* ada-valprint.c (val_print_packed_array_elements): Pass the
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without
90 __WCLONED.
91
92 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
93 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
94 blocked, the signal becomes pending and sigsuspend immediately
95 notices it and returns.
96
97 Waiting for events in async mode
98 ================================
99
100 In async mode, GDB should always be ready to handle both user input
101 and target events, so neither blocking waitpid nor sigsuspend are
102 viable options. Instead, we should asynchronously notify the GDB main
103 event loop whenever there's an unprocessed event from the target. We
104 detect asynchronous target events by handling SIGCHLD signals. To
105 notify the event loop about target events, the self-pipe trick is used
106 --- a pipe is registered as waitable event source in the event loop,
107 the event loop select/poll's on the read end of this pipe (as well on
108 other event sources, e.g., stdin), and the SIGCHLD handler writes a
109 byte to this pipe. This is more portable than relying on
110 pselect/ppoll, since on kernels that lack those syscalls, libc
111 emulates them with select/poll+sigprocmask, and that is racy
112 (a.k.a. plain broken).
113
114 Obviously, if we fail to notify the event loop if there's a target
115 event, it's bad. OTOH, if we notify the event loop when there's no
116 event from the target, linux_nat_wait will detect that there's no real
117 event to report, and return event of type TARGET_WAITKIND_IGNORE.
118 This is mostly harmless, but it will waste time and is better avoided.
119
120 The main design point is that every time GDB is outside linux-nat.c,
121 we have a SIGCHLD handler installed that is called when something
122 happens to the target and notifies the GDB event loop. Whenever GDB
123 core decides to handle the event, and calls into linux-nat.c, we
124 process things as in sync mode, except that the we never block in
125 sigsuspend.
126
127 While processing an event, we may end up momentarily blocked in
128 waitpid calls. Those waitpid calls, while blocking, are guarantied to
129 return quickly. E.g., in all-stop mode, before reporting to the core
130 that an LWP hit a breakpoint, all LWPs are stopped by sending them
131 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
132 Note that this is different from blocking indefinitely waiting for the
133 next event --- here, we're already handling an event.
134
135 Use of signals
136 ==============
137
138 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
139 signal is not entirely significant; we just need for a signal to be delivered,
140 so that we can intercept it. SIGSTOP's advantage is that it can not be
141 blocked. A disadvantage is that it is not a real-time signal, so it can only
142 be queued once; we do not keep track of other sources of SIGSTOP.
143
144 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
145 use them, because they have special behavior when the signal is generated -
146 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
147 kills the entire thread group.
148
149 A delivered SIGSTOP would stop the entire thread group, not just the thread we
150 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
151 cancel it (by PTRACE_CONT without passing SIGSTOP).
152
153 We could use a real-time signal instead. This would solve those problems; we
154 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
155 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
156 generates it, and there are races with trying to find a signal that is not
157 blocked. */
158
159 #ifndef O_LARGEFILE
160 #define O_LARGEFILE 0
161 #endif
162
163 /* If the system headers did not provide the constants, hard-code the normal
164 values. */
165 #ifndef PTRACE_EVENT_FORK
166
167 #define PTRACE_SETOPTIONS 0x4200
168 #define PTRACE_GETEVENTMSG 0x4201
169
170 /* Options set using PTRACE_SETOPTIONS. */
171 #define PTRACE_O_TRACESYSGOOD 0x00000001
172 #define PTRACE_O_TRACEFORK 0x00000002
173 #define PTRACE_O_TRACEVFORK 0x00000004
174 #define PTRACE_O_TRACECLONE 0x00000008
175 #define PTRACE_O_TRACEEXEC 0x00000010
176 #define PTRACE_O_TRACEVFORKDONE 0x00000020
177 #define PTRACE_O_TRACEEXIT 0x00000040
178
179 /* Wait extended result codes for the above trace options. */
180 #define PTRACE_EVENT_FORK 1
181 #define PTRACE_EVENT_VFORK 2
182 #define PTRACE_EVENT_CLONE 3
183 #define PTRACE_EVENT_EXEC 4
184 #define PTRACE_EVENT_VFORK_DONE 5
185 #define PTRACE_EVENT_EXIT 6
186
187 #endif /* PTRACE_EVENT_FORK */
188
189 /* Unlike other extended result codes, WSTOPSIG (status) on
190 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
191 instead SIGTRAP with bit 7 set. */
192 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
193
194 /* We can't always assume that this flag is available, but all systems
195 with the ptrace event handlers also have __WALL, so it's safe to use
196 here. */
197 #ifndef __WALL
198 #define __WALL 0x40000000 /* Wait for any child. */
199 #endif
200
201 #ifndef PTRACE_GETSIGINFO
202 # define PTRACE_GETSIGINFO 0x4202
203 # define PTRACE_SETSIGINFO 0x4203
204 #endif
205
206 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
207 the use of the multi-threaded target. */
208 static struct target_ops *linux_ops;
209 static struct target_ops linux_ops_saved;
210
211 /* The method to call, if any, when a new thread is attached. */
212 static void (*linux_nat_new_thread) (ptid_t);
213
214 /* The method to call, if any, when the siginfo object needs to be
215 converted between the layout returned by ptrace, and the layout in
216 the architecture of the inferior. */
217 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
218 gdb_byte *,
219 int);
220
221 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
222 Called by our to_xfer_partial. */
223 static LONGEST (*super_xfer_partial) (struct target_ops *,
224 enum target_object,
225 const char *, gdb_byte *,
226 const gdb_byte *,
227 ULONGEST, LONGEST);
228
229 static int debug_linux_nat;
230 static void
231 show_debug_linux_nat (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
235 value);
236 }
237
238 static int debug_linux_nat_async = 0;
239 static void
240 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
241 struct cmd_list_element *c, const char *value)
242 {
243 fprintf_filtered (file,
244 _("Debugging of GNU/Linux async lwp module is %s.\n"),
245 value);
246 }
247
248 static int disable_randomization = 1;
249
250 static void
251 show_disable_randomization (struct ui_file *file, int from_tty,
252 struct cmd_list_element *c, const char *value)
253 {
254 #ifdef HAVE_PERSONALITY
255 fprintf_filtered (file,
256 _("Disabling randomization of debuggee's "
257 "virtual address space is %s.\n"),
258 value);
259 #else /* !HAVE_PERSONALITY */
260 fputs_filtered (_("Disabling randomization of debuggee's "
261 "virtual address space is unsupported on\n"
262 "this platform.\n"), file);
263 #endif /* !HAVE_PERSONALITY */
264 }
265
266 static void
267 set_disable_randomization (char *args, int from_tty,
268 struct cmd_list_element *c)
269 {
270 #ifndef HAVE_PERSONALITY
271 error (_("Disabling randomization of debuggee's "
272 "virtual address space is unsupported on\n"
273 "this platform."));
274 #endif /* !HAVE_PERSONALITY */
275 }
276
277 struct simple_pid_list
278 {
279 int pid;
280 int status;
281 struct simple_pid_list *next;
282 };
283 struct simple_pid_list *stopped_pids;
284
285 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
286 can not be used, 1 if it can. */
287
288 static int linux_supports_tracefork_flag = -1;
289
290 /* This variable is a tri-state flag: -1 for unknown, 0 if
291 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
292
293 static int linux_supports_tracesysgood_flag = -1;
294
295 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
296 PTRACE_O_TRACEVFORKDONE. */
297
298 static int linux_supports_tracevforkdone_flag = -1;
299
300 /* Async mode support. */
301
302 /* Zero if the async mode, although enabled, is masked, which means
303 linux_nat_wait should behave as if async mode was off. */
304 static int linux_nat_async_mask_value = 1;
305
306 /* Stores the current used ptrace() options. */
307 static int current_ptrace_options = 0;
308
309 /* The read/write ends of the pipe registered as waitable file in the
310 event loop. */
311 static int linux_nat_event_pipe[2] = { -1, -1 };
312
313 /* Flush the event pipe. */
314
315 static void
316 async_file_flush (void)
317 {
318 int ret;
319 char buf;
320
321 do
322 {
323 ret = read (linux_nat_event_pipe[0], &buf, 1);
324 }
325 while (ret >= 0 || (ret == -1 && errno == EINTR));
326 }
327
328 /* Put something (anything, doesn't matter what, or how much) in event
329 pipe, so that the select/poll in the event-loop realizes we have
330 something to process. */
331
332 static void
333 async_file_mark (void)
334 {
335 int ret;
336
337 /* It doesn't really matter what the pipe contains, as long we end
338 up with something in it. Might as well flush the previous
339 left-overs. */
340 async_file_flush ();
341
342 do
343 {
344 ret = write (linux_nat_event_pipe[1], "+", 1);
345 }
346 while (ret == -1 && errno == EINTR);
347
348 /* Ignore EAGAIN. If the pipe is full, the event loop will already
349 be awakened anyway. */
350 }
351
352 static void linux_nat_async (void (*callback)
353 (enum inferior_event_type event_type,
354 void *context),
355 void *context);
356 static int linux_nat_async_mask (int mask);
357 static int kill_lwp (int lwpid, int signo);
358
359 static int stop_callback (struct lwp_info *lp, void *data);
360
361 static void block_child_signals (sigset_t *prev_mask);
362 static void restore_child_signals_mask (sigset_t *prev_mask);
363
364 struct lwp_info;
365 static struct lwp_info *add_lwp (ptid_t ptid);
366 static void purge_lwp_list (int pid);
367 static struct lwp_info *find_lwp_pid (ptid_t ptid);
368
369 \f
370 /* Trivial list manipulation functions to keep track of a list of
371 new stopped processes. */
372 static void
373 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
374 {
375 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
376
377 new_pid->pid = pid;
378 new_pid->status = status;
379 new_pid->next = *listp;
380 *listp = new_pid;
381 }
382
383 static int
384 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
385 {
386 struct simple_pid_list **p;
387
388 for (p = listp; *p != NULL; p = &(*p)->next)
389 if ((*p)->pid == pid)
390 {
391 struct simple_pid_list *next = (*p)->next;
392
393 *statusp = (*p)->status;
394 xfree (*p);
395 *p = next;
396 return 1;
397 }
398 return 0;
399 }
400
401 static void
402 linux_record_stopped_pid (int pid, int status)
403 {
404 add_to_pid_list (&stopped_pids, pid, status);
405 }
406
407 \f
408 /* A helper function for linux_test_for_tracefork, called after fork (). */
409
410 static void
411 linux_tracefork_child (void)
412 {
413 ptrace (PTRACE_TRACEME, 0, 0, 0);
414 kill (getpid (), SIGSTOP);
415 fork ();
416 _exit (0);
417 }
418
419 /* Wrapper function for waitpid which handles EINTR. */
420
421 static int
422 my_waitpid (int pid, int *statusp, int flags)
423 {
424 int ret;
425
426 do
427 {
428 ret = waitpid (pid, statusp, flags);
429 }
430 while (ret == -1 && errno == EINTR);
431
432 return ret;
433 }
434
435 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
436
437 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
438 we know that the feature is not available. This may change the tracing
439 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
440
441 However, if it succeeds, we don't know for sure that the feature is
442 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
443 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
444 fork tracing, and let it fork. If the process exits, we assume that we
445 can't use TRACEFORK; if we get the fork notification, and we can extract
446 the new child's PID, then we assume that we can. */
447
448 static void
449 linux_test_for_tracefork (int original_pid)
450 {
451 int child_pid, ret, status;
452 long second_pid;
453 sigset_t prev_mask;
454
455 /* We don't want those ptrace calls to be interrupted. */
456 block_child_signals (&prev_mask);
457
458 linux_supports_tracefork_flag = 0;
459 linux_supports_tracevforkdone_flag = 0;
460
461 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
462 if (ret != 0)
463 {
464 restore_child_signals_mask (&prev_mask);
465 return;
466 }
467
468 child_pid = fork ();
469 if (child_pid == -1)
470 perror_with_name (("fork"));
471
472 if (child_pid == 0)
473 linux_tracefork_child ();
474
475 ret = my_waitpid (child_pid, &status, 0);
476 if (ret == -1)
477 perror_with_name (("waitpid"));
478 else if (ret != child_pid)
479 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
480 if (! WIFSTOPPED (status))
481 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
482 status);
483
484 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
485 if (ret != 0)
486 {
487 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
488 if (ret != 0)
489 {
490 warning (_("linux_test_for_tracefork: failed to kill child"));
491 restore_child_signals_mask (&prev_mask);
492 return;
493 }
494
495 ret = my_waitpid (child_pid, &status, 0);
496 if (ret != child_pid)
497 warning (_("linux_test_for_tracefork: failed "
498 "to wait for killed child"));
499 else if (!WIFSIGNALED (status))
500 warning (_("linux_test_for_tracefork: unexpected "
501 "wait status 0x%x from killed child"), status);
502
503 restore_child_signals_mask (&prev_mask);
504 return;
505 }
506
507 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
508 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
509 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
510 linux_supports_tracevforkdone_flag = (ret == 0);
511
512 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
513 if (ret != 0)
514 warning (_("linux_test_for_tracefork: failed to resume child"));
515
516 ret = my_waitpid (child_pid, &status, 0);
517
518 if (ret == child_pid && WIFSTOPPED (status)
519 && status >> 16 == PTRACE_EVENT_FORK)
520 {
521 second_pid = 0;
522 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
523 if (ret == 0 && second_pid != 0)
524 {
525 int second_status;
526
527 linux_supports_tracefork_flag = 1;
528 my_waitpid (second_pid, &second_status, 0);
529 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
530 if (ret != 0)
531 warning (_("linux_test_for_tracefork: "
532 "failed to kill second child"));
533 my_waitpid (second_pid, &status, 0);
534 }
535 }
536 else
537 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
538 "(%d, status 0x%x)"), ret, status);
539
540 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
541 if (ret != 0)
542 warning (_("linux_test_for_tracefork: failed to kill child"));
543 my_waitpid (child_pid, &status, 0);
544
545 restore_child_signals_mask (&prev_mask);
546 }
547
548 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
549
550 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
551 we know that the feature is not available. This may change the tracing
552 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
553
554 static void
555 linux_test_for_tracesysgood (int original_pid)
556 {
557 int ret;
558 sigset_t prev_mask;
559
560 /* We don't want those ptrace calls to be interrupted. */
561 block_child_signals (&prev_mask);
562
563 linux_supports_tracesysgood_flag = 0;
564
565 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
566 if (ret != 0)
567 goto out;
568
569 linux_supports_tracesysgood_flag = 1;
570 out:
571 restore_child_signals_mask (&prev_mask);
572 }
573
574 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
575 This function also sets linux_supports_tracesysgood_flag. */
576
577 static int
578 linux_supports_tracesysgood (int pid)
579 {
580 if (linux_supports_tracesysgood_flag == -1)
581 linux_test_for_tracesysgood (pid);
582 return linux_supports_tracesysgood_flag;
583 }
584
585 /* Return non-zero iff we have tracefork functionality available.
586 This function also sets linux_supports_tracefork_flag. */
587
588 static int
589 linux_supports_tracefork (int pid)
590 {
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracefork_flag;
594 }
595
596 static int
597 linux_supports_tracevforkdone (int pid)
598 {
599 if (linux_supports_tracefork_flag == -1)
600 linux_test_for_tracefork (pid);
601 return linux_supports_tracevforkdone_flag;
602 }
603
604 static void
605 linux_enable_tracesysgood (ptid_t ptid)
606 {
607 int pid = ptid_get_lwp (ptid);
608
609 if (pid == 0)
610 pid = ptid_get_pid (ptid);
611
612 if (linux_supports_tracesysgood (pid) == 0)
613 return;
614
615 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
616
617 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
618 }
619
620 \f
621 void
622 linux_enable_event_reporting (ptid_t ptid)
623 {
624 int pid = ptid_get_lwp (ptid);
625
626 if (pid == 0)
627 pid = ptid_get_pid (ptid);
628
629 if (! linux_supports_tracefork (pid))
630 return;
631
632 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
633 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
634
635 if (linux_supports_tracevforkdone (pid))
636 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
637
638 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
639 read-only process state. */
640
641 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
642 }
643
644 static void
645 linux_child_post_attach (int pid)
646 {
647 linux_enable_event_reporting (pid_to_ptid (pid));
648 check_for_thread_db ();
649 linux_enable_tracesysgood (pid_to_ptid (pid));
650 }
651
652 static void
653 linux_child_post_startup_inferior (ptid_t ptid)
654 {
655 linux_enable_event_reporting (ptid);
656 check_for_thread_db ();
657 linux_enable_tracesysgood (ptid);
658 }
659
660 static int
661 linux_child_follow_fork (struct target_ops *ops, int follow_child)
662 {
663 sigset_t prev_mask;
664 int has_vforked;
665 int parent_pid, child_pid;
666
667 block_child_signals (&prev_mask);
668
669 has_vforked = (inferior_thread ()->pending_follow.kind
670 == TARGET_WAITKIND_VFORKED);
671 parent_pid = ptid_get_lwp (inferior_ptid);
672 if (parent_pid == 0)
673 parent_pid = ptid_get_pid (inferior_ptid);
674 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
675
676 if (!detach_fork)
677 linux_enable_event_reporting (pid_to_ptid (child_pid));
678
679 if (has_vforked
680 && !non_stop /* Non-stop always resumes both branches. */
681 && (!target_is_async_p () || sync_execution)
682 && !(follow_child || detach_fork || sched_multi))
683 {
684 /* The parent stays blocked inside the vfork syscall until the
685 child execs or exits. If we don't let the child run, then
686 the parent stays blocked. If we're telling the parent to run
687 in the foreground, the user will not be able to ctrl-c to get
688 back the terminal, effectively hanging the debug session. */
689 fprintf_filtered (gdb_stderr, _("\
690 Can not resume the parent process over vfork in the foreground while\n\
691 holding the child stopped. Try \"set detach-on-fork\" or \
692 \"set schedule-multiple\".\n"));
693 /* FIXME output string > 80 columns. */
694 return 1;
695 }
696
697 if (! follow_child)
698 {
699 struct lwp_info *child_lp = NULL;
700
701 /* We're already attached to the parent, by default. */
702
703 /* Detach new forked process? */
704 if (detach_fork)
705 {
706 /* Before detaching from the child, remove all breakpoints
707 from it. If we forked, then this has already been taken
708 care of by infrun.c. If we vforked however, any
709 breakpoint inserted in the parent is visible in the
710 child, even those added while stopped in a vfork
711 catchpoint. This will remove the breakpoints from the
712 parent also, but they'll be reinserted below. */
713 if (has_vforked)
714 {
715 /* keep breakpoints list in sync. */
716 remove_breakpoints_pid (GET_PID (inferior_ptid));
717 }
718
719 if (info_verbose || debug_linux_nat)
720 {
721 target_terminal_ours ();
722 fprintf_filtered (gdb_stdlog,
723 "Detaching after fork from "
724 "child process %d.\n",
725 child_pid);
726 }
727
728 ptrace (PTRACE_DETACH, child_pid, 0, 0);
729 }
730 else
731 {
732 struct inferior *parent_inf, *child_inf;
733 struct cleanup *old_chain;
734
735 /* Add process to GDB's tables. */
736 child_inf = add_inferior (child_pid);
737
738 parent_inf = current_inferior ();
739 child_inf->attach_flag = parent_inf->attach_flag;
740 copy_terminal_info (child_inf, parent_inf);
741
742 old_chain = save_inferior_ptid ();
743 save_current_program_space ();
744
745 inferior_ptid = ptid_build (child_pid, child_pid, 0);
746 add_thread (inferior_ptid);
747 child_lp = add_lwp (inferior_ptid);
748 child_lp->stopped = 1;
749 child_lp->resumed = 1;
750
751 /* If this is a vfork child, then the address-space is
752 shared with the parent. */
753 if (has_vforked)
754 {
755 child_inf->pspace = parent_inf->pspace;
756 child_inf->aspace = parent_inf->aspace;
757
758 /* The parent will be frozen until the child is done
759 with the shared region. Keep track of the
760 parent. */
761 child_inf->vfork_parent = parent_inf;
762 child_inf->pending_detach = 0;
763 parent_inf->vfork_child = child_inf;
764 parent_inf->pending_detach = 0;
765 }
766 else
767 {
768 child_inf->aspace = new_address_space ();
769 child_inf->pspace = add_program_space (child_inf->aspace);
770 child_inf->removable = 1;
771 set_current_program_space (child_inf->pspace);
772 clone_program_space (child_inf->pspace, parent_inf->pspace);
773
774 /* Let the shared library layer (solib-svr4) learn about
775 this new process, relocate the cloned exec, pull in
776 shared libraries, and install the solib event
777 breakpoint. If a "cloned-VM" event was propagated
778 better throughout the core, this wouldn't be
779 required. */
780 solib_create_inferior_hook (0);
781 }
782
783 /* Let the thread_db layer learn about this new process. */
784 check_for_thread_db ();
785
786 do_cleanups (old_chain);
787 }
788
789 if (has_vforked)
790 {
791 struct lwp_info *lp;
792 struct inferior *parent_inf;
793
794 parent_inf = current_inferior ();
795
796 /* If we detached from the child, then we have to be careful
797 to not insert breakpoints in the parent until the child
798 is done with the shared memory region. However, if we're
799 staying attached to the child, then we can and should
800 insert breakpoints, so that we can debug it. A
801 subsequent child exec or exit is enough to know when does
802 the child stops using the parent's address space. */
803 parent_inf->waiting_for_vfork_done = detach_fork;
804 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
805
806 lp = find_lwp_pid (pid_to_ptid (parent_pid));
807 gdb_assert (linux_supports_tracefork_flag >= 0);
808 if (linux_supports_tracevforkdone (0))
809 {
810 if (debug_linux_nat)
811 fprintf_unfiltered (gdb_stdlog,
812 "LCFF: waiting for VFORK_DONE on %d\n",
813 parent_pid);
814
815 lp->stopped = 1;
816 lp->resumed = 1;
817
818 /* We'll handle the VFORK_DONE event like any other
819 event, in target_wait. */
820 }
821 else
822 {
823 /* We can't insert breakpoints until the child has
824 finished with the shared memory region. We need to
825 wait until that happens. Ideal would be to just
826 call:
827 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
828 - waitpid (parent_pid, &status, __WALL);
829 However, most architectures can't handle a syscall
830 being traced on the way out if it wasn't traced on
831 the way in.
832
833 We might also think to loop, continuing the child
834 until it exits or gets a SIGTRAP. One problem is
835 that the child might call ptrace with PTRACE_TRACEME.
836
837 There's no simple and reliable way to figure out when
838 the vforked child will be done with its copy of the
839 shared memory. We could step it out of the syscall,
840 two instructions, let it go, and then single-step the
841 parent once. When we have hardware single-step, this
842 would work; with software single-step it could still
843 be made to work but we'd have to be able to insert
844 single-step breakpoints in the child, and we'd have
845 to insert -just- the single-step breakpoint in the
846 parent. Very awkward.
847
848 In the end, the best we can do is to make sure it
849 runs for a little while. Hopefully it will be out of
850 range of any breakpoints we reinsert. Usually this
851 is only the single-step breakpoint at vfork's return
852 point. */
853
854 if (debug_linux_nat)
855 fprintf_unfiltered (gdb_stdlog,
856 "LCFF: no VFORK_DONE "
857 "support, sleeping a bit\n");
858
859 usleep (10000);
860
861 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
862 and leave it pending. The next linux_nat_resume call
863 will notice a pending event, and bypasses actually
864 resuming the inferior. */
865 lp->status = 0;
866 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
867 lp->stopped = 0;
868 lp->resumed = 1;
869
870 /* If we're in async mode, need to tell the event loop
871 there's something here to process. */
872 if (target_can_async_p ())
873 async_file_mark ();
874 }
875 }
876 }
877 else
878 {
879 struct inferior *parent_inf, *child_inf;
880 struct lwp_info *lp;
881 struct program_space *parent_pspace;
882
883 if (info_verbose || debug_linux_nat)
884 {
885 target_terminal_ours ();
886 if (has_vforked)
887 fprintf_filtered (gdb_stdlog,
888 _("Attaching after process %d "
889 "vfork to child process %d.\n"),
890 parent_pid, child_pid);
891 else
892 fprintf_filtered (gdb_stdlog,
893 _("Attaching after process %d "
894 "fork to child process %d.\n"),
895 parent_pid, child_pid);
896 }
897
898 /* Add the new inferior first, so that the target_detach below
899 doesn't unpush the target. */
900
901 child_inf = add_inferior (child_pid);
902
903 parent_inf = current_inferior ();
904 child_inf->attach_flag = parent_inf->attach_flag;
905 copy_terminal_info (child_inf, parent_inf);
906
907 parent_pspace = parent_inf->pspace;
908
909 /* If we're vforking, we want to hold on to the parent until the
910 child exits or execs. At child exec or exit time we can
911 remove the old breakpoints from the parent and detach or
912 resume debugging it. Otherwise, detach the parent now; we'll
913 want to reuse it's program/address spaces, but we can't set
914 them to the child before removing breakpoints from the
915 parent, otherwise, the breakpoints module could decide to
916 remove breakpoints from the wrong process (since they'd be
917 assigned to the same address space). */
918
919 if (has_vforked)
920 {
921 gdb_assert (child_inf->vfork_parent == NULL);
922 gdb_assert (parent_inf->vfork_child == NULL);
923 child_inf->vfork_parent = parent_inf;
924 child_inf->pending_detach = 0;
925 parent_inf->vfork_child = child_inf;
926 parent_inf->pending_detach = detach_fork;
927 parent_inf->waiting_for_vfork_done = 0;
928 }
929 else if (detach_fork)
930 target_detach (NULL, 0);
931
932 /* Note that the detach above makes PARENT_INF dangling. */
933
934 /* Add the child thread to the appropriate lists, and switch to
935 this new thread, before cloning the program space, and
936 informing the solib layer about this new process. */
937
938 inferior_ptid = ptid_build (child_pid, child_pid, 0);
939 add_thread (inferior_ptid);
940 lp = add_lwp (inferior_ptid);
941 lp->stopped = 1;
942 lp->resumed = 1;
943
944 /* If this is a vfork child, then the address-space is shared
945 with the parent. If we detached from the parent, then we can
946 reuse the parent's program/address spaces. */
947 if (has_vforked || detach_fork)
948 {
949 child_inf->pspace = parent_pspace;
950 child_inf->aspace = child_inf->pspace->aspace;
951 }
952 else
953 {
954 child_inf->aspace = new_address_space ();
955 child_inf->pspace = add_program_space (child_inf->aspace);
956 child_inf->removable = 1;
957 set_current_program_space (child_inf->pspace);
958 clone_program_space (child_inf->pspace, parent_pspace);
959
960 /* Let the shared library layer (solib-svr4) learn about
961 this new process, relocate the cloned exec, pull in
962 shared libraries, and install the solib event breakpoint.
963 If a "cloned-VM" event was propagated better throughout
964 the core, this wouldn't be required. */
965 solib_create_inferior_hook (0);
966 }
967
968 /* Let the thread_db layer learn about this new process. */
969 check_for_thread_db ();
970 }
971
972 restore_child_signals_mask (&prev_mask);
973 return 0;
974 }
975
976 \f
977 static int
978 linux_child_insert_fork_catchpoint (int pid)
979 {
980 return !linux_supports_tracefork (pid);
981 }
982
983 static int
984 linux_child_insert_vfork_catchpoint (int pid)
985 {
986 return !linux_supports_tracefork (pid);
987 }
988
989 static int
990 linux_child_insert_exec_catchpoint (int pid)
991 {
992 return !linux_supports_tracefork (pid);
993 }
994
995 static int
996 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
997 int table_size, int *table)
998 {
999 if (!linux_supports_tracesysgood (pid))
1000 return 1;
1001
1002 /* On GNU/Linux, we ignore the arguments. It means that we only
1003 enable the syscall catchpoints, but do not disable them.
1004
1005 Also, we do not use the `table' information because we do not
1006 filter system calls here. We let GDB do the logic for us. */
1007 return 0;
1008 }
1009
1010 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1011 are processes sharing the same VM space. A multi-threaded process
1012 is basically a group of such processes. However, such a grouping
1013 is almost entirely a user-space issue; the kernel doesn't enforce
1014 such a grouping at all (this might change in the future). In
1015 general, we'll rely on the threads library (i.e. the GNU/Linux
1016 Threads library) to provide such a grouping.
1017
1018 It is perfectly well possible to write a multi-threaded application
1019 without the assistance of a threads library, by using the clone
1020 system call directly. This module should be able to give some
1021 rudimentary support for debugging such applications if developers
1022 specify the CLONE_PTRACE flag in the clone system call, and are
1023 using the Linux kernel 2.4 or above.
1024
1025 Note that there are some peculiarities in GNU/Linux that affect
1026 this code:
1027
1028 - In general one should specify the __WCLONE flag to waitpid in
1029 order to make it report events for any of the cloned processes
1030 (and leave it out for the initial process). However, if a cloned
1031 process has exited the exit status is only reported if the
1032 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1033 we cannot use it since GDB must work on older systems too.
1034
1035 - When a traced, cloned process exits and is waited for by the
1036 debugger, the kernel reassigns it to the original parent and
1037 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1038 library doesn't notice this, which leads to the "zombie problem":
1039 When debugged a multi-threaded process that spawns a lot of
1040 threads will run out of processes, even if the threads exit,
1041 because the "zombies" stay around. */
1042
1043 /* List of known LWPs. */
1044 struct lwp_info *lwp_list;
1045 \f
1046
1047 /* Original signal mask. */
1048 static sigset_t normal_mask;
1049
1050 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1051 _initialize_linux_nat. */
1052 static sigset_t suspend_mask;
1053
1054 /* Signals to block to make that sigsuspend work. */
1055 static sigset_t blocked_mask;
1056
1057 /* SIGCHLD action. */
1058 struct sigaction sigchld_action;
1059
1060 /* Block child signals (SIGCHLD and linux threads signals), and store
1061 the previous mask in PREV_MASK. */
1062
1063 static void
1064 block_child_signals (sigset_t *prev_mask)
1065 {
1066 /* Make sure SIGCHLD is blocked. */
1067 if (!sigismember (&blocked_mask, SIGCHLD))
1068 sigaddset (&blocked_mask, SIGCHLD);
1069
1070 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1071 }
1072
1073 /* Restore child signals mask, previously returned by
1074 block_child_signals. */
1075
1076 static void
1077 restore_child_signals_mask (sigset_t *prev_mask)
1078 {
1079 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1080 }
1081 \f
1082
1083 /* Prototypes for local functions. */
1084 static int stop_wait_callback (struct lwp_info *lp, void *data);
1085 static int linux_thread_alive (ptid_t ptid);
1086 static char *linux_child_pid_to_exec_file (int pid);
1087
1088 \f
1089 /* Convert wait status STATUS to a string. Used for printing debug
1090 messages only. */
1091
1092 static char *
1093 status_to_str (int status)
1094 {
1095 static char buf[64];
1096
1097 if (WIFSTOPPED (status))
1098 {
1099 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1100 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1101 strsignal (SIGTRAP));
1102 else
1103 snprintf (buf, sizeof (buf), "%s (stopped)",
1104 strsignal (WSTOPSIG (status)));
1105 }
1106 else if (WIFSIGNALED (status))
1107 snprintf (buf, sizeof (buf), "%s (terminated)",
1108 strsignal (WTERMSIG (status)));
1109 else
1110 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1111
1112 return buf;
1113 }
1114
1115 /* Remove all LWPs belong to PID from the lwp list. */
1116
1117 static void
1118 purge_lwp_list (int pid)
1119 {
1120 struct lwp_info *lp, *lpprev, *lpnext;
1121
1122 lpprev = NULL;
1123
1124 for (lp = lwp_list; lp; lp = lpnext)
1125 {
1126 lpnext = lp->next;
1127
1128 if (ptid_get_pid (lp->ptid) == pid)
1129 {
1130 if (lp == lwp_list)
1131 lwp_list = lp->next;
1132 else
1133 lpprev->next = lp->next;
1134
1135 xfree (lp);
1136 }
1137 else
1138 lpprev = lp;
1139 }
1140 }
1141
1142 /* Return the number of known LWPs in the tgid given by PID. */
1143
1144 static int
1145 num_lwps (int pid)
1146 {
1147 int count = 0;
1148 struct lwp_info *lp;
1149
1150 for (lp = lwp_list; lp; lp = lp->next)
1151 if (ptid_get_pid (lp->ptid) == pid)
1152 count++;
1153
1154 return count;
1155 }
1156
1157 /* Add the LWP specified by PID to the list. Return a pointer to the
1158 structure describing the new LWP. The LWP should already be stopped
1159 (with an exception for the very first LWP). */
1160
1161 static struct lwp_info *
1162 add_lwp (ptid_t ptid)
1163 {
1164 struct lwp_info *lp;
1165
1166 gdb_assert (is_lwp (ptid));
1167
1168 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1169
1170 memset (lp, 0, sizeof (struct lwp_info));
1171
1172 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1173
1174 lp->ptid = ptid;
1175 lp->core = -1;
1176
1177 lp->next = lwp_list;
1178 lwp_list = lp;
1179
1180 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1181 linux_nat_new_thread (ptid);
1182
1183 return lp;
1184 }
1185
1186 /* Remove the LWP specified by PID from the list. */
1187
1188 static void
1189 delete_lwp (ptid_t ptid)
1190 {
1191 struct lwp_info *lp, *lpprev;
1192
1193 lpprev = NULL;
1194
1195 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1196 if (ptid_equal (lp->ptid, ptid))
1197 break;
1198
1199 if (!lp)
1200 return;
1201
1202 if (lpprev)
1203 lpprev->next = lp->next;
1204 else
1205 lwp_list = lp->next;
1206
1207 xfree (lp);
1208 }
1209
1210 /* Return a pointer to the structure describing the LWP corresponding
1211 to PID. If no corresponding LWP could be found, return NULL. */
1212
1213 static struct lwp_info *
1214 find_lwp_pid (ptid_t ptid)
1215 {
1216 struct lwp_info *lp;
1217 int lwp;
1218
1219 if (is_lwp (ptid))
1220 lwp = GET_LWP (ptid);
1221 else
1222 lwp = GET_PID (ptid);
1223
1224 for (lp = lwp_list; lp; lp = lp->next)
1225 if (lwp == GET_LWP (lp->ptid))
1226 return lp;
1227
1228 return NULL;
1229 }
1230
1231 /* Call CALLBACK with its second argument set to DATA for every LWP in
1232 the list. If CALLBACK returns 1 for a particular LWP, return a
1233 pointer to the structure describing that LWP immediately.
1234 Otherwise return NULL. */
1235
1236 struct lwp_info *
1237 iterate_over_lwps (ptid_t filter,
1238 int (*callback) (struct lwp_info *, void *),
1239 void *data)
1240 {
1241 struct lwp_info *lp, *lpnext;
1242
1243 for (lp = lwp_list; lp; lp = lpnext)
1244 {
1245 lpnext = lp->next;
1246
1247 if (ptid_match (lp->ptid, filter))
1248 {
1249 if ((*callback) (lp, data))
1250 return lp;
1251 }
1252 }
1253
1254 return NULL;
1255 }
1256
1257 /* Update our internal state when changing from one checkpoint to
1258 another indicated by NEW_PTID. We can only switch single-threaded
1259 applications, so we only create one new LWP, and the previous list
1260 is discarded. */
1261
1262 void
1263 linux_nat_switch_fork (ptid_t new_ptid)
1264 {
1265 struct lwp_info *lp;
1266
1267 purge_lwp_list (GET_PID (inferior_ptid));
1268
1269 lp = add_lwp (new_ptid);
1270 lp->stopped = 1;
1271
1272 /* This changes the thread's ptid while preserving the gdb thread
1273 num. Also changes the inferior pid, while preserving the
1274 inferior num. */
1275 thread_change_ptid (inferior_ptid, new_ptid);
1276
1277 /* We've just told GDB core that the thread changed target id, but,
1278 in fact, it really is a different thread, with different register
1279 contents. */
1280 registers_changed ();
1281 }
1282
1283 /* Handle the exit of a single thread LP. */
1284
1285 static void
1286 exit_lwp (struct lwp_info *lp)
1287 {
1288 struct thread_info *th = find_thread_ptid (lp->ptid);
1289
1290 if (th)
1291 {
1292 if (print_thread_events)
1293 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1294
1295 delete_thread (lp->ptid);
1296 }
1297
1298 delete_lwp (lp->ptid);
1299 }
1300
1301 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1302
1303 int
1304 linux_proc_get_tgid (int lwpid)
1305 {
1306 FILE *status_file;
1307 char buf[100];
1308 int tgid = -1;
1309
1310 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1311 status_file = fopen (buf, "r");
1312 if (status_file != NULL)
1313 {
1314 while (fgets (buf, sizeof (buf), status_file))
1315 {
1316 if (strncmp (buf, "Tgid:", 5) == 0)
1317 {
1318 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1319 break;
1320 }
1321 }
1322
1323 fclose (status_file);
1324 }
1325
1326 return tgid;
1327 }
1328
1329 /* Detect `T (stopped)' in `/proc/PID/status'.
1330 Other states including `T (tracing stop)' are reported as false. */
1331
1332 static int
1333 pid_is_stopped (pid_t pid)
1334 {
1335 FILE *status_file;
1336 char buf[100];
1337 int retval = 0;
1338
1339 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1340 status_file = fopen (buf, "r");
1341 if (status_file != NULL)
1342 {
1343 int have_state = 0;
1344
1345 while (fgets (buf, sizeof (buf), status_file))
1346 {
1347 if (strncmp (buf, "State:", 6) == 0)
1348 {
1349 have_state = 1;
1350 break;
1351 }
1352 }
1353 if (have_state && strstr (buf, "T (stopped)") != NULL)
1354 retval = 1;
1355 fclose (status_file);
1356 }
1357 return retval;
1358 }
1359
1360 /* Wait for the LWP specified by LP, which we have just attached to.
1361 Returns a wait status for that LWP, to cache. */
1362
1363 static int
1364 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1365 int *signalled)
1366 {
1367 pid_t new_pid, pid = GET_LWP (ptid);
1368 int status;
1369
1370 if (pid_is_stopped (pid))
1371 {
1372 if (debug_linux_nat)
1373 fprintf_unfiltered (gdb_stdlog,
1374 "LNPAW: Attaching to a stopped process\n");
1375
1376 /* The process is definitely stopped. It is in a job control
1377 stop, unless the kernel predates the TASK_STOPPED /
1378 TASK_TRACED distinction, in which case it might be in a
1379 ptrace stop. Make sure it is in a ptrace stop; from there we
1380 can kill it, signal it, et cetera.
1381
1382 First make sure there is a pending SIGSTOP. Since we are
1383 already attached, the process can not transition from stopped
1384 to running without a PTRACE_CONT; so we know this signal will
1385 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1386 probably already in the queue (unless this kernel is old
1387 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1388 is not an RT signal, it can only be queued once. */
1389 kill_lwp (pid, SIGSTOP);
1390
1391 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1392 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1393 ptrace (PTRACE_CONT, pid, 0, 0);
1394 }
1395
1396 /* Make sure the initial process is stopped. The user-level threads
1397 layer might want to poke around in the inferior, and that won't
1398 work if things haven't stabilized yet. */
1399 new_pid = my_waitpid (pid, &status, 0);
1400 if (new_pid == -1 && errno == ECHILD)
1401 {
1402 if (first)
1403 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1404
1405 /* Try again with __WCLONE to check cloned processes. */
1406 new_pid = my_waitpid (pid, &status, __WCLONE);
1407 *cloned = 1;
1408 }
1409
1410 gdb_assert (pid == new_pid);
1411
1412 if (!WIFSTOPPED (status))
1413 {
1414 /* The pid we tried to attach has apparently just exited. */
1415 if (debug_linux_nat)
1416 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1417 pid, status_to_str (status));
1418 return status;
1419 }
1420
1421 if (WSTOPSIG (status) != SIGSTOP)
1422 {
1423 *signalled = 1;
1424 if (debug_linux_nat)
1425 fprintf_unfiltered (gdb_stdlog,
1426 "LNPAW: Received %s after attaching\n",
1427 status_to_str (status));
1428 }
1429
1430 return status;
1431 }
1432
1433 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1434 if the new LWP could not be attached. */
1435
1436 int
1437 lin_lwp_attach_lwp (ptid_t ptid)
1438 {
1439 struct lwp_info *lp;
1440 sigset_t prev_mask;
1441
1442 gdb_assert (is_lwp (ptid));
1443
1444 block_child_signals (&prev_mask);
1445
1446 lp = find_lwp_pid (ptid);
1447
1448 /* We assume that we're already attached to any LWP that has an id
1449 equal to the overall process id, and to any LWP that is already
1450 in our list of LWPs. If we're not seeing exit events from threads
1451 and we've had PID wraparound since we last tried to stop all threads,
1452 this assumption might be wrong; fortunately, this is very unlikely
1453 to happen. */
1454 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1455 {
1456 int status, cloned = 0, signalled = 0;
1457
1458 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1459 {
1460 /* If we fail to attach to the thread, issue a warning,
1461 but continue. One way this can happen is if thread
1462 creation is interrupted; as of Linux kernel 2.6.19, a
1463 bug may place threads in the thread list and then fail
1464 to create them. */
1465 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1466 safe_strerror (errno));
1467 restore_child_signals_mask (&prev_mask);
1468 return -1;
1469 }
1470
1471 if (debug_linux_nat)
1472 fprintf_unfiltered (gdb_stdlog,
1473 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1474 target_pid_to_str (ptid));
1475
1476 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1477 if (!WIFSTOPPED (status))
1478 return -1;
1479
1480 lp = add_lwp (ptid);
1481 lp->stopped = 1;
1482 lp->cloned = cloned;
1483 lp->signalled = signalled;
1484 if (WSTOPSIG (status) != SIGSTOP)
1485 {
1486 lp->resumed = 1;
1487 lp->status = status;
1488 }
1489
1490 target_post_attach (GET_LWP (lp->ptid));
1491
1492 if (debug_linux_nat)
1493 {
1494 fprintf_unfiltered (gdb_stdlog,
1495 "LLAL: waitpid %s received %s\n",
1496 target_pid_to_str (ptid),
1497 status_to_str (status));
1498 }
1499 }
1500 else
1501 {
1502 /* We assume that the LWP representing the original process is
1503 already stopped. Mark it as stopped in the data structure
1504 that the GNU/linux ptrace layer uses to keep track of
1505 threads. Note that this won't have already been done since
1506 the main thread will have, we assume, been stopped by an
1507 attach from a different layer. */
1508 if (lp == NULL)
1509 lp = add_lwp (ptid);
1510 lp->stopped = 1;
1511 }
1512
1513 restore_child_signals_mask (&prev_mask);
1514 return 0;
1515 }
1516
1517 static void
1518 linux_nat_create_inferior (struct target_ops *ops,
1519 char *exec_file, char *allargs, char **env,
1520 int from_tty)
1521 {
1522 #ifdef HAVE_PERSONALITY
1523 int personality_orig = 0, personality_set = 0;
1524 #endif /* HAVE_PERSONALITY */
1525
1526 /* The fork_child mechanism is synchronous and calls target_wait, so
1527 we have to mask the async mode. */
1528
1529 #ifdef HAVE_PERSONALITY
1530 if (disable_randomization)
1531 {
1532 errno = 0;
1533 personality_orig = personality (0xffffffff);
1534 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1535 {
1536 personality_set = 1;
1537 personality (personality_orig | ADDR_NO_RANDOMIZE);
1538 }
1539 if (errno != 0 || (personality_set
1540 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1541 warning (_("Error disabling address space randomization: %s"),
1542 safe_strerror (errno));
1543 }
1544 #endif /* HAVE_PERSONALITY */
1545
1546 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1547
1548 #ifdef HAVE_PERSONALITY
1549 if (personality_set)
1550 {
1551 errno = 0;
1552 personality (personality_orig);
1553 if (errno != 0)
1554 warning (_("Error restoring address space randomization: %s"),
1555 safe_strerror (errno));
1556 }
1557 #endif /* HAVE_PERSONALITY */
1558 }
1559
1560 static void
1561 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1562 {
1563 struct lwp_info *lp;
1564 int status;
1565 ptid_t ptid;
1566
1567 linux_ops->to_attach (ops, args, from_tty);
1568
1569 /* The ptrace base target adds the main thread with (pid,0,0)
1570 format. Decorate it with lwp info. */
1571 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1572 thread_change_ptid (inferior_ptid, ptid);
1573
1574 /* Add the initial process as the first LWP to the list. */
1575 lp = add_lwp (ptid);
1576
1577 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1578 &lp->signalled);
1579 if (!WIFSTOPPED (status))
1580 {
1581 if (WIFEXITED (status))
1582 {
1583 int exit_code = WEXITSTATUS (status);
1584
1585 target_terminal_ours ();
1586 target_mourn_inferior ();
1587 if (exit_code == 0)
1588 error (_("Unable to attach: program exited normally."));
1589 else
1590 error (_("Unable to attach: program exited with code %d."),
1591 exit_code);
1592 }
1593 else if (WIFSIGNALED (status))
1594 {
1595 enum target_signal signo;
1596
1597 target_terminal_ours ();
1598 target_mourn_inferior ();
1599
1600 signo = target_signal_from_host (WTERMSIG (status));
1601 error (_("Unable to attach: program terminated with signal "
1602 "%s, %s."),
1603 target_signal_to_name (signo),
1604 target_signal_to_string (signo));
1605 }
1606
1607 internal_error (__FILE__, __LINE__,
1608 _("unexpected status %d for PID %ld"),
1609 status, (long) GET_LWP (ptid));
1610 }
1611
1612 lp->stopped = 1;
1613
1614 /* Save the wait status to report later. */
1615 lp->resumed = 1;
1616 if (debug_linux_nat)
1617 fprintf_unfiltered (gdb_stdlog,
1618 "LNA: waitpid %ld, saving status %s\n",
1619 (long) GET_PID (lp->ptid), status_to_str (status));
1620
1621 lp->status = status;
1622
1623 if (target_can_async_p ())
1624 target_async (inferior_event_handler, 0);
1625 }
1626
1627 /* Get pending status of LP. */
1628 static int
1629 get_pending_status (struct lwp_info *lp, int *status)
1630 {
1631 enum target_signal signo = TARGET_SIGNAL_0;
1632
1633 /* If we paused threads momentarily, we may have stored pending
1634 events in lp->status or lp->waitstatus (see stop_wait_callback),
1635 and GDB core hasn't seen any signal for those threads.
1636 Otherwise, the last signal reported to the core is found in the
1637 thread object's stop_signal.
1638
1639 There's a corner case that isn't handled here at present. Only
1640 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1641 stop_signal make sense as a real signal to pass to the inferior.
1642 Some catchpoint related events, like
1643 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1644 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1645 those traps are debug API (ptrace in our case) related and
1646 induced; the inferior wouldn't see them if it wasn't being
1647 traced. Hence, we should never pass them to the inferior, even
1648 when set to pass state. Since this corner case isn't handled by
1649 infrun.c when proceeding with a signal, for consistency, neither
1650 do we handle it here (or elsewhere in the file we check for
1651 signal pass state). Normally SIGTRAP isn't set to pass state, so
1652 this is really a corner case. */
1653
1654 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1655 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1656 else if (lp->status)
1657 signo = target_signal_from_host (WSTOPSIG (lp->status));
1658 else if (non_stop && !is_executing (lp->ptid))
1659 {
1660 struct thread_info *tp = find_thread_ptid (lp->ptid);
1661
1662 signo = tp->suspend.stop_signal;
1663 }
1664 else if (!non_stop)
1665 {
1666 struct target_waitstatus last;
1667 ptid_t last_ptid;
1668
1669 get_last_target_status (&last_ptid, &last);
1670
1671 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1672 {
1673 struct thread_info *tp = find_thread_ptid (lp->ptid);
1674
1675 signo = tp->suspend.stop_signal;
1676 }
1677 }
1678
1679 *status = 0;
1680
1681 if (signo == TARGET_SIGNAL_0)
1682 {
1683 if (debug_linux_nat)
1684 fprintf_unfiltered (gdb_stdlog,
1685 "GPT: lwp %s has no pending signal\n",
1686 target_pid_to_str (lp->ptid));
1687 }
1688 else if (!signal_pass_state (signo))
1689 {
1690 if (debug_linux_nat)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "GPT: lwp %s had signal %s, "
1693 "but it is in no pass state\n",
1694 target_pid_to_str (lp->ptid),
1695 target_signal_to_string (signo));
1696 }
1697 else
1698 {
1699 *status = W_STOPCODE (target_signal_to_host (signo));
1700
1701 if (debug_linux_nat)
1702 fprintf_unfiltered (gdb_stdlog,
1703 "GPT: lwp %s has pending signal %s\n",
1704 target_pid_to_str (lp->ptid),
1705 target_signal_to_string (signo));
1706 }
1707
1708 return 0;
1709 }
1710
1711 static int
1712 detach_callback (struct lwp_info *lp, void *data)
1713 {
1714 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1715
1716 if (debug_linux_nat && lp->status)
1717 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1718 strsignal (WSTOPSIG (lp->status)),
1719 target_pid_to_str (lp->ptid));
1720
1721 /* If there is a pending SIGSTOP, get rid of it. */
1722 if (lp->signalled)
1723 {
1724 if (debug_linux_nat)
1725 fprintf_unfiltered (gdb_stdlog,
1726 "DC: Sending SIGCONT to %s\n",
1727 target_pid_to_str (lp->ptid));
1728
1729 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1730 lp->signalled = 0;
1731 }
1732
1733 /* We don't actually detach from the LWP that has an id equal to the
1734 overall process id just yet. */
1735 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1736 {
1737 int status = 0;
1738
1739 /* Pass on any pending signal for this LWP. */
1740 get_pending_status (lp, &status);
1741
1742 errno = 0;
1743 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1744 WSTOPSIG (status)) < 0)
1745 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1746 safe_strerror (errno));
1747
1748 if (debug_linux_nat)
1749 fprintf_unfiltered (gdb_stdlog,
1750 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1751 target_pid_to_str (lp->ptid),
1752 strsignal (WSTOPSIG (status)));
1753
1754 delete_lwp (lp->ptid);
1755 }
1756
1757 return 0;
1758 }
1759
1760 static void
1761 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1762 {
1763 int pid;
1764 int status;
1765 struct lwp_info *main_lwp;
1766
1767 pid = GET_PID (inferior_ptid);
1768
1769 if (target_can_async_p ())
1770 linux_nat_async (NULL, 0);
1771
1772 /* Stop all threads before detaching. ptrace requires that the
1773 thread is stopped to sucessfully detach. */
1774 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1775 /* ... and wait until all of them have reported back that
1776 they're no longer running. */
1777 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1778
1779 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1780
1781 /* Only the initial process should be left right now. */
1782 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1783
1784 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1785
1786 /* Pass on any pending signal for the last LWP. */
1787 if ((args == NULL || *args == '\0')
1788 && get_pending_status (main_lwp, &status) != -1
1789 && WIFSTOPPED (status))
1790 {
1791 /* Put the signal number in ARGS so that inf_ptrace_detach will
1792 pass it along with PTRACE_DETACH. */
1793 args = alloca (8);
1794 sprintf (args, "%d", (int) WSTOPSIG (status));
1795 if (debug_linux_nat)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "LND: Sending signal %s to %s\n",
1798 args,
1799 target_pid_to_str (main_lwp->ptid));
1800 }
1801
1802 delete_lwp (main_lwp->ptid);
1803
1804 if (forks_exist_p ())
1805 {
1806 /* Multi-fork case. The current inferior_ptid is being detached
1807 from, but there are other viable forks to debug. Detach from
1808 the current fork, and context-switch to the first
1809 available. */
1810 linux_fork_detach (args, from_tty);
1811
1812 if (non_stop && target_can_async_p ())
1813 target_async (inferior_event_handler, 0);
1814 }
1815 else
1816 linux_ops->to_detach (ops, args, from_tty);
1817 }
1818
1819 /* Resume LP. */
1820
1821 static int
1822 resume_callback (struct lwp_info *lp, void *data)
1823 {
1824 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1825
1826 if (lp->stopped && inf->vfork_child != NULL)
1827 {
1828 if (debug_linux_nat)
1829 fprintf_unfiltered (gdb_stdlog,
1830 "RC: Not resuming %s (vfork parent)\n",
1831 target_pid_to_str (lp->ptid));
1832 }
1833 else if (lp->stopped && lp->status == 0)
1834 {
1835 if (debug_linux_nat)
1836 fprintf_unfiltered (gdb_stdlog,
1837 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1838 target_pid_to_str (lp->ptid));
1839
1840 linux_ops->to_resume (linux_ops,
1841 pid_to_ptid (GET_LWP (lp->ptid)),
1842 0, TARGET_SIGNAL_0);
1843 if (debug_linux_nat)
1844 fprintf_unfiltered (gdb_stdlog,
1845 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1846 target_pid_to_str (lp->ptid));
1847 lp->stopped = 0;
1848 lp->step = 0;
1849 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1850 lp->stopped_by_watchpoint = 0;
1851 }
1852 else if (lp->stopped && debug_linux_nat)
1853 fprintf_unfiltered (gdb_stdlog,
1854 "RC: Not resuming sibling %s (has pending)\n",
1855 target_pid_to_str (lp->ptid));
1856 else if (debug_linux_nat)
1857 fprintf_unfiltered (gdb_stdlog,
1858 "RC: Not resuming sibling %s (not stopped)\n",
1859 target_pid_to_str (lp->ptid));
1860
1861 return 0;
1862 }
1863
1864 static int
1865 resume_clear_callback (struct lwp_info *lp, void *data)
1866 {
1867 lp->resumed = 0;
1868 return 0;
1869 }
1870
1871 static int
1872 resume_set_callback (struct lwp_info *lp, void *data)
1873 {
1874 lp->resumed = 1;
1875 return 0;
1876 }
1877
1878 static void
1879 linux_nat_resume (struct target_ops *ops,
1880 ptid_t ptid, int step, enum target_signal signo)
1881 {
1882 sigset_t prev_mask;
1883 struct lwp_info *lp;
1884 int resume_many;
1885
1886 if (debug_linux_nat)
1887 fprintf_unfiltered (gdb_stdlog,
1888 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1889 step ? "step" : "resume",
1890 target_pid_to_str (ptid),
1891 (signo != TARGET_SIGNAL_0
1892 ? strsignal (target_signal_to_host (signo)) : "0"),
1893 target_pid_to_str (inferior_ptid));
1894
1895 block_child_signals (&prev_mask);
1896
1897 /* A specific PTID means `step only this process id'. */
1898 resume_many = (ptid_equal (minus_one_ptid, ptid)
1899 || ptid_is_pid (ptid));
1900
1901 /* Mark the lwps we're resuming as resumed. */
1902 iterate_over_lwps (ptid, resume_set_callback, NULL);
1903
1904 /* See if it's the current inferior that should be handled
1905 specially. */
1906 if (resume_many)
1907 lp = find_lwp_pid (inferior_ptid);
1908 else
1909 lp = find_lwp_pid (ptid);
1910 gdb_assert (lp != NULL);
1911
1912 /* Remember if we're stepping. */
1913 lp->step = step;
1914
1915 /* If we have a pending wait status for this thread, there is no
1916 point in resuming the process. But first make sure that
1917 linux_nat_wait won't preemptively handle the event - we
1918 should never take this short-circuit if we are going to
1919 leave LP running, since we have skipped resuming all the
1920 other threads. This bit of code needs to be synchronized
1921 with linux_nat_wait. */
1922
1923 if (lp->status && WIFSTOPPED (lp->status))
1924 {
1925 enum target_signal saved_signo;
1926 struct inferior *inf;
1927
1928 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1929 gdb_assert (inf);
1930 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1931
1932 /* Defer to common code if we're gaining control of the
1933 inferior. */
1934 if (inf->control.stop_soon == NO_STOP_QUIETLY
1935 && signal_stop_state (saved_signo) == 0
1936 && signal_print_state (saved_signo) == 0
1937 && signal_pass_state (saved_signo) == 1)
1938 {
1939 if (debug_linux_nat)
1940 fprintf_unfiltered (gdb_stdlog,
1941 "LLR: Not short circuiting for ignored "
1942 "status 0x%x\n", lp->status);
1943
1944 /* FIXME: What should we do if we are supposed to continue
1945 this thread with a signal? */
1946 gdb_assert (signo == TARGET_SIGNAL_0);
1947 signo = saved_signo;
1948 lp->status = 0;
1949 }
1950 }
1951
1952 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1953 {
1954 /* FIXME: What should we do if we are supposed to continue
1955 this thread with a signal? */
1956 gdb_assert (signo == TARGET_SIGNAL_0);
1957
1958 if (debug_linux_nat)
1959 fprintf_unfiltered (gdb_stdlog,
1960 "LLR: Short circuiting for status 0x%x\n",
1961 lp->status);
1962
1963 restore_child_signals_mask (&prev_mask);
1964 if (target_can_async_p ())
1965 {
1966 target_async (inferior_event_handler, 0);
1967 /* Tell the event loop we have something to process. */
1968 async_file_mark ();
1969 }
1970 return;
1971 }
1972
1973 /* Mark LWP as not stopped to prevent it from being continued by
1974 resume_callback. */
1975 lp->stopped = 0;
1976
1977 if (resume_many)
1978 iterate_over_lwps (ptid, resume_callback, NULL);
1979
1980 /* Convert to something the lower layer understands. */
1981 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1982
1983 linux_ops->to_resume (linux_ops, ptid, step, signo);
1984 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1985 lp->stopped_by_watchpoint = 0;
1986
1987 if (debug_linux_nat)
1988 fprintf_unfiltered (gdb_stdlog,
1989 "LLR: %s %s, %s (resume event thread)\n",
1990 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1991 target_pid_to_str (ptid),
1992 (signo != TARGET_SIGNAL_0
1993 ? strsignal (target_signal_to_host (signo)) : "0"));
1994
1995 restore_child_signals_mask (&prev_mask);
1996 if (target_can_async_p ())
1997 target_async (inferior_event_handler, 0);
1998 }
1999
2000 /* Send a signal to an LWP. */
2001
2002 static int
2003 kill_lwp (int lwpid, int signo)
2004 {
2005 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2006 fails, then we are not using nptl threads and we should be using kill. */
2007
2008 #ifdef HAVE_TKILL_SYSCALL
2009 {
2010 static int tkill_failed;
2011
2012 if (!tkill_failed)
2013 {
2014 int ret;
2015
2016 errno = 0;
2017 ret = syscall (__NR_tkill, lwpid, signo);
2018 if (errno != ENOSYS)
2019 return ret;
2020 tkill_failed = 1;
2021 }
2022 }
2023 #endif
2024
2025 return kill (lwpid, signo);
2026 }
2027
2028 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2029 event, check if the core is interested in it: if not, ignore the
2030 event, and keep waiting; otherwise, we need to toggle the LWP's
2031 syscall entry/exit status, since the ptrace event itself doesn't
2032 indicate it, and report the trap to higher layers. */
2033
2034 static int
2035 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2036 {
2037 struct target_waitstatus *ourstatus = &lp->waitstatus;
2038 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2039 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2040
2041 if (stopping)
2042 {
2043 /* If we're stopping threads, there's a SIGSTOP pending, which
2044 makes it so that the LWP reports an immediate syscall return,
2045 followed by the SIGSTOP. Skip seeing that "return" using
2046 PTRACE_CONT directly, and let stop_wait_callback collect the
2047 SIGSTOP. Later when the thread is resumed, a new syscall
2048 entry event. If we didn't do this (and returned 0), we'd
2049 leave a syscall entry pending, and our caller, by using
2050 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2051 itself. Later, when the user re-resumes this LWP, we'd see
2052 another syscall entry event and we'd mistake it for a return.
2053
2054 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2055 (leaving immediately with LWP->signalled set, without issuing
2056 a PTRACE_CONT), it would still be problematic to leave this
2057 syscall enter pending, as later when the thread is resumed,
2058 it would then see the same syscall exit mentioned above,
2059 followed by the delayed SIGSTOP, while the syscall didn't
2060 actually get to execute. It seems it would be even more
2061 confusing to the user. */
2062
2063 if (debug_linux_nat)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "LHST: ignoring syscall %d "
2066 "for LWP %ld (stopping threads), "
2067 "resuming with PTRACE_CONT for SIGSTOP\n",
2068 syscall_number,
2069 GET_LWP (lp->ptid));
2070
2071 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2072 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2073 return 1;
2074 }
2075
2076 if (catch_syscall_enabled ())
2077 {
2078 /* Always update the entry/return state, even if this particular
2079 syscall isn't interesting to the core now. In async mode,
2080 the user could install a new catchpoint for this syscall
2081 between syscall enter/return, and we'll need to know to
2082 report a syscall return if that happens. */
2083 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2084 ? TARGET_WAITKIND_SYSCALL_RETURN
2085 : TARGET_WAITKIND_SYSCALL_ENTRY);
2086
2087 if (catching_syscall_number (syscall_number))
2088 {
2089 /* Alright, an event to report. */
2090 ourstatus->kind = lp->syscall_state;
2091 ourstatus->value.syscall_number = syscall_number;
2092
2093 if (debug_linux_nat)
2094 fprintf_unfiltered (gdb_stdlog,
2095 "LHST: stopping for %s of syscall %d"
2096 " for LWP %ld\n",
2097 lp->syscall_state
2098 == TARGET_WAITKIND_SYSCALL_ENTRY
2099 ? "entry" : "return",
2100 syscall_number,
2101 GET_LWP (lp->ptid));
2102 return 0;
2103 }
2104
2105 if (debug_linux_nat)
2106 fprintf_unfiltered (gdb_stdlog,
2107 "LHST: ignoring %s of syscall %d "
2108 "for LWP %ld\n",
2109 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2110 ? "entry" : "return",
2111 syscall_number,
2112 GET_LWP (lp->ptid));
2113 }
2114 else
2115 {
2116 /* If we had been syscall tracing, and hence used PT_SYSCALL
2117 before on this LWP, it could happen that the user removes all
2118 syscall catchpoints before we get to process this event.
2119 There are two noteworthy issues here:
2120
2121 - When stopped at a syscall entry event, resuming with
2122 PT_STEP still resumes executing the syscall and reports a
2123 syscall return.
2124
2125 - Only PT_SYSCALL catches syscall enters. If we last
2126 single-stepped this thread, then this event can't be a
2127 syscall enter. If we last single-stepped this thread, this
2128 has to be a syscall exit.
2129
2130 The points above mean that the next resume, be it PT_STEP or
2131 PT_CONTINUE, can not trigger a syscall trace event. */
2132 if (debug_linux_nat)
2133 fprintf_unfiltered (gdb_stdlog,
2134 "LHST: caught syscall event "
2135 "with no syscall catchpoints."
2136 " %d for LWP %ld, ignoring\n",
2137 syscall_number,
2138 GET_LWP (lp->ptid));
2139 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2140 }
2141
2142 /* The core isn't interested in this event. For efficiency, avoid
2143 stopping all threads only to have the core resume them all again.
2144 Since we're not stopping threads, if we're still syscall tracing
2145 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2146 subsequent syscall. Simply resume using the inf-ptrace layer,
2147 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2148
2149 /* Note that gdbarch_get_syscall_number may access registers, hence
2150 fill a regcache. */
2151 registers_changed ();
2152 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2153 lp->step, TARGET_SIGNAL_0);
2154 return 1;
2155 }
2156
2157 /* Handle a GNU/Linux extended wait response. If we see a clone
2158 event, we need to add the new LWP to our list (and not report the
2159 trap to higher layers). This function returns non-zero if the
2160 event should be ignored and we should wait again. If STOPPING is
2161 true, the new LWP remains stopped, otherwise it is continued. */
2162
2163 static int
2164 linux_handle_extended_wait (struct lwp_info *lp, int status,
2165 int stopping)
2166 {
2167 int pid = GET_LWP (lp->ptid);
2168 struct target_waitstatus *ourstatus = &lp->waitstatus;
2169 int event = status >> 16;
2170
2171 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2172 || event == PTRACE_EVENT_CLONE)
2173 {
2174 unsigned long new_pid;
2175 int ret;
2176
2177 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2178
2179 /* If we haven't already seen the new PID stop, wait for it now. */
2180 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2181 {
2182 /* The new child has a pending SIGSTOP. We can't affect it until it
2183 hits the SIGSTOP, but we're already attached. */
2184 ret = my_waitpid (new_pid, &status,
2185 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2186 if (ret == -1)
2187 perror_with_name (_("waiting for new child"));
2188 else if (ret != new_pid)
2189 internal_error (__FILE__, __LINE__,
2190 _("wait returned unexpected PID %d"), ret);
2191 else if (!WIFSTOPPED (status))
2192 internal_error (__FILE__, __LINE__,
2193 _("wait returned unexpected status 0x%x"), status);
2194 }
2195
2196 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2197
2198 if (event == PTRACE_EVENT_FORK
2199 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2200 {
2201 struct fork_info *fp;
2202
2203 /* Handle checkpointing by linux-fork.c here as a special
2204 case. We don't want the follow-fork-mode or 'catch fork'
2205 to interfere with this. */
2206
2207 /* This won't actually modify the breakpoint list, but will
2208 physically remove the breakpoints from the child. */
2209 detach_breakpoints (new_pid);
2210
2211 /* Retain child fork in ptrace (stopped) state. */
2212 fp = find_fork_pid (new_pid);
2213 if (!fp)
2214 fp = add_fork (new_pid);
2215
2216 /* Report as spurious, so that infrun doesn't want to follow
2217 this fork. We're actually doing an infcall in
2218 linux-fork.c. */
2219 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2220 linux_enable_event_reporting (pid_to_ptid (new_pid));
2221
2222 /* Report the stop to the core. */
2223 return 0;
2224 }
2225
2226 if (event == PTRACE_EVENT_FORK)
2227 ourstatus->kind = TARGET_WAITKIND_FORKED;
2228 else if (event == PTRACE_EVENT_VFORK)
2229 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2230 else
2231 {
2232 struct lwp_info *new_lp;
2233
2234 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2235
2236 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2237 new_lp->cloned = 1;
2238 new_lp->stopped = 1;
2239
2240 if (WSTOPSIG (status) != SIGSTOP)
2241 {
2242 /* This can happen if someone starts sending signals to
2243 the new thread before it gets a chance to run, which
2244 have a lower number than SIGSTOP (e.g. SIGUSR1).
2245 This is an unlikely case, and harder to handle for
2246 fork / vfork than for clone, so we do not try - but
2247 we handle it for clone events here. We'll send
2248 the other signal on to the thread below. */
2249
2250 new_lp->signalled = 1;
2251 }
2252 else
2253 status = 0;
2254
2255 if (non_stop)
2256 {
2257 /* Add the new thread to GDB's lists as soon as possible
2258 so that:
2259
2260 1) the frontend doesn't have to wait for a stop to
2261 display them, and,
2262
2263 2) we tag it with the correct running state. */
2264
2265 /* If the thread_db layer is active, let it know about
2266 this new thread, and add it to GDB's list. */
2267 if (!thread_db_attach_lwp (new_lp->ptid))
2268 {
2269 /* We're not using thread_db. Add it to GDB's
2270 list. */
2271 target_post_attach (GET_LWP (new_lp->ptid));
2272 add_thread (new_lp->ptid);
2273 }
2274
2275 if (!stopping)
2276 {
2277 set_running (new_lp->ptid, 1);
2278 set_executing (new_lp->ptid, 1);
2279 }
2280 }
2281
2282 /* Note the need to use the low target ops to resume, to
2283 handle resuming with PT_SYSCALL if we have syscall
2284 catchpoints. */
2285 if (!stopping)
2286 {
2287 enum target_signal signo;
2288
2289 new_lp->stopped = 0;
2290 new_lp->resumed = 1;
2291
2292 signo = (status
2293 ? target_signal_from_host (WSTOPSIG (status))
2294 : TARGET_SIGNAL_0);
2295
2296 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2297 0, signo);
2298 }
2299 else
2300 {
2301 if (status != 0)
2302 {
2303 /* We created NEW_LP so it cannot yet contain STATUS. */
2304 gdb_assert (new_lp->status == 0);
2305
2306 /* Save the wait status to report later. */
2307 if (debug_linux_nat)
2308 fprintf_unfiltered (gdb_stdlog,
2309 "LHEW: waitpid of new LWP %ld, "
2310 "saving status %s\n",
2311 (long) GET_LWP (new_lp->ptid),
2312 status_to_str (status));
2313 new_lp->status = status;
2314 }
2315 }
2316
2317 if (debug_linux_nat)
2318 fprintf_unfiltered (gdb_stdlog,
2319 "LHEW: Got clone event "
2320 "from LWP %ld, resuming\n",
2321 GET_LWP (lp->ptid));
2322 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2323 0, TARGET_SIGNAL_0);
2324
2325 return 1;
2326 }
2327
2328 return 0;
2329 }
2330
2331 if (event == PTRACE_EVENT_EXEC)
2332 {
2333 if (debug_linux_nat)
2334 fprintf_unfiltered (gdb_stdlog,
2335 "LHEW: Got exec event from LWP %ld\n",
2336 GET_LWP (lp->ptid));
2337
2338 ourstatus->kind = TARGET_WAITKIND_EXECD;
2339 ourstatus->value.execd_pathname
2340 = xstrdup (linux_child_pid_to_exec_file (pid));
2341
2342 return 0;
2343 }
2344
2345 if (event == PTRACE_EVENT_VFORK_DONE)
2346 {
2347 if (current_inferior ()->waiting_for_vfork_done)
2348 {
2349 if (debug_linux_nat)
2350 fprintf_unfiltered (gdb_stdlog,
2351 "LHEW: Got expected PTRACE_EVENT_"
2352 "VFORK_DONE from LWP %ld: stopping\n",
2353 GET_LWP (lp->ptid));
2354
2355 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2356 return 0;
2357 }
2358
2359 if (debug_linux_nat)
2360 fprintf_unfiltered (gdb_stdlog,
2361 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2362 "from LWP %ld: resuming\n",
2363 GET_LWP (lp->ptid));
2364 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2365 return 1;
2366 }
2367
2368 internal_error (__FILE__, __LINE__,
2369 _("unknown ptrace event %d"), event);
2370 }
2371
2372 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2373 exited. */
2374
2375 static int
2376 wait_lwp (struct lwp_info *lp)
2377 {
2378 pid_t pid;
2379 int status;
2380 int thread_dead = 0;
2381
2382 gdb_assert (!lp->stopped);
2383 gdb_assert (lp->status == 0);
2384
2385 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2386 if (pid == -1 && errno == ECHILD)
2387 {
2388 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2389 if (pid == -1 && errno == ECHILD)
2390 {
2391 /* The thread has previously exited. We need to delete it
2392 now because, for some vendor 2.4 kernels with NPTL
2393 support backported, there won't be an exit event unless
2394 it is the main thread. 2.6 kernels will report an exit
2395 event for each thread that exits, as expected. */
2396 thread_dead = 1;
2397 if (debug_linux_nat)
2398 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2399 target_pid_to_str (lp->ptid));
2400 }
2401 }
2402
2403 if (!thread_dead)
2404 {
2405 gdb_assert (pid == GET_LWP (lp->ptid));
2406
2407 if (debug_linux_nat)
2408 {
2409 fprintf_unfiltered (gdb_stdlog,
2410 "WL: waitpid %s received %s\n",
2411 target_pid_to_str (lp->ptid),
2412 status_to_str (status));
2413 }
2414 }
2415
2416 /* Check if the thread has exited. */
2417 if (WIFEXITED (status) || WIFSIGNALED (status))
2418 {
2419 thread_dead = 1;
2420 if (debug_linux_nat)
2421 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2422 target_pid_to_str (lp->ptid));
2423 }
2424
2425 if (thread_dead)
2426 {
2427 exit_lwp (lp);
2428 return 0;
2429 }
2430
2431 gdb_assert (WIFSTOPPED (status));
2432
2433 /* Handle GNU/Linux's syscall SIGTRAPs. */
2434 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2435 {
2436 /* No longer need the sysgood bit. The ptrace event ends up
2437 recorded in lp->waitstatus if we care for it. We can carry
2438 on handling the event like a regular SIGTRAP from here
2439 on. */
2440 status = W_STOPCODE (SIGTRAP);
2441 if (linux_handle_syscall_trap (lp, 1))
2442 return wait_lwp (lp);
2443 }
2444
2445 /* Handle GNU/Linux's extended waitstatus for trace events. */
2446 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2447 {
2448 if (debug_linux_nat)
2449 fprintf_unfiltered (gdb_stdlog,
2450 "WL: Handling extended status 0x%06x\n",
2451 status);
2452 if (linux_handle_extended_wait (lp, status, 1))
2453 return wait_lwp (lp);
2454 }
2455
2456 return status;
2457 }
2458
2459 /* Save the most recent siginfo for LP. This is currently only called
2460 for SIGTRAP; some ports use the si_addr field for
2461 target_stopped_data_address. In the future, it may also be used to
2462 restore the siginfo of requeued signals. */
2463
2464 static void
2465 save_siginfo (struct lwp_info *lp)
2466 {
2467 errno = 0;
2468 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2469 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2470
2471 if (errno != 0)
2472 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2473 }
2474
2475 /* Send a SIGSTOP to LP. */
2476
2477 static int
2478 stop_callback (struct lwp_info *lp, void *data)
2479 {
2480 if (!lp->stopped && !lp->signalled)
2481 {
2482 int ret;
2483
2484 if (debug_linux_nat)
2485 {
2486 fprintf_unfiltered (gdb_stdlog,
2487 "SC: kill %s **<SIGSTOP>**\n",
2488 target_pid_to_str (lp->ptid));
2489 }
2490 errno = 0;
2491 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2492 if (debug_linux_nat)
2493 {
2494 fprintf_unfiltered (gdb_stdlog,
2495 "SC: lwp kill %d %s\n",
2496 ret,
2497 errno ? safe_strerror (errno) : "ERRNO-OK");
2498 }
2499
2500 lp->signalled = 1;
2501 gdb_assert (lp->status == 0);
2502 }
2503
2504 return 0;
2505 }
2506
2507 /* Return non-zero if LWP PID has a pending SIGINT. */
2508
2509 static int
2510 linux_nat_has_pending_sigint (int pid)
2511 {
2512 sigset_t pending, blocked, ignored;
2513
2514 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2515
2516 if (sigismember (&pending, SIGINT)
2517 && !sigismember (&ignored, SIGINT))
2518 return 1;
2519
2520 return 0;
2521 }
2522
2523 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2524
2525 static int
2526 set_ignore_sigint (struct lwp_info *lp, void *data)
2527 {
2528 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2529 flag to consume the next one. */
2530 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2531 && WSTOPSIG (lp->status) == SIGINT)
2532 lp->status = 0;
2533 else
2534 lp->ignore_sigint = 1;
2535
2536 return 0;
2537 }
2538
2539 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2540 This function is called after we know the LWP has stopped; if the LWP
2541 stopped before the expected SIGINT was delivered, then it will never have
2542 arrived. Also, if the signal was delivered to a shared queue and consumed
2543 by a different thread, it will never be delivered to this LWP. */
2544
2545 static void
2546 maybe_clear_ignore_sigint (struct lwp_info *lp)
2547 {
2548 if (!lp->ignore_sigint)
2549 return;
2550
2551 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2552 {
2553 if (debug_linux_nat)
2554 fprintf_unfiltered (gdb_stdlog,
2555 "MCIS: Clearing bogus flag for %s\n",
2556 target_pid_to_str (lp->ptid));
2557 lp->ignore_sigint = 0;
2558 }
2559 }
2560
2561 /* Fetch the possible triggered data watchpoint info and store it in
2562 LP.
2563
2564 On some archs, like x86, that use debug registers to set
2565 watchpoints, it's possible that the way to know which watched
2566 address trapped, is to check the register that is used to select
2567 which address to watch. Problem is, between setting the watchpoint
2568 and reading back which data address trapped, the user may change
2569 the set of watchpoints, and, as a consequence, GDB changes the
2570 debug registers in the inferior. To avoid reading back a stale
2571 stopped-data-address when that happens, we cache in LP the fact
2572 that a watchpoint trapped, and the corresponding data address, as
2573 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2574 registers meanwhile, we have the cached data we can rely on. */
2575
2576 static void
2577 save_sigtrap (struct lwp_info *lp)
2578 {
2579 struct cleanup *old_chain;
2580
2581 if (linux_ops->to_stopped_by_watchpoint == NULL)
2582 {
2583 lp->stopped_by_watchpoint = 0;
2584 return;
2585 }
2586
2587 old_chain = save_inferior_ptid ();
2588 inferior_ptid = lp->ptid;
2589
2590 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2591
2592 if (lp->stopped_by_watchpoint)
2593 {
2594 if (linux_ops->to_stopped_data_address != NULL)
2595 lp->stopped_data_address_p =
2596 linux_ops->to_stopped_data_address (&current_target,
2597 &lp->stopped_data_address);
2598 else
2599 lp->stopped_data_address_p = 0;
2600 }
2601
2602 do_cleanups (old_chain);
2603 }
2604
2605 /* See save_sigtrap. */
2606
2607 static int
2608 linux_nat_stopped_by_watchpoint (void)
2609 {
2610 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2611
2612 gdb_assert (lp != NULL);
2613
2614 return lp->stopped_by_watchpoint;
2615 }
2616
2617 static int
2618 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2619 {
2620 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2621
2622 gdb_assert (lp != NULL);
2623
2624 *addr_p = lp->stopped_data_address;
2625
2626 return lp->stopped_data_address_p;
2627 }
2628
2629 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2630
2631 static int
2632 sigtrap_is_event (int status)
2633 {
2634 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2635 }
2636
2637 /* SIGTRAP-like events recognizer. */
2638
2639 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2640
2641 /* Check for SIGTRAP-like events in LP. */
2642
2643 static int
2644 linux_nat_lp_status_is_event (struct lwp_info *lp)
2645 {
2646 /* We check for lp->waitstatus in addition to lp->status, because we can
2647 have pending process exits recorded in lp->status
2648 and W_EXITCODE(0,0) == 0. We should probably have an additional
2649 lp->status_p flag. */
2650
2651 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2652 && linux_nat_status_is_event (lp->status));
2653 }
2654
2655 /* Set alternative SIGTRAP-like events recognizer. If
2656 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2657 applied. */
2658
2659 void
2660 linux_nat_set_status_is_event (struct target_ops *t,
2661 int (*status_is_event) (int status))
2662 {
2663 linux_nat_status_is_event = status_is_event;
2664 }
2665
2666 /* Wait until LP is stopped. */
2667
2668 static int
2669 stop_wait_callback (struct lwp_info *lp, void *data)
2670 {
2671 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2672
2673 /* If this is a vfork parent, bail out, it is not going to report
2674 any SIGSTOP until the vfork is done with. */
2675 if (inf->vfork_child != NULL)
2676 return 0;
2677
2678 if (!lp->stopped)
2679 {
2680 int status;
2681
2682 status = wait_lwp (lp);
2683 if (status == 0)
2684 return 0;
2685
2686 if (lp->ignore_sigint && WIFSTOPPED (status)
2687 && WSTOPSIG (status) == SIGINT)
2688 {
2689 lp->ignore_sigint = 0;
2690
2691 errno = 0;
2692 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2693 if (debug_linux_nat)
2694 fprintf_unfiltered (gdb_stdlog,
2695 "PTRACE_CONT %s, 0, 0 (%s) "
2696 "(discarding SIGINT)\n",
2697 target_pid_to_str (lp->ptid),
2698 errno ? safe_strerror (errno) : "OK");
2699
2700 return stop_wait_callback (lp, NULL);
2701 }
2702
2703 maybe_clear_ignore_sigint (lp);
2704
2705 if (WSTOPSIG (status) != SIGSTOP)
2706 {
2707 if (linux_nat_status_is_event (status))
2708 {
2709 /* If a LWP other than the LWP that we're reporting an
2710 event for has hit a GDB breakpoint (as opposed to
2711 some random trap signal), then just arrange for it to
2712 hit it again later. We don't keep the SIGTRAP status
2713 and don't forward the SIGTRAP signal to the LWP. We
2714 will handle the current event, eventually we will
2715 resume all LWPs, and this one will get its breakpoint
2716 trap again.
2717
2718 If we do not do this, then we run the risk that the
2719 user will delete or disable the breakpoint, but the
2720 thread will have already tripped on it. */
2721
2722 /* Save the trap's siginfo in case we need it later. */
2723 save_siginfo (lp);
2724
2725 save_sigtrap (lp);
2726
2727 /* Now resume this LWP and get the SIGSTOP event. */
2728 errno = 0;
2729 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2730 if (debug_linux_nat)
2731 {
2732 fprintf_unfiltered (gdb_stdlog,
2733 "PTRACE_CONT %s, 0, 0 (%s)\n",
2734 target_pid_to_str (lp->ptid),
2735 errno ? safe_strerror (errno) : "OK");
2736
2737 fprintf_unfiltered (gdb_stdlog,
2738 "SWC: Candidate SIGTRAP event in %s\n",
2739 target_pid_to_str (lp->ptid));
2740 }
2741 /* Hold this event/waitstatus while we check to see if
2742 there are any more (we still want to get that SIGSTOP). */
2743 stop_wait_callback (lp, NULL);
2744
2745 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2746 there's another event, throw it back into the
2747 queue. */
2748 if (lp->status)
2749 {
2750 if (debug_linux_nat)
2751 fprintf_unfiltered (gdb_stdlog,
2752 "SWC: kill %s, %s\n",
2753 target_pid_to_str (lp->ptid),
2754 status_to_str ((int) status));
2755 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2756 }
2757
2758 /* Save the sigtrap event. */
2759 lp->status = status;
2760 return 0;
2761 }
2762 else
2763 {
2764 /* The thread was stopped with a signal other than
2765 SIGSTOP, and didn't accidentally trip a breakpoint. */
2766
2767 if (debug_linux_nat)
2768 {
2769 fprintf_unfiltered (gdb_stdlog,
2770 "SWC: Pending event %s in %s\n",
2771 status_to_str ((int) status),
2772 target_pid_to_str (lp->ptid));
2773 }
2774 /* Now resume this LWP and get the SIGSTOP event. */
2775 errno = 0;
2776 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2777 if (debug_linux_nat)
2778 fprintf_unfiltered (gdb_stdlog,
2779 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2780 target_pid_to_str (lp->ptid),
2781 errno ? safe_strerror (errno) : "OK");
2782
2783 /* Hold this event/waitstatus while we check to see if
2784 there are any more (we still want to get that SIGSTOP). */
2785 stop_wait_callback (lp, NULL);
2786
2787 /* If the lp->status field is still empty, use it to
2788 hold this event. If not, then this event must be
2789 returned to the event queue of the LWP. */
2790 if (lp->status)
2791 {
2792 if (debug_linux_nat)
2793 {
2794 fprintf_unfiltered (gdb_stdlog,
2795 "SWC: kill %s, %s\n",
2796 target_pid_to_str (lp->ptid),
2797 status_to_str ((int) status));
2798 }
2799 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2800 }
2801 else
2802 lp->status = status;
2803 return 0;
2804 }
2805 }
2806 else
2807 {
2808 /* We caught the SIGSTOP that we intended to catch, so
2809 there's no SIGSTOP pending. */
2810 lp->stopped = 1;
2811 lp->signalled = 0;
2812 }
2813 }
2814
2815 return 0;
2816 }
2817
2818 /* Return non-zero if LP has a wait status pending. */
2819
2820 static int
2821 status_callback (struct lwp_info *lp, void *data)
2822 {
2823 /* Only report a pending wait status if we pretend that this has
2824 indeed been resumed. */
2825 if (!lp->resumed)
2826 return 0;
2827
2828 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2829 {
2830 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2831 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2832 0', so a clean process exit can not be stored pending in
2833 lp->status, it is indistinguishable from
2834 no-pending-status. */
2835 return 1;
2836 }
2837
2838 if (lp->status != 0)
2839 return 1;
2840
2841 return 0;
2842 }
2843
2844 /* Return non-zero if LP isn't stopped. */
2845
2846 static int
2847 running_callback (struct lwp_info *lp, void *data)
2848 {
2849 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2850 }
2851
2852 /* Count the LWP's that have had events. */
2853
2854 static int
2855 count_events_callback (struct lwp_info *lp, void *data)
2856 {
2857 int *count = data;
2858
2859 gdb_assert (count != NULL);
2860
2861 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2862 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2863 (*count)++;
2864
2865 return 0;
2866 }
2867
2868 /* Select the LWP (if any) that is currently being single-stepped. */
2869
2870 static int
2871 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2872 {
2873 if (lp->step && lp->status != 0)
2874 return 1;
2875 else
2876 return 0;
2877 }
2878
2879 /* Select the Nth LWP that has had a SIGTRAP event. */
2880
2881 static int
2882 select_event_lwp_callback (struct lwp_info *lp, void *data)
2883 {
2884 int *selector = data;
2885
2886 gdb_assert (selector != NULL);
2887
2888 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2889 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2890 if ((*selector)-- == 0)
2891 return 1;
2892
2893 return 0;
2894 }
2895
2896 static int
2897 cancel_breakpoint (struct lwp_info *lp)
2898 {
2899 /* Arrange for a breakpoint to be hit again later. We don't keep
2900 the SIGTRAP status and don't forward the SIGTRAP signal to the
2901 LWP. We will handle the current event, eventually we will resume
2902 this LWP, and this breakpoint will trap again.
2903
2904 If we do not do this, then we run the risk that the user will
2905 delete or disable the breakpoint, but the LWP will have already
2906 tripped on it. */
2907
2908 struct regcache *regcache = get_thread_regcache (lp->ptid);
2909 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2910 CORE_ADDR pc;
2911
2912 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2913 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2914 {
2915 if (debug_linux_nat)
2916 fprintf_unfiltered (gdb_stdlog,
2917 "CB: Push back breakpoint for %s\n",
2918 target_pid_to_str (lp->ptid));
2919
2920 /* Back up the PC if necessary. */
2921 if (gdbarch_decr_pc_after_break (gdbarch))
2922 regcache_write_pc (regcache, pc);
2923
2924 return 1;
2925 }
2926 return 0;
2927 }
2928
2929 static int
2930 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2931 {
2932 struct lwp_info *event_lp = data;
2933
2934 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2935 if (lp == event_lp)
2936 return 0;
2937
2938 /* If a LWP other than the LWP that we're reporting an event for has
2939 hit a GDB breakpoint (as opposed to some random trap signal),
2940 then just arrange for it to hit it again later. We don't keep
2941 the SIGTRAP status and don't forward the SIGTRAP signal to the
2942 LWP. We will handle the current event, eventually we will resume
2943 all LWPs, and this one will get its breakpoint trap again.
2944
2945 If we do not do this, then we run the risk that the user will
2946 delete or disable the breakpoint, but the LWP will have already
2947 tripped on it. */
2948
2949 if (linux_nat_lp_status_is_event (lp)
2950 && cancel_breakpoint (lp))
2951 /* Throw away the SIGTRAP. */
2952 lp->status = 0;
2953
2954 return 0;
2955 }
2956
2957 /* Select one LWP out of those that have events pending. */
2958
2959 static void
2960 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2961 {
2962 int num_events = 0;
2963 int random_selector;
2964 struct lwp_info *event_lp;
2965
2966 /* Record the wait status for the original LWP. */
2967 (*orig_lp)->status = *status;
2968
2969 /* Give preference to any LWP that is being single-stepped. */
2970 event_lp = iterate_over_lwps (filter,
2971 select_singlestep_lwp_callback, NULL);
2972 if (event_lp != NULL)
2973 {
2974 if (debug_linux_nat)
2975 fprintf_unfiltered (gdb_stdlog,
2976 "SEL: Select single-step %s\n",
2977 target_pid_to_str (event_lp->ptid));
2978 }
2979 else
2980 {
2981 /* No single-stepping LWP. Select one at random, out of those
2982 which have had SIGTRAP events. */
2983
2984 /* First see how many SIGTRAP events we have. */
2985 iterate_over_lwps (filter, count_events_callback, &num_events);
2986
2987 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2988 random_selector = (int)
2989 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2990
2991 if (debug_linux_nat && num_events > 1)
2992 fprintf_unfiltered (gdb_stdlog,
2993 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2994 num_events, random_selector);
2995
2996 event_lp = iterate_over_lwps (filter,
2997 select_event_lwp_callback,
2998 &random_selector);
2999 }
3000
3001 if (event_lp != NULL)
3002 {
3003 /* Switch the event LWP. */
3004 *orig_lp = event_lp;
3005 *status = event_lp->status;
3006 }
3007
3008 /* Flush the wait status for the event LWP. */
3009 (*orig_lp)->status = 0;
3010 }
3011
3012 /* Return non-zero if LP has been resumed. */
3013
3014 static int
3015 resumed_callback (struct lwp_info *lp, void *data)
3016 {
3017 return lp->resumed;
3018 }
3019
3020 /* Stop an active thread, verify it still exists, then resume it. */
3021
3022 static int
3023 stop_and_resume_callback (struct lwp_info *lp, void *data)
3024 {
3025 struct lwp_info *ptr;
3026
3027 if (!lp->stopped && !lp->signalled)
3028 {
3029 stop_callback (lp, NULL);
3030 stop_wait_callback (lp, NULL);
3031 /* Resume if the lwp still exists. */
3032 for (ptr = lwp_list; ptr; ptr = ptr->next)
3033 if (lp == ptr)
3034 {
3035 resume_callback (lp, NULL);
3036 resume_set_callback (lp, NULL);
3037 }
3038 }
3039 return 0;
3040 }
3041
3042 /* Check if we should go on and pass this event to common code.
3043 Return the affected lwp if we are, or NULL otherwise. */
3044 static struct lwp_info *
3045 linux_nat_filter_event (int lwpid, int status, int options)
3046 {
3047 struct lwp_info *lp;
3048
3049 lp = find_lwp_pid (pid_to_ptid (lwpid));
3050
3051 /* Check for stop events reported by a process we didn't already
3052 know about - anything not already in our LWP list.
3053
3054 If we're expecting to receive stopped processes after
3055 fork, vfork, and clone events, then we'll just add the
3056 new one to our list and go back to waiting for the event
3057 to be reported - the stopped process might be returned
3058 from waitpid before or after the event is. */
3059 if (WIFSTOPPED (status) && !lp)
3060 {
3061 linux_record_stopped_pid (lwpid, status);
3062 return NULL;
3063 }
3064
3065 /* Make sure we don't report an event for the exit of an LWP not in
3066 our list, i.e. not part of the current process. This can happen
3067 if we detach from a program we original forked and then it
3068 exits. */
3069 if (!WIFSTOPPED (status) && !lp)
3070 return NULL;
3071
3072 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3073 CLONE_PTRACE processes which do not use the thread library -
3074 otherwise we wouldn't find the new LWP this way. That doesn't
3075 currently work, and the following code is currently unreachable
3076 due to the two blocks above. If it's fixed some day, this code
3077 should be broken out into a function so that we can also pick up
3078 LWPs from the new interface. */
3079 if (!lp)
3080 {
3081 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3082 if (options & __WCLONE)
3083 lp->cloned = 1;
3084
3085 gdb_assert (WIFSTOPPED (status)
3086 && WSTOPSIG (status) == SIGSTOP);
3087 lp->signalled = 1;
3088
3089 if (!in_thread_list (inferior_ptid))
3090 {
3091 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3092 GET_PID (inferior_ptid));
3093 add_thread (inferior_ptid);
3094 }
3095
3096 add_thread (lp->ptid);
3097 }
3098
3099 /* Handle GNU/Linux's syscall SIGTRAPs. */
3100 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3101 {
3102 /* No longer need the sysgood bit. The ptrace event ends up
3103 recorded in lp->waitstatus if we care for it. We can carry
3104 on handling the event like a regular SIGTRAP from here
3105 on. */
3106 status = W_STOPCODE (SIGTRAP);
3107 if (linux_handle_syscall_trap (lp, 0))
3108 return NULL;
3109 }
3110
3111 /* Handle GNU/Linux's extended waitstatus for trace events. */
3112 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3113 {
3114 if (debug_linux_nat)
3115 fprintf_unfiltered (gdb_stdlog,
3116 "LLW: Handling extended status 0x%06x\n",
3117 status);
3118 if (linux_handle_extended_wait (lp, status, 0))
3119 return NULL;
3120 }
3121
3122 if (linux_nat_status_is_event (status))
3123 {
3124 /* Save the trap's siginfo in case we need it later. */
3125 save_siginfo (lp);
3126
3127 save_sigtrap (lp);
3128 }
3129
3130 /* Check if the thread has exited. */
3131 if ((WIFEXITED (status) || WIFSIGNALED (status))
3132 && num_lwps (GET_PID (lp->ptid)) > 1)
3133 {
3134 /* If this is the main thread, we must stop all threads and verify
3135 if they are still alive. This is because in the nptl thread model
3136 on Linux 2.4, there is no signal issued for exiting LWPs
3137 other than the main thread. We only get the main thread exit
3138 signal once all child threads have already exited. If we
3139 stop all the threads and use the stop_wait_callback to check
3140 if they have exited we can determine whether this signal
3141 should be ignored or whether it means the end of the debugged
3142 application, regardless of which threading model is being
3143 used. */
3144 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3145 {
3146 lp->stopped = 1;
3147 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3148 stop_and_resume_callback, NULL);
3149 }
3150
3151 if (debug_linux_nat)
3152 fprintf_unfiltered (gdb_stdlog,
3153 "LLW: %s exited.\n",
3154 target_pid_to_str (lp->ptid));
3155
3156 if (num_lwps (GET_PID (lp->ptid)) > 1)
3157 {
3158 /* If there is at least one more LWP, then the exit signal
3159 was not the end of the debugged application and should be
3160 ignored. */
3161 exit_lwp (lp);
3162 return NULL;
3163 }
3164 }
3165
3166 /* Check if the current LWP has previously exited. In the nptl
3167 thread model, LWPs other than the main thread do not issue
3168 signals when they exit so we must check whenever the thread has
3169 stopped. A similar check is made in stop_wait_callback(). */
3170 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3171 {
3172 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3173
3174 if (debug_linux_nat)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "LLW: %s exited.\n",
3177 target_pid_to_str (lp->ptid));
3178
3179 exit_lwp (lp);
3180
3181 /* Make sure there is at least one thread running. */
3182 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3183
3184 /* Discard the event. */
3185 return NULL;
3186 }
3187
3188 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3189 an attempt to stop an LWP. */
3190 if (lp->signalled
3191 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3192 {
3193 if (debug_linux_nat)
3194 fprintf_unfiltered (gdb_stdlog,
3195 "LLW: Delayed SIGSTOP caught for %s.\n",
3196 target_pid_to_str (lp->ptid));
3197
3198 /* This is a delayed SIGSTOP. */
3199 lp->signalled = 0;
3200
3201 registers_changed ();
3202
3203 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3204 lp->step, TARGET_SIGNAL_0);
3205 if (debug_linux_nat)
3206 fprintf_unfiltered (gdb_stdlog,
3207 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3208 lp->step ?
3209 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3210 target_pid_to_str (lp->ptid));
3211
3212 lp->stopped = 0;
3213 gdb_assert (lp->resumed);
3214
3215 /* Discard the event. */
3216 return NULL;
3217 }
3218
3219 /* Make sure we don't report a SIGINT that we have already displayed
3220 for another thread. */
3221 if (lp->ignore_sigint
3222 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3223 {
3224 if (debug_linux_nat)
3225 fprintf_unfiltered (gdb_stdlog,
3226 "LLW: Delayed SIGINT caught for %s.\n",
3227 target_pid_to_str (lp->ptid));
3228
3229 /* This is a delayed SIGINT. */
3230 lp->ignore_sigint = 0;
3231
3232 registers_changed ();
3233 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3234 lp->step, TARGET_SIGNAL_0);
3235 if (debug_linux_nat)
3236 fprintf_unfiltered (gdb_stdlog,
3237 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3238 lp->step ?
3239 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3240 target_pid_to_str (lp->ptid));
3241
3242 lp->stopped = 0;
3243 gdb_assert (lp->resumed);
3244
3245 /* Discard the event. */
3246 return NULL;
3247 }
3248
3249 /* An interesting event. */
3250 gdb_assert (lp);
3251 lp->status = status;
3252 return lp;
3253 }
3254
3255 static ptid_t
3256 linux_nat_wait_1 (struct target_ops *ops,
3257 ptid_t ptid, struct target_waitstatus *ourstatus,
3258 int target_options)
3259 {
3260 static sigset_t prev_mask;
3261 struct lwp_info *lp = NULL;
3262 int options = 0;
3263 int status = 0;
3264 pid_t pid;
3265
3266 if (debug_linux_nat_async)
3267 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3268
3269 /* The first time we get here after starting a new inferior, we may
3270 not have added it to the LWP list yet - this is the earliest
3271 moment at which we know its PID. */
3272 if (ptid_is_pid (inferior_ptid))
3273 {
3274 /* Upgrade the main thread's ptid. */
3275 thread_change_ptid (inferior_ptid,
3276 BUILD_LWP (GET_PID (inferior_ptid),
3277 GET_PID (inferior_ptid)));
3278
3279 lp = add_lwp (inferior_ptid);
3280 lp->resumed = 1;
3281 }
3282
3283 /* Make sure SIGCHLD is blocked. */
3284 block_child_signals (&prev_mask);
3285
3286 if (ptid_equal (ptid, minus_one_ptid))
3287 pid = -1;
3288 else if (ptid_is_pid (ptid))
3289 /* A request to wait for a specific tgid. This is not possible
3290 with waitpid, so instead, we wait for any child, and leave
3291 children we're not interested in right now with a pending
3292 status to report later. */
3293 pid = -1;
3294 else
3295 pid = GET_LWP (ptid);
3296
3297 retry:
3298 lp = NULL;
3299 status = 0;
3300
3301 /* Make sure that of those LWPs we want to get an event from, there
3302 is at least one LWP that has been resumed. If there's none, just
3303 bail out. The core may just be flushing asynchronously all
3304 events. */
3305 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3306 {
3307 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3308
3309 if (debug_linux_nat_async)
3310 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3311
3312 restore_child_signals_mask (&prev_mask);
3313 return minus_one_ptid;
3314 }
3315
3316 /* First check if there is a LWP with a wait status pending. */
3317 if (pid == -1)
3318 {
3319 /* Any LWP that's been resumed will do. */
3320 lp = iterate_over_lwps (ptid, status_callback, NULL);
3321 if (lp)
3322 {
3323 if (debug_linux_nat && lp->status)
3324 fprintf_unfiltered (gdb_stdlog,
3325 "LLW: Using pending wait status %s for %s.\n",
3326 status_to_str (lp->status),
3327 target_pid_to_str (lp->ptid));
3328 }
3329
3330 /* But if we don't find one, we'll have to wait, and check both
3331 cloned and uncloned processes. We start with the cloned
3332 processes. */
3333 options = __WCLONE | WNOHANG;
3334 }
3335 else if (is_lwp (ptid))
3336 {
3337 if (debug_linux_nat)
3338 fprintf_unfiltered (gdb_stdlog,
3339 "LLW: Waiting for specific LWP %s.\n",
3340 target_pid_to_str (ptid));
3341
3342 /* We have a specific LWP to check. */
3343 lp = find_lwp_pid (ptid);
3344 gdb_assert (lp);
3345
3346 if (debug_linux_nat && lp->status)
3347 fprintf_unfiltered (gdb_stdlog,
3348 "LLW: Using pending wait status %s for %s.\n",
3349 status_to_str (lp->status),
3350 target_pid_to_str (lp->ptid));
3351
3352 /* If we have to wait, take into account whether PID is a cloned
3353 process or not. And we have to convert it to something that
3354 the layer beneath us can understand. */
3355 options = lp->cloned ? __WCLONE : 0;
3356 pid = GET_LWP (ptid);
3357
3358 /* We check for lp->waitstatus in addition to lp->status,
3359 because we can have pending process exits recorded in
3360 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3361 an additional lp->status_p flag. */
3362 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3363 lp = NULL;
3364 }
3365
3366 if (lp && lp->signalled)
3367 {
3368 /* A pending SIGSTOP may interfere with the normal stream of
3369 events. In a typical case where interference is a problem,
3370 we have a SIGSTOP signal pending for LWP A while
3371 single-stepping it, encounter an event in LWP B, and take the
3372 pending SIGSTOP while trying to stop LWP A. After processing
3373 the event in LWP B, LWP A is continued, and we'll never see
3374 the SIGTRAP associated with the last time we were
3375 single-stepping LWP A. */
3376
3377 /* Resume the thread. It should halt immediately returning the
3378 pending SIGSTOP. */
3379 registers_changed ();
3380 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3381 lp->step, TARGET_SIGNAL_0);
3382 if (debug_linux_nat)
3383 fprintf_unfiltered (gdb_stdlog,
3384 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3385 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3386 target_pid_to_str (lp->ptid));
3387 lp->stopped = 0;
3388 gdb_assert (lp->resumed);
3389
3390 /* Catch the pending SIGSTOP. */
3391 status = lp->status;
3392 lp->status = 0;
3393
3394 stop_wait_callback (lp, NULL);
3395
3396 /* If the lp->status field isn't empty, we caught another signal
3397 while flushing the SIGSTOP. Return it back to the event
3398 queue of the LWP, as we already have an event to handle. */
3399 if (lp->status)
3400 {
3401 if (debug_linux_nat)
3402 fprintf_unfiltered (gdb_stdlog,
3403 "LLW: kill %s, %s\n",
3404 target_pid_to_str (lp->ptid),
3405 status_to_str (lp->status));
3406 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3407 }
3408
3409 lp->status = status;
3410 }
3411
3412 if (!target_can_async_p ())
3413 {
3414 /* Causes SIGINT to be passed on to the attached process. */
3415 set_sigint_trap ();
3416 }
3417
3418 /* Translate generic target_wait options into waitpid options. */
3419 if (target_options & TARGET_WNOHANG)
3420 options |= WNOHANG;
3421
3422 while (lp == NULL)
3423 {
3424 pid_t lwpid;
3425
3426 lwpid = my_waitpid (pid, &status, options);
3427
3428 if (lwpid > 0)
3429 {
3430 gdb_assert (pid == -1 || lwpid == pid);
3431
3432 if (debug_linux_nat)
3433 {
3434 fprintf_unfiltered (gdb_stdlog,
3435 "LLW: waitpid %ld received %s\n",
3436 (long) lwpid, status_to_str (status));
3437 }
3438
3439 lp = linux_nat_filter_event (lwpid, status, options);
3440
3441 /* STATUS is now no longer valid, use LP->STATUS instead. */
3442 status = 0;
3443
3444 if (lp
3445 && ptid_is_pid (ptid)
3446 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3447 {
3448 gdb_assert (lp->resumed);
3449
3450 if (debug_linux_nat)
3451 fprintf (stderr,
3452 "LWP %ld got an event %06x, leaving pending.\n",
3453 ptid_get_lwp (lp->ptid), lp->status);
3454
3455 if (WIFSTOPPED (lp->status))
3456 {
3457 if (WSTOPSIG (lp->status) != SIGSTOP)
3458 {
3459 /* Cancel breakpoint hits. The breakpoint may
3460 be removed before we fetch events from this
3461 process to report to the core. It is best
3462 not to assume the moribund breakpoints
3463 heuristic always handles these cases --- it
3464 could be too many events go through to the
3465 core before this one is handled. All-stop
3466 always cancels breakpoint hits in all
3467 threads. */
3468 if (non_stop
3469 && linux_nat_lp_status_is_event (lp)
3470 && cancel_breakpoint (lp))
3471 {
3472 /* Throw away the SIGTRAP. */
3473 lp->status = 0;
3474
3475 if (debug_linux_nat)
3476 fprintf (stderr,
3477 "LLW: LWP %ld hit a breakpoint while"
3478 " waiting for another process;"
3479 " cancelled it\n",
3480 ptid_get_lwp (lp->ptid));
3481 }
3482 lp->stopped = 1;
3483 }
3484 else
3485 {
3486 lp->stopped = 1;
3487 lp->signalled = 0;
3488 }
3489 }
3490 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3491 {
3492 if (debug_linux_nat)
3493 fprintf (stderr,
3494 "Process %ld exited while stopping LWPs\n",
3495 ptid_get_lwp (lp->ptid));
3496
3497 /* This was the last lwp in the process. Since
3498 events are serialized to GDB core, and we can't
3499 report this one right now, but GDB core and the
3500 other target layers will want to be notified
3501 about the exit code/signal, leave the status
3502 pending for the next time we're able to report
3503 it. */
3504
3505 /* Prevent trying to stop this thread again. We'll
3506 never try to resume it because it has a pending
3507 status. */
3508 lp->stopped = 1;
3509
3510 /* Dead LWP's aren't expected to reported a pending
3511 sigstop. */
3512 lp->signalled = 0;
3513
3514 /* Store the pending event in the waitstatus as
3515 well, because W_EXITCODE(0,0) == 0. */
3516 store_waitstatus (&lp->waitstatus, lp->status);
3517 }
3518
3519 /* Keep looking. */
3520 lp = NULL;
3521 continue;
3522 }
3523
3524 if (lp)
3525 break;
3526 else
3527 {
3528 if (pid == -1)
3529 {
3530 /* waitpid did return something. Restart over. */
3531 options |= __WCLONE;
3532 }
3533 continue;
3534 }
3535 }
3536
3537 if (pid == -1)
3538 {
3539 /* Alternate between checking cloned and uncloned processes. */
3540 options ^= __WCLONE;
3541
3542 /* And every time we have checked both:
3543 In async mode, return to event loop;
3544 In sync mode, suspend waiting for a SIGCHLD signal. */
3545 if (options & __WCLONE)
3546 {
3547 if (target_options & TARGET_WNOHANG)
3548 {
3549 /* No interesting event. */
3550 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3551
3552 if (debug_linux_nat_async)
3553 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3554
3555 restore_child_signals_mask (&prev_mask);
3556 return minus_one_ptid;
3557 }
3558
3559 sigsuspend (&suspend_mask);
3560 }
3561 }
3562 else if (target_options & TARGET_WNOHANG)
3563 {
3564 /* No interesting event for PID yet. */
3565 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3566
3567 if (debug_linux_nat_async)
3568 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3569
3570 restore_child_signals_mask (&prev_mask);
3571 return minus_one_ptid;
3572 }
3573
3574 /* We shouldn't end up here unless we want to try again. */
3575 gdb_assert (lp == NULL);
3576 }
3577
3578 if (!target_can_async_p ())
3579 clear_sigint_trap ();
3580
3581 gdb_assert (lp);
3582
3583 status = lp->status;
3584 lp->status = 0;
3585
3586 /* Don't report signals that GDB isn't interested in, such as
3587 signals that are neither printed nor stopped upon. Stopping all
3588 threads can be a bit time-consuming so if we want decent
3589 performance with heavily multi-threaded programs, especially when
3590 they're using a high frequency timer, we'd better avoid it if we
3591 can. */
3592
3593 if (WIFSTOPPED (status))
3594 {
3595 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3596 struct inferior *inf;
3597
3598 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3599 gdb_assert (inf);
3600
3601 /* Defer to common code if we get a signal while
3602 single-stepping, since that may need special care, e.g. to
3603 skip the signal handler, or, if we're gaining control of the
3604 inferior. */
3605 if (!lp->step
3606 && inf->control.stop_soon == NO_STOP_QUIETLY
3607 && signal_stop_state (signo) == 0
3608 && signal_print_state (signo) == 0
3609 && signal_pass_state (signo) == 1)
3610 {
3611 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3612 here? It is not clear we should. GDB may not expect
3613 other threads to run. On the other hand, not resuming
3614 newly attached threads may cause an unwanted delay in
3615 getting them running. */
3616 registers_changed ();
3617 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3618 lp->step, signo);
3619 if (debug_linux_nat)
3620 fprintf_unfiltered (gdb_stdlog,
3621 "LLW: %s %s, %s (preempt 'handle')\n",
3622 lp->step ?
3623 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3624 target_pid_to_str (lp->ptid),
3625 (signo != TARGET_SIGNAL_0
3626 ? strsignal (target_signal_to_host (signo))
3627 : "0"));
3628 lp->stopped = 0;
3629 goto retry;
3630 }
3631
3632 if (!non_stop)
3633 {
3634 /* Only do the below in all-stop, as we currently use SIGINT
3635 to implement target_stop (see linux_nat_stop) in
3636 non-stop. */
3637 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3638 {
3639 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3640 forwarded to the entire process group, that is, all LWPs
3641 will receive it - unless they're using CLONE_THREAD to
3642 share signals. Since we only want to report it once, we
3643 mark it as ignored for all LWPs except this one. */
3644 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3645 set_ignore_sigint, NULL);
3646 lp->ignore_sigint = 0;
3647 }
3648 else
3649 maybe_clear_ignore_sigint (lp);
3650 }
3651 }
3652
3653 /* This LWP is stopped now. */
3654 lp->stopped = 1;
3655
3656 if (debug_linux_nat)
3657 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3658 status_to_str (status), target_pid_to_str (lp->ptid));
3659
3660 if (!non_stop)
3661 {
3662 /* Now stop all other LWP's ... */
3663 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3664
3665 /* ... and wait until all of them have reported back that
3666 they're no longer running. */
3667 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3668
3669 /* If we're not waiting for a specific LWP, choose an event LWP
3670 from among those that have had events. Giving equal priority
3671 to all LWPs that have had events helps prevent
3672 starvation. */
3673 if (pid == -1)
3674 select_event_lwp (ptid, &lp, &status);
3675
3676 /* Now that we've selected our final event LWP, cancel any
3677 breakpoints in other LWPs that have hit a GDB breakpoint.
3678 See the comment in cancel_breakpoints_callback to find out
3679 why. */
3680 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3681
3682 /* In all-stop, from the core's perspective, all LWPs are now
3683 stopped until a new resume action is sent over. */
3684 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3685 }
3686 else
3687 lp->resumed = 0;
3688
3689 if (linux_nat_status_is_event (status))
3690 {
3691 if (debug_linux_nat)
3692 fprintf_unfiltered (gdb_stdlog,
3693 "LLW: trap ptid is %s.\n",
3694 target_pid_to_str (lp->ptid));
3695 }
3696
3697 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3698 {
3699 *ourstatus = lp->waitstatus;
3700 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3701 }
3702 else
3703 store_waitstatus (ourstatus, status);
3704
3705 if (debug_linux_nat_async)
3706 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3707
3708 restore_child_signals_mask (&prev_mask);
3709
3710 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3711 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3712 lp->core = -1;
3713 else
3714 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3715
3716 return lp->ptid;
3717 }
3718
3719 /* Resume LWPs that are currently stopped without any pending status
3720 to report, but are resumed from the core's perspective. */
3721
3722 static int
3723 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3724 {
3725 ptid_t *wait_ptid_p = data;
3726
3727 if (lp->stopped
3728 && lp->resumed
3729 && lp->status == 0
3730 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3731 {
3732 gdb_assert (is_executing (lp->ptid));
3733
3734 /* Don't bother if there's a breakpoint at PC that we'd hit
3735 immediately, and we're not waiting for this LWP. */
3736 if (!ptid_match (lp->ptid, *wait_ptid_p))
3737 {
3738 struct regcache *regcache = get_thread_regcache (lp->ptid);
3739 CORE_ADDR pc = regcache_read_pc (regcache);
3740
3741 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3742 return 0;
3743 }
3744
3745 if (debug_linux_nat)
3746 fprintf_unfiltered (gdb_stdlog,
3747 "RSRL: resuming stopped-resumed LWP %s\n",
3748 target_pid_to_str (lp->ptid));
3749
3750 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3751 lp->step, TARGET_SIGNAL_0);
3752 lp->stopped = 0;
3753 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3754 lp->stopped_by_watchpoint = 0;
3755 }
3756
3757 return 0;
3758 }
3759
3760 static ptid_t
3761 linux_nat_wait (struct target_ops *ops,
3762 ptid_t ptid, struct target_waitstatus *ourstatus,
3763 int target_options)
3764 {
3765 ptid_t event_ptid;
3766
3767 if (debug_linux_nat)
3768 fprintf_unfiltered (gdb_stdlog,
3769 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3770
3771 /* Flush the async file first. */
3772 if (target_can_async_p ())
3773 async_file_flush ();
3774
3775 /* Resume LWPs that are currently stopped without any pending status
3776 to report, but are resumed from the core's perspective. LWPs get
3777 in this state if we find them stopping at a time we're not
3778 interested in reporting the event (target_wait on a
3779 specific_process, for example, see linux_nat_wait_1), and
3780 meanwhile the event became uninteresting. Don't bother resuming
3781 LWPs we're not going to wait for if they'd stop immediately. */
3782 if (non_stop)
3783 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3784
3785 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3786
3787 /* If we requested any event, and something came out, assume there
3788 may be more. If we requested a specific lwp or process, also
3789 assume there may be more. */
3790 if (target_can_async_p ()
3791 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3792 || !ptid_equal (ptid, minus_one_ptid)))
3793 async_file_mark ();
3794
3795 /* Get ready for the next event. */
3796 if (target_can_async_p ())
3797 target_async (inferior_event_handler, 0);
3798
3799 return event_ptid;
3800 }
3801
3802 static int
3803 kill_callback (struct lwp_info *lp, void *data)
3804 {
3805 errno = 0;
3806 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3807 if (debug_linux_nat)
3808 fprintf_unfiltered (gdb_stdlog,
3809 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3810 target_pid_to_str (lp->ptid),
3811 errno ? safe_strerror (errno) : "OK");
3812
3813 return 0;
3814 }
3815
3816 static int
3817 kill_wait_callback (struct lwp_info *lp, void *data)
3818 {
3819 pid_t pid;
3820
3821 /* We must make sure that there are no pending events (delayed
3822 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3823 program doesn't interfere with any following debugging session. */
3824
3825 /* For cloned processes we must check both with __WCLONE and
3826 without, since the exit status of a cloned process isn't reported
3827 with __WCLONE. */
3828 if (lp->cloned)
3829 {
3830 do
3831 {
3832 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3833 if (pid != (pid_t) -1)
3834 {
3835 if (debug_linux_nat)
3836 fprintf_unfiltered (gdb_stdlog,
3837 "KWC: wait %s received unknown.\n",
3838 target_pid_to_str (lp->ptid));
3839 /* The Linux kernel sometimes fails to kill a thread
3840 completely after PTRACE_KILL; that goes from the stop
3841 point in do_fork out to the one in
3842 get_signal_to_deliever and waits again. So kill it
3843 again. */
3844 kill_callback (lp, NULL);
3845 }
3846 }
3847 while (pid == GET_LWP (lp->ptid));
3848
3849 gdb_assert (pid == -1 && errno == ECHILD);
3850 }
3851
3852 do
3853 {
3854 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3855 if (pid != (pid_t) -1)
3856 {
3857 if (debug_linux_nat)
3858 fprintf_unfiltered (gdb_stdlog,
3859 "KWC: wait %s received unk.\n",
3860 target_pid_to_str (lp->ptid));
3861 /* See the call to kill_callback above. */
3862 kill_callback (lp, NULL);
3863 }
3864 }
3865 while (pid == GET_LWP (lp->ptid));
3866
3867 gdb_assert (pid == -1 && errno == ECHILD);
3868 return 0;
3869 }
3870
3871 static void
3872 linux_nat_kill (struct target_ops *ops)
3873 {
3874 struct target_waitstatus last;
3875 ptid_t last_ptid;
3876 int status;
3877
3878 /* If we're stopped while forking and we haven't followed yet,
3879 kill the other task. We need to do this first because the
3880 parent will be sleeping if this is a vfork. */
3881
3882 get_last_target_status (&last_ptid, &last);
3883
3884 if (last.kind == TARGET_WAITKIND_FORKED
3885 || last.kind == TARGET_WAITKIND_VFORKED)
3886 {
3887 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3888 wait (&status);
3889 }
3890
3891 if (forks_exist_p ())
3892 linux_fork_killall ();
3893 else
3894 {
3895 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3896
3897 /* Stop all threads before killing them, since ptrace requires
3898 that the thread is stopped to sucessfully PTRACE_KILL. */
3899 iterate_over_lwps (ptid, stop_callback, NULL);
3900 /* ... and wait until all of them have reported back that
3901 they're no longer running. */
3902 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3903
3904 /* Kill all LWP's ... */
3905 iterate_over_lwps (ptid, kill_callback, NULL);
3906
3907 /* ... and wait until we've flushed all events. */
3908 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3909 }
3910
3911 target_mourn_inferior ();
3912 }
3913
3914 static void
3915 linux_nat_mourn_inferior (struct target_ops *ops)
3916 {
3917 purge_lwp_list (ptid_get_pid (inferior_ptid));
3918
3919 if (! forks_exist_p ())
3920 /* Normal case, no other forks available. */
3921 linux_ops->to_mourn_inferior (ops);
3922 else
3923 /* Multi-fork case. The current inferior_ptid has exited, but
3924 there are other viable forks to debug. Delete the exiting
3925 one and context-switch to the first available. */
3926 linux_fork_mourn_inferior ();
3927 }
3928
3929 /* Convert a native/host siginfo object, into/from the siginfo in the
3930 layout of the inferiors' architecture. */
3931
3932 static void
3933 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3934 {
3935 int done = 0;
3936
3937 if (linux_nat_siginfo_fixup != NULL)
3938 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3939
3940 /* If there was no callback, or the callback didn't do anything,
3941 then just do a straight memcpy. */
3942 if (!done)
3943 {
3944 if (direction == 1)
3945 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3946 else
3947 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3948 }
3949 }
3950
3951 static LONGEST
3952 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3953 const char *annex, gdb_byte *readbuf,
3954 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3955 {
3956 int pid;
3957 struct siginfo siginfo;
3958 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3959
3960 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3961 gdb_assert (readbuf || writebuf);
3962
3963 pid = GET_LWP (inferior_ptid);
3964 if (pid == 0)
3965 pid = GET_PID (inferior_ptid);
3966
3967 if (offset > sizeof (siginfo))
3968 return -1;
3969
3970 errno = 0;
3971 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3972 if (errno != 0)
3973 return -1;
3974
3975 /* When GDB is built as a 64-bit application, ptrace writes into
3976 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3977 inferior with a 64-bit GDB should look the same as debugging it
3978 with a 32-bit GDB, we need to convert it. GDB core always sees
3979 the converted layout, so any read/write will have to be done
3980 post-conversion. */
3981 siginfo_fixup (&siginfo, inf_siginfo, 0);
3982
3983 if (offset + len > sizeof (siginfo))
3984 len = sizeof (siginfo) - offset;
3985
3986 if (readbuf != NULL)
3987 memcpy (readbuf, inf_siginfo + offset, len);
3988 else
3989 {
3990 memcpy (inf_siginfo + offset, writebuf, len);
3991
3992 /* Convert back to ptrace layout before flushing it out. */
3993 siginfo_fixup (&siginfo, inf_siginfo, 1);
3994
3995 errno = 0;
3996 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3997 if (errno != 0)
3998 return -1;
3999 }
4000
4001 return len;
4002 }
4003
4004 static LONGEST
4005 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4006 const char *annex, gdb_byte *readbuf,
4007 const gdb_byte *writebuf,
4008 ULONGEST offset, LONGEST len)
4009 {
4010 struct cleanup *old_chain;
4011 LONGEST xfer;
4012
4013 if (object == TARGET_OBJECT_SIGNAL_INFO)
4014 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4015 offset, len);
4016
4017 /* The target is connected but no live inferior is selected. Pass
4018 this request down to a lower stratum (e.g., the executable
4019 file). */
4020 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4021 return 0;
4022
4023 old_chain = save_inferior_ptid ();
4024
4025 if (is_lwp (inferior_ptid))
4026 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4027
4028 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4029 offset, len);
4030
4031 do_cleanups (old_chain);
4032 return xfer;
4033 }
4034
4035 static int
4036 linux_thread_alive (ptid_t ptid)
4037 {
4038 int err;
4039
4040 gdb_assert (is_lwp (ptid));
4041
4042 /* Send signal 0 instead of anything ptrace, because ptracing a
4043 running thread errors out claiming that the thread doesn't
4044 exist. */
4045 err = kill_lwp (GET_LWP (ptid), 0);
4046
4047 if (debug_linux_nat)
4048 fprintf_unfiltered (gdb_stdlog,
4049 "LLTA: KILL(SIG0) %s (%s)\n",
4050 target_pid_to_str (ptid),
4051 err ? safe_strerror (err) : "OK");
4052
4053 if (err != 0)
4054 return 0;
4055
4056 return 1;
4057 }
4058
4059 static int
4060 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4061 {
4062 return linux_thread_alive (ptid);
4063 }
4064
4065 static char *
4066 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4067 {
4068 static char buf[64];
4069
4070 if (is_lwp (ptid)
4071 && (GET_PID (ptid) != GET_LWP (ptid)
4072 || num_lwps (GET_PID (ptid)) > 1))
4073 {
4074 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4075 return buf;
4076 }
4077
4078 return normal_pid_to_str (ptid);
4079 }
4080
4081 static char *
4082 linux_nat_thread_name (struct thread_info *thr)
4083 {
4084 int pid = ptid_get_pid (thr->ptid);
4085 long lwp = ptid_get_lwp (thr->ptid);
4086 #define FORMAT "/proc/%d/task/%ld/comm"
4087 char buf[sizeof (FORMAT) + 30];
4088 FILE *comm_file;
4089 char *result = NULL;
4090
4091 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4092 comm_file = fopen (buf, "r");
4093 if (comm_file)
4094 {
4095 /* Not exported by the kernel, so we define it here. */
4096 #define COMM_LEN 16
4097 static char line[COMM_LEN + 1];
4098
4099 if (fgets (line, sizeof (line), comm_file))
4100 {
4101 char *nl = strchr (line, '\n');
4102
4103 if (nl)
4104 *nl = '\0';
4105 if (*line != '\0')
4106 result = line;
4107 }
4108
4109 fclose (comm_file);
4110 }
4111
4112 #undef COMM_LEN
4113 #undef FORMAT
4114
4115 return result;
4116 }
4117
4118 /* Accepts an integer PID; Returns a string representing a file that
4119 can be opened to get the symbols for the child process. */
4120
4121 static char *
4122 linux_child_pid_to_exec_file (int pid)
4123 {
4124 char *name1, *name2;
4125
4126 name1 = xmalloc (MAXPATHLEN);
4127 name2 = xmalloc (MAXPATHLEN);
4128 make_cleanup (xfree, name1);
4129 make_cleanup (xfree, name2);
4130 memset (name2, 0, MAXPATHLEN);
4131
4132 sprintf (name1, "/proc/%d/exe", pid);
4133 if (readlink (name1, name2, MAXPATHLEN) > 0)
4134 return name2;
4135 else
4136 return name1;
4137 }
4138
4139 /* Service function for corefiles and info proc. */
4140
4141 static int
4142 read_mapping (FILE *mapfile,
4143 long long *addr,
4144 long long *endaddr,
4145 char *permissions,
4146 long long *offset,
4147 char *device, long long *inode, char *filename)
4148 {
4149 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4150 addr, endaddr, permissions, offset, device, inode);
4151
4152 filename[0] = '\0';
4153 if (ret > 0 && ret != EOF)
4154 {
4155 /* Eat everything up to EOL for the filename. This will prevent
4156 weird filenames (such as one with embedded whitespace) from
4157 confusing this code. It also makes this code more robust in
4158 respect to annotations the kernel may add after the filename.
4159
4160 Note the filename is used for informational purposes
4161 only. */
4162 ret += fscanf (mapfile, "%[^\n]\n", filename);
4163 }
4164
4165 return (ret != 0 && ret != EOF);
4166 }
4167
4168 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4169 regions in the inferior for a corefile. */
4170
4171 static int
4172 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4173 {
4174 int pid = PIDGET (inferior_ptid);
4175 char mapsfilename[MAXPATHLEN];
4176 FILE *mapsfile;
4177 long long addr, endaddr, size, offset, inode;
4178 char permissions[8], device[8], filename[MAXPATHLEN];
4179 int read, write, exec;
4180 struct cleanup *cleanup;
4181
4182 /* Compose the filename for the /proc memory map, and open it. */
4183 sprintf (mapsfilename, "/proc/%d/maps", pid);
4184 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4185 error (_("Could not open %s."), mapsfilename);
4186 cleanup = make_cleanup_fclose (mapsfile);
4187
4188 if (info_verbose)
4189 fprintf_filtered (gdb_stdout,
4190 "Reading memory regions from %s\n", mapsfilename);
4191
4192 /* Now iterate until end-of-file. */
4193 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4194 &offset, &device[0], &inode, &filename[0]))
4195 {
4196 size = endaddr - addr;
4197
4198 /* Get the segment's permissions. */
4199 read = (strchr (permissions, 'r') != 0);
4200 write = (strchr (permissions, 'w') != 0);
4201 exec = (strchr (permissions, 'x') != 0);
4202
4203 if (info_verbose)
4204 {
4205 fprintf_filtered (gdb_stdout,
4206 "Save segment, %s bytes at %s (%c%c%c)",
4207 plongest (size), paddress (target_gdbarch, addr),
4208 read ? 'r' : ' ',
4209 write ? 'w' : ' ', exec ? 'x' : ' ');
4210 if (filename[0])
4211 fprintf_filtered (gdb_stdout, " for %s", filename);
4212 fprintf_filtered (gdb_stdout, "\n");
4213 }
4214
4215 /* Invoke the callback function to create the corefile
4216 segment. */
4217 func (addr, size, read, write, exec, obfd);
4218 }
4219 do_cleanups (cleanup);
4220 return 0;
4221 }
4222
4223 static int
4224 find_signalled_thread (struct thread_info *info, void *data)
4225 {
4226 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4227 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4228 return 1;
4229
4230 return 0;
4231 }
4232
4233 static enum target_signal
4234 find_stop_signal (void)
4235 {
4236 struct thread_info *info =
4237 iterate_over_threads (find_signalled_thread, NULL);
4238
4239 if (info)
4240 return info->suspend.stop_signal;
4241 else
4242 return TARGET_SIGNAL_0;
4243 }
4244
4245 /* Records the thread's register state for the corefile note
4246 section. */
4247
4248 static char *
4249 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4250 char *note_data, int *note_size,
4251 enum target_signal stop_signal)
4252 {
4253 unsigned long lwp = ptid_get_lwp (ptid);
4254 struct gdbarch *gdbarch = target_gdbarch;
4255 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4256 const struct regset *regset;
4257 int core_regset_p;
4258 struct cleanup *old_chain;
4259 struct core_regset_section *sect_list;
4260 char *gdb_regset;
4261
4262 old_chain = save_inferior_ptid ();
4263 inferior_ptid = ptid;
4264 target_fetch_registers (regcache, -1);
4265 do_cleanups (old_chain);
4266
4267 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4268 sect_list = gdbarch_core_regset_sections (gdbarch);
4269
4270 /* The loop below uses the new struct core_regset_section, which stores
4271 the supported section names and sizes for the core file. Note that
4272 note PRSTATUS needs to be treated specially. But the other notes are
4273 structurally the same, so they can benefit from the new struct. */
4274 if (core_regset_p && sect_list != NULL)
4275 while (sect_list->sect_name != NULL)
4276 {
4277 regset = gdbarch_regset_from_core_section (gdbarch,
4278 sect_list->sect_name,
4279 sect_list->size);
4280 gdb_assert (regset && regset->collect_regset);
4281 gdb_regset = xmalloc (sect_list->size);
4282 regset->collect_regset (regset, regcache, -1,
4283 gdb_regset, sect_list->size);
4284
4285 if (strcmp (sect_list->sect_name, ".reg") == 0)
4286 note_data = (char *) elfcore_write_prstatus
4287 (obfd, note_data, note_size,
4288 lwp, target_signal_to_host (stop_signal),
4289 gdb_regset);
4290 else
4291 note_data = (char *) elfcore_write_register_note
4292 (obfd, note_data, note_size,
4293 sect_list->sect_name, gdb_regset,
4294 sect_list->size);
4295 xfree (gdb_regset);
4296 sect_list++;
4297 }
4298
4299 /* For architectures that does not have the struct core_regset_section
4300 implemented, we use the old method. When all the architectures have
4301 the new support, the code below should be deleted. */
4302 else
4303 {
4304 gdb_gregset_t gregs;
4305 gdb_fpregset_t fpregs;
4306
4307 if (core_regset_p
4308 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4309 sizeof (gregs)))
4310 != NULL && regset->collect_regset != NULL)
4311 regset->collect_regset (regset, regcache, -1,
4312 &gregs, sizeof (gregs));
4313 else
4314 fill_gregset (regcache, &gregs, -1);
4315
4316 note_data = (char *) elfcore_write_prstatus
4317 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4318 &gregs);
4319
4320 if (core_regset_p
4321 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4322 sizeof (fpregs)))
4323 != NULL && regset->collect_regset != NULL)
4324 regset->collect_regset (regset, regcache, -1,
4325 &fpregs, sizeof (fpregs));
4326 else
4327 fill_fpregset (regcache, &fpregs, -1);
4328
4329 note_data = (char *) elfcore_write_prfpreg (obfd,
4330 note_data,
4331 note_size,
4332 &fpregs, sizeof (fpregs));
4333 }
4334
4335 return note_data;
4336 }
4337
4338 struct linux_nat_corefile_thread_data
4339 {
4340 bfd *obfd;
4341 char *note_data;
4342 int *note_size;
4343 int num_notes;
4344 enum target_signal stop_signal;
4345 };
4346
4347 /* Called by gdbthread.c once per thread. Records the thread's
4348 register state for the corefile note section. */
4349
4350 static int
4351 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4352 {
4353 struct linux_nat_corefile_thread_data *args = data;
4354
4355 args->note_data = linux_nat_do_thread_registers (args->obfd,
4356 ti->ptid,
4357 args->note_data,
4358 args->note_size,
4359 args->stop_signal);
4360 args->num_notes++;
4361
4362 return 0;
4363 }
4364
4365 /* Enumerate spufs IDs for process PID. */
4366
4367 static void
4368 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4369 {
4370 char path[128];
4371 DIR *dir;
4372 struct dirent *entry;
4373
4374 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4375 dir = opendir (path);
4376 if (!dir)
4377 return;
4378
4379 rewinddir (dir);
4380 while ((entry = readdir (dir)) != NULL)
4381 {
4382 struct stat st;
4383 struct statfs stfs;
4384 int fd;
4385
4386 fd = atoi (entry->d_name);
4387 if (!fd)
4388 continue;
4389
4390 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4391 if (stat (path, &st) != 0)
4392 continue;
4393 if (!S_ISDIR (st.st_mode))
4394 continue;
4395
4396 if (statfs (path, &stfs) != 0)
4397 continue;
4398 if (stfs.f_type != SPUFS_MAGIC)
4399 continue;
4400
4401 callback (data, fd);
4402 }
4403
4404 closedir (dir);
4405 }
4406
4407 /* Generate corefile notes for SPU contexts. */
4408
4409 struct linux_spu_corefile_data
4410 {
4411 bfd *obfd;
4412 char *note_data;
4413 int *note_size;
4414 };
4415
4416 static void
4417 linux_spu_corefile_callback (void *data, int fd)
4418 {
4419 struct linux_spu_corefile_data *args = data;
4420 int i;
4421
4422 static const char *spu_files[] =
4423 {
4424 "object-id",
4425 "mem",
4426 "regs",
4427 "fpcr",
4428 "lslr",
4429 "decr",
4430 "decr_status",
4431 "signal1",
4432 "signal1_type",
4433 "signal2",
4434 "signal2_type",
4435 "event_mask",
4436 "event_status",
4437 "mbox_info",
4438 "ibox_info",
4439 "wbox_info",
4440 "dma_info",
4441 "proxydma_info",
4442 };
4443
4444 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4445 {
4446 char annex[32], note_name[32];
4447 gdb_byte *spu_data;
4448 LONGEST spu_len;
4449
4450 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4451 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4452 annex, &spu_data);
4453 if (spu_len > 0)
4454 {
4455 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4456 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4457 args->note_size, note_name,
4458 NT_SPU, spu_data, spu_len);
4459 xfree (spu_data);
4460 }
4461 }
4462 }
4463
4464 static char *
4465 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4466 {
4467 struct linux_spu_corefile_data args;
4468
4469 args.obfd = obfd;
4470 args.note_data = note_data;
4471 args.note_size = note_size;
4472
4473 iterate_over_spus (PIDGET (inferior_ptid),
4474 linux_spu_corefile_callback, &args);
4475
4476 return args.note_data;
4477 }
4478
4479 /* Fills the "to_make_corefile_note" target vector. Builds the note
4480 section for a corefile, and returns it in a malloc buffer. */
4481
4482 static char *
4483 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4484 {
4485 struct linux_nat_corefile_thread_data thread_args;
4486 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4487 char fname[16] = { '\0' };
4488 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4489 char psargs[80] = { '\0' };
4490 char *note_data = NULL;
4491 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4492 gdb_byte *auxv;
4493 int auxv_len;
4494
4495 if (get_exec_file (0))
4496 {
4497 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4498 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4499 if (get_inferior_args ())
4500 {
4501 char *string_end;
4502 char *psargs_end = psargs + sizeof (psargs);
4503
4504 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4505 strings fine. */
4506 string_end = memchr (psargs, 0, sizeof (psargs));
4507 if (string_end != NULL)
4508 {
4509 *string_end++ = ' ';
4510 strncpy (string_end, get_inferior_args (),
4511 psargs_end - string_end);
4512 }
4513 }
4514 note_data = (char *) elfcore_write_prpsinfo (obfd,
4515 note_data,
4516 note_size, fname, psargs);
4517 }
4518
4519 /* Dump information for threads. */
4520 thread_args.obfd = obfd;
4521 thread_args.note_data = note_data;
4522 thread_args.note_size = note_size;
4523 thread_args.num_notes = 0;
4524 thread_args.stop_signal = find_stop_signal ();
4525 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4526 gdb_assert (thread_args.num_notes != 0);
4527 note_data = thread_args.note_data;
4528
4529 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4530 NULL, &auxv);
4531 if (auxv_len > 0)
4532 {
4533 note_data = elfcore_write_note (obfd, note_data, note_size,
4534 "CORE", NT_AUXV, auxv, auxv_len);
4535 xfree (auxv);
4536 }
4537
4538 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4539
4540 make_cleanup (xfree, note_data);
4541 return note_data;
4542 }
4543
4544 /* Implement the "info proc" command. */
4545
4546 static void
4547 linux_nat_info_proc_cmd (char *args, int from_tty)
4548 {
4549 /* A long is used for pid instead of an int to avoid a loss of precision
4550 compiler warning from the output of strtoul. */
4551 long pid = PIDGET (inferior_ptid);
4552 FILE *procfile;
4553 char **argv = NULL;
4554 char buffer[MAXPATHLEN];
4555 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4556 int cmdline_f = 1;
4557 int cwd_f = 1;
4558 int exe_f = 1;
4559 int mappings_f = 0;
4560 int status_f = 0;
4561 int stat_f = 0;
4562 int all = 0;
4563 struct stat dummy;
4564
4565 if (args)
4566 {
4567 /* Break up 'args' into an argv array. */
4568 argv = gdb_buildargv (args);
4569 make_cleanup_freeargv (argv);
4570 }
4571 while (argv != NULL && *argv != NULL)
4572 {
4573 if (isdigit (argv[0][0]))
4574 {
4575 pid = strtoul (argv[0], NULL, 10);
4576 }
4577 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4578 {
4579 mappings_f = 1;
4580 }
4581 else if (strcmp (argv[0], "status") == 0)
4582 {
4583 status_f = 1;
4584 }
4585 else if (strcmp (argv[0], "stat") == 0)
4586 {
4587 stat_f = 1;
4588 }
4589 else if (strcmp (argv[0], "cmd") == 0)
4590 {
4591 cmdline_f = 1;
4592 }
4593 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4594 {
4595 exe_f = 1;
4596 }
4597 else if (strcmp (argv[0], "cwd") == 0)
4598 {
4599 cwd_f = 1;
4600 }
4601 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4602 {
4603 all = 1;
4604 }
4605 else
4606 {
4607 /* [...] (future options here). */
4608 }
4609 argv++;
4610 }
4611 if (pid == 0)
4612 error (_("No current process: you must name one."));
4613
4614 sprintf (fname1, "/proc/%ld", pid);
4615 if (stat (fname1, &dummy) != 0)
4616 error (_("No /proc directory: '%s'"), fname1);
4617
4618 printf_filtered (_("process %ld\n"), pid);
4619 if (cmdline_f || all)
4620 {
4621 sprintf (fname1, "/proc/%ld/cmdline", pid);
4622 if ((procfile = fopen (fname1, "r")) != NULL)
4623 {
4624 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4625
4626 if (fgets (buffer, sizeof (buffer), procfile))
4627 printf_filtered ("cmdline = '%s'\n", buffer);
4628 else
4629 warning (_("unable to read '%s'"), fname1);
4630 do_cleanups (cleanup);
4631 }
4632 else
4633 warning (_("unable to open /proc file '%s'"), fname1);
4634 }
4635 if (cwd_f || all)
4636 {
4637 sprintf (fname1, "/proc/%ld/cwd", pid);
4638 memset (fname2, 0, sizeof (fname2));
4639 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4640 printf_filtered ("cwd = '%s'\n", fname2);
4641 else
4642 warning (_("unable to read link '%s'"), fname1);
4643 }
4644 if (exe_f || all)
4645 {
4646 sprintf (fname1, "/proc/%ld/exe", pid);
4647 memset (fname2, 0, sizeof (fname2));
4648 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4649 printf_filtered ("exe = '%s'\n", fname2);
4650 else
4651 warning (_("unable to read link '%s'"), fname1);
4652 }
4653 if (mappings_f || all)
4654 {
4655 sprintf (fname1, "/proc/%ld/maps", pid);
4656 if ((procfile = fopen (fname1, "r")) != NULL)
4657 {
4658 long long addr, endaddr, size, offset, inode;
4659 char permissions[8], device[8], filename[MAXPATHLEN];
4660 struct cleanup *cleanup;
4661
4662 cleanup = make_cleanup_fclose (procfile);
4663 printf_filtered (_("Mapped address spaces:\n\n"));
4664 if (gdbarch_addr_bit (target_gdbarch) == 32)
4665 {
4666 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4667 "Start Addr",
4668 " End Addr",
4669 " Size", " Offset", "objfile");
4670 }
4671 else
4672 {
4673 printf_filtered (" %18s %18s %10s %10s %7s\n",
4674 "Start Addr",
4675 " End Addr",
4676 " Size", " Offset", "objfile");
4677 }
4678
4679 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4680 &offset, &device[0], &inode, &filename[0]))
4681 {
4682 size = endaddr - addr;
4683
4684 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4685 calls here (and possibly above) should be abstracted
4686 out into their own functions? Andrew suggests using
4687 a generic local_address_string instead to print out
4688 the addresses; that makes sense to me, too. */
4689
4690 if (gdbarch_addr_bit (target_gdbarch) == 32)
4691 {
4692 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4693 (unsigned long) addr, /* FIXME: pr_addr */
4694 (unsigned long) endaddr,
4695 (int) size,
4696 (unsigned int) offset,
4697 filename[0] ? filename : "");
4698 }
4699 else
4700 {
4701 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4702 (unsigned long) addr, /* FIXME: pr_addr */
4703 (unsigned long) endaddr,
4704 (int) size,
4705 (unsigned int) offset,
4706 filename[0] ? filename : "");
4707 }
4708 }
4709
4710 do_cleanups (cleanup);
4711 }
4712 else
4713 warning (_("unable to open /proc file '%s'"), fname1);
4714 }
4715 if (status_f || all)
4716 {
4717 sprintf (fname1, "/proc/%ld/status", pid);
4718 if ((procfile = fopen (fname1, "r")) != NULL)
4719 {
4720 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4721
4722 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4723 puts_filtered (buffer);
4724 do_cleanups (cleanup);
4725 }
4726 else
4727 warning (_("unable to open /proc file '%s'"), fname1);
4728 }
4729 if (stat_f || all)
4730 {
4731 sprintf (fname1, "/proc/%ld/stat", pid);
4732 if ((procfile = fopen (fname1, "r")) != NULL)
4733 {
4734 int itmp;
4735 char ctmp;
4736 long ltmp;
4737 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4738
4739 if (fscanf (procfile, "%d ", &itmp) > 0)
4740 printf_filtered (_("Process: %d\n"), itmp);
4741 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4742 printf_filtered (_("Exec file: %s\n"), buffer);
4743 if (fscanf (procfile, "%c ", &ctmp) > 0)
4744 printf_filtered (_("State: %c\n"), ctmp);
4745 if (fscanf (procfile, "%d ", &itmp) > 0)
4746 printf_filtered (_("Parent process: %d\n"), itmp);
4747 if (fscanf (procfile, "%d ", &itmp) > 0)
4748 printf_filtered (_("Process group: %d\n"), itmp);
4749 if (fscanf (procfile, "%d ", &itmp) > 0)
4750 printf_filtered (_("Session id: %d\n"), itmp);
4751 if (fscanf (procfile, "%d ", &itmp) > 0)
4752 printf_filtered (_("TTY: %d\n"), itmp);
4753 if (fscanf (procfile, "%d ", &itmp) > 0)
4754 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4755 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4756 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4757 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4758 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4759 (unsigned long) ltmp);
4760 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4761 printf_filtered (_("Minor faults, children: %lu\n"),
4762 (unsigned long) ltmp);
4763 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4764 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4765 (unsigned long) ltmp);
4766 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4767 printf_filtered (_("Major faults, children: %lu\n"),
4768 (unsigned long) ltmp);
4769 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4770 printf_filtered (_("utime: %ld\n"), ltmp);
4771 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4772 printf_filtered (_("stime: %ld\n"), ltmp);
4773 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4774 printf_filtered (_("utime, children: %ld\n"), ltmp);
4775 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4776 printf_filtered (_("stime, children: %ld\n"), ltmp);
4777 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4778 printf_filtered (_("jiffies remaining in current "
4779 "time slice: %ld\n"), ltmp);
4780 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4781 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4782 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4783 printf_filtered (_("jiffies until next timeout: %lu\n"),
4784 (unsigned long) ltmp);
4785 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4786 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4787 (unsigned long) ltmp);
4788 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4789 printf_filtered (_("start time (jiffies since "
4790 "system boot): %ld\n"), ltmp);
4791 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4792 printf_filtered (_("Virtual memory size: %lu\n"),
4793 (unsigned long) ltmp);
4794 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4795 printf_filtered (_("Resident set size: %lu\n"),
4796 (unsigned long) ltmp);
4797 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4798 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4799 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4800 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4801 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4802 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4803 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4804 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4805 #if 0 /* Don't know how architecture-dependent the rest is...
4806 Anyway the signal bitmap info is available from "status". */
4807 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4808 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4809 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4810 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4811 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4812 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4813 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4814 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4815 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4816 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4817 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4818 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4819 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4820 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4821 #endif
4822 do_cleanups (cleanup);
4823 }
4824 else
4825 warning (_("unable to open /proc file '%s'"), fname1);
4826 }
4827 }
4828
4829 /* Implement the to_xfer_partial interface for memory reads using the /proc
4830 filesystem. Because we can use a single read() call for /proc, this
4831 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4832 but it doesn't support writes. */
4833
4834 static LONGEST
4835 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4836 const char *annex, gdb_byte *readbuf,
4837 const gdb_byte *writebuf,
4838 ULONGEST offset, LONGEST len)
4839 {
4840 LONGEST ret;
4841 int fd;
4842 char filename[64];
4843
4844 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4845 return 0;
4846
4847 /* Don't bother for one word. */
4848 if (len < 3 * sizeof (long))
4849 return 0;
4850
4851 /* We could keep this file open and cache it - possibly one per
4852 thread. That requires some juggling, but is even faster. */
4853 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4854 fd = open (filename, O_RDONLY | O_LARGEFILE);
4855 if (fd == -1)
4856 return 0;
4857
4858 /* If pread64 is available, use it. It's faster if the kernel
4859 supports it (only one syscall), and it's 64-bit safe even on
4860 32-bit platforms (for instance, SPARC debugging a SPARC64
4861 application). */
4862 #ifdef HAVE_PREAD64
4863 if (pread64 (fd, readbuf, len, offset) != len)
4864 #else
4865 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4866 #endif
4867 ret = 0;
4868 else
4869 ret = len;
4870
4871 close (fd);
4872 return ret;
4873 }
4874
4875
4876 /* Enumerate spufs IDs for process PID. */
4877 static LONGEST
4878 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4879 {
4880 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4881 LONGEST pos = 0;
4882 LONGEST written = 0;
4883 char path[128];
4884 DIR *dir;
4885 struct dirent *entry;
4886
4887 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4888 dir = opendir (path);
4889 if (!dir)
4890 return -1;
4891
4892 rewinddir (dir);
4893 while ((entry = readdir (dir)) != NULL)
4894 {
4895 struct stat st;
4896 struct statfs stfs;
4897 int fd;
4898
4899 fd = atoi (entry->d_name);
4900 if (!fd)
4901 continue;
4902
4903 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4904 if (stat (path, &st) != 0)
4905 continue;
4906 if (!S_ISDIR (st.st_mode))
4907 continue;
4908
4909 if (statfs (path, &stfs) != 0)
4910 continue;
4911 if (stfs.f_type != SPUFS_MAGIC)
4912 continue;
4913
4914 if (pos >= offset && pos + 4 <= offset + len)
4915 {
4916 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4917 written += 4;
4918 }
4919 pos += 4;
4920 }
4921
4922 closedir (dir);
4923 return written;
4924 }
4925
4926 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4927 object type, using the /proc file system. */
4928 static LONGEST
4929 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4930 const char *annex, gdb_byte *readbuf,
4931 const gdb_byte *writebuf,
4932 ULONGEST offset, LONGEST len)
4933 {
4934 char buf[128];
4935 int fd = 0;
4936 int ret = -1;
4937 int pid = PIDGET (inferior_ptid);
4938
4939 if (!annex)
4940 {
4941 if (!readbuf)
4942 return -1;
4943 else
4944 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4945 }
4946
4947 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4948 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4949 if (fd <= 0)
4950 return -1;
4951
4952 if (offset != 0
4953 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4954 {
4955 close (fd);
4956 return 0;
4957 }
4958
4959 if (writebuf)
4960 ret = write (fd, writebuf, (size_t) len);
4961 else if (readbuf)
4962 ret = read (fd, readbuf, (size_t) len);
4963
4964 close (fd);
4965 return ret;
4966 }
4967
4968
4969 /* Parse LINE as a signal set and add its set bits to SIGS. */
4970
4971 static void
4972 add_line_to_sigset (const char *line, sigset_t *sigs)
4973 {
4974 int len = strlen (line) - 1;
4975 const char *p;
4976 int signum;
4977
4978 if (line[len] != '\n')
4979 error (_("Could not parse signal set: %s"), line);
4980
4981 p = line;
4982 signum = len * 4;
4983 while (len-- > 0)
4984 {
4985 int digit;
4986
4987 if (*p >= '0' && *p <= '9')
4988 digit = *p - '0';
4989 else if (*p >= 'a' && *p <= 'f')
4990 digit = *p - 'a' + 10;
4991 else
4992 error (_("Could not parse signal set: %s"), line);
4993
4994 signum -= 4;
4995
4996 if (digit & 1)
4997 sigaddset (sigs, signum + 1);
4998 if (digit & 2)
4999 sigaddset (sigs, signum + 2);
5000 if (digit & 4)
5001 sigaddset (sigs, signum + 3);
5002 if (digit & 8)
5003 sigaddset (sigs, signum + 4);
5004
5005 p++;
5006 }
5007 }
5008
5009 /* Find process PID's pending signals from /proc/pid/status and set
5010 SIGS to match. */
5011
5012 void
5013 linux_proc_pending_signals (int pid, sigset_t *pending,
5014 sigset_t *blocked, sigset_t *ignored)
5015 {
5016 FILE *procfile;
5017 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
5018 struct cleanup *cleanup;
5019
5020 sigemptyset (pending);
5021 sigemptyset (blocked);
5022 sigemptyset (ignored);
5023 sprintf (fname, "/proc/%d/status", pid);
5024 procfile = fopen (fname, "r");
5025 if (procfile == NULL)
5026 error (_("Could not open %s"), fname);
5027 cleanup = make_cleanup_fclose (procfile);
5028
5029 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
5030 {
5031 /* Normal queued signals are on the SigPnd line in the status
5032 file. However, 2.6 kernels also have a "shared" pending
5033 queue for delivering signals to a thread group, so check for
5034 a ShdPnd line also.
5035
5036 Unfortunately some Red Hat kernels include the shared pending
5037 queue but not the ShdPnd status field. */
5038
5039 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5040 add_line_to_sigset (buffer + 8, pending);
5041 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5042 add_line_to_sigset (buffer + 8, pending);
5043 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5044 add_line_to_sigset (buffer + 8, blocked);
5045 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5046 add_line_to_sigset (buffer + 8, ignored);
5047 }
5048
5049 do_cleanups (cleanup);
5050 }
5051
5052 static LONGEST
5053 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5054 const char *annex, gdb_byte *readbuf,
5055 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5056 {
5057 /* We make the process list snapshot when the object starts to be
5058 read. */
5059 static const char *buf;
5060 static LONGEST len_avail = -1;
5061 static struct obstack obstack;
5062
5063 DIR *dirp;
5064
5065 gdb_assert (object == TARGET_OBJECT_OSDATA);
5066
5067 if (!annex)
5068 {
5069 if (offset == 0)
5070 {
5071 if (len_avail != -1 && len_avail != 0)
5072 obstack_free (&obstack, NULL);
5073 len_avail = 0;
5074 buf = NULL;
5075 obstack_init (&obstack);
5076 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
5077
5078 obstack_xml_printf (&obstack,
5079 "<item>"
5080 "<column name=\"Type\">processes</column>"
5081 "<column name=\"Description\">"
5082 "Listing of all processes</column>"
5083 "</item>");
5084
5085 obstack_grow_str0 (&obstack, "</osdata>\n");
5086 buf = obstack_finish (&obstack);
5087 len_avail = strlen (buf);
5088 }
5089
5090 if (offset >= len_avail)
5091 {
5092 /* Done. Get rid of the obstack. */
5093 obstack_free (&obstack, NULL);
5094 buf = NULL;
5095 len_avail = 0;
5096 return 0;
5097 }
5098
5099 if (len > len_avail - offset)
5100 len = len_avail - offset;
5101 memcpy (readbuf, buf + offset, len);
5102
5103 return len;
5104 }
5105
5106 if (strcmp (annex, "processes") != 0)
5107 return 0;
5108
5109 gdb_assert (readbuf && !writebuf);
5110
5111 if (offset == 0)
5112 {
5113 if (len_avail != -1 && len_avail != 0)
5114 obstack_free (&obstack, NULL);
5115 len_avail = 0;
5116 buf = NULL;
5117 obstack_init (&obstack);
5118 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5119
5120 dirp = opendir ("/proc");
5121 if (dirp)
5122 {
5123 struct dirent *dp;
5124
5125 while ((dp = readdir (dirp)) != NULL)
5126 {
5127 struct stat statbuf;
5128 char procentry[sizeof ("/proc/4294967295")];
5129
5130 if (!isdigit (dp->d_name[0])
5131 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5132 continue;
5133
5134 sprintf (procentry, "/proc/%s", dp->d_name);
5135 if (stat (procentry, &statbuf) == 0
5136 && S_ISDIR (statbuf.st_mode))
5137 {
5138 char *pathname;
5139 FILE *f;
5140 char cmd[MAXPATHLEN + 1];
5141 struct passwd *entry;
5142
5143 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5144 entry = getpwuid (statbuf.st_uid);
5145
5146 if ((f = fopen (pathname, "r")) != NULL)
5147 {
5148 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5149
5150 if (len > 0)
5151 {
5152 int i;
5153
5154 for (i = 0; i < len; i++)
5155 if (cmd[i] == '\0')
5156 cmd[i] = ' ';
5157 cmd[len] = '\0';
5158
5159 obstack_xml_printf (
5160 &obstack,
5161 "<item>"
5162 "<column name=\"pid\">%s</column>"
5163 "<column name=\"user\">%s</column>"
5164 "<column name=\"command\">%s</column>"
5165 "</item>",
5166 dp->d_name,
5167 entry ? entry->pw_name : "?",
5168 cmd);
5169 }
5170 fclose (f);
5171 }
5172
5173 xfree (pathname);
5174 }
5175 }
5176
5177 closedir (dirp);
5178 }
5179
5180 obstack_grow_str0 (&obstack, "</osdata>\n");
5181 buf = obstack_finish (&obstack);
5182 len_avail = strlen (buf);
5183 }
5184
5185 if (offset >= len_avail)
5186 {
5187 /* Done. Get rid of the obstack. */
5188 obstack_free (&obstack, NULL);
5189 buf = NULL;
5190 len_avail = 0;
5191 return 0;
5192 }
5193
5194 if (len > len_avail - offset)
5195 len = len_avail - offset;
5196 memcpy (readbuf, buf + offset, len);
5197
5198 return len;
5199 }
5200
5201 static LONGEST
5202 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5203 const char *annex, gdb_byte *readbuf,
5204 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5205 {
5206 LONGEST xfer;
5207
5208 if (object == TARGET_OBJECT_AUXV)
5209 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5210 offset, len);
5211
5212 if (object == TARGET_OBJECT_OSDATA)
5213 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5214 offset, len);
5215
5216 if (object == TARGET_OBJECT_SPU)
5217 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5218 offset, len);
5219
5220 /* GDB calculates all the addresses in possibly larget width of the address.
5221 Address width needs to be masked before its final use - either by
5222 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5223
5224 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5225
5226 if (object == TARGET_OBJECT_MEMORY)
5227 {
5228 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5229
5230 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5231 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5232 }
5233
5234 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5235 offset, len);
5236 if (xfer != 0)
5237 return xfer;
5238
5239 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5240 offset, len);
5241 }
5242
5243 /* Create a prototype generic GNU/Linux target. The client can override
5244 it with local methods. */
5245
5246 static void
5247 linux_target_install_ops (struct target_ops *t)
5248 {
5249 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5250 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5251 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5252 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5253 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5254 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5255 t->to_post_attach = linux_child_post_attach;
5256 t->to_follow_fork = linux_child_follow_fork;
5257 t->to_find_memory_regions = linux_nat_find_memory_regions;
5258 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5259
5260 super_xfer_partial = t->to_xfer_partial;
5261 t->to_xfer_partial = linux_xfer_partial;
5262 }
5263
5264 struct target_ops *
5265 linux_target (void)
5266 {
5267 struct target_ops *t;
5268
5269 t = inf_ptrace_target ();
5270 linux_target_install_ops (t);
5271
5272 return t;
5273 }
5274
5275 struct target_ops *
5276 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5277 {
5278 struct target_ops *t;
5279
5280 t = inf_ptrace_trad_target (register_u_offset);
5281 linux_target_install_ops (t);
5282
5283 return t;
5284 }
5285
5286 /* target_is_async_p implementation. */
5287
5288 static int
5289 linux_nat_is_async_p (void)
5290 {
5291 /* NOTE: palves 2008-03-21: We're only async when the user requests
5292 it explicitly with the "set target-async" command.
5293 Someday, linux will always be async. */
5294 if (!target_async_permitted)
5295 return 0;
5296
5297 /* See target.h/target_async_mask. */
5298 return linux_nat_async_mask_value;
5299 }
5300
5301 /* target_can_async_p implementation. */
5302
5303 static int
5304 linux_nat_can_async_p (void)
5305 {
5306 /* NOTE: palves 2008-03-21: We're only async when the user requests
5307 it explicitly with the "set target-async" command.
5308 Someday, linux will always be async. */
5309 if (!target_async_permitted)
5310 return 0;
5311
5312 /* See target.h/target_async_mask. */
5313 return linux_nat_async_mask_value;
5314 }
5315
5316 static int
5317 linux_nat_supports_non_stop (void)
5318 {
5319 return 1;
5320 }
5321
5322 /* True if we want to support multi-process. To be removed when GDB
5323 supports multi-exec. */
5324
5325 int linux_multi_process = 1;
5326
5327 static int
5328 linux_nat_supports_multi_process (void)
5329 {
5330 return linux_multi_process;
5331 }
5332
5333 /* target_async_mask implementation. */
5334
5335 static int
5336 linux_nat_async_mask (int new_mask)
5337 {
5338 int curr_mask = linux_nat_async_mask_value;
5339
5340 if (curr_mask != new_mask)
5341 {
5342 if (new_mask == 0)
5343 {
5344 linux_nat_async (NULL, 0);
5345 linux_nat_async_mask_value = new_mask;
5346 }
5347 else
5348 {
5349 linux_nat_async_mask_value = new_mask;
5350
5351 /* If we're going out of async-mask in all-stop, then the
5352 inferior is stopped. The next resume will call
5353 target_async. In non-stop, the target event source
5354 should be always registered in the event loop. Do so
5355 now. */
5356 if (non_stop)
5357 linux_nat_async (inferior_event_handler, 0);
5358 }
5359 }
5360
5361 return curr_mask;
5362 }
5363
5364 static int async_terminal_is_ours = 1;
5365
5366 /* target_terminal_inferior implementation. */
5367
5368 static void
5369 linux_nat_terminal_inferior (void)
5370 {
5371 if (!target_is_async_p ())
5372 {
5373 /* Async mode is disabled. */
5374 terminal_inferior ();
5375 return;
5376 }
5377
5378 terminal_inferior ();
5379
5380 /* Calls to target_terminal_*() are meant to be idempotent. */
5381 if (!async_terminal_is_ours)
5382 return;
5383
5384 delete_file_handler (input_fd);
5385 async_terminal_is_ours = 0;
5386 set_sigint_trap ();
5387 }
5388
5389 /* target_terminal_ours implementation. */
5390
5391 static void
5392 linux_nat_terminal_ours (void)
5393 {
5394 if (!target_is_async_p ())
5395 {
5396 /* Async mode is disabled. */
5397 terminal_ours ();
5398 return;
5399 }
5400
5401 /* GDB should never give the terminal to the inferior if the
5402 inferior is running in the background (run&, continue&, etc.),
5403 but claiming it sure should. */
5404 terminal_ours ();
5405
5406 if (async_terminal_is_ours)
5407 return;
5408
5409 clear_sigint_trap ();
5410 add_file_handler (input_fd, stdin_event_handler, 0);
5411 async_terminal_is_ours = 1;
5412 }
5413
5414 static void (*async_client_callback) (enum inferior_event_type event_type,
5415 void *context);
5416 static void *async_client_context;
5417
5418 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5419 so we notice when any child changes state, and notify the
5420 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5421 above to wait for the arrival of a SIGCHLD. */
5422
5423 static void
5424 sigchld_handler (int signo)
5425 {
5426 int old_errno = errno;
5427
5428 if (debug_linux_nat_async)
5429 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5430
5431 if (signo == SIGCHLD
5432 && linux_nat_event_pipe[0] != -1)
5433 async_file_mark (); /* Let the event loop know that there are
5434 events to handle. */
5435
5436 errno = old_errno;
5437 }
5438
5439 /* Callback registered with the target events file descriptor. */
5440
5441 static void
5442 handle_target_event (int error, gdb_client_data client_data)
5443 {
5444 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5445 }
5446
5447 /* Create/destroy the target events pipe. Returns previous state. */
5448
5449 static int
5450 linux_async_pipe (int enable)
5451 {
5452 int previous = (linux_nat_event_pipe[0] != -1);
5453
5454 if (previous != enable)
5455 {
5456 sigset_t prev_mask;
5457
5458 block_child_signals (&prev_mask);
5459
5460 if (enable)
5461 {
5462 if (pipe (linux_nat_event_pipe) == -1)
5463 internal_error (__FILE__, __LINE__,
5464 "creating event pipe failed.");
5465
5466 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5467 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5468 }
5469 else
5470 {
5471 close (linux_nat_event_pipe[0]);
5472 close (linux_nat_event_pipe[1]);
5473 linux_nat_event_pipe[0] = -1;
5474 linux_nat_event_pipe[1] = -1;
5475 }
5476
5477 restore_child_signals_mask (&prev_mask);
5478 }
5479
5480 return previous;
5481 }
5482
5483 /* target_async implementation. */
5484
5485 static void
5486 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5487 void *context), void *context)
5488 {
5489 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5490 internal_error (__FILE__, __LINE__,
5491 "Calling target_async when async is masked");
5492
5493 if (callback != NULL)
5494 {
5495 async_client_callback = callback;
5496 async_client_context = context;
5497 if (!linux_async_pipe (1))
5498 {
5499 add_file_handler (linux_nat_event_pipe[0],
5500 handle_target_event, NULL);
5501 /* There may be pending events to handle. Tell the event loop
5502 to poll them. */
5503 async_file_mark ();
5504 }
5505 }
5506 else
5507 {
5508 async_client_callback = callback;
5509 async_client_context = context;
5510 delete_file_handler (linux_nat_event_pipe[0]);
5511 linux_async_pipe (0);
5512 }
5513 return;
5514 }
5515
5516 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5517 event came out. */
5518
5519 static int
5520 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5521 {
5522 if (!lwp->stopped)
5523 {
5524 ptid_t ptid = lwp->ptid;
5525
5526 if (debug_linux_nat)
5527 fprintf_unfiltered (gdb_stdlog,
5528 "LNSL: running -> suspending %s\n",
5529 target_pid_to_str (lwp->ptid));
5530
5531
5532 stop_callback (lwp, NULL);
5533 stop_wait_callback (lwp, NULL);
5534
5535 /* If the lwp exits while we try to stop it, there's nothing
5536 else to do. */
5537 lwp = find_lwp_pid (ptid);
5538 if (lwp == NULL)
5539 return 0;
5540
5541 /* If we didn't collect any signal other than SIGSTOP while
5542 stopping the LWP, push a SIGNAL_0 event. In either case, the
5543 event-loop will end up calling target_wait which will collect
5544 these. */
5545 if (lwp->status == 0)
5546 lwp->status = W_STOPCODE (0);
5547 async_file_mark ();
5548 }
5549 else
5550 {
5551 /* Already known to be stopped; do nothing. */
5552
5553 if (debug_linux_nat)
5554 {
5555 if (find_thread_ptid (lwp->ptid)->stop_requested)
5556 fprintf_unfiltered (gdb_stdlog,
5557 "LNSL: already stopped/stop_requested %s\n",
5558 target_pid_to_str (lwp->ptid));
5559 else
5560 fprintf_unfiltered (gdb_stdlog,
5561 "LNSL: already stopped/no "
5562 "stop_requested yet %s\n",
5563 target_pid_to_str (lwp->ptid));
5564 }
5565 }
5566 return 0;
5567 }
5568
5569 static void
5570 linux_nat_stop (ptid_t ptid)
5571 {
5572 if (non_stop)
5573 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5574 else
5575 linux_ops->to_stop (ptid);
5576 }
5577
5578 static void
5579 linux_nat_close (int quitting)
5580 {
5581 /* Unregister from the event loop. */
5582 if (target_is_async_p ())
5583 target_async (NULL, 0);
5584
5585 /* Reset the async_masking. */
5586 linux_nat_async_mask_value = 1;
5587
5588 if (linux_ops->to_close)
5589 linux_ops->to_close (quitting);
5590 }
5591
5592 /* When requests are passed down from the linux-nat layer to the
5593 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5594 used. The address space pointer is stored in the inferior object,
5595 but the common code that is passed such ptid can't tell whether
5596 lwpid is a "main" process id or not (it assumes so). We reverse
5597 look up the "main" process id from the lwp here. */
5598
5599 struct address_space *
5600 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5601 {
5602 struct lwp_info *lwp;
5603 struct inferior *inf;
5604 int pid;
5605
5606 pid = GET_LWP (ptid);
5607 if (GET_LWP (ptid) == 0)
5608 {
5609 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5610 tgid. */
5611 lwp = find_lwp_pid (ptid);
5612 pid = GET_PID (lwp->ptid);
5613 }
5614 else
5615 {
5616 /* A (pid,lwpid,0) ptid. */
5617 pid = GET_PID (ptid);
5618 }
5619
5620 inf = find_inferior_pid (pid);
5621 gdb_assert (inf != NULL);
5622 return inf->aspace;
5623 }
5624
5625 int
5626 linux_nat_core_of_thread_1 (ptid_t ptid)
5627 {
5628 struct cleanup *back_to;
5629 char *filename;
5630 FILE *f;
5631 char *content = NULL;
5632 char *p;
5633 char *ts = 0;
5634 int content_read = 0;
5635 int i;
5636 int core;
5637
5638 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5639 GET_PID (ptid), GET_LWP (ptid));
5640 back_to = make_cleanup (xfree, filename);
5641
5642 f = fopen (filename, "r");
5643 if (!f)
5644 {
5645 do_cleanups (back_to);
5646 return -1;
5647 }
5648
5649 make_cleanup_fclose (f);
5650
5651 for (;;)
5652 {
5653 int n;
5654
5655 content = xrealloc (content, content_read + 1024);
5656 n = fread (content + content_read, 1, 1024, f);
5657 content_read += n;
5658 if (n < 1024)
5659 {
5660 content[content_read] = '\0';
5661 break;
5662 }
5663 }
5664
5665 make_cleanup (xfree, content);
5666
5667 p = strchr (content, '(');
5668
5669 /* Skip ")". */
5670 if (p != NULL)
5671 p = strchr (p, ')');
5672 if (p != NULL)
5673 p++;
5674
5675 /* If the first field after program name has index 0, then core number is
5676 the field with index 36. There's no constant for that anywhere. */
5677 if (p != NULL)
5678 p = strtok_r (p, " ", &ts);
5679 for (i = 0; p != NULL && i != 36; ++i)
5680 p = strtok_r (NULL, " ", &ts);
5681
5682 if (p == NULL || sscanf (p, "%d", &core) == 0)
5683 core = -1;
5684
5685 do_cleanups (back_to);
5686
5687 return core;
5688 }
5689
5690 /* Return the cached value of the processor core for thread PTID. */
5691
5692 int
5693 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5694 {
5695 struct lwp_info *info = find_lwp_pid (ptid);
5696
5697 if (info)
5698 return info->core;
5699 return -1;
5700 }
5701
5702 void
5703 linux_nat_add_target (struct target_ops *t)
5704 {
5705 /* Save the provided single-threaded target. We save this in a separate
5706 variable because another target we've inherited from (e.g. inf-ptrace)
5707 may have saved a pointer to T; we want to use it for the final
5708 process stratum target. */
5709 linux_ops_saved = *t;
5710 linux_ops = &linux_ops_saved;
5711
5712 /* Override some methods for multithreading. */
5713 t->to_create_inferior = linux_nat_create_inferior;
5714 t->to_attach = linux_nat_attach;
5715 t->to_detach = linux_nat_detach;
5716 t->to_resume = linux_nat_resume;
5717 t->to_wait = linux_nat_wait;
5718 t->to_xfer_partial = linux_nat_xfer_partial;
5719 t->to_kill = linux_nat_kill;
5720 t->to_mourn_inferior = linux_nat_mourn_inferior;
5721 t->to_thread_alive = linux_nat_thread_alive;
5722 t->to_pid_to_str = linux_nat_pid_to_str;
5723 t->to_thread_name = linux_nat_thread_name;
5724 t->to_has_thread_control = tc_schedlock;
5725 t->to_thread_address_space = linux_nat_thread_address_space;
5726 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5727 t->to_stopped_data_address = linux_nat_stopped_data_address;
5728
5729 t->to_can_async_p = linux_nat_can_async_p;
5730 t->to_is_async_p = linux_nat_is_async_p;
5731 t->to_supports_non_stop = linux_nat_supports_non_stop;
5732 t->to_async = linux_nat_async;
5733 t->to_async_mask = linux_nat_async_mask;
5734 t->to_terminal_inferior = linux_nat_terminal_inferior;
5735 t->to_terminal_ours = linux_nat_terminal_ours;
5736 t->to_close = linux_nat_close;
5737
5738 /* Methods for non-stop support. */
5739 t->to_stop = linux_nat_stop;
5740
5741 t->to_supports_multi_process = linux_nat_supports_multi_process;
5742
5743 t->to_core_of_thread = linux_nat_core_of_thread;
5744
5745 /* We don't change the stratum; this target will sit at
5746 process_stratum and thread_db will set at thread_stratum. This
5747 is a little strange, since this is a multi-threaded-capable
5748 target, but we want to be on the stack below thread_db, and we
5749 also want to be used for single-threaded processes. */
5750
5751 add_target (t);
5752 }
5753
5754 /* Register a method to call whenever a new thread is attached. */
5755 void
5756 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5757 {
5758 /* Save the pointer. We only support a single registered instance
5759 of the GNU/Linux native target, so we do not need to map this to
5760 T. */
5761 linux_nat_new_thread = new_thread;
5762 }
5763
5764 /* Register a method that converts a siginfo object between the layout
5765 that ptrace returns, and the layout in the architecture of the
5766 inferior. */
5767 void
5768 linux_nat_set_siginfo_fixup (struct target_ops *t,
5769 int (*siginfo_fixup) (struct siginfo *,
5770 gdb_byte *,
5771 int))
5772 {
5773 /* Save the pointer. */
5774 linux_nat_siginfo_fixup = siginfo_fixup;
5775 }
5776
5777 /* Return the saved siginfo associated with PTID. */
5778 struct siginfo *
5779 linux_nat_get_siginfo (ptid_t ptid)
5780 {
5781 struct lwp_info *lp = find_lwp_pid (ptid);
5782
5783 gdb_assert (lp != NULL);
5784
5785 return &lp->siginfo;
5786 }
5787
5788 /* Provide a prototype to silence -Wmissing-prototypes. */
5789 extern initialize_file_ftype _initialize_linux_nat;
5790
5791 void
5792 _initialize_linux_nat (void)
5793 {
5794 add_info ("proc", linux_nat_info_proc_cmd, _("\
5795 Show /proc process information about any running process.\n\
5796 Specify any process id, or use the program being debugged by default.\n\
5797 Specify any of the following keywords for detailed info:\n\
5798 mappings -- list of mapped memory regions.\n\
5799 stat -- list a bunch of random process info.\n\
5800 status -- list a different bunch of random process info.\n\
5801 all -- list all available /proc info."));
5802
5803 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5804 &debug_linux_nat, _("\
5805 Set debugging of GNU/Linux lwp module."), _("\
5806 Show debugging of GNU/Linux lwp module."), _("\
5807 Enables printf debugging output."),
5808 NULL,
5809 show_debug_linux_nat,
5810 &setdebuglist, &showdebuglist);
5811
5812 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5813 &debug_linux_nat_async, _("\
5814 Set debugging of GNU/Linux async lwp module."), _("\
5815 Show debugging of GNU/Linux async lwp module."), _("\
5816 Enables printf debugging output."),
5817 NULL,
5818 show_debug_linux_nat_async,
5819 &setdebuglist, &showdebuglist);
5820
5821 /* Save this mask as the default. */
5822 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5823
5824 /* Install a SIGCHLD handler. */
5825 sigchld_action.sa_handler = sigchld_handler;
5826 sigemptyset (&sigchld_action.sa_mask);
5827 sigchld_action.sa_flags = SA_RESTART;
5828
5829 /* Make it the default. */
5830 sigaction (SIGCHLD, &sigchld_action, NULL);
5831
5832 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5833 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5834 sigdelset (&suspend_mask, SIGCHLD);
5835
5836 sigemptyset (&blocked_mask);
5837
5838 add_setshow_boolean_cmd ("disable-randomization", class_support,
5839 &disable_randomization, _("\
5840 Set disabling of debuggee's virtual address space randomization."), _("\
5841 Show disabling of debuggee's virtual address space randomization."), _("\
5842 When this mode is on (which is the default), randomization of the virtual\n\
5843 address space is disabled. Standalone programs run with the randomization\n\
5844 enabled by default on some platforms."),
5845 &set_disable_randomization,
5846 &show_disable_randomization,
5847 &setlist, &showlist);
5848 }
5849 \f
5850
5851 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5852 the GNU/Linux Threads library and therefore doesn't really belong
5853 here. */
5854
5855 /* Read variable NAME in the target and return its value if found.
5856 Otherwise return zero. It is assumed that the type of the variable
5857 is `int'. */
5858
5859 static int
5860 get_signo (const char *name)
5861 {
5862 struct minimal_symbol *ms;
5863 int signo;
5864
5865 ms = lookup_minimal_symbol (name, NULL, NULL);
5866 if (ms == NULL)
5867 return 0;
5868
5869 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5870 sizeof (signo)) != 0)
5871 return 0;
5872
5873 return signo;
5874 }
5875
5876 /* Return the set of signals used by the threads library in *SET. */
5877
5878 void
5879 lin_thread_get_thread_signals (sigset_t *set)
5880 {
5881 struct sigaction action;
5882 int restart, cancel;
5883
5884 sigemptyset (&blocked_mask);
5885 sigemptyset (set);
5886
5887 restart = get_signo ("__pthread_sig_restart");
5888 cancel = get_signo ("__pthread_sig_cancel");
5889
5890 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5891 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5892 not provide any way for the debugger to query the signal numbers -
5893 fortunately they don't change! */
5894
5895 if (restart == 0)
5896 restart = __SIGRTMIN;
5897
5898 if (cancel == 0)
5899 cancel = __SIGRTMIN + 1;
5900
5901 sigaddset (set, restart);
5902 sigaddset (set, cancel);
5903
5904 /* The GNU/Linux Threads library makes terminating threads send a
5905 special "cancel" signal instead of SIGCHLD. Make sure we catch
5906 those (to prevent them from terminating GDB itself, which is
5907 likely to be their default action) and treat them the same way as
5908 SIGCHLD. */
5909
5910 action.sa_handler = sigchld_handler;
5911 sigemptyset (&action.sa_mask);
5912 action.sa_flags = SA_RESTART;
5913 sigaction (cancel, &action, NULL);
5914
5915 /* We block the "cancel" signal throughout this code ... */
5916 sigaddset (&blocked_mask, cancel);
5917 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5918
5919 /* ... except during a sigsuspend. */
5920 sigdelset (&suspend_mask, cancel);
5921 }
This page took 0.150296 seconds and 4 git commands to generate.