*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 struct simple_pid_list
274 {
275 int pid;
276 int status;
277 struct simple_pid_list *next;
278 };
279 struct simple_pid_list *stopped_pids;
280
281 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
283
284 static int linux_supports_tracefork_flag = -1;
285
286 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
288
289 static int linux_supports_tracesysgood_flag = -1;
290
291 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
293
294 static int linux_supports_tracevforkdone_flag = -1;
295
296 /* Async mode support */
297
298 /* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300 static int linux_nat_async_mask_value = 1;
301
302 /* Stores the current used ptrace() options. */
303 static int current_ptrace_options = 0;
304
305 /* The read/write ends of the pipe registered as waitable file in the
306 event loop. */
307 static int linux_nat_event_pipe[2] = { -1, -1 };
308
309 /* Flush the event pipe. */
310
311 static void
312 async_file_flush (void)
313 {
314 int ret;
315 char buf;
316
317 do
318 {
319 ret = read (linux_nat_event_pipe[0], &buf, 1);
320 }
321 while (ret >= 0 || (ret == -1 && errno == EINTR));
322 }
323
324 /* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
327
328 static void
329 async_file_mark (void)
330 {
331 int ret;
332
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
335 left-overs. */
336 async_file_flush ();
337
338 do
339 {
340 ret = write (linux_nat_event_pipe[1], "+", 1);
341 }
342 while (ret == -1 && errno == EINTR);
343
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
346 }
347
348 static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
350 void *context);
351 static int linux_nat_async_mask (int mask);
352 static int kill_lwp (int lwpid, int signo);
353
354 static int stop_callback (struct lwp_info *lp, void *data);
355
356 static void block_child_signals (sigset_t *prev_mask);
357 static void restore_child_signals_mask (sigset_t *prev_mask);
358
359 struct lwp_info;
360 static struct lwp_info *add_lwp (ptid_t ptid);
361 static void purge_lwp_list (int pid);
362 static struct lwp_info *find_lwp_pid (ptid_t ptid);
363
364 \f
365 /* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
367 static void
368 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
369 {
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
371
372 new_pid->pid = pid;
373 new_pid->status = status;
374 new_pid->next = *listp;
375 *listp = new_pid;
376 }
377
378 static int
379 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
380 {
381 struct simple_pid_list **p;
382
383 for (p = listp; *p != NULL; p = &(*p)->next)
384 if ((*p)->pid == pid)
385 {
386 struct simple_pid_list *next = (*p)->next;
387
388 *status = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 ptrace (PTRACE_TRACEME, 0, 0, 0);
409 kill (getpid (), SIGSTOP);
410 fork ();
411 _exit (0);
412 }
413
414 /* Wrapper function for waitpid which handles EINTR. */
415
416 static int
417 my_waitpid (int pid, int *status, int flags)
418 {
419 int ret;
420
421 do
422 {
423 ret = waitpid (pid, status, flags);
424 }
425 while (ret == -1 && errno == EINTR);
426
427 return ret;
428 }
429
430 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
431
432 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
433 we know that the feature is not available. This may change the tracing
434 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
435
436 However, if it succeeds, we don't know for sure that the feature is
437 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
438 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
439 fork tracing, and let it fork. If the process exits, we assume that we
440 can't use TRACEFORK; if we get the fork notification, and we can extract
441 the new child's PID, then we assume that we can. */
442
443 static void
444 linux_test_for_tracefork (int original_pid)
445 {
446 int child_pid, ret, status;
447 long second_pid;
448 sigset_t prev_mask;
449
450 /* We don't want those ptrace calls to be interrupted. */
451 block_child_signals (&prev_mask);
452
453 linux_supports_tracefork_flag = 0;
454 linux_supports_tracevforkdone_flag = 0;
455
456 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
457 if (ret != 0)
458 {
459 restore_child_signals_mask (&prev_mask);
460 return;
461 }
462
463 child_pid = fork ();
464 if (child_pid == -1)
465 perror_with_name (("fork"));
466
467 if (child_pid == 0)
468 linux_tracefork_child ();
469
470 ret = my_waitpid (child_pid, &status, 0);
471 if (ret == -1)
472 perror_with_name (("waitpid"));
473 else if (ret != child_pid)
474 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
475 if (! WIFSTOPPED (status))
476 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
477
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
479 if (ret != 0)
480 {
481 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
482 if (ret != 0)
483 {
484 warning (_("linux_test_for_tracefork: failed to kill child"));
485 restore_child_signals_mask (&prev_mask);
486 return;
487 }
488
489 ret = my_waitpid (child_pid, &status, 0);
490 if (ret != child_pid)
491 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
492 else if (!WIFSIGNALED (status))
493 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
494 "killed child"), status);
495
496 restore_child_signals_mask (&prev_mask);
497 return;
498 }
499
500 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
501 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
502 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
503 linux_supports_tracevforkdone_flag = (ret == 0);
504
505 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
506 if (ret != 0)
507 warning (_("linux_test_for_tracefork: failed to resume child"));
508
509 ret = my_waitpid (child_pid, &status, 0);
510
511 if (ret == child_pid && WIFSTOPPED (status)
512 && status >> 16 == PTRACE_EVENT_FORK)
513 {
514 second_pid = 0;
515 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
516 if (ret == 0 && second_pid != 0)
517 {
518 int second_status;
519
520 linux_supports_tracefork_flag = 1;
521 my_waitpid (second_pid, &second_status, 0);
522 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
523 if (ret != 0)
524 warning (_("linux_test_for_tracefork: failed to kill second child"));
525 my_waitpid (second_pid, &status, 0);
526 }
527 }
528 else
529 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
530 "(%d, status 0x%x)"), ret, status);
531
532 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
533 if (ret != 0)
534 warning (_("linux_test_for_tracefork: failed to kill child"));
535 my_waitpid (child_pid, &status, 0);
536
537 restore_child_signals_mask (&prev_mask);
538 }
539
540 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
541
542 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
543 we know that the feature is not available. This may change the tracing
544 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
545
546 static void
547 linux_test_for_tracesysgood (int original_pid)
548 {
549 int ret;
550 sigset_t prev_mask;
551
552 /* We don't want those ptrace calls to be interrupted. */
553 block_child_signals (&prev_mask);
554
555 linux_supports_tracesysgood_flag = 0;
556
557 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
558 if (ret != 0)
559 goto out;
560
561 linux_supports_tracesysgood_flag = 1;
562 out:
563 restore_child_signals_mask (&prev_mask);
564 }
565
566 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
567 This function also sets linux_supports_tracesysgood_flag. */
568
569 static int
570 linux_supports_tracesysgood (int pid)
571 {
572 if (linux_supports_tracesysgood_flag == -1)
573 linux_test_for_tracesysgood (pid);
574 return linux_supports_tracesysgood_flag;
575 }
576
577 /* Return non-zero iff we have tracefork functionality available.
578 This function also sets linux_supports_tracefork_flag. */
579
580 static int
581 linux_supports_tracefork (int pid)
582 {
583 if (linux_supports_tracefork_flag == -1)
584 linux_test_for_tracefork (pid);
585 return linux_supports_tracefork_flag;
586 }
587
588 static int
589 linux_supports_tracevforkdone (int pid)
590 {
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracevforkdone_flag;
594 }
595
596 static void
597 linux_enable_tracesysgood (ptid_t ptid)
598 {
599 int pid = ptid_get_lwp (ptid);
600
601 if (pid == 0)
602 pid = ptid_get_pid (ptid);
603
604 if (linux_supports_tracesysgood (pid) == 0)
605 return;
606
607 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
608
609 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
610 }
611
612 \f
613 void
614 linux_enable_event_reporting (ptid_t ptid)
615 {
616 int pid = ptid_get_lwp (ptid);
617
618 if (pid == 0)
619 pid = ptid_get_pid (ptid);
620
621 if (! linux_supports_tracefork (pid))
622 return;
623
624 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
625 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
626
627 if (linux_supports_tracevforkdone (pid))
628 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
629
630 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
631 read-only process state. */
632
633 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
634 }
635
636 static void
637 linux_child_post_attach (int pid)
638 {
639 linux_enable_event_reporting (pid_to_ptid (pid));
640 check_for_thread_db ();
641 linux_enable_tracesysgood (pid_to_ptid (pid));
642 }
643
644 static void
645 linux_child_post_startup_inferior (ptid_t ptid)
646 {
647 linux_enable_event_reporting (ptid);
648 check_for_thread_db ();
649 linux_enable_tracesysgood (ptid);
650 }
651
652 static int
653 linux_child_follow_fork (struct target_ops *ops, int follow_child)
654 {
655 sigset_t prev_mask;
656 int has_vforked;
657 int parent_pid, child_pid;
658
659 block_child_signals (&prev_mask);
660
661 has_vforked = (inferior_thread ()->pending_follow.kind
662 == TARGET_WAITKIND_VFORKED);
663 parent_pid = ptid_get_lwp (inferior_ptid);
664 if (parent_pid == 0)
665 parent_pid = ptid_get_pid (inferior_ptid);
666 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
667
668 if (!detach_fork)
669 linux_enable_event_reporting (pid_to_ptid (child_pid));
670
671 if (has_vforked
672 && !non_stop /* Non-stop always resumes both branches. */
673 && (!target_is_async_p () || sync_execution)
674 && !(follow_child || detach_fork || sched_multi))
675 {
676 /* The parent stays blocked inside the vfork syscall until the
677 child execs or exits. If we don't let the child run, then
678 the parent stays blocked. If we're telling the parent to run
679 in the foreground, the user will not be able to ctrl-c to get
680 back the terminal, effectively hanging the debug session. */
681 fprintf_filtered (gdb_stderr, _("\
682 Can not resume the parent process over vfork in the foreground while\n\
683 holding the child stopped. Try \"set detach-on-fork\" or \
684 \"set schedule-multiple\".\n"));
685 return 1;
686 }
687
688 if (! follow_child)
689 {
690 struct lwp_info *child_lp = NULL;
691
692 /* We're already attached to the parent, by default. */
693
694 /* Detach new forked process? */
695 if (detach_fork)
696 {
697 /* Before detaching from the child, remove all breakpoints
698 from it. If we forked, then this has already been taken
699 care of by infrun.c. If we vforked however, any
700 breakpoint inserted in the parent is visible in the
701 child, even those added while stopped in a vfork
702 catchpoint. This will remove the breakpoints from the
703 parent also, but they'll be reinserted below. */
704 if (has_vforked)
705 {
706 /* keep breakpoints list in sync. */
707 remove_breakpoints_pid (GET_PID (inferior_ptid));
708 }
709
710 if (info_verbose || debug_linux_nat)
711 {
712 target_terminal_ours ();
713 fprintf_filtered (gdb_stdlog,
714 "Detaching after fork from child process %d.\n",
715 child_pid);
716 }
717
718 ptrace (PTRACE_DETACH, child_pid, 0, 0);
719 }
720 else
721 {
722 struct inferior *parent_inf, *child_inf;
723 struct cleanup *old_chain;
724
725 /* Add process to GDB's tables. */
726 child_inf = add_inferior (child_pid);
727
728 parent_inf = current_inferior ();
729 child_inf->attach_flag = parent_inf->attach_flag;
730 copy_terminal_info (child_inf, parent_inf);
731
732 old_chain = save_inferior_ptid ();
733 save_current_program_space ();
734
735 inferior_ptid = ptid_build (child_pid, child_pid, 0);
736 add_thread (inferior_ptid);
737 child_lp = add_lwp (inferior_ptid);
738 child_lp->stopped = 1;
739 child_lp->resumed = 1;
740
741 /* If this is a vfork child, then the address-space is
742 shared with the parent. */
743 if (has_vforked)
744 {
745 child_inf->pspace = parent_inf->pspace;
746 child_inf->aspace = parent_inf->aspace;
747
748 /* The parent will be frozen until the child is done
749 with the shared region. Keep track of the
750 parent. */
751 child_inf->vfork_parent = parent_inf;
752 child_inf->pending_detach = 0;
753 parent_inf->vfork_child = child_inf;
754 parent_inf->pending_detach = 0;
755 }
756 else
757 {
758 child_inf->aspace = new_address_space ();
759 child_inf->pspace = add_program_space (child_inf->aspace);
760 child_inf->removable = 1;
761 set_current_program_space (child_inf->pspace);
762 clone_program_space (child_inf->pspace, parent_inf->pspace);
763
764 /* Let the shared library layer (solib-svr4) learn about
765 this new process, relocate the cloned exec, pull in
766 shared libraries, and install the solib event
767 breakpoint. If a "cloned-VM" event was propagated
768 better throughout the core, this wouldn't be
769 required. */
770 solib_create_inferior_hook (0);
771 }
772
773 /* Let the thread_db layer learn about this new process. */
774 check_for_thread_db ();
775
776 do_cleanups (old_chain);
777 }
778
779 if (has_vforked)
780 {
781 struct lwp_info *lp;
782 struct inferior *parent_inf;
783
784 parent_inf = current_inferior ();
785
786 /* If we detached from the child, then we have to be careful
787 to not insert breakpoints in the parent until the child
788 is done with the shared memory region. However, if we're
789 staying attached to the child, then we can and should
790 insert breakpoints, so that we can debug it. A
791 subsequent child exec or exit is enough to know when does
792 the child stops using the parent's address space. */
793 parent_inf->waiting_for_vfork_done = detach_fork;
794 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
795
796 lp = find_lwp_pid (pid_to_ptid (parent_pid));
797 gdb_assert (linux_supports_tracefork_flag >= 0);
798 if (linux_supports_tracevforkdone (0))
799 {
800 if (debug_linux_nat)
801 fprintf_unfiltered (gdb_stdlog,
802 "LCFF: waiting for VFORK_DONE on %d\n",
803 parent_pid);
804
805 lp->stopped = 1;
806 lp->resumed = 1;
807
808 /* We'll handle the VFORK_DONE event like any other
809 event, in target_wait. */
810 }
811 else
812 {
813 /* We can't insert breakpoints until the child has
814 finished with the shared memory region. We need to
815 wait until that happens. Ideal would be to just
816 call:
817 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
818 - waitpid (parent_pid, &status, __WALL);
819 However, most architectures can't handle a syscall
820 being traced on the way out if it wasn't traced on
821 the way in.
822
823 We might also think to loop, continuing the child
824 until it exits or gets a SIGTRAP. One problem is
825 that the child might call ptrace with PTRACE_TRACEME.
826
827 There's no simple and reliable way to figure out when
828 the vforked child will be done with its copy of the
829 shared memory. We could step it out of the syscall,
830 two instructions, let it go, and then single-step the
831 parent once. When we have hardware single-step, this
832 would work; with software single-step it could still
833 be made to work but we'd have to be able to insert
834 single-step breakpoints in the child, and we'd have
835 to insert -just- the single-step breakpoint in the
836 parent. Very awkward.
837
838 In the end, the best we can do is to make sure it
839 runs for a little while. Hopefully it will be out of
840 range of any breakpoints we reinsert. Usually this
841 is only the single-step breakpoint at vfork's return
842 point. */
843
844 if (debug_linux_nat)
845 fprintf_unfiltered (gdb_stdlog,
846 "LCFF: no VFORK_DONE support, sleeping a bit\n");
847
848 usleep (10000);
849
850 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
851 and leave it pending. The next linux_nat_resume call
852 will notice a pending event, and bypasses actually
853 resuming the inferior. */
854 lp->status = 0;
855 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
856 lp->stopped = 0;
857 lp->resumed = 1;
858
859 /* If we're in async mode, need to tell the event loop
860 there's something here to process. */
861 if (target_can_async_p ())
862 async_file_mark ();
863 }
864 }
865 }
866 else
867 {
868 struct inferior *parent_inf, *child_inf;
869 struct lwp_info *lp;
870 struct program_space *parent_pspace;
871
872 if (info_verbose || debug_linux_nat)
873 {
874 target_terminal_ours ();
875 if (has_vforked)
876 fprintf_filtered (gdb_stdlog, _("\
877 Attaching after process %d vfork to child process %d.\n"),
878 parent_pid, child_pid);
879 else
880 fprintf_filtered (gdb_stdlog, _("\
881 Attaching after process %d fork to child process %d.\n"),
882 parent_pid, child_pid);
883 }
884
885 /* Add the new inferior first, so that the target_detach below
886 doesn't unpush the target. */
887
888 child_inf = add_inferior (child_pid);
889
890 parent_inf = current_inferior ();
891 child_inf->attach_flag = parent_inf->attach_flag;
892 copy_terminal_info (child_inf, parent_inf);
893
894 parent_pspace = parent_inf->pspace;
895
896 /* If we're vforking, we want to hold on to the parent until the
897 child exits or execs. At child exec or exit time we can
898 remove the old breakpoints from the parent and detach or
899 resume debugging it. Otherwise, detach the parent now; we'll
900 want to reuse it's program/address spaces, but we can't set
901 them to the child before removing breakpoints from the
902 parent, otherwise, the breakpoints module could decide to
903 remove breakpoints from the wrong process (since they'd be
904 assigned to the same address space). */
905
906 if (has_vforked)
907 {
908 gdb_assert (child_inf->vfork_parent == NULL);
909 gdb_assert (parent_inf->vfork_child == NULL);
910 child_inf->vfork_parent = parent_inf;
911 child_inf->pending_detach = 0;
912 parent_inf->vfork_child = child_inf;
913 parent_inf->pending_detach = detach_fork;
914 parent_inf->waiting_for_vfork_done = 0;
915 }
916 else if (detach_fork)
917 target_detach (NULL, 0);
918
919 /* Note that the detach above makes PARENT_INF dangling. */
920
921 /* Add the child thread to the appropriate lists, and switch to
922 this new thread, before cloning the program space, and
923 informing the solib layer about this new process. */
924
925 inferior_ptid = ptid_build (child_pid, child_pid, 0);
926 add_thread (inferior_ptid);
927 lp = add_lwp (inferior_ptid);
928 lp->stopped = 1;
929 lp->resumed = 1;
930
931 /* If this is a vfork child, then the address-space is shared
932 with the parent. If we detached from the parent, then we can
933 reuse the parent's program/address spaces. */
934 if (has_vforked || detach_fork)
935 {
936 child_inf->pspace = parent_pspace;
937 child_inf->aspace = child_inf->pspace->aspace;
938 }
939 else
940 {
941 child_inf->aspace = new_address_space ();
942 child_inf->pspace = add_program_space (child_inf->aspace);
943 child_inf->removable = 1;
944 set_current_program_space (child_inf->pspace);
945 clone_program_space (child_inf->pspace, parent_pspace);
946
947 /* Let the shared library layer (solib-svr4) learn about
948 this new process, relocate the cloned exec, pull in
949 shared libraries, and install the solib event breakpoint.
950 If a "cloned-VM" event was propagated better throughout
951 the core, this wouldn't be required. */
952 solib_create_inferior_hook (0);
953 }
954
955 /* Let the thread_db layer learn about this new process. */
956 check_for_thread_db ();
957 }
958
959 restore_child_signals_mask (&prev_mask);
960 return 0;
961 }
962
963 \f
964 static void
965 linux_child_insert_fork_catchpoint (int pid)
966 {
967 if (! linux_supports_tracefork (pid))
968 error (_("Your system does not support fork catchpoints."));
969 }
970
971 static void
972 linux_child_insert_vfork_catchpoint (int pid)
973 {
974 if (!linux_supports_tracefork (pid))
975 error (_("Your system does not support vfork catchpoints."));
976 }
977
978 static void
979 linux_child_insert_exec_catchpoint (int pid)
980 {
981 if (!linux_supports_tracefork (pid))
982 error (_("Your system does not support exec catchpoints."));
983 }
984
985 static int
986 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
987 int table_size, int *table)
988 {
989 if (! linux_supports_tracesysgood (pid))
990 error (_("Your system does not support syscall catchpoints."));
991 /* On GNU/Linux, we ignore the arguments. It means that we only
992 enable the syscall catchpoints, but do not disable them.
993
994 Also, we do not use the `table' information because we do not
995 filter system calls here. We let GDB do the logic for us. */
996 return 0;
997 }
998
999 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1000 are processes sharing the same VM space. A multi-threaded process
1001 is basically a group of such processes. However, such a grouping
1002 is almost entirely a user-space issue; the kernel doesn't enforce
1003 such a grouping at all (this might change in the future). In
1004 general, we'll rely on the threads library (i.e. the GNU/Linux
1005 Threads library) to provide such a grouping.
1006
1007 It is perfectly well possible to write a multi-threaded application
1008 without the assistance of a threads library, by using the clone
1009 system call directly. This module should be able to give some
1010 rudimentary support for debugging such applications if developers
1011 specify the CLONE_PTRACE flag in the clone system call, and are
1012 using the Linux kernel 2.4 or above.
1013
1014 Note that there are some peculiarities in GNU/Linux that affect
1015 this code:
1016
1017 - In general one should specify the __WCLONE flag to waitpid in
1018 order to make it report events for any of the cloned processes
1019 (and leave it out for the initial process). However, if a cloned
1020 process has exited the exit status is only reported if the
1021 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1022 we cannot use it since GDB must work on older systems too.
1023
1024 - When a traced, cloned process exits and is waited for by the
1025 debugger, the kernel reassigns it to the original parent and
1026 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1027 library doesn't notice this, which leads to the "zombie problem":
1028 When debugged a multi-threaded process that spawns a lot of
1029 threads will run out of processes, even if the threads exit,
1030 because the "zombies" stay around. */
1031
1032 /* List of known LWPs. */
1033 struct lwp_info *lwp_list;
1034 \f
1035
1036 /* Original signal mask. */
1037 static sigset_t normal_mask;
1038
1039 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1040 _initialize_linux_nat. */
1041 static sigset_t suspend_mask;
1042
1043 /* Signals to block to make that sigsuspend work. */
1044 static sigset_t blocked_mask;
1045
1046 /* SIGCHLD action. */
1047 struct sigaction sigchld_action;
1048
1049 /* Block child signals (SIGCHLD and linux threads signals), and store
1050 the previous mask in PREV_MASK. */
1051
1052 static void
1053 block_child_signals (sigset_t *prev_mask)
1054 {
1055 /* Make sure SIGCHLD is blocked. */
1056 if (!sigismember (&blocked_mask, SIGCHLD))
1057 sigaddset (&blocked_mask, SIGCHLD);
1058
1059 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1060 }
1061
1062 /* Restore child signals mask, previously returned by
1063 block_child_signals. */
1064
1065 static void
1066 restore_child_signals_mask (sigset_t *prev_mask)
1067 {
1068 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1069 }
1070 \f
1071
1072 /* Prototypes for local functions. */
1073 static int stop_wait_callback (struct lwp_info *lp, void *data);
1074 static int linux_thread_alive (ptid_t ptid);
1075 static char *linux_child_pid_to_exec_file (int pid);
1076 static int cancel_breakpoint (struct lwp_info *lp);
1077
1078 \f
1079 /* Convert wait status STATUS to a string. Used for printing debug
1080 messages only. */
1081
1082 static char *
1083 status_to_str (int status)
1084 {
1085 static char buf[64];
1086
1087 if (WIFSTOPPED (status))
1088 {
1089 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1090 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1091 strsignal (SIGTRAP));
1092 else
1093 snprintf (buf, sizeof (buf), "%s (stopped)",
1094 strsignal (WSTOPSIG (status)));
1095 }
1096 else if (WIFSIGNALED (status))
1097 snprintf (buf, sizeof (buf), "%s (terminated)",
1098 strsignal (WSTOPSIG (status)));
1099 else
1100 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1101
1102 return buf;
1103 }
1104
1105 /* Remove all LWPs belong to PID from the lwp list. */
1106
1107 static void
1108 purge_lwp_list (int pid)
1109 {
1110 struct lwp_info *lp, *lpprev, *lpnext;
1111
1112 lpprev = NULL;
1113
1114 for (lp = lwp_list; lp; lp = lpnext)
1115 {
1116 lpnext = lp->next;
1117
1118 if (ptid_get_pid (lp->ptid) == pid)
1119 {
1120 if (lp == lwp_list)
1121 lwp_list = lp->next;
1122 else
1123 lpprev->next = lp->next;
1124
1125 xfree (lp);
1126 }
1127 else
1128 lpprev = lp;
1129 }
1130 }
1131
1132 /* Return the number of known LWPs in the tgid given by PID. */
1133
1134 static int
1135 num_lwps (int pid)
1136 {
1137 int count = 0;
1138 struct lwp_info *lp;
1139
1140 for (lp = lwp_list; lp; lp = lp->next)
1141 if (ptid_get_pid (lp->ptid) == pid)
1142 count++;
1143
1144 return count;
1145 }
1146
1147 /* Add the LWP specified by PID to the list. Return a pointer to the
1148 structure describing the new LWP. The LWP should already be stopped
1149 (with an exception for the very first LWP). */
1150
1151 static struct lwp_info *
1152 add_lwp (ptid_t ptid)
1153 {
1154 struct lwp_info *lp;
1155
1156 gdb_assert (is_lwp (ptid));
1157
1158 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1159
1160 memset (lp, 0, sizeof (struct lwp_info));
1161
1162 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1163
1164 lp->ptid = ptid;
1165 lp->core = -1;
1166
1167 lp->next = lwp_list;
1168 lwp_list = lp;
1169
1170 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1171 linux_nat_new_thread (ptid);
1172
1173 return lp;
1174 }
1175
1176 /* Remove the LWP specified by PID from the list. */
1177
1178 static void
1179 delete_lwp (ptid_t ptid)
1180 {
1181 struct lwp_info *lp, *lpprev;
1182
1183 lpprev = NULL;
1184
1185 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1186 if (ptid_equal (lp->ptid, ptid))
1187 break;
1188
1189 if (!lp)
1190 return;
1191
1192 if (lpprev)
1193 lpprev->next = lp->next;
1194 else
1195 lwp_list = lp->next;
1196
1197 xfree (lp);
1198 }
1199
1200 /* Return a pointer to the structure describing the LWP corresponding
1201 to PID. If no corresponding LWP could be found, return NULL. */
1202
1203 static struct lwp_info *
1204 find_lwp_pid (ptid_t ptid)
1205 {
1206 struct lwp_info *lp;
1207 int lwp;
1208
1209 if (is_lwp (ptid))
1210 lwp = GET_LWP (ptid);
1211 else
1212 lwp = GET_PID (ptid);
1213
1214 for (lp = lwp_list; lp; lp = lp->next)
1215 if (lwp == GET_LWP (lp->ptid))
1216 return lp;
1217
1218 return NULL;
1219 }
1220
1221 /* Call CALLBACK with its second argument set to DATA for every LWP in
1222 the list. If CALLBACK returns 1 for a particular LWP, return a
1223 pointer to the structure describing that LWP immediately.
1224 Otherwise return NULL. */
1225
1226 struct lwp_info *
1227 iterate_over_lwps (ptid_t filter,
1228 int (*callback) (struct lwp_info *, void *),
1229 void *data)
1230 {
1231 struct lwp_info *lp, *lpnext;
1232
1233 for (lp = lwp_list; lp; lp = lpnext)
1234 {
1235 lpnext = lp->next;
1236
1237 if (ptid_match (lp->ptid, filter))
1238 {
1239 if ((*callback) (lp, data))
1240 return lp;
1241 }
1242 }
1243
1244 return NULL;
1245 }
1246
1247 /* Update our internal state when changing from one checkpoint to
1248 another indicated by NEW_PTID. We can only switch single-threaded
1249 applications, so we only create one new LWP, and the previous list
1250 is discarded. */
1251
1252 void
1253 linux_nat_switch_fork (ptid_t new_ptid)
1254 {
1255 struct lwp_info *lp;
1256
1257 purge_lwp_list (GET_PID (inferior_ptid));
1258
1259 lp = add_lwp (new_ptid);
1260 lp->stopped = 1;
1261
1262 /* This changes the thread's ptid while preserving the gdb thread
1263 num. Also changes the inferior pid, while preserving the
1264 inferior num. */
1265 thread_change_ptid (inferior_ptid, new_ptid);
1266
1267 /* We've just told GDB core that the thread changed target id, but,
1268 in fact, it really is a different thread, with different register
1269 contents. */
1270 registers_changed ();
1271 }
1272
1273 /* Handle the exit of a single thread LP. */
1274
1275 static void
1276 exit_lwp (struct lwp_info *lp)
1277 {
1278 struct thread_info *th = find_thread_ptid (lp->ptid);
1279
1280 if (th)
1281 {
1282 if (print_thread_events)
1283 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1284
1285 delete_thread (lp->ptid);
1286 }
1287
1288 delete_lwp (lp->ptid);
1289 }
1290
1291 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1292
1293 int
1294 linux_proc_get_tgid (int lwpid)
1295 {
1296 FILE *status_file;
1297 char buf[100];
1298 int tgid = -1;
1299
1300 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1301 status_file = fopen (buf, "r");
1302 if (status_file != NULL)
1303 {
1304 while (fgets (buf, sizeof (buf), status_file))
1305 {
1306 if (strncmp (buf, "Tgid:", 5) == 0)
1307 {
1308 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1309 break;
1310 }
1311 }
1312
1313 fclose (status_file);
1314 }
1315
1316 return tgid;
1317 }
1318
1319 /* Detect `T (stopped)' in `/proc/PID/status'.
1320 Other states including `T (tracing stop)' are reported as false. */
1321
1322 static int
1323 pid_is_stopped (pid_t pid)
1324 {
1325 FILE *status_file;
1326 char buf[100];
1327 int retval = 0;
1328
1329 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1330 status_file = fopen (buf, "r");
1331 if (status_file != NULL)
1332 {
1333 int have_state = 0;
1334
1335 while (fgets (buf, sizeof (buf), status_file))
1336 {
1337 if (strncmp (buf, "State:", 6) == 0)
1338 {
1339 have_state = 1;
1340 break;
1341 }
1342 }
1343 if (have_state && strstr (buf, "T (stopped)") != NULL)
1344 retval = 1;
1345 fclose (status_file);
1346 }
1347 return retval;
1348 }
1349
1350 /* Wait for the LWP specified by LP, which we have just attached to.
1351 Returns a wait status for that LWP, to cache. */
1352
1353 static int
1354 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1355 int *signalled)
1356 {
1357 pid_t new_pid, pid = GET_LWP (ptid);
1358 int status;
1359
1360 if (pid_is_stopped (pid))
1361 {
1362 if (debug_linux_nat)
1363 fprintf_unfiltered (gdb_stdlog,
1364 "LNPAW: Attaching to a stopped process\n");
1365
1366 /* The process is definitely stopped. It is in a job control
1367 stop, unless the kernel predates the TASK_STOPPED /
1368 TASK_TRACED distinction, in which case it might be in a
1369 ptrace stop. Make sure it is in a ptrace stop; from there we
1370 can kill it, signal it, et cetera.
1371
1372 First make sure there is a pending SIGSTOP. Since we are
1373 already attached, the process can not transition from stopped
1374 to running without a PTRACE_CONT; so we know this signal will
1375 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1376 probably already in the queue (unless this kernel is old
1377 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1378 is not an RT signal, it can only be queued once. */
1379 kill_lwp (pid, SIGSTOP);
1380
1381 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1382 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1383 ptrace (PTRACE_CONT, pid, 0, 0);
1384 }
1385
1386 /* Make sure the initial process is stopped. The user-level threads
1387 layer might want to poke around in the inferior, and that won't
1388 work if things haven't stabilized yet. */
1389 new_pid = my_waitpid (pid, &status, 0);
1390 if (new_pid == -1 && errno == ECHILD)
1391 {
1392 if (first)
1393 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1394
1395 /* Try again with __WCLONE to check cloned processes. */
1396 new_pid = my_waitpid (pid, &status, __WCLONE);
1397 *cloned = 1;
1398 }
1399
1400 gdb_assert (pid == new_pid);
1401
1402 if (!WIFSTOPPED (status))
1403 {
1404 /* The pid we tried to attach has apparently just exited. */
1405 if (debug_linux_nat)
1406 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1407 pid, status_to_str (status));
1408 return status;
1409 }
1410
1411 if (WSTOPSIG (status) != SIGSTOP)
1412 {
1413 *signalled = 1;
1414 if (debug_linux_nat)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "LNPAW: Received %s after attaching\n",
1417 status_to_str (status));
1418 }
1419
1420 return status;
1421 }
1422
1423 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1424 if the new LWP could not be attached. */
1425
1426 int
1427 lin_lwp_attach_lwp (ptid_t ptid)
1428 {
1429 struct lwp_info *lp;
1430 sigset_t prev_mask;
1431
1432 gdb_assert (is_lwp (ptid));
1433
1434 block_child_signals (&prev_mask);
1435
1436 lp = find_lwp_pid (ptid);
1437
1438 /* We assume that we're already attached to any LWP that has an id
1439 equal to the overall process id, and to any LWP that is already
1440 in our list of LWPs. If we're not seeing exit events from threads
1441 and we've had PID wraparound since we last tried to stop all threads,
1442 this assumption might be wrong; fortunately, this is very unlikely
1443 to happen. */
1444 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1445 {
1446 int status, cloned = 0, signalled = 0;
1447
1448 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1449 {
1450 /* If we fail to attach to the thread, issue a warning,
1451 but continue. One way this can happen is if thread
1452 creation is interrupted; as of Linux kernel 2.6.19, a
1453 bug may place threads in the thread list and then fail
1454 to create them. */
1455 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1456 safe_strerror (errno));
1457 restore_child_signals_mask (&prev_mask);
1458 return -1;
1459 }
1460
1461 if (debug_linux_nat)
1462 fprintf_unfiltered (gdb_stdlog,
1463 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1464 target_pid_to_str (ptid));
1465
1466 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1467 if (!WIFSTOPPED (status))
1468 return -1;
1469
1470 lp = add_lwp (ptid);
1471 lp->stopped = 1;
1472 lp->cloned = cloned;
1473 lp->signalled = signalled;
1474 if (WSTOPSIG (status) != SIGSTOP)
1475 {
1476 lp->resumed = 1;
1477 lp->status = status;
1478 }
1479
1480 target_post_attach (GET_LWP (lp->ptid));
1481
1482 if (debug_linux_nat)
1483 {
1484 fprintf_unfiltered (gdb_stdlog,
1485 "LLAL: waitpid %s received %s\n",
1486 target_pid_to_str (ptid),
1487 status_to_str (status));
1488 }
1489 }
1490 else
1491 {
1492 /* We assume that the LWP representing the original process is
1493 already stopped. Mark it as stopped in the data structure
1494 that the GNU/linux ptrace layer uses to keep track of
1495 threads. Note that this won't have already been done since
1496 the main thread will have, we assume, been stopped by an
1497 attach from a different layer. */
1498 if (lp == NULL)
1499 lp = add_lwp (ptid);
1500 lp->stopped = 1;
1501 }
1502
1503 restore_child_signals_mask (&prev_mask);
1504 return 0;
1505 }
1506
1507 static void
1508 linux_nat_create_inferior (struct target_ops *ops,
1509 char *exec_file, char *allargs, char **env,
1510 int from_tty)
1511 {
1512 #ifdef HAVE_PERSONALITY
1513 int personality_orig = 0, personality_set = 0;
1514 #endif /* HAVE_PERSONALITY */
1515
1516 /* The fork_child mechanism is synchronous and calls target_wait, so
1517 we have to mask the async mode. */
1518
1519 #ifdef HAVE_PERSONALITY
1520 if (disable_randomization)
1521 {
1522 errno = 0;
1523 personality_orig = personality (0xffffffff);
1524 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1525 {
1526 personality_set = 1;
1527 personality (personality_orig | ADDR_NO_RANDOMIZE);
1528 }
1529 if (errno != 0 || (personality_set
1530 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1531 warning (_("Error disabling address space randomization: %s"),
1532 safe_strerror (errno));
1533 }
1534 #endif /* HAVE_PERSONALITY */
1535
1536 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1537
1538 #ifdef HAVE_PERSONALITY
1539 if (personality_set)
1540 {
1541 errno = 0;
1542 personality (personality_orig);
1543 if (errno != 0)
1544 warning (_("Error restoring address space randomization: %s"),
1545 safe_strerror (errno));
1546 }
1547 #endif /* HAVE_PERSONALITY */
1548 }
1549
1550 static void
1551 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1552 {
1553 struct lwp_info *lp;
1554 int status;
1555 ptid_t ptid;
1556
1557 linux_ops->to_attach (ops, args, from_tty);
1558
1559 /* The ptrace base target adds the main thread with (pid,0,0)
1560 format. Decorate it with lwp info. */
1561 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1562 thread_change_ptid (inferior_ptid, ptid);
1563
1564 /* Add the initial process as the first LWP to the list. */
1565 lp = add_lwp (ptid);
1566
1567 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1568 &lp->signalled);
1569 if (!WIFSTOPPED (status))
1570 {
1571 if (WIFEXITED (status))
1572 {
1573 int exit_code = WEXITSTATUS (status);
1574
1575 target_terminal_ours ();
1576 target_mourn_inferior ();
1577 if (exit_code == 0)
1578 error (_("Unable to attach: program exited normally."));
1579 else
1580 error (_("Unable to attach: program exited with code %d."),
1581 exit_code);
1582 }
1583 else if (WIFSIGNALED (status))
1584 {
1585 enum target_signal signo;
1586
1587 target_terminal_ours ();
1588 target_mourn_inferior ();
1589
1590 signo = target_signal_from_host (WTERMSIG (status));
1591 error (_("Unable to attach: program terminated with signal "
1592 "%s, %s."),
1593 target_signal_to_name (signo),
1594 target_signal_to_string (signo));
1595 }
1596
1597 internal_error (__FILE__, __LINE__,
1598 _("unexpected status %d for PID %ld"),
1599 status, (long) GET_LWP (ptid));
1600 }
1601
1602 lp->stopped = 1;
1603
1604 /* Save the wait status to report later. */
1605 lp->resumed = 1;
1606 if (debug_linux_nat)
1607 fprintf_unfiltered (gdb_stdlog,
1608 "LNA: waitpid %ld, saving status %s\n",
1609 (long) GET_PID (lp->ptid), status_to_str (status));
1610
1611 lp->status = status;
1612
1613 if (target_can_async_p ())
1614 target_async (inferior_event_handler, 0);
1615 }
1616
1617 /* Get pending status of LP. */
1618 static int
1619 get_pending_status (struct lwp_info *lp, int *status)
1620 {
1621 enum target_signal signo = TARGET_SIGNAL_0;
1622
1623 /* If we paused threads momentarily, we may have stored pending
1624 events in lp->status or lp->waitstatus (see stop_wait_callback),
1625 and GDB core hasn't seen any signal for those threads.
1626 Otherwise, the last signal reported to the core is found in the
1627 thread object's stop_signal.
1628
1629 There's a corner case that isn't handled here at present. Only
1630 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1631 stop_signal make sense as a real signal to pass to the inferior.
1632 Some catchpoint related events, like
1633 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1634 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1635 those traps are debug API (ptrace in our case) related and
1636 induced; the inferior wouldn't see them if it wasn't being
1637 traced. Hence, we should never pass them to the inferior, even
1638 when set to pass state. Since this corner case isn't handled by
1639 infrun.c when proceeding with a signal, for consistency, neither
1640 do we handle it here (or elsewhere in the file we check for
1641 signal pass state). Normally SIGTRAP isn't set to pass state, so
1642 this is really a corner case. */
1643
1644 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1645 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1646 else if (lp->status)
1647 signo = target_signal_from_host (WSTOPSIG (lp->status));
1648 else if (non_stop && !is_executing (lp->ptid))
1649 {
1650 struct thread_info *tp = find_thread_ptid (lp->ptid);
1651
1652 signo = tp->stop_signal;
1653 }
1654 else if (!non_stop)
1655 {
1656 struct target_waitstatus last;
1657 ptid_t last_ptid;
1658
1659 get_last_target_status (&last_ptid, &last);
1660
1661 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1662 {
1663 struct thread_info *tp = find_thread_ptid (lp->ptid);
1664
1665 signo = tp->stop_signal;
1666 }
1667 }
1668
1669 *status = 0;
1670
1671 if (signo == TARGET_SIGNAL_0)
1672 {
1673 if (debug_linux_nat)
1674 fprintf_unfiltered (gdb_stdlog,
1675 "GPT: lwp %s has no pending signal\n",
1676 target_pid_to_str (lp->ptid));
1677 }
1678 else if (!signal_pass_state (signo))
1679 {
1680 if (debug_linux_nat)
1681 fprintf_unfiltered (gdb_stdlog, "\
1682 GPT: lwp %s had signal %s, but it is in no pass state\n",
1683 target_pid_to_str (lp->ptid),
1684 target_signal_to_string (signo));
1685 }
1686 else
1687 {
1688 *status = W_STOPCODE (target_signal_to_host (signo));
1689
1690 if (debug_linux_nat)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "GPT: lwp %s has pending signal %s\n",
1693 target_pid_to_str (lp->ptid),
1694 target_signal_to_string (signo));
1695 }
1696
1697 return 0;
1698 }
1699
1700 static int
1701 detach_callback (struct lwp_info *lp, void *data)
1702 {
1703 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1704
1705 if (debug_linux_nat && lp->status)
1706 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1707 strsignal (WSTOPSIG (lp->status)),
1708 target_pid_to_str (lp->ptid));
1709
1710 /* If there is a pending SIGSTOP, get rid of it. */
1711 if (lp->signalled)
1712 {
1713 if (debug_linux_nat)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "DC: Sending SIGCONT to %s\n",
1716 target_pid_to_str (lp->ptid));
1717
1718 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1719 lp->signalled = 0;
1720 }
1721
1722 /* We don't actually detach from the LWP that has an id equal to the
1723 overall process id just yet. */
1724 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1725 {
1726 int status = 0;
1727
1728 /* Pass on any pending signal for this LWP. */
1729 get_pending_status (lp, &status);
1730
1731 errno = 0;
1732 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1733 WSTOPSIG (status)) < 0)
1734 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1735 safe_strerror (errno));
1736
1737 if (debug_linux_nat)
1738 fprintf_unfiltered (gdb_stdlog,
1739 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1740 target_pid_to_str (lp->ptid),
1741 strsignal (WSTOPSIG (status)));
1742
1743 delete_lwp (lp->ptid);
1744 }
1745
1746 return 0;
1747 }
1748
1749 static void
1750 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1751 {
1752 int pid;
1753 int status;
1754 struct lwp_info *main_lwp;
1755
1756 pid = GET_PID (inferior_ptid);
1757
1758 if (target_can_async_p ())
1759 linux_nat_async (NULL, 0);
1760
1761 /* Stop all threads before detaching. ptrace requires that the
1762 thread is stopped to sucessfully detach. */
1763 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1764 /* ... and wait until all of them have reported back that
1765 they're no longer running. */
1766 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1767
1768 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1769
1770 /* Only the initial process should be left right now. */
1771 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1772
1773 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1774
1775 /* Pass on any pending signal for the last LWP. */
1776 if ((args == NULL || *args == '\0')
1777 && get_pending_status (main_lwp, &status) != -1
1778 && WIFSTOPPED (status))
1779 {
1780 /* Put the signal number in ARGS so that inf_ptrace_detach will
1781 pass it along with PTRACE_DETACH. */
1782 args = alloca (8);
1783 sprintf (args, "%d", (int) WSTOPSIG (status));
1784 if (debug_linux_nat)
1785 fprintf_unfiltered (gdb_stdlog,
1786 "LND: Sending signal %s to %s\n",
1787 args,
1788 target_pid_to_str (main_lwp->ptid));
1789 }
1790
1791 delete_lwp (main_lwp->ptid);
1792
1793 if (forks_exist_p ())
1794 {
1795 /* Multi-fork case. The current inferior_ptid is being detached
1796 from, but there are other viable forks to debug. Detach from
1797 the current fork, and context-switch to the first
1798 available. */
1799 linux_fork_detach (args, from_tty);
1800
1801 if (non_stop && target_can_async_p ())
1802 target_async (inferior_event_handler, 0);
1803 }
1804 else
1805 linux_ops->to_detach (ops, args, from_tty);
1806 }
1807
1808 /* Resume LP. */
1809
1810 static int
1811 resume_callback (struct lwp_info *lp, void *data)
1812 {
1813 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1814
1815 if (lp->stopped && inf->vfork_child != NULL)
1816 {
1817 if (debug_linux_nat)
1818 fprintf_unfiltered (gdb_stdlog,
1819 "RC: Not resuming %s (vfork parent)\n",
1820 target_pid_to_str (lp->ptid));
1821 }
1822 else if (lp->stopped && lp->status == 0)
1823 {
1824 if (debug_linux_nat)
1825 fprintf_unfiltered (gdb_stdlog,
1826 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1827 target_pid_to_str (lp->ptid));
1828
1829 linux_ops->to_resume (linux_ops,
1830 pid_to_ptid (GET_LWP (lp->ptid)),
1831 0, TARGET_SIGNAL_0);
1832 if (debug_linux_nat)
1833 fprintf_unfiltered (gdb_stdlog,
1834 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1835 target_pid_to_str (lp->ptid));
1836 lp->stopped = 0;
1837 lp->step = 0;
1838 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1839 lp->stopped_by_watchpoint = 0;
1840 }
1841 else if (lp->stopped && debug_linux_nat)
1842 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1843 target_pid_to_str (lp->ptid));
1844 else if (debug_linux_nat)
1845 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1846 target_pid_to_str (lp->ptid));
1847
1848 return 0;
1849 }
1850
1851 static int
1852 resume_clear_callback (struct lwp_info *lp, void *data)
1853 {
1854 lp->resumed = 0;
1855 return 0;
1856 }
1857
1858 static int
1859 resume_set_callback (struct lwp_info *lp, void *data)
1860 {
1861 lp->resumed = 1;
1862 return 0;
1863 }
1864
1865 static void
1866 linux_nat_resume (struct target_ops *ops,
1867 ptid_t ptid, int step, enum target_signal signo)
1868 {
1869 sigset_t prev_mask;
1870 struct lwp_info *lp;
1871 int resume_many;
1872
1873 if (debug_linux_nat)
1874 fprintf_unfiltered (gdb_stdlog,
1875 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1876 step ? "step" : "resume",
1877 target_pid_to_str (ptid),
1878 signo ? strsignal (signo) : "0",
1879 target_pid_to_str (inferior_ptid));
1880
1881 block_child_signals (&prev_mask);
1882
1883 /* A specific PTID means `step only this process id'. */
1884 resume_many = (ptid_equal (minus_one_ptid, ptid)
1885 || ptid_is_pid (ptid));
1886
1887 /* Mark the lwps we're resuming as resumed. */
1888 iterate_over_lwps (ptid, resume_set_callback, NULL);
1889
1890 /* See if it's the current inferior that should be handled
1891 specially. */
1892 if (resume_many)
1893 lp = find_lwp_pid (inferior_ptid);
1894 else
1895 lp = find_lwp_pid (ptid);
1896 gdb_assert (lp != NULL);
1897
1898 /* Remember if we're stepping. */
1899 lp->step = step;
1900
1901 /* If we have a pending wait status for this thread, there is no
1902 point in resuming the process. But first make sure that
1903 linux_nat_wait won't preemptively handle the event - we
1904 should never take this short-circuit if we are going to
1905 leave LP running, since we have skipped resuming all the
1906 other threads. This bit of code needs to be synchronized
1907 with linux_nat_wait. */
1908
1909 if (lp->status && WIFSTOPPED (lp->status))
1910 {
1911 int saved_signo;
1912 struct inferior *inf;
1913
1914 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1915 gdb_assert (inf);
1916 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1917
1918 /* Defer to common code if we're gaining control of the
1919 inferior. */
1920 if (inf->stop_soon == NO_STOP_QUIETLY
1921 && signal_stop_state (saved_signo) == 0
1922 && signal_print_state (saved_signo) == 0
1923 && signal_pass_state (saved_signo) == 1)
1924 {
1925 if (debug_linux_nat)
1926 fprintf_unfiltered (gdb_stdlog,
1927 "LLR: Not short circuiting for ignored "
1928 "status 0x%x\n", lp->status);
1929
1930 /* FIXME: What should we do if we are supposed to continue
1931 this thread with a signal? */
1932 gdb_assert (signo == TARGET_SIGNAL_0);
1933 signo = saved_signo;
1934 lp->status = 0;
1935 }
1936 }
1937
1938 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1939 {
1940 /* FIXME: What should we do if we are supposed to continue
1941 this thread with a signal? */
1942 gdb_assert (signo == TARGET_SIGNAL_0);
1943
1944 if (debug_linux_nat)
1945 fprintf_unfiltered (gdb_stdlog,
1946 "LLR: Short circuiting for status 0x%x\n",
1947 lp->status);
1948
1949 restore_child_signals_mask (&prev_mask);
1950 if (target_can_async_p ())
1951 {
1952 target_async (inferior_event_handler, 0);
1953 /* Tell the event loop we have something to process. */
1954 async_file_mark ();
1955 }
1956 return;
1957 }
1958
1959 /* Mark LWP as not stopped to prevent it from being continued by
1960 resume_callback. */
1961 lp->stopped = 0;
1962
1963 if (resume_many)
1964 iterate_over_lwps (ptid, resume_callback, NULL);
1965
1966 /* Convert to something the lower layer understands. */
1967 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1968
1969 linux_ops->to_resume (linux_ops, ptid, step, signo);
1970 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1971 lp->stopped_by_watchpoint = 0;
1972
1973 if (debug_linux_nat)
1974 fprintf_unfiltered (gdb_stdlog,
1975 "LLR: %s %s, %s (resume event thread)\n",
1976 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1977 target_pid_to_str (ptid),
1978 signo ? strsignal (signo) : "0");
1979
1980 restore_child_signals_mask (&prev_mask);
1981 if (target_can_async_p ())
1982 target_async (inferior_event_handler, 0);
1983 }
1984
1985 /* Send a signal to an LWP. */
1986
1987 static int
1988 kill_lwp (int lwpid, int signo)
1989 {
1990 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1991 fails, then we are not using nptl threads and we should be using kill. */
1992
1993 #ifdef HAVE_TKILL_SYSCALL
1994 {
1995 static int tkill_failed;
1996
1997 if (!tkill_failed)
1998 {
1999 int ret;
2000
2001 errno = 0;
2002 ret = syscall (__NR_tkill, lwpid, signo);
2003 if (errno != ENOSYS)
2004 return ret;
2005 tkill_failed = 1;
2006 }
2007 }
2008 #endif
2009
2010 return kill (lwpid, signo);
2011 }
2012
2013 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2014 event, check if the core is interested in it: if not, ignore the
2015 event, and keep waiting; otherwise, we need to toggle the LWP's
2016 syscall entry/exit status, since the ptrace event itself doesn't
2017 indicate it, and report the trap to higher layers. */
2018
2019 static int
2020 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2021 {
2022 struct target_waitstatus *ourstatus = &lp->waitstatus;
2023 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2024 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2025
2026 if (stopping)
2027 {
2028 /* If we're stopping threads, there's a SIGSTOP pending, which
2029 makes it so that the LWP reports an immediate syscall return,
2030 followed by the SIGSTOP. Skip seeing that "return" using
2031 PTRACE_CONT directly, and let stop_wait_callback collect the
2032 SIGSTOP. Later when the thread is resumed, a new syscall
2033 entry event. If we didn't do this (and returned 0), we'd
2034 leave a syscall entry pending, and our caller, by using
2035 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2036 itself. Later, when the user re-resumes this LWP, we'd see
2037 another syscall entry event and we'd mistake it for a return.
2038
2039 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2040 (leaving immediately with LWP->signalled set, without issuing
2041 a PTRACE_CONT), it would still be problematic to leave this
2042 syscall enter pending, as later when the thread is resumed,
2043 it would then see the same syscall exit mentioned above,
2044 followed by the delayed SIGSTOP, while the syscall didn't
2045 actually get to execute. It seems it would be even more
2046 confusing to the user. */
2047
2048 if (debug_linux_nat)
2049 fprintf_unfiltered (gdb_stdlog,
2050 "LHST: ignoring syscall %d "
2051 "for LWP %ld (stopping threads), "
2052 "resuming with PTRACE_CONT for SIGSTOP\n",
2053 syscall_number,
2054 GET_LWP (lp->ptid));
2055
2056 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2057 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2058 return 1;
2059 }
2060
2061 if (catch_syscall_enabled ())
2062 {
2063 /* Always update the entry/return state, even if this particular
2064 syscall isn't interesting to the core now. In async mode,
2065 the user could install a new catchpoint for this syscall
2066 between syscall enter/return, and we'll need to know to
2067 report a syscall return if that happens. */
2068 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2069 ? TARGET_WAITKIND_SYSCALL_RETURN
2070 : TARGET_WAITKIND_SYSCALL_ENTRY);
2071
2072 if (catching_syscall_number (syscall_number))
2073 {
2074 /* Alright, an event to report. */
2075 ourstatus->kind = lp->syscall_state;
2076 ourstatus->value.syscall_number = syscall_number;
2077
2078 if (debug_linux_nat)
2079 fprintf_unfiltered (gdb_stdlog,
2080 "LHST: stopping for %s of syscall %d"
2081 " for LWP %ld\n",
2082 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2083 ? "entry" : "return",
2084 syscall_number,
2085 GET_LWP (lp->ptid));
2086 return 0;
2087 }
2088
2089 if (debug_linux_nat)
2090 fprintf_unfiltered (gdb_stdlog,
2091 "LHST: ignoring %s of syscall %d "
2092 "for LWP %ld\n",
2093 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2094 ? "entry" : "return",
2095 syscall_number,
2096 GET_LWP (lp->ptid));
2097 }
2098 else
2099 {
2100 /* If we had been syscall tracing, and hence used PT_SYSCALL
2101 before on this LWP, it could happen that the user removes all
2102 syscall catchpoints before we get to process this event.
2103 There are two noteworthy issues here:
2104
2105 - When stopped at a syscall entry event, resuming with
2106 PT_STEP still resumes executing the syscall and reports a
2107 syscall return.
2108
2109 - Only PT_SYSCALL catches syscall enters. If we last
2110 single-stepped this thread, then this event can't be a
2111 syscall enter. If we last single-stepped this thread, this
2112 has to be a syscall exit.
2113
2114 The points above mean that the next resume, be it PT_STEP or
2115 PT_CONTINUE, can not trigger a syscall trace event. */
2116 if (debug_linux_nat)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "LHST: caught syscall event with no syscall catchpoints."
2119 " %d for LWP %ld, ignoring\n",
2120 syscall_number,
2121 GET_LWP (lp->ptid));
2122 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2123 }
2124
2125 /* The core isn't interested in this event. For efficiency, avoid
2126 stopping all threads only to have the core resume them all again.
2127 Since we're not stopping threads, if we're still syscall tracing
2128 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2129 subsequent syscall. Simply resume using the inf-ptrace layer,
2130 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2131
2132 /* Note that gdbarch_get_syscall_number may access registers, hence
2133 fill a regcache. */
2134 registers_changed ();
2135 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2136 lp->step, TARGET_SIGNAL_0);
2137 return 1;
2138 }
2139
2140 /* Handle a GNU/Linux extended wait response. If we see a clone
2141 event, we need to add the new LWP to our list (and not report the
2142 trap to higher layers). This function returns non-zero if the
2143 event should be ignored and we should wait again. If STOPPING is
2144 true, the new LWP remains stopped, otherwise it is continued. */
2145
2146 static int
2147 linux_handle_extended_wait (struct lwp_info *lp, int status,
2148 int stopping)
2149 {
2150 int pid = GET_LWP (lp->ptid);
2151 struct target_waitstatus *ourstatus = &lp->waitstatus;
2152 struct lwp_info *new_lp = NULL;
2153 int event = status >> 16;
2154
2155 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2156 || event == PTRACE_EVENT_CLONE)
2157 {
2158 unsigned long new_pid;
2159 int ret;
2160
2161 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2162
2163 /* If we haven't already seen the new PID stop, wait for it now. */
2164 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2165 {
2166 /* The new child has a pending SIGSTOP. We can't affect it until it
2167 hits the SIGSTOP, but we're already attached. */
2168 ret = my_waitpid (new_pid, &status,
2169 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2170 if (ret == -1)
2171 perror_with_name (_("waiting for new child"));
2172 else if (ret != new_pid)
2173 internal_error (__FILE__, __LINE__,
2174 _("wait returned unexpected PID %d"), ret);
2175 else if (!WIFSTOPPED (status))
2176 internal_error (__FILE__, __LINE__,
2177 _("wait returned unexpected status 0x%x"), status);
2178 }
2179
2180 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2181
2182 if (event == PTRACE_EVENT_FORK
2183 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2184 {
2185 struct fork_info *fp;
2186
2187 /* Handle checkpointing by linux-fork.c here as a special
2188 case. We don't want the follow-fork-mode or 'catch fork'
2189 to interfere with this. */
2190
2191 /* This won't actually modify the breakpoint list, but will
2192 physically remove the breakpoints from the child. */
2193 detach_breakpoints (new_pid);
2194
2195 /* Retain child fork in ptrace (stopped) state. */
2196 fp = find_fork_pid (new_pid);
2197 if (!fp)
2198 fp = add_fork (new_pid);
2199
2200 /* Report as spurious, so that infrun doesn't want to follow
2201 this fork. We're actually doing an infcall in
2202 linux-fork.c. */
2203 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2204 linux_enable_event_reporting (pid_to_ptid (new_pid));
2205
2206 /* Report the stop to the core. */
2207 return 0;
2208 }
2209
2210 if (event == PTRACE_EVENT_FORK)
2211 ourstatus->kind = TARGET_WAITKIND_FORKED;
2212 else if (event == PTRACE_EVENT_VFORK)
2213 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2214 else
2215 {
2216 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2217 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2218 new_lp->cloned = 1;
2219 new_lp->stopped = 1;
2220
2221 if (WSTOPSIG (status) != SIGSTOP)
2222 {
2223 /* This can happen if someone starts sending signals to
2224 the new thread before it gets a chance to run, which
2225 have a lower number than SIGSTOP (e.g. SIGUSR1).
2226 This is an unlikely case, and harder to handle for
2227 fork / vfork than for clone, so we do not try - but
2228 we handle it for clone events here. We'll send
2229 the other signal on to the thread below. */
2230
2231 new_lp->signalled = 1;
2232 }
2233 else
2234 status = 0;
2235
2236 if (non_stop)
2237 {
2238 /* Add the new thread to GDB's lists as soon as possible
2239 so that:
2240
2241 1) the frontend doesn't have to wait for a stop to
2242 display them, and,
2243
2244 2) we tag it with the correct running state. */
2245
2246 /* If the thread_db layer is active, let it know about
2247 this new thread, and add it to GDB's list. */
2248 if (!thread_db_attach_lwp (new_lp->ptid))
2249 {
2250 /* We're not using thread_db. Add it to GDB's
2251 list. */
2252 target_post_attach (GET_LWP (new_lp->ptid));
2253 add_thread (new_lp->ptid);
2254 }
2255
2256 if (!stopping)
2257 {
2258 set_running (new_lp->ptid, 1);
2259 set_executing (new_lp->ptid, 1);
2260 }
2261 }
2262
2263 /* Note the need to use the low target ops to resume, to
2264 handle resuming with PT_SYSCALL if we have syscall
2265 catchpoints. */
2266 if (!stopping)
2267 {
2268 int signo;
2269
2270 new_lp->stopped = 0;
2271 new_lp->resumed = 1;
2272
2273 signo = (status
2274 ? target_signal_from_host (WSTOPSIG (status))
2275 : TARGET_SIGNAL_0);
2276
2277 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2278 0, signo);
2279 }
2280
2281 if (debug_linux_nat)
2282 fprintf_unfiltered (gdb_stdlog,
2283 "LHEW: Got clone event from LWP %ld, resuming\n",
2284 GET_LWP (lp->ptid));
2285 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2286 0, TARGET_SIGNAL_0);
2287
2288 return 1;
2289 }
2290
2291 return 0;
2292 }
2293
2294 if (event == PTRACE_EVENT_EXEC)
2295 {
2296 if (debug_linux_nat)
2297 fprintf_unfiltered (gdb_stdlog,
2298 "LHEW: Got exec event from LWP %ld\n",
2299 GET_LWP (lp->ptid));
2300
2301 ourstatus->kind = TARGET_WAITKIND_EXECD;
2302 ourstatus->value.execd_pathname
2303 = xstrdup (linux_child_pid_to_exec_file (pid));
2304
2305 return 0;
2306 }
2307
2308 if (event == PTRACE_EVENT_VFORK_DONE)
2309 {
2310 if (current_inferior ()->waiting_for_vfork_done)
2311 {
2312 if (debug_linux_nat)
2313 fprintf_unfiltered (gdb_stdlog, "\
2314 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2315 GET_LWP (lp->ptid));
2316
2317 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2318 return 0;
2319 }
2320
2321 if (debug_linux_nat)
2322 fprintf_unfiltered (gdb_stdlog, "\
2323 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2324 GET_LWP (lp->ptid));
2325 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2326 return 1;
2327 }
2328
2329 internal_error (__FILE__, __LINE__,
2330 _("unknown ptrace event %d"), event);
2331 }
2332
2333 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2334 exited. */
2335
2336 static int
2337 wait_lwp (struct lwp_info *lp)
2338 {
2339 pid_t pid;
2340 int status;
2341 int thread_dead = 0;
2342
2343 gdb_assert (!lp->stopped);
2344 gdb_assert (lp->status == 0);
2345
2346 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2347 if (pid == -1 && errno == ECHILD)
2348 {
2349 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2350 if (pid == -1 && errno == ECHILD)
2351 {
2352 /* The thread has previously exited. We need to delete it
2353 now because, for some vendor 2.4 kernels with NPTL
2354 support backported, there won't be an exit event unless
2355 it is the main thread. 2.6 kernels will report an exit
2356 event for each thread that exits, as expected. */
2357 thread_dead = 1;
2358 if (debug_linux_nat)
2359 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2360 target_pid_to_str (lp->ptid));
2361 }
2362 }
2363
2364 if (!thread_dead)
2365 {
2366 gdb_assert (pid == GET_LWP (lp->ptid));
2367
2368 if (debug_linux_nat)
2369 {
2370 fprintf_unfiltered (gdb_stdlog,
2371 "WL: waitpid %s received %s\n",
2372 target_pid_to_str (lp->ptid),
2373 status_to_str (status));
2374 }
2375 }
2376
2377 /* Check if the thread has exited. */
2378 if (WIFEXITED (status) || WIFSIGNALED (status))
2379 {
2380 thread_dead = 1;
2381 if (debug_linux_nat)
2382 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2383 target_pid_to_str (lp->ptid));
2384 }
2385
2386 if (thread_dead)
2387 {
2388 exit_lwp (lp);
2389 return 0;
2390 }
2391
2392 gdb_assert (WIFSTOPPED (status));
2393
2394 /* Handle GNU/Linux's syscall SIGTRAPs. */
2395 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2396 {
2397 /* No longer need the sysgood bit. The ptrace event ends up
2398 recorded in lp->waitstatus if we care for it. We can carry
2399 on handling the event like a regular SIGTRAP from here
2400 on. */
2401 status = W_STOPCODE (SIGTRAP);
2402 if (linux_handle_syscall_trap (lp, 1))
2403 return wait_lwp (lp);
2404 }
2405
2406 /* Handle GNU/Linux's extended waitstatus for trace events. */
2407 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2408 {
2409 if (debug_linux_nat)
2410 fprintf_unfiltered (gdb_stdlog,
2411 "WL: Handling extended status 0x%06x\n",
2412 status);
2413 if (linux_handle_extended_wait (lp, status, 1))
2414 return wait_lwp (lp);
2415 }
2416
2417 return status;
2418 }
2419
2420 /* Save the most recent siginfo for LP. This is currently only called
2421 for SIGTRAP; some ports use the si_addr field for
2422 target_stopped_data_address. In the future, it may also be used to
2423 restore the siginfo of requeued signals. */
2424
2425 static void
2426 save_siginfo (struct lwp_info *lp)
2427 {
2428 errno = 0;
2429 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2430 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2431
2432 if (errno != 0)
2433 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2434 }
2435
2436 /* Send a SIGSTOP to LP. */
2437
2438 static int
2439 stop_callback (struct lwp_info *lp, void *data)
2440 {
2441 if (!lp->stopped && !lp->signalled)
2442 {
2443 int ret;
2444
2445 if (debug_linux_nat)
2446 {
2447 fprintf_unfiltered (gdb_stdlog,
2448 "SC: kill %s **<SIGSTOP>**\n",
2449 target_pid_to_str (lp->ptid));
2450 }
2451 errno = 0;
2452 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2453 if (debug_linux_nat)
2454 {
2455 fprintf_unfiltered (gdb_stdlog,
2456 "SC: lwp kill %d %s\n",
2457 ret,
2458 errno ? safe_strerror (errno) : "ERRNO-OK");
2459 }
2460
2461 lp->signalled = 1;
2462 gdb_assert (lp->status == 0);
2463 }
2464
2465 return 0;
2466 }
2467
2468 /* Return non-zero if LWP PID has a pending SIGINT. */
2469
2470 static int
2471 linux_nat_has_pending_sigint (int pid)
2472 {
2473 sigset_t pending, blocked, ignored;
2474
2475 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2476
2477 if (sigismember (&pending, SIGINT)
2478 && !sigismember (&ignored, SIGINT))
2479 return 1;
2480
2481 return 0;
2482 }
2483
2484 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2485
2486 static int
2487 set_ignore_sigint (struct lwp_info *lp, void *data)
2488 {
2489 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2490 flag to consume the next one. */
2491 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2492 && WSTOPSIG (lp->status) == SIGINT)
2493 lp->status = 0;
2494 else
2495 lp->ignore_sigint = 1;
2496
2497 return 0;
2498 }
2499
2500 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2501 This function is called after we know the LWP has stopped; if the LWP
2502 stopped before the expected SIGINT was delivered, then it will never have
2503 arrived. Also, if the signal was delivered to a shared queue and consumed
2504 by a different thread, it will never be delivered to this LWP. */
2505
2506 static void
2507 maybe_clear_ignore_sigint (struct lwp_info *lp)
2508 {
2509 if (!lp->ignore_sigint)
2510 return;
2511
2512 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2513 {
2514 if (debug_linux_nat)
2515 fprintf_unfiltered (gdb_stdlog,
2516 "MCIS: Clearing bogus flag for %s\n",
2517 target_pid_to_str (lp->ptid));
2518 lp->ignore_sigint = 0;
2519 }
2520 }
2521
2522 /* Fetch the possible triggered data watchpoint info and store it in
2523 LP.
2524
2525 On some archs, like x86, that use debug registers to set
2526 watchpoints, it's possible that the way to know which watched
2527 address trapped, is to check the register that is used to select
2528 which address to watch. Problem is, between setting the watchpoint
2529 and reading back which data address trapped, the user may change
2530 the set of watchpoints, and, as a consequence, GDB changes the
2531 debug registers in the inferior. To avoid reading back a stale
2532 stopped-data-address when that happens, we cache in LP the fact
2533 that a watchpoint trapped, and the corresponding data address, as
2534 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2535 registers meanwhile, we have the cached data we can rely on. */
2536
2537 static void
2538 save_sigtrap (struct lwp_info *lp)
2539 {
2540 struct cleanup *old_chain;
2541
2542 if (linux_ops->to_stopped_by_watchpoint == NULL)
2543 {
2544 lp->stopped_by_watchpoint = 0;
2545 return;
2546 }
2547
2548 old_chain = save_inferior_ptid ();
2549 inferior_ptid = lp->ptid;
2550
2551 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2552
2553 if (lp->stopped_by_watchpoint)
2554 {
2555 if (linux_ops->to_stopped_data_address != NULL)
2556 lp->stopped_data_address_p =
2557 linux_ops->to_stopped_data_address (&current_target,
2558 &lp->stopped_data_address);
2559 else
2560 lp->stopped_data_address_p = 0;
2561 }
2562
2563 do_cleanups (old_chain);
2564 }
2565
2566 /* See save_sigtrap. */
2567
2568 static int
2569 linux_nat_stopped_by_watchpoint (void)
2570 {
2571 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2572
2573 gdb_assert (lp != NULL);
2574
2575 return lp->stopped_by_watchpoint;
2576 }
2577
2578 static int
2579 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2580 {
2581 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2582
2583 gdb_assert (lp != NULL);
2584
2585 *addr_p = lp->stopped_data_address;
2586
2587 return lp->stopped_data_address_p;
2588 }
2589
2590 /* Wait until LP is stopped. */
2591
2592 static int
2593 stop_wait_callback (struct lwp_info *lp, void *data)
2594 {
2595 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2596
2597 /* If this is a vfork parent, bail out, it is not going to report
2598 any SIGSTOP until the vfork is done with. */
2599 if (inf->vfork_child != NULL)
2600 return 0;
2601
2602 if (!lp->stopped)
2603 {
2604 int status;
2605
2606 status = wait_lwp (lp);
2607 if (status == 0)
2608 return 0;
2609
2610 if (lp->ignore_sigint && WIFSTOPPED (status)
2611 && WSTOPSIG (status) == SIGINT)
2612 {
2613 lp->ignore_sigint = 0;
2614
2615 errno = 0;
2616 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2617 if (debug_linux_nat)
2618 fprintf_unfiltered (gdb_stdlog,
2619 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2620 target_pid_to_str (lp->ptid),
2621 errno ? safe_strerror (errno) : "OK");
2622
2623 return stop_wait_callback (lp, NULL);
2624 }
2625
2626 maybe_clear_ignore_sigint (lp);
2627
2628 if (WSTOPSIG (status) != SIGSTOP)
2629 {
2630 if (WSTOPSIG (status) == SIGTRAP)
2631 {
2632 /* If a LWP other than the LWP that we're reporting an
2633 event for has hit a GDB breakpoint (as opposed to
2634 some random trap signal), then just arrange for it to
2635 hit it again later. We don't keep the SIGTRAP status
2636 and don't forward the SIGTRAP signal to the LWP. We
2637 will handle the current event, eventually we will
2638 resume all LWPs, and this one will get its breakpoint
2639 trap again.
2640
2641 If we do not do this, then we run the risk that the
2642 user will delete or disable the breakpoint, but the
2643 thread will have already tripped on it. */
2644
2645 /* Save the trap's siginfo in case we need it later. */
2646 save_siginfo (lp);
2647
2648 save_sigtrap (lp);
2649
2650 /* Now resume this LWP and get the SIGSTOP event. */
2651 errno = 0;
2652 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2653 if (debug_linux_nat)
2654 {
2655 fprintf_unfiltered (gdb_stdlog,
2656 "PTRACE_CONT %s, 0, 0 (%s)\n",
2657 target_pid_to_str (lp->ptid),
2658 errno ? safe_strerror (errno) : "OK");
2659
2660 fprintf_unfiltered (gdb_stdlog,
2661 "SWC: Candidate SIGTRAP event in %s\n",
2662 target_pid_to_str (lp->ptid));
2663 }
2664 /* Hold this event/waitstatus while we check to see if
2665 there are any more (we still want to get that SIGSTOP). */
2666 stop_wait_callback (lp, NULL);
2667
2668 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2669 there's another event, throw it back into the
2670 queue. */
2671 if (lp->status)
2672 {
2673 if (debug_linux_nat)
2674 fprintf_unfiltered (gdb_stdlog,
2675 "SWC: kill %s, %s\n",
2676 target_pid_to_str (lp->ptid),
2677 status_to_str ((int) status));
2678 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2679 }
2680
2681 /* Save the sigtrap event. */
2682 lp->status = status;
2683 return 0;
2684 }
2685 else
2686 {
2687 /* The thread was stopped with a signal other than
2688 SIGSTOP, and didn't accidentally trip a breakpoint. */
2689
2690 if (debug_linux_nat)
2691 {
2692 fprintf_unfiltered (gdb_stdlog,
2693 "SWC: Pending event %s in %s\n",
2694 status_to_str ((int) status),
2695 target_pid_to_str (lp->ptid));
2696 }
2697 /* Now resume this LWP and get the SIGSTOP event. */
2698 errno = 0;
2699 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2700 if (debug_linux_nat)
2701 fprintf_unfiltered (gdb_stdlog,
2702 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2703 target_pid_to_str (lp->ptid),
2704 errno ? safe_strerror (errno) : "OK");
2705
2706 /* Hold this event/waitstatus while we check to see if
2707 there are any more (we still want to get that SIGSTOP). */
2708 stop_wait_callback (lp, NULL);
2709
2710 /* If the lp->status field is still empty, use it to
2711 hold this event. If not, then this event must be
2712 returned to the event queue of the LWP. */
2713 if (lp->status)
2714 {
2715 if (debug_linux_nat)
2716 {
2717 fprintf_unfiltered (gdb_stdlog,
2718 "SWC: kill %s, %s\n",
2719 target_pid_to_str (lp->ptid),
2720 status_to_str ((int) status));
2721 }
2722 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2723 }
2724 else
2725 lp->status = status;
2726 return 0;
2727 }
2728 }
2729 else
2730 {
2731 /* We caught the SIGSTOP that we intended to catch, so
2732 there's no SIGSTOP pending. */
2733 lp->stopped = 1;
2734 lp->signalled = 0;
2735 }
2736 }
2737
2738 return 0;
2739 }
2740
2741 /* Return non-zero if LP has a wait status pending. */
2742
2743 static int
2744 status_callback (struct lwp_info *lp, void *data)
2745 {
2746 /* Only report a pending wait status if we pretend that this has
2747 indeed been resumed. */
2748 if (!lp->resumed)
2749 return 0;
2750
2751 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2752 {
2753 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2754 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2755 0', so a clean process exit can not be stored pending in
2756 lp->status, it is indistinguishable from
2757 no-pending-status. */
2758 return 1;
2759 }
2760
2761 if (lp->status != 0)
2762 return 1;
2763
2764 return 0;
2765 }
2766
2767 /* Return non-zero if LP isn't stopped. */
2768
2769 static int
2770 running_callback (struct lwp_info *lp, void *data)
2771 {
2772 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2773 }
2774
2775 /* Count the LWP's that have had events. */
2776
2777 static int
2778 count_events_callback (struct lwp_info *lp, void *data)
2779 {
2780 int *count = data;
2781
2782 gdb_assert (count != NULL);
2783
2784 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2785 if (lp->status != 0 && lp->resumed
2786 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2787 (*count)++;
2788
2789 return 0;
2790 }
2791
2792 /* Select the LWP (if any) that is currently being single-stepped. */
2793
2794 static int
2795 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2796 {
2797 if (lp->step && lp->status != 0)
2798 return 1;
2799 else
2800 return 0;
2801 }
2802
2803 /* Select the Nth LWP that has had a SIGTRAP event. */
2804
2805 static int
2806 select_event_lwp_callback (struct lwp_info *lp, void *data)
2807 {
2808 int *selector = data;
2809
2810 gdb_assert (selector != NULL);
2811
2812 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2813 if (lp->status != 0 && lp->resumed
2814 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2815 if ((*selector)-- == 0)
2816 return 1;
2817
2818 return 0;
2819 }
2820
2821 static int
2822 cancel_breakpoint (struct lwp_info *lp)
2823 {
2824 /* Arrange for a breakpoint to be hit again later. We don't keep
2825 the SIGTRAP status and don't forward the SIGTRAP signal to the
2826 LWP. We will handle the current event, eventually we will resume
2827 this LWP, and this breakpoint will trap again.
2828
2829 If we do not do this, then we run the risk that the user will
2830 delete or disable the breakpoint, but the LWP will have already
2831 tripped on it. */
2832
2833 struct regcache *regcache = get_thread_regcache (lp->ptid);
2834 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2835 CORE_ADDR pc;
2836
2837 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2838 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2839 {
2840 if (debug_linux_nat)
2841 fprintf_unfiltered (gdb_stdlog,
2842 "CB: Push back breakpoint for %s\n",
2843 target_pid_to_str (lp->ptid));
2844
2845 /* Back up the PC if necessary. */
2846 if (gdbarch_decr_pc_after_break (gdbarch))
2847 regcache_write_pc (regcache, pc);
2848
2849 return 1;
2850 }
2851 return 0;
2852 }
2853
2854 static int
2855 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2856 {
2857 struct lwp_info *event_lp = data;
2858
2859 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2860 if (lp == event_lp)
2861 return 0;
2862
2863 /* If a LWP other than the LWP that we're reporting an event for has
2864 hit a GDB breakpoint (as opposed to some random trap signal),
2865 then just arrange for it to hit it again later. We don't keep
2866 the SIGTRAP status and don't forward the SIGTRAP signal to the
2867 LWP. We will handle the current event, eventually we will resume
2868 all LWPs, and this one will get its breakpoint trap again.
2869
2870 If we do not do this, then we run the risk that the user will
2871 delete or disable the breakpoint, but the LWP will have already
2872 tripped on it. */
2873
2874 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2875 && lp->status != 0
2876 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2877 && cancel_breakpoint (lp))
2878 /* Throw away the SIGTRAP. */
2879 lp->status = 0;
2880
2881 return 0;
2882 }
2883
2884 /* Select one LWP out of those that have events pending. */
2885
2886 static void
2887 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2888 {
2889 int num_events = 0;
2890 int random_selector;
2891 struct lwp_info *event_lp;
2892
2893 /* Record the wait status for the original LWP. */
2894 (*orig_lp)->status = *status;
2895
2896 /* Give preference to any LWP that is being single-stepped. */
2897 event_lp = iterate_over_lwps (filter,
2898 select_singlestep_lwp_callback, NULL);
2899 if (event_lp != NULL)
2900 {
2901 if (debug_linux_nat)
2902 fprintf_unfiltered (gdb_stdlog,
2903 "SEL: Select single-step %s\n",
2904 target_pid_to_str (event_lp->ptid));
2905 }
2906 else
2907 {
2908 /* No single-stepping LWP. Select one at random, out of those
2909 which have had SIGTRAP events. */
2910
2911 /* First see how many SIGTRAP events we have. */
2912 iterate_over_lwps (filter, count_events_callback, &num_events);
2913
2914 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2915 random_selector = (int)
2916 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2917
2918 if (debug_linux_nat && num_events > 1)
2919 fprintf_unfiltered (gdb_stdlog,
2920 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2921 num_events, random_selector);
2922
2923 event_lp = iterate_over_lwps (filter,
2924 select_event_lwp_callback,
2925 &random_selector);
2926 }
2927
2928 if (event_lp != NULL)
2929 {
2930 /* Switch the event LWP. */
2931 *orig_lp = event_lp;
2932 *status = event_lp->status;
2933 }
2934
2935 /* Flush the wait status for the event LWP. */
2936 (*orig_lp)->status = 0;
2937 }
2938
2939 /* Return non-zero if LP has been resumed. */
2940
2941 static int
2942 resumed_callback (struct lwp_info *lp, void *data)
2943 {
2944 return lp->resumed;
2945 }
2946
2947 /* Stop an active thread, verify it still exists, then resume it. */
2948
2949 static int
2950 stop_and_resume_callback (struct lwp_info *lp, void *data)
2951 {
2952 struct lwp_info *ptr;
2953
2954 if (!lp->stopped && !lp->signalled)
2955 {
2956 stop_callback (lp, NULL);
2957 stop_wait_callback (lp, NULL);
2958 /* Resume if the lwp still exists. */
2959 for (ptr = lwp_list; ptr; ptr = ptr->next)
2960 if (lp == ptr)
2961 {
2962 resume_callback (lp, NULL);
2963 resume_set_callback (lp, NULL);
2964 }
2965 }
2966 return 0;
2967 }
2968
2969 /* Check if we should go on and pass this event to common code.
2970 Return the affected lwp if we are, or NULL otherwise. */
2971 static struct lwp_info *
2972 linux_nat_filter_event (int lwpid, int status, int options)
2973 {
2974 struct lwp_info *lp;
2975
2976 lp = find_lwp_pid (pid_to_ptid (lwpid));
2977
2978 /* Check for stop events reported by a process we didn't already
2979 know about - anything not already in our LWP list.
2980
2981 If we're expecting to receive stopped processes after
2982 fork, vfork, and clone events, then we'll just add the
2983 new one to our list and go back to waiting for the event
2984 to be reported - the stopped process might be returned
2985 from waitpid before or after the event is. */
2986 if (WIFSTOPPED (status) && !lp)
2987 {
2988 linux_record_stopped_pid (lwpid, status);
2989 return NULL;
2990 }
2991
2992 /* Make sure we don't report an event for the exit of an LWP not in
2993 our list, i.e. not part of the current process. This can happen
2994 if we detach from a program we original forked and then it
2995 exits. */
2996 if (!WIFSTOPPED (status) && !lp)
2997 return NULL;
2998
2999 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3000 CLONE_PTRACE processes which do not use the thread library -
3001 otherwise we wouldn't find the new LWP this way. That doesn't
3002 currently work, and the following code is currently unreachable
3003 due to the two blocks above. If it's fixed some day, this code
3004 should be broken out into a function so that we can also pick up
3005 LWPs from the new interface. */
3006 if (!lp)
3007 {
3008 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3009 if (options & __WCLONE)
3010 lp->cloned = 1;
3011
3012 gdb_assert (WIFSTOPPED (status)
3013 && WSTOPSIG (status) == SIGSTOP);
3014 lp->signalled = 1;
3015
3016 if (!in_thread_list (inferior_ptid))
3017 {
3018 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3019 GET_PID (inferior_ptid));
3020 add_thread (inferior_ptid);
3021 }
3022
3023 add_thread (lp->ptid);
3024 }
3025
3026 /* Handle GNU/Linux's syscall SIGTRAPs. */
3027 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3028 {
3029 /* No longer need the sysgood bit. The ptrace event ends up
3030 recorded in lp->waitstatus if we care for it. We can carry
3031 on handling the event like a regular SIGTRAP from here
3032 on. */
3033 status = W_STOPCODE (SIGTRAP);
3034 if (linux_handle_syscall_trap (lp, 0))
3035 return NULL;
3036 }
3037
3038 /* Handle GNU/Linux's extended waitstatus for trace events. */
3039 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3040 {
3041 if (debug_linux_nat)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "LLW: Handling extended status 0x%06x\n",
3044 status);
3045 if (linux_handle_extended_wait (lp, status, 0))
3046 return NULL;
3047 }
3048
3049 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3050 {
3051 /* Save the trap's siginfo in case we need it later. */
3052 save_siginfo (lp);
3053
3054 save_sigtrap (lp);
3055 }
3056
3057 /* Check if the thread has exited. */
3058 if ((WIFEXITED (status) || WIFSIGNALED (status))
3059 && num_lwps (GET_PID (lp->ptid)) > 1)
3060 {
3061 /* If this is the main thread, we must stop all threads and verify
3062 if they are still alive. This is because in the nptl thread model
3063 on Linux 2.4, there is no signal issued for exiting LWPs
3064 other than the main thread. We only get the main thread exit
3065 signal once all child threads have already exited. If we
3066 stop all the threads and use the stop_wait_callback to check
3067 if they have exited we can determine whether this signal
3068 should be ignored or whether it means the end of the debugged
3069 application, regardless of which threading model is being
3070 used. */
3071 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3072 {
3073 lp->stopped = 1;
3074 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3075 stop_and_resume_callback, NULL);
3076 }
3077
3078 if (debug_linux_nat)
3079 fprintf_unfiltered (gdb_stdlog,
3080 "LLW: %s exited.\n",
3081 target_pid_to_str (lp->ptid));
3082
3083 if (num_lwps (GET_PID (lp->ptid)) > 1)
3084 {
3085 /* If there is at least one more LWP, then the exit signal
3086 was not the end of the debugged application and should be
3087 ignored. */
3088 exit_lwp (lp);
3089 return NULL;
3090 }
3091 }
3092
3093 /* Check if the current LWP has previously exited. In the nptl
3094 thread model, LWPs other than the main thread do not issue
3095 signals when they exit so we must check whenever the thread has
3096 stopped. A similar check is made in stop_wait_callback(). */
3097 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3098 {
3099 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3100
3101 if (debug_linux_nat)
3102 fprintf_unfiltered (gdb_stdlog,
3103 "LLW: %s exited.\n",
3104 target_pid_to_str (lp->ptid));
3105
3106 exit_lwp (lp);
3107
3108 /* Make sure there is at least one thread running. */
3109 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3110
3111 /* Discard the event. */
3112 return NULL;
3113 }
3114
3115 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3116 an attempt to stop an LWP. */
3117 if (lp->signalled
3118 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3119 {
3120 if (debug_linux_nat)
3121 fprintf_unfiltered (gdb_stdlog,
3122 "LLW: Delayed SIGSTOP caught for %s.\n",
3123 target_pid_to_str (lp->ptid));
3124
3125 /* This is a delayed SIGSTOP. */
3126 lp->signalled = 0;
3127
3128 registers_changed ();
3129
3130 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3131 lp->step, TARGET_SIGNAL_0);
3132 if (debug_linux_nat)
3133 fprintf_unfiltered (gdb_stdlog,
3134 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3135 lp->step ?
3136 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3137 target_pid_to_str (lp->ptid));
3138
3139 lp->stopped = 0;
3140 gdb_assert (lp->resumed);
3141
3142 /* Discard the event. */
3143 return NULL;
3144 }
3145
3146 /* Make sure we don't report a SIGINT that we have already displayed
3147 for another thread. */
3148 if (lp->ignore_sigint
3149 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3150 {
3151 if (debug_linux_nat)
3152 fprintf_unfiltered (gdb_stdlog,
3153 "LLW: Delayed SIGINT caught for %s.\n",
3154 target_pid_to_str (lp->ptid));
3155
3156 /* This is a delayed SIGINT. */
3157 lp->ignore_sigint = 0;
3158
3159 registers_changed ();
3160 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3161 lp->step, TARGET_SIGNAL_0);
3162 if (debug_linux_nat)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3165 lp->step ?
3166 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3167 target_pid_to_str (lp->ptid));
3168
3169 lp->stopped = 0;
3170 gdb_assert (lp->resumed);
3171
3172 /* Discard the event. */
3173 return NULL;
3174 }
3175
3176 /* An interesting event. */
3177 gdb_assert (lp);
3178 lp->status = status;
3179 return lp;
3180 }
3181
3182 static ptid_t
3183 linux_nat_wait_1 (struct target_ops *ops,
3184 ptid_t ptid, struct target_waitstatus *ourstatus,
3185 int target_options)
3186 {
3187 static sigset_t prev_mask;
3188 struct lwp_info *lp = NULL;
3189 int options = 0;
3190 int status = 0;
3191 pid_t pid;
3192
3193 if (debug_linux_nat_async)
3194 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3195
3196 /* The first time we get here after starting a new inferior, we may
3197 not have added it to the LWP list yet - this is the earliest
3198 moment at which we know its PID. */
3199 if (ptid_is_pid (inferior_ptid))
3200 {
3201 /* Upgrade the main thread's ptid. */
3202 thread_change_ptid (inferior_ptid,
3203 BUILD_LWP (GET_PID (inferior_ptid),
3204 GET_PID (inferior_ptid)));
3205
3206 lp = add_lwp (inferior_ptid);
3207 lp->resumed = 1;
3208 }
3209
3210 /* Make sure SIGCHLD is blocked. */
3211 block_child_signals (&prev_mask);
3212
3213 if (ptid_equal (ptid, minus_one_ptid))
3214 pid = -1;
3215 else if (ptid_is_pid (ptid))
3216 /* A request to wait for a specific tgid. This is not possible
3217 with waitpid, so instead, we wait for any child, and leave
3218 children we're not interested in right now with a pending
3219 status to report later. */
3220 pid = -1;
3221 else
3222 pid = GET_LWP (ptid);
3223
3224 retry:
3225 lp = NULL;
3226 status = 0;
3227
3228 /* Make sure that of those LWPs we want to get an event from, there
3229 is at least one LWP that has been resumed. If there's none, just
3230 bail out. The core may just be flushing asynchronously all
3231 events. */
3232 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3233 {
3234 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3235
3236 if (debug_linux_nat_async)
3237 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3238
3239 restore_child_signals_mask (&prev_mask);
3240 return minus_one_ptid;
3241 }
3242
3243 /* First check if there is a LWP with a wait status pending. */
3244 if (pid == -1)
3245 {
3246 /* Any LWP that's been resumed will do. */
3247 lp = iterate_over_lwps (ptid, status_callback, NULL);
3248 if (lp)
3249 {
3250 if (debug_linux_nat && lp->status)
3251 fprintf_unfiltered (gdb_stdlog,
3252 "LLW: Using pending wait status %s for %s.\n",
3253 status_to_str (lp->status),
3254 target_pid_to_str (lp->ptid));
3255 }
3256
3257 /* But if we don't find one, we'll have to wait, and check both
3258 cloned and uncloned processes. We start with the cloned
3259 processes. */
3260 options = __WCLONE | WNOHANG;
3261 }
3262 else if (is_lwp (ptid))
3263 {
3264 if (debug_linux_nat)
3265 fprintf_unfiltered (gdb_stdlog,
3266 "LLW: Waiting for specific LWP %s.\n",
3267 target_pid_to_str (ptid));
3268
3269 /* We have a specific LWP to check. */
3270 lp = find_lwp_pid (ptid);
3271 gdb_assert (lp);
3272
3273 if (debug_linux_nat && lp->status)
3274 fprintf_unfiltered (gdb_stdlog,
3275 "LLW: Using pending wait status %s for %s.\n",
3276 status_to_str (lp->status),
3277 target_pid_to_str (lp->ptid));
3278
3279 /* If we have to wait, take into account whether PID is a cloned
3280 process or not. And we have to convert it to something that
3281 the layer beneath us can understand. */
3282 options = lp->cloned ? __WCLONE : 0;
3283 pid = GET_LWP (ptid);
3284
3285 /* We check for lp->waitstatus in addition to lp->status,
3286 because we can have pending process exits recorded in
3287 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3288 an additional lp->status_p flag. */
3289 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3290 lp = NULL;
3291 }
3292
3293 if (lp && lp->signalled)
3294 {
3295 /* A pending SIGSTOP may interfere with the normal stream of
3296 events. In a typical case where interference is a problem,
3297 we have a SIGSTOP signal pending for LWP A while
3298 single-stepping it, encounter an event in LWP B, and take the
3299 pending SIGSTOP while trying to stop LWP A. After processing
3300 the event in LWP B, LWP A is continued, and we'll never see
3301 the SIGTRAP associated with the last time we were
3302 single-stepping LWP A. */
3303
3304 /* Resume the thread. It should halt immediately returning the
3305 pending SIGSTOP. */
3306 registers_changed ();
3307 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3308 lp->step, TARGET_SIGNAL_0);
3309 if (debug_linux_nat)
3310 fprintf_unfiltered (gdb_stdlog,
3311 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3312 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3313 target_pid_to_str (lp->ptid));
3314 lp->stopped = 0;
3315 gdb_assert (lp->resumed);
3316
3317 /* Catch the pending SIGSTOP. */
3318 status = lp->status;
3319 lp->status = 0;
3320
3321 stop_wait_callback (lp, NULL);
3322
3323 /* If the lp->status field isn't empty, we caught another signal
3324 while flushing the SIGSTOP. Return it back to the event
3325 queue of the LWP, as we already have an event to handle. */
3326 if (lp->status)
3327 {
3328 if (debug_linux_nat)
3329 fprintf_unfiltered (gdb_stdlog,
3330 "LLW: kill %s, %s\n",
3331 target_pid_to_str (lp->ptid),
3332 status_to_str (lp->status));
3333 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3334 }
3335
3336 lp->status = status;
3337 }
3338
3339 if (!target_can_async_p ())
3340 {
3341 /* Causes SIGINT to be passed on to the attached process. */
3342 set_sigint_trap ();
3343 }
3344
3345 /* Translate generic target_wait options into waitpid options. */
3346 if (target_options & TARGET_WNOHANG)
3347 options |= WNOHANG;
3348
3349 while (lp == NULL)
3350 {
3351 pid_t lwpid;
3352
3353 lwpid = my_waitpid (pid, &status, options);
3354
3355 if (lwpid > 0)
3356 {
3357 gdb_assert (pid == -1 || lwpid == pid);
3358
3359 if (debug_linux_nat)
3360 {
3361 fprintf_unfiltered (gdb_stdlog,
3362 "LLW: waitpid %ld received %s\n",
3363 (long) lwpid, status_to_str (status));
3364 }
3365
3366 lp = linux_nat_filter_event (lwpid, status, options);
3367
3368 if (lp
3369 && ptid_is_pid (ptid)
3370 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3371 {
3372 gdb_assert (lp->resumed);
3373
3374 if (debug_linux_nat)
3375 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3376 ptid_get_lwp (lp->ptid), status);
3377
3378 if (WIFSTOPPED (lp->status))
3379 {
3380 if (WSTOPSIG (lp->status) != SIGSTOP)
3381 {
3382 /* Cancel breakpoint hits. The breakpoint may
3383 be removed before we fetch events from this
3384 process to report to the core. It is best
3385 not to assume the moribund breakpoints
3386 heuristic always handles these cases --- it
3387 could be too many events go through to the
3388 core before this one is handled. All-stop
3389 always cancels breakpoint hits in all
3390 threads. */
3391 if (non_stop
3392 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
3393 && WSTOPSIG (lp->status) == SIGTRAP
3394 && cancel_breakpoint (lp))
3395 {
3396 /* Throw away the SIGTRAP. */
3397 lp->status = 0;
3398
3399 if (debug_linux_nat)
3400 fprintf (stderr,
3401 "LLW: LWP %ld hit a breakpoint while waiting "
3402 "for another process; cancelled it\n",
3403 ptid_get_lwp (lp->ptid));
3404 }
3405 lp->stopped = 1;
3406 }
3407 else
3408 {
3409 lp->stopped = 1;
3410 lp->signalled = 0;
3411 }
3412 }
3413 else if (WIFEXITED (status) || WIFSIGNALED (status))
3414 {
3415 if (debug_linux_nat)
3416 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3417 ptid_get_lwp (lp->ptid));
3418
3419 /* This was the last lwp in the process. Since
3420 events are serialized to GDB core, and we can't
3421 report this one right now, but GDB core and the
3422 other target layers will want to be notified
3423 about the exit code/signal, leave the status
3424 pending for the next time we're able to report
3425 it. */
3426
3427 /* Prevent trying to stop this thread again. We'll
3428 never try to resume it because it has a pending
3429 status. */
3430 lp->stopped = 1;
3431
3432 /* Dead LWP's aren't expected to reported a pending
3433 sigstop. */
3434 lp->signalled = 0;
3435
3436 /* Store the pending event in the waitstatus as
3437 well, because W_EXITCODE(0,0) == 0. */
3438 store_waitstatus (&lp->waitstatus, lp->status);
3439 }
3440
3441 /* Keep looking. */
3442 lp = NULL;
3443 continue;
3444 }
3445
3446 if (lp)
3447 break;
3448 else
3449 {
3450 if (pid == -1)
3451 {
3452 /* waitpid did return something. Restart over. */
3453 options |= __WCLONE;
3454 }
3455 continue;
3456 }
3457 }
3458
3459 if (pid == -1)
3460 {
3461 /* Alternate between checking cloned and uncloned processes. */
3462 options ^= __WCLONE;
3463
3464 /* And every time we have checked both:
3465 In async mode, return to event loop;
3466 In sync mode, suspend waiting for a SIGCHLD signal. */
3467 if (options & __WCLONE)
3468 {
3469 if (target_options & TARGET_WNOHANG)
3470 {
3471 /* No interesting event. */
3472 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3473
3474 if (debug_linux_nat_async)
3475 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3476
3477 restore_child_signals_mask (&prev_mask);
3478 return minus_one_ptid;
3479 }
3480
3481 sigsuspend (&suspend_mask);
3482 }
3483 }
3484 else if (target_options & TARGET_WNOHANG)
3485 {
3486 /* No interesting event for PID yet. */
3487 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3488
3489 if (debug_linux_nat_async)
3490 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3491
3492 restore_child_signals_mask (&prev_mask);
3493 return minus_one_ptid;
3494 }
3495
3496 /* We shouldn't end up here unless we want to try again. */
3497 gdb_assert (lp == NULL);
3498 }
3499
3500 if (!target_can_async_p ())
3501 clear_sigint_trap ();
3502
3503 gdb_assert (lp);
3504
3505 status = lp->status;
3506 lp->status = 0;
3507
3508 /* Don't report signals that GDB isn't interested in, such as
3509 signals that are neither printed nor stopped upon. Stopping all
3510 threads can be a bit time-consuming so if we want decent
3511 performance with heavily multi-threaded programs, especially when
3512 they're using a high frequency timer, we'd better avoid it if we
3513 can. */
3514
3515 if (WIFSTOPPED (status))
3516 {
3517 int signo = target_signal_from_host (WSTOPSIG (status));
3518 struct inferior *inf;
3519
3520 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3521 gdb_assert (inf);
3522
3523 /* Defer to common code if we get a signal while
3524 single-stepping, since that may need special care, e.g. to
3525 skip the signal handler, or, if we're gaining control of the
3526 inferior. */
3527 if (!lp->step
3528 && inf->stop_soon == NO_STOP_QUIETLY
3529 && signal_stop_state (signo) == 0
3530 && signal_print_state (signo) == 0
3531 && signal_pass_state (signo) == 1)
3532 {
3533 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3534 here? It is not clear we should. GDB may not expect
3535 other threads to run. On the other hand, not resuming
3536 newly attached threads may cause an unwanted delay in
3537 getting them running. */
3538 registers_changed ();
3539 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3540 lp->step, signo);
3541 if (debug_linux_nat)
3542 fprintf_unfiltered (gdb_stdlog,
3543 "LLW: %s %s, %s (preempt 'handle')\n",
3544 lp->step ?
3545 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3546 target_pid_to_str (lp->ptid),
3547 signo ? strsignal (signo) : "0");
3548 lp->stopped = 0;
3549 goto retry;
3550 }
3551
3552 if (!non_stop)
3553 {
3554 /* Only do the below in all-stop, as we currently use SIGINT
3555 to implement target_stop (see linux_nat_stop) in
3556 non-stop. */
3557 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3558 {
3559 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3560 forwarded to the entire process group, that is, all LWPs
3561 will receive it - unless they're using CLONE_THREAD to
3562 share signals. Since we only want to report it once, we
3563 mark it as ignored for all LWPs except this one. */
3564 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3565 set_ignore_sigint, NULL);
3566 lp->ignore_sigint = 0;
3567 }
3568 else
3569 maybe_clear_ignore_sigint (lp);
3570 }
3571 }
3572
3573 /* This LWP is stopped now. */
3574 lp->stopped = 1;
3575
3576 if (debug_linux_nat)
3577 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3578 status_to_str (status), target_pid_to_str (lp->ptid));
3579
3580 if (!non_stop)
3581 {
3582 /* Now stop all other LWP's ... */
3583 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3584
3585 /* ... and wait until all of them have reported back that
3586 they're no longer running. */
3587 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3588
3589 /* If we're not waiting for a specific LWP, choose an event LWP
3590 from among those that have had events. Giving equal priority
3591 to all LWPs that have had events helps prevent
3592 starvation. */
3593 if (pid == -1)
3594 select_event_lwp (ptid, &lp, &status);
3595
3596 /* Now that we've selected our final event LWP, cancel any
3597 breakpoints in other LWPs that have hit a GDB breakpoint.
3598 See the comment in cancel_breakpoints_callback to find out
3599 why. */
3600 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3601
3602 /* In all-stop, from the core's perspective, all LWPs are now
3603 stopped until a new resume action is sent over. */
3604 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3605 }
3606 else
3607 lp->resumed = 0;
3608
3609 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3610 {
3611 if (debug_linux_nat)
3612 fprintf_unfiltered (gdb_stdlog,
3613 "LLW: trap ptid is %s.\n",
3614 target_pid_to_str (lp->ptid));
3615 }
3616
3617 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3618 {
3619 *ourstatus = lp->waitstatus;
3620 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3621 }
3622 else
3623 store_waitstatus (ourstatus, status);
3624
3625 if (debug_linux_nat_async)
3626 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3627
3628 restore_child_signals_mask (&prev_mask);
3629
3630 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3631 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3632 lp->core = -1;
3633 else
3634 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3635
3636 return lp->ptid;
3637 }
3638
3639 /* Resume LWPs that are currently stopped without any pending status
3640 to report, but are resumed from the core's perspective. */
3641
3642 static int
3643 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3644 {
3645 ptid_t *wait_ptid_p = data;
3646
3647 if (lp->stopped
3648 && lp->resumed
3649 && lp->status == 0
3650 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3651 {
3652 gdb_assert (is_executing (lp->ptid));
3653
3654 /* Don't bother if there's a breakpoint at PC that we'd hit
3655 immediately, and we're not waiting for this LWP. */
3656 if (!ptid_match (lp->ptid, *wait_ptid_p))
3657 {
3658 struct regcache *regcache = get_thread_regcache (lp->ptid);
3659 CORE_ADDR pc = regcache_read_pc (regcache);
3660
3661 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3662 return 0;
3663 }
3664
3665 if (debug_linux_nat)
3666 fprintf_unfiltered (gdb_stdlog,
3667 "RSRL: resuming stopped-resumed LWP %s\n",
3668 target_pid_to_str (lp->ptid));
3669
3670 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3671 lp->step, TARGET_SIGNAL_0);
3672 lp->stopped = 0;
3673 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3674 lp->stopped_by_watchpoint = 0;
3675 }
3676
3677 return 0;
3678 }
3679
3680 static ptid_t
3681 linux_nat_wait (struct target_ops *ops,
3682 ptid_t ptid, struct target_waitstatus *ourstatus,
3683 int target_options)
3684 {
3685 ptid_t event_ptid;
3686
3687 if (debug_linux_nat)
3688 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3689
3690 /* Flush the async file first. */
3691 if (target_can_async_p ())
3692 async_file_flush ();
3693
3694 /* Resume LWPs that are currently stopped without any pending status
3695 to report, but are resumed from the core's perspective. LWPs get
3696 in this state if we find them stopping at a time we're not
3697 interested in reporting the event (target_wait on a
3698 specific_process, for example, see linux_nat_wait_1), and
3699 meanwhile the event became uninteresting. Don't bother resuming
3700 LWPs we're not going to wait for if they'd stop immediately. */
3701 if (non_stop)
3702 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3703
3704 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3705
3706 /* If we requested any event, and something came out, assume there
3707 may be more. If we requested a specific lwp or process, also
3708 assume there may be more. */
3709 if (target_can_async_p ()
3710 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3711 || !ptid_equal (ptid, minus_one_ptid)))
3712 async_file_mark ();
3713
3714 /* Get ready for the next event. */
3715 if (target_can_async_p ())
3716 target_async (inferior_event_handler, 0);
3717
3718 return event_ptid;
3719 }
3720
3721 static int
3722 kill_callback (struct lwp_info *lp, void *data)
3723 {
3724 errno = 0;
3725 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3726 if (debug_linux_nat)
3727 fprintf_unfiltered (gdb_stdlog,
3728 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3729 target_pid_to_str (lp->ptid),
3730 errno ? safe_strerror (errno) : "OK");
3731
3732 return 0;
3733 }
3734
3735 static int
3736 kill_wait_callback (struct lwp_info *lp, void *data)
3737 {
3738 pid_t pid;
3739
3740 /* We must make sure that there are no pending events (delayed
3741 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3742 program doesn't interfere with any following debugging session. */
3743
3744 /* For cloned processes we must check both with __WCLONE and
3745 without, since the exit status of a cloned process isn't reported
3746 with __WCLONE. */
3747 if (lp->cloned)
3748 {
3749 do
3750 {
3751 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3752 if (pid != (pid_t) -1)
3753 {
3754 if (debug_linux_nat)
3755 fprintf_unfiltered (gdb_stdlog,
3756 "KWC: wait %s received unknown.\n",
3757 target_pid_to_str (lp->ptid));
3758 /* The Linux kernel sometimes fails to kill a thread
3759 completely after PTRACE_KILL; that goes from the stop
3760 point in do_fork out to the one in
3761 get_signal_to_deliever and waits again. So kill it
3762 again. */
3763 kill_callback (lp, NULL);
3764 }
3765 }
3766 while (pid == GET_LWP (lp->ptid));
3767
3768 gdb_assert (pid == -1 && errno == ECHILD);
3769 }
3770
3771 do
3772 {
3773 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3774 if (pid != (pid_t) -1)
3775 {
3776 if (debug_linux_nat)
3777 fprintf_unfiltered (gdb_stdlog,
3778 "KWC: wait %s received unk.\n",
3779 target_pid_to_str (lp->ptid));
3780 /* See the call to kill_callback above. */
3781 kill_callback (lp, NULL);
3782 }
3783 }
3784 while (pid == GET_LWP (lp->ptid));
3785
3786 gdb_assert (pid == -1 && errno == ECHILD);
3787 return 0;
3788 }
3789
3790 static void
3791 linux_nat_kill (struct target_ops *ops)
3792 {
3793 struct target_waitstatus last;
3794 ptid_t last_ptid;
3795 int status;
3796
3797 /* If we're stopped while forking and we haven't followed yet,
3798 kill the other task. We need to do this first because the
3799 parent will be sleeping if this is a vfork. */
3800
3801 get_last_target_status (&last_ptid, &last);
3802
3803 if (last.kind == TARGET_WAITKIND_FORKED
3804 || last.kind == TARGET_WAITKIND_VFORKED)
3805 {
3806 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3807 wait (&status);
3808 }
3809
3810 if (forks_exist_p ())
3811 linux_fork_killall ();
3812 else
3813 {
3814 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3815
3816 /* Stop all threads before killing them, since ptrace requires
3817 that the thread is stopped to sucessfully PTRACE_KILL. */
3818 iterate_over_lwps (ptid, stop_callback, NULL);
3819 /* ... and wait until all of them have reported back that
3820 they're no longer running. */
3821 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3822
3823 /* Kill all LWP's ... */
3824 iterate_over_lwps (ptid, kill_callback, NULL);
3825
3826 /* ... and wait until we've flushed all events. */
3827 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3828 }
3829
3830 target_mourn_inferior ();
3831 }
3832
3833 static void
3834 linux_nat_mourn_inferior (struct target_ops *ops)
3835 {
3836 purge_lwp_list (ptid_get_pid (inferior_ptid));
3837
3838 if (! forks_exist_p ())
3839 /* Normal case, no other forks available. */
3840 linux_ops->to_mourn_inferior (ops);
3841 else
3842 /* Multi-fork case. The current inferior_ptid has exited, but
3843 there are other viable forks to debug. Delete the exiting
3844 one and context-switch to the first available. */
3845 linux_fork_mourn_inferior ();
3846 }
3847
3848 /* Convert a native/host siginfo object, into/from the siginfo in the
3849 layout of the inferiors' architecture. */
3850
3851 static void
3852 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3853 {
3854 int done = 0;
3855
3856 if (linux_nat_siginfo_fixup != NULL)
3857 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3858
3859 /* If there was no callback, or the callback didn't do anything,
3860 then just do a straight memcpy. */
3861 if (!done)
3862 {
3863 if (direction == 1)
3864 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3865 else
3866 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3867 }
3868 }
3869
3870 static LONGEST
3871 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3872 const char *annex, gdb_byte *readbuf,
3873 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3874 {
3875 int pid;
3876 struct siginfo siginfo;
3877 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3878
3879 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3880 gdb_assert (readbuf || writebuf);
3881
3882 pid = GET_LWP (inferior_ptid);
3883 if (pid == 0)
3884 pid = GET_PID (inferior_ptid);
3885
3886 if (offset > sizeof (siginfo))
3887 return -1;
3888
3889 errno = 0;
3890 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3891 if (errno != 0)
3892 return -1;
3893
3894 /* When GDB is built as a 64-bit application, ptrace writes into
3895 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3896 inferior with a 64-bit GDB should look the same as debugging it
3897 with a 32-bit GDB, we need to convert it. GDB core always sees
3898 the converted layout, so any read/write will have to be done
3899 post-conversion. */
3900 siginfo_fixup (&siginfo, inf_siginfo, 0);
3901
3902 if (offset + len > sizeof (siginfo))
3903 len = sizeof (siginfo) - offset;
3904
3905 if (readbuf != NULL)
3906 memcpy (readbuf, inf_siginfo + offset, len);
3907 else
3908 {
3909 memcpy (inf_siginfo + offset, writebuf, len);
3910
3911 /* Convert back to ptrace layout before flushing it out. */
3912 siginfo_fixup (&siginfo, inf_siginfo, 1);
3913
3914 errno = 0;
3915 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3916 if (errno != 0)
3917 return -1;
3918 }
3919
3920 return len;
3921 }
3922
3923 static LONGEST
3924 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3925 const char *annex, gdb_byte *readbuf,
3926 const gdb_byte *writebuf,
3927 ULONGEST offset, LONGEST len)
3928 {
3929 struct cleanup *old_chain;
3930 LONGEST xfer;
3931
3932 if (object == TARGET_OBJECT_SIGNAL_INFO)
3933 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3934 offset, len);
3935
3936 /* The target is connected but no live inferior is selected. Pass
3937 this request down to a lower stratum (e.g., the executable
3938 file). */
3939 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3940 return 0;
3941
3942 old_chain = save_inferior_ptid ();
3943
3944 if (is_lwp (inferior_ptid))
3945 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3946
3947 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3948 offset, len);
3949
3950 do_cleanups (old_chain);
3951 return xfer;
3952 }
3953
3954 static int
3955 linux_thread_alive (ptid_t ptid)
3956 {
3957 int err;
3958
3959 gdb_assert (is_lwp (ptid));
3960
3961 /* Send signal 0 instead of anything ptrace, because ptracing a
3962 running thread errors out claiming that the thread doesn't
3963 exist. */
3964 err = kill_lwp (GET_LWP (ptid), 0);
3965
3966 if (debug_linux_nat)
3967 fprintf_unfiltered (gdb_stdlog,
3968 "LLTA: KILL(SIG0) %s (%s)\n",
3969 target_pid_to_str (ptid),
3970 err ? safe_strerror (err) : "OK");
3971
3972 if (err != 0)
3973 return 0;
3974
3975 return 1;
3976 }
3977
3978 static int
3979 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3980 {
3981 return linux_thread_alive (ptid);
3982 }
3983
3984 static char *
3985 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3986 {
3987 static char buf[64];
3988
3989 if (is_lwp (ptid)
3990 && (GET_PID (ptid) != GET_LWP (ptid)
3991 || num_lwps (GET_PID (ptid)) > 1))
3992 {
3993 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3994 return buf;
3995 }
3996
3997 return normal_pid_to_str (ptid);
3998 }
3999
4000 /* Accepts an integer PID; Returns a string representing a file that
4001 can be opened to get the symbols for the child process. */
4002
4003 static char *
4004 linux_child_pid_to_exec_file (int pid)
4005 {
4006 char *name1, *name2;
4007
4008 name1 = xmalloc (MAXPATHLEN);
4009 name2 = xmalloc (MAXPATHLEN);
4010 make_cleanup (xfree, name1);
4011 make_cleanup (xfree, name2);
4012 memset (name2, 0, MAXPATHLEN);
4013
4014 sprintf (name1, "/proc/%d/exe", pid);
4015 if (readlink (name1, name2, MAXPATHLEN) > 0)
4016 return name2;
4017 else
4018 return name1;
4019 }
4020
4021 /* Service function for corefiles and info proc. */
4022
4023 static int
4024 read_mapping (FILE *mapfile,
4025 long long *addr,
4026 long long *endaddr,
4027 char *permissions,
4028 long long *offset,
4029 char *device, long long *inode, char *filename)
4030 {
4031 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4032 addr, endaddr, permissions, offset, device, inode);
4033
4034 filename[0] = '\0';
4035 if (ret > 0 && ret != EOF)
4036 {
4037 /* Eat everything up to EOL for the filename. This will prevent
4038 weird filenames (such as one with embedded whitespace) from
4039 confusing this code. It also makes this code more robust in
4040 respect to annotations the kernel may add after the filename.
4041
4042 Note the filename is used for informational purposes
4043 only. */
4044 ret += fscanf (mapfile, "%[^\n]\n", filename);
4045 }
4046
4047 return (ret != 0 && ret != EOF);
4048 }
4049
4050 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4051 regions in the inferior for a corefile. */
4052
4053 static int
4054 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4055 unsigned long,
4056 int, int, int, void *), void *obfd)
4057 {
4058 int pid = PIDGET (inferior_ptid);
4059 char mapsfilename[MAXPATHLEN];
4060 FILE *mapsfile;
4061 long long addr, endaddr, size, offset, inode;
4062 char permissions[8], device[8], filename[MAXPATHLEN];
4063 int read, write, exec;
4064 struct cleanup *cleanup;
4065
4066 /* Compose the filename for the /proc memory map, and open it. */
4067 sprintf (mapsfilename, "/proc/%d/maps", pid);
4068 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4069 error (_("Could not open %s."), mapsfilename);
4070 cleanup = make_cleanup_fclose (mapsfile);
4071
4072 if (info_verbose)
4073 fprintf_filtered (gdb_stdout,
4074 "Reading memory regions from %s\n", mapsfilename);
4075
4076 /* Now iterate until end-of-file. */
4077 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4078 &offset, &device[0], &inode, &filename[0]))
4079 {
4080 size = endaddr - addr;
4081
4082 /* Get the segment's permissions. */
4083 read = (strchr (permissions, 'r') != 0);
4084 write = (strchr (permissions, 'w') != 0);
4085 exec = (strchr (permissions, 'x') != 0);
4086
4087 if (info_verbose)
4088 {
4089 fprintf_filtered (gdb_stdout,
4090 "Save segment, %s bytes at %s (%c%c%c)",
4091 plongest (size), paddress (target_gdbarch, addr),
4092 read ? 'r' : ' ',
4093 write ? 'w' : ' ', exec ? 'x' : ' ');
4094 if (filename[0])
4095 fprintf_filtered (gdb_stdout, " for %s", filename);
4096 fprintf_filtered (gdb_stdout, "\n");
4097 }
4098
4099 /* Invoke the callback function to create the corefile
4100 segment. */
4101 func (addr, size, read, write, exec, obfd);
4102 }
4103 do_cleanups (cleanup);
4104 return 0;
4105 }
4106
4107 static int
4108 find_signalled_thread (struct thread_info *info, void *data)
4109 {
4110 if (info->stop_signal != TARGET_SIGNAL_0
4111 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4112 return 1;
4113
4114 return 0;
4115 }
4116
4117 static enum target_signal
4118 find_stop_signal (void)
4119 {
4120 struct thread_info *info =
4121 iterate_over_threads (find_signalled_thread, NULL);
4122
4123 if (info)
4124 return info->stop_signal;
4125 else
4126 return TARGET_SIGNAL_0;
4127 }
4128
4129 /* Records the thread's register state for the corefile note
4130 section. */
4131
4132 static char *
4133 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4134 char *note_data, int *note_size,
4135 enum target_signal stop_signal)
4136 {
4137 unsigned long lwp = ptid_get_lwp (ptid);
4138 struct gdbarch *gdbarch = target_gdbarch;
4139 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4140 const struct regset *regset;
4141 int core_regset_p;
4142 struct cleanup *old_chain;
4143 struct core_regset_section *sect_list;
4144 char *gdb_regset;
4145
4146 old_chain = save_inferior_ptid ();
4147 inferior_ptid = ptid;
4148 target_fetch_registers (regcache, -1);
4149 do_cleanups (old_chain);
4150
4151 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4152 sect_list = gdbarch_core_regset_sections (gdbarch);
4153
4154 /* The loop below uses the new struct core_regset_section, which stores
4155 the supported section names and sizes for the core file. Note that
4156 note PRSTATUS needs to be treated specially. But the other notes are
4157 structurally the same, so they can benefit from the new struct. */
4158 if (core_regset_p && sect_list != NULL)
4159 while (sect_list->sect_name != NULL)
4160 {
4161 regset = gdbarch_regset_from_core_section (gdbarch,
4162 sect_list->sect_name,
4163 sect_list->size);
4164 gdb_assert (regset && regset->collect_regset);
4165 gdb_regset = xmalloc (sect_list->size);
4166 regset->collect_regset (regset, regcache, -1,
4167 gdb_regset, sect_list->size);
4168
4169 if (strcmp (sect_list->sect_name, ".reg") == 0)
4170 note_data = (char *) elfcore_write_prstatus
4171 (obfd, note_data, note_size,
4172 lwp, stop_signal, gdb_regset);
4173 else
4174 note_data = (char *) elfcore_write_register_note
4175 (obfd, note_data, note_size,
4176 sect_list->sect_name, gdb_regset,
4177 sect_list->size);
4178 xfree (gdb_regset);
4179 sect_list++;
4180 }
4181
4182 /* For architectures that does not have the struct core_regset_section
4183 implemented, we use the old method. When all the architectures have
4184 the new support, the code below should be deleted. */
4185 else
4186 {
4187 gdb_gregset_t gregs;
4188 gdb_fpregset_t fpregs;
4189
4190 if (core_regset_p
4191 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4192 sizeof (gregs))) != NULL
4193 && regset->collect_regset != NULL)
4194 regset->collect_regset (regset, regcache, -1,
4195 &gregs, sizeof (gregs));
4196 else
4197 fill_gregset (regcache, &gregs, -1);
4198
4199 note_data = (char *) elfcore_write_prstatus (obfd,
4200 note_data,
4201 note_size,
4202 lwp,
4203 stop_signal, &gregs);
4204
4205 if (core_regset_p
4206 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4207 sizeof (fpregs))) != NULL
4208 && regset->collect_regset != NULL)
4209 regset->collect_regset (regset, regcache, -1,
4210 &fpregs, sizeof (fpregs));
4211 else
4212 fill_fpregset (regcache, &fpregs, -1);
4213
4214 note_data = (char *) elfcore_write_prfpreg (obfd,
4215 note_data,
4216 note_size,
4217 &fpregs, sizeof (fpregs));
4218 }
4219
4220 return note_data;
4221 }
4222
4223 struct linux_nat_corefile_thread_data
4224 {
4225 bfd *obfd;
4226 char *note_data;
4227 int *note_size;
4228 int num_notes;
4229 enum target_signal stop_signal;
4230 };
4231
4232 /* Called by gdbthread.c once per thread. Records the thread's
4233 register state for the corefile note section. */
4234
4235 static int
4236 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4237 {
4238 struct linux_nat_corefile_thread_data *args = data;
4239
4240 args->note_data = linux_nat_do_thread_registers (args->obfd,
4241 ti->ptid,
4242 args->note_data,
4243 args->note_size,
4244 args->stop_signal);
4245 args->num_notes++;
4246
4247 return 0;
4248 }
4249
4250 /* Enumerate spufs IDs for process PID. */
4251
4252 static void
4253 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4254 {
4255 char path[128];
4256 DIR *dir;
4257 struct dirent *entry;
4258
4259 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4260 dir = opendir (path);
4261 if (!dir)
4262 return;
4263
4264 rewinddir (dir);
4265 while ((entry = readdir (dir)) != NULL)
4266 {
4267 struct stat st;
4268 struct statfs stfs;
4269 int fd;
4270
4271 fd = atoi (entry->d_name);
4272 if (!fd)
4273 continue;
4274
4275 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4276 if (stat (path, &st) != 0)
4277 continue;
4278 if (!S_ISDIR (st.st_mode))
4279 continue;
4280
4281 if (statfs (path, &stfs) != 0)
4282 continue;
4283 if (stfs.f_type != SPUFS_MAGIC)
4284 continue;
4285
4286 callback (data, fd);
4287 }
4288
4289 closedir (dir);
4290 }
4291
4292 /* Generate corefile notes for SPU contexts. */
4293
4294 struct linux_spu_corefile_data
4295 {
4296 bfd *obfd;
4297 char *note_data;
4298 int *note_size;
4299 };
4300
4301 static void
4302 linux_spu_corefile_callback (void *data, int fd)
4303 {
4304 struct linux_spu_corefile_data *args = data;
4305 int i;
4306
4307 static const char *spu_files[] =
4308 {
4309 "object-id",
4310 "mem",
4311 "regs",
4312 "fpcr",
4313 "lslr",
4314 "decr",
4315 "decr_status",
4316 "signal1",
4317 "signal1_type",
4318 "signal2",
4319 "signal2_type",
4320 "event_mask",
4321 "event_status",
4322 "mbox_info",
4323 "ibox_info",
4324 "wbox_info",
4325 "dma_info",
4326 "proxydma_info",
4327 };
4328
4329 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4330 {
4331 char annex[32], note_name[32];
4332 gdb_byte *spu_data;
4333 LONGEST spu_len;
4334
4335 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4336 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4337 annex, &spu_data);
4338 if (spu_len > 0)
4339 {
4340 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4341 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4342 args->note_size, note_name,
4343 NT_SPU, spu_data, spu_len);
4344 xfree (spu_data);
4345 }
4346 }
4347 }
4348
4349 static char *
4350 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4351 {
4352 struct linux_spu_corefile_data args;
4353
4354 args.obfd = obfd;
4355 args.note_data = note_data;
4356 args.note_size = note_size;
4357
4358 iterate_over_spus (PIDGET (inferior_ptid),
4359 linux_spu_corefile_callback, &args);
4360
4361 return args.note_data;
4362 }
4363
4364 /* Fills the "to_make_corefile_note" target vector. Builds the note
4365 section for a corefile, and returns it in a malloc buffer. */
4366
4367 static char *
4368 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4369 {
4370 struct linux_nat_corefile_thread_data thread_args;
4371 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4372 char fname[16] = { '\0' };
4373 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4374 char psargs[80] = { '\0' };
4375 char *note_data = NULL;
4376 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4377 gdb_byte *auxv;
4378 int auxv_len;
4379
4380 if (get_exec_file (0))
4381 {
4382 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4383 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4384 if (get_inferior_args ())
4385 {
4386 char *string_end;
4387 char *psargs_end = psargs + sizeof (psargs);
4388
4389 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4390 strings fine. */
4391 string_end = memchr (psargs, 0, sizeof (psargs));
4392 if (string_end != NULL)
4393 {
4394 *string_end++ = ' ';
4395 strncpy (string_end, get_inferior_args (),
4396 psargs_end - string_end);
4397 }
4398 }
4399 note_data = (char *) elfcore_write_prpsinfo (obfd,
4400 note_data,
4401 note_size, fname, psargs);
4402 }
4403
4404 /* Dump information for threads. */
4405 thread_args.obfd = obfd;
4406 thread_args.note_data = note_data;
4407 thread_args.note_size = note_size;
4408 thread_args.num_notes = 0;
4409 thread_args.stop_signal = find_stop_signal ();
4410 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4411 gdb_assert (thread_args.num_notes != 0);
4412 note_data = thread_args.note_data;
4413
4414 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4415 NULL, &auxv);
4416 if (auxv_len > 0)
4417 {
4418 note_data = elfcore_write_note (obfd, note_data, note_size,
4419 "CORE", NT_AUXV, auxv, auxv_len);
4420 xfree (auxv);
4421 }
4422
4423 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4424
4425 make_cleanup (xfree, note_data);
4426 return note_data;
4427 }
4428
4429 /* Implement the "info proc" command. */
4430
4431 static void
4432 linux_nat_info_proc_cmd (char *args, int from_tty)
4433 {
4434 /* A long is used for pid instead of an int to avoid a loss of precision
4435 compiler warning from the output of strtoul. */
4436 long pid = PIDGET (inferior_ptid);
4437 FILE *procfile;
4438 char **argv = NULL;
4439 char buffer[MAXPATHLEN];
4440 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4441 int cmdline_f = 1;
4442 int cwd_f = 1;
4443 int exe_f = 1;
4444 int mappings_f = 0;
4445 int status_f = 0;
4446 int stat_f = 0;
4447 int all = 0;
4448 struct stat dummy;
4449
4450 if (args)
4451 {
4452 /* Break up 'args' into an argv array. */
4453 argv = gdb_buildargv (args);
4454 make_cleanup_freeargv (argv);
4455 }
4456 while (argv != NULL && *argv != NULL)
4457 {
4458 if (isdigit (argv[0][0]))
4459 {
4460 pid = strtoul (argv[0], NULL, 10);
4461 }
4462 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4463 {
4464 mappings_f = 1;
4465 }
4466 else if (strcmp (argv[0], "status") == 0)
4467 {
4468 status_f = 1;
4469 }
4470 else if (strcmp (argv[0], "stat") == 0)
4471 {
4472 stat_f = 1;
4473 }
4474 else if (strcmp (argv[0], "cmd") == 0)
4475 {
4476 cmdline_f = 1;
4477 }
4478 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4479 {
4480 exe_f = 1;
4481 }
4482 else if (strcmp (argv[0], "cwd") == 0)
4483 {
4484 cwd_f = 1;
4485 }
4486 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4487 {
4488 all = 1;
4489 }
4490 else
4491 {
4492 /* [...] (future options here) */
4493 }
4494 argv++;
4495 }
4496 if (pid == 0)
4497 error (_("No current process: you must name one."));
4498
4499 sprintf (fname1, "/proc/%ld", pid);
4500 if (stat (fname1, &dummy) != 0)
4501 error (_("No /proc directory: '%s'"), fname1);
4502
4503 printf_filtered (_("process %ld\n"), pid);
4504 if (cmdline_f || all)
4505 {
4506 sprintf (fname1, "/proc/%ld/cmdline", pid);
4507 if ((procfile = fopen (fname1, "r")) != NULL)
4508 {
4509 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4510
4511 if (fgets (buffer, sizeof (buffer), procfile))
4512 printf_filtered ("cmdline = '%s'\n", buffer);
4513 else
4514 warning (_("unable to read '%s'"), fname1);
4515 do_cleanups (cleanup);
4516 }
4517 else
4518 warning (_("unable to open /proc file '%s'"), fname1);
4519 }
4520 if (cwd_f || all)
4521 {
4522 sprintf (fname1, "/proc/%ld/cwd", pid);
4523 memset (fname2, 0, sizeof (fname2));
4524 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4525 printf_filtered ("cwd = '%s'\n", fname2);
4526 else
4527 warning (_("unable to read link '%s'"), fname1);
4528 }
4529 if (exe_f || all)
4530 {
4531 sprintf (fname1, "/proc/%ld/exe", pid);
4532 memset (fname2, 0, sizeof (fname2));
4533 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4534 printf_filtered ("exe = '%s'\n", fname2);
4535 else
4536 warning (_("unable to read link '%s'"), fname1);
4537 }
4538 if (mappings_f || all)
4539 {
4540 sprintf (fname1, "/proc/%ld/maps", pid);
4541 if ((procfile = fopen (fname1, "r")) != NULL)
4542 {
4543 long long addr, endaddr, size, offset, inode;
4544 char permissions[8], device[8], filename[MAXPATHLEN];
4545 struct cleanup *cleanup;
4546
4547 cleanup = make_cleanup_fclose (procfile);
4548 printf_filtered (_("Mapped address spaces:\n\n"));
4549 if (gdbarch_addr_bit (target_gdbarch) == 32)
4550 {
4551 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4552 "Start Addr",
4553 " End Addr",
4554 " Size", " Offset", "objfile");
4555 }
4556 else
4557 {
4558 printf_filtered (" %18s %18s %10s %10s %7s\n",
4559 "Start Addr",
4560 " End Addr",
4561 " Size", " Offset", "objfile");
4562 }
4563
4564 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4565 &offset, &device[0], &inode, &filename[0]))
4566 {
4567 size = endaddr - addr;
4568
4569 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4570 calls here (and possibly above) should be abstracted
4571 out into their own functions? Andrew suggests using
4572 a generic local_address_string instead to print out
4573 the addresses; that makes sense to me, too. */
4574
4575 if (gdbarch_addr_bit (target_gdbarch) == 32)
4576 {
4577 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4578 (unsigned long) addr, /* FIXME: pr_addr */
4579 (unsigned long) endaddr,
4580 (int) size,
4581 (unsigned int) offset,
4582 filename[0] ? filename : "");
4583 }
4584 else
4585 {
4586 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4587 (unsigned long) addr, /* FIXME: pr_addr */
4588 (unsigned long) endaddr,
4589 (int) size,
4590 (unsigned int) offset,
4591 filename[0] ? filename : "");
4592 }
4593 }
4594
4595 do_cleanups (cleanup);
4596 }
4597 else
4598 warning (_("unable to open /proc file '%s'"), fname1);
4599 }
4600 if (status_f || all)
4601 {
4602 sprintf (fname1, "/proc/%ld/status", pid);
4603 if ((procfile = fopen (fname1, "r")) != NULL)
4604 {
4605 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4606
4607 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4608 puts_filtered (buffer);
4609 do_cleanups (cleanup);
4610 }
4611 else
4612 warning (_("unable to open /proc file '%s'"), fname1);
4613 }
4614 if (stat_f || all)
4615 {
4616 sprintf (fname1, "/proc/%ld/stat", pid);
4617 if ((procfile = fopen (fname1, "r")) != NULL)
4618 {
4619 int itmp;
4620 char ctmp;
4621 long ltmp;
4622 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4623
4624 if (fscanf (procfile, "%d ", &itmp) > 0)
4625 printf_filtered (_("Process: %d\n"), itmp);
4626 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4627 printf_filtered (_("Exec file: %s\n"), buffer);
4628 if (fscanf (procfile, "%c ", &ctmp) > 0)
4629 printf_filtered (_("State: %c\n"), ctmp);
4630 if (fscanf (procfile, "%d ", &itmp) > 0)
4631 printf_filtered (_("Parent process: %d\n"), itmp);
4632 if (fscanf (procfile, "%d ", &itmp) > 0)
4633 printf_filtered (_("Process group: %d\n"), itmp);
4634 if (fscanf (procfile, "%d ", &itmp) > 0)
4635 printf_filtered (_("Session id: %d\n"), itmp);
4636 if (fscanf (procfile, "%d ", &itmp) > 0)
4637 printf_filtered (_("TTY: %d\n"), itmp);
4638 if (fscanf (procfile, "%d ", &itmp) > 0)
4639 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4640 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4641 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4642 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4643 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4644 (unsigned long) ltmp);
4645 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4646 printf_filtered (_("Minor faults, children: %lu\n"),
4647 (unsigned long) ltmp);
4648 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4649 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4650 (unsigned long) ltmp);
4651 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4652 printf_filtered (_("Major faults, children: %lu\n"),
4653 (unsigned long) ltmp);
4654 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4655 printf_filtered (_("utime: %ld\n"), ltmp);
4656 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4657 printf_filtered (_("stime: %ld\n"), ltmp);
4658 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4659 printf_filtered (_("utime, children: %ld\n"), ltmp);
4660 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4661 printf_filtered (_("stime, children: %ld\n"), ltmp);
4662 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4663 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4664 ltmp);
4665 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4666 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4667 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4668 printf_filtered (_("jiffies until next timeout: %lu\n"),
4669 (unsigned long) ltmp);
4670 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4671 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4672 (unsigned long) ltmp);
4673 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4674 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4675 ltmp);
4676 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4677 printf_filtered (_("Virtual memory size: %lu\n"),
4678 (unsigned long) ltmp);
4679 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4680 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4681 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4682 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4683 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4684 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4685 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4686 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4687 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4688 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4689 #if 0 /* Don't know how architecture-dependent the rest is...
4690 Anyway the signal bitmap info is available from "status". */
4691 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4692 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4693 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4694 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4695 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4696 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4697 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4698 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4699 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4700 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4701 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4702 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4703 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4704 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4705 #endif
4706 do_cleanups (cleanup);
4707 }
4708 else
4709 warning (_("unable to open /proc file '%s'"), fname1);
4710 }
4711 }
4712
4713 /* Implement the to_xfer_partial interface for memory reads using the /proc
4714 filesystem. Because we can use a single read() call for /proc, this
4715 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4716 but it doesn't support writes. */
4717
4718 static LONGEST
4719 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4720 const char *annex, gdb_byte *readbuf,
4721 const gdb_byte *writebuf,
4722 ULONGEST offset, LONGEST len)
4723 {
4724 LONGEST ret;
4725 int fd;
4726 char filename[64];
4727
4728 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4729 return 0;
4730
4731 /* Don't bother for one word. */
4732 if (len < 3 * sizeof (long))
4733 return 0;
4734
4735 /* We could keep this file open and cache it - possibly one per
4736 thread. That requires some juggling, but is even faster. */
4737 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4738 fd = open (filename, O_RDONLY | O_LARGEFILE);
4739 if (fd == -1)
4740 return 0;
4741
4742 /* If pread64 is available, use it. It's faster if the kernel
4743 supports it (only one syscall), and it's 64-bit safe even on
4744 32-bit platforms (for instance, SPARC debugging a SPARC64
4745 application). */
4746 #ifdef HAVE_PREAD64
4747 if (pread64 (fd, readbuf, len, offset) != len)
4748 #else
4749 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4750 #endif
4751 ret = 0;
4752 else
4753 ret = len;
4754
4755 close (fd);
4756 return ret;
4757 }
4758
4759
4760 /* Enumerate spufs IDs for process PID. */
4761 static LONGEST
4762 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4763 {
4764 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4765 LONGEST pos = 0;
4766 LONGEST written = 0;
4767 char path[128];
4768 DIR *dir;
4769 struct dirent *entry;
4770
4771 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4772 dir = opendir (path);
4773 if (!dir)
4774 return -1;
4775
4776 rewinddir (dir);
4777 while ((entry = readdir (dir)) != NULL)
4778 {
4779 struct stat st;
4780 struct statfs stfs;
4781 int fd;
4782
4783 fd = atoi (entry->d_name);
4784 if (!fd)
4785 continue;
4786
4787 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4788 if (stat (path, &st) != 0)
4789 continue;
4790 if (!S_ISDIR (st.st_mode))
4791 continue;
4792
4793 if (statfs (path, &stfs) != 0)
4794 continue;
4795 if (stfs.f_type != SPUFS_MAGIC)
4796 continue;
4797
4798 if (pos >= offset && pos + 4 <= offset + len)
4799 {
4800 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4801 written += 4;
4802 }
4803 pos += 4;
4804 }
4805
4806 closedir (dir);
4807 return written;
4808 }
4809
4810 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4811 object type, using the /proc file system. */
4812 static LONGEST
4813 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4814 const char *annex, gdb_byte *readbuf,
4815 const gdb_byte *writebuf,
4816 ULONGEST offset, LONGEST len)
4817 {
4818 char buf[128];
4819 int fd = 0;
4820 int ret = -1;
4821 int pid = PIDGET (inferior_ptid);
4822
4823 if (!annex)
4824 {
4825 if (!readbuf)
4826 return -1;
4827 else
4828 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4829 }
4830
4831 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4832 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4833 if (fd <= 0)
4834 return -1;
4835
4836 if (offset != 0
4837 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4838 {
4839 close (fd);
4840 return 0;
4841 }
4842
4843 if (writebuf)
4844 ret = write (fd, writebuf, (size_t) len);
4845 else if (readbuf)
4846 ret = read (fd, readbuf, (size_t) len);
4847
4848 close (fd);
4849 return ret;
4850 }
4851
4852
4853 /* Parse LINE as a signal set and add its set bits to SIGS. */
4854
4855 static void
4856 add_line_to_sigset (const char *line, sigset_t *sigs)
4857 {
4858 int len = strlen (line) - 1;
4859 const char *p;
4860 int signum;
4861
4862 if (line[len] != '\n')
4863 error (_("Could not parse signal set: %s"), line);
4864
4865 p = line;
4866 signum = len * 4;
4867 while (len-- > 0)
4868 {
4869 int digit;
4870
4871 if (*p >= '0' && *p <= '9')
4872 digit = *p - '0';
4873 else if (*p >= 'a' && *p <= 'f')
4874 digit = *p - 'a' + 10;
4875 else
4876 error (_("Could not parse signal set: %s"), line);
4877
4878 signum -= 4;
4879
4880 if (digit & 1)
4881 sigaddset (sigs, signum + 1);
4882 if (digit & 2)
4883 sigaddset (sigs, signum + 2);
4884 if (digit & 4)
4885 sigaddset (sigs, signum + 3);
4886 if (digit & 8)
4887 sigaddset (sigs, signum + 4);
4888
4889 p++;
4890 }
4891 }
4892
4893 /* Find process PID's pending signals from /proc/pid/status and set
4894 SIGS to match. */
4895
4896 void
4897 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4898 {
4899 FILE *procfile;
4900 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4901 struct cleanup *cleanup;
4902
4903 sigemptyset (pending);
4904 sigemptyset (blocked);
4905 sigemptyset (ignored);
4906 sprintf (fname, "/proc/%d/status", pid);
4907 procfile = fopen (fname, "r");
4908 if (procfile == NULL)
4909 error (_("Could not open %s"), fname);
4910 cleanup = make_cleanup_fclose (procfile);
4911
4912 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4913 {
4914 /* Normal queued signals are on the SigPnd line in the status
4915 file. However, 2.6 kernels also have a "shared" pending
4916 queue for delivering signals to a thread group, so check for
4917 a ShdPnd line also.
4918
4919 Unfortunately some Red Hat kernels include the shared pending
4920 queue but not the ShdPnd status field. */
4921
4922 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4923 add_line_to_sigset (buffer + 8, pending);
4924 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4925 add_line_to_sigset (buffer + 8, pending);
4926 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4927 add_line_to_sigset (buffer + 8, blocked);
4928 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4929 add_line_to_sigset (buffer + 8, ignored);
4930 }
4931
4932 do_cleanups (cleanup);
4933 }
4934
4935 static LONGEST
4936 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4937 const char *annex, gdb_byte *readbuf,
4938 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4939 {
4940 /* We make the process list snapshot when the object starts to be
4941 read. */
4942 static const char *buf;
4943 static LONGEST len_avail = -1;
4944 static struct obstack obstack;
4945
4946 DIR *dirp;
4947
4948 gdb_assert (object == TARGET_OBJECT_OSDATA);
4949
4950 if (!annex)
4951 {
4952 if (offset == 0)
4953 {
4954 if (len_avail != -1 && len_avail != 0)
4955 obstack_free (&obstack, NULL);
4956 len_avail = 0;
4957 buf = NULL;
4958 obstack_init (&obstack);
4959 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
4960
4961 obstack_xml_printf (
4962 &obstack,
4963 "<item>"
4964 "<column name=\"Type\">processes</column>"
4965 "<column name=\"Description\">Listing of all processes</column>"
4966 "</item>");
4967
4968 obstack_grow_str0 (&obstack, "</osdata>\n");
4969 buf = obstack_finish (&obstack);
4970 len_avail = strlen (buf);
4971 }
4972
4973 if (offset >= len_avail)
4974 {
4975 /* Done. Get rid of the obstack. */
4976 obstack_free (&obstack, NULL);
4977 buf = NULL;
4978 len_avail = 0;
4979 return 0;
4980 }
4981
4982 if (len > len_avail - offset)
4983 len = len_avail - offset;
4984 memcpy (readbuf, buf + offset, len);
4985
4986 return len;
4987 }
4988
4989 if (strcmp (annex, "processes") != 0)
4990 return 0;
4991
4992 gdb_assert (readbuf && !writebuf);
4993
4994 if (offset == 0)
4995 {
4996 if (len_avail != -1 && len_avail != 0)
4997 obstack_free (&obstack, NULL);
4998 len_avail = 0;
4999 buf = NULL;
5000 obstack_init (&obstack);
5001 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5002
5003 dirp = opendir ("/proc");
5004 if (dirp)
5005 {
5006 struct dirent *dp;
5007
5008 while ((dp = readdir (dirp)) != NULL)
5009 {
5010 struct stat statbuf;
5011 char procentry[sizeof ("/proc/4294967295")];
5012
5013 if (!isdigit (dp->d_name[0])
5014 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5015 continue;
5016
5017 sprintf (procentry, "/proc/%s", dp->d_name);
5018 if (stat (procentry, &statbuf) == 0
5019 && S_ISDIR (statbuf.st_mode))
5020 {
5021 char *pathname;
5022 FILE *f;
5023 char cmd[MAXPATHLEN + 1];
5024 struct passwd *entry;
5025
5026 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5027 entry = getpwuid (statbuf.st_uid);
5028
5029 if ((f = fopen (pathname, "r")) != NULL)
5030 {
5031 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5032
5033 if (len > 0)
5034 {
5035 int i;
5036
5037 for (i = 0; i < len; i++)
5038 if (cmd[i] == '\0')
5039 cmd[i] = ' ';
5040 cmd[len] = '\0';
5041
5042 obstack_xml_printf (
5043 &obstack,
5044 "<item>"
5045 "<column name=\"pid\">%s</column>"
5046 "<column name=\"user\">%s</column>"
5047 "<column name=\"command\">%s</column>"
5048 "</item>",
5049 dp->d_name,
5050 entry ? entry->pw_name : "?",
5051 cmd);
5052 }
5053 fclose (f);
5054 }
5055
5056 xfree (pathname);
5057 }
5058 }
5059
5060 closedir (dirp);
5061 }
5062
5063 obstack_grow_str0 (&obstack, "</osdata>\n");
5064 buf = obstack_finish (&obstack);
5065 len_avail = strlen (buf);
5066 }
5067
5068 if (offset >= len_avail)
5069 {
5070 /* Done. Get rid of the obstack. */
5071 obstack_free (&obstack, NULL);
5072 buf = NULL;
5073 len_avail = 0;
5074 return 0;
5075 }
5076
5077 if (len > len_avail - offset)
5078 len = len_avail - offset;
5079 memcpy (readbuf, buf + offset, len);
5080
5081 return len;
5082 }
5083
5084 static LONGEST
5085 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5086 const char *annex, gdb_byte *readbuf,
5087 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5088 {
5089 LONGEST xfer;
5090
5091 if (object == TARGET_OBJECT_AUXV)
5092 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5093 offset, len);
5094
5095 if (object == TARGET_OBJECT_OSDATA)
5096 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5097 offset, len);
5098
5099 if (object == TARGET_OBJECT_SPU)
5100 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5101 offset, len);
5102
5103 /* GDB calculates all the addresses in possibly larget width of the address.
5104 Address width needs to be masked before its final use - either by
5105 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5106
5107 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5108
5109 if (object == TARGET_OBJECT_MEMORY)
5110 {
5111 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5112
5113 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5114 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5115 }
5116
5117 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5118 offset, len);
5119 if (xfer != 0)
5120 return xfer;
5121
5122 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5123 offset, len);
5124 }
5125
5126 /* Create a prototype generic GNU/Linux target. The client can override
5127 it with local methods. */
5128
5129 static void
5130 linux_target_install_ops (struct target_ops *t)
5131 {
5132 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5133 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5134 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5135 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5136 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5137 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5138 t->to_post_attach = linux_child_post_attach;
5139 t->to_follow_fork = linux_child_follow_fork;
5140 t->to_find_memory_regions = linux_nat_find_memory_regions;
5141 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5142
5143 super_xfer_partial = t->to_xfer_partial;
5144 t->to_xfer_partial = linux_xfer_partial;
5145 }
5146
5147 struct target_ops *
5148 linux_target (void)
5149 {
5150 struct target_ops *t;
5151
5152 t = inf_ptrace_target ();
5153 linux_target_install_ops (t);
5154
5155 return t;
5156 }
5157
5158 struct target_ops *
5159 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5160 {
5161 struct target_ops *t;
5162
5163 t = inf_ptrace_trad_target (register_u_offset);
5164 linux_target_install_ops (t);
5165
5166 return t;
5167 }
5168
5169 /* target_is_async_p implementation. */
5170
5171 static int
5172 linux_nat_is_async_p (void)
5173 {
5174 /* NOTE: palves 2008-03-21: We're only async when the user requests
5175 it explicitly with the "set target-async" command.
5176 Someday, linux will always be async. */
5177 if (!target_async_permitted)
5178 return 0;
5179
5180 /* See target.h/target_async_mask. */
5181 return linux_nat_async_mask_value;
5182 }
5183
5184 /* target_can_async_p implementation. */
5185
5186 static int
5187 linux_nat_can_async_p (void)
5188 {
5189 /* NOTE: palves 2008-03-21: We're only async when the user requests
5190 it explicitly with the "set target-async" command.
5191 Someday, linux will always be async. */
5192 if (!target_async_permitted)
5193 return 0;
5194
5195 /* See target.h/target_async_mask. */
5196 return linux_nat_async_mask_value;
5197 }
5198
5199 static int
5200 linux_nat_supports_non_stop (void)
5201 {
5202 return 1;
5203 }
5204
5205 /* True if we want to support multi-process. To be removed when GDB
5206 supports multi-exec. */
5207
5208 int linux_multi_process = 1;
5209
5210 static int
5211 linux_nat_supports_multi_process (void)
5212 {
5213 return linux_multi_process;
5214 }
5215
5216 /* target_async_mask implementation. */
5217
5218 static int
5219 linux_nat_async_mask (int new_mask)
5220 {
5221 int curr_mask = linux_nat_async_mask_value;
5222
5223 if (curr_mask != new_mask)
5224 {
5225 if (new_mask == 0)
5226 {
5227 linux_nat_async (NULL, 0);
5228 linux_nat_async_mask_value = new_mask;
5229 }
5230 else
5231 {
5232 linux_nat_async_mask_value = new_mask;
5233
5234 /* If we're going out of async-mask in all-stop, then the
5235 inferior is stopped. The next resume will call
5236 target_async. In non-stop, the target event source
5237 should be always registered in the event loop. Do so
5238 now. */
5239 if (non_stop)
5240 linux_nat_async (inferior_event_handler, 0);
5241 }
5242 }
5243
5244 return curr_mask;
5245 }
5246
5247 static int async_terminal_is_ours = 1;
5248
5249 /* target_terminal_inferior implementation. */
5250
5251 static void
5252 linux_nat_terminal_inferior (void)
5253 {
5254 if (!target_is_async_p ())
5255 {
5256 /* Async mode is disabled. */
5257 terminal_inferior ();
5258 return;
5259 }
5260
5261 terminal_inferior ();
5262
5263 /* Calls to target_terminal_*() are meant to be idempotent. */
5264 if (!async_terminal_is_ours)
5265 return;
5266
5267 delete_file_handler (input_fd);
5268 async_terminal_is_ours = 0;
5269 set_sigint_trap ();
5270 }
5271
5272 /* target_terminal_ours implementation. */
5273
5274 static void
5275 linux_nat_terminal_ours (void)
5276 {
5277 if (!target_is_async_p ())
5278 {
5279 /* Async mode is disabled. */
5280 terminal_ours ();
5281 return;
5282 }
5283
5284 /* GDB should never give the terminal to the inferior if the
5285 inferior is running in the background (run&, continue&, etc.),
5286 but claiming it sure should. */
5287 terminal_ours ();
5288
5289 if (async_terminal_is_ours)
5290 return;
5291
5292 clear_sigint_trap ();
5293 add_file_handler (input_fd, stdin_event_handler, 0);
5294 async_terminal_is_ours = 1;
5295 }
5296
5297 static void (*async_client_callback) (enum inferior_event_type event_type,
5298 void *context);
5299 static void *async_client_context;
5300
5301 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5302 so we notice when any child changes state, and notify the
5303 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5304 above to wait for the arrival of a SIGCHLD. */
5305
5306 static void
5307 sigchld_handler (int signo)
5308 {
5309 int old_errno = errno;
5310
5311 if (debug_linux_nat_async)
5312 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5313
5314 if (signo == SIGCHLD
5315 && linux_nat_event_pipe[0] != -1)
5316 async_file_mark (); /* Let the event loop know that there are
5317 events to handle. */
5318
5319 errno = old_errno;
5320 }
5321
5322 /* Callback registered with the target events file descriptor. */
5323
5324 static void
5325 handle_target_event (int error, gdb_client_data client_data)
5326 {
5327 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5328 }
5329
5330 /* Create/destroy the target events pipe. Returns previous state. */
5331
5332 static int
5333 linux_async_pipe (int enable)
5334 {
5335 int previous = (linux_nat_event_pipe[0] != -1);
5336
5337 if (previous != enable)
5338 {
5339 sigset_t prev_mask;
5340
5341 block_child_signals (&prev_mask);
5342
5343 if (enable)
5344 {
5345 if (pipe (linux_nat_event_pipe) == -1)
5346 internal_error (__FILE__, __LINE__,
5347 "creating event pipe failed.");
5348
5349 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5350 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5351 }
5352 else
5353 {
5354 close (linux_nat_event_pipe[0]);
5355 close (linux_nat_event_pipe[1]);
5356 linux_nat_event_pipe[0] = -1;
5357 linux_nat_event_pipe[1] = -1;
5358 }
5359
5360 restore_child_signals_mask (&prev_mask);
5361 }
5362
5363 return previous;
5364 }
5365
5366 /* target_async implementation. */
5367
5368 static void
5369 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5370 void *context), void *context)
5371 {
5372 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5373 internal_error (__FILE__, __LINE__,
5374 "Calling target_async when async is masked");
5375
5376 if (callback != NULL)
5377 {
5378 async_client_callback = callback;
5379 async_client_context = context;
5380 if (!linux_async_pipe (1))
5381 {
5382 add_file_handler (linux_nat_event_pipe[0],
5383 handle_target_event, NULL);
5384 /* There may be pending events to handle. Tell the event loop
5385 to poll them. */
5386 async_file_mark ();
5387 }
5388 }
5389 else
5390 {
5391 async_client_callback = callback;
5392 async_client_context = context;
5393 delete_file_handler (linux_nat_event_pipe[0]);
5394 linux_async_pipe (0);
5395 }
5396 return;
5397 }
5398
5399 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5400 event came out. */
5401
5402 static int
5403 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5404 {
5405 if (!lwp->stopped)
5406 {
5407 ptid_t ptid = lwp->ptid;
5408
5409 if (debug_linux_nat)
5410 fprintf_unfiltered (gdb_stdlog,
5411 "LNSL: running -> suspending %s\n",
5412 target_pid_to_str (lwp->ptid));
5413
5414
5415 stop_callback (lwp, NULL);
5416 stop_wait_callback (lwp, NULL);
5417
5418 /* If the lwp exits while we try to stop it, there's nothing
5419 else to do. */
5420 lwp = find_lwp_pid (ptid);
5421 if (lwp == NULL)
5422 return 0;
5423
5424 /* If we didn't collect any signal other than SIGSTOP while
5425 stopping the LWP, push a SIGNAL_0 event. In either case, the
5426 event-loop will end up calling target_wait which will collect
5427 these. */
5428 if (lwp->status == 0)
5429 lwp->status = W_STOPCODE (0);
5430 async_file_mark ();
5431 }
5432 else
5433 {
5434 /* Already known to be stopped; do nothing. */
5435
5436 if (debug_linux_nat)
5437 {
5438 if (find_thread_ptid (lwp->ptid)->stop_requested)
5439 fprintf_unfiltered (gdb_stdlog, "\
5440 LNSL: already stopped/stop_requested %s\n",
5441 target_pid_to_str (lwp->ptid));
5442 else
5443 fprintf_unfiltered (gdb_stdlog, "\
5444 LNSL: already stopped/no stop_requested yet %s\n",
5445 target_pid_to_str (lwp->ptid));
5446 }
5447 }
5448 return 0;
5449 }
5450
5451 static void
5452 linux_nat_stop (ptid_t ptid)
5453 {
5454 if (non_stop)
5455 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5456 else
5457 linux_ops->to_stop (ptid);
5458 }
5459
5460 static void
5461 linux_nat_close (int quitting)
5462 {
5463 /* Unregister from the event loop. */
5464 if (target_is_async_p ())
5465 target_async (NULL, 0);
5466
5467 /* Reset the async_masking. */
5468 linux_nat_async_mask_value = 1;
5469
5470 if (linux_ops->to_close)
5471 linux_ops->to_close (quitting);
5472 }
5473
5474 /* When requests are passed down from the linux-nat layer to the
5475 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5476 used. The address space pointer is stored in the inferior object,
5477 but the common code that is passed such ptid can't tell whether
5478 lwpid is a "main" process id or not (it assumes so). We reverse
5479 look up the "main" process id from the lwp here. */
5480
5481 struct address_space *
5482 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5483 {
5484 struct lwp_info *lwp;
5485 struct inferior *inf;
5486 int pid;
5487
5488 pid = GET_LWP (ptid);
5489 if (GET_LWP (ptid) == 0)
5490 {
5491 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5492 tgid. */
5493 lwp = find_lwp_pid (ptid);
5494 pid = GET_PID (lwp->ptid);
5495 }
5496 else
5497 {
5498 /* A (pid,lwpid,0) ptid. */
5499 pid = GET_PID (ptid);
5500 }
5501
5502 inf = find_inferior_pid (pid);
5503 gdb_assert (inf != NULL);
5504 return inf->aspace;
5505 }
5506
5507 int
5508 linux_nat_core_of_thread_1 (ptid_t ptid)
5509 {
5510 struct cleanup *back_to;
5511 char *filename;
5512 FILE *f;
5513 char *content = NULL;
5514 char *p;
5515 char *ts = 0;
5516 int content_read = 0;
5517 int i;
5518 int core;
5519
5520 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5521 GET_PID (ptid), GET_LWP (ptid));
5522 back_to = make_cleanup (xfree, filename);
5523
5524 f = fopen (filename, "r");
5525 if (!f)
5526 {
5527 do_cleanups (back_to);
5528 return -1;
5529 }
5530
5531 make_cleanup_fclose (f);
5532
5533 for (;;)
5534 {
5535 int n;
5536
5537 content = xrealloc (content, content_read + 1024);
5538 n = fread (content + content_read, 1, 1024, f);
5539 content_read += n;
5540 if (n < 1024)
5541 {
5542 content[content_read] = '\0';
5543 break;
5544 }
5545 }
5546
5547 make_cleanup (xfree, content);
5548
5549 p = strchr (content, '(');
5550
5551 /* Skip ")". */
5552 if (p != NULL)
5553 p = strchr (p, ')');
5554 if (p != NULL)
5555 p++;
5556
5557 /* If the first field after program name has index 0, then core number is
5558 the field with index 36. There's no constant for that anywhere. */
5559 if (p != NULL)
5560 p = strtok_r (p, " ", &ts);
5561 for (i = 0; p != NULL && i != 36; ++i)
5562 p = strtok_r (NULL, " ", &ts);
5563
5564 if (p == NULL || sscanf (p, "%d", &core) == 0)
5565 core = -1;
5566
5567 do_cleanups (back_to);
5568
5569 return core;
5570 }
5571
5572 /* Return the cached value of the processor core for thread PTID. */
5573
5574 int
5575 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5576 {
5577 struct lwp_info *info = find_lwp_pid (ptid);
5578
5579 if (info)
5580 return info->core;
5581 return -1;
5582 }
5583
5584 void
5585 linux_nat_add_target (struct target_ops *t)
5586 {
5587 /* Save the provided single-threaded target. We save this in a separate
5588 variable because another target we've inherited from (e.g. inf-ptrace)
5589 may have saved a pointer to T; we want to use it for the final
5590 process stratum target. */
5591 linux_ops_saved = *t;
5592 linux_ops = &linux_ops_saved;
5593
5594 /* Override some methods for multithreading. */
5595 t->to_create_inferior = linux_nat_create_inferior;
5596 t->to_attach = linux_nat_attach;
5597 t->to_detach = linux_nat_detach;
5598 t->to_resume = linux_nat_resume;
5599 t->to_wait = linux_nat_wait;
5600 t->to_xfer_partial = linux_nat_xfer_partial;
5601 t->to_kill = linux_nat_kill;
5602 t->to_mourn_inferior = linux_nat_mourn_inferior;
5603 t->to_thread_alive = linux_nat_thread_alive;
5604 t->to_pid_to_str = linux_nat_pid_to_str;
5605 t->to_has_thread_control = tc_schedlock;
5606 t->to_thread_address_space = linux_nat_thread_address_space;
5607 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5608 t->to_stopped_data_address = linux_nat_stopped_data_address;
5609
5610 t->to_can_async_p = linux_nat_can_async_p;
5611 t->to_is_async_p = linux_nat_is_async_p;
5612 t->to_supports_non_stop = linux_nat_supports_non_stop;
5613 t->to_async = linux_nat_async;
5614 t->to_async_mask = linux_nat_async_mask;
5615 t->to_terminal_inferior = linux_nat_terminal_inferior;
5616 t->to_terminal_ours = linux_nat_terminal_ours;
5617 t->to_close = linux_nat_close;
5618
5619 /* Methods for non-stop support. */
5620 t->to_stop = linux_nat_stop;
5621
5622 t->to_supports_multi_process = linux_nat_supports_multi_process;
5623
5624 t->to_core_of_thread = linux_nat_core_of_thread;
5625
5626 /* We don't change the stratum; this target will sit at
5627 process_stratum and thread_db will set at thread_stratum. This
5628 is a little strange, since this is a multi-threaded-capable
5629 target, but we want to be on the stack below thread_db, and we
5630 also want to be used for single-threaded processes. */
5631
5632 add_target (t);
5633 }
5634
5635 /* Register a method to call whenever a new thread is attached. */
5636 void
5637 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5638 {
5639 /* Save the pointer. We only support a single registered instance
5640 of the GNU/Linux native target, so we do not need to map this to
5641 T. */
5642 linux_nat_new_thread = new_thread;
5643 }
5644
5645 /* Register a method that converts a siginfo object between the layout
5646 that ptrace returns, and the layout in the architecture of the
5647 inferior. */
5648 void
5649 linux_nat_set_siginfo_fixup (struct target_ops *t,
5650 int (*siginfo_fixup) (struct siginfo *,
5651 gdb_byte *,
5652 int))
5653 {
5654 /* Save the pointer. */
5655 linux_nat_siginfo_fixup = siginfo_fixup;
5656 }
5657
5658 /* Return the saved siginfo associated with PTID. */
5659 struct siginfo *
5660 linux_nat_get_siginfo (ptid_t ptid)
5661 {
5662 struct lwp_info *lp = find_lwp_pid (ptid);
5663
5664 gdb_assert (lp != NULL);
5665
5666 return &lp->siginfo;
5667 }
5668
5669 /* Provide a prototype to silence -Wmissing-prototypes. */
5670 extern initialize_file_ftype _initialize_linux_nat;
5671
5672 void
5673 _initialize_linux_nat (void)
5674 {
5675 add_info ("proc", linux_nat_info_proc_cmd, _("\
5676 Show /proc process information about any running process.\n\
5677 Specify any process id, or use the program being debugged by default.\n\
5678 Specify any of the following keywords for detailed info:\n\
5679 mappings -- list of mapped memory regions.\n\
5680 stat -- list a bunch of random process info.\n\
5681 status -- list a different bunch of random process info.\n\
5682 all -- list all available /proc info."));
5683
5684 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5685 &debug_linux_nat, _("\
5686 Set debugging of GNU/Linux lwp module."), _("\
5687 Show debugging of GNU/Linux lwp module."), _("\
5688 Enables printf debugging output."),
5689 NULL,
5690 show_debug_linux_nat,
5691 &setdebuglist, &showdebuglist);
5692
5693 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5694 &debug_linux_nat_async, _("\
5695 Set debugging of GNU/Linux async lwp module."), _("\
5696 Show debugging of GNU/Linux async lwp module."), _("\
5697 Enables printf debugging output."),
5698 NULL,
5699 show_debug_linux_nat_async,
5700 &setdebuglist, &showdebuglist);
5701
5702 /* Save this mask as the default. */
5703 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5704
5705 /* Install a SIGCHLD handler. */
5706 sigchld_action.sa_handler = sigchld_handler;
5707 sigemptyset (&sigchld_action.sa_mask);
5708 sigchld_action.sa_flags = SA_RESTART;
5709
5710 /* Make it the default. */
5711 sigaction (SIGCHLD, &sigchld_action, NULL);
5712
5713 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5714 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5715 sigdelset (&suspend_mask, SIGCHLD);
5716
5717 sigemptyset (&blocked_mask);
5718
5719 add_setshow_boolean_cmd ("disable-randomization", class_support,
5720 &disable_randomization, _("\
5721 Set disabling of debuggee's virtual address space randomization."), _("\
5722 Show disabling of debuggee's virtual address space randomization."), _("\
5723 When this mode is on (which is the default), randomization of the virtual\n\
5724 address space is disabled. Standalone programs run with the randomization\n\
5725 enabled by default on some platforms."),
5726 &set_disable_randomization,
5727 &show_disable_randomization,
5728 &setlist, &showlist);
5729 }
5730 \f
5731
5732 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5733 the GNU/Linux Threads library and therefore doesn't really belong
5734 here. */
5735
5736 /* Read variable NAME in the target and return its value if found.
5737 Otherwise return zero. It is assumed that the type of the variable
5738 is `int'. */
5739
5740 static int
5741 get_signo (const char *name)
5742 {
5743 struct minimal_symbol *ms;
5744 int signo;
5745
5746 ms = lookup_minimal_symbol (name, NULL, NULL);
5747 if (ms == NULL)
5748 return 0;
5749
5750 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5751 sizeof (signo)) != 0)
5752 return 0;
5753
5754 return signo;
5755 }
5756
5757 /* Return the set of signals used by the threads library in *SET. */
5758
5759 void
5760 lin_thread_get_thread_signals (sigset_t *set)
5761 {
5762 struct sigaction action;
5763 int restart, cancel;
5764
5765 sigemptyset (&blocked_mask);
5766 sigemptyset (set);
5767
5768 restart = get_signo ("__pthread_sig_restart");
5769 cancel = get_signo ("__pthread_sig_cancel");
5770
5771 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5772 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5773 not provide any way for the debugger to query the signal numbers -
5774 fortunately they don't change! */
5775
5776 if (restart == 0)
5777 restart = __SIGRTMIN;
5778
5779 if (cancel == 0)
5780 cancel = __SIGRTMIN + 1;
5781
5782 sigaddset (set, restart);
5783 sigaddset (set, cancel);
5784
5785 /* The GNU/Linux Threads library makes terminating threads send a
5786 special "cancel" signal instead of SIGCHLD. Make sure we catch
5787 those (to prevent them from terminating GDB itself, which is
5788 likely to be their default action) and treat them the same way as
5789 SIGCHLD. */
5790
5791 action.sa_handler = sigchld_handler;
5792 sigemptyset (&action.sa_mask);
5793 action.sa_flags = SA_RESTART;
5794 sigaction (cancel, &action, NULL);
5795
5796 /* We block the "cancel" signal throughout this code ... */
5797 sigaddset (&blocked_mask, cancel);
5798 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5799
5800 /* ... except during a sigsuspend. */
5801 sigdelset (&suspend_mask, cancel);
5802 }
This page took 0.172233 seconds and 4 git commands to generate.