4f53670da5e34cab07656b0637cdbcc24841ae51
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "gdbsupport/event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "gdbsupport/buffer.h"
64 #include "target-descriptions.h"
65 #include "gdbsupport/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "gdbsupport/fileio.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/gdb-sigmask.h"
71 #include "debug.h"
72
73 /* This comment documents high-level logic of this file.
74
75 Waiting for events in sync mode
76 ===============================
77
78 When waiting for an event in a specific thread, we just use waitpid,
79 passing the specific pid, and not passing WNOHANG.
80
81 When waiting for an event in all threads, waitpid is not quite good:
82
83 - If the thread group leader exits while other threads in the thread
84 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
85 return an exit status until the other threads in the group are
86 reaped.
87
88 - When a non-leader thread execs, that thread just vanishes without
89 reporting an exit (so we'd hang if we waited for it explicitly in
90 that case). The exec event is instead reported to the TGID pid.
91
92 The solution is to always use -1 and WNOHANG, together with
93 sigsuspend.
94
95 First, we use non-blocking waitpid to check for events. If nothing is
96 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
97 it means something happened to a child process. As soon as we know
98 there's an event, we get back to calling nonblocking waitpid.
99
100 Note that SIGCHLD should be blocked between waitpid and sigsuspend
101 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
102 when it's blocked, the signal becomes pending and sigsuspend
103 immediately notices it and returns.
104
105 Waiting for events in async mode (TARGET_WNOHANG)
106 =================================================
107
108 In async mode, GDB should always be ready to handle both user input
109 and target events, so neither blocking waitpid nor sigsuspend are
110 viable options. Instead, we should asynchronously notify the GDB main
111 event loop whenever there's an unprocessed event from the target. We
112 detect asynchronous target events by handling SIGCHLD signals. To
113 notify the event loop about target events, the self-pipe trick is used
114 --- a pipe is registered as waitable event source in the event loop,
115 the event loop select/poll's on the read end of this pipe (as well on
116 other event sources, e.g., stdin), and the SIGCHLD handler writes a
117 byte to this pipe. This is more portable than relying on
118 pselect/ppoll, since on kernels that lack those syscalls, libc
119 emulates them with select/poll+sigprocmask, and that is racy
120 (a.k.a. plain broken).
121
122 Obviously, if we fail to notify the event loop if there's a target
123 event, it's bad. OTOH, if we notify the event loop when there's no
124 event from the target, linux_nat_wait will detect that there's no real
125 event to report, and return event of type TARGET_WAITKIND_IGNORE.
126 This is mostly harmless, but it will waste time and is better avoided.
127
128 The main design point is that every time GDB is outside linux-nat.c,
129 we have a SIGCHLD handler installed that is called when something
130 happens to the target and notifies the GDB event loop. Whenever GDB
131 core decides to handle the event, and calls into linux-nat.c, we
132 process things as in sync mode, except that the we never block in
133 sigsuspend.
134
135 While processing an event, we may end up momentarily blocked in
136 waitpid calls. Those waitpid calls, while blocking, are guarantied to
137 return quickly. E.g., in all-stop mode, before reporting to the core
138 that an LWP hit a breakpoint, all LWPs are stopped by sending them
139 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
140 Note that this is different from blocking indefinitely waiting for the
141 next event --- here, we're already handling an event.
142
143 Use of signals
144 ==============
145
146 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
147 signal is not entirely significant; we just need for a signal to be delivered,
148 so that we can intercept it. SIGSTOP's advantage is that it can not be
149 blocked. A disadvantage is that it is not a real-time signal, so it can only
150 be queued once; we do not keep track of other sources of SIGSTOP.
151
152 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
153 use them, because they have special behavior when the signal is generated -
154 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
155 kills the entire thread group.
156
157 A delivered SIGSTOP would stop the entire thread group, not just the thread we
158 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
159 cancel it (by PTRACE_CONT without passing SIGSTOP).
160
161 We could use a real-time signal instead. This would solve those problems; we
162 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
163 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
164 generates it, and there are races with trying to find a signal that is not
165 blocked.
166
167 Exec events
168 ===========
169
170 The case of a thread group (process) with 3 or more threads, and a
171 thread other than the leader execs is worth detailing:
172
173 On an exec, the Linux kernel destroys all threads except the execing
174 one in the thread group, and resets the execing thread's tid to the
175 tgid. No exit notification is sent for the execing thread -- from the
176 ptracer's perspective, it appears as though the execing thread just
177 vanishes. Until we reap all other threads except the leader and the
178 execing thread, the leader will be zombie, and the execing thread will
179 be in `D (disc sleep)' state. As soon as all other threads are
180 reaped, the execing thread changes its tid to the tgid, and the
181 previous (zombie) leader vanishes, giving place to the "new"
182 leader. */
183
184 #ifndef O_LARGEFILE
185 #define O_LARGEFILE 0
186 #endif
187
188 struct linux_nat_target *linux_target;
189
190 /* Does the current host support PTRACE_GETREGSET? */
191 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
192
193 static unsigned int debug_linux_nat;
194 static void
195 show_debug_linux_nat (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
199 value);
200 }
201
202 /* Print a debug statement. Should be used through linux_nat_debug_printf. */
203
204 static void ATTRIBUTE_PRINTF (2, 3)
205 linux_nat_debug_printf_1 (const char *func_name, const char *fmt, ...)
206 {
207 va_list ap;
208 va_start (ap, fmt);
209 debug_prefixed_vprintf ("linux-nat", func_name, fmt, ap);
210 va_end (ap);
211 }
212
213 #define linux_nat_debug_printf(fmt, ...) \
214 do { \
215 if (debug_linux_nat) \
216 linux_nat_debug_printf_1 (__func__, fmt, ##__VA_ARGS__); \
217 } while (0)
218
219 struct simple_pid_list
220 {
221 int pid;
222 int status;
223 struct simple_pid_list *next;
224 };
225 static struct simple_pid_list *stopped_pids;
226
227 /* Whether target_thread_events is in effect. */
228 static int report_thread_events;
229
230 /* Async mode support. */
231
232 /* The read/write ends of the pipe registered as waitable file in the
233 event loop. */
234 static int linux_nat_event_pipe[2] = { -1, -1 };
235
236 /* True if we're currently in async mode. */
237 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
238
239 /* Flush the event pipe. */
240
241 static void
242 async_file_flush (void)
243 {
244 int ret;
245 char buf;
246
247 do
248 {
249 ret = read (linux_nat_event_pipe[0], &buf, 1);
250 }
251 while (ret >= 0 || (ret == -1 && errno == EINTR));
252 }
253
254 /* Put something (anything, doesn't matter what, or how much) in event
255 pipe, so that the select/poll in the event-loop realizes we have
256 something to process. */
257
258 static void
259 async_file_mark (void)
260 {
261 int ret;
262
263 /* It doesn't really matter what the pipe contains, as long we end
264 up with something in it. Might as well flush the previous
265 left-overs. */
266 async_file_flush ();
267
268 do
269 {
270 ret = write (linux_nat_event_pipe[1], "+", 1);
271 }
272 while (ret == -1 && errno == EINTR);
273
274 /* Ignore EAGAIN. If the pipe is full, the event loop will already
275 be awakened anyway. */
276 }
277
278 static int kill_lwp (int lwpid, int signo);
279
280 static int stop_callback (struct lwp_info *lp);
281
282 static void block_child_signals (sigset_t *prev_mask);
283 static void restore_child_signals_mask (sigset_t *prev_mask);
284
285 struct lwp_info;
286 static struct lwp_info *add_lwp (ptid_t ptid);
287 static void purge_lwp_list (int pid);
288 static void delete_lwp (ptid_t ptid);
289 static struct lwp_info *find_lwp_pid (ptid_t ptid);
290
291 static int lwp_status_pending_p (struct lwp_info *lp);
292
293 static void save_stop_reason (struct lwp_info *lp);
294
295 \f
296 /* LWP accessors. */
297
298 /* See nat/linux-nat.h. */
299
300 ptid_t
301 ptid_of_lwp (struct lwp_info *lwp)
302 {
303 return lwp->ptid;
304 }
305
306 /* See nat/linux-nat.h. */
307
308 void
309 lwp_set_arch_private_info (struct lwp_info *lwp,
310 struct arch_lwp_info *info)
311 {
312 lwp->arch_private = info;
313 }
314
315 /* See nat/linux-nat.h. */
316
317 struct arch_lwp_info *
318 lwp_arch_private_info (struct lwp_info *lwp)
319 {
320 return lwp->arch_private;
321 }
322
323 /* See nat/linux-nat.h. */
324
325 int
326 lwp_is_stopped (struct lwp_info *lwp)
327 {
328 return lwp->stopped;
329 }
330
331 /* See nat/linux-nat.h. */
332
333 enum target_stop_reason
334 lwp_stop_reason (struct lwp_info *lwp)
335 {
336 return lwp->stop_reason;
337 }
338
339 /* See nat/linux-nat.h. */
340
341 int
342 lwp_is_stepping (struct lwp_info *lwp)
343 {
344 return lwp->step;
345 }
346
347 \f
348 /* Trivial list manipulation functions to keep track of a list of
349 new stopped processes. */
350 static void
351 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
352 {
353 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
354
355 new_pid->pid = pid;
356 new_pid->status = status;
357 new_pid->next = *listp;
358 *listp = new_pid;
359 }
360
361 static int
362 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
363 {
364 struct simple_pid_list **p;
365
366 for (p = listp; *p != NULL; p = &(*p)->next)
367 if ((*p)->pid == pid)
368 {
369 struct simple_pid_list *next = (*p)->next;
370
371 *statusp = (*p)->status;
372 xfree (*p);
373 *p = next;
374 return 1;
375 }
376 return 0;
377 }
378
379 /* Return the ptrace options that we want to try to enable. */
380
381 static int
382 linux_nat_ptrace_options (int attached)
383 {
384 int options = 0;
385
386 if (!attached)
387 options |= PTRACE_O_EXITKILL;
388
389 options |= (PTRACE_O_TRACESYSGOOD
390 | PTRACE_O_TRACEVFORKDONE
391 | PTRACE_O_TRACEVFORK
392 | PTRACE_O_TRACEFORK
393 | PTRACE_O_TRACEEXEC);
394
395 return options;
396 }
397
398 /* Initialize ptrace and procfs warnings and check for supported
399 ptrace features given PID.
400
401 ATTACHED should be nonzero iff we attached to the inferior. */
402
403 static void
404 linux_init_ptrace_procfs (pid_t pid, int attached)
405 {
406 int options = linux_nat_ptrace_options (attached);
407
408 linux_enable_event_reporting (pid, options);
409 linux_ptrace_init_warnings ();
410 linux_proc_init_warnings ();
411 }
412
413 linux_nat_target::~linux_nat_target ()
414 {}
415
416 void
417 linux_nat_target::post_attach (int pid)
418 {
419 linux_init_ptrace_procfs (pid, 1);
420 }
421
422 void
423 linux_nat_target::post_startup_inferior (ptid_t ptid)
424 {
425 linux_init_ptrace_procfs (ptid.pid (), 0);
426 }
427
428 /* Return the number of known LWPs in the tgid given by PID. */
429
430 static int
431 num_lwps (int pid)
432 {
433 int count = 0;
434 struct lwp_info *lp;
435
436 for (lp = lwp_list; lp; lp = lp->next)
437 if (lp->ptid.pid () == pid)
438 count++;
439
440 return count;
441 }
442
443 /* Deleter for lwp_info unique_ptr specialisation. */
444
445 struct lwp_deleter
446 {
447 void operator() (struct lwp_info *lwp) const
448 {
449 delete_lwp (lwp->ptid);
450 }
451 };
452
453 /* A unique_ptr specialisation for lwp_info. */
454
455 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
456
457 /* Target hook for follow_fork. On entry inferior_ptid must be the
458 ptid of the followed inferior. At return, inferior_ptid will be
459 unchanged. */
460
461 bool
462 linux_nat_target::follow_fork (bool follow_child, bool detach_fork)
463 {
464 if (!follow_child)
465 {
466 struct lwp_info *child_lp = NULL;
467 int has_vforked;
468 ptid_t parent_ptid, child_ptid;
469 int parent_pid, child_pid;
470
471 has_vforked = (inferior_thread ()->pending_follow.kind
472 == TARGET_WAITKIND_VFORKED);
473 parent_ptid = inferior_ptid;
474 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
475 parent_pid = parent_ptid.lwp ();
476 child_pid = child_ptid.lwp ();
477
478 /* We're already attached to the parent, by default. */
479 child_lp = add_lwp (child_ptid);
480 child_lp->stopped = 1;
481 child_lp->last_resume_kind = resume_stop;
482
483 /* Detach new forked process? */
484 if (detach_fork)
485 {
486 int child_stop_signal = 0;
487 bool detach_child = true;
488
489 /* Move CHILD_LP into a unique_ptr and clear the source pointer
490 to prevent us doing anything stupid with it. */
491 lwp_info_up child_lp_ptr (child_lp);
492 child_lp = nullptr;
493
494 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
495
496 /* When debugging an inferior in an architecture that supports
497 hardware single stepping on a kernel without commit
498 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
499 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
500 set if the parent process had them set.
501 To work around this, single step the child process
502 once before detaching to clear the flags. */
503
504 /* Note that we consult the parent's architecture instead of
505 the child's because there's no inferior for the child at
506 this point. */
507 if (!gdbarch_software_single_step_p (target_thread_architecture
508 (parent_ptid)))
509 {
510 int status;
511
512 linux_disable_event_reporting (child_pid);
513 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
514 perror_with_name (_("Couldn't do single step"));
515 if (my_waitpid (child_pid, &status, 0) < 0)
516 perror_with_name (_("Couldn't wait vfork process"));
517 else
518 {
519 detach_child = WIFSTOPPED (status);
520 child_stop_signal = WSTOPSIG (status);
521 }
522 }
523
524 if (detach_child)
525 {
526 int signo = child_stop_signal;
527
528 if (signo != 0
529 && !signal_pass_state (gdb_signal_from_host (signo)))
530 signo = 0;
531 ptrace (PTRACE_DETACH, child_pid, 0, signo);
532 }
533 }
534 else
535 {
536 /* Switching inferior_ptid is not enough, because then
537 inferior_thread () would crash by not finding the thread
538 in the current inferior. */
539 scoped_restore_current_thread restore_current_thread;
540 thread_info *child = find_thread_ptid (this, child_ptid);
541 switch_to_thread (child);
542
543 /* Let the thread_db layer learn about this new process. */
544 check_for_thread_db ();
545 }
546
547 if (has_vforked)
548 {
549 struct lwp_info *parent_lp;
550
551 parent_lp = find_lwp_pid (parent_ptid);
552 gdb_assert (linux_supports_tracefork () >= 0);
553
554 if (linux_supports_tracevforkdone ())
555 {
556 linux_nat_debug_printf ("waiting for VFORK_DONE on %d",
557 parent_pid);
558 parent_lp->stopped = 1;
559
560 /* We'll handle the VFORK_DONE event like any other
561 event, in target_wait. */
562 }
563 else
564 {
565 /* We can't insert breakpoints until the child has
566 finished with the shared memory region. We need to
567 wait until that happens. Ideal would be to just
568 call:
569 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
570 - waitpid (parent_pid, &status, __WALL);
571 However, most architectures can't handle a syscall
572 being traced on the way out if it wasn't traced on
573 the way in.
574
575 We might also think to loop, continuing the child
576 until it exits or gets a SIGTRAP. One problem is
577 that the child might call ptrace with PTRACE_TRACEME.
578
579 There's no simple and reliable way to figure out when
580 the vforked child will be done with its copy of the
581 shared memory. We could step it out of the syscall,
582 two instructions, let it go, and then single-step the
583 parent once. When we have hardware single-step, this
584 would work; with software single-step it could still
585 be made to work but we'd have to be able to insert
586 single-step breakpoints in the child, and we'd have
587 to insert -just- the single-step breakpoint in the
588 parent. Very awkward.
589
590 In the end, the best we can do is to make sure it
591 runs for a little while. Hopefully it will be out of
592 range of any breakpoints we reinsert. Usually this
593 is only the single-step breakpoint at vfork's return
594 point. */
595
596 linux_nat_debug_printf ("no VFORK_DONE support, sleeping a bit");
597
598 usleep (10000);
599
600 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
601 and leave it pending. The next linux_nat_resume call
602 will notice a pending event, and bypasses actually
603 resuming the inferior. */
604 parent_lp->status = 0;
605 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
606 parent_lp->stopped = 1;
607
608 /* If we're in async mode, need to tell the event loop
609 there's something here to process. */
610 if (target_is_async_p ())
611 async_file_mark ();
612 }
613 }
614 }
615 else
616 {
617 struct lwp_info *child_lp;
618
619 child_lp = add_lwp (inferior_ptid);
620 child_lp->stopped = 1;
621 child_lp->last_resume_kind = resume_stop;
622
623 /* Let the thread_db layer learn about this new process. */
624 check_for_thread_db ();
625 }
626
627 return false;
628 }
629
630 \f
631 int
632 linux_nat_target::insert_fork_catchpoint (int pid)
633 {
634 return !linux_supports_tracefork ();
635 }
636
637 int
638 linux_nat_target::remove_fork_catchpoint (int pid)
639 {
640 return 0;
641 }
642
643 int
644 linux_nat_target::insert_vfork_catchpoint (int pid)
645 {
646 return !linux_supports_tracefork ();
647 }
648
649 int
650 linux_nat_target::remove_vfork_catchpoint (int pid)
651 {
652 return 0;
653 }
654
655 int
656 linux_nat_target::insert_exec_catchpoint (int pid)
657 {
658 return !linux_supports_tracefork ();
659 }
660
661 int
662 linux_nat_target::remove_exec_catchpoint (int pid)
663 {
664 return 0;
665 }
666
667 int
668 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
669 gdb::array_view<const int> syscall_counts)
670 {
671 if (!linux_supports_tracesysgood ())
672 return 1;
673
674 /* On GNU/Linux, we ignore the arguments. It means that we only
675 enable the syscall catchpoints, but do not disable them.
676
677 Also, we do not use the `syscall_counts' information because we do not
678 filter system calls here. We let GDB do the logic for us. */
679 return 0;
680 }
681
682 /* List of known LWPs, keyed by LWP PID. This speeds up the common
683 case of mapping a PID returned from the kernel to our corresponding
684 lwp_info data structure. */
685 static htab_t lwp_lwpid_htab;
686
687 /* Calculate a hash from a lwp_info's LWP PID. */
688
689 static hashval_t
690 lwp_info_hash (const void *ap)
691 {
692 const struct lwp_info *lp = (struct lwp_info *) ap;
693 pid_t pid = lp->ptid.lwp ();
694
695 return iterative_hash_object (pid, 0);
696 }
697
698 /* Equality function for the lwp_info hash table. Compares the LWP's
699 PID. */
700
701 static int
702 lwp_lwpid_htab_eq (const void *a, const void *b)
703 {
704 const struct lwp_info *entry = (const struct lwp_info *) a;
705 const struct lwp_info *element = (const struct lwp_info *) b;
706
707 return entry->ptid.lwp () == element->ptid.lwp ();
708 }
709
710 /* Create the lwp_lwpid_htab hash table. */
711
712 static void
713 lwp_lwpid_htab_create (void)
714 {
715 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
716 }
717
718 /* Add LP to the hash table. */
719
720 static void
721 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
722 {
723 void **slot;
724
725 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
726 gdb_assert (slot != NULL && *slot == NULL);
727 *slot = lp;
728 }
729
730 /* Head of doubly-linked list of known LWPs. Sorted by reverse
731 creation order. This order is assumed in some cases. E.g.,
732 reaping status after killing alls lwps of a process: the leader LWP
733 must be reaped last. */
734 struct lwp_info *lwp_list;
735
736 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
737
738 static void
739 lwp_list_add (struct lwp_info *lp)
740 {
741 lp->next = lwp_list;
742 if (lwp_list != NULL)
743 lwp_list->prev = lp;
744 lwp_list = lp;
745 }
746
747 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
748 list. */
749
750 static void
751 lwp_list_remove (struct lwp_info *lp)
752 {
753 /* Remove from sorted-by-creation-order list. */
754 if (lp->next != NULL)
755 lp->next->prev = lp->prev;
756 if (lp->prev != NULL)
757 lp->prev->next = lp->next;
758 if (lp == lwp_list)
759 lwp_list = lp->next;
760 }
761
762 \f
763
764 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
765 _initialize_linux_nat. */
766 static sigset_t suspend_mask;
767
768 /* Signals to block to make that sigsuspend work. */
769 static sigset_t blocked_mask;
770
771 /* SIGCHLD action. */
772 struct sigaction sigchld_action;
773
774 /* Block child signals (SIGCHLD and linux threads signals), and store
775 the previous mask in PREV_MASK. */
776
777 static void
778 block_child_signals (sigset_t *prev_mask)
779 {
780 /* Make sure SIGCHLD is blocked. */
781 if (!sigismember (&blocked_mask, SIGCHLD))
782 sigaddset (&blocked_mask, SIGCHLD);
783
784 gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask);
785 }
786
787 /* Restore child signals mask, previously returned by
788 block_child_signals. */
789
790 static void
791 restore_child_signals_mask (sigset_t *prev_mask)
792 {
793 gdb_sigmask (SIG_SETMASK, prev_mask, NULL);
794 }
795
796 /* Mask of signals to pass directly to the inferior. */
797 static sigset_t pass_mask;
798
799 /* Update signals to pass to the inferior. */
800 void
801 linux_nat_target::pass_signals
802 (gdb::array_view<const unsigned char> pass_signals)
803 {
804 int signo;
805
806 sigemptyset (&pass_mask);
807
808 for (signo = 1; signo < NSIG; signo++)
809 {
810 int target_signo = gdb_signal_from_host (signo);
811 if (target_signo < pass_signals.size () && pass_signals[target_signo])
812 sigaddset (&pass_mask, signo);
813 }
814 }
815
816 \f
817
818 /* Prototypes for local functions. */
819 static int stop_wait_callback (struct lwp_info *lp);
820 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
821 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
822
823 \f
824
825 /* Destroy and free LP. */
826
827 static void
828 lwp_free (struct lwp_info *lp)
829 {
830 /* Let the arch specific bits release arch_lwp_info. */
831 linux_target->low_delete_thread (lp->arch_private);
832
833 xfree (lp);
834 }
835
836 /* Traversal function for purge_lwp_list. */
837
838 static int
839 lwp_lwpid_htab_remove_pid (void **slot, void *info)
840 {
841 struct lwp_info *lp = (struct lwp_info *) *slot;
842 int pid = *(int *) info;
843
844 if (lp->ptid.pid () == pid)
845 {
846 htab_clear_slot (lwp_lwpid_htab, slot);
847 lwp_list_remove (lp);
848 lwp_free (lp);
849 }
850
851 return 1;
852 }
853
854 /* Remove all LWPs belong to PID from the lwp list. */
855
856 static void
857 purge_lwp_list (int pid)
858 {
859 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
860 }
861
862 /* Add the LWP specified by PTID to the list. PTID is the first LWP
863 in the process. Return a pointer to the structure describing the
864 new LWP.
865
866 This differs from add_lwp in that we don't let the arch specific
867 bits know about this new thread. Current clients of this callback
868 take the opportunity to install watchpoints in the new thread, and
869 we shouldn't do that for the first thread. If we're spawning a
870 child ("run"), the thread executes the shell wrapper first, and we
871 shouldn't touch it until it execs the program we want to debug.
872 For "attach", it'd be okay to call the callback, but it's not
873 necessary, because watchpoints can't yet have been inserted into
874 the inferior. */
875
876 static struct lwp_info *
877 add_initial_lwp (ptid_t ptid)
878 {
879 struct lwp_info *lp;
880
881 gdb_assert (ptid.lwp_p ());
882
883 lp = XNEW (struct lwp_info);
884
885 memset (lp, 0, sizeof (struct lwp_info));
886
887 lp->last_resume_kind = resume_continue;
888 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
889
890 lp->ptid = ptid;
891 lp->core = -1;
892
893 /* Add to sorted-by-reverse-creation-order list. */
894 lwp_list_add (lp);
895
896 /* Add to keyed-by-pid htab. */
897 lwp_lwpid_htab_add_lwp (lp);
898
899 return lp;
900 }
901
902 /* Add the LWP specified by PID to the list. Return a pointer to the
903 structure describing the new LWP. The LWP should already be
904 stopped. */
905
906 static struct lwp_info *
907 add_lwp (ptid_t ptid)
908 {
909 struct lwp_info *lp;
910
911 lp = add_initial_lwp (ptid);
912
913 /* Let the arch specific bits know about this new thread. Current
914 clients of this callback take the opportunity to install
915 watchpoints in the new thread. We don't do this for the first
916 thread though. See add_initial_lwp. */
917 linux_target->low_new_thread (lp);
918
919 return lp;
920 }
921
922 /* Remove the LWP specified by PID from the list. */
923
924 static void
925 delete_lwp (ptid_t ptid)
926 {
927 struct lwp_info *lp;
928 void **slot;
929 struct lwp_info dummy;
930
931 dummy.ptid = ptid;
932 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
933 if (slot == NULL)
934 return;
935
936 lp = *(struct lwp_info **) slot;
937 gdb_assert (lp != NULL);
938
939 htab_clear_slot (lwp_lwpid_htab, slot);
940
941 /* Remove from sorted-by-creation-order list. */
942 lwp_list_remove (lp);
943
944 /* Release. */
945 lwp_free (lp);
946 }
947
948 /* Return a pointer to the structure describing the LWP corresponding
949 to PID. If no corresponding LWP could be found, return NULL. */
950
951 static struct lwp_info *
952 find_lwp_pid (ptid_t ptid)
953 {
954 struct lwp_info *lp;
955 int lwp;
956 struct lwp_info dummy;
957
958 if (ptid.lwp_p ())
959 lwp = ptid.lwp ();
960 else
961 lwp = ptid.pid ();
962
963 dummy.ptid = ptid_t (0, lwp, 0);
964 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
965 return lp;
966 }
967
968 /* See nat/linux-nat.h. */
969
970 struct lwp_info *
971 iterate_over_lwps (ptid_t filter,
972 gdb::function_view<iterate_over_lwps_ftype> callback)
973 {
974 struct lwp_info *lp, *lpnext;
975
976 for (lp = lwp_list; lp; lp = lpnext)
977 {
978 lpnext = lp->next;
979
980 if (lp->ptid.matches (filter))
981 {
982 if (callback (lp) != 0)
983 return lp;
984 }
985 }
986
987 return NULL;
988 }
989
990 /* Update our internal state when changing from one checkpoint to
991 another indicated by NEW_PTID. We can only switch single-threaded
992 applications, so we only create one new LWP, and the previous list
993 is discarded. */
994
995 void
996 linux_nat_switch_fork (ptid_t new_ptid)
997 {
998 struct lwp_info *lp;
999
1000 purge_lwp_list (inferior_ptid.pid ());
1001
1002 lp = add_lwp (new_ptid);
1003 lp->stopped = 1;
1004
1005 /* This changes the thread's ptid while preserving the gdb thread
1006 num. Also changes the inferior pid, while preserving the
1007 inferior num. */
1008 thread_change_ptid (linux_target, inferior_ptid, new_ptid);
1009
1010 /* We've just told GDB core that the thread changed target id, but,
1011 in fact, it really is a different thread, with different register
1012 contents. */
1013 registers_changed ();
1014 }
1015
1016 /* Handle the exit of a single thread LP. */
1017
1018 static void
1019 exit_lwp (struct lwp_info *lp)
1020 {
1021 struct thread_info *th = find_thread_ptid (linux_target, lp->ptid);
1022
1023 if (th)
1024 {
1025 if (print_thread_events)
1026 printf_unfiltered (_("[%s exited]\n"),
1027 target_pid_to_str (lp->ptid).c_str ());
1028
1029 delete_thread (th);
1030 }
1031
1032 delete_lwp (lp->ptid);
1033 }
1034
1035 /* Wait for the LWP specified by LP, which we have just attached to.
1036 Returns a wait status for that LWP, to cache. */
1037
1038 static int
1039 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1040 {
1041 pid_t new_pid, pid = ptid.lwp ();
1042 int status;
1043
1044 if (linux_proc_pid_is_stopped (pid))
1045 {
1046 linux_nat_debug_printf ("Attaching to a stopped process");
1047
1048 /* The process is definitely stopped. It is in a job control
1049 stop, unless the kernel predates the TASK_STOPPED /
1050 TASK_TRACED distinction, in which case it might be in a
1051 ptrace stop. Make sure it is in a ptrace stop; from there we
1052 can kill it, signal it, et cetera.
1053
1054 First make sure there is a pending SIGSTOP. Since we are
1055 already attached, the process can not transition from stopped
1056 to running without a PTRACE_CONT; so we know this signal will
1057 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1058 probably already in the queue (unless this kernel is old
1059 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1060 is not an RT signal, it can only be queued once. */
1061 kill_lwp (pid, SIGSTOP);
1062
1063 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1064 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1065 ptrace (PTRACE_CONT, pid, 0, 0);
1066 }
1067
1068 /* Make sure the initial process is stopped. The user-level threads
1069 layer might want to poke around in the inferior, and that won't
1070 work if things haven't stabilized yet. */
1071 new_pid = my_waitpid (pid, &status, __WALL);
1072 gdb_assert (pid == new_pid);
1073
1074 if (!WIFSTOPPED (status))
1075 {
1076 /* The pid we tried to attach has apparently just exited. */
1077 linux_nat_debug_printf ("Failed to stop %d: %s", pid,
1078 status_to_str (status));
1079 return status;
1080 }
1081
1082 if (WSTOPSIG (status) != SIGSTOP)
1083 {
1084 *signalled = 1;
1085 linux_nat_debug_printf ("Received %s after attaching",
1086 status_to_str (status));
1087 }
1088
1089 return status;
1090 }
1091
1092 void
1093 linux_nat_target::create_inferior (const char *exec_file,
1094 const std::string &allargs,
1095 char **env, int from_tty)
1096 {
1097 maybe_disable_address_space_randomization restore_personality
1098 (disable_randomization);
1099
1100 /* The fork_child mechanism is synchronous and calls target_wait, so
1101 we have to mask the async mode. */
1102
1103 /* Make sure we report all signals during startup. */
1104 pass_signals ({});
1105
1106 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1107 }
1108
1109 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1110 already attached. Returns true if a new LWP is found, false
1111 otherwise. */
1112
1113 static int
1114 attach_proc_task_lwp_callback (ptid_t ptid)
1115 {
1116 struct lwp_info *lp;
1117
1118 /* Ignore LWPs we're already attached to. */
1119 lp = find_lwp_pid (ptid);
1120 if (lp == NULL)
1121 {
1122 int lwpid = ptid.lwp ();
1123
1124 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1125 {
1126 int err = errno;
1127
1128 /* Be quiet if we simply raced with the thread exiting.
1129 EPERM is returned if the thread's task still exists, and
1130 is marked as exited or zombie, as well as other
1131 conditions, so in that case, confirm the status in
1132 /proc/PID/status. */
1133 if (err == ESRCH
1134 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1135 {
1136 linux_nat_debug_printf
1137 ("Cannot attach to lwp %d: thread is gone (%d: %s)",
1138 lwpid, err, safe_strerror (err));
1139
1140 }
1141 else
1142 {
1143 std::string reason
1144 = linux_ptrace_attach_fail_reason_string (ptid, err);
1145
1146 warning (_("Cannot attach to lwp %d: %s"),
1147 lwpid, reason.c_str ());
1148 }
1149 }
1150 else
1151 {
1152 linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)",
1153 target_pid_to_str (ptid).c_str ());
1154
1155 lp = add_lwp (ptid);
1156
1157 /* The next time we wait for this LWP we'll see a SIGSTOP as
1158 PTRACE_ATTACH brings it to a halt. */
1159 lp->signalled = 1;
1160
1161 /* We need to wait for a stop before being able to make the
1162 next ptrace call on this LWP. */
1163 lp->must_set_ptrace_flags = 1;
1164
1165 /* So that wait collects the SIGSTOP. */
1166 lp->resumed = 1;
1167
1168 /* Also add the LWP to gdb's thread list, in case a
1169 matching libthread_db is not found (or the process uses
1170 raw clone). */
1171 add_thread (linux_target, lp->ptid);
1172 set_running (linux_target, lp->ptid, true);
1173 set_executing (linux_target, lp->ptid, true);
1174 }
1175
1176 return 1;
1177 }
1178 return 0;
1179 }
1180
1181 void
1182 linux_nat_target::attach (const char *args, int from_tty)
1183 {
1184 struct lwp_info *lp;
1185 int status;
1186 ptid_t ptid;
1187
1188 /* Make sure we report all signals during attach. */
1189 pass_signals ({});
1190
1191 try
1192 {
1193 inf_ptrace_target::attach (args, from_tty);
1194 }
1195 catch (const gdb_exception_error &ex)
1196 {
1197 pid_t pid = parse_pid_to_attach (args);
1198 std::string reason = linux_ptrace_attach_fail_reason (pid);
1199
1200 if (!reason.empty ())
1201 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1202 ex.what ());
1203 else
1204 throw_error (ex.error, "%s", ex.what ());
1205 }
1206
1207 /* The ptrace base target adds the main thread with (pid,0,0)
1208 format. Decorate it with lwp info. */
1209 ptid = ptid_t (inferior_ptid.pid (),
1210 inferior_ptid.pid (),
1211 0);
1212 thread_change_ptid (linux_target, inferior_ptid, ptid);
1213
1214 /* Add the initial process as the first LWP to the list. */
1215 lp = add_initial_lwp (ptid);
1216
1217 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1218 if (!WIFSTOPPED (status))
1219 {
1220 if (WIFEXITED (status))
1221 {
1222 int exit_code = WEXITSTATUS (status);
1223
1224 target_terminal::ours ();
1225 target_mourn_inferior (inferior_ptid);
1226 if (exit_code == 0)
1227 error (_("Unable to attach: program exited normally."));
1228 else
1229 error (_("Unable to attach: program exited with code %d."),
1230 exit_code);
1231 }
1232 else if (WIFSIGNALED (status))
1233 {
1234 enum gdb_signal signo;
1235
1236 target_terminal::ours ();
1237 target_mourn_inferior (inferior_ptid);
1238
1239 signo = gdb_signal_from_host (WTERMSIG (status));
1240 error (_("Unable to attach: program terminated with signal "
1241 "%s, %s."),
1242 gdb_signal_to_name (signo),
1243 gdb_signal_to_string (signo));
1244 }
1245
1246 internal_error (__FILE__, __LINE__,
1247 _("unexpected status %d for PID %ld"),
1248 status, (long) ptid.lwp ());
1249 }
1250
1251 lp->stopped = 1;
1252
1253 /* Save the wait status to report later. */
1254 lp->resumed = 1;
1255 linux_nat_debug_printf ("waitpid %ld, saving status %s",
1256 (long) lp->ptid.pid (), status_to_str (status));
1257
1258 lp->status = status;
1259
1260 /* We must attach to every LWP. If /proc is mounted, use that to
1261 find them now. The inferior may be using raw clone instead of
1262 using pthreads. But even if it is using pthreads, thread_db
1263 walks structures in the inferior's address space to find the list
1264 of threads/LWPs, and those structures may well be corrupted.
1265 Note that once thread_db is loaded, we'll still use it to list
1266 threads and associate pthread info with each LWP. */
1267 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1268 attach_proc_task_lwp_callback);
1269
1270 if (target_can_async_p ())
1271 target_async (1);
1272 }
1273
1274 /* Get pending signal of THREAD as a host signal number, for detaching
1275 purposes. This is the signal the thread last stopped for, which we
1276 need to deliver to the thread when detaching, otherwise, it'd be
1277 suppressed/lost. */
1278
1279 static int
1280 get_detach_signal (struct lwp_info *lp)
1281 {
1282 enum gdb_signal signo = GDB_SIGNAL_0;
1283
1284 /* If we paused threads momentarily, we may have stored pending
1285 events in lp->status or lp->waitstatus (see stop_wait_callback),
1286 and GDB core hasn't seen any signal for those threads.
1287 Otherwise, the last signal reported to the core is found in the
1288 thread object's stop_signal.
1289
1290 There's a corner case that isn't handled here at present. Only
1291 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1292 stop_signal make sense as a real signal to pass to the inferior.
1293 Some catchpoint related events, like
1294 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1295 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1296 those traps are debug API (ptrace in our case) related and
1297 induced; the inferior wouldn't see them if it wasn't being
1298 traced. Hence, we should never pass them to the inferior, even
1299 when set to pass state. Since this corner case isn't handled by
1300 infrun.c when proceeding with a signal, for consistency, neither
1301 do we handle it here (or elsewhere in the file we check for
1302 signal pass state). Normally SIGTRAP isn't set to pass state, so
1303 this is really a corner case. */
1304
1305 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1306 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1307 else if (lp->status)
1308 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1309 else
1310 {
1311 struct thread_info *tp = find_thread_ptid (linux_target, lp->ptid);
1312
1313 if (target_is_non_stop_p () && !tp->executing)
1314 {
1315 if (tp->suspend.waitstatus_pending_p)
1316 signo = tp->suspend.waitstatus.value.sig;
1317 else
1318 signo = tp->suspend.stop_signal;
1319 }
1320 else if (!target_is_non_stop_p ())
1321 {
1322 ptid_t last_ptid;
1323 process_stratum_target *last_target;
1324
1325 get_last_target_status (&last_target, &last_ptid, nullptr);
1326
1327 if (last_target == linux_target
1328 && lp->ptid.lwp () == last_ptid.lwp ())
1329 signo = tp->suspend.stop_signal;
1330 }
1331 }
1332
1333 if (signo == GDB_SIGNAL_0)
1334 {
1335 linux_nat_debug_printf ("lwp %s has no pending signal",
1336 target_pid_to_str (lp->ptid).c_str ());
1337 }
1338 else if (!signal_pass_state (signo))
1339 {
1340 linux_nat_debug_printf
1341 ("lwp %s had signal %s but it is in no pass state",
1342 target_pid_to_str (lp->ptid).c_str (), gdb_signal_to_string (signo));
1343 }
1344 else
1345 {
1346 linux_nat_debug_printf ("lwp %s has pending signal %s",
1347 target_pid_to_str (lp->ptid).c_str (),
1348 gdb_signal_to_string (signo));
1349
1350 return gdb_signal_to_host (signo);
1351 }
1352
1353 return 0;
1354 }
1355
1356 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1357 signal number that should be passed to the LWP when detaching.
1358 Otherwise pass any pending signal the LWP may have, if any. */
1359
1360 static void
1361 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1362 {
1363 int lwpid = lp->ptid.lwp ();
1364 int signo;
1365
1366 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1367
1368 if (lp->status != 0)
1369 linux_nat_debug_printf ("Pending %s for %s on detach.",
1370 strsignal (WSTOPSIG (lp->status)),
1371 target_pid_to_str (lp->ptid).c_str ());
1372
1373 /* If there is a pending SIGSTOP, get rid of it. */
1374 if (lp->signalled)
1375 {
1376 linux_nat_debug_printf ("Sending SIGCONT to %s",
1377 target_pid_to_str (lp->ptid).c_str ());
1378
1379 kill_lwp (lwpid, SIGCONT);
1380 lp->signalled = 0;
1381 }
1382
1383 if (signo_p == NULL)
1384 {
1385 /* Pass on any pending signal for this LWP. */
1386 signo = get_detach_signal (lp);
1387 }
1388 else
1389 signo = *signo_p;
1390
1391 /* Preparing to resume may try to write registers, and fail if the
1392 lwp is zombie. If that happens, ignore the error. We'll handle
1393 it below, when detach fails with ESRCH. */
1394 try
1395 {
1396 linux_target->low_prepare_to_resume (lp);
1397 }
1398 catch (const gdb_exception_error &ex)
1399 {
1400 if (!check_ptrace_stopped_lwp_gone (lp))
1401 throw;
1402 }
1403
1404 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1405 {
1406 int save_errno = errno;
1407
1408 /* We know the thread exists, so ESRCH must mean the lwp is
1409 zombie. This can happen if one of the already-detached
1410 threads exits the whole thread group. In that case we're
1411 still attached, and must reap the lwp. */
1412 if (save_errno == ESRCH)
1413 {
1414 int ret, status;
1415
1416 ret = my_waitpid (lwpid, &status, __WALL);
1417 if (ret == -1)
1418 {
1419 warning (_("Couldn't reap LWP %d while detaching: %s"),
1420 lwpid, safe_strerror (errno));
1421 }
1422 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1423 {
1424 warning (_("Reaping LWP %d while detaching "
1425 "returned unexpected status 0x%x"),
1426 lwpid, status);
1427 }
1428 }
1429 else
1430 {
1431 error (_("Can't detach %s: %s"),
1432 target_pid_to_str (lp->ptid).c_str (),
1433 safe_strerror (save_errno));
1434 }
1435 }
1436 else
1437 linux_nat_debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)",
1438 target_pid_to_str (lp->ptid).c_str (),
1439 strsignal (signo));
1440
1441 delete_lwp (lp->ptid);
1442 }
1443
1444 static int
1445 detach_callback (struct lwp_info *lp)
1446 {
1447 /* We don't actually detach from the thread group leader just yet.
1448 If the thread group exits, we must reap the zombie clone lwps
1449 before we're able to reap the leader. */
1450 if (lp->ptid.lwp () != lp->ptid.pid ())
1451 detach_one_lwp (lp, NULL);
1452 return 0;
1453 }
1454
1455 void
1456 linux_nat_target::detach (inferior *inf, int from_tty)
1457 {
1458 struct lwp_info *main_lwp;
1459 int pid = inf->pid;
1460
1461 /* Don't unregister from the event loop, as there may be other
1462 inferiors running. */
1463
1464 /* Stop all threads before detaching. ptrace requires that the
1465 thread is stopped to successfully detach. */
1466 iterate_over_lwps (ptid_t (pid), stop_callback);
1467 /* ... and wait until all of them have reported back that
1468 they're no longer running. */
1469 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1470
1471 iterate_over_lwps (ptid_t (pid), detach_callback);
1472
1473 /* Only the initial process should be left right now. */
1474 gdb_assert (num_lwps (pid) == 1);
1475
1476 main_lwp = find_lwp_pid (ptid_t (pid));
1477
1478 if (forks_exist_p ())
1479 {
1480 /* Multi-fork case. The current inferior_ptid is being detached
1481 from, but there are other viable forks to debug. Detach from
1482 the current fork, and context-switch to the first
1483 available. */
1484 linux_fork_detach (from_tty);
1485 }
1486 else
1487 {
1488 target_announce_detach (from_tty);
1489
1490 /* Pass on any pending signal for the last LWP. */
1491 int signo = get_detach_signal (main_lwp);
1492
1493 detach_one_lwp (main_lwp, &signo);
1494
1495 detach_success (inf);
1496 }
1497 }
1498
1499 /* Resume execution of the inferior process. If STEP is nonzero,
1500 single-step it. If SIGNAL is nonzero, give it that signal. */
1501
1502 static void
1503 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1504 enum gdb_signal signo)
1505 {
1506 lp->step = step;
1507
1508 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1509 We only presently need that if the LWP is stepped though (to
1510 handle the case of stepping a breakpoint instruction). */
1511 if (step)
1512 {
1513 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
1514
1515 lp->stop_pc = regcache_read_pc (regcache);
1516 }
1517 else
1518 lp->stop_pc = 0;
1519
1520 linux_target->low_prepare_to_resume (lp);
1521 linux_target->low_resume (lp->ptid, step, signo);
1522
1523 /* Successfully resumed. Clear state that no longer makes sense,
1524 and mark the LWP as running. Must not do this before resuming
1525 otherwise if that fails other code will be confused. E.g., we'd
1526 later try to stop the LWP and hang forever waiting for a stop
1527 status. Note that we must not throw after this is cleared,
1528 otherwise handle_zombie_lwp_error would get confused. */
1529 lp->stopped = 0;
1530 lp->core = -1;
1531 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1532 registers_changed_ptid (linux_target, lp->ptid);
1533 }
1534
1535 /* Called when we try to resume a stopped LWP and that errors out. If
1536 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1537 or about to become), discard the error, clear any pending status
1538 the LWP may have, and return true (we'll collect the exit status
1539 soon enough). Otherwise, return false. */
1540
1541 static int
1542 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1543 {
1544 /* If we get an error after resuming the LWP successfully, we'd
1545 confuse !T state for the LWP being gone. */
1546 gdb_assert (lp->stopped);
1547
1548 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1549 because even if ptrace failed with ESRCH, the tracee may be "not
1550 yet fully dead", but already refusing ptrace requests. In that
1551 case the tracee has 'R (Running)' state for a little bit
1552 (observed in Linux 3.18). See also the note on ESRCH in the
1553 ptrace(2) man page. Instead, check whether the LWP has any state
1554 other than ptrace-stopped. */
1555
1556 /* Don't assume anything if /proc/PID/status can't be read. */
1557 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1558 {
1559 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1560 lp->status = 0;
1561 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1562 return 1;
1563 }
1564 return 0;
1565 }
1566
1567 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1568 disappears while we try to resume it. */
1569
1570 static void
1571 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1572 {
1573 try
1574 {
1575 linux_resume_one_lwp_throw (lp, step, signo);
1576 }
1577 catch (const gdb_exception_error &ex)
1578 {
1579 if (!check_ptrace_stopped_lwp_gone (lp))
1580 throw;
1581 }
1582 }
1583
1584 /* Resume LP. */
1585
1586 static void
1587 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1588 {
1589 if (lp->stopped)
1590 {
1591 struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
1592
1593 if (inf->vfork_child != NULL)
1594 {
1595 linux_nat_debug_printf ("Not resuming %s (vfork parent)",
1596 target_pid_to_str (lp->ptid).c_str ());
1597 }
1598 else if (!lwp_status_pending_p (lp))
1599 {
1600 linux_nat_debug_printf ("Resuming sibling %s, %s, %s",
1601 target_pid_to_str (lp->ptid).c_str (),
1602 (signo != GDB_SIGNAL_0
1603 ? strsignal (gdb_signal_to_host (signo))
1604 : "0"),
1605 step ? "step" : "resume");
1606
1607 linux_resume_one_lwp (lp, step, signo);
1608 }
1609 else
1610 {
1611 linux_nat_debug_printf ("Not resuming sibling %s (has pending)",
1612 target_pid_to_str (lp->ptid).c_str ());
1613 }
1614 }
1615 else
1616 linux_nat_debug_printf ("Not resuming sibling %s (not stopped)",
1617 target_pid_to_str (lp->ptid).c_str ());
1618 }
1619
1620 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1621 Resume LWP with the last stop signal, if it is in pass state. */
1622
1623 static int
1624 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1625 {
1626 enum gdb_signal signo = GDB_SIGNAL_0;
1627
1628 if (lp == except)
1629 return 0;
1630
1631 if (lp->stopped)
1632 {
1633 struct thread_info *thread;
1634
1635 thread = find_thread_ptid (linux_target, lp->ptid);
1636 if (thread != NULL)
1637 {
1638 signo = thread->suspend.stop_signal;
1639 thread->suspend.stop_signal = GDB_SIGNAL_0;
1640 }
1641 }
1642
1643 resume_lwp (lp, 0, signo);
1644 return 0;
1645 }
1646
1647 static int
1648 resume_clear_callback (struct lwp_info *lp)
1649 {
1650 lp->resumed = 0;
1651 lp->last_resume_kind = resume_stop;
1652 return 0;
1653 }
1654
1655 static int
1656 resume_set_callback (struct lwp_info *lp)
1657 {
1658 lp->resumed = 1;
1659 lp->last_resume_kind = resume_continue;
1660 return 0;
1661 }
1662
1663 void
1664 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1665 {
1666 struct lwp_info *lp;
1667 int resume_many;
1668
1669 linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s",
1670 step ? "step" : "resume",
1671 target_pid_to_str (ptid).c_str (),
1672 (signo != GDB_SIGNAL_0
1673 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1674 target_pid_to_str (inferior_ptid).c_str ());
1675
1676 /* A specific PTID means `step only this process id'. */
1677 resume_many = (minus_one_ptid == ptid
1678 || ptid.is_pid ());
1679
1680 /* Mark the lwps we're resuming as resumed and update their
1681 last_resume_kind to resume_continue. */
1682 iterate_over_lwps (ptid, resume_set_callback);
1683
1684 /* See if it's the current inferior that should be handled
1685 specially. */
1686 if (resume_many)
1687 lp = find_lwp_pid (inferior_ptid);
1688 else
1689 lp = find_lwp_pid (ptid);
1690 gdb_assert (lp != NULL);
1691
1692 /* Remember if we're stepping. */
1693 lp->last_resume_kind = step ? resume_step : resume_continue;
1694
1695 /* If we have a pending wait status for this thread, there is no
1696 point in resuming the process. But first make sure that
1697 linux_nat_wait won't preemptively handle the event - we
1698 should never take this short-circuit if we are going to
1699 leave LP running, since we have skipped resuming all the
1700 other threads. This bit of code needs to be synchronized
1701 with linux_nat_wait. */
1702
1703 if (lp->status && WIFSTOPPED (lp->status))
1704 {
1705 if (!lp->step
1706 && WSTOPSIG (lp->status)
1707 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1708 {
1709 linux_nat_debug_printf
1710 ("Not short circuiting for ignored status 0x%x", lp->status);
1711
1712 /* FIXME: What should we do if we are supposed to continue
1713 this thread with a signal? */
1714 gdb_assert (signo == GDB_SIGNAL_0);
1715 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1716 lp->status = 0;
1717 }
1718 }
1719
1720 if (lwp_status_pending_p (lp))
1721 {
1722 /* FIXME: What should we do if we are supposed to continue
1723 this thread with a signal? */
1724 gdb_assert (signo == GDB_SIGNAL_0);
1725
1726 linux_nat_debug_printf ("Short circuiting for status 0x%x",
1727 lp->status);
1728
1729 if (target_can_async_p ())
1730 {
1731 target_async (1);
1732 /* Tell the event loop we have something to process. */
1733 async_file_mark ();
1734 }
1735 return;
1736 }
1737
1738 if (resume_many)
1739 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1740 {
1741 return linux_nat_resume_callback (info, lp);
1742 });
1743
1744 linux_nat_debug_printf ("%s %s, %s (resume event thread)",
1745 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1746 target_pid_to_str (lp->ptid).c_str (),
1747 (signo != GDB_SIGNAL_0
1748 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1749
1750 linux_resume_one_lwp (lp, step, signo);
1751
1752 if (target_can_async_p ())
1753 target_async (1);
1754 }
1755
1756 /* Send a signal to an LWP. */
1757
1758 static int
1759 kill_lwp (int lwpid, int signo)
1760 {
1761 int ret;
1762
1763 errno = 0;
1764 ret = syscall (__NR_tkill, lwpid, signo);
1765 if (errno == ENOSYS)
1766 {
1767 /* If tkill fails, then we are not using nptl threads, a
1768 configuration we no longer support. */
1769 perror_with_name (("tkill"));
1770 }
1771 return ret;
1772 }
1773
1774 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1775 event, check if the core is interested in it: if not, ignore the
1776 event, and keep waiting; otherwise, we need to toggle the LWP's
1777 syscall entry/exit status, since the ptrace event itself doesn't
1778 indicate it, and report the trap to higher layers. */
1779
1780 static int
1781 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1782 {
1783 struct target_waitstatus *ourstatus = &lp->waitstatus;
1784 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1785 thread_info *thread = find_thread_ptid (linux_target, lp->ptid);
1786 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1787
1788 if (stopping)
1789 {
1790 /* If we're stopping threads, there's a SIGSTOP pending, which
1791 makes it so that the LWP reports an immediate syscall return,
1792 followed by the SIGSTOP. Skip seeing that "return" using
1793 PTRACE_CONT directly, and let stop_wait_callback collect the
1794 SIGSTOP. Later when the thread is resumed, a new syscall
1795 entry event. If we didn't do this (and returned 0), we'd
1796 leave a syscall entry pending, and our caller, by using
1797 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1798 itself. Later, when the user re-resumes this LWP, we'd see
1799 another syscall entry event and we'd mistake it for a return.
1800
1801 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1802 (leaving immediately with LWP->signalled set, without issuing
1803 a PTRACE_CONT), it would still be problematic to leave this
1804 syscall enter pending, as later when the thread is resumed,
1805 it would then see the same syscall exit mentioned above,
1806 followed by the delayed SIGSTOP, while the syscall didn't
1807 actually get to execute. It seems it would be even more
1808 confusing to the user. */
1809
1810 linux_nat_debug_printf
1811 ("ignoring syscall %d for LWP %ld (stopping threads), resuming with "
1812 "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ());
1813
1814 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1815 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1816 lp->stopped = 0;
1817 return 1;
1818 }
1819
1820 /* Always update the entry/return state, even if this particular
1821 syscall isn't interesting to the core now. In async mode,
1822 the user could install a new catchpoint for this syscall
1823 between syscall enter/return, and we'll need to know to
1824 report a syscall return if that happens. */
1825 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1826 ? TARGET_WAITKIND_SYSCALL_RETURN
1827 : TARGET_WAITKIND_SYSCALL_ENTRY);
1828
1829 if (catch_syscall_enabled ())
1830 {
1831 if (catching_syscall_number (syscall_number))
1832 {
1833 /* Alright, an event to report. */
1834 ourstatus->kind = lp->syscall_state;
1835 ourstatus->value.syscall_number = syscall_number;
1836
1837 linux_nat_debug_printf
1838 ("stopping for %s of syscall %d for LWP %ld",
1839 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1840 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1841
1842 return 0;
1843 }
1844
1845 linux_nat_debug_printf
1846 ("ignoring %s of syscall %d for LWP %ld",
1847 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1848 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1849 }
1850 else
1851 {
1852 /* If we had been syscall tracing, and hence used PT_SYSCALL
1853 before on this LWP, it could happen that the user removes all
1854 syscall catchpoints before we get to process this event.
1855 There are two noteworthy issues here:
1856
1857 - When stopped at a syscall entry event, resuming with
1858 PT_STEP still resumes executing the syscall and reports a
1859 syscall return.
1860
1861 - Only PT_SYSCALL catches syscall enters. If we last
1862 single-stepped this thread, then this event can't be a
1863 syscall enter. If we last single-stepped this thread, this
1864 has to be a syscall exit.
1865
1866 The points above mean that the next resume, be it PT_STEP or
1867 PT_CONTINUE, can not trigger a syscall trace event. */
1868 linux_nat_debug_printf
1869 ("caught syscall event with no syscall catchpoints. %d for LWP %ld, "
1870 "ignoring", syscall_number, lp->ptid.lwp ());
1871 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1872 }
1873
1874 /* The core isn't interested in this event. For efficiency, avoid
1875 stopping all threads only to have the core resume them all again.
1876 Since we're not stopping threads, if we're still syscall tracing
1877 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1878 subsequent syscall. Simply resume using the inf-ptrace layer,
1879 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1880
1881 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1882 return 1;
1883 }
1884
1885 /* Handle a GNU/Linux extended wait response. If we see a clone
1886 event, we need to add the new LWP to our list (and not report the
1887 trap to higher layers). This function returns non-zero if the
1888 event should be ignored and we should wait again. If STOPPING is
1889 true, the new LWP remains stopped, otherwise it is continued. */
1890
1891 static int
1892 linux_handle_extended_wait (struct lwp_info *lp, int status)
1893 {
1894 int pid = lp->ptid.lwp ();
1895 struct target_waitstatus *ourstatus = &lp->waitstatus;
1896 int event = linux_ptrace_get_extended_event (status);
1897
1898 /* All extended events we currently use are mid-syscall. Only
1899 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1900 you have to be using PTRACE_SEIZE to get that. */
1901 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1902
1903 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1904 || event == PTRACE_EVENT_CLONE)
1905 {
1906 unsigned long new_pid;
1907 int ret;
1908
1909 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1910
1911 /* If we haven't already seen the new PID stop, wait for it now. */
1912 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1913 {
1914 /* The new child has a pending SIGSTOP. We can't affect it until it
1915 hits the SIGSTOP, but we're already attached. */
1916 ret = my_waitpid (new_pid, &status, __WALL);
1917 if (ret == -1)
1918 perror_with_name (_("waiting for new child"));
1919 else if (ret != new_pid)
1920 internal_error (__FILE__, __LINE__,
1921 _("wait returned unexpected PID %d"), ret);
1922 else if (!WIFSTOPPED (status))
1923 internal_error (__FILE__, __LINE__,
1924 _("wait returned unexpected status 0x%x"), status);
1925 }
1926
1927 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1928
1929 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1930 {
1931 /* The arch-specific native code may need to know about new
1932 forks even if those end up never mapped to an
1933 inferior. */
1934 linux_target->low_new_fork (lp, new_pid);
1935 }
1936 else if (event == PTRACE_EVENT_CLONE)
1937 {
1938 linux_target->low_new_clone (lp, new_pid);
1939 }
1940
1941 if (event == PTRACE_EVENT_FORK
1942 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1943 {
1944 /* Handle checkpointing by linux-fork.c here as a special
1945 case. We don't want the follow-fork-mode or 'catch fork'
1946 to interfere with this. */
1947
1948 /* This won't actually modify the breakpoint list, but will
1949 physically remove the breakpoints from the child. */
1950 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1951
1952 /* Retain child fork in ptrace (stopped) state. */
1953 if (!find_fork_pid (new_pid))
1954 add_fork (new_pid);
1955
1956 /* Report as spurious, so that infrun doesn't want to follow
1957 this fork. We're actually doing an infcall in
1958 linux-fork.c. */
1959 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1960
1961 /* Report the stop to the core. */
1962 return 0;
1963 }
1964
1965 if (event == PTRACE_EVENT_FORK)
1966 ourstatus->kind = TARGET_WAITKIND_FORKED;
1967 else if (event == PTRACE_EVENT_VFORK)
1968 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1969 else if (event == PTRACE_EVENT_CLONE)
1970 {
1971 struct lwp_info *new_lp;
1972
1973 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1974
1975 linux_nat_debug_printf
1976 ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid);
1977
1978 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
1979 new_lp->stopped = 1;
1980 new_lp->resumed = 1;
1981
1982 /* If the thread_db layer is active, let it record the user
1983 level thread id and status, and add the thread to GDB's
1984 list. */
1985 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
1986 {
1987 /* The process is not using thread_db. Add the LWP to
1988 GDB's list. */
1989 target_post_attach (new_lp->ptid.lwp ());
1990 add_thread (linux_target, new_lp->ptid);
1991 }
1992
1993 /* Even if we're stopping the thread for some reason
1994 internal to this module, from the perspective of infrun
1995 and the user/frontend, this new thread is running until
1996 it next reports a stop. */
1997 set_running (linux_target, new_lp->ptid, true);
1998 set_executing (linux_target, new_lp->ptid, true);
1999
2000 if (WSTOPSIG (status) != SIGSTOP)
2001 {
2002 /* This can happen if someone starts sending signals to
2003 the new thread before it gets a chance to run, which
2004 have a lower number than SIGSTOP (e.g. SIGUSR1).
2005 This is an unlikely case, and harder to handle for
2006 fork / vfork than for clone, so we do not try - but
2007 we handle it for clone events here. */
2008
2009 new_lp->signalled = 1;
2010
2011 /* We created NEW_LP so it cannot yet contain STATUS. */
2012 gdb_assert (new_lp->status == 0);
2013
2014 /* Save the wait status to report later. */
2015 linux_nat_debug_printf
2016 ("waitpid of new LWP %ld, saving status %s",
2017 (long) new_lp->ptid.lwp (), status_to_str (status));
2018 new_lp->status = status;
2019 }
2020 else if (report_thread_events)
2021 {
2022 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2023 new_lp->status = status;
2024 }
2025
2026 return 1;
2027 }
2028
2029 return 0;
2030 }
2031
2032 if (event == PTRACE_EVENT_EXEC)
2033 {
2034 linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ());
2035
2036 ourstatus->kind = TARGET_WAITKIND_EXECD;
2037 ourstatus->value.execd_pathname
2038 = xstrdup (linux_proc_pid_to_exec_file (pid));
2039
2040 /* The thread that execed must have been resumed, but, when a
2041 thread execs, it changes its tid to the tgid, and the old
2042 tgid thread might have not been resumed. */
2043 lp->resumed = 1;
2044 return 0;
2045 }
2046
2047 if (event == PTRACE_EVENT_VFORK_DONE)
2048 {
2049 if (current_inferior ()->waiting_for_vfork_done)
2050 {
2051 linux_nat_debug_printf
2052 ("Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping",
2053 lp->ptid.lwp ());
2054
2055 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2056 return 0;
2057 }
2058
2059 linux_nat_debug_printf
2060 ("Got PTRACE_EVENT_VFORK_DONE from LWP %ld: ignoring", lp->ptid.lwp ());
2061
2062 return 1;
2063 }
2064
2065 internal_error (__FILE__, __LINE__,
2066 _("unknown ptrace event %d"), event);
2067 }
2068
2069 /* Suspend waiting for a signal. We're mostly interested in
2070 SIGCHLD/SIGINT. */
2071
2072 static void
2073 wait_for_signal ()
2074 {
2075 linux_nat_debug_printf ("about to sigsuspend");
2076 sigsuspend (&suspend_mask);
2077
2078 /* If the quit flag is set, it means that the user pressed Ctrl-C
2079 and we're debugging a process that is running on a separate
2080 terminal, so we must forward the Ctrl-C to the inferior. (If the
2081 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2082 inferior directly.) We must do this here because functions that
2083 need to block waiting for a signal loop forever until there's an
2084 event to report before returning back to the event loop. */
2085 if (!target_terminal::is_ours ())
2086 {
2087 if (check_quit_flag ())
2088 target_pass_ctrlc ();
2089 }
2090 }
2091
2092 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2093 exited. */
2094
2095 static int
2096 wait_lwp (struct lwp_info *lp)
2097 {
2098 pid_t pid;
2099 int status = 0;
2100 int thread_dead = 0;
2101 sigset_t prev_mask;
2102
2103 gdb_assert (!lp->stopped);
2104 gdb_assert (lp->status == 0);
2105
2106 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2107 block_child_signals (&prev_mask);
2108
2109 for (;;)
2110 {
2111 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2112 if (pid == -1 && errno == ECHILD)
2113 {
2114 /* The thread has previously exited. We need to delete it
2115 now because if this was a non-leader thread execing, we
2116 won't get an exit event. See comments on exec events at
2117 the top of the file. */
2118 thread_dead = 1;
2119 linux_nat_debug_printf ("%s vanished.",
2120 target_pid_to_str (lp->ptid).c_str ());
2121 }
2122 if (pid != 0)
2123 break;
2124
2125 /* Bugs 10970, 12702.
2126 Thread group leader may have exited in which case we'll lock up in
2127 waitpid if there are other threads, even if they are all zombies too.
2128 Basically, we're not supposed to use waitpid this way.
2129 tkill(pid,0) cannot be used here as it gets ESRCH for both
2130 for zombie and running processes.
2131
2132 As a workaround, check if we're waiting for the thread group leader and
2133 if it's a zombie, and avoid calling waitpid if it is.
2134
2135 This is racy, what if the tgl becomes a zombie right after we check?
2136 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2137 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2138
2139 if (lp->ptid.pid () == lp->ptid.lwp ()
2140 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2141 {
2142 thread_dead = 1;
2143 linux_nat_debug_printf ("Thread group leader %s vanished.",
2144 target_pid_to_str (lp->ptid).c_str ());
2145 break;
2146 }
2147
2148 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2149 get invoked despite our caller had them intentionally blocked by
2150 block_child_signals. This is sensitive only to the loop of
2151 linux_nat_wait_1 and there if we get called my_waitpid gets called
2152 again before it gets to sigsuspend so we can safely let the handlers
2153 get executed here. */
2154 wait_for_signal ();
2155 }
2156
2157 restore_child_signals_mask (&prev_mask);
2158
2159 if (!thread_dead)
2160 {
2161 gdb_assert (pid == lp->ptid.lwp ());
2162
2163 linux_nat_debug_printf ("waitpid %s received %s",
2164 target_pid_to_str (lp->ptid).c_str (),
2165 status_to_str (status));
2166
2167 /* Check if the thread has exited. */
2168 if (WIFEXITED (status) || WIFSIGNALED (status))
2169 {
2170 if (report_thread_events
2171 || lp->ptid.pid () == lp->ptid.lwp ())
2172 {
2173 linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ());
2174
2175 /* If this is the leader exiting, it means the whole
2176 process is gone. Store the status to report to the
2177 core. Store it in lp->waitstatus, because lp->status
2178 would be ambiguous (W_EXITCODE(0,0) == 0). */
2179 store_waitstatus (&lp->waitstatus, status);
2180 return 0;
2181 }
2182
2183 thread_dead = 1;
2184 linux_nat_debug_printf ("%s exited.",
2185 target_pid_to_str (lp->ptid).c_str ());
2186 }
2187 }
2188
2189 if (thread_dead)
2190 {
2191 exit_lwp (lp);
2192 return 0;
2193 }
2194
2195 gdb_assert (WIFSTOPPED (status));
2196 lp->stopped = 1;
2197
2198 if (lp->must_set_ptrace_flags)
2199 {
2200 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2201 int options = linux_nat_ptrace_options (inf->attach_flag);
2202
2203 linux_enable_event_reporting (lp->ptid.lwp (), options);
2204 lp->must_set_ptrace_flags = 0;
2205 }
2206
2207 /* Handle GNU/Linux's syscall SIGTRAPs. */
2208 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2209 {
2210 /* No longer need the sysgood bit. The ptrace event ends up
2211 recorded in lp->waitstatus if we care for it. We can carry
2212 on handling the event like a regular SIGTRAP from here
2213 on. */
2214 status = W_STOPCODE (SIGTRAP);
2215 if (linux_handle_syscall_trap (lp, 1))
2216 return wait_lwp (lp);
2217 }
2218 else
2219 {
2220 /* Almost all other ptrace-stops are known to be outside of system
2221 calls, with further exceptions in linux_handle_extended_wait. */
2222 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2223 }
2224
2225 /* Handle GNU/Linux's extended waitstatus for trace events. */
2226 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2227 && linux_is_extended_waitstatus (status))
2228 {
2229 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2230 linux_handle_extended_wait (lp, status);
2231 return 0;
2232 }
2233
2234 return status;
2235 }
2236
2237 /* Send a SIGSTOP to LP. */
2238
2239 static int
2240 stop_callback (struct lwp_info *lp)
2241 {
2242 if (!lp->stopped && !lp->signalled)
2243 {
2244 int ret;
2245
2246 linux_nat_debug_printf ("kill %s **<SIGSTOP>**",
2247 target_pid_to_str (lp->ptid).c_str ());
2248
2249 errno = 0;
2250 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2251 linux_nat_debug_printf ("lwp kill %d %s", ret,
2252 errno ? safe_strerror (errno) : "ERRNO-OK");
2253
2254 lp->signalled = 1;
2255 gdb_assert (lp->status == 0);
2256 }
2257
2258 return 0;
2259 }
2260
2261 /* Request a stop on LWP. */
2262
2263 void
2264 linux_stop_lwp (struct lwp_info *lwp)
2265 {
2266 stop_callback (lwp);
2267 }
2268
2269 /* See linux-nat.h */
2270
2271 void
2272 linux_stop_and_wait_all_lwps (void)
2273 {
2274 /* Stop all LWP's ... */
2275 iterate_over_lwps (minus_one_ptid, stop_callback);
2276
2277 /* ... and wait until all of them have reported back that
2278 they're no longer running. */
2279 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2280 }
2281
2282 /* See linux-nat.h */
2283
2284 void
2285 linux_unstop_all_lwps (void)
2286 {
2287 iterate_over_lwps (minus_one_ptid,
2288 [] (struct lwp_info *info)
2289 {
2290 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2291 });
2292 }
2293
2294 /* Return non-zero if LWP PID has a pending SIGINT. */
2295
2296 static int
2297 linux_nat_has_pending_sigint (int pid)
2298 {
2299 sigset_t pending, blocked, ignored;
2300
2301 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2302
2303 if (sigismember (&pending, SIGINT)
2304 && !sigismember (&ignored, SIGINT))
2305 return 1;
2306
2307 return 0;
2308 }
2309
2310 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2311
2312 static int
2313 set_ignore_sigint (struct lwp_info *lp)
2314 {
2315 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2316 flag to consume the next one. */
2317 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2318 && WSTOPSIG (lp->status) == SIGINT)
2319 lp->status = 0;
2320 else
2321 lp->ignore_sigint = 1;
2322
2323 return 0;
2324 }
2325
2326 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2327 This function is called after we know the LWP has stopped; if the LWP
2328 stopped before the expected SIGINT was delivered, then it will never have
2329 arrived. Also, if the signal was delivered to a shared queue and consumed
2330 by a different thread, it will never be delivered to this LWP. */
2331
2332 static void
2333 maybe_clear_ignore_sigint (struct lwp_info *lp)
2334 {
2335 if (!lp->ignore_sigint)
2336 return;
2337
2338 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2339 {
2340 linux_nat_debug_printf ("Clearing bogus flag for %s",
2341 target_pid_to_str (lp->ptid).c_str ());
2342 lp->ignore_sigint = 0;
2343 }
2344 }
2345
2346 /* Fetch the possible triggered data watchpoint info and store it in
2347 LP.
2348
2349 On some archs, like x86, that use debug registers to set
2350 watchpoints, it's possible that the way to know which watched
2351 address trapped, is to check the register that is used to select
2352 which address to watch. Problem is, between setting the watchpoint
2353 and reading back which data address trapped, the user may change
2354 the set of watchpoints, and, as a consequence, GDB changes the
2355 debug registers in the inferior. To avoid reading back a stale
2356 stopped-data-address when that happens, we cache in LP the fact
2357 that a watchpoint trapped, and the corresponding data address, as
2358 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2359 registers meanwhile, we have the cached data we can rely on. */
2360
2361 static int
2362 check_stopped_by_watchpoint (struct lwp_info *lp)
2363 {
2364 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2365 inferior_ptid = lp->ptid;
2366
2367 if (linux_target->low_stopped_by_watchpoint ())
2368 {
2369 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2370 lp->stopped_data_address_p
2371 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2372 }
2373
2374 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2375 }
2376
2377 /* Returns true if the LWP had stopped for a watchpoint. */
2378
2379 bool
2380 linux_nat_target::stopped_by_watchpoint ()
2381 {
2382 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2383
2384 gdb_assert (lp != NULL);
2385
2386 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2387 }
2388
2389 bool
2390 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2391 {
2392 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2393
2394 gdb_assert (lp != NULL);
2395
2396 *addr_p = lp->stopped_data_address;
2397
2398 return lp->stopped_data_address_p;
2399 }
2400
2401 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2402
2403 bool
2404 linux_nat_target::low_status_is_event (int status)
2405 {
2406 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2407 }
2408
2409 /* Wait until LP is stopped. */
2410
2411 static int
2412 stop_wait_callback (struct lwp_info *lp)
2413 {
2414 inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2415
2416 /* If this is a vfork parent, bail out, it is not going to report
2417 any SIGSTOP until the vfork is done with. */
2418 if (inf->vfork_child != NULL)
2419 return 0;
2420
2421 if (!lp->stopped)
2422 {
2423 int status;
2424
2425 status = wait_lwp (lp);
2426 if (status == 0)
2427 return 0;
2428
2429 if (lp->ignore_sigint && WIFSTOPPED (status)
2430 && WSTOPSIG (status) == SIGINT)
2431 {
2432 lp->ignore_sigint = 0;
2433
2434 errno = 0;
2435 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2436 lp->stopped = 0;
2437 linux_nat_debug_printf
2438 ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)",
2439 target_pid_to_str (lp->ptid).c_str (),
2440 errno ? safe_strerror (errno) : "OK");
2441
2442 return stop_wait_callback (lp);
2443 }
2444
2445 maybe_clear_ignore_sigint (lp);
2446
2447 if (WSTOPSIG (status) != SIGSTOP)
2448 {
2449 /* The thread was stopped with a signal other than SIGSTOP. */
2450
2451 linux_nat_debug_printf ("Pending event %s in %s",
2452 status_to_str ((int) status),
2453 target_pid_to_str (lp->ptid).c_str ());
2454
2455 /* Save the sigtrap event. */
2456 lp->status = status;
2457 gdb_assert (lp->signalled);
2458 save_stop_reason (lp);
2459 }
2460 else
2461 {
2462 /* We caught the SIGSTOP that we intended to catch. */
2463
2464 linux_nat_debug_printf ("Expected SIGSTOP caught for %s.",
2465 target_pid_to_str (lp->ptid).c_str ());
2466
2467 lp->signalled = 0;
2468
2469 /* If we are waiting for this stop so we can report the thread
2470 stopped then we need to record this status. Otherwise, we can
2471 now discard this stop event. */
2472 if (lp->last_resume_kind == resume_stop)
2473 {
2474 lp->status = status;
2475 save_stop_reason (lp);
2476 }
2477 }
2478 }
2479
2480 return 0;
2481 }
2482
2483 /* Return non-zero if LP has a wait status pending. Discard the
2484 pending event and resume the LWP if the event that originally
2485 caused the stop became uninteresting. */
2486
2487 static int
2488 status_callback (struct lwp_info *lp)
2489 {
2490 /* Only report a pending wait status if we pretend that this has
2491 indeed been resumed. */
2492 if (!lp->resumed)
2493 return 0;
2494
2495 if (!lwp_status_pending_p (lp))
2496 return 0;
2497
2498 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2499 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2500 {
2501 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
2502 CORE_ADDR pc;
2503 int discard = 0;
2504
2505 pc = regcache_read_pc (regcache);
2506
2507 if (pc != lp->stop_pc)
2508 {
2509 linux_nat_debug_printf ("PC of %s changed. was=%s, now=%s",
2510 target_pid_to_str (lp->ptid).c_str (),
2511 paddress (target_gdbarch (), lp->stop_pc),
2512 paddress (target_gdbarch (), pc));
2513 discard = 1;
2514 }
2515
2516 #if !USE_SIGTRAP_SIGINFO
2517 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2518 {
2519 linux_nat_debug_printf ("previous breakpoint of %s, at %s gone",
2520 target_pid_to_str (lp->ptid).c_str (),
2521 paddress (target_gdbarch (), lp->stop_pc));
2522
2523 discard = 1;
2524 }
2525 #endif
2526
2527 if (discard)
2528 {
2529 linux_nat_debug_printf ("pending event of %s cancelled.",
2530 target_pid_to_str (lp->ptid).c_str ());
2531
2532 lp->status = 0;
2533 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2534 return 0;
2535 }
2536 }
2537
2538 return 1;
2539 }
2540
2541 /* Count the LWP's that have had events. */
2542
2543 static int
2544 count_events_callback (struct lwp_info *lp, int *count)
2545 {
2546 gdb_assert (count != NULL);
2547
2548 /* Select only resumed LWPs that have an event pending. */
2549 if (lp->resumed && lwp_status_pending_p (lp))
2550 (*count)++;
2551
2552 return 0;
2553 }
2554
2555 /* Select the LWP (if any) that is currently being single-stepped. */
2556
2557 static int
2558 select_singlestep_lwp_callback (struct lwp_info *lp)
2559 {
2560 if (lp->last_resume_kind == resume_step
2561 && lp->status != 0)
2562 return 1;
2563 else
2564 return 0;
2565 }
2566
2567 /* Returns true if LP has a status pending. */
2568
2569 static int
2570 lwp_status_pending_p (struct lwp_info *lp)
2571 {
2572 /* We check for lp->waitstatus in addition to lp->status, because we
2573 can have pending process exits recorded in lp->status and
2574 W_EXITCODE(0,0) happens to be 0. */
2575 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2576 }
2577
2578 /* Select the Nth LWP that has had an event. */
2579
2580 static int
2581 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2582 {
2583 gdb_assert (selector != NULL);
2584
2585 /* Select only resumed LWPs that have an event pending. */
2586 if (lp->resumed && lwp_status_pending_p (lp))
2587 if ((*selector)-- == 0)
2588 return 1;
2589
2590 return 0;
2591 }
2592
2593 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2594 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2595 and save the result in the LWP's stop_reason field. If it stopped
2596 for a breakpoint, decrement the PC if necessary on the lwp's
2597 architecture. */
2598
2599 static void
2600 save_stop_reason (struct lwp_info *lp)
2601 {
2602 struct regcache *regcache;
2603 struct gdbarch *gdbarch;
2604 CORE_ADDR pc;
2605 CORE_ADDR sw_bp_pc;
2606 #if USE_SIGTRAP_SIGINFO
2607 siginfo_t siginfo;
2608 #endif
2609
2610 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2611 gdb_assert (lp->status != 0);
2612
2613 if (!linux_target->low_status_is_event (lp->status))
2614 return;
2615
2616 regcache = get_thread_regcache (linux_target, lp->ptid);
2617 gdbarch = regcache->arch ();
2618
2619 pc = regcache_read_pc (regcache);
2620 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2621
2622 #if USE_SIGTRAP_SIGINFO
2623 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2624 {
2625 if (siginfo.si_signo == SIGTRAP)
2626 {
2627 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2628 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2629 {
2630 /* The si_code is ambiguous on this arch -- check debug
2631 registers. */
2632 if (!check_stopped_by_watchpoint (lp))
2633 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2634 }
2635 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2636 {
2637 /* If we determine the LWP stopped for a SW breakpoint,
2638 trust it. Particularly don't check watchpoint
2639 registers, because, at least on s390, we'd find
2640 stopped-by-watchpoint as long as there's a watchpoint
2641 set. */
2642 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2643 }
2644 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2645 {
2646 /* This can indicate either a hardware breakpoint or
2647 hardware watchpoint. Check debug registers. */
2648 if (!check_stopped_by_watchpoint (lp))
2649 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2650 }
2651 else if (siginfo.si_code == TRAP_TRACE)
2652 {
2653 linux_nat_debug_printf ("%s stopped by trace",
2654 target_pid_to_str (lp->ptid).c_str ());
2655
2656 /* We may have single stepped an instruction that
2657 triggered a watchpoint. In that case, on some
2658 architectures (such as x86), instead of TRAP_HWBKPT,
2659 si_code indicates TRAP_TRACE, and we need to check
2660 the debug registers separately. */
2661 check_stopped_by_watchpoint (lp);
2662 }
2663 }
2664 }
2665 #else
2666 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2667 && software_breakpoint_inserted_here_p (regcache->aspace (),
2668 sw_bp_pc))
2669 {
2670 /* The LWP was either continued, or stepped a software
2671 breakpoint instruction. */
2672 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2673 }
2674
2675 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2676 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2677
2678 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2679 check_stopped_by_watchpoint (lp);
2680 #endif
2681
2682 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2683 {
2684 linux_nat_debug_printf ("%s stopped by software breakpoint",
2685 target_pid_to_str (lp->ptid).c_str ());
2686
2687 /* Back up the PC if necessary. */
2688 if (pc != sw_bp_pc)
2689 regcache_write_pc (regcache, sw_bp_pc);
2690
2691 /* Update this so we record the correct stop PC below. */
2692 pc = sw_bp_pc;
2693 }
2694 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2695 {
2696 linux_nat_debug_printf ("%s stopped by hardware breakpoint",
2697 target_pid_to_str (lp->ptid).c_str ());
2698 }
2699 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2700 {
2701 linux_nat_debug_printf ("%s stopped by hardware watchpoint",
2702 target_pid_to_str (lp->ptid).c_str ());
2703 }
2704
2705 lp->stop_pc = pc;
2706 }
2707
2708
2709 /* Returns true if the LWP had stopped for a software breakpoint. */
2710
2711 bool
2712 linux_nat_target::stopped_by_sw_breakpoint ()
2713 {
2714 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2715
2716 gdb_assert (lp != NULL);
2717
2718 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2719 }
2720
2721 /* Implement the supports_stopped_by_sw_breakpoint method. */
2722
2723 bool
2724 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2725 {
2726 return USE_SIGTRAP_SIGINFO;
2727 }
2728
2729 /* Returns true if the LWP had stopped for a hardware
2730 breakpoint/watchpoint. */
2731
2732 bool
2733 linux_nat_target::stopped_by_hw_breakpoint ()
2734 {
2735 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2736
2737 gdb_assert (lp != NULL);
2738
2739 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2740 }
2741
2742 /* Implement the supports_stopped_by_hw_breakpoint method. */
2743
2744 bool
2745 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2746 {
2747 return USE_SIGTRAP_SIGINFO;
2748 }
2749
2750 /* Select one LWP out of those that have events pending. */
2751
2752 static void
2753 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2754 {
2755 int num_events = 0;
2756 int random_selector;
2757 struct lwp_info *event_lp = NULL;
2758
2759 /* Record the wait status for the original LWP. */
2760 (*orig_lp)->status = *status;
2761
2762 /* In all-stop, give preference to the LWP that is being
2763 single-stepped. There will be at most one, and it will be the
2764 LWP that the core is most interested in. If we didn't do this,
2765 then we'd have to handle pending step SIGTRAPs somehow in case
2766 the core later continues the previously-stepped thread, as
2767 otherwise we'd report the pending SIGTRAP then, and the core, not
2768 having stepped the thread, wouldn't understand what the trap was
2769 for, and therefore would report it to the user as a random
2770 signal. */
2771 if (!target_is_non_stop_p ())
2772 {
2773 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2774 if (event_lp != NULL)
2775 {
2776 linux_nat_debug_printf ("Select single-step %s",
2777 target_pid_to_str (event_lp->ptid).c_str ());
2778 }
2779 }
2780
2781 if (event_lp == NULL)
2782 {
2783 /* Pick one at random, out of those which have had events. */
2784
2785 /* First see how many events we have. */
2786 iterate_over_lwps (filter,
2787 [&] (struct lwp_info *info)
2788 {
2789 return count_events_callback (info, &num_events);
2790 });
2791 gdb_assert (num_events > 0);
2792
2793 /* Now randomly pick a LWP out of those that have had
2794 events. */
2795 random_selector = (int)
2796 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2797
2798 if (num_events > 1)
2799 linux_nat_debug_printf ("Found %d events, selecting #%d",
2800 num_events, random_selector);
2801
2802 event_lp
2803 = (iterate_over_lwps
2804 (filter,
2805 [&] (struct lwp_info *info)
2806 {
2807 return select_event_lwp_callback (info,
2808 &random_selector);
2809 }));
2810 }
2811
2812 if (event_lp != NULL)
2813 {
2814 /* Switch the event LWP. */
2815 *orig_lp = event_lp;
2816 *status = event_lp->status;
2817 }
2818
2819 /* Flush the wait status for the event LWP. */
2820 (*orig_lp)->status = 0;
2821 }
2822
2823 /* Return non-zero if LP has been resumed. */
2824
2825 static int
2826 resumed_callback (struct lwp_info *lp)
2827 {
2828 return lp->resumed;
2829 }
2830
2831 /* Check if we should go on and pass this event to common code.
2832 Return the affected lwp if we should, or NULL otherwise. */
2833
2834 static struct lwp_info *
2835 linux_nat_filter_event (int lwpid, int status)
2836 {
2837 struct lwp_info *lp;
2838 int event = linux_ptrace_get_extended_event (status);
2839
2840 lp = find_lwp_pid (ptid_t (lwpid));
2841
2842 /* Check for stop events reported by a process we didn't already
2843 know about - anything not already in our LWP list.
2844
2845 If we're expecting to receive stopped processes after
2846 fork, vfork, and clone events, then we'll just add the
2847 new one to our list and go back to waiting for the event
2848 to be reported - the stopped process might be returned
2849 from waitpid before or after the event is.
2850
2851 But note the case of a non-leader thread exec'ing after the
2852 leader having exited, and gone from our lists. The non-leader
2853 thread changes its tid to the tgid. */
2854
2855 if (WIFSTOPPED (status) && lp == NULL
2856 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2857 {
2858 /* A multi-thread exec after we had seen the leader exiting. */
2859 linux_nat_debug_printf ("Re-adding thread group leader LWP %d.", lwpid);
2860
2861 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2862 lp->stopped = 1;
2863 lp->resumed = 1;
2864 add_thread (linux_target, lp->ptid);
2865 }
2866
2867 if (WIFSTOPPED (status) && !lp)
2868 {
2869 linux_nat_debug_printf ("saving LWP %ld status %s in stopped_pids list",
2870 (long) lwpid, status_to_str (status));
2871 add_to_pid_list (&stopped_pids, lwpid, status);
2872 return NULL;
2873 }
2874
2875 /* Make sure we don't report an event for the exit of an LWP not in
2876 our list, i.e. not part of the current process. This can happen
2877 if we detach from a program we originally forked and then it
2878 exits. */
2879 if (!WIFSTOPPED (status) && !lp)
2880 return NULL;
2881
2882 /* This LWP is stopped now. (And if dead, this prevents it from
2883 ever being continued.) */
2884 lp->stopped = 1;
2885
2886 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2887 {
2888 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2889 int options = linux_nat_ptrace_options (inf->attach_flag);
2890
2891 linux_enable_event_reporting (lp->ptid.lwp (), options);
2892 lp->must_set_ptrace_flags = 0;
2893 }
2894
2895 /* Handle GNU/Linux's syscall SIGTRAPs. */
2896 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2897 {
2898 /* No longer need the sysgood bit. The ptrace event ends up
2899 recorded in lp->waitstatus if we care for it. We can carry
2900 on handling the event like a regular SIGTRAP from here
2901 on. */
2902 status = W_STOPCODE (SIGTRAP);
2903 if (linux_handle_syscall_trap (lp, 0))
2904 return NULL;
2905 }
2906 else
2907 {
2908 /* Almost all other ptrace-stops are known to be outside of system
2909 calls, with further exceptions in linux_handle_extended_wait. */
2910 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2911 }
2912
2913 /* Handle GNU/Linux's extended waitstatus for trace events. */
2914 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2915 && linux_is_extended_waitstatus (status))
2916 {
2917 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2918
2919 if (linux_handle_extended_wait (lp, status))
2920 return NULL;
2921 }
2922
2923 /* Check if the thread has exited. */
2924 if (WIFEXITED (status) || WIFSIGNALED (status))
2925 {
2926 if (!report_thread_events
2927 && num_lwps (lp->ptid.pid ()) > 1)
2928 {
2929 linux_nat_debug_printf ("%s exited.",
2930 target_pid_to_str (lp->ptid).c_str ());
2931
2932 /* If there is at least one more LWP, then the exit signal
2933 was not the end of the debugged application and should be
2934 ignored. */
2935 exit_lwp (lp);
2936 return NULL;
2937 }
2938
2939 /* Note that even if the leader was ptrace-stopped, it can still
2940 exit, if e.g., some other thread brings down the whole
2941 process (calls `exit'). So don't assert that the lwp is
2942 resumed. */
2943 linux_nat_debug_printf ("LWP %ld exited (resumed=%d)",
2944 lp->ptid.lwp (), lp->resumed);
2945
2946 /* Dead LWP's aren't expected to reported a pending sigstop. */
2947 lp->signalled = 0;
2948
2949 /* Store the pending event in the waitstatus, because
2950 W_EXITCODE(0,0) == 0. */
2951 store_waitstatus (&lp->waitstatus, status);
2952 return lp;
2953 }
2954
2955 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2956 an attempt to stop an LWP. */
2957 if (lp->signalled
2958 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2959 {
2960 lp->signalled = 0;
2961
2962 if (lp->last_resume_kind == resume_stop)
2963 {
2964 linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.",
2965 target_pid_to_str (lp->ptid).c_str ());
2966 }
2967 else
2968 {
2969 /* This is a delayed SIGSTOP. Filter out the event. */
2970
2971 linux_nat_debug_printf
2972 ("%s %s, 0, 0 (discard delayed SIGSTOP)",
2973 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2974 target_pid_to_str (lp->ptid).c_str ());
2975
2976 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2977 gdb_assert (lp->resumed);
2978 return NULL;
2979 }
2980 }
2981
2982 /* Make sure we don't report a SIGINT that we have already displayed
2983 for another thread. */
2984 if (lp->ignore_sigint
2985 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2986 {
2987 linux_nat_debug_printf ("Delayed SIGINT caught for %s.",
2988 target_pid_to_str (lp->ptid).c_str ());
2989
2990 /* This is a delayed SIGINT. */
2991 lp->ignore_sigint = 0;
2992
2993 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2994 linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)",
2995 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2996 target_pid_to_str (lp->ptid).c_str ());
2997 gdb_assert (lp->resumed);
2998
2999 /* Discard the event. */
3000 return NULL;
3001 }
3002
3003 /* Don't report signals that GDB isn't interested in, such as
3004 signals that are neither printed nor stopped upon. Stopping all
3005 threads can be a bit time-consuming, so if we want decent
3006 performance with heavily multi-threaded programs, especially when
3007 they're using a high frequency timer, we'd better avoid it if we
3008 can. */
3009 if (WIFSTOPPED (status))
3010 {
3011 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3012
3013 if (!target_is_non_stop_p ())
3014 {
3015 /* Only do the below in all-stop, as we currently use SIGSTOP
3016 to implement target_stop (see linux_nat_stop) in
3017 non-stop. */
3018 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3019 {
3020 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3021 forwarded to the entire process group, that is, all LWPs
3022 will receive it - unless they're using CLONE_THREAD to
3023 share signals. Since we only want to report it once, we
3024 mark it as ignored for all LWPs except this one. */
3025 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3026 lp->ignore_sigint = 0;
3027 }
3028 else
3029 maybe_clear_ignore_sigint (lp);
3030 }
3031
3032 /* When using hardware single-step, we need to report every signal.
3033 Otherwise, signals in pass_mask may be short-circuited
3034 except signals that might be caused by a breakpoint, or SIGSTOP
3035 if we sent the SIGSTOP and are waiting for it to arrive. */
3036 if (!lp->step
3037 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3038 && (WSTOPSIG (status) != SIGSTOP
3039 || !find_thread_ptid (linux_target, lp->ptid)->stop_requested)
3040 && !linux_wstatus_maybe_breakpoint (status))
3041 {
3042 linux_resume_one_lwp (lp, lp->step, signo);
3043 linux_nat_debug_printf
3044 ("%s %s, %s (preempt 'handle')",
3045 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3046 target_pid_to_str (lp->ptid).c_str (),
3047 (signo != GDB_SIGNAL_0
3048 ? strsignal (gdb_signal_to_host (signo)) : "0"));
3049 return NULL;
3050 }
3051 }
3052
3053 /* An interesting event. */
3054 gdb_assert (lp);
3055 lp->status = status;
3056 save_stop_reason (lp);
3057 return lp;
3058 }
3059
3060 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3061 their exits until all other threads in the group have exited. */
3062
3063 static void
3064 check_zombie_leaders (void)
3065 {
3066 for (inferior *inf : all_inferiors ())
3067 {
3068 struct lwp_info *leader_lp;
3069
3070 if (inf->pid == 0)
3071 continue;
3072
3073 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3074 if (leader_lp != NULL
3075 /* Check if there are other threads in the group, as we may
3076 have raced with the inferior simply exiting. */
3077 && num_lwps (inf->pid) > 1
3078 && linux_proc_pid_is_zombie (inf->pid))
3079 {
3080 linux_nat_debug_printf ("Thread group leader %d zombie "
3081 "(it exited, or another thread execd).",
3082 inf->pid);
3083
3084 /* A leader zombie can mean one of two things:
3085
3086 - It exited, and there's an exit status pending
3087 available, or only the leader exited (not the whole
3088 program). In the latter case, we can't waitpid the
3089 leader's exit status until all other threads are gone.
3090
3091 - There are 3 or more threads in the group, and a thread
3092 other than the leader exec'd. See comments on exec
3093 events at the top of the file. We could try
3094 distinguishing the exit and exec cases, by waiting once
3095 more, and seeing if something comes out, but it doesn't
3096 sound useful. The previous leader _does_ go away, and
3097 we'll re-add the new one once we see the exec event
3098 (which is just the same as what would happen if the
3099 previous leader did exit voluntarily before some other
3100 thread execs). */
3101
3102 linux_nat_debug_printf ("Thread group leader %d vanished.", inf->pid);
3103 exit_lwp (leader_lp);
3104 }
3105 }
3106 }
3107
3108 /* Convenience function that is called when the kernel reports an exit
3109 event. This decides whether to report the event to GDB as a
3110 process exit event, a thread exit event, or to suppress the
3111 event. */
3112
3113 static ptid_t
3114 filter_exit_event (struct lwp_info *event_child,
3115 struct target_waitstatus *ourstatus)
3116 {
3117 ptid_t ptid = event_child->ptid;
3118
3119 if (num_lwps (ptid.pid ()) > 1)
3120 {
3121 if (report_thread_events)
3122 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3123 else
3124 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3125
3126 exit_lwp (event_child);
3127 }
3128
3129 return ptid;
3130 }
3131
3132 static ptid_t
3133 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3134 int target_options)
3135 {
3136 sigset_t prev_mask;
3137 enum resume_kind last_resume_kind;
3138 struct lwp_info *lp;
3139 int status;
3140
3141 linux_nat_debug_printf ("enter");
3142
3143 /* The first time we get here after starting a new inferior, we may
3144 not have added it to the LWP list yet - this is the earliest
3145 moment at which we know its PID. */
3146 if (ptid.is_pid () && find_lwp_pid (ptid) == nullptr)
3147 {
3148 ptid_t lwp_ptid (ptid.pid (), ptid.pid ());
3149
3150 /* Upgrade the main thread's ptid. */
3151 thread_change_ptid (linux_target, ptid, lwp_ptid);
3152 lp = add_initial_lwp (lwp_ptid);
3153 lp->resumed = 1;
3154 }
3155
3156 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3157 block_child_signals (&prev_mask);
3158
3159 /* First check if there is a LWP with a wait status pending. */
3160 lp = iterate_over_lwps (ptid, status_callback);
3161 if (lp != NULL)
3162 {
3163 linux_nat_debug_printf ("Using pending wait status %s for %s.",
3164 status_to_str (lp->status),
3165 target_pid_to_str (lp->ptid).c_str ());
3166 }
3167
3168 /* But if we don't find a pending event, we'll have to wait. Always
3169 pull all events out of the kernel. We'll randomly select an
3170 event LWP out of all that have events, to prevent starvation. */
3171
3172 while (lp == NULL)
3173 {
3174 pid_t lwpid;
3175
3176 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3177 quirks:
3178
3179 - If the thread group leader exits while other threads in the
3180 thread group still exist, waitpid(TGID, ...) hangs. That
3181 waitpid won't return an exit status until the other threads
3182 in the group are reaped.
3183
3184 - When a non-leader thread execs, that thread just vanishes
3185 without reporting an exit (so we'd hang if we waited for it
3186 explicitly in that case). The exec event is reported to
3187 the TGID pid. */
3188
3189 errno = 0;
3190 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3191
3192 linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s",
3193 lwpid,
3194 errno ? safe_strerror (errno) : "ERRNO-OK");
3195
3196 if (lwpid > 0)
3197 {
3198 linux_nat_debug_printf ("waitpid %ld received %s",
3199 (long) lwpid, status_to_str (status));
3200
3201 linux_nat_filter_event (lwpid, status);
3202 /* Retry until nothing comes out of waitpid. A single
3203 SIGCHLD can indicate more than one child stopped. */
3204 continue;
3205 }
3206
3207 /* Now that we've pulled all events out of the kernel, resume
3208 LWPs that don't have an interesting event to report. */
3209 iterate_over_lwps (minus_one_ptid,
3210 [] (struct lwp_info *info)
3211 {
3212 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3213 });
3214
3215 /* ... and find an LWP with a status to report to the core, if
3216 any. */
3217 lp = iterate_over_lwps (ptid, status_callback);
3218 if (lp != NULL)
3219 break;
3220
3221 /* Check for zombie thread group leaders. Those can't be reaped
3222 until all other threads in the thread group are. */
3223 check_zombie_leaders ();
3224
3225 /* If there are no resumed children left, bail. We'd be stuck
3226 forever in the sigsuspend call below otherwise. */
3227 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3228 {
3229 linux_nat_debug_printf ("exit (no resumed LWP)");
3230
3231 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3232
3233 restore_child_signals_mask (&prev_mask);
3234 return minus_one_ptid;
3235 }
3236
3237 /* No interesting event to report to the core. */
3238
3239 if (target_options & TARGET_WNOHANG)
3240 {
3241 linux_nat_debug_printf ("exit (ignore)");
3242
3243 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3244 restore_child_signals_mask (&prev_mask);
3245 return minus_one_ptid;
3246 }
3247
3248 /* We shouldn't end up here unless we want to try again. */
3249 gdb_assert (lp == NULL);
3250
3251 /* Block until we get an event reported with SIGCHLD. */
3252 wait_for_signal ();
3253 }
3254
3255 gdb_assert (lp);
3256
3257 status = lp->status;
3258 lp->status = 0;
3259
3260 if (!target_is_non_stop_p ())
3261 {
3262 /* Now stop all other LWP's ... */
3263 iterate_over_lwps (minus_one_ptid, stop_callback);
3264
3265 /* ... and wait until all of them have reported back that
3266 they're no longer running. */
3267 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3268 }
3269
3270 /* If we're not waiting for a specific LWP, choose an event LWP from
3271 among those that have had events. Giving equal priority to all
3272 LWPs that have had events helps prevent starvation. */
3273 if (ptid == minus_one_ptid || ptid.is_pid ())
3274 select_event_lwp (ptid, &lp, &status);
3275
3276 gdb_assert (lp != NULL);
3277
3278 /* Now that we've selected our final event LWP, un-adjust its PC if
3279 it was a software breakpoint, and we can't reliably support the
3280 "stopped by software breakpoint" stop reason. */
3281 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3282 && !USE_SIGTRAP_SIGINFO)
3283 {
3284 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3285 struct gdbarch *gdbarch = regcache->arch ();
3286 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3287
3288 if (decr_pc != 0)
3289 {
3290 CORE_ADDR pc;
3291
3292 pc = regcache_read_pc (regcache);
3293 regcache_write_pc (regcache, pc + decr_pc);
3294 }
3295 }
3296
3297 /* We'll need this to determine whether to report a SIGSTOP as
3298 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3299 clears it. */
3300 last_resume_kind = lp->last_resume_kind;
3301
3302 if (!target_is_non_stop_p ())
3303 {
3304 /* In all-stop, from the core's perspective, all LWPs are now
3305 stopped until a new resume action is sent over. */
3306 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3307 }
3308 else
3309 {
3310 resume_clear_callback (lp);
3311 }
3312
3313 if (linux_target->low_status_is_event (status))
3314 {
3315 linux_nat_debug_printf ("trap ptid is %s.",
3316 target_pid_to_str (lp->ptid).c_str ());
3317 }
3318
3319 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3320 {
3321 *ourstatus = lp->waitstatus;
3322 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3323 }
3324 else
3325 store_waitstatus (ourstatus, status);
3326
3327 linux_nat_debug_printf ("exit");
3328
3329 restore_child_signals_mask (&prev_mask);
3330
3331 if (last_resume_kind == resume_stop
3332 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3333 && WSTOPSIG (status) == SIGSTOP)
3334 {
3335 /* A thread that has been requested to stop by GDB with
3336 target_stop, and it stopped cleanly, so report as SIG0. The
3337 use of SIGSTOP is an implementation detail. */
3338 ourstatus->value.sig = GDB_SIGNAL_0;
3339 }
3340
3341 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3342 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3343 lp->core = -1;
3344 else
3345 lp->core = linux_common_core_of_thread (lp->ptid);
3346
3347 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3348 return filter_exit_event (lp, ourstatus);
3349
3350 return lp->ptid;
3351 }
3352
3353 /* Resume LWPs that are currently stopped without any pending status
3354 to report, but are resumed from the core's perspective. */
3355
3356 static int
3357 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3358 {
3359 if (!lp->stopped)
3360 {
3361 linux_nat_debug_printf ("NOT resuming LWP %s, not stopped",
3362 target_pid_to_str (lp->ptid).c_str ());
3363 }
3364 else if (!lp->resumed)
3365 {
3366 linux_nat_debug_printf ("NOT resuming LWP %s, not resumed",
3367 target_pid_to_str (lp->ptid).c_str ());
3368 }
3369 else if (lwp_status_pending_p (lp))
3370 {
3371 linux_nat_debug_printf ("NOT resuming LWP %s, has pending status",
3372 target_pid_to_str (lp->ptid).c_str ());
3373 }
3374 else
3375 {
3376 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3377 struct gdbarch *gdbarch = regcache->arch ();
3378
3379 try
3380 {
3381 CORE_ADDR pc = regcache_read_pc (regcache);
3382 int leave_stopped = 0;
3383
3384 /* Don't bother if there's a breakpoint at PC that we'd hit
3385 immediately, and we're not waiting for this LWP. */
3386 if (!lp->ptid.matches (wait_ptid))
3387 {
3388 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3389 leave_stopped = 1;
3390 }
3391
3392 if (!leave_stopped)
3393 {
3394 linux_nat_debug_printf
3395 ("resuming stopped-resumed LWP %s at %s: step=%d",
3396 target_pid_to_str (lp->ptid).c_str (), paddress (gdbarch, pc),
3397 lp->step);
3398
3399 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3400 }
3401 }
3402 catch (const gdb_exception_error &ex)
3403 {
3404 if (!check_ptrace_stopped_lwp_gone (lp))
3405 throw;
3406 }
3407 }
3408
3409 return 0;
3410 }
3411
3412 ptid_t
3413 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3414 int target_options)
3415 {
3416 ptid_t event_ptid;
3417
3418 linux_nat_debug_printf ("[%s], [%s]", target_pid_to_str (ptid).c_str (),
3419 target_options_to_string (target_options).c_str ());
3420
3421 /* Flush the async file first. */
3422 if (target_is_async_p ())
3423 async_file_flush ();
3424
3425 /* Resume LWPs that are currently stopped without any pending status
3426 to report, but are resumed from the core's perspective. LWPs get
3427 in this state if we find them stopping at a time we're not
3428 interested in reporting the event (target_wait on a
3429 specific_process, for example, see linux_nat_wait_1), and
3430 meanwhile the event became uninteresting. Don't bother resuming
3431 LWPs we're not going to wait for if they'd stop immediately. */
3432 if (target_is_non_stop_p ())
3433 iterate_over_lwps (minus_one_ptid,
3434 [=] (struct lwp_info *info)
3435 {
3436 return resume_stopped_resumed_lwps (info, ptid);
3437 });
3438
3439 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3440
3441 /* If we requested any event, and something came out, assume there
3442 may be more. If we requested a specific lwp or process, also
3443 assume there may be more. */
3444 if (target_is_async_p ()
3445 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3446 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3447 || ptid != minus_one_ptid))
3448 async_file_mark ();
3449
3450 return event_ptid;
3451 }
3452
3453 /* Kill one LWP. */
3454
3455 static void
3456 kill_one_lwp (pid_t pid)
3457 {
3458 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3459
3460 errno = 0;
3461 kill_lwp (pid, SIGKILL);
3462
3463 if (debug_linux_nat)
3464 {
3465 int save_errno = errno;
3466
3467 linux_nat_debug_printf
3468 ("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid,
3469 save_errno != 0 ? safe_strerror (save_errno) : "OK");
3470 }
3471
3472 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3473
3474 errno = 0;
3475 ptrace (PTRACE_KILL, pid, 0, 0);
3476 if (debug_linux_nat)
3477 {
3478 int save_errno = errno;
3479
3480 linux_nat_debug_printf
3481 ("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid,
3482 save_errno ? safe_strerror (save_errno) : "OK");
3483 }
3484 }
3485
3486 /* Wait for an LWP to die. */
3487
3488 static void
3489 kill_wait_one_lwp (pid_t pid)
3490 {
3491 pid_t res;
3492
3493 /* We must make sure that there are no pending events (delayed
3494 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3495 program doesn't interfere with any following debugging session. */
3496
3497 do
3498 {
3499 res = my_waitpid (pid, NULL, __WALL);
3500 if (res != (pid_t) -1)
3501 {
3502 linux_nat_debug_printf ("wait %ld received unknown.", (long) pid);
3503
3504 /* The Linux kernel sometimes fails to kill a thread
3505 completely after PTRACE_KILL; that goes from the stop
3506 point in do_fork out to the one in get_signal_to_deliver
3507 and waits again. So kill it again. */
3508 kill_one_lwp (pid);
3509 }
3510 }
3511 while (res == pid);
3512
3513 gdb_assert (res == -1 && errno == ECHILD);
3514 }
3515
3516 /* Callback for iterate_over_lwps. */
3517
3518 static int
3519 kill_callback (struct lwp_info *lp)
3520 {
3521 kill_one_lwp (lp->ptid.lwp ());
3522 return 0;
3523 }
3524
3525 /* Callback for iterate_over_lwps. */
3526
3527 static int
3528 kill_wait_callback (struct lwp_info *lp)
3529 {
3530 kill_wait_one_lwp (lp->ptid.lwp ());
3531 return 0;
3532 }
3533
3534 /* Kill the fork children of any threads of inferior INF that are
3535 stopped at a fork event. */
3536
3537 static void
3538 kill_unfollowed_fork_children (struct inferior *inf)
3539 {
3540 for (thread_info *thread : inf->non_exited_threads ())
3541 {
3542 struct target_waitstatus *ws = &thread->pending_follow;
3543
3544 if (ws->kind == TARGET_WAITKIND_FORKED
3545 || ws->kind == TARGET_WAITKIND_VFORKED)
3546 {
3547 ptid_t child_ptid = ws->value.related_pid;
3548 int child_pid = child_ptid.pid ();
3549 int child_lwp = child_ptid.lwp ();
3550
3551 kill_one_lwp (child_lwp);
3552 kill_wait_one_lwp (child_lwp);
3553
3554 /* Let the arch-specific native code know this process is
3555 gone. */
3556 linux_target->low_forget_process (child_pid);
3557 }
3558 }
3559 }
3560
3561 void
3562 linux_nat_target::kill ()
3563 {
3564 /* If we're stopped while forking and we haven't followed yet,
3565 kill the other task. We need to do this first because the
3566 parent will be sleeping if this is a vfork. */
3567 kill_unfollowed_fork_children (current_inferior ());
3568
3569 if (forks_exist_p ())
3570 linux_fork_killall ();
3571 else
3572 {
3573 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3574
3575 /* Stop all threads before killing them, since ptrace requires
3576 that the thread is stopped to successfully PTRACE_KILL. */
3577 iterate_over_lwps (ptid, stop_callback);
3578 /* ... and wait until all of them have reported back that
3579 they're no longer running. */
3580 iterate_over_lwps (ptid, stop_wait_callback);
3581
3582 /* Kill all LWP's ... */
3583 iterate_over_lwps (ptid, kill_callback);
3584
3585 /* ... and wait until we've flushed all events. */
3586 iterate_over_lwps (ptid, kill_wait_callback);
3587 }
3588
3589 target_mourn_inferior (inferior_ptid);
3590 }
3591
3592 void
3593 linux_nat_target::mourn_inferior ()
3594 {
3595 int pid = inferior_ptid.pid ();
3596
3597 purge_lwp_list (pid);
3598
3599 if (! forks_exist_p ())
3600 /* Normal case, no other forks available. */
3601 inf_ptrace_target::mourn_inferior ();
3602 else
3603 /* Multi-fork case. The current inferior_ptid has exited, but
3604 there are other viable forks to debug. Delete the exiting
3605 one and context-switch to the first available. */
3606 linux_fork_mourn_inferior ();
3607
3608 /* Let the arch-specific native code know this process is gone. */
3609 linux_target->low_forget_process (pid);
3610 }
3611
3612 /* Convert a native/host siginfo object, into/from the siginfo in the
3613 layout of the inferiors' architecture. */
3614
3615 static void
3616 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3617 {
3618 /* If the low target didn't do anything, then just do a straight
3619 memcpy. */
3620 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3621 {
3622 if (direction == 1)
3623 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3624 else
3625 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3626 }
3627 }
3628
3629 static enum target_xfer_status
3630 linux_xfer_siginfo (enum target_object object,
3631 const char *annex, gdb_byte *readbuf,
3632 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3633 ULONGEST *xfered_len)
3634 {
3635 int pid;
3636 siginfo_t siginfo;
3637 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3638
3639 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3640 gdb_assert (readbuf || writebuf);
3641
3642 pid = inferior_ptid.lwp ();
3643 if (pid == 0)
3644 pid = inferior_ptid.pid ();
3645
3646 if (offset > sizeof (siginfo))
3647 return TARGET_XFER_E_IO;
3648
3649 errno = 0;
3650 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3651 if (errno != 0)
3652 return TARGET_XFER_E_IO;
3653
3654 /* When GDB is built as a 64-bit application, ptrace writes into
3655 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3656 inferior with a 64-bit GDB should look the same as debugging it
3657 with a 32-bit GDB, we need to convert it. GDB core always sees
3658 the converted layout, so any read/write will have to be done
3659 post-conversion. */
3660 siginfo_fixup (&siginfo, inf_siginfo, 0);
3661
3662 if (offset + len > sizeof (siginfo))
3663 len = sizeof (siginfo) - offset;
3664
3665 if (readbuf != NULL)
3666 memcpy (readbuf, inf_siginfo + offset, len);
3667 else
3668 {
3669 memcpy (inf_siginfo + offset, writebuf, len);
3670
3671 /* Convert back to ptrace layout before flushing it out. */
3672 siginfo_fixup (&siginfo, inf_siginfo, 1);
3673
3674 errno = 0;
3675 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3676 if (errno != 0)
3677 return TARGET_XFER_E_IO;
3678 }
3679
3680 *xfered_len = len;
3681 return TARGET_XFER_OK;
3682 }
3683
3684 static enum target_xfer_status
3685 linux_nat_xfer_osdata (enum target_object object,
3686 const char *annex, gdb_byte *readbuf,
3687 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3688 ULONGEST *xfered_len);
3689
3690 static enum target_xfer_status
3691 linux_proc_xfer_partial (enum target_object object,
3692 const char *annex, gdb_byte *readbuf,
3693 const gdb_byte *writebuf,
3694 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3695
3696 enum target_xfer_status
3697 linux_nat_target::xfer_partial (enum target_object object,
3698 const char *annex, gdb_byte *readbuf,
3699 const gdb_byte *writebuf,
3700 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3701 {
3702 enum target_xfer_status xfer;
3703
3704 if (object == TARGET_OBJECT_SIGNAL_INFO)
3705 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3706 offset, len, xfered_len);
3707
3708 /* The target is connected but no live inferior is selected. Pass
3709 this request down to a lower stratum (e.g., the executable
3710 file). */
3711 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3712 return TARGET_XFER_EOF;
3713
3714 if (object == TARGET_OBJECT_AUXV)
3715 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3716 offset, len, xfered_len);
3717
3718 if (object == TARGET_OBJECT_OSDATA)
3719 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3720 offset, len, xfered_len);
3721
3722 /* GDB calculates all addresses in the largest possible address
3723 width.
3724 The address width must be masked before its final use - either by
3725 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3726
3727 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3728
3729 if (object == TARGET_OBJECT_MEMORY)
3730 {
3731 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3732
3733 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3734 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3735 }
3736
3737 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3738 offset, len, xfered_len);
3739 if (xfer != TARGET_XFER_EOF)
3740 return xfer;
3741
3742 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3743 offset, len, xfered_len);
3744 }
3745
3746 bool
3747 linux_nat_target::thread_alive (ptid_t ptid)
3748 {
3749 /* As long as a PTID is in lwp list, consider it alive. */
3750 return find_lwp_pid (ptid) != NULL;
3751 }
3752
3753 /* Implement the to_update_thread_list target method for this
3754 target. */
3755
3756 void
3757 linux_nat_target::update_thread_list ()
3758 {
3759 struct lwp_info *lwp;
3760
3761 /* We add/delete threads from the list as clone/exit events are
3762 processed, so just try deleting exited threads still in the
3763 thread list. */
3764 delete_exited_threads ();
3765
3766 /* Update the processor core that each lwp/thread was last seen
3767 running on. */
3768 ALL_LWPS (lwp)
3769 {
3770 /* Avoid accessing /proc if the thread hasn't run since we last
3771 time we fetched the thread's core. Accessing /proc becomes
3772 noticeably expensive when we have thousands of LWPs. */
3773 if (lwp->core == -1)
3774 lwp->core = linux_common_core_of_thread (lwp->ptid);
3775 }
3776 }
3777
3778 std::string
3779 linux_nat_target::pid_to_str (ptid_t ptid)
3780 {
3781 if (ptid.lwp_p ()
3782 && (ptid.pid () != ptid.lwp ()
3783 || num_lwps (ptid.pid ()) > 1))
3784 return string_printf ("LWP %ld", ptid.lwp ());
3785
3786 return normal_pid_to_str (ptid);
3787 }
3788
3789 const char *
3790 linux_nat_target::thread_name (struct thread_info *thr)
3791 {
3792 return linux_proc_tid_get_name (thr->ptid);
3793 }
3794
3795 /* Accepts an integer PID; Returns a string representing a file that
3796 can be opened to get the symbols for the child process. */
3797
3798 char *
3799 linux_nat_target::pid_to_exec_file (int pid)
3800 {
3801 return linux_proc_pid_to_exec_file (pid);
3802 }
3803
3804 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3805 Because we can use a single read/write call, this can be much more
3806 efficient than banging away at PTRACE_PEEKTEXT. */
3807
3808 static enum target_xfer_status
3809 linux_proc_xfer_partial (enum target_object object,
3810 const char *annex, gdb_byte *readbuf,
3811 const gdb_byte *writebuf,
3812 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3813 {
3814 LONGEST ret;
3815 int fd;
3816 char filename[64];
3817
3818 if (object != TARGET_OBJECT_MEMORY)
3819 return TARGET_XFER_EOF;
3820
3821 /* Don't bother for one word. */
3822 if (len < 3 * sizeof (long))
3823 return TARGET_XFER_EOF;
3824
3825 /* We could keep this file open and cache it - possibly one per
3826 thread. That requires some juggling, but is even faster. */
3827 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3828 inferior_ptid.lwp ());
3829 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3830 | O_LARGEFILE), 0);
3831 if (fd == -1)
3832 return TARGET_XFER_EOF;
3833
3834 /* Use pread64/pwrite64 if available, since they save a syscall and can
3835 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3836 debugging a SPARC64 application). */
3837 #ifdef HAVE_PREAD64
3838 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3839 : pwrite64 (fd, writebuf, len, offset));
3840 #else
3841 ret = lseek (fd, offset, SEEK_SET);
3842 if (ret != -1)
3843 ret = (readbuf ? read (fd, readbuf, len)
3844 : write (fd, writebuf, len));
3845 #endif
3846
3847 close (fd);
3848
3849 if (ret == -1 || ret == 0)
3850 return TARGET_XFER_EOF;
3851 else
3852 {
3853 *xfered_len = ret;
3854 return TARGET_XFER_OK;
3855 }
3856 }
3857
3858
3859 /* Parse LINE as a signal set and add its set bits to SIGS. */
3860
3861 static void
3862 add_line_to_sigset (const char *line, sigset_t *sigs)
3863 {
3864 int len = strlen (line) - 1;
3865 const char *p;
3866 int signum;
3867
3868 if (line[len] != '\n')
3869 error (_("Could not parse signal set: %s"), line);
3870
3871 p = line;
3872 signum = len * 4;
3873 while (len-- > 0)
3874 {
3875 int digit;
3876
3877 if (*p >= '0' && *p <= '9')
3878 digit = *p - '0';
3879 else if (*p >= 'a' && *p <= 'f')
3880 digit = *p - 'a' + 10;
3881 else
3882 error (_("Could not parse signal set: %s"), line);
3883
3884 signum -= 4;
3885
3886 if (digit & 1)
3887 sigaddset (sigs, signum + 1);
3888 if (digit & 2)
3889 sigaddset (sigs, signum + 2);
3890 if (digit & 4)
3891 sigaddset (sigs, signum + 3);
3892 if (digit & 8)
3893 sigaddset (sigs, signum + 4);
3894
3895 p++;
3896 }
3897 }
3898
3899 /* Find process PID's pending signals from /proc/pid/status and set
3900 SIGS to match. */
3901
3902 void
3903 linux_proc_pending_signals (int pid, sigset_t *pending,
3904 sigset_t *blocked, sigset_t *ignored)
3905 {
3906 char buffer[PATH_MAX], fname[PATH_MAX];
3907
3908 sigemptyset (pending);
3909 sigemptyset (blocked);
3910 sigemptyset (ignored);
3911 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
3912 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
3913 if (procfile == NULL)
3914 error (_("Could not open %s"), fname);
3915
3916 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
3917 {
3918 /* Normal queued signals are on the SigPnd line in the status
3919 file. However, 2.6 kernels also have a "shared" pending
3920 queue for delivering signals to a thread group, so check for
3921 a ShdPnd line also.
3922
3923 Unfortunately some Red Hat kernels include the shared pending
3924 queue but not the ShdPnd status field. */
3925
3926 if (startswith (buffer, "SigPnd:\t"))
3927 add_line_to_sigset (buffer + 8, pending);
3928 else if (startswith (buffer, "ShdPnd:\t"))
3929 add_line_to_sigset (buffer + 8, pending);
3930 else if (startswith (buffer, "SigBlk:\t"))
3931 add_line_to_sigset (buffer + 8, blocked);
3932 else if (startswith (buffer, "SigIgn:\t"))
3933 add_line_to_sigset (buffer + 8, ignored);
3934 }
3935 }
3936
3937 static enum target_xfer_status
3938 linux_nat_xfer_osdata (enum target_object object,
3939 const char *annex, gdb_byte *readbuf,
3940 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3941 ULONGEST *xfered_len)
3942 {
3943 gdb_assert (object == TARGET_OBJECT_OSDATA);
3944
3945 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
3946 if (*xfered_len == 0)
3947 return TARGET_XFER_EOF;
3948 else
3949 return TARGET_XFER_OK;
3950 }
3951
3952 std::vector<static_tracepoint_marker>
3953 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
3954 {
3955 char s[IPA_CMD_BUF_SIZE];
3956 int pid = inferior_ptid.pid ();
3957 std::vector<static_tracepoint_marker> markers;
3958 const char *p = s;
3959 ptid_t ptid = ptid_t (pid, 0, 0);
3960 static_tracepoint_marker marker;
3961
3962 /* Pause all */
3963 target_stop (ptid);
3964
3965 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
3966 s[sizeof ("qTfSTM")] = 0;
3967
3968 agent_run_command (pid, s, strlen (s) + 1);
3969
3970 /* Unpause all. */
3971 SCOPE_EXIT { target_continue_no_signal (ptid); };
3972
3973 while (*p++ == 'm')
3974 {
3975 do
3976 {
3977 parse_static_tracepoint_marker_definition (p, &p, &marker);
3978
3979 if (strid == NULL || marker.str_id == strid)
3980 markers.push_back (std::move (marker));
3981 }
3982 while (*p++ == ','); /* comma-separated list */
3983
3984 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
3985 s[sizeof ("qTsSTM")] = 0;
3986 agent_run_command (pid, s, strlen (s) + 1);
3987 p = s;
3988 }
3989
3990 return markers;
3991 }
3992
3993 /* target_is_async_p implementation. */
3994
3995 bool
3996 linux_nat_target::is_async_p ()
3997 {
3998 return linux_is_async_p ();
3999 }
4000
4001 /* target_can_async_p implementation. */
4002
4003 bool
4004 linux_nat_target::can_async_p ()
4005 {
4006 /* We're always async, unless the user explicitly prevented it with the
4007 "maint set target-async" command. */
4008 return target_async_permitted;
4009 }
4010
4011 bool
4012 linux_nat_target::supports_non_stop ()
4013 {
4014 return true;
4015 }
4016
4017 /* to_always_non_stop_p implementation. */
4018
4019 bool
4020 linux_nat_target::always_non_stop_p ()
4021 {
4022 return true;
4023 }
4024
4025 bool
4026 linux_nat_target::supports_multi_process ()
4027 {
4028 return true;
4029 }
4030
4031 bool
4032 linux_nat_target::supports_disable_randomization ()
4033 {
4034 #ifdef HAVE_PERSONALITY
4035 return true;
4036 #else
4037 return false;
4038 #endif
4039 }
4040
4041 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4042 so we notice when any child changes state, and notify the
4043 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4044 above to wait for the arrival of a SIGCHLD. */
4045
4046 static void
4047 sigchld_handler (int signo)
4048 {
4049 int old_errno = errno;
4050
4051 if (debug_linux_nat)
4052 gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1);
4053
4054 if (signo == SIGCHLD
4055 && linux_nat_event_pipe[0] != -1)
4056 async_file_mark (); /* Let the event loop know that there are
4057 events to handle. */
4058
4059 errno = old_errno;
4060 }
4061
4062 /* Callback registered with the target events file descriptor. */
4063
4064 static void
4065 handle_target_event (int error, gdb_client_data client_data)
4066 {
4067 inferior_event_handler (INF_REG_EVENT);
4068 }
4069
4070 /* Create/destroy the target events pipe. Returns previous state. */
4071
4072 static int
4073 linux_async_pipe (int enable)
4074 {
4075 int previous = linux_is_async_p ();
4076
4077 if (previous != enable)
4078 {
4079 sigset_t prev_mask;
4080
4081 /* Block child signals while we create/destroy the pipe, as
4082 their handler writes to it. */
4083 block_child_signals (&prev_mask);
4084
4085 if (enable)
4086 {
4087 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4088 internal_error (__FILE__, __LINE__,
4089 "creating event pipe failed.");
4090
4091 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4092 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4093 }
4094 else
4095 {
4096 close (linux_nat_event_pipe[0]);
4097 close (linux_nat_event_pipe[1]);
4098 linux_nat_event_pipe[0] = -1;
4099 linux_nat_event_pipe[1] = -1;
4100 }
4101
4102 restore_child_signals_mask (&prev_mask);
4103 }
4104
4105 return previous;
4106 }
4107
4108 int
4109 linux_nat_target::async_wait_fd ()
4110 {
4111 return linux_nat_event_pipe[0];
4112 }
4113
4114 /* target_async implementation. */
4115
4116 void
4117 linux_nat_target::async (int enable)
4118 {
4119 if (enable)
4120 {
4121 if (!linux_async_pipe (1))
4122 {
4123 add_file_handler (linux_nat_event_pipe[0],
4124 handle_target_event, NULL);
4125 /* There may be pending events to handle. Tell the event loop
4126 to poll them. */
4127 async_file_mark ();
4128 }
4129 }
4130 else
4131 {
4132 delete_file_handler (linux_nat_event_pipe[0]);
4133 linux_async_pipe (0);
4134 }
4135 return;
4136 }
4137
4138 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4139 event came out. */
4140
4141 static int
4142 linux_nat_stop_lwp (struct lwp_info *lwp)
4143 {
4144 if (!lwp->stopped)
4145 {
4146 linux_nat_debug_printf ("running -> suspending %s",
4147 target_pid_to_str (lwp->ptid).c_str ());
4148
4149
4150 if (lwp->last_resume_kind == resume_stop)
4151 {
4152 linux_nat_debug_printf ("already stopping LWP %ld at GDB's request",
4153 lwp->ptid.lwp ());
4154 return 0;
4155 }
4156
4157 stop_callback (lwp);
4158 lwp->last_resume_kind = resume_stop;
4159 }
4160 else
4161 {
4162 /* Already known to be stopped; do nothing. */
4163
4164 if (debug_linux_nat)
4165 {
4166 if (find_thread_ptid (linux_target, lwp->ptid)->stop_requested)
4167 linux_nat_debug_printf ("already stopped/stop_requested %s",
4168 target_pid_to_str (lwp->ptid).c_str ());
4169 else
4170 linux_nat_debug_printf ("already stopped/no stop_requested yet %s",
4171 target_pid_to_str (lwp->ptid).c_str ());
4172 }
4173 }
4174 return 0;
4175 }
4176
4177 void
4178 linux_nat_target::stop (ptid_t ptid)
4179 {
4180 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4181 }
4182
4183 void
4184 linux_nat_target::close ()
4185 {
4186 /* Unregister from the event loop. */
4187 if (is_async_p ())
4188 async (0);
4189
4190 inf_ptrace_target::close ();
4191 }
4192
4193 /* When requests are passed down from the linux-nat layer to the
4194 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4195 used. The address space pointer is stored in the inferior object,
4196 but the common code that is passed such ptid can't tell whether
4197 lwpid is a "main" process id or not (it assumes so). We reverse
4198 look up the "main" process id from the lwp here. */
4199
4200 struct address_space *
4201 linux_nat_target::thread_address_space (ptid_t ptid)
4202 {
4203 struct lwp_info *lwp;
4204 struct inferior *inf;
4205 int pid;
4206
4207 if (ptid.lwp () == 0)
4208 {
4209 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4210 tgid. */
4211 lwp = find_lwp_pid (ptid);
4212 pid = lwp->ptid.pid ();
4213 }
4214 else
4215 {
4216 /* A (pid,lwpid,0) ptid. */
4217 pid = ptid.pid ();
4218 }
4219
4220 inf = find_inferior_pid (this, pid);
4221 gdb_assert (inf != NULL);
4222 return inf->aspace;
4223 }
4224
4225 /* Return the cached value of the processor core for thread PTID. */
4226
4227 int
4228 linux_nat_target::core_of_thread (ptid_t ptid)
4229 {
4230 struct lwp_info *info = find_lwp_pid (ptid);
4231
4232 if (info)
4233 return info->core;
4234 return -1;
4235 }
4236
4237 /* Implementation of to_filesystem_is_local. */
4238
4239 bool
4240 linux_nat_target::filesystem_is_local ()
4241 {
4242 struct inferior *inf = current_inferior ();
4243
4244 if (inf->fake_pid_p || inf->pid == 0)
4245 return true;
4246
4247 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4248 }
4249
4250 /* Convert the INF argument passed to a to_fileio_* method
4251 to a process ID suitable for passing to its corresponding
4252 linux_mntns_* function. If INF is non-NULL then the
4253 caller is requesting the filesystem seen by INF. If INF
4254 is NULL then the caller is requesting the filesystem seen
4255 by the GDB. We fall back to GDB's filesystem in the case
4256 that INF is non-NULL but its PID is unknown. */
4257
4258 static pid_t
4259 linux_nat_fileio_pid_of (struct inferior *inf)
4260 {
4261 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4262 return getpid ();
4263 else
4264 return inf->pid;
4265 }
4266
4267 /* Implementation of to_fileio_open. */
4268
4269 int
4270 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4271 int flags, int mode, int warn_if_slow,
4272 int *target_errno)
4273 {
4274 int nat_flags;
4275 mode_t nat_mode;
4276 int fd;
4277
4278 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4279 || fileio_to_host_mode (mode, &nat_mode) == -1)
4280 {
4281 *target_errno = FILEIO_EINVAL;
4282 return -1;
4283 }
4284
4285 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4286 filename, nat_flags, nat_mode);
4287 if (fd == -1)
4288 *target_errno = host_to_fileio_error (errno);
4289
4290 return fd;
4291 }
4292
4293 /* Implementation of to_fileio_readlink. */
4294
4295 gdb::optional<std::string>
4296 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4297 int *target_errno)
4298 {
4299 char buf[PATH_MAX];
4300 int len;
4301
4302 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4303 filename, buf, sizeof (buf));
4304 if (len < 0)
4305 {
4306 *target_errno = host_to_fileio_error (errno);
4307 return {};
4308 }
4309
4310 return std::string (buf, len);
4311 }
4312
4313 /* Implementation of to_fileio_unlink. */
4314
4315 int
4316 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4317 int *target_errno)
4318 {
4319 int ret;
4320
4321 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4322 filename);
4323 if (ret == -1)
4324 *target_errno = host_to_fileio_error (errno);
4325
4326 return ret;
4327 }
4328
4329 /* Implementation of the to_thread_events method. */
4330
4331 void
4332 linux_nat_target::thread_events (int enable)
4333 {
4334 report_thread_events = enable;
4335 }
4336
4337 linux_nat_target::linux_nat_target ()
4338 {
4339 /* We don't change the stratum; this target will sit at
4340 process_stratum and thread_db will set at thread_stratum. This
4341 is a little strange, since this is a multi-threaded-capable
4342 target, but we want to be on the stack below thread_db, and we
4343 also want to be used for single-threaded processes. */
4344 }
4345
4346 /* See linux-nat.h. */
4347
4348 int
4349 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4350 {
4351 int pid;
4352
4353 pid = ptid.lwp ();
4354 if (pid == 0)
4355 pid = ptid.pid ();
4356
4357 errno = 0;
4358 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4359 if (errno != 0)
4360 {
4361 memset (siginfo, 0, sizeof (*siginfo));
4362 return 0;
4363 }
4364 return 1;
4365 }
4366
4367 /* See nat/linux-nat.h. */
4368
4369 ptid_t
4370 current_lwp_ptid (void)
4371 {
4372 gdb_assert (inferior_ptid.lwp_p ());
4373 return inferior_ptid;
4374 }
4375
4376 void _initialize_linux_nat ();
4377 void
4378 _initialize_linux_nat ()
4379 {
4380 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4381 &debug_linux_nat, _("\
4382 Set debugging of GNU/Linux lwp module."), _("\
4383 Show debugging of GNU/Linux lwp module."), _("\
4384 Enables printf debugging output."),
4385 NULL,
4386 show_debug_linux_nat,
4387 &setdebuglist, &showdebuglist);
4388
4389 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4390 &debug_linux_namespaces, _("\
4391 Set debugging of GNU/Linux namespaces module."), _("\
4392 Show debugging of GNU/Linux namespaces module."), _("\
4393 Enables printf debugging output."),
4394 NULL,
4395 NULL,
4396 &setdebuglist, &showdebuglist);
4397
4398 /* Install a SIGCHLD handler. */
4399 sigchld_action.sa_handler = sigchld_handler;
4400 sigemptyset (&sigchld_action.sa_mask);
4401 sigchld_action.sa_flags = SA_RESTART;
4402
4403 /* Make it the default. */
4404 sigaction (SIGCHLD, &sigchld_action, NULL);
4405
4406 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4407 gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask);
4408 sigdelset (&suspend_mask, SIGCHLD);
4409
4410 sigemptyset (&blocked_mask);
4411
4412 lwp_lwpid_htab_create ();
4413 }
4414 \f
4415
4416 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4417 the GNU/Linux Threads library and therefore doesn't really belong
4418 here. */
4419
4420 /* Return the set of signals used by the threads library in *SET. */
4421
4422 void
4423 lin_thread_get_thread_signals (sigset_t *set)
4424 {
4425 sigemptyset (set);
4426
4427 /* NPTL reserves the first two RT signals, but does not provide any
4428 way for the debugger to query the signal numbers - fortunately
4429 they don't change. */
4430 sigaddset (set, __SIGRTMIN);
4431 sigaddset (set, __SIGRTMIN + 1);
4432 }
This page took 0.127337 seconds and 4 git commands to generate.