Rephrase error message in infcall.c:call_function_by_hand
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-ptrace.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-ptrace.h"
40 #include "auxv.h"
41 #include <sys/param.h> /* for MAXPATHLEN */
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include "gdbthread.h" /* for struct thread_info etc. */
48 #include "gdb_stat.h" /* for struct stat */
49 #include <fcntl.h> /* for O_RDONLY */
50 #include "inf-loop.h"
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include <pwd.h>
54 #include <sys/types.h>
55 #include "gdb_dirent.h"
56 #include "xml-support.h"
57 #include "terminal.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60
61 #ifndef SPUFS_MAGIC
62 #define SPUFS_MAGIC 0x23c9b64e
63 #endif
64
65 #ifdef HAVE_PERSONALITY
66 # include <sys/personality.h>
67 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
68 # define ADDR_NO_RANDOMIZE 0x0040000
69 # endif
70 #endif /* HAVE_PERSONALITY */
71
72 /* This comment documents high-level logic of this file.
73
74 Waiting for events in sync mode
75 ===============================
76
77 When waiting for an event in a specific thread, we just use waitpid, passing
78 the specific pid, and not passing WNOHANG.
79
80 When waiting for an event in all threads, waitpid is not quite good. Prior to
81 version 2.4, Linux can either wait for event in main thread, or in secondary
82 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
83 miss an event. The solution is to use non-blocking waitpid, together with
84 sigsuspend. First, we use non-blocking waitpid to get an event in the main
85 process, if any. Second, we use non-blocking waitpid with the __WCLONED
86 flag to check for events in cloned processes. If nothing is found, we use
87 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
88 happened to a child process -- and SIGCHLD will be delivered both for events
89 in main debugged process and in cloned processes. As soon as we know there's
90 an event, we get back to calling nonblocking waitpid with and without
91 __WCLONED.
92
93 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
94 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
95 blocked, the signal becomes pending and sigsuspend immediately
96 notices it and returns.
97
98 Waiting for events in async mode
99 ================================
100
101 In async mode, GDB should always be ready to handle both user input
102 and target events, so neither blocking waitpid nor sigsuspend are
103 viable options. Instead, we should asynchronously notify the GDB main
104 event loop whenever there's an unprocessed event from the target. We
105 detect asynchronous target events by handling SIGCHLD signals. To
106 notify the event loop about target events, the self-pipe trick is used
107 --- a pipe is registered as waitable event source in the event loop,
108 the event loop select/poll's on the read end of this pipe (as well on
109 other event sources, e.g., stdin), and the SIGCHLD handler writes a
110 byte to this pipe. This is more portable than relying on
111 pselect/ppoll, since on kernels that lack those syscalls, libc
112 emulates them with select/poll+sigprocmask, and that is racy
113 (a.k.a. plain broken).
114
115 Obviously, if we fail to notify the event loop if there's a target
116 event, it's bad. OTOH, if we notify the event loop when there's no
117 event from the target, linux_nat_wait will detect that there's no real
118 event to report, and return event of type TARGET_WAITKIND_IGNORE.
119 This is mostly harmless, but it will waste time and is better avoided.
120
121 The main design point is that every time GDB is outside linux-nat.c,
122 we have a SIGCHLD handler installed that is called when something
123 happens to the target and notifies the GDB event loop. Whenever GDB
124 core decides to handle the event, and calls into linux-nat.c, we
125 process things as in sync mode, except that the we never block in
126 sigsuspend.
127
128 While processing an event, we may end up momentarily blocked in
129 waitpid calls. Those waitpid calls, while blocking, are guarantied to
130 return quickly. E.g., in all-stop mode, before reporting to the core
131 that an LWP hit a breakpoint, all LWPs are stopped by sending them
132 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
133 Note that this is different from blocking indefinitely waiting for the
134 next event --- here, we're already handling an event.
135
136 Use of signals
137 ==============
138
139 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
140 signal is not entirely significant; we just need for a signal to be delivered,
141 so that we can intercept it. SIGSTOP's advantage is that it can not be
142 blocked. A disadvantage is that it is not a real-time signal, so it can only
143 be queued once; we do not keep track of other sources of SIGSTOP.
144
145 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
146 use them, because they have special behavior when the signal is generated -
147 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
148 kills the entire thread group.
149
150 A delivered SIGSTOP would stop the entire thread group, not just the thread we
151 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
152 cancel it (by PTRACE_CONT without passing SIGSTOP).
153
154 We could use a real-time signal instead. This would solve those problems; we
155 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
156 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
157 generates it, and there are races with trying to find a signal that is not
158 blocked. */
159
160 #ifndef O_LARGEFILE
161 #define O_LARGEFILE 0
162 #endif
163
164 /* Unlike other extended result codes, WSTOPSIG (status) on
165 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
166 instead SIGTRAP with bit 7 set. */
167 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
168
169 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
170 the use of the multi-threaded target. */
171 static struct target_ops *linux_ops;
172 static struct target_ops linux_ops_saved;
173
174 /* The method to call, if any, when a new thread is attached. */
175 static void (*linux_nat_new_thread) (ptid_t);
176
177 /* The method to call, if any, when the siginfo object needs to be
178 converted between the layout returned by ptrace, and the layout in
179 the architecture of the inferior. */
180 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
181 gdb_byte *,
182 int);
183
184 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
185 Called by our to_xfer_partial. */
186 static LONGEST (*super_xfer_partial) (struct target_ops *,
187 enum target_object,
188 const char *, gdb_byte *,
189 const gdb_byte *,
190 ULONGEST, LONGEST);
191
192 static int debug_linux_nat;
193 static void
194 show_debug_linux_nat (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
198 value);
199 }
200
201 static int disable_randomization = 1;
202
203 static void
204 show_disable_randomization (struct ui_file *file, int from_tty,
205 struct cmd_list_element *c, const char *value)
206 {
207 #ifdef HAVE_PERSONALITY
208 fprintf_filtered (file,
209 _("Disabling randomization of debuggee's "
210 "virtual address space is %s.\n"),
211 value);
212 #else /* !HAVE_PERSONALITY */
213 fputs_filtered (_("Disabling randomization of debuggee's "
214 "virtual address space is unsupported on\n"
215 "this platform.\n"), file);
216 #endif /* !HAVE_PERSONALITY */
217 }
218
219 static void
220 set_disable_randomization (char *args, int from_tty,
221 struct cmd_list_element *c)
222 {
223 #ifndef HAVE_PERSONALITY
224 error (_("Disabling randomization of debuggee's "
225 "virtual address space is unsupported on\n"
226 "this platform."));
227 #endif /* !HAVE_PERSONALITY */
228 }
229
230 struct simple_pid_list
231 {
232 int pid;
233 int status;
234 struct simple_pid_list *next;
235 };
236 struct simple_pid_list *stopped_pids;
237
238 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
239 can not be used, 1 if it can. */
240
241 static int linux_supports_tracefork_flag = -1;
242
243 /* This variable is a tri-state flag: -1 for unknown, 0 if
244 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
245
246 static int linux_supports_tracesysgood_flag = -1;
247
248 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
249 PTRACE_O_TRACEVFORKDONE. */
250
251 static int linux_supports_tracevforkdone_flag = -1;
252
253 /* Async mode support. */
254
255 /* Zero if the async mode, although enabled, is masked, which means
256 linux_nat_wait should behave as if async mode was off. */
257 static int linux_nat_async_mask_value = 1;
258
259 /* Stores the current used ptrace() options. */
260 static int current_ptrace_options = 0;
261
262 /* The read/write ends of the pipe registered as waitable file in the
263 event loop. */
264 static int linux_nat_event_pipe[2] = { -1, -1 };
265
266 /* Flush the event pipe. */
267
268 static void
269 async_file_flush (void)
270 {
271 int ret;
272 char buf;
273
274 do
275 {
276 ret = read (linux_nat_event_pipe[0], &buf, 1);
277 }
278 while (ret >= 0 || (ret == -1 && errno == EINTR));
279 }
280
281 /* Put something (anything, doesn't matter what, or how much) in event
282 pipe, so that the select/poll in the event-loop realizes we have
283 something to process. */
284
285 static void
286 async_file_mark (void)
287 {
288 int ret;
289
290 /* It doesn't really matter what the pipe contains, as long we end
291 up with something in it. Might as well flush the previous
292 left-overs. */
293 async_file_flush ();
294
295 do
296 {
297 ret = write (linux_nat_event_pipe[1], "+", 1);
298 }
299 while (ret == -1 && errno == EINTR);
300
301 /* Ignore EAGAIN. If the pipe is full, the event loop will already
302 be awakened anyway. */
303 }
304
305 static void linux_nat_async (void (*callback)
306 (enum inferior_event_type event_type,
307 void *context),
308 void *context);
309 static int linux_nat_async_mask (int mask);
310 static int kill_lwp (int lwpid, int signo);
311
312 static int stop_callback (struct lwp_info *lp, void *data);
313
314 static void block_child_signals (sigset_t *prev_mask);
315 static void restore_child_signals_mask (sigset_t *prev_mask);
316
317 struct lwp_info;
318 static struct lwp_info *add_lwp (ptid_t ptid);
319 static void purge_lwp_list (int pid);
320 static struct lwp_info *find_lwp_pid (ptid_t ptid);
321
322 \f
323 /* Trivial list manipulation functions to keep track of a list of
324 new stopped processes. */
325 static void
326 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
327 {
328 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
329
330 new_pid->pid = pid;
331 new_pid->status = status;
332 new_pid->next = *listp;
333 *listp = new_pid;
334 }
335
336 static int
337 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
338 {
339 struct simple_pid_list **p;
340
341 for (p = listp; *p != NULL; p = &(*p)->next)
342 if ((*p)->pid == pid)
343 {
344 struct simple_pid_list *next = (*p)->next;
345
346 *statusp = (*p)->status;
347 xfree (*p);
348 *p = next;
349 return 1;
350 }
351 return 0;
352 }
353
354 static void
355 linux_record_stopped_pid (int pid, int status)
356 {
357 add_to_pid_list (&stopped_pids, pid, status);
358 }
359
360 \f
361 /* A helper function for linux_test_for_tracefork, called after fork (). */
362
363 static void
364 linux_tracefork_child (void)
365 {
366 ptrace (PTRACE_TRACEME, 0, 0, 0);
367 kill (getpid (), SIGSTOP);
368 fork ();
369 _exit (0);
370 }
371
372 /* Wrapper function for waitpid which handles EINTR. */
373
374 static int
375 my_waitpid (int pid, int *statusp, int flags)
376 {
377 int ret;
378
379 do
380 {
381 ret = waitpid (pid, statusp, flags);
382 }
383 while (ret == -1 && errno == EINTR);
384
385 return ret;
386 }
387
388 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
389
390 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
391 we know that the feature is not available. This may change the tracing
392 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
393
394 However, if it succeeds, we don't know for sure that the feature is
395 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
396 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
397 fork tracing, and let it fork. If the process exits, we assume that we
398 can't use TRACEFORK; if we get the fork notification, and we can extract
399 the new child's PID, then we assume that we can. */
400
401 static void
402 linux_test_for_tracefork (int original_pid)
403 {
404 int child_pid, ret, status;
405 long second_pid;
406 sigset_t prev_mask;
407
408 /* We don't want those ptrace calls to be interrupted. */
409 block_child_signals (&prev_mask);
410
411 linux_supports_tracefork_flag = 0;
412 linux_supports_tracevforkdone_flag = 0;
413
414 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
415 if (ret != 0)
416 {
417 restore_child_signals_mask (&prev_mask);
418 return;
419 }
420
421 child_pid = fork ();
422 if (child_pid == -1)
423 perror_with_name (("fork"));
424
425 if (child_pid == 0)
426 linux_tracefork_child ();
427
428 ret = my_waitpid (child_pid, &status, 0);
429 if (ret == -1)
430 perror_with_name (("waitpid"));
431 else if (ret != child_pid)
432 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
433 if (! WIFSTOPPED (status))
434 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
435 status);
436
437 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
438 if (ret != 0)
439 {
440 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
441 if (ret != 0)
442 {
443 warning (_("linux_test_for_tracefork: failed to kill child"));
444 restore_child_signals_mask (&prev_mask);
445 return;
446 }
447
448 ret = my_waitpid (child_pid, &status, 0);
449 if (ret != child_pid)
450 warning (_("linux_test_for_tracefork: failed "
451 "to wait for killed child"));
452 else if (!WIFSIGNALED (status))
453 warning (_("linux_test_for_tracefork: unexpected "
454 "wait status 0x%x from killed child"), status);
455
456 restore_child_signals_mask (&prev_mask);
457 return;
458 }
459
460 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
461 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
462 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
463 linux_supports_tracevforkdone_flag = (ret == 0);
464
465 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
466 if (ret != 0)
467 warning (_("linux_test_for_tracefork: failed to resume child"));
468
469 ret = my_waitpid (child_pid, &status, 0);
470
471 if (ret == child_pid && WIFSTOPPED (status)
472 && status >> 16 == PTRACE_EVENT_FORK)
473 {
474 second_pid = 0;
475 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
476 if (ret == 0 && second_pid != 0)
477 {
478 int second_status;
479
480 linux_supports_tracefork_flag = 1;
481 my_waitpid (second_pid, &second_status, 0);
482 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
483 if (ret != 0)
484 warning (_("linux_test_for_tracefork: "
485 "failed to kill second child"));
486 my_waitpid (second_pid, &status, 0);
487 }
488 }
489 else
490 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
491 "(%d, status 0x%x)"), ret, status);
492
493 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
494 if (ret != 0)
495 warning (_("linux_test_for_tracefork: failed to kill child"));
496 my_waitpid (child_pid, &status, 0);
497
498 restore_child_signals_mask (&prev_mask);
499 }
500
501 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
502
503 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
504 we know that the feature is not available. This may change the tracing
505 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
506
507 static void
508 linux_test_for_tracesysgood (int original_pid)
509 {
510 int ret;
511 sigset_t prev_mask;
512
513 /* We don't want those ptrace calls to be interrupted. */
514 block_child_signals (&prev_mask);
515
516 linux_supports_tracesysgood_flag = 0;
517
518 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
519 if (ret != 0)
520 goto out;
521
522 linux_supports_tracesysgood_flag = 1;
523 out:
524 restore_child_signals_mask (&prev_mask);
525 }
526
527 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
528 This function also sets linux_supports_tracesysgood_flag. */
529
530 static int
531 linux_supports_tracesysgood (int pid)
532 {
533 if (linux_supports_tracesysgood_flag == -1)
534 linux_test_for_tracesysgood (pid);
535 return linux_supports_tracesysgood_flag;
536 }
537
538 /* Return non-zero iff we have tracefork functionality available.
539 This function also sets linux_supports_tracefork_flag. */
540
541 static int
542 linux_supports_tracefork (int pid)
543 {
544 if (linux_supports_tracefork_flag == -1)
545 linux_test_for_tracefork (pid);
546 return linux_supports_tracefork_flag;
547 }
548
549 static int
550 linux_supports_tracevforkdone (int pid)
551 {
552 if (linux_supports_tracefork_flag == -1)
553 linux_test_for_tracefork (pid);
554 return linux_supports_tracevforkdone_flag;
555 }
556
557 static void
558 linux_enable_tracesysgood (ptid_t ptid)
559 {
560 int pid = ptid_get_lwp (ptid);
561
562 if (pid == 0)
563 pid = ptid_get_pid (ptid);
564
565 if (linux_supports_tracesysgood (pid) == 0)
566 return;
567
568 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
569
570 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
571 }
572
573 \f
574 void
575 linux_enable_event_reporting (ptid_t ptid)
576 {
577 int pid = ptid_get_lwp (ptid);
578
579 if (pid == 0)
580 pid = ptid_get_pid (ptid);
581
582 if (! linux_supports_tracefork (pid))
583 return;
584
585 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
586 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
587
588 if (linux_supports_tracevforkdone (pid))
589 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
590
591 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
592 read-only process state. */
593
594 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
595 }
596
597 static void
598 linux_child_post_attach (int pid)
599 {
600 linux_enable_event_reporting (pid_to_ptid (pid));
601 check_for_thread_db ();
602 linux_enable_tracesysgood (pid_to_ptid (pid));
603 }
604
605 static void
606 linux_child_post_startup_inferior (ptid_t ptid)
607 {
608 linux_enable_event_reporting (ptid);
609 check_for_thread_db ();
610 linux_enable_tracesysgood (ptid);
611 }
612
613 static int
614 linux_child_follow_fork (struct target_ops *ops, int follow_child)
615 {
616 sigset_t prev_mask;
617 int has_vforked;
618 int parent_pid, child_pid;
619
620 block_child_signals (&prev_mask);
621
622 has_vforked = (inferior_thread ()->pending_follow.kind
623 == TARGET_WAITKIND_VFORKED);
624 parent_pid = ptid_get_lwp (inferior_ptid);
625 if (parent_pid == 0)
626 parent_pid = ptid_get_pid (inferior_ptid);
627 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
628
629 if (!detach_fork)
630 linux_enable_event_reporting (pid_to_ptid (child_pid));
631
632 if (has_vforked
633 && !non_stop /* Non-stop always resumes both branches. */
634 && (!target_is_async_p () || sync_execution)
635 && !(follow_child || detach_fork || sched_multi))
636 {
637 /* The parent stays blocked inside the vfork syscall until the
638 child execs or exits. If we don't let the child run, then
639 the parent stays blocked. If we're telling the parent to run
640 in the foreground, the user will not be able to ctrl-c to get
641 back the terminal, effectively hanging the debug session. */
642 fprintf_filtered (gdb_stderr, _("\
643 Can not resume the parent process over vfork in the foreground while\n\
644 holding the child stopped. Try \"set detach-on-fork\" or \
645 \"set schedule-multiple\".\n"));
646 /* FIXME output string > 80 columns. */
647 return 1;
648 }
649
650 if (! follow_child)
651 {
652 struct lwp_info *child_lp = NULL;
653
654 /* We're already attached to the parent, by default. */
655
656 /* Detach new forked process? */
657 if (detach_fork)
658 {
659 /* Before detaching from the child, remove all breakpoints
660 from it. If we forked, then this has already been taken
661 care of by infrun.c. If we vforked however, any
662 breakpoint inserted in the parent is visible in the
663 child, even those added while stopped in a vfork
664 catchpoint. This will remove the breakpoints from the
665 parent also, but they'll be reinserted below. */
666 if (has_vforked)
667 {
668 /* keep breakpoints list in sync. */
669 remove_breakpoints_pid (GET_PID (inferior_ptid));
670 }
671
672 if (info_verbose || debug_linux_nat)
673 {
674 target_terminal_ours ();
675 fprintf_filtered (gdb_stdlog,
676 "Detaching after fork from "
677 "child process %d.\n",
678 child_pid);
679 }
680
681 ptrace (PTRACE_DETACH, child_pid, 0, 0);
682 }
683 else
684 {
685 struct inferior *parent_inf, *child_inf;
686 struct cleanup *old_chain;
687
688 /* Add process to GDB's tables. */
689 child_inf = add_inferior (child_pid);
690
691 parent_inf = current_inferior ();
692 child_inf->attach_flag = parent_inf->attach_flag;
693 copy_terminal_info (child_inf, parent_inf);
694
695 old_chain = save_inferior_ptid ();
696 save_current_program_space ();
697
698 inferior_ptid = ptid_build (child_pid, child_pid, 0);
699 add_thread (inferior_ptid);
700 child_lp = add_lwp (inferior_ptid);
701 child_lp->stopped = 1;
702 child_lp->resumed = 1;
703
704 /* If this is a vfork child, then the address-space is
705 shared with the parent. */
706 if (has_vforked)
707 {
708 child_inf->pspace = parent_inf->pspace;
709 child_inf->aspace = parent_inf->aspace;
710
711 /* The parent will be frozen until the child is done
712 with the shared region. Keep track of the
713 parent. */
714 child_inf->vfork_parent = parent_inf;
715 child_inf->pending_detach = 0;
716 parent_inf->vfork_child = child_inf;
717 parent_inf->pending_detach = 0;
718 }
719 else
720 {
721 child_inf->aspace = new_address_space ();
722 child_inf->pspace = add_program_space (child_inf->aspace);
723 child_inf->removable = 1;
724 set_current_program_space (child_inf->pspace);
725 clone_program_space (child_inf->pspace, parent_inf->pspace);
726
727 /* Let the shared library layer (solib-svr4) learn about
728 this new process, relocate the cloned exec, pull in
729 shared libraries, and install the solib event
730 breakpoint. If a "cloned-VM" event was propagated
731 better throughout the core, this wouldn't be
732 required. */
733 solib_create_inferior_hook (0);
734 }
735
736 /* Let the thread_db layer learn about this new process. */
737 check_for_thread_db ();
738
739 do_cleanups (old_chain);
740 }
741
742 if (has_vforked)
743 {
744 struct lwp_info *lp;
745 struct inferior *parent_inf;
746
747 parent_inf = current_inferior ();
748
749 /* If we detached from the child, then we have to be careful
750 to not insert breakpoints in the parent until the child
751 is done with the shared memory region. However, if we're
752 staying attached to the child, then we can and should
753 insert breakpoints, so that we can debug it. A
754 subsequent child exec or exit is enough to know when does
755 the child stops using the parent's address space. */
756 parent_inf->waiting_for_vfork_done = detach_fork;
757 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
758
759 lp = find_lwp_pid (pid_to_ptid (parent_pid));
760 gdb_assert (linux_supports_tracefork_flag >= 0);
761 if (linux_supports_tracevforkdone (0))
762 {
763 if (debug_linux_nat)
764 fprintf_unfiltered (gdb_stdlog,
765 "LCFF: waiting for VFORK_DONE on %d\n",
766 parent_pid);
767
768 lp->stopped = 1;
769 lp->resumed = 1;
770
771 /* We'll handle the VFORK_DONE event like any other
772 event, in target_wait. */
773 }
774 else
775 {
776 /* We can't insert breakpoints until the child has
777 finished with the shared memory region. We need to
778 wait until that happens. Ideal would be to just
779 call:
780 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
781 - waitpid (parent_pid, &status, __WALL);
782 However, most architectures can't handle a syscall
783 being traced on the way out if it wasn't traced on
784 the way in.
785
786 We might also think to loop, continuing the child
787 until it exits or gets a SIGTRAP. One problem is
788 that the child might call ptrace with PTRACE_TRACEME.
789
790 There's no simple and reliable way to figure out when
791 the vforked child will be done with its copy of the
792 shared memory. We could step it out of the syscall,
793 two instructions, let it go, and then single-step the
794 parent once. When we have hardware single-step, this
795 would work; with software single-step it could still
796 be made to work but we'd have to be able to insert
797 single-step breakpoints in the child, and we'd have
798 to insert -just- the single-step breakpoint in the
799 parent. Very awkward.
800
801 In the end, the best we can do is to make sure it
802 runs for a little while. Hopefully it will be out of
803 range of any breakpoints we reinsert. Usually this
804 is only the single-step breakpoint at vfork's return
805 point. */
806
807 if (debug_linux_nat)
808 fprintf_unfiltered (gdb_stdlog,
809 "LCFF: no VFORK_DONE "
810 "support, sleeping a bit\n");
811
812 usleep (10000);
813
814 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
815 and leave it pending. The next linux_nat_resume call
816 will notice a pending event, and bypasses actually
817 resuming the inferior. */
818 lp->status = 0;
819 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
820 lp->stopped = 0;
821 lp->resumed = 1;
822
823 /* If we're in async mode, need to tell the event loop
824 there's something here to process. */
825 if (target_can_async_p ())
826 async_file_mark ();
827 }
828 }
829 }
830 else
831 {
832 struct inferior *parent_inf, *child_inf;
833 struct lwp_info *lp;
834 struct program_space *parent_pspace;
835
836 if (info_verbose || debug_linux_nat)
837 {
838 target_terminal_ours ();
839 if (has_vforked)
840 fprintf_filtered (gdb_stdlog,
841 _("Attaching after process %d "
842 "vfork to child process %d.\n"),
843 parent_pid, child_pid);
844 else
845 fprintf_filtered (gdb_stdlog,
846 _("Attaching after process %d "
847 "fork to child process %d.\n"),
848 parent_pid, child_pid);
849 }
850
851 /* Add the new inferior first, so that the target_detach below
852 doesn't unpush the target. */
853
854 child_inf = add_inferior (child_pid);
855
856 parent_inf = current_inferior ();
857 child_inf->attach_flag = parent_inf->attach_flag;
858 copy_terminal_info (child_inf, parent_inf);
859
860 parent_pspace = parent_inf->pspace;
861
862 /* If we're vforking, we want to hold on to the parent until the
863 child exits or execs. At child exec or exit time we can
864 remove the old breakpoints from the parent and detach or
865 resume debugging it. Otherwise, detach the parent now; we'll
866 want to reuse it's program/address spaces, but we can't set
867 them to the child before removing breakpoints from the
868 parent, otherwise, the breakpoints module could decide to
869 remove breakpoints from the wrong process (since they'd be
870 assigned to the same address space). */
871
872 if (has_vforked)
873 {
874 gdb_assert (child_inf->vfork_parent == NULL);
875 gdb_assert (parent_inf->vfork_child == NULL);
876 child_inf->vfork_parent = parent_inf;
877 child_inf->pending_detach = 0;
878 parent_inf->vfork_child = child_inf;
879 parent_inf->pending_detach = detach_fork;
880 parent_inf->waiting_for_vfork_done = 0;
881 }
882 else if (detach_fork)
883 target_detach (NULL, 0);
884
885 /* Note that the detach above makes PARENT_INF dangling. */
886
887 /* Add the child thread to the appropriate lists, and switch to
888 this new thread, before cloning the program space, and
889 informing the solib layer about this new process. */
890
891 inferior_ptid = ptid_build (child_pid, child_pid, 0);
892 add_thread (inferior_ptid);
893 lp = add_lwp (inferior_ptid);
894 lp->stopped = 1;
895 lp->resumed = 1;
896
897 /* If this is a vfork child, then the address-space is shared
898 with the parent. If we detached from the parent, then we can
899 reuse the parent's program/address spaces. */
900 if (has_vforked || detach_fork)
901 {
902 child_inf->pspace = parent_pspace;
903 child_inf->aspace = child_inf->pspace->aspace;
904 }
905 else
906 {
907 child_inf->aspace = new_address_space ();
908 child_inf->pspace = add_program_space (child_inf->aspace);
909 child_inf->removable = 1;
910 set_current_program_space (child_inf->pspace);
911 clone_program_space (child_inf->pspace, parent_pspace);
912
913 /* Let the shared library layer (solib-svr4) learn about
914 this new process, relocate the cloned exec, pull in
915 shared libraries, and install the solib event breakpoint.
916 If a "cloned-VM" event was propagated better throughout
917 the core, this wouldn't be required. */
918 solib_create_inferior_hook (0);
919 }
920
921 /* Let the thread_db layer learn about this new process. */
922 check_for_thread_db ();
923 }
924
925 restore_child_signals_mask (&prev_mask);
926 return 0;
927 }
928
929 \f
930 static int
931 linux_child_insert_fork_catchpoint (int pid)
932 {
933 return !linux_supports_tracefork (pid);
934 }
935
936 static int
937 linux_child_remove_fork_catchpoint (int pid)
938 {
939 return 0;
940 }
941
942 static int
943 linux_child_insert_vfork_catchpoint (int pid)
944 {
945 return !linux_supports_tracefork (pid);
946 }
947
948 static int
949 linux_child_remove_vfork_catchpoint (int pid)
950 {
951 return 0;
952 }
953
954 static int
955 linux_child_insert_exec_catchpoint (int pid)
956 {
957 return !linux_supports_tracefork (pid);
958 }
959
960 static int
961 linux_child_remove_exec_catchpoint (int pid)
962 {
963 return 0;
964 }
965
966 static int
967 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
968 int table_size, int *table)
969 {
970 if (!linux_supports_tracesysgood (pid))
971 return 1;
972
973 /* On GNU/Linux, we ignore the arguments. It means that we only
974 enable the syscall catchpoints, but do not disable them.
975
976 Also, we do not use the `table' information because we do not
977 filter system calls here. We let GDB do the logic for us. */
978 return 0;
979 }
980
981 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
982 are processes sharing the same VM space. A multi-threaded process
983 is basically a group of such processes. However, such a grouping
984 is almost entirely a user-space issue; the kernel doesn't enforce
985 such a grouping at all (this might change in the future). In
986 general, we'll rely on the threads library (i.e. the GNU/Linux
987 Threads library) to provide such a grouping.
988
989 It is perfectly well possible to write a multi-threaded application
990 without the assistance of a threads library, by using the clone
991 system call directly. This module should be able to give some
992 rudimentary support for debugging such applications if developers
993 specify the CLONE_PTRACE flag in the clone system call, and are
994 using the Linux kernel 2.4 or above.
995
996 Note that there are some peculiarities in GNU/Linux that affect
997 this code:
998
999 - In general one should specify the __WCLONE flag to waitpid in
1000 order to make it report events for any of the cloned processes
1001 (and leave it out for the initial process). However, if a cloned
1002 process has exited the exit status is only reported if the
1003 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1004 we cannot use it since GDB must work on older systems too.
1005
1006 - When a traced, cloned process exits and is waited for by the
1007 debugger, the kernel reassigns it to the original parent and
1008 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1009 library doesn't notice this, which leads to the "zombie problem":
1010 When debugged a multi-threaded process that spawns a lot of
1011 threads will run out of processes, even if the threads exit,
1012 because the "zombies" stay around. */
1013
1014 /* List of known LWPs. */
1015 struct lwp_info *lwp_list;
1016 \f
1017
1018 /* Original signal mask. */
1019 static sigset_t normal_mask;
1020
1021 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1022 _initialize_linux_nat. */
1023 static sigset_t suspend_mask;
1024
1025 /* Signals to block to make that sigsuspend work. */
1026 static sigset_t blocked_mask;
1027
1028 /* SIGCHLD action. */
1029 struct sigaction sigchld_action;
1030
1031 /* Block child signals (SIGCHLD and linux threads signals), and store
1032 the previous mask in PREV_MASK. */
1033
1034 static void
1035 block_child_signals (sigset_t *prev_mask)
1036 {
1037 /* Make sure SIGCHLD is blocked. */
1038 if (!sigismember (&blocked_mask, SIGCHLD))
1039 sigaddset (&blocked_mask, SIGCHLD);
1040
1041 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1042 }
1043
1044 /* Restore child signals mask, previously returned by
1045 block_child_signals. */
1046
1047 static void
1048 restore_child_signals_mask (sigset_t *prev_mask)
1049 {
1050 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1051 }
1052
1053 /* Mask of signals to pass directly to the inferior. */
1054 static sigset_t pass_mask;
1055
1056 /* Update signals to pass to the inferior. */
1057 static void
1058 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1059 {
1060 int signo;
1061
1062 sigemptyset (&pass_mask);
1063
1064 for (signo = 1; signo < NSIG; signo++)
1065 {
1066 int target_signo = target_signal_from_host (signo);
1067 if (target_signo < numsigs && pass_signals[target_signo])
1068 sigaddset (&pass_mask, signo);
1069 }
1070 }
1071
1072 \f
1073
1074 /* Prototypes for local functions. */
1075 static int stop_wait_callback (struct lwp_info *lp, void *data);
1076 static int linux_thread_alive (ptid_t ptid);
1077 static char *linux_child_pid_to_exec_file (int pid);
1078
1079 \f
1080 /* Convert wait status STATUS to a string. Used for printing debug
1081 messages only. */
1082
1083 static char *
1084 status_to_str (int status)
1085 {
1086 static char buf[64];
1087
1088 if (WIFSTOPPED (status))
1089 {
1090 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1091 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1092 strsignal (SIGTRAP));
1093 else
1094 snprintf (buf, sizeof (buf), "%s (stopped)",
1095 strsignal (WSTOPSIG (status)));
1096 }
1097 else if (WIFSIGNALED (status))
1098 snprintf (buf, sizeof (buf), "%s (terminated)",
1099 strsignal (WTERMSIG (status)));
1100 else
1101 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1102
1103 return buf;
1104 }
1105
1106 /* Remove all LWPs belong to PID from the lwp list. */
1107
1108 static void
1109 purge_lwp_list (int pid)
1110 {
1111 struct lwp_info *lp, *lpprev, *lpnext;
1112
1113 lpprev = NULL;
1114
1115 for (lp = lwp_list; lp; lp = lpnext)
1116 {
1117 lpnext = lp->next;
1118
1119 if (ptid_get_pid (lp->ptid) == pid)
1120 {
1121 if (lp == lwp_list)
1122 lwp_list = lp->next;
1123 else
1124 lpprev->next = lp->next;
1125
1126 xfree (lp);
1127 }
1128 else
1129 lpprev = lp;
1130 }
1131 }
1132
1133 /* Return the number of known LWPs in the tgid given by PID. */
1134
1135 static int
1136 num_lwps (int pid)
1137 {
1138 int count = 0;
1139 struct lwp_info *lp;
1140
1141 for (lp = lwp_list; lp; lp = lp->next)
1142 if (ptid_get_pid (lp->ptid) == pid)
1143 count++;
1144
1145 return count;
1146 }
1147
1148 /* Add the LWP specified by PID to the list. Return a pointer to the
1149 structure describing the new LWP. The LWP should already be stopped
1150 (with an exception for the very first LWP). */
1151
1152 static struct lwp_info *
1153 add_lwp (ptid_t ptid)
1154 {
1155 struct lwp_info *lp;
1156
1157 gdb_assert (is_lwp (ptid));
1158
1159 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1160
1161 memset (lp, 0, sizeof (struct lwp_info));
1162
1163 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1164
1165 lp->ptid = ptid;
1166 lp->core = -1;
1167
1168 lp->next = lwp_list;
1169 lwp_list = lp;
1170
1171 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1172 linux_nat_new_thread (ptid);
1173
1174 return lp;
1175 }
1176
1177 /* Remove the LWP specified by PID from the list. */
1178
1179 static void
1180 delete_lwp (ptid_t ptid)
1181 {
1182 struct lwp_info *lp, *lpprev;
1183
1184 lpprev = NULL;
1185
1186 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1187 if (ptid_equal (lp->ptid, ptid))
1188 break;
1189
1190 if (!lp)
1191 return;
1192
1193 if (lpprev)
1194 lpprev->next = lp->next;
1195 else
1196 lwp_list = lp->next;
1197
1198 xfree (lp);
1199 }
1200
1201 /* Return a pointer to the structure describing the LWP corresponding
1202 to PID. If no corresponding LWP could be found, return NULL. */
1203
1204 static struct lwp_info *
1205 find_lwp_pid (ptid_t ptid)
1206 {
1207 struct lwp_info *lp;
1208 int lwp;
1209
1210 if (is_lwp (ptid))
1211 lwp = GET_LWP (ptid);
1212 else
1213 lwp = GET_PID (ptid);
1214
1215 for (lp = lwp_list; lp; lp = lp->next)
1216 if (lwp == GET_LWP (lp->ptid))
1217 return lp;
1218
1219 return NULL;
1220 }
1221
1222 /* Call CALLBACK with its second argument set to DATA for every LWP in
1223 the list. If CALLBACK returns 1 for a particular LWP, return a
1224 pointer to the structure describing that LWP immediately.
1225 Otherwise return NULL. */
1226
1227 struct lwp_info *
1228 iterate_over_lwps (ptid_t filter,
1229 int (*callback) (struct lwp_info *, void *),
1230 void *data)
1231 {
1232 struct lwp_info *lp, *lpnext;
1233
1234 for (lp = lwp_list; lp; lp = lpnext)
1235 {
1236 lpnext = lp->next;
1237
1238 if (ptid_match (lp->ptid, filter))
1239 {
1240 if ((*callback) (lp, data))
1241 return lp;
1242 }
1243 }
1244
1245 return NULL;
1246 }
1247
1248 /* Update our internal state when changing from one checkpoint to
1249 another indicated by NEW_PTID. We can only switch single-threaded
1250 applications, so we only create one new LWP, and the previous list
1251 is discarded. */
1252
1253 void
1254 linux_nat_switch_fork (ptid_t new_ptid)
1255 {
1256 struct lwp_info *lp;
1257
1258 purge_lwp_list (GET_PID (inferior_ptid));
1259
1260 lp = add_lwp (new_ptid);
1261 lp->stopped = 1;
1262
1263 /* This changes the thread's ptid while preserving the gdb thread
1264 num. Also changes the inferior pid, while preserving the
1265 inferior num. */
1266 thread_change_ptid (inferior_ptid, new_ptid);
1267
1268 /* We've just told GDB core that the thread changed target id, but,
1269 in fact, it really is a different thread, with different register
1270 contents. */
1271 registers_changed ();
1272 }
1273
1274 /* Handle the exit of a single thread LP. */
1275
1276 static void
1277 exit_lwp (struct lwp_info *lp)
1278 {
1279 struct thread_info *th = find_thread_ptid (lp->ptid);
1280
1281 if (th)
1282 {
1283 if (print_thread_events)
1284 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1285
1286 delete_thread (lp->ptid);
1287 }
1288
1289 delete_lwp (lp->ptid);
1290 }
1291
1292 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1293
1294 int
1295 linux_proc_get_tgid (int lwpid)
1296 {
1297 FILE *status_file;
1298 char buf[100];
1299 int tgid = -1;
1300
1301 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1302 status_file = fopen (buf, "r");
1303 if (status_file != NULL)
1304 {
1305 while (fgets (buf, sizeof (buf), status_file))
1306 {
1307 if (strncmp (buf, "Tgid:", 5) == 0)
1308 {
1309 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1310 break;
1311 }
1312 }
1313
1314 fclose (status_file);
1315 }
1316
1317 return tgid;
1318 }
1319
1320 /* Detect `T (stopped)' in `/proc/PID/status'.
1321 Other states including `T (tracing stop)' are reported as false. */
1322
1323 static int
1324 pid_is_stopped (pid_t pid)
1325 {
1326 FILE *status_file;
1327 char buf[100];
1328 int retval = 0;
1329
1330 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1331 status_file = fopen (buf, "r");
1332 if (status_file != NULL)
1333 {
1334 int have_state = 0;
1335
1336 while (fgets (buf, sizeof (buf), status_file))
1337 {
1338 if (strncmp (buf, "State:", 6) == 0)
1339 {
1340 have_state = 1;
1341 break;
1342 }
1343 }
1344 if (have_state && strstr (buf, "T (stopped)") != NULL)
1345 retval = 1;
1346 fclose (status_file);
1347 }
1348 return retval;
1349 }
1350
1351 /* Wait for the LWP specified by LP, which we have just attached to.
1352 Returns a wait status for that LWP, to cache. */
1353
1354 static int
1355 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1356 int *signalled)
1357 {
1358 pid_t new_pid, pid = GET_LWP (ptid);
1359 int status;
1360
1361 if (pid_is_stopped (pid))
1362 {
1363 if (debug_linux_nat)
1364 fprintf_unfiltered (gdb_stdlog,
1365 "LNPAW: Attaching to a stopped process\n");
1366
1367 /* The process is definitely stopped. It is in a job control
1368 stop, unless the kernel predates the TASK_STOPPED /
1369 TASK_TRACED distinction, in which case it might be in a
1370 ptrace stop. Make sure it is in a ptrace stop; from there we
1371 can kill it, signal it, et cetera.
1372
1373 First make sure there is a pending SIGSTOP. Since we are
1374 already attached, the process can not transition from stopped
1375 to running without a PTRACE_CONT; so we know this signal will
1376 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1377 probably already in the queue (unless this kernel is old
1378 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1379 is not an RT signal, it can only be queued once. */
1380 kill_lwp (pid, SIGSTOP);
1381
1382 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1383 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1384 ptrace (PTRACE_CONT, pid, 0, 0);
1385 }
1386
1387 /* Make sure the initial process is stopped. The user-level threads
1388 layer might want to poke around in the inferior, and that won't
1389 work if things haven't stabilized yet. */
1390 new_pid = my_waitpid (pid, &status, 0);
1391 if (new_pid == -1 && errno == ECHILD)
1392 {
1393 if (first)
1394 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1395
1396 /* Try again with __WCLONE to check cloned processes. */
1397 new_pid = my_waitpid (pid, &status, __WCLONE);
1398 *cloned = 1;
1399 }
1400
1401 gdb_assert (pid == new_pid);
1402
1403 if (!WIFSTOPPED (status))
1404 {
1405 /* The pid we tried to attach has apparently just exited. */
1406 if (debug_linux_nat)
1407 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1408 pid, status_to_str (status));
1409 return status;
1410 }
1411
1412 if (WSTOPSIG (status) != SIGSTOP)
1413 {
1414 *signalled = 1;
1415 if (debug_linux_nat)
1416 fprintf_unfiltered (gdb_stdlog,
1417 "LNPAW: Received %s after attaching\n",
1418 status_to_str (status));
1419 }
1420
1421 return status;
1422 }
1423
1424 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1425 if the new LWP could not be attached. */
1426
1427 int
1428 lin_lwp_attach_lwp (ptid_t ptid)
1429 {
1430 struct lwp_info *lp;
1431 sigset_t prev_mask;
1432
1433 gdb_assert (is_lwp (ptid));
1434
1435 block_child_signals (&prev_mask);
1436
1437 lp = find_lwp_pid (ptid);
1438
1439 /* We assume that we're already attached to any LWP that has an id
1440 equal to the overall process id, and to any LWP that is already
1441 in our list of LWPs. If we're not seeing exit events from threads
1442 and we've had PID wraparound since we last tried to stop all threads,
1443 this assumption might be wrong; fortunately, this is very unlikely
1444 to happen. */
1445 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1446 {
1447 int status, cloned = 0, signalled = 0;
1448
1449 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1450 {
1451 /* If we fail to attach to the thread, issue a warning,
1452 but continue. One way this can happen is if thread
1453 creation is interrupted; as of Linux kernel 2.6.19, a
1454 bug may place threads in the thread list and then fail
1455 to create them. */
1456 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1457 safe_strerror (errno));
1458 restore_child_signals_mask (&prev_mask);
1459 return -1;
1460 }
1461
1462 if (debug_linux_nat)
1463 fprintf_unfiltered (gdb_stdlog,
1464 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1465 target_pid_to_str (ptid));
1466
1467 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1468 if (!WIFSTOPPED (status))
1469 {
1470 restore_child_signals_mask (&prev_mask);
1471 return -1;
1472 }
1473
1474 lp = add_lwp (ptid);
1475 lp->stopped = 1;
1476 lp->cloned = cloned;
1477 lp->signalled = signalled;
1478 if (WSTOPSIG (status) != SIGSTOP)
1479 {
1480 lp->resumed = 1;
1481 lp->status = status;
1482 }
1483
1484 target_post_attach (GET_LWP (lp->ptid));
1485
1486 if (debug_linux_nat)
1487 {
1488 fprintf_unfiltered (gdb_stdlog,
1489 "LLAL: waitpid %s received %s\n",
1490 target_pid_to_str (ptid),
1491 status_to_str (status));
1492 }
1493 }
1494 else
1495 {
1496 /* We assume that the LWP representing the original process is
1497 already stopped. Mark it as stopped in the data structure
1498 that the GNU/linux ptrace layer uses to keep track of
1499 threads. Note that this won't have already been done since
1500 the main thread will have, we assume, been stopped by an
1501 attach from a different layer. */
1502 if (lp == NULL)
1503 lp = add_lwp (ptid);
1504 lp->stopped = 1;
1505 }
1506
1507 restore_child_signals_mask (&prev_mask);
1508 return 0;
1509 }
1510
1511 static void
1512 linux_nat_create_inferior (struct target_ops *ops,
1513 char *exec_file, char *allargs, char **env,
1514 int from_tty)
1515 {
1516 #ifdef HAVE_PERSONALITY
1517 int personality_orig = 0, personality_set = 0;
1518 #endif /* HAVE_PERSONALITY */
1519
1520 /* The fork_child mechanism is synchronous and calls target_wait, so
1521 we have to mask the async mode. */
1522
1523 #ifdef HAVE_PERSONALITY
1524 if (disable_randomization)
1525 {
1526 errno = 0;
1527 personality_orig = personality (0xffffffff);
1528 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1529 {
1530 personality_set = 1;
1531 personality (personality_orig | ADDR_NO_RANDOMIZE);
1532 }
1533 if (errno != 0 || (personality_set
1534 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1535 warning (_("Error disabling address space randomization: %s"),
1536 safe_strerror (errno));
1537 }
1538 #endif /* HAVE_PERSONALITY */
1539
1540 /* Make sure we report all signals during startup. */
1541 linux_nat_pass_signals (0, NULL);
1542
1543 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1544
1545 #ifdef HAVE_PERSONALITY
1546 if (personality_set)
1547 {
1548 errno = 0;
1549 personality (personality_orig);
1550 if (errno != 0)
1551 warning (_("Error restoring address space randomization: %s"),
1552 safe_strerror (errno));
1553 }
1554 #endif /* HAVE_PERSONALITY */
1555 }
1556
1557 static void
1558 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1559 {
1560 struct lwp_info *lp;
1561 int status;
1562 ptid_t ptid;
1563
1564 /* Make sure we report all signals during attach. */
1565 linux_nat_pass_signals (0, NULL);
1566
1567 linux_ops->to_attach (ops, args, from_tty);
1568
1569 /* The ptrace base target adds the main thread with (pid,0,0)
1570 format. Decorate it with lwp info. */
1571 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1572 thread_change_ptid (inferior_ptid, ptid);
1573
1574 /* Add the initial process as the first LWP to the list. */
1575 lp = add_lwp (ptid);
1576
1577 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1578 &lp->signalled);
1579 if (!WIFSTOPPED (status))
1580 {
1581 if (WIFEXITED (status))
1582 {
1583 int exit_code = WEXITSTATUS (status);
1584
1585 target_terminal_ours ();
1586 target_mourn_inferior ();
1587 if (exit_code == 0)
1588 error (_("Unable to attach: program exited normally."));
1589 else
1590 error (_("Unable to attach: program exited with code %d."),
1591 exit_code);
1592 }
1593 else if (WIFSIGNALED (status))
1594 {
1595 enum target_signal signo;
1596
1597 target_terminal_ours ();
1598 target_mourn_inferior ();
1599
1600 signo = target_signal_from_host (WTERMSIG (status));
1601 error (_("Unable to attach: program terminated with signal "
1602 "%s, %s."),
1603 target_signal_to_name (signo),
1604 target_signal_to_string (signo));
1605 }
1606
1607 internal_error (__FILE__, __LINE__,
1608 _("unexpected status %d for PID %ld"),
1609 status, (long) GET_LWP (ptid));
1610 }
1611
1612 lp->stopped = 1;
1613
1614 /* Save the wait status to report later. */
1615 lp->resumed = 1;
1616 if (debug_linux_nat)
1617 fprintf_unfiltered (gdb_stdlog,
1618 "LNA: waitpid %ld, saving status %s\n",
1619 (long) GET_PID (lp->ptid), status_to_str (status));
1620
1621 lp->status = status;
1622
1623 if (target_can_async_p ())
1624 target_async (inferior_event_handler, 0);
1625 }
1626
1627 /* Get pending status of LP. */
1628 static int
1629 get_pending_status (struct lwp_info *lp, int *status)
1630 {
1631 enum target_signal signo = TARGET_SIGNAL_0;
1632
1633 /* If we paused threads momentarily, we may have stored pending
1634 events in lp->status or lp->waitstatus (see stop_wait_callback),
1635 and GDB core hasn't seen any signal for those threads.
1636 Otherwise, the last signal reported to the core is found in the
1637 thread object's stop_signal.
1638
1639 There's a corner case that isn't handled here at present. Only
1640 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1641 stop_signal make sense as a real signal to pass to the inferior.
1642 Some catchpoint related events, like
1643 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1644 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1645 those traps are debug API (ptrace in our case) related and
1646 induced; the inferior wouldn't see them if it wasn't being
1647 traced. Hence, we should never pass them to the inferior, even
1648 when set to pass state. Since this corner case isn't handled by
1649 infrun.c when proceeding with a signal, for consistency, neither
1650 do we handle it here (or elsewhere in the file we check for
1651 signal pass state). Normally SIGTRAP isn't set to pass state, so
1652 this is really a corner case. */
1653
1654 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1655 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1656 else if (lp->status)
1657 signo = target_signal_from_host (WSTOPSIG (lp->status));
1658 else if (non_stop && !is_executing (lp->ptid))
1659 {
1660 struct thread_info *tp = find_thread_ptid (lp->ptid);
1661
1662 signo = tp->suspend.stop_signal;
1663 }
1664 else if (!non_stop)
1665 {
1666 struct target_waitstatus last;
1667 ptid_t last_ptid;
1668
1669 get_last_target_status (&last_ptid, &last);
1670
1671 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1672 {
1673 struct thread_info *tp = find_thread_ptid (lp->ptid);
1674
1675 signo = tp->suspend.stop_signal;
1676 }
1677 }
1678
1679 *status = 0;
1680
1681 if (signo == TARGET_SIGNAL_0)
1682 {
1683 if (debug_linux_nat)
1684 fprintf_unfiltered (gdb_stdlog,
1685 "GPT: lwp %s has no pending signal\n",
1686 target_pid_to_str (lp->ptid));
1687 }
1688 else if (!signal_pass_state (signo))
1689 {
1690 if (debug_linux_nat)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "GPT: lwp %s had signal %s, "
1693 "but it is in no pass state\n",
1694 target_pid_to_str (lp->ptid),
1695 target_signal_to_string (signo));
1696 }
1697 else
1698 {
1699 *status = W_STOPCODE (target_signal_to_host (signo));
1700
1701 if (debug_linux_nat)
1702 fprintf_unfiltered (gdb_stdlog,
1703 "GPT: lwp %s has pending signal %s\n",
1704 target_pid_to_str (lp->ptid),
1705 target_signal_to_string (signo));
1706 }
1707
1708 return 0;
1709 }
1710
1711 static int
1712 detach_callback (struct lwp_info *lp, void *data)
1713 {
1714 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1715
1716 if (debug_linux_nat && lp->status)
1717 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1718 strsignal (WSTOPSIG (lp->status)),
1719 target_pid_to_str (lp->ptid));
1720
1721 /* If there is a pending SIGSTOP, get rid of it. */
1722 if (lp->signalled)
1723 {
1724 if (debug_linux_nat)
1725 fprintf_unfiltered (gdb_stdlog,
1726 "DC: Sending SIGCONT to %s\n",
1727 target_pid_to_str (lp->ptid));
1728
1729 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1730 lp->signalled = 0;
1731 }
1732
1733 /* We don't actually detach from the LWP that has an id equal to the
1734 overall process id just yet. */
1735 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1736 {
1737 int status = 0;
1738
1739 /* Pass on any pending signal for this LWP. */
1740 get_pending_status (lp, &status);
1741
1742 errno = 0;
1743 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1744 WSTOPSIG (status)) < 0)
1745 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1746 safe_strerror (errno));
1747
1748 if (debug_linux_nat)
1749 fprintf_unfiltered (gdb_stdlog,
1750 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1751 target_pid_to_str (lp->ptid),
1752 strsignal (WSTOPSIG (status)));
1753
1754 delete_lwp (lp->ptid);
1755 }
1756
1757 return 0;
1758 }
1759
1760 static void
1761 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1762 {
1763 int pid;
1764 int status;
1765 struct lwp_info *main_lwp;
1766
1767 pid = GET_PID (inferior_ptid);
1768
1769 if (target_can_async_p ())
1770 linux_nat_async (NULL, 0);
1771
1772 /* Stop all threads before detaching. ptrace requires that the
1773 thread is stopped to sucessfully detach. */
1774 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1775 /* ... and wait until all of them have reported back that
1776 they're no longer running. */
1777 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1778
1779 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1780
1781 /* Only the initial process should be left right now. */
1782 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1783
1784 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1785
1786 /* Pass on any pending signal for the last LWP. */
1787 if ((args == NULL || *args == '\0')
1788 && get_pending_status (main_lwp, &status) != -1
1789 && WIFSTOPPED (status))
1790 {
1791 /* Put the signal number in ARGS so that inf_ptrace_detach will
1792 pass it along with PTRACE_DETACH. */
1793 args = alloca (8);
1794 sprintf (args, "%d", (int) WSTOPSIG (status));
1795 if (debug_linux_nat)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "LND: Sending signal %s to %s\n",
1798 args,
1799 target_pid_to_str (main_lwp->ptid));
1800 }
1801
1802 delete_lwp (main_lwp->ptid);
1803
1804 if (forks_exist_p ())
1805 {
1806 /* Multi-fork case. The current inferior_ptid is being detached
1807 from, but there are other viable forks to debug. Detach from
1808 the current fork, and context-switch to the first
1809 available. */
1810 linux_fork_detach (args, from_tty);
1811
1812 if (non_stop && target_can_async_p ())
1813 target_async (inferior_event_handler, 0);
1814 }
1815 else
1816 linux_ops->to_detach (ops, args, from_tty);
1817 }
1818
1819 /* Resume LP. */
1820
1821 static int
1822 resume_callback (struct lwp_info *lp, void *data)
1823 {
1824 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1825
1826 if (lp->stopped && inf->vfork_child != NULL)
1827 {
1828 if (debug_linux_nat)
1829 fprintf_unfiltered (gdb_stdlog,
1830 "RC: Not resuming %s (vfork parent)\n",
1831 target_pid_to_str (lp->ptid));
1832 }
1833 else if (lp->stopped && lp->status == 0)
1834 {
1835 if (debug_linux_nat)
1836 fprintf_unfiltered (gdb_stdlog,
1837 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1838 target_pid_to_str (lp->ptid));
1839
1840 linux_ops->to_resume (linux_ops,
1841 pid_to_ptid (GET_LWP (lp->ptid)),
1842 0, TARGET_SIGNAL_0);
1843 if (debug_linux_nat)
1844 fprintf_unfiltered (gdb_stdlog,
1845 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1846 target_pid_to_str (lp->ptid));
1847 lp->stopped = 0;
1848 lp->step = 0;
1849 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1850 lp->stopped_by_watchpoint = 0;
1851 }
1852 else if (lp->stopped && debug_linux_nat)
1853 fprintf_unfiltered (gdb_stdlog,
1854 "RC: Not resuming sibling %s (has pending)\n",
1855 target_pid_to_str (lp->ptid));
1856 else if (debug_linux_nat)
1857 fprintf_unfiltered (gdb_stdlog,
1858 "RC: Not resuming sibling %s (not stopped)\n",
1859 target_pid_to_str (lp->ptid));
1860
1861 return 0;
1862 }
1863
1864 static int
1865 resume_clear_callback (struct lwp_info *lp, void *data)
1866 {
1867 lp->resumed = 0;
1868 return 0;
1869 }
1870
1871 static int
1872 resume_set_callback (struct lwp_info *lp, void *data)
1873 {
1874 lp->resumed = 1;
1875 return 0;
1876 }
1877
1878 static void
1879 linux_nat_resume (struct target_ops *ops,
1880 ptid_t ptid, int step, enum target_signal signo)
1881 {
1882 sigset_t prev_mask;
1883 struct lwp_info *lp;
1884 int resume_many;
1885
1886 if (debug_linux_nat)
1887 fprintf_unfiltered (gdb_stdlog,
1888 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1889 step ? "step" : "resume",
1890 target_pid_to_str (ptid),
1891 (signo != TARGET_SIGNAL_0
1892 ? strsignal (target_signal_to_host (signo)) : "0"),
1893 target_pid_to_str (inferior_ptid));
1894
1895 block_child_signals (&prev_mask);
1896
1897 /* A specific PTID means `step only this process id'. */
1898 resume_many = (ptid_equal (minus_one_ptid, ptid)
1899 || ptid_is_pid (ptid));
1900
1901 /* Mark the lwps we're resuming as resumed. */
1902 iterate_over_lwps (ptid, resume_set_callback, NULL);
1903
1904 /* See if it's the current inferior that should be handled
1905 specially. */
1906 if (resume_many)
1907 lp = find_lwp_pid (inferior_ptid);
1908 else
1909 lp = find_lwp_pid (ptid);
1910 gdb_assert (lp != NULL);
1911
1912 /* Remember if we're stepping. */
1913 lp->step = step;
1914
1915 /* If we have a pending wait status for this thread, there is no
1916 point in resuming the process. But first make sure that
1917 linux_nat_wait won't preemptively handle the event - we
1918 should never take this short-circuit if we are going to
1919 leave LP running, since we have skipped resuming all the
1920 other threads. This bit of code needs to be synchronized
1921 with linux_nat_wait. */
1922
1923 if (lp->status && WIFSTOPPED (lp->status))
1924 {
1925 if (!lp->step
1926 && WSTOPSIG (lp->status)
1927 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1928 {
1929 if (debug_linux_nat)
1930 fprintf_unfiltered (gdb_stdlog,
1931 "LLR: Not short circuiting for ignored "
1932 "status 0x%x\n", lp->status);
1933
1934 /* FIXME: What should we do if we are supposed to continue
1935 this thread with a signal? */
1936 gdb_assert (signo == TARGET_SIGNAL_0);
1937 signo = target_signal_from_host (WSTOPSIG (lp->status));
1938 lp->status = 0;
1939 }
1940 }
1941
1942 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1943 {
1944 /* FIXME: What should we do if we are supposed to continue
1945 this thread with a signal? */
1946 gdb_assert (signo == TARGET_SIGNAL_0);
1947
1948 if (debug_linux_nat)
1949 fprintf_unfiltered (gdb_stdlog,
1950 "LLR: Short circuiting for status 0x%x\n",
1951 lp->status);
1952
1953 restore_child_signals_mask (&prev_mask);
1954 if (target_can_async_p ())
1955 {
1956 target_async (inferior_event_handler, 0);
1957 /* Tell the event loop we have something to process. */
1958 async_file_mark ();
1959 }
1960 return;
1961 }
1962
1963 /* Mark LWP as not stopped to prevent it from being continued by
1964 resume_callback. */
1965 lp->stopped = 0;
1966
1967 if (resume_many)
1968 iterate_over_lwps (ptid, resume_callback, NULL);
1969
1970 /* Convert to something the lower layer understands. */
1971 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1972
1973 linux_ops->to_resume (linux_ops, ptid, step, signo);
1974 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1975 lp->stopped_by_watchpoint = 0;
1976
1977 if (debug_linux_nat)
1978 fprintf_unfiltered (gdb_stdlog,
1979 "LLR: %s %s, %s (resume event thread)\n",
1980 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1981 target_pid_to_str (ptid),
1982 (signo != TARGET_SIGNAL_0
1983 ? strsignal (target_signal_to_host (signo)) : "0"));
1984
1985 restore_child_signals_mask (&prev_mask);
1986 if (target_can_async_p ())
1987 target_async (inferior_event_handler, 0);
1988 }
1989
1990 /* Send a signal to an LWP. */
1991
1992 static int
1993 kill_lwp (int lwpid, int signo)
1994 {
1995 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1996 fails, then we are not using nptl threads and we should be using kill. */
1997
1998 #ifdef HAVE_TKILL_SYSCALL
1999 {
2000 static int tkill_failed;
2001
2002 if (!tkill_failed)
2003 {
2004 int ret;
2005
2006 errno = 0;
2007 ret = syscall (__NR_tkill, lwpid, signo);
2008 if (errno != ENOSYS)
2009 return ret;
2010 tkill_failed = 1;
2011 }
2012 }
2013 #endif
2014
2015 return kill (lwpid, signo);
2016 }
2017
2018 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2019 event, check if the core is interested in it: if not, ignore the
2020 event, and keep waiting; otherwise, we need to toggle the LWP's
2021 syscall entry/exit status, since the ptrace event itself doesn't
2022 indicate it, and report the trap to higher layers. */
2023
2024 static int
2025 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2026 {
2027 struct target_waitstatus *ourstatus = &lp->waitstatus;
2028 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2029 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2030
2031 if (stopping)
2032 {
2033 /* If we're stopping threads, there's a SIGSTOP pending, which
2034 makes it so that the LWP reports an immediate syscall return,
2035 followed by the SIGSTOP. Skip seeing that "return" using
2036 PTRACE_CONT directly, and let stop_wait_callback collect the
2037 SIGSTOP. Later when the thread is resumed, a new syscall
2038 entry event. If we didn't do this (and returned 0), we'd
2039 leave a syscall entry pending, and our caller, by using
2040 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2041 itself. Later, when the user re-resumes this LWP, we'd see
2042 another syscall entry event and we'd mistake it for a return.
2043
2044 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2045 (leaving immediately with LWP->signalled set, without issuing
2046 a PTRACE_CONT), it would still be problematic to leave this
2047 syscall enter pending, as later when the thread is resumed,
2048 it would then see the same syscall exit mentioned above,
2049 followed by the delayed SIGSTOP, while the syscall didn't
2050 actually get to execute. It seems it would be even more
2051 confusing to the user. */
2052
2053 if (debug_linux_nat)
2054 fprintf_unfiltered (gdb_stdlog,
2055 "LHST: ignoring syscall %d "
2056 "for LWP %ld (stopping threads), "
2057 "resuming with PTRACE_CONT for SIGSTOP\n",
2058 syscall_number,
2059 GET_LWP (lp->ptid));
2060
2061 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2062 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2063 return 1;
2064 }
2065
2066 if (catch_syscall_enabled ())
2067 {
2068 /* Always update the entry/return state, even if this particular
2069 syscall isn't interesting to the core now. In async mode,
2070 the user could install a new catchpoint for this syscall
2071 between syscall enter/return, and we'll need to know to
2072 report a syscall return if that happens. */
2073 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2074 ? TARGET_WAITKIND_SYSCALL_RETURN
2075 : TARGET_WAITKIND_SYSCALL_ENTRY);
2076
2077 if (catching_syscall_number (syscall_number))
2078 {
2079 /* Alright, an event to report. */
2080 ourstatus->kind = lp->syscall_state;
2081 ourstatus->value.syscall_number = syscall_number;
2082
2083 if (debug_linux_nat)
2084 fprintf_unfiltered (gdb_stdlog,
2085 "LHST: stopping for %s of syscall %d"
2086 " for LWP %ld\n",
2087 lp->syscall_state
2088 == TARGET_WAITKIND_SYSCALL_ENTRY
2089 ? "entry" : "return",
2090 syscall_number,
2091 GET_LWP (lp->ptid));
2092 return 0;
2093 }
2094
2095 if (debug_linux_nat)
2096 fprintf_unfiltered (gdb_stdlog,
2097 "LHST: ignoring %s of syscall %d "
2098 "for LWP %ld\n",
2099 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2100 ? "entry" : "return",
2101 syscall_number,
2102 GET_LWP (lp->ptid));
2103 }
2104 else
2105 {
2106 /* If we had been syscall tracing, and hence used PT_SYSCALL
2107 before on this LWP, it could happen that the user removes all
2108 syscall catchpoints before we get to process this event.
2109 There are two noteworthy issues here:
2110
2111 - When stopped at a syscall entry event, resuming with
2112 PT_STEP still resumes executing the syscall and reports a
2113 syscall return.
2114
2115 - Only PT_SYSCALL catches syscall enters. If we last
2116 single-stepped this thread, then this event can't be a
2117 syscall enter. If we last single-stepped this thread, this
2118 has to be a syscall exit.
2119
2120 The points above mean that the next resume, be it PT_STEP or
2121 PT_CONTINUE, can not trigger a syscall trace event. */
2122 if (debug_linux_nat)
2123 fprintf_unfiltered (gdb_stdlog,
2124 "LHST: caught syscall event "
2125 "with no syscall catchpoints."
2126 " %d for LWP %ld, ignoring\n",
2127 syscall_number,
2128 GET_LWP (lp->ptid));
2129 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2130 }
2131
2132 /* The core isn't interested in this event. For efficiency, avoid
2133 stopping all threads only to have the core resume them all again.
2134 Since we're not stopping threads, if we're still syscall tracing
2135 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2136 subsequent syscall. Simply resume using the inf-ptrace layer,
2137 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2138
2139 /* Note that gdbarch_get_syscall_number may access registers, hence
2140 fill a regcache. */
2141 registers_changed ();
2142 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2143 lp->step, TARGET_SIGNAL_0);
2144 return 1;
2145 }
2146
2147 /* Handle a GNU/Linux extended wait response. If we see a clone
2148 event, we need to add the new LWP to our list (and not report the
2149 trap to higher layers). This function returns non-zero if the
2150 event should be ignored and we should wait again. If STOPPING is
2151 true, the new LWP remains stopped, otherwise it is continued. */
2152
2153 static int
2154 linux_handle_extended_wait (struct lwp_info *lp, int status,
2155 int stopping)
2156 {
2157 int pid = GET_LWP (lp->ptid);
2158 struct target_waitstatus *ourstatus = &lp->waitstatus;
2159 int event = status >> 16;
2160
2161 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2162 || event == PTRACE_EVENT_CLONE)
2163 {
2164 unsigned long new_pid;
2165 int ret;
2166
2167 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2168
2169 /* If we haven't already seen the new PID stop, wait for it now. */
2170 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2171 {
2172 /* The new child has a pending SIGSTOP. We can't affect it until it
2173 hits the SIGSTOP, but we're already attached. */
2174 ret = my_waitpid (new_pid, &status,
2175 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2176 if (ret == -1)
2177 perror_with_name (_("waiting for new child"));
2178 else if (ret != new_pid)
2179 internal_error (__FILE__, __LINE__,
2180 _("wait returned unexpected PID %d"), ret);
2181 else if (!WIFSTOPPED (status))
2182 internal_error (__FILE__, __LINE__,
2183 _("wait returned unexpected status 0x%x"), status);
2184 }
2185
2186 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2187
2188 if (event == PTRACE_EVENT_FORK
2189 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2190 {
2191 /* Handle checkpointing by linux-fork.c here as a special
2192 case. We don't want the follow-fork-mode or 'catch fork'
2193 to interfere with this. */
2194
2195 /* This won't actually modify the breakpoint list, but will
2196 physically remove the breakpoints from the child. */
2197 detach_breakpoints (new_pid);
2198
2199 /* Retain child fork in ptrace (stopped) state. */
2200 if (!find_fork_pid (new_pid))
2201 add_fork (new_pid);
2202
2203 /* Report as spurious, so that infrun doesn't want to follow
2204 this fork. We're actually doing an infcall in
2205 linux-fork.c. */
2206 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2207 linux_enable_event_reporting (pid_to_ptid (new_pid));
2208
2209 /* Report the stop to the core. */
2210 return 0;
2211 }
2212
2213 if (event == PTRACE_EVENT_FORK)
2214 ourstatus->kind = TARGET_WAITKIND_FORKED;
2215 else if (event == PTRACE_EVENT_VFORK)
2216 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2217 else
2218 {
2219 struct lwp_info *new_lp;
2220
2221 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2222
2223 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2224 new_lp->cloned = 1;
2225 new_lp->stopped = 1;
2226
2227 if (WSTOPSIG (status) != SIGSTOP)
2228 {
2229 /* This can happen if someone starts sending signals to
2230 the new thread before it gets a chance to run, which
2231 have a lower number than SIGSTOP (e.g. SIGUSR1).
2232 This is an unlikely case, and harder to handle for
2233 fork / vfork than for clone, so we do not try - but
2234 we handle it for clone events here. We'll send
2235 the other signal on to the thread below. */
2236
2237 new_lp->signalled = 1;
2238 }
2239 else
2240 status = 0;
2241
2242 if (non_stop)
2243 {
2244 /* Add the new thread to GDB's lists as soon as possible
2245 so that:
2246
2247 1) the frontend doesn't have to wait for a stop to
2248 display them, and,
2249
2250 2) we tag it with the correct running state. */
2251
2252 /* If the thread_db layer is active, let it know about
2253 this new thread, and add it to GDB's list. */
2254 if (!thread_db_attach_lwp (new_lp->ptid))
2255 {
2256 /* We're not using thread_db. Add it to GDB's
2257 list. */
2258 target_post_attach (GET_LWP (new_lp->ptid));
2259 add_thread (new_lp->ptid);
2260 }
2261
2262 if (!stopping)
2263 {
2264 set_running (new_lp->ptid, 1);
2265 set_executing (new_lp->ptid, 1);
2266 }
2267 }
2268
2269 /* Note the need to use the low target ops to resume, to
2270 handle resuming with PT_SYSCALL if we have syscall
2271 catchpoints. */
2272 if (!stopping)
2273 {
2274 enum target_signal signo;
2275
2276 new_lp->stopped = 0;
2277 new_lp->resumed = 1;
2278
2279 signo = (status
2280 ? target_signal_from_host (WSTOPSIG (status))
2281 : TARGET_SIGNAL_0);
2282
2283 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2284 0, signo);
2285 }
2286 else
2287 {
2288 if (status != 0)
2289 {
2290 /* We created NEW_LP so it cannot yet contain STATUS. */
2291 gdb_assert (new_lp->status == 0);
2292
2293 /* Save the wait status to report later. */
2294 if (debug_linux_nat)
2295 fprintf_unfiltered (gdb_stdlog,
2296 "LHEW: waitpid of new LWP %ld, "
2297 "saving status %s\n",
2298 (long) GET_LWP (new_lp->ptid),
2299 status_to_str (status));
2300 new_lp->status = status;
2301 }
2302 }
2303
2304 if (debug_linux_nat)
2305 fprintf_unfiltered (gdb_stdlog,
2306 "LHEW: Got clone event "
2307 "from LWP %ld, resuming\n",
2308 GET_LWP (lp->ptid));
2309 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2310 0, TARGET_SIGNAL_0);
2311
2312 return 1;
2313 }
2314
2315 return 0;
2316 }
2317
2318 if (event == PTRACE_EVENT_EXEC)
2319 {
2320 if (debug_linux_nat)
2321 fprintf_unfiltered (gdb_stdlog,
2322 "LHEW: Got exec event from LWP %ld\n",
2323 GET_LWP (lp->ptid));
2324
2325 ourstatus->kind = TARGET_WAITKIND_EXECD;
2326 ourstatus->value.execd_pathname
2327 = xstrdup (linux_child_pid_to_exec_file (pid));
2328
2329 return 0;
2330 }
2331
2332 if (event == PTRACE_EVENT_VFORK_DONE)
2333 {
2334 if (current_inferior ()->waiting_for_vfork_done)
2335 {
2336 if (debug_linux_nat)
2337 fprintf_unfiltered (gdb_stdlog,
2338 "LHEW: Got expected PTRACE_EVENT_"
2339 "VFORK_DONE from LWP %ld: stopping\n",
2340 GET_LWP (lp->ptid));
2341
2342 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2343 return 0;
2344 }
2345
2346 if (debug_linux_nat)
2347 fprintf_unfiltered (gdb_stdlog,
2348 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2349 "from LWP %ld: resuming\n",
2350 GET_LWP (lp->ptid));
2351 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2352 return 1;
2353 }
2354
2355 internal_error (__FILE__, __LINE__,
2356 _("unknown ptrace event %d"), event);
2357 }
2358
2359 /* Return non-zero if LWP is a zombie. */
2360
2361 static int
2362 linux_lwp_is_zombie (long lwp)
2363 {
2364 char buffer[MAXPATHLEN];
2365 FILE *procfile;
2366 int retval = 0;
2367
2368 sprintf (buffer, "/proc/%ld/status", lwp);
2369 procfile = fopen (buffer, "r");
2370 if (procfile == NULL)
2371 {
2372 warning (_("unable to open /proc file '%s'"), buffer);
2373 return 0;
2374 }
2375 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
2376 if (strcmp (buffer, "State:\tZ (zombie)\n") == 0)
2377 {
2378 retval = 1;
2379 break;
2380 }
2381 fclose (procfile);
2382
2383 return retval;
2384 }
2385
2386 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2387 exited. */
2388
2389 static int
2390 wait_lwp (struct lwp_info *lp)
2391 {
2392 pid_t pid;
2393 int status = 0;
2394 int thread_dead = 0;
2395 sigset_t prev_mask;
2396
2397 gdb_assert (!lp->stopped);
2398 gdb_assert (lp->status == 0);
2399
2400 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2401 block_child_signals (&prev_mask);
2402
2403 for (;;)
2404 {
2405 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2406 was right and we should just call sigsuspend. */
2407
2408 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2409 if (pid == -1 && errno == ECHILD)
2410 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2411 if (pid != 0)
2412 break;
2413
2414 /* Bugs 10970, 12702.
2415 Thread group leader may have exited in which case we'll lock up in
2416 waitpid if there are other threads, even if they are all zombies too.
2417 Basically, we're not supposed to use waitpid this way.
2418 __WCLONE is not applicable for the leader so we can't use that.
2419 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2420 process; it gets ESRCH both for the zombie and for running processes.
2421
2422 As a workaround, check if we're waiting for the thread group leader and
2423 if it's a zombie, and avoid calling waitpid if it is.
2424
2425 This is racy, what if the tgl becomes a zombie right after we check?
2426 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2427 waiting waitpid but the linux_lwp_is_zombie is safe this way. */
2428
2429 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2430 && linux_lwp_is_zombie (GET_LWP (lp->ptid)))
2431 {
2432 thread_dead = 1;
2433 if (debug_linux_nat)
2434 fprintf_unfiltered (gdb_stdlog,
2435 "WL: Thread group leader %s vanished.\n",
2436 target_pid_to_str (lp->ptid));
2437 break;
2438 }
2439
2440 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2441 get invoked despite our caller had them intentionally blocked by
2442 block_child_signals. This is sensitive only to the loop of
2443 linux_nat_wait_1 and there if we get called my_waitpid gets called
2444 again before it gets to sigsuspend so we can safely let the handlers
2445 get executed here. */
2446
2447 sigsuspend (&suspend_mask);
2448 }
2449
2450 restore_child_signals_mask (&prev_mask);
2451
2452 if (pid == -1 && errno == ECHILD)
2453 {
2454 /* The thread has previously exited. We need to delete it
2455 now because, for some vendor 2.4 kernels with NPTL
2456 support backported, there won't be an exit event unless
2457 it is the main thread. 2.6 kernels will report an exit
2458 event for each thread that exits, as expected. */
2459 thread_dead = 1;
2460 if (debug_linux_nat)
2461 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2462 target_pid_to_str (lp->ptid));
2463 }
2464
2465 if (!thread_dead)
2466 {
2467 gdb_assert (pid == GET_LWP (lp->ptid));
2468
2469 if (debug_linux_nat)
2470 {
2471 fprintf_unfiltered (gdb_stdlog,
2472 "WL: waitpid %s received %s\n",
2473 target_pid_to_str (lp->ptid),
2474 status_to_str (status));
2475 }
2476 }
2477
2478 /* Check if the thread has exited. */
2479 if (WIFEXITED (status) || WIFSIGNALED (status))
2480 {
2481 thread_dead = 1;
2482 if (debug_linux_nat)
2483 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2484 target_pid_to_str (lp->ptid));
2485 }
2486
2487 if (thread_dead)
2488 {
2489 exit_lwp (lp);
2490 return 0;
2491 }
2492
2493 gdb_assert (WIFSTOPPED (status));
2494
2495 /* Handle GNU/Linux's syscall SIGTRAPs. */
2496 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2497 {
2498 /* No longer need the sysgood bit. The ptrace event ends up
2499 recorded in lp->waitstatus if we care for it. We can carry
2500 on handling the event like a regular SIGTRAP from here
2501 on. */
2502 status = W_STOPCODE (SIGTRAP);
2503 if (linux_handle_syscall_trap (lp, 1))
2504 return wait_lwp (lp);
2505 }
2506
2507 /* Handle GNU/Linux's extended waitstatus for trace events. */
2508 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2509 {
2510 if (debug_linux_nat)
2511 fprintf_unfiltered (gdb_stdlog,
2512 "WL: Handling extended status 0x%06x\n",
2513 status);
2514 if (linux_handle_extended_wait (lp, status, 1))
2515 return wait_lwp (lp);
2516 }
2517
2518 return status;
2519 }
2520
2521 /* Save the most recent siginfo for LP. This is currently only called
2522 for SIGTRAP; some ports use the si_addr field for
2523 target_stopped_data_address. In the future, it may also be used to
2524 restore the siginfo of requeued signals. */
2525
2526 static void
2527 save_siginfo (struct lwp_info *lp)
2528 {
2529 errno = 0;
2530 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2531 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2532
2533 if (errno != 0)
2534 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2535 }
2536
2537 /* Send a SIGSTOP to LP. */
2538
2539 static int
2540 stop_callback (struct lwp_info *lp, void *data)
2541 {
2542 if (!lp->stopped && !lp->signalled)
2543 {
2544 int ret;
2545
2546 if (debug_linux_nat)
2547 {
2548 fprintf_unfiltered (gdb_stdlog,
2549 "SC: kill %s **<SIGSTOP>**\n",
2550 target_pid_to_str (lp->ptid));
2551 }
2552 errno = 0;
2553 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2554 if (debug_linux_nat)
2555 {
2556 fprintf_unfiltered (gdb_stdlog,
2557 "SC: lwp kill %d %s\n",
2558 ret,
2559 errno ? safe_strerror (errno) : "ERRNO-OK");
2560 }
2561
2562 lp->signalled = 1;
2563 gdb_assert (lp->status == 0);
2564 }
2565
2566 return 0;
2567 }
2568
2569 /* Return non-zero if LWP PID has a pending SIGINT. */
2570
2571 static int
2572 linux_nat_has_pending_sigint (int pid)
2573 {
2574 sigset_t pending, blocked, ignored;
2575
2576 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2577
2578 if (sigismember (&pending, SIGINT)
2579 && !sigismember (&ignored, SIGINT))
2580 return 1;
2581
2582 return 0;
2583 }
2584
2585 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2586
2587 static int
2588 set_ignore_sigint (struct lwp_info *lp, void *data)
2589 {
2590 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2591 flag to consume the next one. */
2592 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2593 && WSTOPSIG (lp->status) == SIGINT)
2594 lp->status = 0;
2595 else
2596 lp->ignore_sigint = 1;
2597
2598 return 0;
2599 }
2600
2601 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2602 This function is called after we know the LWP has stopped; if the LWP
2603 stopped before the expected SIGINT was delivered, then it will never have
2604 arrived. Also, if the signal was delivered to a shared queue and consumed
2605 by a different thread, it will never be delivered to this LWP. */
2606
2607 static void
2608 maybe_clear_ignore_sigint (struct lwp_info *lp)
2609 {
2610 if (!lp->ignore_sigint)
2611 return;
2612
2613 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2614 {
2615 if (debug_linux_nat)
2616 fprintf_unfiltered (gdb_stdlog,
2617 "MCIS: Clearing bogus flag for %s\n",
2618 target_pid_to_str (lp->ptid));
2619 lp->ignore_sigint = 0;
2620 }
2621 }
2622
2623 /* Fetch the possible triggered data watchpoint info and store it in
2624 LP.
2625
2626 On some archs, like x86, that use debug registers to set
2627 watchpoints, it's possible that the way to know which watched
2628 address trapped, is to check the register that is used to select
2629 which address to watch. Problem is, between setting the watchpoint
2630 and reading back which data address trapped, the user may change
2631 the set of watchpoints, and, as a consequence, GDB changes the
2632 debug registers in the inferior. To avoid reading back a stale
2633 stopped-data-address when that happens, we cache in LP the fact
2634 that a watchpoint trapped, and the corresponding data address, as
2635 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2636 registers meanwhile, we have the cached data we can rely on. */
2637
2638 static void
2639 save_sigtrap (struct lwp_info *lp)
2640 {
2641 struct cleanup *old_chain;
2642
2643 if (linux_ops->to_stopped_by_watchpoint == NULL)
2644 {
2645 lp->stopped_by_watchpoint = 0;
2646 return;
2647 }
2648
2649 old_chain = save_inferior_ptid ();
2650 inferior_ptid = lp->ptid;
2651
2652 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2653
2654 if (lp->stopped_by_watchpoint)
2655 {
2656 if (linux_ops->to_stopped_data_address != NULL)
2657 lp->stopped_data_address_p =
2658 linux_ops->to_stopped_data_address (&current_target,
2659 &lp->stopped_data_address);
2660 else
2661 lp->stopped_data_address_p = 0;
2662 }
2663
2664 do_cleanups (old_chain);
2665 }
2666
2667 /* See save_sigtrap. */
2668
2669 static int
2670 linux_nat_stopped_by_watchpoint (void)
2671 {
2672 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2673
2674 gdb_assert (lp != NULL);
2675
2676 return lp->stopped_by_watchpoint;
2677 }
2678
2679 static int
2680 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2681 {
2682 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2683
2684 gdb_assert (lp != NULL);
2685
2686 *addr_p = lp->stopped_data_address;
2687
2688 return lp->stopped_data_address_p;
2689 }
2690
2691 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2692
2693 static int
2694 sigtrap_is_event (int status)
2695 {
2696 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2697 }
2698
2699 /* SIGTRAP-like events recognizer. */
2700
2701 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2702
2703 /* Check for SIGTRAP-like events in LP. */
2704
2705 static int
2706 linux_nat_lp_status_is_event (struct lwp_info *lp)
2707 {
2708 /* We check for lp->waitstatus in addition to lp->status, because we can
2709 have pending process exits recorded in lp->status
2710 and W_EXITCODE(0,0) == 0. We should probably have an additional
2711 lp->status_p flag. */
2712
2713 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2714 && linux_nat_status_is_event (lp->status));
2715 }
2716
2717 /* Set alternative SIGTRAP-like events recognizer. If
2718 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2719 applied. */
2720
2721 void
2722 linux_nat_set_status_is_event (struct target_ops *t,
2723 int (*status_is_event) (int status))
2724 {
2725 linux_nat_status_is_event = status_is_event;
2726 }
2727
2728 /* Wait until LP is stopped. */
2729
2730 static int
2731 stop_wait_callback (struct lwp_info *lp, void *data)
2732 {
2733 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2734
2735 /* If this is a vfork parent, bail out, it is not going to report
2736 any SIGSTOP until the vfork is done with. */
2737 if (inf->vfork_child != NULL)
2738 return 0;
2739
2740 if (!lp->stopped)
2741 {
2742 int status;
2743
2744 status = wait_lwp (lp);
2745 if (status == 0)
2746 return 0;
2747
2748 if (lp->ignore_sigint && WIFSTOPPED (status)
2749 && WSTOPSIG (status) == SIGINT)
2750 {
2751 lp->ignore_sigint = 0;
2752
2753 errno = 0;
2754 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2755 if (debug_linux_nat)
2756 fprintf_unfiltered (gdb_stdlog,
2757 "PTRACE_CONT %s, 0, 0 (%s) "
2758 "(discarding SIGINT)\n",
2759 target_pid_to_str (lp->ptid),
2760 errno ? safe_strerror (errno) : "OK");
2761
2762 return stop_wait_callback (lp, NULL);
2763 }
2764
2765 maybe_clear_ignore_sigint (lp);
2766
2767 if (WSTOPSIG (status) != SIGSTOP)
2768 {
2769 if (linux_nat_status_is_event (status))
2770 {
2771 /* If a LWP other than the LWP that we're reporting an
2772 event for has hit a GDB breakpoint (as opposed to
2773 some random trap signal), then just arrange for it to
2774 hit it again later. We don't keep the SIGTRAP status
2775 and don't forward the SIGTRAP signal to the LWP. We
2776 will handle the current event, eventually we will
2777 resume all LWPs, and this one will get its breakpoint
2778 trap again.
2779
2780 If we do not do this, then we run the risk that the
2781 user will delete or disable the breakpoint, but the
2782 thread will have already tripped on it. */
2783
2784 /* Save the trap's siginfo in case we need it later. */
2785 save_siginfo (lp);
2786
2787 save_sigtrap (lp);
2788
2789 /* Now resume this LWP and get the SIGSTOP event. */
2790 errno = 0;
2791 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2792 if (debug_linux_nat)
2793 {
2794 fprintf_unfiltered (gdb_stdlog,
2795 "PTRACE_CONT %s, 0, 0 (%s)\n",
2796 target_pid_to_str (lp->ptid),
2797 errno ? safe_strerror (errno) : "OK");
2798
2799 fprintf_unfiltered (gdb_stdlog,
2800 "SWC: Candidate SIGTRAP event in %s\n",
2801 target_pid_to_str (lp->ptid));
2802 }
2803 /* Hold this event/waitstatus while we check to see if
2804 there are any more (we still want to get that SIGSTOP). */
2805 stop_wait_callback (lp, NULL);
2806
2807 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2808 there's another event, throw it back into the
2809 queue. */
2810 if (lp->status)
2811 {
2812 if (debug_linux_nat)
2813 fprintf_unfiltered (gdb_stdlog,
2814 "SWC: kill %s, %s\n",
2815 target_pid_to_str (lp->ptid),
2816 status_to_str ((int) status));
2817 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2818 }
2819
2820 /* Save the sigtrap event. */
2821 lp->status = status;
2822 return 0;
2823 }
2824 else
2825 {
2826 /* The thread was stopped with a signal other than
2827 SIGSTOP, and didn't accidentally trip a breakpoint. */
2828
2829 if (debug_linux_nat)
2830 {
2831 fprintf_unfiltered (gdb_stdlog,
2832 "SWC: Pending event %s in %s\n",
2833 status_to_str ((int) status),
2834 target_pid_to_str (lp->ptid));
2835 }
2836 /* Now resume this LWP and get the SIGSTOP event. */
2837 errno = 0;
2838 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2839 if (debug_linux_nat)
2840 fprintf_unfiltered (gdb_stdlog,
2841 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2842 target_pid_to_str (lp->ptid),
2843 errno ? safe_strerror (errno) : "OK");
2844
2845 /* Hold this event/waitstatus while we check to see if
2846 there are any more (we still want to get that SIGSTOP). */
2847 stop_wait_callback (lp, NULL);
2848
2849 /* If the lp->status field is still empty, use it to
2850 hold this event. If not, then this event must be
2851 returned to the event queue of the LWP. */
2852 if (lp->status)
2853 {
2854 if (debug_linux_nat)
2855 {
2856 fprintf_unfiltered (gdb_stdlog,
2857 "SWC: kill %s, %s\n",
2858 target_pid_to_str (lp->ptid),
2859 status_to_str ((int) status));
2860 }
2861 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2862 }
2863 else
2864 lp->status = status;
2865 return 0;
2866 }
2867 }
2868 else
2869 {
2870 /* We caught the SIGSTOP that we intended to catch, so
2871 there's no SIGSTOP pending. */
2872 lp->stopped = 1;
2873 lp->signalled = 0;
2874 }
2875 }
2876
2877 return 0;
2878 }
2879
2880 /* Return non-zero if LP has a wait status pending. */
2881
2882 static int
2883 status_callback (struct lwp_info *lp, void *data)
2884 {
2885 /* Only report a pending wait status if we pretend that this has
2886 indeed been resumed. */
2887 if (!lp->resumed)
2888 return 0;
2889
2890 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2891 {
2892 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2893 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2894 0', so a clean process exit can not be stored pending in
2895 lp->status, it is indistinguishable from
2896 no-pending-status. */
2897 return 1;
2898 }
2899
2900 if (lp->status != 0)
2901 return 1;
2902
2903 return 0;
2904 }
2905
2906 /* Return non-zero if LP isn't stopped. */
2907
2908 static int
2909 running_callback (struct lwp_info *lp, void *data)
2910 {
2911 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2912 }
2913
2914 /* Count the LWP's that have had events. */
2915
2916 static int
2917 count_events_callback (struct lwp_info *lp, void *data)
2918 {
2919 int *count = data;
2920
2921 gdb_assert (count != NULL);
2922
2923 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2924 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2925 (*count)++;
2926
2927 return 0;
2928 }
2929
2930 /* Select the LWP (if any) that is currently being single-stepped. */
2931
2932 static int
2933 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2934 {
2935 if (lp->step && lp->status != 0)
2936 return 1;
2937 else
2938 return 0;
2939 }
2940
2941 /* Select the Nth LWP that has had a SIGTRAP event. */
2942
2943 static int
2944 select_event_lwp_callback (struct lwp_info *lp, void *data)
2945 {
2946 int *selector = data;
2947
2948 gdb_assert (selector != NULL);
2949
2950 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2951 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2952 if ((*selector)-- == 0)
2953 return 1;
2954
2955 return 0;
2956 }
2957
2958 static int
2959 cancel_breakpoint (struct lwp_info *lp)
2960 {
2961 /* Arrange for a breakpoint to be hit again later. We don't keep
2962 the SIGTRAP status and don't forward the SIGTRAP signal to the
2963 LWP. We will handle the current event, eventually we will resume
2964 this LWP, and this breakpoint will trap again.
2965
2966 If we do not do this, then we run the risk that the user will
2967 delete or disable the breakpoint, but the LWP will have already
2968 tripped on it. */
2969
2970 struct regcache *regcache = get_thread_regcache (lp->ptid);
2971 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2972 CORE_ADDR pc;
2973
2974 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2975 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2976 {
2977 if (debug_linux_nat)
2978 fprintf_unfiltered (gdb_stdlog,
2979 "CB: Push back breakpoint for %s\n",
2980 target_pid_to_str (lp->ptid));
2981
2982 /* Back up the PC if necessary. */
2983 if (gdbarch_decr_pc_after_break (gdbarch))
2984 regcache_write_pc (regcache, pc);
2985
2986 return 1;
2987 }
2988 return 0;
2989 }
2990
2991 static int
2992 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2993 {
2994 struct lwp_info *event_lp = data;
2995
2996 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2997 if (lp == event_lp)
2998 return 0;
2999
3000 /* If a LWP other than the LWP that we're reporting an event for has
3001 hit a GDB breakpoint (as opposed to some random trap signal),
3002 then just arrange for it to hit it again later. We don't keep
3003 the SIGTRAP status and don't forward the SIGTRAP signal to the
3004 LWP. We will handle the current event, eventually we will resume
3005 all LWPs, and this one will get its breakpoint trap again.
3006
3007 If we do not do this, then we run the risk that the user will
3008 delete or disable the breakpoint, but the LWP will have already
3009 tripped on it. */
3010
3011 if (linux_nat_lp_status_is_event (lp)
3012 && cancel_breakpoint (lp))
3013 /* Throw away the SIGTRAP. */
3014 lp->status = 0;
3015
3016 return 0;
3017 }
3018
3019 /* Select one LWP out of those that have events pending. */
3020
3021 static void
3022 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3023 {
3024 int num_events = 0;
3025 int random_selector;
3026 struct lwp_info *event_lp;
3027
3028 /* Record the wait status for the original LWP. */
3029 (*orig_lp)->status = *status;
3030
3031 /* Give preference to any LWP that is being single-stepped. */
3032 event_lp = iterate_over_lwps (filter,
3033 select_singlestep_lwp_callback, NULL);
3034 if (event_lp != NULL)
3035 {
3036 if (debug_linux_nat)
3037 fprintf_unfiltered (gdb_stdlog,
3038 "SEL: Select single-step %s\n",
3039 target_pid_to_str (event_lp->ptid));
3040 }
3041 else
3042 {
3043 /* No single-stepping LWP. Select one at random, out of those
3044 which have had SIGTRAP events. */
3045
3046 /* First see how many SIGTRAP events we have. */
3047 iterate_over_lwps (filter, count_events_callback, &num_events);
3048
3049 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3050 random_selector = (int)
3051 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3052
3053 if (debug_linux_nat && num_events > 1)
3054 fprintf_unfiltered (gdb_stdlog,
3055 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3056 num_events, random_selector);
3057
3058 event_lp = iterate_over_lwps (filter,
3059 select_event_lwp_callback,
3060 &random_selector);
3061 }
3062
3063 if (event_lp != NULL)
3064 {
3065 /* Switch the event LWP. */
3066 *orig_lp = event_lp;
3067 *status = event_lp->status;
3068 }
3069
3070 /* Flush the wait status for the event LWP. */
3071 (*orig_lp)->status = 0;
3072 }
3073
3074 /* Return non-zero if LP has been resumed. */
3075
3076 static int
3077 resumed_callback (struct lwp_info *lp, void *data)
3078 {
3079 return lp->resumed;
3080 }
3081
3082 /* Stop an active thread, verify it still exists, then resume it. */
3083
3084 static int
3085 stop_and_resume_callback (struct lwp_info *lp, void *data)
3086 {
3087 struct lwp_info *ptr;
3088
3089 if (!lp->stopped && !lp->signalled)
3090 {
3091 stop_callback (lp, NULL);
3092 stop_wait_callback (lp, NULL);
3093 /* Resume if the lwp still exists. */
3094 for (ptr = lwp_list; ptr; ptr = ptr->next)
3095 if (lp == ptr)
3096 {
3097 resume_callback (lp, NULL);
3098 resume_set_callback (lp, NULL);
3099 }
3100 }
3101 return 0;
3102 }
3103
3104 /* Check if we should go on and pass this event to common code.
3105 Return the affected lwp if we are, or NULL otherwise. */
3106 static struct lwp_info *
3107 linux_nat_filter_event (int lwpid, int status, int options)
3108 {
3109 struct lwp_info *lp;
3110
3111 lp = find_lwp_pid (pid_to_ptid (lwpid));
3112
3113 /* Check for stop events reported by a process we didn't already
3114 know about - anything not already in our LWP list.
3115
3116 If we're expecting to receive stopped processes after
3117 fork, vfork, and clone events, then we'll just add the
3118 new one to our list and go back to waiting for the event
3119 to be reported - the stopped process might be returned
3120 from waitpid before or after the event is. */
3121 if (WIFSTOPPED (status) && !lp)
3122 {
3123 linux_record_stopped_pid (lwpid, status);
3124 return NULL;
3125 }
3126
3127 /* Make sure we don't report an event for the exit of an LWP not in
3128 our list, i.e. not part of the current process. This can happen
3129 if we detach from a program we originally forked and then it
3130 exits. */
3131 if (!WIFSTOPPED (status) && !lp)
3132 return NULL;
3133
3134 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3135 CLONE_PTRACE processes which do not use the thread library -
3136 otherwise we wouldn't find the new LWP this way. That doesn't
3137 currently work, and the following code is currently unreachable
3138 due to the two blocks above. If it's fixed some day, this code
3139 should be broken out into a function so that we can also pick up
3140 LWPs from the new interface. */
3141 if (!lp)
3142 {
3143 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3144 if (options & __WCLONE)
3145 lp->cloned = 1;
3146
3147 gdb_assert (WIFSTOPPED (status)
3148 && WSTOPSIG (status) == SIGSTOP);
3149 lp->signalled = 1;
3150
3151 if (!in_thread_list (inferior_ptid))
3152 {
3153 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3154 GET_PID (inferior_ptid));
3155 add_thread (inferior_ptid);
3156 }
3157
3158 add_thread (lp->ptid);
3159 }
3160
3161 /* Handle GNU/Linux's syscall SIGTRAPs. */
3162 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3163 {
3164 /* No longer need the sysgood bit. The ptrace event ends up
3165 recorded in lp->waitstatus if we care for it. We can carry
3166 on handling the event like a regular SIGTRAP from here
3167 on. */
3168 status = W_STOPCODE (SIGTRAP);
3169 if (linux_handle_syscall_trap (lp, 0))
3170 return NULL;
3171 }
3172
3173 /* Handle GNU/Linux's extended waitstatus for trace events. */
3174 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3175 {
3176 if (debug_linux_nat)
3177 fprintf_unfiltered (gdb_stdlog,
3178 "LLW: Handling extended status 0x%06x\n",
3179 status);
3180 if (linux_handle_extended_wait (lp, status, 0))
3181 return NULL;
3182 }
3183
3184 if (linux_nat_status_is_event (status))
3185 {
3186 /* Save the trap's siginfo in case we need it later. */
3187 save_siginfo (lp);
3188
3189 save_sigtrap (lp);
3190 }
3191
3192 /* Check if the thread has exited. */
3193 if ((WIFEXITED (status) || WIFSIGNALED (status))
3194 && num_lwps (GET_PID (lp->ptid)) > 1)
3195 {
3196 /* If this is the main thread, we must stop all threads and verify
3197 if they are still alive. This is because in the nptl thread model
3198 on Linux 2.4, there is no signal issued for exiting LWPs
3199 other than the main thread. We only get the main thread exit
3200 signal once all child threads have already exited. If we
3201 stop all the threads and use the stop_wait_callback to check
3202 if they have exited we can determine whether this signal
3203 should be ignored or whether it means the end of the debugged
3204 application, regardless of which threading model is being
3205 used. */
3206 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3207 {
3208 lp->stopped = 1;
3209 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3210 stop_and_resume_callback, NULL);
3211 }
3212
3213 if (debug_linux_nat)
3214 fprintf_unfiltered (gdb_stdlog,
3215 "LLW: %s exited.\n",
3216 target_pid_to_str (lp->ptid));
3217
3218 if (num_lwps (GET_PID (lp->ptid)) > 1)
3219 {
3220 /* If there is at least one more LWP, then the exit signal
3221 was not the end of the debugged application and should be
3222 ignored. */
3223 exit_lwp (lp);
3224 return NULL;
3225 }
3226 }
3227
3228 /* Check if the current LWP has previously exited. In the nptl
3229 thread model, LWPs other than the main thread do not issue
3230 signals when they exit so we must check whenever the thread has
3231 stopped. A similar check is made in stop_wait_callback(). */
3232 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3233 {
3234 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3235
3236 if (debug_linux_nat)
3237 fprintf_unfiltered (gdb_stdlog,
3238 "LLW: %s exited.\n",
3239 target_pid_to_str (lp->ptid));
3240
3241 exit_lwp (lp);
3242
3243 /* Make sure there is at least one thread running. */
3244 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3245
3246 /* Discard the event. */
3247 return NULL;
3248 }
3249
3250 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3251 an attempt to stop an LWP. */
3252 if (lp->signalled
3253 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3254 {
3255 if (debug_linux_nat)
3256 fprintf_unfiltered (gdb_stdlog,
3257 "LLW: Delayed SIGSTOP caught for %s.\n",
3258 target_pid_to_str (lp->ptid));
3259
3260 /* This is a delayed SIGSTOP. */
3261 lp->signalled = 0;
3262
3263 registers_changed ();
3264
3265 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3266 lp->step, TARGET_SIGNAL_0);
3267 if (debug_linux_nat)
3268 fprintf_unfiltered (gdb_stdlog,
3269 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3270 lp->step ?
3271 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3272 target_pid_to_str (lp->ptid));
3273
3274 lp->stopped = 0;
3275 gdb_assert (lp->resumed);
3276
3277 /* Discard the event. */
3278 return NULL;
3279 }
3280
3281 /* Make sure we don't report a SIGINT that we have already displayed
3282 for another thread. */
3283 if (lp->ignore_sigint
3284 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3285 {
3286 if (debug_linux_nat)
3287 fprintf_unfiltered (gdb_stdlog,
3288 "LLW: Delayed SIGINT caught for %s.\n",
3289 target_pid_to_str (lp->ptid));
3290
3291 /* This is a delayed SIGINT. */
3292 lp->ignore_sigint = 0;
3293
3294 registers_changed ();
3295 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3296 lp->step, TARGET_SIGNAL_0);
3297 if (debug_linux_nat)
3298 fprintf_unfiltered (gdb_stdlog,
3299 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3300 lp->step ?
3301 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3302 target_pid_to_str (lp->ptid));
3303
3304 lp->stopped = 0;
3305 gdb_assert (lp->resumed);
3306
3307 /* Discard the event. */
3308 return NULL;
3309 }
3310
3311 /* An interesting event. */
3312 gdb_assert (lp);
3313 lp->status = status;
3314 return lp;
3315 }
3316
3317 static ptid_t
3318 linux_nat_wait_1 (struct target_ops *ops,
3319 ptid_t ptid, struct target_waitstatus *ourstatus,
3320 int target_options)
3321 {
3322 static sigset_t prev_mask;
3323 struct lwp_info *lp = NULL;
3324 int options = 0;
3325 int status = 0;
3326 pid_t pid;
3327
3328 if (debug_linux_nat)
3329 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3330
3331 /* The first time we get here after starting a new inferior, we may
3332 not have added it to the LWP list yet - this is the earliest
3333 moment at which we know its PID. */
3334 if (ptid_is_pid (inferior_ptid))
3335 {
3336 /* Upgrade the main thread's ptid. */
3337 thread_change_ptid (inferior_ptid,
3338 BUILD_LWP (GET_PID (inferior_ptid),
3339 GET_PID (inferior_ptid)));
3340
3341 lp = add_lwp (inferior_ptid);
3342 lp->resumed = 1;
3343 }
3344
3345 /* Make sure SIGCHLD is blocked. */
3346 block_child_signals (&prev_mask);
3347
3348 if (ptid_equal (ptid, minus_one_ptid))
3349 pid = -1;
3350 else if (ptid_is_pid (ptid))
3351 /* A request to wait for a specific tgid. This is not possible
3352 with waitpid, so instead, we wait for any child, and leave
3353 children we're not interested in right now with a pending
3354 status to report later. */
3355 pid = -1;
3356 else
3357 pid = GET_LWP (ptid);
3358
3359 retry:
3360 lp = NULL;
3361 status = 0;
3362
3363 /* Make sure that of those LWPs we want to get an event from, there
3364 is at least one LWP that has been resumed. If there's none, just
3365 bail out. The core may just be flushing asynchronously all
3366 events. */
3367 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3368 {
3369 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3370
3371 if (debug_linux_nat)
3372 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3373
3374 restore_child_signals_mask (&prev_mask);
3375 return minus_one_ptid;
3376 }
3377
3378 /* First check if there is a LWP with a wait status pending. */
3379 if (pid == -1)
3380 {
3381 /* Any LWP that's been resumed will do. */
3382 lp = iterate_over_lwps (ptid, status_callback, NULL);
3383 if (lp)
3384 {
3385 if (debug_linux_nat && lp->status)
3386 fprintf_unfiltered (gdb_stdlog,
3387 "LLW: Using pending wait status %s for %s.\n",
3388 status_to_str (lp->status),
3389 target_pid_to_str (lp->ptid));
3390 }
3391
3392 /* But if we don't find one, we'll have to wait, and check both
3393 cloned and uncloned processes. We start with the cloned
3394 processes. */
3395 options = __WCLONE | WNOHANG;
3396 }
3397 else if (is_lwp (ptid))
3398 {
3399 if (debug_linux_nat)
3400 fprintf_unfiltered (gdb_stdlog,
3401 "LLW: Waiting for specific LWP %s.\n",
3402 target_pid_to_str (ptid));
3403
3404 /* We have a specific LWP to check. */
3405 lp = find_lwp_pid (ptid);
3406 gdb_assert (lp);
3407
3408 if (debug_linux_nat && lp->status)
3409 fprintf_unfiltered (gdb_stdlog,
3410 "LLW: Using pending wait status %s for %s.\n",
3411 status_to_str (lp->status),
3412 target_pid_to_str (lp->ptid));
3413
3414 /* If we have to wait, take into account whether PID is a cloned
3415 process or not. And we have to convert it to something that
3416 the layer beneath us can understand. */
3417 options = lp->cloned ? __WCLONE : 0;
3418 pid = GET_LWP (ptid);
3419
3420 /* We check for lp->waitstatus in addition to lp->status,
3421 because we can have pending process exits recorded in
3422 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3423 an additional lp->status_p flag. */
3424 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3425 lp = NULL;
3426 }
3427
3428 if (lp && lp->signalled)
3429 {
3430 /* A pending SIGSTOP may interfere with the normal stream of
3431 events. In a typical case where interference is a problem,
3432 we have a SIGSTOP signal pending for LWP A while
3433 single-stepping it, encounter an event in LWP B, and take the
3434 pending SIGSTOP while trying to stop LWP A. After processing
3435 the event in LWP B, LWP A is continued, and we'll never see
3436 the SIGTRAP associated with the last time we were
3437 single-stepping LWP A. */
3438
3439 /* Resume the thread. It should halt immediately returning the
3440 pending SIGSTOP. */
3441 registers_changed ();
3442 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3443 lp->step, TARGET_SIGNAL_0);
3444 if (debug_linux_nat)
3445 fprintf_unfiltered (gdb_stdlog,
3446 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3447 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3448 target_pid_to_str (lp->ptid));
3449 lp->stopped = 0;
3450 gdb_assert (lp->resumed);
3451
3452 /* Catch the pending SIGSTOP. */
3453 status = lp->status;
3454 lp->status = 0;
3455
3456 stop_wait_callback (lp, NULL);
3457
3458 /* If the lp->status field isn't empty, we caught another signal
3459 while flushing the SIGSTOP. Return it back to the event
3460 queue of the LWP, as we already have an event to handle. */
3461 if (lp->status)
3462 {
3463 if (debug_linux_nat)
3464 fprintf_unfiltered (gdb_stdlog,
3465 "LLW: kill %s, %s\n",
3466 target_pid_to_str (lp->ptid),
3467 status_to_str (lp->status));
3468 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3469 }
3470
3471 lp->status = status;
3472 }
3473
3474 if (!target_can_async_p ())
3475 {
3476 /* Causes SIGINT to be passed on to the attached process. */
3477 set_sigint_trap ();
3478 }
3479
3480 /* Translate generic target_wait options into waitpid options. */
3481 if (target_options & TARGET_WNOHANG)
3482 options |= WNOHANG;
3483
3484 while (lp == NULL)
3485 {
3486 pid_t lwpid;
3487
3488 lwpid = my_waitpid (pid, &status, options);
3489
3490 if (lwpid > 0)
3491 {
3492 gdb_assert (pid == -1 || lwpid == pid);
3493
3494 if (debug_linux_nat)
3495 {
3496 fprintf_unfiltered (gdb_stdlog,
3497 "LLW: waitpid %ld received %s\n",
3498 (long) lwpid, status_to_str (status));
3499 }
3500
3501 lp = linux_nat_filter_event (lwpid, status, options);
3502
3503 /* STATUS is now no longer valid, use LP->STATUS instead. */
3504 status = 0;
3505
3506 if (lp
3507 && ptid_is_pid (ptid)
3508 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3509 {
3510 gdb_assert (lp->resumed);
3511
3512 if (debug_linux_nat)
3513 fprintf (stderr,
3514 "LWP %ld got an event %06x, leaving pending.\n",
3515 ptid_get_lwp (lp->ptid), lp->status);
3516
3517 if (WIFSTOPPED (lp->status))
3518 {
3519 if (WSTOPSIG (lp->status) != SIGSTOP)
3520 {
3521 /* Cancel breakpoint hits. The breakpoint may
3522 be removed before we fetch events from this
3523 process to report to the core. It is best
3524 not to assume the moribund breakpoints
3525 heuristic always handles these cases --- it
3526 could be too many events go through to the
3527 core before this one is handled. All-stop
3528 always cancels breakpoint hits in all
3529 threads. */
3530 if (non_stop
3531 && linux_nat_lp_status_is_event (lp)
3532 && cancel_breakpoint (lp))
3533 {
3534 /* Throw away the SIGTRAP. */
3535 lp->status = 0;
3536
3537 if (debug_linux_nat)
3538 fprintf (stderr,
3539 "LLW: LWP %ld hit a breakpoint while"
3540 " waiting for another process;"
3541 " cancelled it\n",
3542 ptid_get_lwp (lp->ptid));
3543 }
3544 lp->stopped = 1;
3545 }
3546 else
3547 {
3548 lp->stopped = 1;
3549 lp->signalled = 0;
3550 }
3551 }
3552 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3553 {
3554 if (debug_linux_nat)
3555 fprintf (stderr,
3556 "Process %ld exited while stopping LWPs\n",
3557 ptid_get_lwp (lp->ptid));
3558
3559 /* This was the last lwp in the process. Since
3560 events are serialized to GDB core, and we can't
3561 report this one right now, but GDB core and the
3562 other target layers will want to be notified
3563 about the exit code/signal, leave the status
3564 pending for the next time we're able to report
3565 it. */
3566
3567 /* Prevent trying to stop this thread again. We'll
3568 never try to resume it because it has a pending
3569 status. */
3570 lp->stopped = 1;
3571
3572 /* Dead LWP's aren't expected to reported a pending
3573 sigstop. */
3574 lp->signalled = 0;
3575
3576 /* Store the pending event in the waitstatus as
3577 well, because W_EXITCODE(0,0) == 0. */
3578 store_waitstatus (&lp->waitstatus, lp->status);
3579 }
3580
3581 /* Keep looking. */
3582 lp = NULL;
3583 continue;
3584 }
3585
3586 if (lp)
3587 break;
3588 else
3589 {
3590 if (pid == -1)
3591 {
3592 /* waitpid did return something. Restart over. */
3593 options |= __WCLONE;
3594 }
3595 continue;
3596 }
3597 }
3598
3599 if (pid == -1)
3600 {
3601 /* Alternate between checking cloned and uncloned processes. */
3602 options ^= __WCLONE;
3603
3604 /* And every time we have checked both:
3605 In async mode, return to event loop;
3606 In sync mode, suspend waiting for a SIGCHLD signal. */
3607 if (options & __WCLONE)
3608 {
3609 if (target_options & TARGET_WNOHANG)
3610 {
3611 /* No interesting event. */
3612 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3613
3614 if (debug_linux_nat)
3615 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3616
3617 restore_child_signals_mask (&prev_mask);
3618 return minus_one_ptid;
3619 }
3620
3621 sigsuspend (&suspend_mask);
3622 }
3623 }
3624 else if (target_options & TARGET_WNOHANG)
3625 {
3626 /* No interesting event for PID yet. */
3627 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3628
3629 if (debug_linux_nat)
3630 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3631
3632 restore_child_signals_mask (&prev_mask);
3633 return minus_one_ptid;
3634 }
3635
3636 /* We shouldn't end up here unless we want to try again. */
3637 gdb_assert (lp == NULL);
3638 }
3639
3640 if (!target_can_async_p ())
3641 clear_sigint_trap ();
3642
3643 gdb_assert (lp);
3644
3645 status = lp->status;
3646 lp->status = 0;
3647
3648 /* Don't report signals that GDB isn't interested in, such as
3649 signals that are neither printed nor stopped upon. Stopping all
3650 threads can be a bit time-consuming so if we want decent
3651 performance with heavily multi-threaded programs, especially when
3652 they're using a high frequency timer, we'd better avoid it if we
3653 can. */
3654
3655 if (WIFSTOPPED (status))
3656 {
3657 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3658
3659 /* When using hardware single-step, we need to report every signal.
3660 Otherwise, signals in pass_mask may be short-circuited. */
3661 if (!lp->step
3662 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3663 {
3664 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3665 here? It is not clear we should. GDB may not expect
3666 other threads to run. On the other hand, not resuming
3667 newly attached threads may cause an unwanted delay in
3668 getting them running. */
3669 registers_changed ();
3670 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3671 lp->step, signo);
3672 if (debug_linux_nat)
3673 fprintf_unfiltered (gdb_stdlog,
3674 "LLW: %s %s, %s (preempt 'handle')\n",
3675 lp->step ?
3676 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3677 target_pid_to_str (lp->ptid),
3678 (signo != TARGET_SIGNAL_0
3679 ? strsignal (target_signal_to_host (signo))
3680 : "0"));
3681 lp->stopped = 0;
3682 goto retry;
3683 }
3684
3685 if (!non_stop)
3686 {
3687 /* Only do the below in all-stop, as we currently use SIGINT
3688 to implement target_stop (see linux_nat_stop) in
3689 non-stop. */
3690 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3691 {
3692 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3693 forwarded to the entire process group, that is, all LWPs
3694 will receive it - unless they're using CLONE_THREAD to
3695 share signals. Since we only want to report it once, we
3696 mark it as ignored for all LWPs except this one. */
3697 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3698 set_ignore_sigint, NULL);
3699 lp->ignore_sigint = 0;
3700 }
3701 else
3702 maybe_clear_ignore_sigint (lp);
3703 }
3704 }
3705
3706 /* This LWP is stopped now. */
3707 lp->stopped = 1;
3708
3709 if (debug_linux_nat)
3710 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3711 status_to_str (status), target_pid_to_str (lp->ptid));
3712
3713 if (!non_stop)
3714 {
3715 /* Now stop all other LWP's ... */
3716 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3717
3718 /* ... and wait until all of them have reported back that
3719 they're no longer running. */
3720 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3721
3722 /* If we're not waiting for a specific LWP, choose an event LWP
3723 from among those that have had events. Giving equal priority
3724 to all LWPs that have had events helps prevent
3725 starvation. */
3726 if (pid == -1)
3727 select_event_lwp (ptid, &lp, &status);
3728
3729 /* Now that we've selected our final event LWP, cancel any
3730 breakpoints in other LWPs that have hit a GDB breakpoint.
3731 See the comment in cancel_breakpoints_callback to find out
3732 why. */
3733 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3734
3735 /* In all-stop, from the core's perspective, all LWPs are now
3736 stopped until a new resume action is sent over. */
3737 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3738 }
3739 else
3740 lp->resumed = 0;
3741
3742 if (linux_nat_status_is_event (status))
3743 {
3744 if (debug_linux_nat)
3745 fprintf_unfiltered (gdb_stdlog,
3746 "LLW: trap ptid is %s.\n",
3747 target_pid_to_str (lp->ptid));
3748 }
3749
3750 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3751 {
3752 *ourstatus = lp->waitstatus;
3753 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3754 }
3755 else
3756 store_waitstatus (ourstatus, status);
3757
3758 if (debug_linux_nat)
3759 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3760
3761 restore_child_signals_mask (&prev_mask);
3762
3763 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3764 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3765 lp->core = -1;
3766 else
3767 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3768
3769 return lp->ptid;
3770 }
3771
3772 /* Resume LWPs that are currently stopped without any pending status
3773 to report, but are resumed from the core's perspective. */
3774
3775 static int
3776 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3777 {
3778 ptid_t *wait_ptid_p = data;
3779
3780 if (lp->stopped
3781 && lp->resumed
3782 && lp->status == 0
3783 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3784 {
3785 gdb_assert (is_executing (lp->ptid));
3786
3787 /* Don't bother if there's a breakpoint at PC that we'd hit
3788 immediately, and we're not waiting for this LWP. */
3789 if (!ptid_match (lp->ptid, *wait_ptid_p))
3790 {
3791 struct regcache *regcache = get_thread_regcache (lp->ptid);
3792 CORE_ADDR pc = regcache_read_pc (regcache);
3793
3794 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3795 return 0;
3796 }
3797
3798 if (debug_linux_nat)
3799 fprintf_unfiltered (gdb_stdlog,
3800 "RSRL: resuming stopped-resumed LWP %s\n",
3801 target_pid_to_str (lp->ptid));
3802
3803 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3804 lp->step, TARGET_SIGNAL_0);
3805 lp->stopped = 0;
3806 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3807 lp->stopped_by_watchpoint = 0;
3808 }
3809
3810 return 0;
3811 }
3812
3813 static ptid_t
3814 linux_nat_wait (struct target_ops *ops,
3815 ptid_t ptid, struct target_waitstatus *ourstatus,
3816 int target_options)
3817 {
3818 ptid_t event_ptid;
3819
3820 if (debug_linux_nat)
3821 fprintf_unfiltered (gdb_stdlog,
3822 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3823
3824 /* Flush the async file first. */
3825 if (target_can_async_p ())
3826 async_file_flush ();
3827
3828 /* Resume LWPs that are currently stopped without any pending status
3829 to report, but are resumed from the core's perspective. LWPs get
3830 in this state if we find them stopping at a time we're not
3831 interested in reporting the event (target_wait on a
3832 specific_process, for example, see linux_nat_wait_1), and
3833 meanwhile the event became uninteresting. Don't bother resuming
3834 LWPs we're not going to wait for if they'd stop immediately. */
3835 if (non_stop)
3836 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3837
3838 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3839
3840 /* If we requested any event, and something came out, assume there
3841 may be more. If we requested a specific lwp or process, also
3842 assume there may be more. */
3843 if (target_can_async_p ()
3844 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3845 || !ptid_equal (ptid, minus_one_ptid)))
3846 async_file_mark ();
3847
3848 /* Get ready for the next event. */
3849 if (target_can_async_p ())
3850 target_async (inferior_event_handler, 0);
3851
3852 return event_ptid;
3853 }
3854
3855 static int
3856 kill_callback (struct lwp_info *lp, void *data)
3857 {
3858 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3859
3860 errno = 0;
3861 kill (GET_LWP (lp->ptid), SIGKILL);
3862 if (debug_linux_nat)
3863 fprintf_unfiltered (gdb_stdlog,
3864 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3865 target_pid_to_str (lp->ptid),
3866 errno ? safe_strerror (errno) : "OK");
3867
3868 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3869
3870 errno = 0;
3871 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3872 if (debug_linux_nat)
3873 fprintf_unfiltered (gdb_stdlog,
3874 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3875 target_pid_to_str (lp->ptid),
3876 errno ? safe_strerror (errno) : "OK");
3877
3878 return 0;
3879 }
3880
3881 static int
3882 kill_wait_callback (struct lwp_info *lp, void *data)
3883 {
3884 pid_t pid;
3885
3886 /* We must make sure that there are no pending events (delayed
3887 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3888 program doesn't interfere with any following debugging session. */
3889
3890 /* For cloned processes we must check both with __WCLONE and
3891 without, since the exit status of a cloned process isn't reported
3892 with __WCLONE. */
3893 if (lp->cloned)
3894 {
3895 do
3896 {
3897 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3898 if (pid != (pid_t) -1)
3899 {
3900 if (debug_linux_nat)
3901 fprintf_unfiltered (gdb_stdlog,
3902 "KWC: wait %s received unknown.\n",
3903 target_pid_to_str (lp->ptid));
3904 /* The Linux kernel sometimes fails to kill a thread
3905 completely after PTRACE_KILL; that goes from the stop
3906 point in do_fork out to the one in
3907 get_signal_to_deliever and waits again. So kill it
3908 again. */
3909 kill_callback (lp, NULL);
3910 }
3911 }
3912 while (pid == GET_LWP (lp->ptid));
3913
3914 gdb_assert (pid == -1 && errno == ECHILD);
3915 }
3916
3917 do
3918 {
3919 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3920 if (pid != (pid_t) -1)
3921 {
3922 if (debug_linux_nat)
3923 fprintf_unfiltered (gdb_stdlog,
3924 "KWC: wait %s received unk.\n",
3925 target_pid_to_str (lp->ptid));
3926 /* See the call to kill_callback above. */
3927 kill_callback (lp, NULL);
3928 }
3929 }
3930 while (pid == GET_LWP (lp->ptid));
3931
3932 gdb_assert (pid == -1 && errno == ECHILD);
3933 return 0;
3934 }
3935
3936 static void
3937 linux_nat_kill (struct target_ops *ops)
3938 {
3939 struct target_waitstatus last;
3940 ptid_t last_ptid;
3941 int status;
3942
3943 /* If we're stopped while forking and we haven't followed yet,
3944 kill the other task. We need to do this first because the
3945 parent will be sleeping if this is a vfork. */
3946
3947 get_last_target_status (&last_ptid, &last);
3948
3949 if (last.kind == TARGET_WAITKIND_FORKED
3950 || last.kind == TARGET_WAITKIND_VFORKED)
3951 {
3952 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3953 wait (&status);
3954 }
3955
3956 if (forks_exist_p ())
3957 linux_fork_killall ();
3958 else
3959 {
3960 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3961
3962 /* Stop all threads before killing them, since ptrace requires
3963 that the thread is stopped to sucessfully PTRACE_KILL. */
3964 iterate_over_lwps (ptid, stop_callback, NULL);
3965 /* ... and wait until all of them have reported back that
3966 they're no longer running. */
3967 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3968
3969 /* Kill all LWP's ... */
3970 iterate_over_lwps (ptid, kill_callback, NULL);
3971
3972 /* ... and wait until we've flushed all events. */
3973 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3974 }
3975
3976 target_mourn_inferior ();
3977 }
3978
3979 static void
3980 linux_nat_mourn_inferior (struct target_ops *ops)
3981 {
3982 purge_lwp_list (ptid_get_pid (inferior_ptid));
3983
3984 if (! forks_exist_p ())
3985 /* Normal case, no other forks available. */
3986 linux_ops->to_mourn_inferior (ops);
3987 else
3988 /* Multi-fork case. The current inferior_ptid has exited, but
3989 there are other viable forks to debug. Delete the exiting
3990 one and context-switch to the first available. */
3991 linux_fork_mourn_inferior ();
3992 }
3993
3994 /* Convert a native/host siginfo object, into/from the siginfo in the
3995 layout of the inferiors' architecture. */
3996
3997 static void
3998 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3999 {
4000 int done = 0;
4001
4002 if (linux_nat_siginfo_fixup != NULL)
4003 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4004
4005 /* If there was no callback, or the callback didn't do anything,
4006 then just do a straight memcpy. */
4007 if (!done)
4008 {
4009 if (direction == 1)
4010 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4011 else
4012 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4013 }
4014 }
4015
4016 static LONGEST
4017 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4018 const char *annex, gdb_byte *readbuf,
4019 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4020 {
4021 int pid;
4022 struct siginfo siginfo;
4023 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4024
4025 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4026 gdb_assert (readbuf || writebuf);
4027
4028 pid = GET_LWP (inferior_ptid);
4029 if (pid == 0)
4030 pid = GET_PID (inferior_ptid);
4031
4032 if (offset > sizeof (siginfo))
4033 return -1;
4034
4035 errno = 0;
4036 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4037 if (errno != 0)
4038 return -1;
4039
4040 /* When GDB is built as a 64-bit application, ptrace writes into
4041 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4042 inferior with a 64-bit GDB should look the same as debugging it
4043 with a 32-bit GDB, we need to convert it. GDB core always sees
4044 the converted layout, so any read/write will have to be done
4045 post-conversion. */
4046 siginfo_fixup (&siginfo, inf_siginfo, 0);
4047
4048 if (offset + len > sizeof (siginfo))
4049 len = sizeof (siginfo) - offset;
4050
4051 if (readbuf != NULL)
4052 memcpy (readbuf, inf_siginfo + offset, len);
4053 else
4054 {
4055 memcpy (inf_siginfo + offset, writebuf, len);
4056
4057 /* Convert back to ptrace layout before flushing it out. */
4058 siginfo_fixup (&siginfo, inf_siginfo, 1);
4059
4060 errno = 0;
4061 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4062 if (errno != 0)
4063 return -1;
4064 }
4065
4066 return len;
4067 }
4068
4069 static LONGEST
4070 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4071 const char *annex, gdb_byte *readbuf,
4072 const gdb_byte *writebuf,
4073 ULONGEST offset, LONGEST len)
4074 {
4075 struct cleanup *old_chain;
4076 LONGEST xfer;
4077
4078 if (object == TARGET_OBJECT_SIGNAL_INFO)
4079 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4080 offset, len);
4081
4082 /* The target is connected but no live inferior is selected. Pass
4083 this request down to a lower stratum (e.g., the executable
4084 file). */
4085 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4086 return 0;
4087
4088 old_chain = save_inferior_ptid ();
4089
4090 if (is_lwp (inferior_ptid))
4091 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4092
4093 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4094 offset, len);
4095
4096 do_cleanups (old_chain);
4097 return xfer;
4098 }
4099
4100 static int
4101 linux_thread_alive (ptid_t ptid)
4102 {
4103 int err, tmp_errno;
4104
4105 gdb_assert (is_lwp (ptid));
4106
4107 /* Send signal 0 instead of anything ptrace, because ptracing a
4108 running thread errors out claiming that the thread doesn't
4109 exist. */
4110 err = kill_lwp (GET_LWP (ptid), 0);
4111 tmp_errno = errno;
4112 if (debug_linux_nat)
4113 fprintf_unfiltered (gdb_stdlog,
4114 "LLTA: KILL(SIG0) %s (%s)\n",
4115 target_pid_to_str (ptid),
4116 err ? safe_strerror (tmp_errno) : "OK");
4117
4118 if (err != 0)
4119 return 0;
4120
4121 return 1;
4122 }
4123
4124 static int
4125 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4126 {
4127 return linux_thread_alive (ptid);
4128 }
4129
4130 static char *
4131 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4132 {
4133 static char buf[64];
4134
4135 if (is_lwp (ptid)
4136 && (GET_PID (ptid) != GET_LWP (ptid)
4137 || num_lwps (GET_PID (ptid)) > 1))
4138 {
4139 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4140 return buf;
4141 }
4142
4143 return normal_pid_to_str (ptid);
4144 }
4145
4146 static char *
4147 linux_nat_thread_name (struct thread_info *thr)
4148 {
4149 int pid = ptid_get_pid (thr->ptid);
4150 long lwp = ptid_get_lwp (thr->ptid);
4151 #define FORMAT "/proc/%d/task/%ld/comm"
4152 char buf[sizeof (FORMAT) + 30];
4153 FILE *comm_file;
4154 char *result = NULL;
4155
4156 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4157 comm_file = fopen (buf, "r");
4158 if (comm_file)
4159 {
4160 /* Not exported by the kernel, so we define it here. */
4161 #define COMM_LEN 16
4162 static char line[COMM_LEN + 1];
4163
4164 if (fgets (line, sizeof (line), comm_file))
4165 {
4166 char *nl = strchr (line, '\n');
4167
4168 if (nl)
4169 *nl = '\0';
4170 if (*line != '\0')
4171 result = line;
4172 }
4173
4174 fclose (comm_file);
4175 }
4176
4177 #undef COMM_LEN
4178 #undef FORMAT
4179
4180 return result;
4181 }
4182
4183 /* Accepts an integer PID; Returns a string representing a file that
4184 can be opened to get the symbols for the child process. */
4185
4186 static char *
4187 linux_child_pid_to_exec_file (int pid)
4188 {
4189 char *name1, *name2;
4190
4191 name1 = xmalloc (MAXPATHLEN);
4192 name2 = xmalloc (MAXPATHLEN);
4193 make_cleanup (xfree, name1);
4194 make_cleanup (xfree, name2);
4195 memset (name2, 0, MAXPATHLEN);
4196
4197 sprintf (name1, "/proc/%d/exe", pid);
4198 if (readlink (name1, name2, MAXPATHLEN) > 0)
4199 return name2;
4200 else
4201 return name1;
4202 }
4203
4204 /* Service function for corefiles and info proc. */
4205
4206 static int
4207 read_mapping (FILE *mapfile,
4208 long long *addr,
4209 long long *endaddr,
4210 char *permissions,
4211 long long *offset,
4212 char *device, long long *inode, char *filename)
4213 {
4214 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4215 addr, endaddr, permissions, offset, device, inode);
4216
4217 filename[0] = '\0';
4218 if (ret > 0 && ret != EOF)
4219 {
4220 /* Eat everything up to EOL for the filename. This will prevent
4221 weird filenames (such as one with embedded whitespace) from
4222 confusing this code. It also makes this code more robust in
4223 respect to annotations the kernel may add after the filename.
4224
4225 Note the filename is used for informational purposes
4226 only. */
4227 ret += fscanf (mapfile, "%[^\n]\n", filename);
4228 }
4229
4230 return (ret != 0 && ret != EOF);
4231 }
4232
4233 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4234 regions in the inferior for a corefile. */
4235
4236 static int
4237 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4238 {
4239 int pid = PIDGET (inferior_ptid);
4240 char mapsfilename[MAXPATHLEN];
4241 FILE *mapsfile;
4242 long long addr, endaddr, size, offset, inode;
4243 char permissions[8], device[8], filename[MAXPATHLEN];
4244 int read, write, exec;
4245 struct cleanup *cleanup;
4246
4247 /* Compose the filename for the /proc memory map, and open it. */
4248 sprintf (mapsfilename, "/proc/%d/maps", pid);
4249 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4250 error (_("Could not open %s."), mapsfilename);
4251 cleanup = make_cleanup_fclose (mapsfile);
4252
4253 if (info_verbose)
4254 fprintf_filtered (gdb_stdout,
4255 "Reading memory regions from %s\n", mapsfilename);
4256
4257 /* Now iterate until end-of-file. */
4258 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4259 &offset, &device[0], &inode, &filename[0]))
4260 {
4261 size = endaddr - addr;
4262
4263 /* Get the segment's permissions. */
4264 read = (strchr (permissions, 'r') != 0);
4265 write = (strchr (permissions, 'w') != 0);
4266 exec = (strchr (permissions, 'x') != 0);
4267
4268 if (info_verbose)
4269 {
4270 fprintf_filtered (gdb_stdout,
4271 "Save segment, %s bytes at %s (%c%c%c)",
4272 plongest (size), paddress (target_gdbarch, addr),
4273 read ? 'r' : ' ',
4274 write ? 'w' : ' ', exec ? 'x' : ' ');
4275 if (filename[0])
4276 fprintf_filtered (gdb_stdout, " for %s", filename);
4277 fprintf_filtered (gdb_stdout, "\n");
4278 }
4279
4280 /* Invoke the callback function to create the corefile
4281 segment. */
4282 func (addr, size, read, write, exec, obfd);
4283 }
4284 do_cleanups (cleanup);
4285 return 0;
4286 }
4287
4288 static int
4289 find_signalled_thread (struct thread_info *info, void *data)
4290 {
4291 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4292 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4293 return 1;
4294
4295 return 0;
4296 }
4297
4298 static enum target_signal
4299 find_stop_signal (void)
4300 {
4301 struct thread_info *info =
4302 iterate_over_threads (find_signalled_thread, NULL);
4303
4304 if (info)
4305 return info->suspend.stop_signal;
4306 else
4307 return TARGET_SIGNAL_0;
4308 }
4309
4310 /* Records the thread's register state for the corefile note
4311 section. */
4312
4313 static char *
4314 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4315 char *note_data, int *note_size,
4316 enum target_signal stop_signal)
4317 {
4318 unsigned long lwp = ptid_get_lwp (ptid);
4319 struct gdbarch *gdbarch = target_gdbarch;
4320 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4321 const struct regset *regset;
4322 int core_regset_p;
4323 struct cleanup *old_chain;
4324 struct core_regset_section *sect_list;
4325 char *gdb_regset;
4326
4327 old_chain = save_inferior_ptid ();
4328 inferior_ptid = ptid;
4329 target_fetch_registers (regcache, -1);
4330 do_cleanups (old_chain);
4331
4332 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4333 sect_list = gdbarch_core_regset_sections (gdbarch);
4334
4335 /* The loop below uses the new struct core_regset_section, which stores
4336 the supported section names and sizes for the core file. Note that
4337 note PRSTATUS needs to be treated specially. But the other notes are
4338 structurally the same, so they can benefit from the new struct. */
4339 if (core_regset_p && sect_list != NULL)
4340 while (sect_list->sect_name != NULL)
4341 {
4342 regset = gdbarch_regset_from_core_section (gdbarch,
4343 sect_list->sect_name,
4344 sect_list->size);
4345 gdb_assert (regset && regset->collect_regset);
4346 gdb_regset = xmalloc (sect_list->size);
4347 regset->collect_regset (regset, regcache, -1,
4348 gdb_regset, sect_list->size);
4349
4350 if (strcmp (sect_list->sect_name, ".reg") == 0)
4351 note_data = (char *) elfcore_write_prstatus
4352 (obfd, note_data, note_size,
4353 lwp, target_signal_to_host (stop_signal),
4354 gdb_regset);
4355 else
4356 note_data = (char *) elfcore_write_register_note
4357 (obfd, note_data, note_size,
4358 sect_list->sect_name, gdb_regset,
4359 sect_list->size);
4360 xfree (gdb_regset);
4361 sect_list++;
4362 }
4363
4364 /* For architectures that does not have the struct core_regset_section
4365 implemented, we use the old method. When all the architectures have
4366 the new support, the code below should be deleted. */
4367 else
4368 {
4369 gdb_gregset_t gregs;
4370 gdb_fpregset_t fpregs;
4371
4372 if (core_regset_p
4373 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4374 sizeof (gregs)))
4375 != NULL && regset->collect_regset != NULL)
4376 regset->collect_regset (regset, regcache, -1,
4377 &gregs, sizeof (gregs));
4378 else
4379 fill_gregset (regcache, &gregs, -1);
4380
4381 note_data = (char *) elfcore_write_prstatus
4382 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4383 &gregs);
4384
4385 if (core_regset_p
4386 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4387 sizeof (fpregs)))
4388 != NULL && regset->collect_regset != NULL)
4389 regset->collect_regset (regset, regcache, -1,
4390 &fpregs, sizeof (fpregs));
4391 else
4392 fill_fpregset (regcache, &fpregs, -1);
4393
4394 note_data = (char *) elfcore_write_prfpreg (obfd,
4395 note_data,
4396 note_size,
4397 &fpregs, sizeof (fpregs));
4398 }
4399
4400 return note_data;
4401 }
4402
4403 struct linux_nat_corefile_thread_data
4404 {
4405 bfd *obfd;
4406 char *note_data;
4407 int *note_size;
4408 int num_notes;
4409 enum target_signal stop_signal;
4410 };
4411
4412 /* Called by gdbthread.c once per thread. Records the thread's
4413 register state for the corefile note section. */
4414
4415 static int
4416 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4417 {
4418 struct linux_nat_corefile_thread_data *args = data;
4419
4420 args->note_data = linux_nat_do_thread_registers (args->obfd,
4421 ti->ptid,
4422 args->note_data,
4423 args->note_size,
4424 args->stop_signal);
4425 args->num_notes++;
4426
4427 return 0;
4428 }
4429
4430 /* Enumerate spufs IDs for process PID. */
4431
4432 static void
4433 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4434 {
4435 char path[128];
4436 DIR *dir;
4437 struct dirent *entry;
4438
4439 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4440 dir = opendir (path);
4441 if (!dir)
4442 return;
4443
4444 rewinddir (dir);
4445 while ((entry = readdir (dir)) != NULL)
4446 {
4447 struct stat st;
4448 struct statfs stfs;
4449 int fd;
4450
4451 fd = atoi (entry->d_name);
4452 if (!fd)
4453 continue;
4454
4455 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4456 if (stat (path, &st) != 0)
4457 continue;
4458 if (!S_ISDIR (st.st_mode))
4459 continue;
4460
4461 if (statfs (path, &stfs) != 0)
4462 continue;
4463 if (stfs.f_type != SPUFS_MAGIC)
4464 continue;
4465
4466 callback (data, fd);
4467 }
4468
4469 closedir (dir);
4470 }
4471
4472 /* Generate corefile notes for SPU contexts. */
4473
4474 struct linux_spu_corefile_data
4475 {
4476 bfd *obfd;
4477 char *note_data;
4478 int *note_size;
4479 };
4480
4481 static void
4482 linux_spu_corefile_callback (void *data, int fd)
4483 {
4484 struct linux_spu_corefile_data *args = data;
4485 int i;
4486
4487 static const char *spu_files[] =
4488 {
4489 "object-id",
4490 "mem",
4491 "regs",
4492 "fpcr",
4493 "lslr",
4494 "decr",
4495 "decr_status",
4496 "signal1",
4497 "signal1_type",
4498 "signal2",
4499 "signal2_type",
4500 "event_mask",
4501 "event_status",
4502 "mbox_info",
4503 "ibox_info",
4504 "wbox_info",
4505 "dma_info",
4506 "proxydma_info",
4507 };
4508
4509 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4510 {
4511 char annex[32], note_name[32];
4512 gdb_byte *spu_data;
4513 LONGEST spu_len;
4514
4515 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4516 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4517 annex, &spu_data);
4518 if (spu_len > 0)
4519 {
4520 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4521 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4522 args->note_size, note_name,
4523 NT_SPU, spu_data, spu_len);
4524 xfree (spu_data);
4525 }
4526 }
4527 }
4528
4529 static char *
4530 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4531 {
4532 struct linux_spu_corefile_data args;
4533
4534 args.obfd = obfd;
4535 args.note_data = note_data;
4536 args.note_size = note_size;
4537
4538 iterate_over_spus (PIDGET (inferior_ptid),
4539 linux_spu_corefile_callback, &args);
4540
4541 return args.note_data;
4542 }
4543
4544 /* Fills the "to_make_corefile_note" target vector. Builds the note
4545 section for a corefile, and returns it in a malloc buffer. */
4546
4547 static char *
4548 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4549 {
4550 struct linux_nat_corefile_thread_data thread_args;
4551 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4552 char fname[16] = { '\0' };
4553 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4554 char psargs[80] = { '\0' };
4555 char *note_data = NULL;
4556 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4557 gdb_byte *auxv;
4558 int auxv_len;
4559
4560 if (get_exec_file (0))
4561 {
4562 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
4563 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4564 if (get_inferior_args ())
4565 {
4566 char *string_end;
4567 char *psargs_end = psargs + sizeof (psargs);
4568
4569 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4570 strings fine. */
4571 string_end = memchr (psargs, 0, sizeof (psargs));
4572 if (string_end != NULL)
4573 {
4574 *string_end++ = ' ';
4575 strncpy (string_end, get_inferior_args (),
4576 psargs_end - string_end);
4577 }
4578 }
4579 note_data = (char *) elfcore_write_prpsinfo (obfd,
4580 note_data,
4581 note_size, fname, psargs);
4582 }
4583
4584 /* Dump information for threads. */
4585 thread_args.obfd = obfd;
4586 thread_args.note_data = note_data;
4587 thread_args.note_size = note_size;
4588 thread_args.num_notes = 0;
4589 thread_args.stop_signal = find_stop_signal ();
4590 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4591 gdb_assert (thread_args.num_notes != 0);
4592 note_data = thread_args.note_data;
4593
4594 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4595 NULL, &auxv);
4596 if (auxv_len > 0)
4597 {
4598 note_data = elfcore_write_note (obfd, note_data, note_size,
4599 "CORE", NT_AUXV, auxv, auxv_len);
4600 xfree (auxv);
4601 }
4602
4603 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4604
4605 make_cleanup (xfree, note_data);
4606 return note_data;
4607 }
4608
4609 /* Implement the "info proc" command. */
4610
4611 static void
4612 linux_nat_info_proc_cmd (char *args, int from_tty)
4613 {
4614 /* A long is used for pid instead of an int to avoid a loss of precision
4615 compiler warning from the output of strtoul. */
4616 long pid = PIDGET (inferior_ptid);
4617 FILE *procfile;
4618 char **argv = NULL;
4619 char buffer[MAXPATHLEN];
4620 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4621 int cmdline_f = 1;
4622 int cwd_f = 1;
4623 int exe_f = 1;
4624 int mappings_f = 0;
4625 int status_f = 0;
4626 int stat_f = 0;
4627 int all = 0;
4628 struct stat dummy;
4629
4630 if (args)
4631 {
4632 /* Break up 'args' into an argv array. */
4633 argv = gdb_buildargv (args);
4634 make_cleanup_freeargv (argv);
4635 }
4636 while (argv != NULL && *argv != NULL)
4637 {
4638 if (isdigit (argv[0][0]))
4639 {
4640 pid = strtoul (argv[0], NULL, 10);
4641 }
4642 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4643 {
4644 mappings_f = 1;
4645 }
4646 else if (strcmp (argv[0], "status") == 0)
4647 {
4648 status_f = 1;
4649 }
4650 else if (strcmp (argv[0], "stat") == 0)
4651 {
4652 stat_f = 1;
4653 }
4654 else if (strcmp (argv[0], "cmd") == 0)
4655 {
4656 cmdline_f = 1;
4657 }
4658 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4659 {
4660 exe_f = 1;
4661 }
4662 else if (strcmp (argv[0], "cwd") == 0)
4663 {
4664 cwd_f = 1;
4665 }
4666 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4667 {
4668 all = 1;
4669 }
4670 else
4671 {
4672 /* [...] (future options here). */
4673 }
4674 argv++;
4675 }
4676 if (pid == 0)
4677 error (_("No current process: you must name one."));
4678
4679 sprintf (fname1, "/proc/%ld", pid);
4680 if (stat (fname1, &dummy) != 0)
4681 error (_("No /proc directory: '%s'"), fname1);
4682
4683 printf_filtered (_("process %ld\n"), pid);
4684 if (cmdline_f || all)
4685 {
4686 sprintf (fname1, "/proc/%ld/cmdline", pid);
4687 if ((procfile = fopen (fname1, "r")) != NULL)
4688 {
4689 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4690
4691 if (fgets (buffer, sizeof (buffer), procfile))
4692 printf_filtered ("cmdline = '%s'\n", buffer);
4693 else
4694 warning (_("unable to read '%s'"), fname1);
4695 do_cleanups (cleanup);
4696 }
4697 else
4698 warning (_("unable to open /proc file '%s'"), fname1);
4699 }
4700 if (cwd_f || all)
4701 {
4702 sprintf (fname1, "/proc/%ld/cwd", pid);
4703 memset (fname2, 0, sizeof (fname2));
4704 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4705 printf_filtered ("cwd = '%s'\n", fname2);
4706 else
4707 warning (_("unable to read link '%s'"), fname1);
4708 }
4709 if (exe_f || all)
4710 {
4711 sprintf (fname1, "/proc/%ld/exe", pid);
4712 memset (fname2, 0, sizeof (fname2));
4713 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4714 printf_filtered ("exe = '%s'\n", fname2);
4715 else
4716 warning (_("unable to read link '%s'"), fname1);
4717 }
4718 if (mappings_f || all)
4719 {
4720 sprintf (fname1, "/proc/%ld/maps", pid);
4721 if ((procfile = fopen (fname1, "r")) != NULL)
4722 {
4723 long long addr, endaddr, size, offset, inode;
4724 char permissions[8], device[8], filename[MAXPATHLEN];
4725 struct cleanup *cleanup;
4726
4727 cleanup = make_cleanup_fclose (procfile);
4728 printf_filtered (_("Mapped address spaces:\n\n"));
4729 if (gdbarch_addr_bit (target_gdbarch) == 32)
4730 {
4731 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4732 "Start Addr",
4733 " End Addr",
4734 " Size", " Offset", "objfile");
4735 }
4736 else
4737 {
4738 printf_filtered (" %18s %18s %10s %10s %7s\n",
4739 "Start Addr",
4740 " End Addr",
4741 " Size", " Offset", "objfile");
4742 }
4743
4744 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4745 &offset, &device[0], &inode, &filename[0]))
4746 {
4747 size = endaddr - addr;
4748
4749 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4750 calls here (and possibly above) should be abstracted
4751 out into their own functions? Andrew suggests using
4752 a generic local_address_string instead to print out
4753 the addresses; that makes sense to me, too. */
4754
4755 if (gdbarch_addr_bit (target_gdbarch) == 32)
4756 {
4757 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4758 (unsigned long) addr, /* FIXME: pr_addr */
4759 (unsigned long) endaddr,
4760 (int) size,
4761 (unsigned int) offset,
4762 filename[0] ? filename : "");
4763 }
4764 else
4765 {
4766 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4767 (unsigned long) addr, /* FIXME: pr_addr */
4768 (unsigned long) endaddr,
4769 (int) size,
4770 (unsigned int) offset,
4771 filename[0] ? filename : "");
4772 }
4773 }
4774
4775 do_cleanups (cleanup);
4776 }
4777 else
4778 warning (_("unable to open /proc file '%s'"), fname1);
4779 }
4780 if (status_f || all)
4781 {
4782 sprintf (fname1, "/proc/%ld/status", pid);
4783 if ((procfile = fopen (fname1, "r")) != NULL)
4784 {
4785 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4786
4787 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4788 puts_filtered (buffer);
4789 do_cleanups (cleanup);
4790 }
4791 else
4792 warning (_("unable to open /proc file '%s'"), fname1);
4793 }
4794 if (stat_f || all)
4795 {
4796 sprintf (fname1, "/proc/%ld/stat", pid);
4797 if ((procfile = fopen (fname1, "r")) != NULL)
4798 {
4799 int itmp;
4800 char ctmp;
4801 long ltmp;
4802 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4803
4804 if (fscanf (procfile, "%d ", &itmp) > 0)
4805 printf_filtered (_("Process: %d\n"), itmp);
4806 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4807 printf_filtered (_("Exec file: %s\n"), buffer);
4808 if (fscanf (procfile, "%c ", &ctmp) > 0)
4809 printf_filtered (_("State: %c\n"), ctmp);
4810 if (fscanf (procfile, "%d ", &itmp) > 0)
4811 printf_filtered (_("Parent process: %d\n"), itmp);
4812 if (fscanf (procfile, "%d ", &itmp) > 0)
4813 printf_filtered (_("Process group: %d\n"), itmp);
4814 if (fscanf (procfile, "%d ", &itmp) > 0)
4815 printf_filtered (_("Session id: %d\n"), itmp);
4816 if (fscanf (procfile, "%d ", &itmp) > 0)
4817 printf_filtered (_("TTY: %d\n"), itmp);
4818 if (fscanf (procfile, "%d ", &itmp) > 0)
4819 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4820 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4821 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4822 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4823 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4824 (unsigned long) ltmp);
4825 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4826 printf_filtered (_("Minor faults, children: %lu\n"),
4827 (unsigned long) ltmp);
4828 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4829 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4830 (unsigned long) ltmp);
4831 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4832 printf_filtered (_("Major faults, children: %lu\n"),
4833 (unsigned long) ltmp);
4834 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4835 printf_filtered (_("utime: %ld\n"), ltmp);
4836 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4837 printf_filtered (_("stime: %ld\n"), ltmp);
4838 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4839 printf_filtered (_("utime, children: %ld\n"), ltmp);
4840 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4841 printf_filtered (_("stime, children: %ld\n"), ltmp);
4842 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4843 printf_filtered (_("jiffies remaining in current "
4844 "time slice: %ld\n"), ltmp);
4845 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4846 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4847 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4848 printf_filtered (_("jiffies until next timeout: %lu\n"),
4849 (unsigned long) ltmp);
4850 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4851 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4852 (unsigned long) ltmp);
4853 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4854 printf_filtered (_("start time (jiffies since "
4855 "system boot): %ld\n"), ltmp);
4856 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4857 printf_filtered (_("Virtual memory size: %lu\n"),
4858 (unsigned long) ltmp);
4859 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4860 printf_filtered (_("Resident set size: %lu\n"),
4861 (unsigned long) ltmp);
4862 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4863 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4864 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4865 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4866 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4867 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4868 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4869 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4870 #if 0 /* Don't know how architecture-dependent the rest is...
4871 Anyway the signal bitmap info is available from "status". */
4872 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4873 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4874 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4875 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4876 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4877 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4878 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4879 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4880 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4881 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4882 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4883 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4884 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4885 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4886 #endif
4887 do_cleanups (cleanup);
4888 }
4889 else
4890 warning (_("unable to open /proc file '%s'"), fname1);
4891 }
4892 }
4893
4894 /* Implement the to_xfer_partial interface for memory reads using the /proc
4895 filesystem. Because we can use a single read() call for /proc, this
4896 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4897 but it doesn't support writes. */
4898
4899 static LONGEST
4900 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4901 const char *annex, gdb_byte *readbuf,
4902 const gdb_byte *writebuf,
4903 ULONGEST offset, LONGEST len)
4904 {
4905 LONGEST ret;
4906 int fd;
4907 char filename[64];
4908
4909 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4910 return 0;
4911
4912 /* Don't bother for one word. */
4913 if (len < 3 * sizeof (long))
4914 return 0;
4915
4916 /* We could keep this file open and cache it - possibly one per
4917 thread. That requires some juggling, but is even faster. */
4918 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4919 fd = open (filename, O_RDONLY | O_LARGEFILE);
4920 if (fd == -1)
4921 return 0;
4922
4923 /* If pread64 is available, use it. It's faster if the kernel
4924 supports it (only one syscall), and it's 64-bit safe even on
4925 32-bit platforms (for instance, SPARC debugging a SPARC64
4926 application). */
4927 #ifdef HAVE_PREAD64
4928 if (pread64 (fd, readbuf, len, offset) != len)
4929 #else
4930 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4931 #endif
4932 ret = 0;
4933 else
4934 ret = len;
4935
4936 close (fd);
4937 return ret;
4938 }
4939
4940
4941 /* Enumerate spufs IDs for process PID. */
4942 static LONGEST
4943 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4944 {
4945 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4946 LONGEST pos = 0;
4947 LONGEST written = 0;
4948 char path[128];
4949 DIR *dir;
4950 struct dirent *entry;
4951
4952 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4953 dir = opendir (path);
4954 if (!dir)
4955 return -1;
4956
4957 rewinddir (dir);
4958 while ((entry = readdir (dir)) != NULL)
4959 {
4960 struct stat st;
4961 struct statfs stfs;
4962 int fd;
4963
4964 fd = atoi (entry->d_name);
4965 if (!fd)
4966 continue;
4967
4968 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4969 if (stat (path, &st) != 0)
4970 continue;
4971 if (!S_ISDIR (st.st_mode))
4972 continue;
4973
4974 if (statfs (path, &stfs) != 0)
4975 continue;
4976 if (stfs.f_type != SPUFS_MAGIC)
4977 continue;
4978
4979 if (pos >= offset && pos + 4 <= offset + len)
4980 {
4981 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4982 written += 4;
4983 }
4984 pos += 4;
4985 }
4986
4987 closedir (dir);
4988 return written;
4989 }
4990
4991 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4992 object type, using the /proc file system. */
4993 static LONGEST
4994 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4995 const char *annex, gdb_byte *readbuf,
4996 const gdb_byte *writebuf,
4997 ULONGEST offset, LONGEST len)
4998 {
4999 char buf[128];
5000 int fd = 0;
5001 int ret = -1;
5002 int pid = PIDGET (inferior_ptid);
5003
5004 if (!annex)
5005 {
5006 if (!readbuf)
5007 return -1;
5008 else
5009 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5010 }
5011
5012 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
5013 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5014 if (fd <= 0)
5015 return -1;
5016
5017 if (offset != 0
5018 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5019 {
5020 close (fd);
5021 return 0;
5022 }
5023
5024 if (writebuf)
5025 ret = write (fd, writebuf, (size_t) len);
5026 else if (readbuf)
5027 ret = read (fd, readbuf, (size_t) len);
5028
5029 close (fd);
5030 return ret;
5031 }
5032
5033
5034 /* Parse LINE as a signal set and add its set bits to SIGS. */
5035
5036 static void
5037 add_line_to_sigset (const char *line, sigset_t *sigs)
5038 {
5039 int len = strlen (line) - 1;
5040 const char *p;
5041 int signum;
5042
5043 if (line[len] != '\n')
5044 error (_("Could not parse signal set: %s"), line);
5045
5046 p = line;
5047 signum = len * 4;
5048 while (len-- > 0)
5049 {
5050 int digit;
5051
5052 if (*p >= '0' && *p <= '9')
5053 digit = *p - '0';
5054 else if (*p >= 'a' && *p <= 'f')
5055 digit = *p - 'a' + 10;
5056 else
5057 error (_("Could not parse signal set: %s"), line);
5058
5059 signum -= 4;
5060
5061 if (digit & 1)
5062 sigaddset (sigs, signum + 1);
5063 if (digit & 2)
5064 sigaddset (sigs, signum + 2);
5065 if (digit & 4)
5066 sigaddset (sigs, signum + 3);
5067 if (digit & 8)
5068 sigaddset (sigs, signum + 4);
5069
5070 p++;
5071 }
5072 }
5073
5074 /* Find process PID's pending signals from /proc/pid/status and set
5075 SIGS to match. */
5076
5077 void
5078 linux_proc_pending_signals (int pid, sigset_t *pending,
5079 sigset_t *blocked, sigset_t *ignored)
5080 {
5081 FILE *procfile;
5082 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
5083 struct cleanup *cleanup;
5084
5085 sigemptyset (pending);
5086 sigemptyset (blocked);
5087 sigemptyset (ignored);
5088 sprintf (fname, "/proc/%d/status", pid);
5089 procfile = fopen (fname, "r");
5090 if (procfile == NULL)
5091 error (_("Could not open %s"), fname);
5092 cleanup = make_cleanup_fclose (procfile);
5093
5094 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
5095 {
5096 /* Normal queued signals are on the SigPnd line in the status
5097 file. However, 2.6 kernels also have a "shared" pending
5098 queue for delivering signals to a thread group, so check for
5099 a ShdPnd line also.
5100
5101 Unfortunately some Red Hat kernels include the shared pending
5102 queue but not the ShdPnd status field. */
5103
5104 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5105 add_line_to_sigset (buffer + 8, pending);
5106 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5107 add_line_to_sigset (buffer + 8, pending);
5108 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5109 add_line_to_sigset (buffer + 8, blocked);
5110 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5111 add_line_to_sigset (buffer + 8, ignored);
5112 }
5113
5114 do_cleanups (cleanup);
5115 }
5116
5117 static LONGEST
5118 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5119 const char *annex, gdb_byte *readbuf,
5120 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5121 {
5122 /* We make the process list snapshot when the object starts to be
5123 read. */
5124 static const char *buf;
5125 static LONGEST len_avail = -1;
5126 static struct obstack obstack;
5127
5128 DIR *dirp;
5129
5130 gdb_assert (object == TARGET_OBJECT_OSDATA);
5131
5132 if (!annex)
5133 {
5134 if (offset == 0)
5135 {
5136 if (len_avail != -1 && len_avail != 0)
5137 obstack_free (&obstack, NULL);
5138 len_avail = 0;
5139 buf = NULL;
5140 obstack_init (&obstack);
5141 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
5142
5143 obstack_xml_printf (&obstack,
5144 "<item>"
5145 "<column name=\"Type\">processes</column>"
5146 "<column name=\"Description\">"
5147 "Listing of all processes</column>"
5148 "</item>");
5149
5150 obstack_grow_str0 (&obstack, "</osdata>\n");
5151 buf = obstack_finish (&obstack);
5152 len_avail = strlen (buf);
5153 }
5154
5155 if (offset >= len_avail)
5156 {
5157 /* Done. Get rid of the obstack. */
5158 obstack_free (&obstack, NULL);
5159 buf = NULL;
5160 len_avail = 0;
5161 return 0;
5162 }
5163
5164 if (len > len_avail - offset)
5165 len = len_avail - offset;
5166 memcpy (readbuf, buf + offset, len);
5167
5168 return len;
5169 }
5170
5171 if (strcmp (annex, "processes") != 0)
5172 return 0;
5173
5174 gdb_assert (readbuf && !writebuf);
5175
5176 if (offset == 0)
5177 {
5178 if (len_avail != -1 && len_avail != 0)
5179 obstack_free (&obstack, NULL);
5180 len_avail = 0;
5181 buf = NULL;
5182 obstack_init (&obstack);
5183 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5184
5185 dirp = opendir ("/proc");
5186 if (dirp)
5187 {
5188 struct dirent *dp;
5189
5190 while ((dp = readdir (dirp)) != NULL)
5191 {
5192 struct stat statbuf;
5193 char procentry[sizeof ("/proc/4294967295")];
5194
5195 if (!isdigit (dp->d_name[0])
5196 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5197 continue;
5198
5199 sprintf (procentry, "/proc/%s", dp->d_name);
5200 if (stat (procentry, &statbuf) == 0
5201 && S_ISDIR (statbuf.st_mode))
5202 {
5203 char *pathname;
5204 FILE *f;
5205 char cmd[MAXPATHLEN + 1];
5206 struct passwd *entry;
5207
5208 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5209 entry = getpwuid (statbuf.st_uid);
5210
5211 if ((f = fopen (pathname, "r")) != NULL)
5212 {
5213 size_t length = fread (cmd, 1, sizeof (cmd) - 1, f);
5214
5215 if (length > 0)
5216 {
5217 int i;
5218
5219 for (i = 0; i < length; i++)
5220 if (cmd[i] == '\0')
5221 cmd[i] = ' ';
5222 cmd[length] = '\0';
5223
5224 obstack_xml_printf (
5225 &obstack,
5226 "<item>"
5227 "<column name=\"pid\">%s</column>"
5228 "<column name=\"user\">%s</column>"
5229 "<column name=\"command\">%s</column>"
5230 "</item>",
5231 dp->d_name,
5232 entry ? entry->pw_name : "?",
5233 cmd);
5234 }
5235 fclose (f);
5236 }
5237
5238 xfree (pathname);
5239 }
5240 }
5241
5242 closedir (dirp);
5243 }
5244
5245 obstack_grow_str0 (&obstack, "</osdata>\n");
5246 buf = obstack_finish (&obstack);
5247 len_avail = strlen (buf);
5248 }
5249
5250 if (offset >= len_avail)
5251 {
5252 /* Done. Get rid of the obstack. */
5253 obstack_free (&obstack, NULL);
5254 buf = NULL;
5255 len_avail = 0;
5256 return 0;
5257 }
5258
5259 if (len > len_avail - offset)
5260 len = len_avail - offset;
5261 memcpy (readbuf, buf + offset, len);
5262
5263 return len;
5264 }
5265
5266 static LONGEST
5267 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5268 const char *annex, gdb_byte *readbuf,
5269 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5270 {
5271 LONGEST xfer;
5272
5273 if (object == TARGET_OBJECT_AUXV)
5274 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5275 offset, len);
5276
5277 if (object == TARGET_OBJECT_OSDATA)
5278 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5279 offset, len);
5280
5281 if (object == TARGET_OBJECT_SPU)
5282 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5283 offset, len);
5284
5285 /* GDB calculates all the addresses in possibly larget width of the address.
5286 Address width needs to be masked before its final use - either by
5287 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5288
5289 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5290
5291 if (object == TARGET_OBJECT_MEMORY)
5292 {
5293 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5294
5295 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5296 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5297 }
5298
5299 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5300 offset, len);
5301 if (xfer != 0)
5302 return xfer;
5303
5304 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5305 offset, len);
5306 }
5307
5308 /* Create a prototype generic GNU/Linux target. The client can override
5309 it with local methods. */
5310
5311 static void
5312 linux_target_install_ops (struct target_ops *t)
5313 {
5314 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5315 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
5316 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5317 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
5318 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5319 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
5320 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5321 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5322 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5323 t->to_post_attach = linux_child_post_attach;
5324 t->to_follow_fork = linux_child_follow_fork;
5325 t->to_find_memory_regions = linux_nat_find_memory_regions;
5326 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5327
5328 super_xfer_partial = t->to_xfer_partial;
5329 t->to_xfer_partial = linux_xfer_partial;
5330 }
5331
5332 struct target_ops *
5333 linux_target (void)
5334 {
5335 struct target_ops *t;
5336
5337 t = inf_ptrace_target ();
5338 linux_target_install_ops (t);
5339
5340 return t;
5341 }
5342
5343 struct target_ops *
5344 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5345 {
5346 struct target_ops *t;
5347
5348 t = inf_ptrace_trad_target (register_u_offset);
5349 linux_target_install_ops (t);
5350
5351 return t;
5352 }
5353
5354 /* target_is_async_p implementation. */
5355
5356 static int
5357 linux_nat_is_async_p (void)
5358 {
5359 /* NOTE: palves 2008-03-21: We're only async when the user requests
5360 it explicitly with the "set target-async" command.
5361 Someday, linux will always be async. */
5362 if (!target_async_permitted)
5363 return 0;
5364
5365 /* See target.h/target_async_mask. */
5366 return linux_nat_async_mask_value;
5367 }
5368
5369 /* target_can_async_p implementation. */
5370
5371 static int
5372 linux_nat_can_async_p (void)
5373 {
5374 /* NOTE: palves 2008-03-21: We're only async when the user requests
5375 it explicitly with the "set target-async" command.
5376 Someday, linux will always be async. */
5377 if (!target_async_permitted)
5378 return 0;
5379
5380 /* See target.h/target_async_mask. */
5381 return linux_nat_async_mask_value;
5382 }
5383
5384 static int
5385 linux_nat_supports_non_stop (void)
5386 {
5387 return 1;
5388 }
5389
5390 /* True if we want to support multi-process. To be removed when GDB
5391 supports multi-exec. */
5392
5393 int linux_multi_process = 1;
5394
5395 static int
5396 linux_nat_supports_multi_process (void)
5397 {
5398 return linux_multi_process;
5399 }
5400
5401 /* target_async_mask implementation. */
5402
5403 static int
5404 linux_nat_async_mask (int new_mask)
5405 {
5406 int curr_mask = linux_nat_async_mask_value;
5407
5408 if (curr_mask != new_mask)
5409 {
5410 if (new_mask == 0)
5411 {
5412 linux_nat_async (NULL, 0);
5413 linux_nat_async_mask_value = new_mask;
5414 }
5415 else
5416 {
5417 linux_nat_async_mask_value = new_mask;
5418
5419 /* If we're going out of async-mask in all-stop, then the
5420 inferior is stopped. The next resume will call
5421 target_async. In non-stop, the target event source
5422 should be always registered in the event loop. Do so
5423 now. */
5424 if (non_stop)
5425 linux_nat_async (inferior_event_handler, 0);
5426 }
5427 }
5428
5429 return curr_mask;
5430 }
5431
5432 static int async_terminal_is_ours = 1;
5433
5434 /* target_terminal_inferior implementation. */
5435
5436 static void
5437 linux_nat_terminal_inferior (void)
5438 {
5439 if (!target_is_async_p ())
5440 {
5441 /* Async mode is disabled. */
5442 terminal_inferior ();
5443 return;
5444 }
5445
5446 terminal_inferior ();
5447
5448 /* Calls to target_terminal_*() are meant to be idempotent. */
5449 if (!async_terminal_is_ours)
5450 return;
5451
5452 delete_file_handler (input_fd);
5453 async_terminal_is_ours = 0;
5454 set_sigint_trap ();
5455 }
5456
5457 /* target_terminal_ours implementation. */
5458
5459 static void
5460 linux_nat_terminal_ours (void)
5461 {
5462 if (!target_is_async_p ())
5463 {
5464 /* Async mode is disabled. */
5465 terminal_ours ();
5466 return;
5467 }
5468
5469 /* GDB should never give the terminal to the inferior if the
5470 inferior is running in the background (run&, continue&, etc.),
5471 but claiming it sure should. */
5472 terminal_ours ();
5473
5474 if (async_terminal_is_ours)
5475 return;
5476
5477 clear_sigint_trap ();
5478 add_file_handler (input_fd, stdin_event_handler, 0);
5479 async_terminal_is_ours = 1;
5480 }
5481
5482 static void (*async_client_callback) (enum inferior_event_type event_type,
5483 void *context);
5484 static void *async_client_context;
5485
5486 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5487 so we notice when any child changes state, and notify the
5488 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5489 above to wait for the arrival of a SIGCHLD. */
5490
5491 static void
5492 sigchld_handler (int signo)
5493 {
5494 int old_errno = errno;
5495
5496 if (debug_linux_nat)
5497 ui_file_write_async_safe (gdb_stdlog,
5498 "sigchld\n", sizeof ("sigchld\n") - 1);
5499
5500 if (signo == SIGCHLD
5501 && linux_nat_event_pipe[0] != -1)
5502 async_file_mark (); /* Let the event loop know that there are
5503 events to handle. */
5504
5505 errno = old_errno;
5506 }
5507
5508 /* Callback registered with the target events file descriptor. */
5509
5510 static void
5511 handle_target_event (int error, gdb_client_data client_data)
5512 {
5513 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5514 }
5515
5516 /* Create/destroy the target events pipe. Returns previous state. */
5517
5518 static int
5519 linux_async_pipe (int enable)
5520 {
5521 int previous = (linux_nat_event_pipe[0] != -1);
5522
5523 if (previous != enable)
5524 {
5525 sigset_t prev_mask;
5526
5527 block_child_signals (&prev_mask);
5528
5529 if (enable)
5530 {
5531 if (pipe (linux_nat_event_pipe) == -1)
5532 internal_error (__FILE__, __LINE__,
5533 "creating event pipe failed.");
5534
5535 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5536 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5537 }
5538 else
5539 {
5540 close (linux_nat_event_pipe[0]);
5541 close (linux_nat_event_pipe[1]);
5542 linux_nat_event_pipe[0] = -1;
5543 linux_nat_event_pipe[1] = -1;
5544 }
5545
5546 restore_child_signals_mask (&prev_mask);
5547 }
5548
5549 return previous;
5550 }
5551
5552 /* target_async implementation. */
5553
5554 static void
5555 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5556 void *context), void *context)
5557 {
5558 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5559 internal_error (__FILE__, __LINE__,
5560 "Calling target_async when async is masked");
5561
5562 if (callback != NULL)
5563 {
5564 async_client_callback = callback;
5565 async_client_context = context;
5566 if (!linux_async_pipe (1))
5567 {
5568 add_file_handler (linux_nat_event_pipe[0],
5569 handle_target_event, NULL);
5570 /* There may be pending events to handle. Tell the event loop
5571 to poll them. */
5572 async_file_mark ();
5573 }
5574 }
5575 else
5576 {
5577 async_client_callback = callback;
5578 async_client_context = context;
5579 delete_file_handler (linux_nat_event_pipe[0]);
5580 linux_async_pipe (0);
5581 }
5582 return;
5583 }
5584
5585 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5586 event came out. */
5587
5588 static int
5589 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5590 {
5591 if (!lwp->stopped)
5592 {
5593 ptid_t ptid = lwp->ptid;
5594
5595 if (debug_linux_nat)
5596 fprintf_unfiltered (gdb_stdlog,
5597 "LNSL: running -> suspending %s\n",
5598 target_pid_to_str (lwp->ptid));
5599
5600
5601 stop_callback (lwp, NULL);
5602 stop_wait_callback (lwp, NULL);
5603
5604 /* If the lwp exits while we try to stop it, there's nothing
5605 else to do. */
5606 lwp = find_lwp_pid (ptid);
5607 if (lwp == NULL)
5608 return 0;
5609
5610 /* If we didn't collect any signal other than SIGSTOP while
5611 stopping the LWP, push a SIGNAL_0 event. In either case, the
5612 event-loop will end up calling target_wait which will collect
5613 these. */
5614 if (lwp->status == 0)
5615 lwp->status = W_STOPCODE (0);
5616 async_file_mark ();
5617 }
5618 else
5619 {
5620 /* Already known to be stopped; do nothing. */
5621
5622 if (debug_linux_nat)
5623 {
5624 if (find_thread_ptid (lwp->ptid)->stop_requested)
5625 fprintf_unfiltered (gdb_stdlog,
5626 "LNSL: already stopped/stop_requested %s\n",
5627 target_pid_to_str (lwp->ptid));
5628 else
5629 fprintf_unfiltered (gdb_stdlog,
5630 "LNSL: already stopped/no "
5631 "stop_requested yet %s\n",
5632 target_pid_to_str (lwp->ptid));
5633 }
5634 }
5635 return 0;
5636 }
5637
5638 static void
5639 linux_nat_stop (ptid_t ptid)
5640 {
5641 if (non_stop)
5642 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5643 else
5644 linux_ops->to_stop (ptid);
5645 }
5646
5647 static void
5648 linux_nat_close (int quitting)
5649 {
5650 /* Unregister from the event loop. */
5651 if (target_is_async_p ())
5652 target_async (NULL, 0);
5653
5654 /* Reset the async_masking. */
5655 linux_nat_async_mask_value = 1;
5656
5657 if (linux_ops->to_close)
5658 linux_ops->to_close (quitting);
5659 }
5660
5661 /* When requests are passed down from the linux-nat layer to the
5662 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5663 used. The address space pointer is stored in the inferior object,
5664 but the common code that is passed such ptid can't tell whether
5665 lwpid is a "main" process id or not (it assumes so). We reverse
5666 look up the "main" process id from the lwp here. */
5667
5668 struct address_space *
5669 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5670 {
5671 struct lwp_info *lwp;
5672 struct inferior *inf;
5673 int pid;
5674
5675 pid = GET_LWP (ptid);
5676 if (GET_LWP (ptid) == 0)
5677 {
5678 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5679 tgid. */
5680 lwp = find_lwp_pid (ptid);
5681 pid = GET_PID (lwp->ptid);
5682 }
5683 else
5684 {
5685 /* A (pid,lwpid,0) ptid. */
5686 pid = GET_PID (ptid);
5687 }
5688
5689 inf = find_inferior_pid (pid);
5690 gdb_assert (inf != NULL);
5691 return inf->aspace;
5692 }
5693
5694 int
5695 linux_nat_core_of_thread_1 (ptid_t ptid)
5696 {
5697 struct cleanup *back_to;
5698 char *filename;
5699 FILE *f;
5700 char *content = NULL;
5701 char *p;
5702 char *ts = 0;
5703 int content_read = 0;
5704 int i;
5705 int core;
5706
5707 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5708 GET_PID (ptid), GET_LWP (ptid));
5709 back_to = make_cleanup (xfree, filename);
5710
5711 f = fopen (filename, "r");
5712 if (!f)
5713 {
5714 do_cleanups (back_to);
5715 return -1;
5716 }
5717
5718 make_cleanup_fclose (f);
5719
5720 for (;;)
5721 {
5722 int n;
5723
5724 content = xrealloc (content, content_read + 1024);
5725 n = fread (content + content_read, 1, 1024, f);
5726 content_read += n;
5727 if (n < 1024)
5728 {
5729 content[content_read] = '\0';
5730 break;
5731 }
5732 }
5733
5734 make_cleanup (xfree, content);
5735
5736 p = strchr (content, '(');
5737
5738 /* Skip ")". */
5739 if (p != NULL)
5740 p = strchr (p, ')');
5741 if (p != NULL)
5742 p++;
5743
5744 /* If the first field after program name has index 0, then core number is
5745 the field with index 36. There's no constant for that anywhere. */
5746 if (p != NULL)
5747 p = strtok_r (p, " ", &ts);
5748 for (i = 0; p != NULL && i != 36; ++i)
5749 p = strtok_r (NULL, " ", &ts);
5750
5751 if (p == NULL || sscanf (p, "%d", &core) == 0)
5752 core = -1;
5753
5754 do_cleanups (back_to);
5755
5756 return core;
5757 }
5758
5759 /* Return the cached value of the processor core for thread PTID. */
5760
5761 int
5762 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5763 {
5764 struct lwp_info *info = find_lwp_pid (ptid);
5765
5766 if (info)
5767 return info->core;
5768 return -1;
5769 }
5770
5771 void
5772 linux_nat_add_target (struct target_ops *t)
5773 {
5774 /* Save the provided single-threaded target. We save this in a separate
5775 variable because another target we've inherited from (e.g. inf-ptrace)
5776 may have saved a pointer to T; we want to use it for the final
5777 process stratum target. */
5778 linux_ops_saved = *t;
5779 linux_ops = &linux_ops_saved;
5780
5781 /* Override some methods for multithreading. */
5782 t->to_create_inferior = linux_nat_create_inferior;
5783 t->to_attach = linux_nat_attach;
5784 t->to_detach = linux_nat_detach;
5785 t->to_resume = linux_nat_resume;
5786 t->to_wait = linux_nat_wait;
5787 t->to_pass_signals = linux_nat_pass_signals;
5788 t->to_xfer_partial = linux_nat_xfer_partial;
5789 t->to_kill = linux_nat_kill;
5790 t->to_mourn_inferior = linux_nat_mourn_inferior;
5791 t->to_thread_alive = linux_nat_thread_alive;
5792 t->to_pid_to_str = linux_nat_pid_to_str;
5793 t->to_thread_name = linux_nat_thread_name;
5794 t->to_has_thread_control = tc_schedlock;
5795 t->to_thread_address_space = linux_nat_thread_address_space;
5796 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5797 t->to_stopped_data_address = linux_nat_stopped_data_address;
5798
5799 t->to_can_async_p = linux_nat_can_async_p;
5800 t->to_is_async_p = linux_nat_is_async_p;
5801 t->to_supports_non_stop = linux_nat_supports_non_stop;
5802 t->to_async = linux_nat_async;
5803 t->to_async_mask = linux_nat_async_mask;
5804 t->to_terminal_inferior = linux_nat_terminal_inferior;
5805 t->to_terminal_ours = linux_nat_terminal_ours;
5806 t->to_close = linux_nat_close;
5807
5808 /* Methods for non-stop support. */
5809 t->to_stop = linux_nat_stop;
5810
5811 t->to_supports_multi_process = linux_nat_supports_multi_process;
5812
5813 t->to_core_of_thread = linux_nat_core_of_thread;
5814
5815 /* We don't change the stratum; this target will sit at
5816 process_stratum and thread_db will set at thread_stratum. This
5817 is a little strange, since this is a multi-threaded-capable
5818 target, but we want to be on the stack below thread_db, and we
5819 also want to be used for single-threaded processes. */
5820
5821 add_target (t);
5822 }
5823
5824 /* Register a method to call whenever a new thread is attached. */
5825 void
5826 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5827 {
5828 /* Save the pointer. We only support a single registered instance
5829 of the GNU/Linux native target, so we do not need to map this to
5830 T. */
5831 linux_nat_new_thread = new_thread;
5832 }
5833
5834 /* Register a method that converts a siginfo object between the layout
5835 that ptrace returns, and the layout in the architecture of the
5836 inferior. */
5837 void
5838 linux_nat_set_siginfo_fixup (struct target_ops *t,
5839 int (*siginfo_fixup) (struct siginfo *,
5840 gdb_byte *,
5841 int))
5842 {
5843 /* Save the pointer. */
5844 linux_nat_siginfo_fixup = siginfo_fixup;
5845 }
5846
5847 /* Return the saved siginfo associated with PTID. */
5848 struct siginfo *
5849 linux_nat_get_siginfo (ptid_t ptid)
5850 {
5851 struct lwp_info *lp = find_lwp_pid (ptid);
5852
5853 gdb_assert (lp != NULL);
5854
5855 return &lp->siginfo;
5856 }
5857
5858 /* Provide a prototype to silence -Wmissing-prototypes. */
5859 extern initialize_file_ftype _initialize_linux_nat;
5860
5861 void
5862 _initialize_linux_nat (void)
5863 {
5864 add_info ("proc", linux_nat_info_proc_cmd, _("\
5865 Show /proc process information about any running process.\n\
5866 Specify any process id, or use the program being debugged by default.\n\
5867 Specify any of the following keywords for detailed info:\n\
5868 mappings -- list of mapped memory regions.\n\
5869 stat -- list a bunch of random process info.\n\
5870 status -- list a different bunch of random process info.\n\
5871 all -- list all available /proc info."));
5872
5873 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5874 &debug_linux_nat, _("\
5875 Set debugging of GNU/Linux lwp module."), _("\
5876 Show debugging of GNU/Linux lwp module."), _("\
5877 Enables printf debugging output."),
5878 NULL,
5879 show_debug_linux_nat,
5880 &setdebuglist, &showdebuglist);
5881
5882 /* Save this mask as the default. */
5883 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5884
5885 /* Install a SIGCHLD handler. */
5886 sigchld_action.sa_handler = sigchld_handler;
5887 sigemptyset (&sigchld_action.sa_mask);
5888 sigchld_action.sa_flags = SA_RESTART;
5889
5890 /* Make it the default. */
5891 sigaction (SIGCHLD, &sigchld_action, NULL);
5892
5893 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5894 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5895 sigdelset (&suspend_mask, SIGCHLD);
5896
5897 sigemptyset (&blocked_mask);
5898
5899 add_setshow_boolean_cmd ("disable-randomization", class_support,
5900 &disable_randomization, _("\
5901 Set disabling of debuggee's virtual address space randomization."), _("\
5902 Show disabling of debuggee's virtual address space randomization."), _("\
5903 When this mode is on (which is the default), randomization of the virtual\n\
5904 address space is disabled. Standalone programs run with the randomization\n\
5905 enabled by default on some platforms."),
5906 &set_disable_randomization,
5907 &show_disable_randomization,
5908 &setlist, &showlist);
5909 }
5910 \f
5911
5912 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5913 the GNU/Linux Threads library and therefore doesn't really belong
5914 here. */
5915
5916 /* Read variable NAME in the target and return its value if found.
5917 Otherwise return zero. It is assumed that the type of the variable
5918 is `int'. */
5919
5920 static int
5921 get_signo (const char *name)
5922 {
5923 struct minimal_symbol *ms;
5924 int signo;
5925
5926 ms = lookup_minimal_symbol (name, NULL, NULL);
5927 if (ms == NULL)
5928 return 0;
5929
5930 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5931 sizeof (signo)) != 0)
5932 return 0;
5933
5934 return signo;
5935 }
5936
5937 /* Return the set of signals used by the threads library in *SET. */
5938
5939 void
5940 lin_thread_get_thread_signals (sigset_t *set)
5941 {
5942 struct sigaction action;
5943 int restart, cancel;
5944
5945 sigemptyset (&blocked_mask);
5946 sigemptyset (set);
5947
5948 restart = get_signo ("__pthread_sig_restart");
5949 cancel = get_signo ("__pthread_sig_cancel");
5950
5951 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5952 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5953 not provide any way for the debugger to query the signal numbers -
5954 fortunately they don't change! */
5955
5956 if (restart == 0)
5957 restart = __SIGRTMIN;
5958
5959 if (cancel == 0)
5960 cancel = __SIGRTMIN + 1;
5961
5962 sigaddset (set, restart);
5963 sigaddset (set, cancel);
5964
5965 /* The GNU/Linux Threads library makes terminating threads send a
5966 special "cancel" signal instead of SIGCHLD. Make sure we catch
5967 those (to prevent them from terminating GDB itself, which is
5968 likely to be their default action) and treat them the same way as
5969 SIGCHLD. */
5970
5971 action.sa_handler = sigchld_handler;
5972 sigemptyset (&action.sa_mask);
5973 action.sa_flags = SA_RESTART;
5974 sigaction (cancel, &action, NULL);
5975
5976 /* We block the "cancel" signal throughout this code ... */
5977 sigaddset (&blocked_mask, cancel);
5978 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5979
5980 /* ... except during a sigsuspend. */
5981 sigdelset (&suspend_mask, cancel);
5982 }
This page took 0.168553 seconds and 4 git commands to generate.