfer_partial = linux_nat_xfer_partial;
5702 t->to_kill = linux_nat_kill;
5703 t->to_mourn_inferior = linux_nat_mourn_inferior;
5704 t->to_thread_alive = linux_nat_thread_alive;
5705 t->to_pid_to_str = linux_nat_pid_to_str;
5706 t->to_thread_name = linux_nat_thread_name;
5707 t->to_has_thread_control = tc_schedlock;
5708 t->to_thread_address_space = linux_nat_thread_address_space;
5709 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5710 t->to_stopped_data_address = linux_nat_stopped_data_address;
5711
5712 t->to_can_async_p = linux_nat_can_async_p;
5713 t->to_is_async_p = linux_nat_is_async_p;
5714 t->to_supports_non_stop = linux_nat_supports_non_stop;
5715 t->to_async = linux_nat_async;
5716 t->to_async_mask = linux_nat_async_mask;
5717 t->to_terminal_inferior = linux_nat_terminal_inferior;
5718 t->to_terminal_ours = linux_nat_terminal_ours;
5719 t->to_close = linux_nat_close;
5720
5721 /* Methods for non-stop support. */
5722 t->to_stop = linux_nat_stop;
5723
5724 t->to_supports_multi_process = linux_nat_supports_multi_process;
5725
5726 t->to_core_of_thread = linux_nat_core_of_thread;
5727
5728 /* We don't change the stratum; this target will sit at
5729 process_stratum and thread_db will set at thread_stratum. This
5730 is a little strange, since this is a multi-threaded-capable
5731 target, but we want to be on the stack below thread_db, and we
5732 also want to be used for single-threaded processes. */
5733
5734 add_target (t);
5735 }
5736
5737 /* Register a method to call whenever a new thread is attached. */
5738 void
5739 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5740 {
5741 /* Save the pointer. We only support a single registered instance
5742 of the GNU/Linux native target, so we do not need to map this to
5743 T. */
5744 linux_nat_new_thread = new_thread;
5745 }
5746
5747 /* Register a method that converts a siginfo object between the layout
5748 that ptrace returns, and the layout in the architecture of the
5749 inferior. */
5750 void
5751 linux_nat_set_siginfo_fixup (struct target_ops *t,
5752 int (*siginfo_fixup) (struct siginfo *,
5753 gdb_byte *,
5754 int))
5755 {
5756 /* Save the pointer. */
5757 linux_nat_siginfo_fixup = siginfo_fixup;
5758 }
5759
5760 /* Return the saved siginfo associated with PTID. */
5761 struct siginfo *
5762 linux_nat_get_siginfo (ptid_t ptid)
5763 {
5764 struct lwp_info *lp = find_lwp_pid (ptid);
5765
5766 gdb_assert (lp != NULL);
5767
5768 return &lp->siginfo;
5769 }
5770
5771 /* Provide a prototype to silence -Wmissing-prototypes. */
5772 extern initialize_file_ftype _initialize_linux_nat;
5773
5774 void
5775 _initialize_linux_nat (void)
5776 {
5777 add_info ("proc", linux_nat_info_proc_cmd, _("\
5778 Show /proc process information about any running process.\n\
5779 Specify any process id, or use the program being debugged by default.\n\
5780 Specify any of the following keywords for detailed info:\n\
5781 mappings -- list of mapped memory regions.\n\
5782 stat -- list a bunch of random process info.\n\
5783 status -- list a different bunch of random process info.\n\
5784 all -- list all available /proc info."));
5785
5786 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5787 &debug_linux_nat, _("\
5788 Set debugging of GNU/Linux lwp module."), _("\
5789 Show debugging of GNU/Linux lwp module."), _("\
5790 Enables printf debugging output."),
5791 NULL,
5792 show_debug_linux_nat,
5793 &setdebuglist, &showdebuglist);
5794
5795 /* Save this mask as the default. */
5796 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5797
5798 /* Install a SIGCHLD handler. */
5799 sigchld_action.sa_handler = sigchld_handler;
5800 sigemptyset (&sigchld_action.sa_mask);
5801 sigchld_action.sa_flags = SA_RESTART;
5802
5803 /* Make it the default. */
5804 sigaction (SIGCHLD, &sigchld_action, NULL);
5805
5806 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5807 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5808 sigdelset (&suspend_mask, SIGCHLD);
5809
5810 sigemptyset (&blocked_mask);
5811
5812 add_setshow_boolean_cmd ("disable-randomization", class_support,
5813 &disable_randomization, _("\
5814 Set disabling of debuggee's virtual address space randomization."), _("\
5815 Show disabling of debuggee's virtual address space randomization."), _("\
5816 When this mode is on (which is the default), randomization of the virtual\n\
5817 address space is disabled. Standalone programs run with the randomization\n\
5818 enabled by default on some platforms."),
5819 &set_disable_randomization,
5820 &show_disable_randomization,
5821 &setlist, &showlist);
5822 }
5823 \f
5824
5825 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5826 the GNU/Linux Threads library and therefore doesn't really belong
5827 here. */
5828
5829 /* Read variable NAME in the target and return its value if found.
5830 Otherwise return zero. It is assumed that the type of the variable
5831 is `int'. */
5832
5833 static int
5834 get_signo (const char *name)
5835 {
5836 struct minimal_symbol *ms;
5837 int signo;
5838
5839 ms = lookup_minimal_symbol (name, NULL, NULL);
5840 if (ms == NULL)
5841 return 0;
5842
5843 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5844 sizeof (signo)) != 0)
5845 return 0;
5846
5847 return signo;
5848 }
5849
5850 /* Return the set of signals used by the threads library in *SET. */
5851
5852 void
5853 lin_thread_get_thread_signals (sigset_t *set)
5854 {
5855 struct sigaction action;
5856 int restart, cancel;
5857
5858 sigemptyset (&blocked_mask);
5859 sigemptyset (set);
5860
5861 restart = get_signo ("__pthread_sig_restart");
5862 cancel = get_signo ("__pthread_sig_cancel");
5863
5864 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5865 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5866 not provide any way for the debugger to query the signal numbers -
5867 fortunately they don't change! */
5868
5869 if (restart == 0)
5870 restart = __SIGRTMIN;
5871
5872 if (cancel == 0)
5873 cancel = __SIGRTMIN + 1;
5874
5875 sigaddset (set, restart);
5876 sigaddset (set, cancel);
5877
5878 /* The GNU/Linux Threads library makes terminating threads send a
5879 special "cancel" signal instead of SIGCHLD. Make sure we catch
5880 those (to prevent them from terminating GDB itself, which is
5881 likely to be their default action) and treat them the same way as
5882 SIGCHLD. */
5883
5884 action.sa_handler = sigchld_handler;
5885 sigemptyset (&action.sa_mask);
5886 action.sa_flags = SA_RESTART;
5887 sigaction (cancel, &action, NULL);
5888
5889 /* We block the "cancel" signal throughout this code ... */
5890 sigaddset (&blocked_mask, cancel);
5891 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5892
5893 /* ... except during a sigsuspend. */
5894 sigdelset (&suspend_mask, cancel);
5895 }
This page took 0.2049 seconds and 4 git commands to generate.