gdb/
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdb_string.h"
24 #include "gdb_wait.h"
25 #include "gdb_assert.h"
26 #ifdef HAVE_TKILL_SYSCALL
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #endif
30 #include <sys/ptrace.h>
31 #include "linux-nat.h"
32 #include "linux-ptrace.h"
33 #include "linux-procfs.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-ptrace.h"
40 #include "auxv.h"
41 #include <sys/param.h> /* for MAXPATHLEN */
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include "gdbthread.h" /* for struct thread_info etc. */
48 #include "gdb_stat.h" /* for struct stat */
49 #include <fcntl.h> /* for O_RDONLY */
50 #include "inf-loop.h"
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include <pwd.h>
54 #include <sys/types.h>
55 #include "gdb_dirent.h"
56 #include "xml-support.h"
57 #include "terminal.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "exceptions.h"
66 #include "linux-ptrace.h"
67 #include "buffer.h"
68
69 #ifndef SPUFS_MAGIC
70 #define SPUFS_MAGIC 0x23c9b64e
71 #endif
72
73 #ifdef HAVE_PERSONALITY
74 # include <sys/personality.h>
75 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
76 # define ADDR_NO_RANDOMIZE 0x0040000
77 # endif
78 #endif /* HAVE_PERSONALITY */
79
80 /* This comment documents high-level logic of this file.
81
82 Waiting for events in sync mode
83 ===============================
84
85 When waiting for an event in a specific thread, we just use waitpid, passing
86 the specific pid, and not passing WNOHANG.
87
88 When waiting for an event in all threads, waitpid is not quite good. Prior to
89 version 2.4, Linux can either wait for event in main thread, or in secondary
90 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
91 miss an event. The solution is to use non-blocking waitpid, together with
92 sigsuspend. First, we use non-blocking waitpid to get an event in the main
93 process, if any. Second, we use non-blocking waitpid with the __WCLONED
94 flag to check for events in cloned processes. If nothing is found, we use
95 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
96 happened to a child process -- and SIGCHLD will be delivered both for events
97 in main debugged process and in cloned processes. As soon as we know there's
98 an event, we get back to calling nonblocking waitpid with and without
99 __WCLONED.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
102 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
103 blocked, the signal becomes pending and sigsuspend immediately
104 notices it and returns.
105
106 Waiting for events in async mode
107 ================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked. */
167
168 #ifndef O_LARGEFILE
169 #define O_LARGEFILE 0
170 #endif
171
172 /* Unlike other extended result codes, WSTOPSIG (status) on
173 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
174 instead SIGTRAP with bit 7 set. */
175 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
176
177 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
178 the use of the multi-threaded target. */
179 static struct target_ops *linux_ops;
180 static struct target_ops linux_ops_saved;
181
182 /* The method to call, if any, when a new thread is attached. */
183 static void (*linux_nat_new_thread) (struct lwp_info *);
184
185 /* Hook to call prior to resuming a thread. */
186 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
187
188 /* The method to call, if any, when the siginfo object needs to be
189 converted between the layout returned by ptrace, and the layout in
190 the architecture of the inferior. */
191 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
192 gdb_byte *,
193 int);
194
195 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
196 Called by our to_xfer_partial. */
197 static LONGEST (*super_xfer_partial) (struct target_ops *,
198 enum target_object,
199 const char *, gdb_byte *,
200 const gdb_byte *,
201 ULONGEST, LONGEST);
202
203 static int debug_linux_nat;
204 static void
205 show_debug_linux_nat (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
209 value);
210 }
211
212 struct simple_pid_list
213 {
214 int pid;
215 int status;
216 struct simple_pid_list *next;
217 };
218 struct simple_pid_list *stopped_pids;
219
220 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
221 can not be used, 1 if it can. */
222
223 static int linux_supports_tracefork_flag = -1;
224
225 /* This variable is a tri-state flag: -1 for unknown, 0 if
226 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
227
228 static int linux_supports_tracesysgood_flag = -1;
229
230 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
231 PTRACE_O_TRACEVFORKDONE. */
232
233 static int linux_supports_tracevforkdone_flag = -1;
234
235 /* Stores the current used ptrace() options. */
236 static int current_ptrace_options = 0;
237
238 /* Async mode support. */
239
240 /* The read/write ends of the pipe registered as waitable file in the
241 event loop. */
242 static int linux_nat_event_pipe[2] = { -1, -1 };
243
244 /* Flush the event pipe. */
245
246 static void
247 async_file_flush (void)
248 {
249 int ret;
250 char buf;
251
252 do
253 {
254 ret = read (linux_nat_event_pipe[0], &buf, 1);
255 }
256 while (ret >= 0 || (ret == -1 && errno == EINTR));
257 }
258
259 /* Put something (anything, doesn't matter what, or how much) in event
260 pipe, so that the select/poll in the event-loop realizes we have
261 something to process. */
262
263 static void
264 async_file_mark (void)
265 {
266 int ret;
267
268 /* It doesn't really matter what the pipe contains, as long we end
269 up with something in it. Might as well flush the previous
270 left-overs. */
271 async_file_flush ();
272
273 do
274 {
275 ret = write (linux_nat_event_pipe[1], "+", 1);
276 }
277 while (ret == -1 && errno == EINTR);
278
279 /* Ignore EAGAIN. If the pipe is full, the event loop will already
280 be awakened anyway. */
281 }
282
283 static void linux_nat_async (void (*callback)
284 (enum inferior_event_type event_type,
285 void *context),
286 void *context);
287 static int kill_lwp (int lwpid, int signo);
288
289 static int stop_callback (struct lwp_info *lp, void *data);
290
291 static void block_child_signals (sigset_t *prev_mask);
292 static void restore_child_signals_mask (sigset_t *prev_mask);
293
294 struct lwp_info;
295 static struct lwp_info *add_lwp (ptid_t ptid);
296 static void purge_lwp_list (int pid);
297 static void delete_lwp (ptid_t ptid);
298 static struct lwp_info *find_lwp_pid (ptid_t ptid);
299
300 \f
301 /* Trivial list manipulation functions to keep track of a list of
302 new stopped processes. */
303 static void
304 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
305 {
306 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
307
308 new_pid->pid = pid;
309 new_pid->status = status;
310 new_pid->next = *listp;
311 *listp = new_pid;
312 }
313
314 static int
315 in_pid_list_p (struct simple_pid_list *list, int pid)
316 {
317 struct simple_pid_list *p;
318
319 for (p = list; p != NULL; p = p->next)
320 if (p->pid == pid)
321 return 1;
322 return 0;
323 }
324
325 static int
326 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
327 {
328 struct simple_pid_list **p;
329
330 for (p = listp; *p != NULL; p = &(*p)->next)
331 if ((*p)->pid == pid)
332 {
333 struct simple_pid_list *next = (*p)->next;
334
335 *statusp = (*p)->status;
336 xfree (*p);
337 *p = next;
338 return 1;
339 }
340 return 0;
341 }
342
343 \f
344 /* A helper function for linux_test_for_tracefork, called after fork (). */
345
346 static void
347 linux_tracefork_child (void)
348 {
349 ptrace (PTRACE_TRACEME, 0, 0, 0);
350 kill (getpid (), SIGSTOP);
351 fork ();
352 _exit (0);
353 }
354
355 /* Wrapper function for waitpid which handles EINTR. */
356
357 static int
358 my_waitpid (int pid, int *statusp, int flags)
359 {
360 int ret;
361
362 do
363 {
364 ret = waitpid (pid, statusp, flags);
365 }
366 while (ret == -1 && errno == EINTR);
367
368 return ret;
369 }
370
371 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
372
373 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
374 we know that the feature is not available. This may change the tracing
375 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
376
377 However, if it succeeds, we don't know for sure that the feature is
378 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
379 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
380 fork tracing, and let it fork. If the process exits, we assume that we
381 can't use TRACEFORK; if we get the fork notification, and we can extract
382 the new child's PID, then we assume that we can. */
383
384 static void
385 linux_test_for_tracefork (int original_pid)
386 {
387 int child_pid, ret, status;
388 long second_pid;
389 sigset_t prev_mask;
390
391 /* We don't want those ptrace calls to be interrupted. */
392 block_child_signals (&prev_mask);
393
394 linux_supports_tracefork_flag = 0;
395 linux_supports_tracevforkdone_flag = 0;
396
397 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
398 if (ret != 0)
399 {
400 restore_child_signals_mask (&prev_mask);
401 return;
402 }
403
404 child_pid = fork ();
405 if (child_pid == -1)
406 perror_with_name (("fork"));
407
408 if (child_pid == 0)
409 linux_tracefork_child ();
410
411 ret = my_waitpid (child_pid, &status, 0);
412 if (ret == -1)
413 perror_with_name (("waitpid"));
414 else if (ret != child_pid)
415 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
416 if (! WIFSTOPPED (status))
417 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
418 status);
419
420 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
421 if (ret != 0)
422 {
423 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
424 if (ret != 0)
425 {
426 warning (_("linux_test_for_tracefork: failed to kill child"));
427 restore_child_signals_mask (&prev_mask);
428 return;
429 }
430
431 ret = my_waitpid (child_pid, &status, 0);
432 if (ret != child_pid)
433 warning (_("linux_test_for_tracefork: failed "
434 "to wait for killed child"));
435 else if (!WIFSIGNALED (status))
436 warning (_("linux_test_for_tracefork: unexpected "
437 "wait status 0x%x from killed child"), status);
438
439 restore_child_signals_mask (&prev_mask);
440 return;
441 }
442
443 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
444 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
445 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
446 linux_supports_tracevforkdone_flag = (ret == 0);
447
448 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
449 if (ret != 0)
450 warning (_("linux_test_for_tracefork: failed to resume child"));
451
452 ret = my_waitpid (child_pid, &status, 0);
453
454 if (ret == child_pid && WIFSTOPPED (status)
455 && status >> 16 == PTRACE_EVENT_FORK)
456 {
457 second_pid = 0;
458 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
459 if (ret == 0 && second_pid != 0)
460 {
461 int second_status;
462
463 linux_supports_tracefork_flag = 1;
464 my_waitpid (second_pid, &second_status, 0);
465 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
466 if (ret != 0)
467 warning (_("linux_test_for_tracefork: "
468 "failed to kill second child"));
469 my_waitpid (second_pid, &status, 0);
470 }
471 }
472 else
473 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
474 "(%d, status 0x%x)"), ret, status);
475
476 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
477 if (ret != 0)
478 warning (_("linux_test_for_tracefork: failed to kill child"));
479 my_waitpid (child_pid, &status, 0);
480
481 restore_child_signals_mask (&prev_mask);
482 }
483
484 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
485
486 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
487 we know that the feature is not available. This may change the tracing
488 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
489
490 static void
491 linux_test_for_tracesysgood (int original_pid)
492 {
493 int ret;
494 sigset_t prev_mask;
495
496 /* We don't want those ptrace calls to be interrupted. */
497 block_child_signals (&prev_mask);
498
499 linux_supports_tracesysgood_flag = 0;
500
501 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
502 if (ret != 0)
503 goto out;
504
505 linux_supports_tracesysgood_flag = 1;
506 out:
507 restore_child_signals_mask (&prev_mask);
508 }
509
510 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
511 This function also sets linux_supports_tracesysgood_flag. */
512
513 static int
514 linux_supports_tracesysgood (int pid)
515 {
516 if (linux_supports_tracesysgood_flag == -1)
517 linux_test_for_tracesysgood (pid);
518 return linux_supports_tracesysgood_flag;
519 }
520
521 /* Return non-zero iff we have tracefork functionality available.
522 This function also sets linux_supports_tracefork_flag. */
523
524 static int
525 linux_supports_tracefork (int pid)
526 {
527 if (linux_supports_tracefork_flag == -1)
528 linux_test_for_tracefork (pid);
529 return linux_supports_tracefork_flag;
530 }
531
532 static int
533 linux_supports_tracevforkdone (int pid)
534 {
535 if (linux_supports_tracefork_flag == -1)
536 linux_test_for_tracefork (pid);
537 return linux_supports_tracevforkdone_flag;
538 }
539
540 static void
541 linux_enable_tracesysgood (ptid_t ptid)
542 {
543 int pid = ptid_get_lwp (ptid);
544
545 if (pid == 0)
546 pid = ptid_get_pid (ptid);
547
548 if (linux_supports_tracesysgood (pid) == 0)
549 return;
550
551 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
552
553 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
554 }
555
556 \f
557 void
558 linux_enable_event_reporting (ptid_t ptid)
559 {
560 int pid = ptid_get_lwp (ptid);
561
562 if (pid == 0)
563 pid = ptid_get_pid (ptid);
564
565 if (! linux_supports_tracefork (pid))
566 return;
567
568 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
569 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
570
571 if (linux_supports_tracevforkdone (pid))
572 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
573
574 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
575 read-only process state. */
576
577 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
578 }
579
580 static void
581 linux_child_post_attach (int pid)
582 {
583 linux_enable_event_reporting (pid_to_ptid (pid));
584 linux_enable_tracesysgood (pid_to_ptid (pid));
585 }
586
587 static void
588 linux_child_post_startup_inferior (ptid_t ptid)
589 {
590 linux_enable_event_reporting (ptid);
591 linux_enable_tracesysgood (ptid);
592 }
593
594 /* Return the number of known LWPs in the tgid given by PID. */
595
596 static int
597 num_lwps (int pid)
598 {
599 int count = 0;
600 struct lwp_info *lp;
601
602 for (lp = lwp_list; lp; lp = lp->next)
603 if (ptid_get_pid (lp->ptid) == pid)
604 count++;
605
606 return count;
607 }
608
609 /* Call delete_lwp with prototype compatible for make_cleanup. */
610
611 static void
612 delete_lwp_cleanup (void *lp_voidp)
613 {
614 struct lwp_info *lp = lp_voidp;
615
616 delete_lwp (lp->ptid);
617 }
618
619 static int
620 linux_child_follow_fork (struct target_ops *ops, int follow_child)
621 {
622 sigset_t prev_mask;
623 int has_vforked;
624 int parent_pid, child_pid;
625
626 block_child_signals (&prev_mask);
627
628 has_vforked = (inferior_thread ()->pending_follow.kind
629 == TARGET_WAITKIND_VFORKED);
630 parent_pid = ptid_get_lwp (inferior_ptid);
631 if (parent_pid == 0)
632 parent_pid = ptid_get_pid (inferior_ptid);
633 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
634
635 if (!detach_fork)
636 linux_enable_event_reporting (pid_to_ptid (child_pid));
637
638 if (has_vforked
639 && !non_stop /* Non-stop always resumes both branches. */
640 && (!target_is_async_p () || sync_execution)
641 && !(follow_child || detach_fork || sched_multi))
642 {
643 /* The parent stays blocked inside the vfork syscall until the
644 child execs or exits. If we don't let the child run, then
645 the parent stays blocked. If we're telling the parent to run
646 in the foreground, the user will not be able to ctrl-c to get
647 back the terminal, effectively hanging the debug session. */
648 fprintf_filtered (gdb_stderr, _("\
649 Can not resume the parent process over vfork in the foreground while\n\
650 holding the child stopped. Try \"set detach-on-fork\" or \
651 \"set schedule-multiple\".\n"));
652 /* FIXME output string > 80 columns. */
653 return 1;
654 }
655
656 if (! follow_child)
657 {
658 struct lwp_info *child_lp = NULL;
659
660 /* We're already attached to the parent, by default. */
661
662 /* Detach new forked process? */
663 if (detach_fork)
664 {
665 struct cleanup *old_chain;
666
667 /* Before detaching from the child, remove all breakpoints
668 from it. If we forked, then this has already been taken
669 care of by infrun.c. If we vforked however, any
670 breakpoint inserted in the parent is visible in the
671 child, even those added while stopped in a vfork
672 catchpoint. This will remove the breakpoints from the
673 parent also, but they'll be reinserted below. */
674 if (has_vforked)
675 {
676 /* keep breakpoints list in sync. */
677 remove_breakpoints_pid (GET_PID (inferior_ptid));
678 }
679
680 if (info_verbose || debug_linux_nat)
681 {
682 target_terminal_ours ();
683 fprintf_filtered (gdb_stdlog,
684 "Detaching after fork from "
685 "child process %d.\n",
686 child_pid);
687 }
688
689 old_chain = save_inferior_ptid ();
690 inferior_ptid = ptid_build (child_pid, child_pid, 0);
691
692 child_lp = add_lwp (inferior_ptid);
693 child_lp->stopped = 1;
694 child_lp->last_resume_kind = resume_stop;
695 make_cleanup (delete_lwp_cleanup, child_lp);
696
697 /* CHILD_LP has new PID, therefore linux_nat_new_thread is not called for it.
698 See i386_inferior_data_get for the Linux kernel specifics.
699 Ensure linux_nat_prepare_to_resume will reset the hardware debug
700 registers. It is done by the linux_nat_new_thread call, which is
701 being skipped in add_lwp above for the first lwp of a pid. */
702 gdb_assert (num_lwps (GET_PID (child_lp->ptid)) == 1);
703 if (linux_nat_new_thread != NULL)
704 linux_nat_new_thread (child_lp);
705
706 if (linux_nat_prepare_to_resume != NULL)
707 linux_nat_prepare_to_resume (child_lp);
708 ptrace (PTRACE_DETACH, child_pid, 0, 0);
709
710 do_cleanups (old_chain);
711 }
712 else
713 {
714 struct inferior *parent_inf, *child_inf;
715 struct cleanup *old_chain;
716
717 /* Add process to GDB's tables. */
718 child_inf = add_inferior (child_pid);
719
720 parent_inf = current_inferior ();
721 child_inf->attach_flag = parent_inf->attach_flag;
722 copy_terminal_info (child_inf, parent_inf);
723
724 old_chain = save_inferior_ptid ();
725 save_current_program_space ();
726
727 inferior_ptid = ptid_build (child_pid, child_pid, 0);
728 add_thread (inferior_ptid);
729 child_lp = add_lwp (inferior_ptid);
730 child_lp->stopped = 1;
731 child_lp->last_resume_kind = resume_stop;
732 child_inf->symfile_flags = SYMFILE_NO_READ;
733
734 /* If this is a vfork child, then the address-space is
735 shared with the parent. */
736 if (has_vforked)
737 {
738 child_inf->pspace = parent_inf->pspace;
739 child_inf->aspace = parent_inf->aspace;
740
741 /* The parent will be frozen until the child is done
742 with the shared region. Keep track of the
743 parent. */
744 child_inf->vfork_parent = parent_inf;
745 child_inf->pending_detach = 0;
746 parent_inf->vfork_child = child_inf;
747 parent_inf->pending_detach = 0;
748 }
749 else
750 {
751 child_inf->aspace = new_address_space ();
752 child_inf->pspace = add_program_space (child_inf->aspace);
753 child_inf->removable = 1;
754 set_current_program_space (child_inf->pspace);
755 clone_program_space (child_inf->pspace, parent_inf->pspace);
756
757 /* Let the shared library layer (solib-svr4) learn about
758 this new process, relocate the cloned exec, pull in
759 shared libraries, and install the solib event
760 breakpoint. If a "cloned-VM" event was propagated
761 better throughout the core, this wouldn't be
762 required. */
763 solib_create_inferior_hook (0);
764 }
765
766 /* Let the thread_db layer learn about this new process. */
767 check_for_thread_db ();
768
769 do_cleanups (old_chain);
770 }
771
772 if (has_vforked)
773 {
774 struct lwp_info *parent_lp;
775 struct inferior *parent_inf;
776
777 parent_inf = current_inferior ();
778
779 /* If we detached from the child, then we have to be careful
780 to not insert breakpoints in the parent until the child
781 is done with the shared memory region. However, if we're
782 staying attached to the child, then we can and should
783 insert breakpoints, so that we can debug it. A
784 subsequent child exec or exit is enough to know when does
785 the child stops using the parent's address space. */
786 parent_inf->waiting_for_vfork_done = detach_fork;
787 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
788
789 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
790 gdb_assert (linux_supports_tracefork_flag >= 0);
791
792 if (linux_supports_tracevforkdone (0))
793 {
794 if (debug_linux_nat)
795 fprintf_unfiltered (gdb_stdlog,
796 "LCFF: waiting for VFORK_DONE on %d\n",
797 parent_pid);
798 parent_lp->stopped = 1;
799
800 /* We'll handle the VFORK_DONE event like any other
801 event, in target_wait. */
802 }
803 else
804 {
805 /* We can't insert breakpoints until the child has
806 finished with the shared memory region. We need to
807 wait until that happens. Ideal would be to just
808 call:
809 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
810 - waitpid (parent_pid, &status, __WALL);
811 However, most architectures can't handle a syscall
812 being traced on the way out if it wasn't traced on
813 the way in.
814
815 We might also think to loop, continuing the child
816 until it exits or gets a SIGTRAP. One problem is
817 that the child might call ptrace with PTRACE_TRACEME.
818
819 There's no simple and reliable way to figure out when
820 the vforked child will be done with its copy of the
821 shared memory. We could step it out of the syscall,
822 two instructions, let it go, and then single-step the
823 parent once. When we have hardware single-step, this
824 would work; with software single-step it could still
825 be made to work but we'd have to be able to insert
826 single-step breakpoints in the child, and we'd have
827 to insert -just- the single-step breakpoint in the
828 parent. Very awkward.
829
830 In the end, the best we can do is to make sure it
831 runs for a little while. Hopefully it will be out of
832 range of any breakpoints we reinsert. Usually this
833 is only the single-step breakpoint at vfork's return
834 point. */
835
836 if (debug_linux_nat)
837 fprintf_unfiltered (gdb_stdlog,
838 "LCFF: no VFORK_DONE "
839 "support, sleeping a bit\n");
840
841 usleep (10000);
842
843 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
844 and leave it pending. The next linux_nat_resume call
845 will notice a pending event, and bypasses actually
846 resuming the inferior. */
847 parent_lp->status = 0;
848 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
849 parent_lp->stopped = 1;
850
851 /* If we're in async mode, need to tell the event loop
852 there's something here to process. */
853 if (target_can_async_p ())
854 async_file_mark ();
855 }
856 }
857 }
858 else
859 {
860 struct inferior *parent_inf, *child_inf;
861 struct lwp_info *child_lp;
862 struct program_space *parent_pspace;
863
864 if (info_verbose || debug_linux_nat)
865 {
866 target_terminal_ours ();
867 if (has_vforked)
868 fprintf_filtered (gdb_stdlog,
869 _("Attaching after process %d "
870 "vfork to child process %d.\n"),
871 parent_pid, child_pid);
872 else
873 fprintf_filtered (gdb_stdlog,
874 _("Attaching after process %d "
875 "fork to child process %d.\n"),
876 parent_pid, child_pid);
877 }
878
879 /* Add the new inferior first, so that the target_detach below
880 doesn't unpush the target. */
881
882 child_inf = add_inferior (child_pid);
883
884 parent_inf = current_inferior ();
885 child_inf->attach_flag = parent_inf->attach_flag;
886 copy_terminal_info (child_inf, parent_inf);
887
888 parent_pspace = parent_inf->pspace;
889
890 /* If we're vforking, we want to hold on to the parent until the
891 child exits or execs. At child exec or exit time we can
892 remove the old breakpoints from the parent and detach or
893 resume debugging it. Otherwise, detach the parent now; we'll
894 want to reuse it's program/address spaces, but we can't set
895 them to the child before removing breakpoints from the
896 parent, otherwise, the breakpoints module could decide to
897 remove breakpoints from the wrong process (since they'd be
898 assigned to the same address space). */
899
900 if (has_vforked)
901 {
902 gdb_assert (child_inf->vfork_parent == NULL);
903 gdb_assert (parent_inf->vfork_child == NULL);
904 child_inf->vfork_parent = parent_inf;
905 child_inf->pending_detach = 0;
906 parent_inf->vfork_child = child_inf;
907 parent_inf->pending_detach = detach_fork;
908 parent_inf->waiting_for_vfork_done = 0;
909 }
910 else if (detach_fork)
911 target_detach (NULL, 0);
912
913 /* Note that the detach above makes PARENT_INF dangling. */
914
915 /* Add the child thread to the appropriate lists, and switch to
916 this new thread, before cloning the program space, and
917 informing the solib layer about this new process. */
918
919 inferior_ptid = ptid_build (child_pid, child_pid, 0);
920 add_thread (inferior_ptid);
921 child_lp = add_lwp (inferior_ptid);
922 child_lp->stopped = 1;
923 child_lp->last_resume_kind = resume_stop;
924
925 /* If this is a vfork child, then the address-space is shared
926 with the parent. If we detached from the parent, then we can
927 reuse the parent's program/address spaces. */
928 if (has_vforked || detach_fork)
929 {
930 child_inf->pspace = parent_pspace;
931 child_inf->aspace = child_inf->pspace->aspace;
932 }
933 else
934 {
935 child_inf->aspace = new_address_space ();
936 child_inf->pspace = add_program_space (child_inf->aspace);
937 child_inf->removable = 1;
938 child_inf->symfile_flags = SYMFILE_NO_READ;
939 set_current_program_space (child_inf->pspace);
940 clone_program_space (child_inf->pspace, parent_pspace);
941
942 /* Let the shared library layer (solib-svr4) learn about
943 this new process, relocate the cloned exec, pull in
944 shared libraries, and install the solib event breakpoint.
945 If a "cloned-VM" event was propagated better throughout
946 the core, this wouldn't be required. */
947 solib_create_inferior_hook (0);
948 }
949
950 /* Let the thread_db layer learn about this new process. */
951 check_for_thread_db ();
952 }
953
954 restore_child_signals_mask (&prev_mask);
955 return 0;
956 }
957
958 \f
959 static int
960 linux_child_insert_fork_catchpoint (int pid)
961 {
962 return !linux_supports_tracefork (pid);
963 }
964
965 static int
966 linux_child_remove_fork_catchpoint (int pid)
967 {
968 return 0;
969 }
970
971 static int
972 linux_child_insert_vfork_catchpoint (int pid)
973 {
974 return !linux_supports_tracefork (pid);
975 }
976
977 static int
978 linux_child_remove_vfork_catchpoint (int pid)
979 {
980 return 0;
981 }
982
983 static int
984 linux_child_insert_exec_catchpoint (int pid)
985 {
986 return !linux_supports_tracefork (pid);
987 }
988
989 static int
990 linux_child_remove_exec_catchpoint (int pid)
991 {
992 return 0;
993 }
994
995 static int
996 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
997 int table_size, int *table)
998 {
999 if (!linux_supports_tracesysgood (pid))
1000 return 1;
1001
1002 /* On GNU/Linux, we ignore the arguments. It means that we only
1003 enable the syscall catchpoints, but do not disable them.
1004
1005 Also, we do not use the `table' information because we do not
1006 filter system calls here. We let GDB do the logic for us. */
1007 return 0;
1008 }
1009
1010 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1011 are processes sharing the same VM space. A multi-threaded process
1012 is basically a group of such processes. However, such a grouping
1013 is almost entirely a user-space issue; the kernel doesn't enforce
1014 such a grouping at all (this might change in the future). In
1015 general, we'll rely on the threads library (i.e. the GNU/Linux
1016 Threads library) to provide such a grouping.
1017
1018 It is perfectly well possible to write a multi-threaded application
1019 without the assistance of a threads library, by using the clone
1020 system call directly. This module should be able to give some
1021 rudimentary support for debugging such applications if developers
1022 specify the CLONE_PTRACE flag in the clone system call, and are
1023 using the Linux kernel 2.4 or above.
1024
1025 Note that there are some peculiarities in GNU/Linux that affect
1026 this code:
1027
1028 - In general one should specify the __WCLONE flag to waitpid in
1029 order to make it report events for any of the cloned processes
1030 (and leave it out for the initial process). However, if a cloned
1031 process has exited the exit status is only reported if the
1032 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1033 we cannot use it since GDB must work on older systems too.
1034
1035 - When a traced, cloned process exits and is waited for by the
1036 debugger, the kernel reassigns it to the original parent and
1037 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1038 library doesn't notice this, which leads to the "zombie problem":
1039 When debugged a multi-threaded process that spawns a lot of
1040 threads will run out of processes, even if the threads exit,
1041 because the "zombies" stay around. */
1042
1043 /* List of known LWPs. */
1044 struct lwp_info *lwp_list;
1045 \f
1046
1047 /* Original signal mask. */
1048 static sigset_t normal_mask;
1049
1050 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1051 _initialize_linux_nat. */
1052 static sigset_t suspend_mask;
1053
1054 /* Signals to block to make that sigsuspend work. */
1055 static sigset_t blocked_mask;
1056
1057 /* SIGCHLD action. */
1058 struct sigaction sigchld_action;
1059
1060 /* Block child signals (SIGCHLD and linux threads signals), and store
1061 the previous mask in PREV_MASK. */
1062
1063 static void
1064 block_child_signals (sigset_t *prev_mask)
1065 {
1066 /* Make sure SIGCHLD is blocked. */
1067 if (!sigismember (&blocked_mask, SIGCHLD))
1068 sigaddset (&blocked_mask, SIGCHLD);
1069
1070 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1071 }
1072
1073 /* Restore child signals mask, previously returned by
1074 block_child_signals. */
1075
1076 static void
1077 restore_child_signals_mask (sigset_t *prev_mask)
1078 {
1079 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1080 }
1081
1082 /* Mask of signals to pass directly to the inferior. */
1083 static sigset_t pass_mask;
1084
1085 /* Update signals to pass to the inferior. */
1086 static void
1087 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1088 {
1089 int signo;
1090
1091 sigemptyset (&pass_mask);
1092
1093 for (signo = 1; signo < NSIG; signo++)
1094 {
1095 int target_signo = target_signal_from_host (signo);
1096 if (target_signo < numsigs && pass_signals[target_signo])
1097 sigaddset (&pass_mask, signo);
1098 }
1099 }
1100
1101 \f
1102
1103 /* Prototypes for local functions. */
1104 static int stop_wait_callback (struct lwp_info *lp, void *data);
1105 static int linux_thread_alive (ptid_t ptid);
1106 static char *linux_child_pid_to_exec_file (int pid);
1107
1108 \f
1109 /* Convert wait status STATUS to a string. Used for printing debug
1110 messages only. */
1111
1112 static char *
1113 status_to_str (int status)
1114 {
1115 static char buf[64];
1116
1117 if (WIFSTOPPED (status))
1118 {
1119 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1120 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1121 strsignal (SIGTRAP));
1122 else
1123 snprintf (buf, sizeof (buf), "%s (stopped)",
1124 strsignal (WSTOPSIG (status)));
1125 }
1126 else if (WIFSIGNALED (status))
1127 snprintf (buf, sizeof (buf), "%s (terminated)",
1128 strsignal (WTERMSIG (status)));
1129 else
1130 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1131
1132 return buf;
1133 }
1134
1135 /* Destroy and free LP. */
1136
1137 static void
1138 lwp_free (struct lwp_info *lp)
1139 {
1140 xfree (lp->arch_private);
1141 xfree (lp);
1142 }
1143
1144 /* Remove all LWPs belong to PID from the lwp list. */
1145
1146 static void
1147 purge_lwp_list (int pid)
1148 {
1149 struct lwp_info *lp, *lpprev, *lpnext;
1150
1151 lpprev = NULL;
1152
1153 for (lp = lwp_list; lp; lp = lpnext)
1154 {
1155 lpnext = lp->next;
1156
1157 if (ptid_get_pid (lp->ptid) == pid)
1158 {
1159 if (lp == lwp_list)
1160 lwp_list = lp->next;
1161 else
1162 lpprev->next = lp->next;
1163
1164 lwp_free (lp);
1165 }
1166 else
1167 lpprev = lp;
1168 }
1169 }
1170
1171 /* Add the LWP specified by PID to the list. Return a pointer to the
1172 structure describing the new LWP. The LWP should already be stopped
1173 (with an exception for the very first LWP). */
1174
1175 static struct lwp_info *
1176 add_lwp (ptid_t ptid)
1177 {
1178 struct lwp_info *lp;
1179
1180 gdb_assert (is_lwp (ptid));
1181
1182 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1183
1184 memset (lp, 0, sizeof (struct lwp_info));
1185
1186 lp->last_resume_kind = resume_continue;
1187 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1188
1189 lp->ptid = ptid;
1190 lp->core = -1;
1191
1192 lp->next = lwp_list;
1193 lwp_list = lp;
1194
1195 /* Let the arch specific bits know about this new thread. Current
1196 clients of this callback take the opportunity to install
1197 watchpoints in the new thread. Don't do this for the first
1198 thread though. If we're spawning a child ("run"), the thread
1199 executes the shell wrapper first, and we shouldn't touch it until
1200 it execs the program we want to debug. For "attach", it'd be
1201 okay to call the callback, but it's not necessary, because
1202 watchpoints can't yet have been inserted into the inferior. */
1203 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1204 linux_nat_new_thread (lp);
1205
1206 return lp;
1207 }
1208
1209 /* Remove the LWP specified by PID from the list. */
1210
1211 static void
1212 delete_lwp (ptid_t ptid)
1213 {
1214 struct lwp_info *lp, *lpprev;
1215
1216 lpprev = NULL;
1217
1218 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1219 if (ptid_equal (lp->ptid, ptid))
1220 break;
1221
1222 if (!lp)
1223 return;
1224
1225 if (lpprev)
1226 lpprev->next = lp->next;
1227 else
1228 lwp_list = lp->next;
1229
1230 lwp_free (lp);
1231 }
1232
1233 /* Return a pointer to the structure describing the LWP corresponding
1234 to PID. If no corresponding LWP could be found, return NULL. */
1235
1236 static struct lwp_info *
1237 find_lwp_pid (ptid_t ptid)
1238 {
1239 struct lwp_info *lp;
1240 int lwp;
1241
1242 if (is_lwp (ptid))
1243 lwp = GET_LWP (ptid);
1244 else
1245 lwp = GET_PID (ptid);
1246
1247 for (lp = lwp_list; lp; lp = lp->next)
1248 if (lwp == GET_LWP (lp->ptid))
1249 return lp;
1250
1251 return NULL;
1252 }
1253
1254 /* Call CALLBACK with its second argument set to DATA for every LWP in
1255 the list. If CALLBACK returns 1 for a particular LWP, return a
1256 pointer to the structure describing that LWP immediately.
1257 Otherwise return NULL. */
1258
1259 struct lwp_info *
1260 iterate_over_lwps (ptid_t filter,
1261 int (*callback) (struct lwp_info *, void *),
1262 void *data)
1263 {
1264 struct lwp_info *lp, *lpnext;
1265
1266 for (lp = lwp_list; lp; lp = lpnext)
1267 {
1268 lpnext = lp->next;
1269
1270 if (ptid_match (lp->ptid, filter))
1271 {
1272 if ((*callback) (lp, data))
1273 return lp;
1274 }
1275 }
1276
1277 return NULL;
1278 }
1279
1280 /* Iterate like iterate_over_lwps does except when forking-off a child call
1281 CALLBACK with CALLBACK_DATA specifically only for that new child PID. */
1282
1283 void
1284 linux_nat_iterate_watchpoint_lwps
1285 (linux_nat_iterate_watchpoint_lwps_ftype callback, void *callback_data)
1286 {
1287 int inferior_pid = ptid_get_pid (inferior_ptid);
1288 struct inferior *inf = current_inferior ();
1289
1290 if (inf->pid == inferior_pid)
1291 {
1292 /* Iterate all the threads of the current inferior. Without specifying
1293 INFERIOR_PID it would iterate all threads of all inferiors, which is
1294 inappropriate for watchpoints. */
1295
1296 iterate_over_lwps (pid_to_ptid (inferior_pid), callback, callback_data);
1297 }
1298 else
1299 {
1300 /* Detaching a new child PID temporarily present in INFERIOR_PID. */
1301
1302 struct lwp_info *child_lp;
1303 struct cleanup *old_chain;
1304 pid_t child_pid = GET_PID (inferior_ptid);
1305 ptid_t child_ptid = ptid_build (child_pid, child_pid, 0);
1306
1307 gdb_assert (!is_lwp (inferior_ptid));
1308 gdb_assert (find_lwp_pid (child_ptid) == NULL);
1309 child_lp = add_lwp (child_ptid);
1310 child_lp->stopped = 1;
1311 child_lp->last_resume_kind = resume_stop;
1312 old_chain = make_cleanup (delete_lwp_cleanup, child_lp);
1313
1314 callback (child_lp, callback_data);
1315
1316 do_cleanups (old_chain);
1317 }
1318 }
1319
1320 /* Update our internal state when changing from one checkpoint to
1321 another indicated by NEW_PTID. We can only switch single-threaded
1322 applications, so we only create one new LWP, and the previous list
1323 is discarded. */
1324
1325 void
1326 linux_nat_switch_fork (ptid_t new_ptid)
1327 {
1328 struct lwp_info *lp;
1329
1330 purge_lwp_list (GET_PID (inferior_ptid));
1331
1332 lp = add_lwp (new_ptid);
1333 lp->stopped = 1;
1334
1335 /* This changes the thread's ptid while preserving the gdb thread
1336 num. Also changes the inferior pid, while preserving the
1337 inferior num. */
1338 thread_change_ptid (inferior_ptid, new_ptid);
1339
1340 /* We've just told GDB core that the thread changed target id, but,
1341 in fact, it really is a different thread, with different register
1342 contents. */
1343 registers_changed ();
1344 }
1345
1346 /* Handle the exit of a single thread LP. */
1347
1348 static void
1349 exit_lwp (struct lwp_info *lp)
1350 {
1351 struct thread_info *th = find_thread_ptid (lp->ptid);
1352
1353 if (th)
1354 {
1355 if (print_thread_events)
1356 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1357
1358 delete_thread (lp->ptid);
1359 }
1360
1361 delete_lwp (lp->ptid);
1362 }
1363
1364 /* Wait for the LWP specified by LP, which we have just attached to.
1365 Returns a wait status for that LWP, to cache. */
1366
1367 static int
1368 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1369 int *signalled)
1370 {
1371 pid_t new_pid, pid = GET_LWP (ptid);
1372 int status;
1373
1374 if (linux_proc_pid_is_stopped (pid))
1375 {
1376 if (debug_linux_nat)
1377 fprintf_unfiltered (gdb_stdlog,
1378 "LNPAW: Attaching to a stopped process\n");
1379
1380 /* The process is definitely stopped. It is in a job control
1381 stop, unless the kernel predates the TASK_STOPPED /
1382 TASK_TRACED distinction, in which case it might be in a
1383 ptrace stop. Make sure it is in a ptrace stop; from there we
1384 can kill it, signal it, et cetera.
1385
1386 First make sure there is a pending SIGSTOP. Since we are
1387 already attached, the process can not transition from stopped
1388 to running without a PTRACE_CONT; so we know this signal will
1389 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1390 probably already in the queue (unless this kernel is old
1391 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1392 is not an RT signal, it can only be queued once. */
1393 kill_lwp (pid, SIGSTOP);
1394
1395 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1396 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1397 ptrace (PTRACE_CONT, pid, 0, 0);
1398 }
1399
1400 /* Make sure the initial process is stopped. The user-level threads
1401 layer might want to poke around in the inferior, and that won't
1402 work if things haven't stabilized yet. */
1403 new_pid = my_waitpid (pid, &status, 0);
1404 if (new_pid == -1 && errno == ECHILD)
1405 {
1406 if (first)
1407 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1408
1409 /* Try again with __WCLONE to check cloned processes. */
1410 new_pid = my_waitpid (pid, &status, __WCLONE);
1411 *cloned = 1;
1412 }
1413
1414 gdb_assert (pid == new_pid);
1415
1416 if (!WIFSTOPPED (status))
1417 {
1418 /* The pid we tried to attach has apparently just exited. */
1419 if (debug_linux_nat)
1420 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1421 pid, status_to_str (status));
1422 return status;
1423 }
1424
1425 if (WSTOPSIG (status) != SIGSTOP)
1426 {
1427 *signalled = 1;
1428 if (debug_linux_nat)
1429 fprintf_unfiltered (gdb_stdlog,
1430 "LNPAW: Received %s after attaching\n",
1431 status_to_str (status));
1432 }
1433
1434 return status;
1435 }
1436
1437 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1438 the new LWP could not be attached, or 1 if we're already auto
1439 attached to this thread, but haven't processed the
1440 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1441 its existance, without considering it an error. */
1442
1443 int
1444 lin_lwp_attach_lwp (ptid_t ptid)
1445 {
1446 struct lwp_info *lp;
1447 sigset_t prev_mask;
1448 int lwpid;
1449
1450 gdb_assert (is_lwp (ptid));
1451
1452 block_child_signals (&prev_mask);
1453
1454 lp = find_lwp_pid (ptid);
1455 lwpid = GET_LWP (ptid);
1456
1457 /* We assume that we're already attached to any LWP that has an id
1458 equal to the overall process id, and to any LWP that is already
1459 in our list of LWPs. If we're not seeing exit events from threads
1460 and we've had PID wraparound since we last tried to stop all threads,
1461 this assumption might be wrong; fortunately, this is very unlikely
1462 to happen. */
1463 if (lwpid != GET_PID (ptid) && lp == NULL)
1464 {
1465 int status, cloned = 0, signalled = 0;
1466
1467 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1468 {
1469 if (linux_supports_tracefork_flag)
1470 {
1471 /* If we haven't stopped all threads when we get here,
1472 we may have seen a thread listed in thread_db's list,
1473 but not processed the PTRACE_EVENT_CLONE yet. If
1474 that's the case, ignore this new thread, and let
1475 normal event handling discover it later. */
1476 if (in_pid_list_p (stopped_pids, lwpid))
1477 {
1478 /* We've already seen this thread stop, but we
1479 haven't seen the PTRACE_EVENT_CLONE extended
1480 event yet. */
1481 restore_child_signals_mask (&prev_mask);
1482 return 0;
1483 }
1484 else
1485 {
1486 int new_pid;
1487 int status;
1488
1489 /* See if we've got a stop for this new child
1490 pending. If so, we're already attached. */
1491 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1492 if (new_pid == -1 && errno == ECHILD)
1493 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1494 if (new_pid != -1)
1495 {
1496 if (WIFSTOPPED (status))
1497 add_to_pid_list (&stopped_pids, lwpid, status);
1498
1499 restore_child_signals_mask (&prev_mask);
1500 return 1;
1501 }
1502 }
1503 }
1504
1505 /* If we fail to attach to the thread, issue a warning,
1506 but continue. One way this can happen is if thread
1507 creation is interrupted; as of Linux kernel 2.6.19, a
1508 bug may place threads in the thread list and then fail
1509 to create them. */
1510 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1511 safe_strerror (errno));
1512 restore_child_signals_mask (&prev_mask);
1513 return -1;
1514 }
1515
1516 if (debug_linux_nat)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1519 target_pid_to_str (ptid));
1520
1521 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1522 if (!WIFSTOPPED (status))
1523 {
1524 restore_child_signals_mask (&prev_mask);
1525 return 1;
1526 }
1527
1528 lp = add_lwp (ptid);
1529 lp->stopped = 1;
1530 lp->cloned = cloned;
1531 lp->signalled = signalled;
1532 if (WSTOPSIG (status) != SIGSTOP)
1533 {
1534 lp->resumed = 1;
1535 lp->status = status;
1536 }
1537
1538 target_post_attach (GET_LWP (lp->ptid));
1539
1540 if (debug_linux_nat)
1541 {
1542 fprintf_unfiltered (gdb_stdlog,
1543 "LLAL: waitpid %s received %s\n",
1544 target_pid_to_str (ptid),
1545 status_to_str (status));
1546 }
1547 }
1548 else
1549 {
1550 /* We assume that the LWP representing the original process is
1551 already stopped. Mark it as stopped in the data structure
1552 that the GNU/linux ptrace layer uses to keep track of
1553 threads. Note that this won't have already been done since
1554 the main thread will have, we assume, been stopped by an
1555 attach from a different layer. */
1556 if (lp == NULL)
1557 lp = add_lwp (ptid);
1558 lp->stopped = 1;
1559 }
1560
1561 lp->last_resume_kind = resume_stop;
1562 restore_child_signals_mask (&prev_mask);
1563 return 0;
1564 }
1565
1566 static void
1567 linux_nat_create_inferior (struct target_ops *ops,
1568 char *exec_file, char *allargs, char **env,
1569 int from_tty)
1570 {
1571 #ifdef HAVE_PERSONALITY
1572 int personality_orig = 0, personality_set = 0;
1573 #endif /* HAVE_PERSONALITY */
1574
1575 /* The fork_child mechanism is synchronous and calls target_wait, so
1576 we have to mask the async mode. */
1577
1578 #ifdef HAVE_PERSONALITY
1579 if (disable_randomization)
1580 {
1581 errno = 0;
1582 personality_orig = personality (0xffffffff);
1583 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1584 {
1585 personality_set = 1;
1586 personality (personality_orig | ADDR_NO_RANDOMIZE);
1587 }
1588 if (errno != 0 || (personality_set
1589 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1590 warning (_("Error disabling address space randomization: %s"),
1591 safe_strerror (errno));
1592 }
1593 #endif /* HAVE_PERSONALITY */
1594
1595 /* Make sure we report all signals during startup. */
1596 linux_nat_pass_signals (0, NULL);
1597
1598 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1599
1600 #ifdef HAVE_PERSONALITY
1601 if (personality_set)
1602 {
1603 errno = 0;
1604 personality (personality_orig);
1605 if (errno != 0)
1606 warning (_("Error restoring address space randomization: %s"),
1607 safe_strerror (errno));
1608 }
1609 #endif /* HAVE_PERSONALITY */
1610 }
1611
1612 static void
1613 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1614 {
1615 struct lwp_info *lp;
1616 int status;
1617 ptid_t ptid;
1618 volatile struct gdb_exception ex;
1619
1620 /* Make sure we report all signals during attach. */
1621 linux_nat_pass_signals (0, NULL);
1622
1623 TRY_CATCH (ex, RETURN_MASK_ERROR)
1624 {
1625 linux_ops->to_attach (ops, args, from_tty);
1626 }
1627 if (ex.reason < 0)
1628 {
1629 pid_t pid = parse_pid_to_attach (args);
1630 struct buffer buffer;
1631 char *message, *buffer_s;
1632
1633 message = xstrdup (ex.message);
1634 make_cleanup (xfree, message);
1635
1636 buffer_init (&buffer);
1637 linux_ptrace_attach_warnings (pid, &buffer);
1638
1639 buffer_grow_str0 (&buffer, "");
1640 buffer_s = buffer_finish (&buffer);
1641 make_cleanup (xfree, buffer_s);
1642
1643 throw_error (ex.error, "%s%s", buffer_s, message);
1644 }
1645
1646 /* The ptrace base target adds the main thread with (pid,0,0)
1647 format. Decorate it with lwp info. */
1648 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1649 thread_change_ptid (inferior_ptid, ptid);
1650
1651 /* Add the initial process as the first LWP to the list. */
1652 lp = add_lwp (ptid);
1653
1654 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1655 &lp->signalled);
1656 if (!WIFSTOPPED (status))
1657 {
1658 if (WIFEXITED (status))
1659 {
1660 int exit_code = WEXITSTATUS (status);
1661
1662 target_terminal_ours ();
1663 target_mourn_inferior ();
1664 if (exit_code == 0)
1665 error (_("Unable to attach: program exited normally."));
1666 else
1667 error (_("Unable to attach: program exited with code %d."),
1668 exit_code);
1669 }
1670 else if (WIFSIGNALED (status))
1671 {
1672 enum target_signal signo;
1673
1674 target_terminal_ours ();
1675 target_mourn_inferior ();
1676
1677 signo = target_signal_from_host (WTERMSIG (status));
1678 error (_("Unable to attach: program terminated with signal "
1679 "%s, %s."),
1680 target_signal_to_name (signo),
1681 target_signal_to_string (signo));
1682 }
1683
1684 internal_error (__FILE__, __LINE__,
1685 _("unexpected status %d for PID %ld"),
1686 status, (long) GET_LWP (ptid));
1687 }
1688
1689 lp->stopped = 1;
1690
1691 /* Save the wait status to report later. */
1692 lp->resumed = 1;
1693 if (debug_linux_nat)
1694 fprintf_unfiltered (gdb_stdlog,
1695 "LNA: waitpid %ld, saving status %s\n",
1696 (long) GET_PID (lp->ptid), status_to_str (status));
1697
1698 lp->status = status;
1699
1700 if (target_can_async_p ())
1701 target_async (inferior_event_handler, 0);
1702 }
1703
1704 /* Get pending status of LP. */
1705 static int
1706 get_pending_status (struct lwp_info *lp, int *status)
1707 {
1708 enum target_signal signo = TARGET_SIGNAL_0;
1709
1710 /* If we paused threads momentarily, we may have stored pending
1711 events in lp->status or lp->waitstatus (see stop_wait_callback),
1712 and GDB core hasn't seen any signal for those threads.
1713 Otherwise, the last signal reported to the core is found in the
1714 thread object's stop_signal.
1715
1716 There's a corner case that isn't handled here at present. Only
1717 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1718 stop_signal make sense as a real signal to pass to the inferior.
1719 Some catchpoint related events, like
1720 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1721 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1722 those traps are debug API (ptrace in our case) related and
1723 induced; the inferior wouldn't see them if it wasn't being
1724 traced. Hence, we should never pass them to the inferior, even
1725 when set to pass state. Since this corner case isn't handled by
1726 infrun.c when proceeding with a signal, for consistency, neither
1727 do we handle it here (or elsewhere in the file we check for
1728 signal pass state). Normally SIGTRAP isn't set to pass state, so
1729 this is really a corner case. */
1730
1731 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1732 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1733 else if (lp->status)
1734 signo = target_signal_from_host (WSTOPSIG (lp->status));
1735 else if (non_stop && !is_executing (lp->ptid))
1736 {
1737 struct thread_info *tp = find_thread_ptid (lp->ptid);
1738
1739 signo = tp->suspend.stop_signal;
1740 }
1741 else if (!non_stop)
1742 {
1743 struct target_waitstatus last;
1744 ptid_t last_ptid;
1745
1746 get_last_target_status (&last_ptid, &last);
1747
1748 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1749 {
1750 struct thread_info *tp = find_thread_ptid (lp->ptid);
1751
1752 signo = tp->suspend.stop_signal;
1753 }
1754 }
1755
1756 *status = 0;
1757
1758 if (signo == TARGET_SIGNAL_0)
1759 {
1760 if (debug_linux_nat)
1761 fprintf_unfiltered (gdb_stdlog,
1762 "GPT: lwp %s has no pending signal\n",
1763 target_pid_to_str (lp->ptid));
1764 }
1765 else if (!signal_pass_state (signo))
1766 {
1767 if (debug_linux_nat)
1768 fprintf_unfiltered (gdb_stdlog,
1769 "GPT: lwp %s had signal %s, "
1770 "but it is in no pass state\n",
1771 target_pid_to_str (lp->ptid),
1772 target_signal_to_string (signo));
1773 }
1774 else
1775 {
1776 *status = W_STOPCODE (target_signal_to_host (signo));
1777
1778 if (debug_linux_nat)
1779 fprintf_unfiltered (gdb_stdlog,
1780 "GPT: lwp %s has pending signal %s\n",
1781 target_pid_to_str (lp->ptid),
1782 target_signal_to_string (signo));
1783 }
1784
1785 return 0;
1786 }
1787
1788 static int
1789 detach_callback (struct lwp_info *lp, void *data)
1790 {
1791 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1792
1793 if (debug_linux_nat && lp->status)
1794 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1795 strsignal (WSTOPSIG (lp->status)),
1796 target_pid_to_str (lp->ptid));
1797
1798 /* If there is a pending SIGSTOP, get rid of it. */
1799 if (lp->signalled)
1800 {
1801 if (debug_linux_nat)
1802 fprintf_unfiltered (gdb_stdlog,
1803 "DC: Sending SIGCONT to %s\n",
1804 target_pid_to_str (lp->ptid));
1805
1806 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1807 lp->signalled = 0;
1808 }
1809
1810 /* We don't actually detach from the LWP that has an id equal to the
1811 overall process id just yet. */
1812 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1813 {
1814 int status = 0;
1815
1816 /* Pass on any pending signal for this LWP. */
1817 get_pending_status (lp, &status);
1818
1819 if (linux_nat_prepare_to_resume != NULL)
1820 linux_nat_prepare_to_resume (lp);
1821 errno = 0;
1822 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1823 WSTOPSIG (status)) < 0)
1824 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1825 safe_strerror (errno));
1826
1827 if (debug_linux_nat)
1828 fprintf_unfiltered (gdb_stdlog,
1829 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1830 target_pid_to_str (lp->ptid),
1831 strsignal (WSTOPSIG (status)));
1832
1833 delete_lwp (lp->ptid);
1834 }
1835
1836 return 0;
1837 }
1838
1839 static void
1840 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1841 {
1842 int pid;
1843 int status;
1844 struct lwp_info *main_lwp;
1845
1846 pid = GET_PID (inferior_ptid);
1847
1848 if (target_can_async_p ())
1849 linux_nat_async (NULL, 0);
1850
1851 /* Stop all threads before detaching. ptrace requires that the
1852 thread is stopped to sucessfully detach. */
1853 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1854 /* ... and wait until all of them have reported back that
1855 they're no longer running. */
1856 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1857
1858 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1859
1860 /* Only the initial process should be left right now. */
1861 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1862
1863 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1864
1865 /* Pass on any pending signal for the last LWP. */
1866 if ((args == NULL || *args == '\0')
1867 && get_pending_status (main_lwp, &status) != -1
1868 && WIFSTOPPED (status))
1869 {
1870 /* Put the signal number in ARGS so that inf_ptrace_detach will
1871 pass it along with PTRACE_DETACH. */
1872 args = alloca (8);
1873 sprintf (args, "%d", (int) WSTOPSIG (status));
1874 if (debug_linux_nat)
1875 fprintf_unfiltered (gdb_stdlog,
1876 "LND: Sending signal %s to %s\n",
1877 args,
1878 target_pid_to_str (main_lwp->ptid));
1879 }
1880
1881 if (linux_nat_prepare_to_resume != NULL)
1882 linux_nat_prepare_to_resume (main_lwp);
1883 delete_lwp (main_lwp->ptid);
1884
1885 if (forks_exist_p ())
1886 {
1887 /* Multi-fork case. The current inferior_ptid is being detached
1888 from, but there are other viable forks to debug. Detach from
1889 the current fork, and context-switch to the first
1890 available. */
1891 linux_fork_detach (args, from_tty);
1892
1893 if (non_stop && target_can_async_p ())
1894 target_async (inferior_event_handler, 0);
1895 }
1896 else
1897 linux_ops->to_detach (ops, args, from_tty);
1898 }
1899
1900 /* Resume LP. */
1901
1902 static void
1903 resume_lwp (struct lwp_info *lp, int step)
1904 {
1905 if (lp->stopped)
1906 {
1907 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1908
1909 if (inf->vfork_child != NULL)
1910 {
1911 if (debug_linux_nat)
1912 fprintf_unfiltered (gdb_stdlog,
1913 "RC: Not resuming %s (vfork parent)\n",
1914 target_pid_to_str (lp->ptid));
1915 }
1916 else if (lp->status == 0
1917 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1918 {
1919 if (debug_linux_nat)
1920 fprintf_unfiltered (gdb_stdlog,
1921 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1922 target_pid_to_str (lp->ptid));
1923
1924 if (linux_nat_prepare_to_resume != NULL)
1925 linux_nat_prepare_to_resume (lp);
1926 linux_ops->to_resume (linux_ops,
1927 pid_to_ptid (GET_LWP (lp->ptid)),
1928 step, TARGET_SIGNAL_0);
1929 lp->stopped = 0;
1930 lp->step = step;
1931 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1932 lp->stopped_by_watchpoint = 0;
1933 }
1934 else
1935 {
1936 if (debug_linux_nat)
1937 fprintf_unfiltered (gdb_stdlog,
1938 "RC: Not resuming sibling %s (has pending)\n",
1939 target_pid_to_str (lp->ptid));
1940 }
1941 }
1942 else
1943 {
1944 if (debug_linux_nat)
1945 fprintf_unfiltered (gdb_stdlog,
1946 "RC: Not resuming sibling %s (not stopped)\n",
1947 target_pid_to_str (lp->ptid));
1948 }
1949 }
1950
1951 static int
1952 resume_callback (struct lwp_info *lp, void *data)
1953 {
1954 resume_lwp (lp, 0);
1955 return 0;
1956 }
1957
1958 static int
1959 resume_clear_callback (struct lwp_info *lp, void *data)
1960 {
1961 lp->resumed = 0;
1962 lp->last_resume_kind = resume_stop;
1963 return 0;
1964 }
1965
1966 static int
1967 resume_set_callback (struct lwp_info *lp, void *data)
1968 {
1969 lp->resumed = 1;
1970 lp->last_resume_kind = resume_continue;
1971 return 0;
1972 }
1973
1974 static void
1975 linux_nat_resume (struct target_ops *ops,
1976 ptid_t ptid, int step, enum target_signal signo)
1977 {
1978 sigset_t prev_mask;
1979 struct lwp_info *lp;
1980 int resume_many;
1981
1982 if (debug_linux_nat)
1983 fprintf_unfiltered (gdb_stdlog,
1984 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1985 step ? "step" : "resume",
1986 target_pid_to_str (ptid),
1987 (signo != TARGET_SIGNAL_0
1988 ? strsignal (target_signal_to_host (signo)) : "0"),
1989 target_pid_to_str (inferior_ptid));
1990
1991 block_child_signals (&prev_mask);
1992
1993 /* A specific PTID means `step only this process id'. */
1994 resume_many = (ptid_equal (minus_one_ptid, ptid)
1995 || ptid_is_pid (ptid));
1996
1997 /* Mark the lwps we're resuming as resumed. */
1998 iterate_over_lwps (ptid, resume_set_callback, NULL);
1999
2000 /* See if it's the current inferior that should be handled
2001 specially. */
2002 if (resume_many)
2003 lp = find_lwp_pid (inferior_ptid);
2004 else
2005 lp = find_lwp_pid (ptid);
2006 gdb_assert (lp != NULL);
2007
2008 /* Remember if we're stepping. */
2009 lp->step = step;
2010 lp->last_resume_kind = step ? resume_step : resume_continue;
2011
2012 /* If we have a pending wait status for this thread, there is no
2013 point in resuming the process. But first make sure that
2014 linux_nat_wait won't preemptively handle the event - we
2015 should never take this short-circuit if we are going to
2016 leave LP running, since we have skipped resuming all the
2017 other threads. This bit of code needs to be synchronized
2018 with linux_nat_wait. */
2019
2020 if (lp->status && WIFSTOPPED (lp->status))
2021 {
2022 if (!lp->step
2023 && WSTOPSIG (lp->status)
2024 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
2025 {
2026 if (debug_linux_nat)
2027 fprintf_unfiltered (gdb_stdlog,
2028 "LLR: Not short circuiting for ignored "
2029 "status 0x%x\n", lp->status);
2030
2031 /* FIXME: What should we do if we are supposed to continue
2032 this thread with a signal? */
2033 gdb_assert (signo == TARGET_SIGNAL_0);
2034 signo = target_signal_from_host (WSTOPSIG (lp->status));
2035 lp->status = 0;
2036 }
2037 }
2038
2039 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2040 {
2041 /* FIXME: What should we do if we are supposed to continue
2042 this thread with a signal? */
2043 gdb_assert (signo == TARGET_SIGNAL_0);
2044
2045 if (debug_linux_nat)
2046 fprintf_unfiltered (gdb_stdlog,
2047 "LLR: Short circuiting for status 0x%x\n",
2048 lp->status);
2049
2050 restore_child_signals_mask (&prev_mask);
2051 if (target_can_async_p ())
2052 {
2053 target_async (inferior_event_handler, 0);
2054 /* Tell the event loop we have something to process. */
2055 async_file_mark ();
2056 }
2057 return;
2058 }
2059
2060 /* Mark LWP as not stopped to prevent it from being continued by
2061 resume_callback. */
2062 lp->stopped = 0;
2063
2064 if (resume_many)
2065 iterate_over_lwps (ptid, resume_callback, NULL);
2066
2067 /* Convert to something the lower layer understands. */
2068 ptid = pid_to_ptid (GET_LWP (lp->ptid));
2069
2070 if (linux_nat_prepare_to_resume != NULL)
2071 linux_nat_prepare_to_resume (lp);
2072 linux_ops->to_resume (linux_ops, ptid, step, signo);
2073 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2074 lp->stopped_by_watchpoint = 0;
2075
2076 if (debug_linux_nat)
2077 fprintf_unfiltered (gdb_stdlog,
2078 "LLR: %s %s, %s (resume event thread)\n",
2079 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2080 target_pid_to_str (ptid),
2081 (signo != TARGET_SIGNAL_0
2082 ? strsignal (target_signal_to_host (signo)) : "0"));
2083
2084 restore_child_signals_mask (&prev_mask);
2085 if (target_can_async_p ())
2086 target_async (inferior_event_handler, 0);
2087 }
2088
2089 /* Send a signal to an LWP. */
2090
2091 static int
2092 kill_lwp (int lwpid, int signo)
2093 {
2094 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2095 fails, then we are not using nptl threads and we should be using kill. */
2096
2097 #ifdef HAVE_TKILL_SYSCALL
2098 {
2099 static int tkill_failed;
2100
2101 if (!tkill_failed)
2102 {
2103 int ret;
2104
2105 errno = 0;
2106 ret = syscall (__NR_tkill, lwpid, signo);
2107 if (errno != ENOSYS)
2108 return ret;
2109 tkill_failed = 1;
2110 }
2111 }
2112 #endif
2113
2114 return kill (lwpid, signo);
2115 }
2116
2117 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2118 event, check if the core is interested in it: if not, ignore the
2119 event, and keep waiting; otherwise, we need to toggle the LWP's
2120 syscall entry/exit status, since the ptrace event itself doesn't
2121 indicate it, and report the trap to higher layers. */
2122
2123 static int
2124 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2125 {
2126 struct target_waitstatus *ourstatus = &lp->waitstatus;
2127 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2128 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2129
2130 if (stopping)
2131 {
2132 /* If we're stopping threads, there's a SIGSTOP pending, which
2133 makes it so that the LWP reports an immediate syscall return,
2134 followed by the SIGSTOP. Skip seeing that "return" using
2135 PTRACE_CONT directly, and let stop_wait_callback collect the
2136 SIGSTOP. Later when the thread is resumed, a new syscall
2137 entry event. If we didn't do this (and returned 0), we'd
2138 leave a syscall entry pending, and our caller, by using
2139 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2140 itself. Later, when the user re-resumes this LWP, we'd see
2141 another syscall entry event and we'd mistake it for a return.
2142
2143 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2144 (leaving immediately with LWP->signalled set, without issuing
2145 a PTRACE_CONT), it would still be problematic to leave this
2146 syscall enter pending, as later when the thread is resumed,
2147 it would then see the same syscall exit mentioned above,
2148 followed by the delayed SIGSTOP, while the syscall didn't
2149 actually get to execute. It seems it would be even more
2150 confusing to the user. */
2151
2152 if (debug_linux_nat)
2153 fprintf_unfiltered (gdb_stdlog,
2154 "LHST: ignoring syscall %d "
2155 "for LWP %ld (stopping threads), "
2156 "resuming with PTRACE_CONT for SIGSTOP\n",
2157 syscall_number,
2158 GET_LWP (lp->ptid));
2159
2160 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2161 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2162 return 1;
2163 }
2164
2165 if (catch_syscall_enabled ())
2166 {
2167 /* Always update the entry/return state, even if this particular
2168 syscall isn't interesting to the core now. In async mode,
2169 the user could install a new catchpoint for this syscall
2170 between syscall enter/return, and we'll need to know to
2171 report a syscall return if that happens. */
2172 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2173 ? TARGET_WAITKIND_SYSCALL_RETURN
2174 : TARGET_WAITKIND_SYSCALL_ENTRY);
2175
2176 if (catching_syscall_number (syscall_number))
2177 {
2178 /* Alright, an event to report. */
2179 ourstatus->kind = lp->syscall_state;
2180 ourstatus->value.syscall_number = syscall_number;
2181
2182 if (debug_linux_nat)
2183 fprintf_unfiltered (gdb_stdlog,
2184 "LHST: stopping for %s of syscall %d"
2185 " for LWP %ld\n",
2186 lp->syscall_state
2187 == TARGET_WAITKIND_SYSCALL_ENTRY
2188 ? "entry" : "return",
2189 syscall_number,
2190 GET_LWP (lp->ptid));
2191 return 0;
2192 }
2193
2194 if (debug_linux_nat)
2195 fprintf_unfiltered (gdb_stdlog,
2196 "LHST: ignoring %s of syscall %d "
2197 "for LWP %ld\n",
2198 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2199 ? "entry" : "return",
2200 syscall_number,
2201 GET_LWP (lp->ptid));
2202 }
2203 else
2204 {
2205 /* If we had been syscall tracing, and hence used PT_SYSCALL
2206 before on this LWP, it could happen that the user removes all
2207 syscall catchpoints before we get to process this event.
2208 There are two noteworthy issues here:
2209
2210 - When stopped at a syscall entry event, resuming with
2211 PT_STEP still resumes executing the syscall and reports a
2212 syscall return.
2213
2214 - Only PT_SYSCALL catches syscall enters. If we last
2215 single-stepped this thread, then this event can't be a
2216 syscall enter. If we last single-stepped this thread, this
2217 has to be a syscall exit.
2218
2219 The points above mean that the next resume, be it PT_STEP or
2220 PT_CONTINUE, can not trigger a syscall trace event. */
2221 if (debug_linux_nat)
2222 fprintf_unfiltered (gdb_stdlog,
2223 "LHST: caught syscall event "
2224 "with no syscall catchpoints."
2225 " %d for LWP %ld, ignoring\n",
2226 syscall_number,
2227 GET_LWP (lp->ptid));
2228 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2229 }
2230
2231 /* The core isn't interested in this event. For efficiency, avoid
2232 stopping all threads only to have the core resume them all again.
2233 Since we're not stopping threads, if we're still syscall tracing
2234 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2235 subsequent syscall. Simply resume using the inf-ptrace layer,
2236 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2237
2238 /* Note that gdbarch_get_syscall_number may access registers, hence
2239 fill a regcache. */
2240 registers_changed ();
2241 if (linux_nat_prepare_to_resume != NULL)
2242 linux_nat_prepare_to_resume (lp);
2243 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2244 lp->step, TARGET_SIGNAL_0);
2245 return 1;
2246 }
2247
2248 /* Handle a GNU/Linux extended wait response. If we see a clone
2249 event, we need to add the new LWP to our list (and not report the
2250 trap to higher layers). This function returns non-zero if the
2251 event should be ignored and we should wait again. If STOPPING is
2252 true, the new LWP remains stopped, otherwise it is continued. */
2253
2254 static int
2255 linux_handle_extended_wait (struct lwp_info *lp, int status,
2256 int stopping)
2257 {
2258 int pid = GET_LWP (lp->ptid);
2259 struct target_waitstatus *ourstatus = &lp->waitstatus;
2260 int event = status >> 16;
2261
2262 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2263 || event == PTRACE_EVENT_CLONE)
2264 {
2265 unsigned long new_pid;
2266 int ret;
2267
2268 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2269
2270 /* If we haven't already seen the new PID stop, wait for it now. */
2271 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2272 {
2273 /* The new child has a pending SIGSTOP. We can't affect it until it
2274 hits the SIGSTOP, but we're already attached. */
2275 ret = my_waitpid (new_pid, &status,
2276 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2277 if (ret == -1)
2278 perror_with_name (_("waiting for new child"));
2279 else if (ret != new_pid)
2280 internal_error (__FILE__, __LINE__,
2281 _("wait returned unexpected PID %d"), ret);
2282 else if (!WIFSTOPPED (status))
2283 internal_error (__FILE__, __LINE__,
2284 _("wait returned unexpected status 0x%x"), status);
2285 }
2286
2287 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2288
2289 if (event == PTRACE_EVENT_FORK
2290 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2291 {
2292 /* Handle checkpointing by linux-fork.c here as a special
2293 case. We don't want the follow-fork-mode or 'catch fork'
2294 to interfere with this. */
2295
2296 /* This won't actually modify the breakpoint list, but will
2297 physically remove the breakpoints from the child. */
2298 detach_breakpoints (new_pid);
2299
2300 /* Retain child fork in ptrace (stopped) state. */
2301 if (!find_fork_pid (new_pid))
2302 add_fork (new_pid);
2303
2304 /* Report as spurious, so that infrun doesn't want to follow
2305 this fork. We're actually doing an infcall in
2306 linux-fork.c. */
2307 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2308 linux_enable_event_reporting (pid_to_ptid (new_pid));
2309
2310 /* Report the stop to the core. */
2311 return 0;
2312 }
2313
2314 if (event == PTRACE_EVENT_FORK)
2315 ourstatus->kind = TARGET_WAITKIND_FORKED;
2316 else if (event == PTRACE_EVENT_VFORK)
2317 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2318 else
2319 {
2320 struct lwp_info *new_lp;
2321
2322 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2323
2324 if (debug_linux_nat)
2325 fprintf_unfiltered (gdb_stdlog,
2326 "LHEW: Got clone event "
2327 "from LWP %d, new child is LWP %ld\n",
2328 pid, new_pid);
2329
2330 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2331 new_lp->cloned = 1;
2332 new_lp->stopped = 1;
2333
2334 if (WSTOPSIG (status) != SIGSTOP)
2335 {
2336 /* This can happen if someone starts sending signals to
2337 the new thread before it gets a chance to run, which
2338 have a lower number than SIGSTOP (e.g. SIGUSR1).
2339 This is an unlikely case, and harder to handle for
2340 fork / vfork than for clone, so we do not try - but
2341 we handle it for clone events here. We'll send
2342 the other signal on to the thread below. */
2343
2344 new_lp->signalled = 1;
2345 }
2346 else
2347 {
2348 struct thread_info *tp;
2349
2350 /* When we stop for an event in some other thread, and
2351 pull the thread list just as this thread has cloned,
2352 we'll have seen the new thread in the thread_db list
2353 before handling the CLONE event (glibc's
2354 pthread_create adds the new thread to the thread list
2355 before clone'ing, and has the kernel fill in the
2356 thread's tid on the clone call with
2357 CLONE_PARENT_SETTID). If that happened, and the core
2358 had requested the new thread to stop, we'll have
2359 killed it with SIGSTOP. But since SIGSTOP is not an
2360 RT signal, it can only be queued once. We need to be
2361 careful to not resume the LWP if we wanted it to
2362 stop. In that case, we'll leave the SIGSTOP pending.
2363 It will later be reported as TARGET_SIGNAL_0. */
2364 tp = find_thread_ptid (new_lp->ptid);
2365 if (tp != NULL && tp->stop_requested)
2366 new_lp->last_resume_kind = resume_stop;
2367 else
2368 status = 0;
2369 }
2370
2371 if (non_stop)
2372 {
2373 /* Add the new thread to GDB's lists as soon as possible
2374 so that:
2375
2376 1) the frontend doesn't have to wait for a stop to
2377 display them, and,
2378
2379 2) we tag it with the correct running state. */
2380
2381 /* If the thread_db layer is active, let it know about
2382 this new thread, and add it to GDB's list. */
2383 if (!thread_db_attach_lwp (new_lp->ptid))
2384 {
2385 /* We're not using thread_db. Add it to GDB's
2386 list. */
2387 target_post_attach (GET_LWP (new_lp->ptid));
2388 add_thread (new_lp->ptid);
2389 }
2390
2391 if (!stopping)
2392 {
2393 set_running (new_lp->ptid, 1);
2394 set_executing (new_lp->ptid, 1);
2395 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2396 resume_stop. */
2397 new_lp->last_resume_kind = resume_continue;
2398 }
2399 }
2400
2401 if (status != 0)
2402 {
2403 /* We created NEW_LP so it cannot yet contain STATUS. */
2404 gdb_assert (new_lp->status == 0);
2405
2406 /* Save the wait status to report later. */
2407 if (debug_linux_nat)
2408 fprintf_unfiltered (gdb_stdlog,
2409 "LHEW: waitpid of new LWP %ld, "
2410 "saving status %s\n",
2411 (long) GET_LWP (new_lp->ptid),
2412 status_to_str (status));
2413 new_lp->status = status;
2414 }
2415
2416 /* Note the need to use the low target ops to resume, to
2417 handle resuming with PT_SYSCALL if we have syscall
2418 catchpoints. */
2419 if (!stopping)
2420 {
2421 new_lp->resumed = 1;
2422
2423 if (status == 0)
2424 {
2425 gdb_assert (new_lp->last_resume_kind == resume_continue);
2426 if (debug_linux_nat)
2427 fprintf_unfiltered (gdb_stdlog,
2428 "LHEW: resuming new LWP %ld\n",
2429 GET_LWP (new_lp->ptid));
2430 if (linux_nat_prepare_to_resume != NULL)
2431 linux_nat_prepare_to_resume (new_lp);
2432 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2433 0, TARGET_SIGNAL_0);
2434 new_lp->stopped = 0;
2435 }
2436 }
2437
2438 if (debug_linux_nat)
2439 fprintf_unfiltered (gdb_stdlog,
2440 "LHEW: resuming parent LWP %d\n", pid);
2441 if (linux_nat_prepare_to_resume != NULL)
2442 linux_nat_prepare_to_resume (lp);
2443 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2444 0, TARGET_SIGNAL_0);
2445
2446 return 1;
2447 }
2448
2449 return 0;
2450 }
2451
2452 if (event == PTRACE_EVENT_EXEC)
2453 {
2454 if (debug_linux_nat)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "LHEW: Got exec event from LWP %ld\n",
2457 GET_LWP (lp->ptid));
2458
2459 ourstatus->kind = TARGET_WAITKIND_EXECD;
2460 ourstatus->value.execd_pathname
2461 = xstrdup (linux_child_pid_to_exec_file (pid));
2462
2463 return 0;
2464 }
2465
2466 if (event == PTRACE_EVENT_VFORK_DONE)
2467 {
2468 if (current_inferior ()->waiting_for_vfork_done)
2469 {
2470 if (debug_linux_nat)
2471 fprintf_unfiltered (gdb_stdlog,
2472 "LHEW: Got expected PTRACE_EVENT_"
2473 "VFORK_DONE from LWP %ld: stopping\n",
2474 GET_LWP (lp->ptid));
2475
2476 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2477 return 0;
2478 }
2479
2480 if (debug_linux_nat)
2481 fprintf_unfiltered (gdb_stdlog,
2482 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2483 "from LWP %ld: resuming\n",
2484 GET_LWP (lp->ptid));
2485 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2486 return 1;
2487 }
2488
2489 internal_error (__FILE__, __LINE__,
2490 _("unknown ptrace event %d"), event);
2491 }
2492
2493 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2494 exited. */
2495
2496 static int
2497 wait_lwp (struct lwp_info *lp)
2498 {
2499 pid_t pid;
2500 int status = 0;
2501 int thread_dead = 0;
2502 sigset_t prev_mask;
2503
2504 gdb_assert (!lp->stopped);
2505 gdb_assert (lp->status == 0);
2506
2507 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2508 block_child_signals (&prev_mask);
2509
2510 for (;;)
2511 {
2512 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2513 was right and we should just call sigsuspend. */
2514
2515 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2516 if (pid == -1 && errno == ECHILD)
2517 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2518 if (pid == -1 && errno == ECHILD)
2519 {
2520 /* The thread has previously exited. We need to delete it
2521 now because, for some vendor 2.4 kernels with NPTL
2522 support backported, there won't be an exit event unless
2523 it is the main thread. 2.6 kernels will report an exit
2524 event for each thread that exits, as expected. */
2525 thread_dead = 1;
2526 if (debug_linux_nat)
2527 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2528 target_pid_to_str (lp->ptid));
2529 }
2530 if (pid != 0)
2531 break;
2532
2533 /* Bugs 10970, 12702.
2534 Thread group leader may have exited in which case we'll lock up in
2535 waitpid if there are other threads, even if they are all zombies too.
2536 Basically, we're not supposed to use waitpid this way.
2537 __WCLONE is not applicable for the leader so we can't use that.
2538 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2539 process; it gets ESRCH both for the zombie and for running processes.
2540
2541 As a workaround, check if we're waiting for the thread group leader and
2542 if it's a zombie, and avoid calling waitpid if it is.
2543
2544 This is racy, what if the tgl becomes a zombie right after we check?
2545 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2546 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2547
2548 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2549 && linux_proc_pid_is_zombie (GET_LWP (lp->ptid)))
2550 {
2551 thread_dead = 1;
2552 if (debug_linux_nat)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "WL: Thread group leader %s vanished.\n",
2555 target_pid_to_str (lp->ptid));
2556 break;
2557 }
2558
2559 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2560 get invoked despite our caller had them intentionally blocked by
2561 block_child_signals. This is sensitive only to the loop of
2562 linux_nat_wait_1 and there if we get called my_waitpid gets called
2563 again before it gets to sigsuspend so we can safely let the handlers
2564 get executed here. */
2565
2566 sigsuspend (&suspend_mask);
2567 }
2568
2569 restore_child_signals_mask (&prev_mask);
2570
2571 if (!thread_dead)
2572 {
2573 gdb_assert (pid == GET_LWP (lp->ptid));
2574
2575 if (debug_linux_nat)
2576 {
2577 fprintf_unfiltered (gdb_stdlog,
2578 "WL: waitpid %s received %s\n",
2579 target_pid_to_str (lp->ptid),
2580 status_to_str (status));
2581 }
2582
2583 /* Check if the thread has exited. */
2584 if (WIFEXITED (status) || WIFSIGNALED (status))
2585 {
2586 thread_dead = 1;
2587 if (debug_linux_nat)
2588 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2589 target_pid_to_str (lp->ptid));
2590 }
2591 }
2592
2593 if (thread_dead)
2594 {
2595 exit_lwp (lp);
2596 return 0;
2597 }
2598
2599 gdb_assert (WIFSTOPPED (status));
2600
2601 /* Handle GNU/Linux's syscall SIGTRAPs. */
2602 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2603 {
2604 /* No longer need the sysgood bit. The ptrace event ends up
2605 recorded in lp->waitstatus if we care for it. We can carry
2606 on handling the event like a regular SIGTRAP from here
2607 on. */
2608 status = W_STOPCODE (SIGTRAP);
2609 if (linux_handle_syscall_trap (lp, 1))
2610 return wait_lwp (lp);
2611 }
2612
2613 /* Handle GNU/Linux's extended waitstatus for trace events. */
2614 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2615 {
2616 if (debug_linux_nat)
2617 fprintf_unfiltered (gdb_stdlog,
2618 "WL: Handling extended status 0x%06x\n",
2619 status);
2620 if (linux_handle_extended_wait (lp, status, 1))
2621 return wait_lwp (lp);
2622 }
2623
2624 return status;
2625 }
2626
2627 /* Save the most recent siginfo for LP. This is currently only called
2628 for SIGTRAP; some ports use the si_addr field for
2629 target_stopped_data_address. In the future, it may also be used to
2630 restore the siginfo of requeued signals. */
2631
2632 static void
2633 save_siginfo (struct lwp_info *lp)
2634 {
2635 errno = 0;
2636 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2637 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2638
2639 if (errno != 0)
2640 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2641 }
2642
2643 /* Send a SIGSTOP to LP. */
2644
2645 static int
2646 stop_callback (struct lwp_info *lp, void *data)
2647 {
2648 if (!lp->stopped && !lp->signalled)
2649 {
2650 int ret;
2651
2652 if (debug_linux_nat)
2653 {
2654 fprintf_unfiltered (gdb_stdlog,
2655 "SC: kill %s **<SIGSTOP>**\n",
2656 target_pid_to_str (lp->ptid));
2657 }
2658 errno = 0;
2659 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2660 if (debug_linux_nat)
2661 {
2662 fprintf_unfiltered (gdb_stdlog,
2663 "SC: lwp kill %d %s\n",
2664 ret,
2665 errno ? safe_strerror (errno) : "ERRNO-OK");
2666 }
2667
2668 lp->signalled = 1;
2669 gdb_assert (lp->status == 0);
2670 }
2671
2672 return 0;
2673 }
2674
2675 /* Request a stop on LWP. */
2676
2677 void
2678 linux_stop_lwp (struct lwp_info *lwp)
2679 {
2680 stop_callback (lwp, NULL);
2681 }
2682
2683 /* Return non-zero if LWP PID has a pending SIGINT. */
2684
2685 static int
2686 linux_nat_has_pending_sigint (int pid)
2687 {
2688 sigset_t pending, blocked, ignored;
2689
2690 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2691
2692 if (sigismember (&pending, SIGINT)
2693 && !sigismember (&ignored, SIGINT))
2694 return 1;
2695
2696 return 0;
2697 }
2698
2699 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2700
2701 static int
2702 set_ignore_sigint (struct lwp_info *lp, void *data)
2703 {
2704 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2705 flag to consume the next one. */
2706 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2707 && WSTOPSIG (lp->status) == SIGINT)
2708 lp->status = 0;
2709 else
2710 lp->ignore_sigint = 1;
2711
2712 return 0;
2713 }
2714
2715 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2716 This function is called after we know the LWP has stopped; if the LWP
2717 stopped before the expected SIGINT was delivered, then it will never have
2718 arrived. Also, if the signal was delivered to a shared queue and consumed
2719 by a different thread, it will never be delivered to this LWP. */
2720
2721 static void
2722 maybe_clear_ignore_sigint (struct lwp_info *lp)
2723 {
2724 if (!lp->ignore_sigint)
2725 return;
2726
2727 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2728 {
2729 if (debug_linux_nat)
2730 fprintf_unfiltered (gdb_stdlog,
2731 "MCIS: Clearing bogus flag for %s\n",
2732 target_pid_to_str (lp->ptid));
2733 lp->ignore_sigint = 0;
2734 }
2735 }
2736
2737 /* Fetch the possible triggered data watchpoint info and store it in
2738 LP.
2739
2740 On some archs, like x86, that use debug registers to set
2741 watchpoints, it's possible that the way to know which watched
2742 address trapped, is to check the register that is used to select
2743 which address to watch. Problem is, between setting the watchpoint
2744 and reading back which data address trapped, the user may change
2745 the set of watchpoints, and, as a consequence, GDB changes the
2746 debug registers in the inferior. To avoid reading back a stale
2747 stopped-data-address when that happens, we cache in LP the fact
2748 that a watchpoint trapped, and the corresponding data address, as
2749 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2750 registers meanwhile, we have the cached data we can rely on. */
2751
2752 static void
2753 save_sigtrap (struct lwp_info *lp)
2754 {
2755 struct cleanup *old_chain;
2756
2757 if (linux_ops->to_stopped_by_watchpoint == NULL)
2758 {
2759 lp->stopped_by_watchpoint = 0;
2760 return;
2761 }
2762
2763 old_chain = save_inferior_ptid ();
2764 inferior_ptid = lp->ptid;
2765
2766 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2767
2768 if (lp->stopped_by_watchpoint)
2769 {
2770 if (linux_ops->to_stopped_data_address != NULL)
2771 lp->stopped_data_address_p =
2772 linux_ops->to_stopped_data_address (&current_target,
2773 &lp->stopped_data_address);
2774 else
2775 lp->stopped_data_address_p = 0;
2776 }
2777
2778 do_cleanups (old_chain);
2779 }
2780
2781 /* See save_sigtrap. */
2782
2783 static int
2784 linux_nat_stopped_by_watchpoint (void)
2785 {
2786 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2787
2788 gdb_assert (lp != NULL);
2789
2790 return lp->stopped_by_watchpoint;
2791 }
2792
2793 static int
2794 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2795 {
2796 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2797
2798 gdb_assert (lp != NULL);
2799
2800 *addr_p = lp->stopped_data_address;
2801
2802 return lp->stopped_data_address_p;
2803 }
2804
2805 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2806
2807 static int
2808 sigtrap_is_event (int status)
2809 {
2810 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2811 }
2812
2813 /* SIGTRAP-like events recognizer. */
2814
2815 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2816
2817 /* Check for SIGTRAP-like events in LP. */
2818
2819 static int
2820 linux_nat_lp_status_is_event (struct lwp_info *lp)
2821 {
2822 /* We check for lp->waitstatus in addition to lp->status, because we can
2823 have pending process exits recorded in lp->status
2824 and W_EXITCODE(0,0) == 0. We should probably have an additional
2825 lp->status_p flag. */
2826
2827 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2828 && linux_nat_status_is_event (lp->status));
2829 }
2830
2831 /* Set alternative SIGTRAP-like events recognizer. If
2832 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2833 applied. */
2834
2835 void
2836 linux_nat_set_status_is_event (struct target_ops *t,
2837 int (*status_is_event) (int status))
2838 {
2839 linux_nat_status_is_event = status_is_event;
2840 }
2841
2842 /* Wait until LP is stopped. */
2843
2844 static int
2845 stop_wait_callback (struct lwp_info *lp, void *data)
2846 {
2847 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2848
2849 /* If this is a vfork parent, bail out, it is not going to report
2850 any SIGSTOP until the vfork is done with. */
2851 if (inf->vfork_child != NULL)
2852 return 0;
2853
2854 if (!lp->stopped)
2855 {
2856 int status;
2857
2858 status = wait_lwp (lp);
2859 if (status == 0)
2860 return 0;
2861
2862 if (lp->ignore_sigint && WIFSTOPPED (status)
2863 && WSTOPSIG (status) == SIGINT)
2864 {
2865 lp->ignore_sigint = 0;
2866
2867 errno = 0;
2868 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2869 if (debug_linux_nat)
2870 fprintf_unfiltered (gdb_stdlog,
2871 "PTRACE_CONT %s, 0, 0 (%s) "
2872 "(discarding SIGINT)\n",
2873 target_pid_to_str (lp->ptid),
2874 errno ? safe_strerror (errno) : "OK");
2875
2876 return stop_wait_callback (lp, NULL);
2877 }
2878
2879 maybe_clear_ignore_sigint (lp);
2880
2881 if (WSTOPSIG (status) != SIGSTOP)
2882 {
2883 if (linux_nat_status_is_event (status))
2884 {
2885 /* If a LWP other than the LWP that we're reporting an
2886 event for has hit a GDB breakpoint (as opposed to
2887 some random trap signal), then just arrange for it to
2888 hit it again later. We don't keep the SIGTRAP status
2889 and don't forward the SIGTRAP signal to the LWP. We
2890 will handle the current event, eventually we will
2891 resume all LWPs, and this one will get its breakpoint
2892 trap again.
2893
2894 If we do not do this, then we run the risk that the
2895 user will delete or disable the breakpoint, but the
2896 thread will have already tripped on it. */
2897
2898 /* Save the trap's siginfo in case we need it later. */
2899 save_siginfo (lp);
2900
2901 save_sigtrap (lp);
2902
2903 /* Now resume this LWP and get the SIGSTOP event. */
2904 errno = 0;
2905 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2906 if (debug_linux_nat)
2907 {
2908 fprintf_unfiltered (gdb_stdlog,
2909 "PTRACE_CONT %s, 0, 0 (%s)\n",
2910 target_pid_to_str (lp->ptid),
2911 errno ? safe_strerror (errno) : "OK");
2912
2913 fprintf_unfiltered (gdb_stdlog,
2914 "SWC: Candidate SIGTRAP event in %s\n",
2915 target_pid_to_str (lp->ptid));
2916 }
2917 /* Hold this event/waitstatus while we check to see if
2918 there are any more (we still want to get that SIGSTOP). */
2919 stop_wait_callback (lp, NULL);
2920
2921 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2922 there's another event, throw it back into the
2923 queue. */
2924 if (lp->status)
2925 {
2926 if (debug_linux_nat)
2927 fprintf_unfiltered (gdb_stdlog,
2928 "SWC: kill %s, %s\n",
2929 target_pid_to_str (lp->ptid),
2930 status_to_str ((int) status));
2931 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2932 }
2933
2934 /* Save the sigtrap event. */
2935 lp->status = status;
2936 return 0;
2937 }
2938 else
2939 {
2940 /* The thread was stopped with a signal other than
2941 SIGSTOP, and didn't accidentally trip a breakpoint. */
2942
2943 if (debug_linux_nat)
2944 {
2945 fprintf_unfiltered (gdb_stdlog,
2946 "SWC: Pending event %s in %s\n",
2947 status_to_str ((int) status),
2948 target_pid_to_str (lp->ptid));
2949 }
2950 /* Now resume this LWP and get the SIGSTOP event. */
2951 errno = 0;
2952 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2953 if (debug_linux_nat)
2954 fprintf_unfiltered (gdb_stdlog,
2955 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2956 target_pid_to_str (lp->ptid),
2957 errno ? safe_strerror (errno) : "OK");
2958
2959 /* Hold this event/waitstatus while we check to see if
2960 there are any more (we still want to get that SIGSTOP). */
2961 stop_wait_callback (lp, NULL);
2962
2963 /* If the lp->status field is still empty, use it to
2964 hold this event. If not, then this event must be
2965 returned to the event queue of the LWP. */
2966 if (lp->status)
2967 {
2968 if (debug_linux_nat)
2969 {
2970 fprintf_unfiltered (gdb_stdlog,
2971 "SWC: kill %s, %s\n",
2972 target_pid_to_str (lp->ptid),
2973 status_to_str ((int) status));
2974 }
2975 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2976 }
2977 else
2978 lp->status = status;
2979 return 0;
2980 }
2981 }
2982 else
2983 {
2984 /* We caught the SIGSTOP that we intended to catch, so
2985 there's no SIGSTOP pending. */
2986 lp->stopped = 1;
2987 lp->signalled = 0;
2988 }
2989 }
2990
2991 return 0;
2992 }
2993
2994 /* Return non-zero if LP has a wait status pending. */
2995
2996 static int
2997 status_callback (struct lwp_info *lp, void *data)
2998 {
2999 /* Only report a pending wait status if we pretend that this has
3000 indeed been resumed. */
3001 if (!lp->resumed)
3002 return 0;
3003
3004 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3005 {
3006 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
3007 or a pending process exit. Note that `W_EXITCODE(0,0) ==
3008 0', so a clean process exit can not be stored pending in
3009 lp->status, it is indistinguishable from
3010 no-pending-status. */
3011 return 1;
3012 }
3013
3014 if (lp->status != 0)
3015 return 1;
3016
3017 return 0;
3018 }
3019
3020 /* Return non-zero if LP isn't stopped. */
3021
3022 static int
3023 running_callback (struct lwp_info *lp, void *data)
3024 {
3025 return (!lp->stopped
3026 || ((lp->status != 0
3027 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3028 && lp->resumed));
3029 }
3030
3031 /* Count the LWP's that have had events. */
3032
3033 static int
3034 count_events_callback (struct lwp_info *lp, void *data)
3035 {
3036 int *count = data;
3037
3038 gdb_assert (count != NULL);
3039
3040 /* Count only resumed LWPs that have a SIGTRAP event pending. */
3041 if (lp->resumed && linux_nat_lp_status_is_event (lp))
3042 (*count)++;
3043
3044 return 0;
3045 }
3046
3047 /* Select the LWP (if any) that is currently being single-stepped. */
3048
3049 static int
3050 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
3051 {
3052 if (lp->last_resume_kind == resume_step
3053 && lp->status != 0)
3054 return 1;
3055 else
3056 return 0;
3057 }
3058
3059 /* Select the Nth LWP that has had a SIGTRAP event. */
3060
3061 static int
3062 select_event_lwp_callback (struct lwp_info *lp, void *data)
3063 {
3064 int *selector = data;
3065
3066 gdb_assert (selector != NULL);
3067
3068 /* Select only resumed LWPs that have a SIGTRAP event pending. */
3069 if (lp->resumed && linux_nat_lp_status_is_event (lp))
3070 if ((*selector)-- == 0)
3071 return 1;
3072
3073 return 0;
3074 }
3075
3076 static int
3077 cancel_breakpoint (struct lwp_info *lp)
3078 {
3079 /* Arrange for a breakpoint to be hit again later. We don't keep
3080 the SIGTRAP status and don't forward the SIGTRAP signal to the
3081 LWP. We will handle the current event, eventually we will resume
3082 this LWP, and this breakpoint will trap again.
3083
3084 If we do not do this, then we run the risk that the user will
3085 delete or disable the breakpoint, but the LWP will have already
3086 tripped on it. */
3087
3088 struct regcache *regcache = get_thread_regcache (lp->ptid);
3089 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3090 CORE_ADDR pc;
3091
3092 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
3093 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3094 {
3095 if (debug_linux_nat)
3096 fprintf_unfiltered (gdb_stdlog,
3097 "CB: Push back breakpoint for %s\n",
3098 target_pid_to_str (lp->ptid));
3099
3100 /* Back up the PC if necessary. */
3101 if (gdbarch_decr_pc_after_break (gdbarch))
3102 regcache_write_pc (regcache, pc);
3103
3104 return 1;
3105 }
3106 return 0;
3107 }
3108
3109 static int
3110 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3111 {
3112 struct lwp_info *event_lp = data;
3113
3114 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3115 if (lp == event_lp)
3116 return 0;
3117
3118 /* If a LWP other than the LWP that we're reporting an event for has
3119 hit a GDB breakpoint (as opposed to some random trap signal),
3120 then just arrange for it to hit it again later. We don't keep
3121 the SIGTRAP status and don't forward the SIGTRAP signal to the
3122 LWP. We will handle the current event, eventually we will resume
3123 all LWPs, and this one will get its breakpoint trap again.
3124
3125 If we do not do this, then we run the risk that the user will
3126 delete or disable the breakpoint, but the LWP will have already
3127 tripped on it. */
3128
3129 if (linux_nat_lp_status_is_event (lp)
3130 && cancel_breakpoint (lp))
3131 /* Throw away the SIGTRAP. */
3132 lp->status = 0;
3133
3134 return 0;
3135 }
3136
3137 /* Select one LWP out of those that have events pending. */
3138
3139 static void
3140 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3141 {
3142 int num_events = 0;
3143 int random_selector;
3144 struct lwp_info *event_lp;
3145
3146 /* Record the wait status for the original LWP. */
3147 (*orig_lp)->status = *status;
3148
3149 /* Give preference to any LWP that is being single-stepped. */
3150 event_lp = iterate_over_lwps (filter,
3151 select_singlestep_lwp_callback, NULL);
3152 if (event_lp != NULL)
3153 {
3154 if (debug_linux_nat)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "SEL: Select single-step %s\n",
3157 target_pid_to_str (event_lp->ptid));
3158 }
3159 else
3160 {
3161 /* No single-stepping LWP. Select one at random, out of those
3162 which have had SIGTRAP events. */
3163
3164 /* First see how many SIGTRAP events we have. */
3165 iterate_over_lwps (filter, count_events_callback, &num_events);
3166
3167 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3168 random_selector = (int)
3169 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3170
3171 if (debug_linux_nat && num_events > 1)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3174 num_events, random_selector);
3175
3176 event_lp = iterate_over_lwps (filter,
3177 select_event_lwp_callback,
3178 &random_selector);
3179 }
3180
3181 if (event_lp != NULL)
3182 {
3183 /* Switch the event LWP. */
3184 *orig_lp = event_lp;
3185 *status = event_lp->status;
3186 }
3187
3188 /* Flush the wait status for the event LWP. */
3189 (*orig_lp)->status = 0;
3190 }
3191
3192 /* Return non-zero if LP has been resumed. */
3193
3194 static int
3195 resumed_callback (struct lwp_info *lp, void *data)
3196 {
3197 return lp->resumed;
3198 }
3199
3200 /* Stop an active thread, verify it still exists, then resume it. If
3201 the thread ends up with a pending status, then it is not resumed,
3202 and *DATA (really a pointer to int), is set. */
3203
3204 static int
3205 stop_and_resume_callback (struct lwp_info *lp, void *data)
3206 {
3207 int *new_pending_p = data;
3208
3209 if (!lp->stopped)
3210 {
3211 ptid_t ptid = lp->ptid;
3212
3213 stop_callback (lp, NULL);
3214 stop_wait_callback (lp, NULL);
3215
3216 /* Resume if the lwp still exists, and the core wanted it
3217 running. */
3218 lp = find_lwp_pid (ptid);
3219 if (lp != NULL)
3220 {
3221 if (lp->last_resume_kind == resume_stop
3222 && lp->status == 0)
3223 {
3224 /* The core wanted the LWP to stop. Even if it stopped
3225 cleanly (with SIGSTOP), leave the event pending. */
3226 if (debug_linux_nat)
3227 fprintf_unfiltered (gdb_stdlog,
3228 "SARC: core wanted LWP %ld stopped "
3229 "(leaving SIGSTOP pending)\n",
3230 GET_LWP (lp->ptid));
3231 lp->status = W_STOPCODE (SIGSTOP);
3232 }
3233
3234 if (lp->status == 0)
3235 {
3236 if (debug_linux_nat)
3237 fprintf_unfiltered (gdb_stdlog,
3238 "SARC: re-resuming LWP %ld\n",
3239 GET_LWP (lp->ptid));
3240 resume_lwp (lp, lp->step);
3241 }
3242 else
3243 {
3244 if (debug_linux_nat)
3245 fprintf_unfiltered (gdb_stdlog,
3246 "SARC: not re-resuming LWP %ld "
3247 "(has pending)\n",
3248 GET_LWP (lp->ptid));
3249 if (new_pending_p)
3250 *new_pending_p = 1;
3251 }
3252 }
3253 }
3254 return 0;
3255 }
3256
3257 /* Check if we should go on and pass this event to common code.
3258 Return the affected lwp if we are, or NULL otherwise. If we stop
3259 all lwps temporarily, we may end up with new pending events in some
3260 other lwp. In that case set *NEW_PENDING_P to true. */
3261
3262 static struct lwp_info *
3263 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
3264 {
3265 struct lwp_info *lp;
3266
3267 *new_pending_p = 0;
3268
3269 lp = find_lwp_pid (pid_to_ptid (lwpid));
3270
3271 /* Check for stop events reported by a process we didn't already
3272 know about - anything not already in our LWP list.
3273
3274 If we're expecting to receive stopped processes after
3275 fork, vfork, and clone events, then we'll just add the
3276 new one to our list and go back to waiting for the event
3277 to be reported - the stopped process might be returned
3278 from waitpid before or after the event is.
3279
3280 But note the case of a non-leader thread exec'ing after the
3281 leader having exited, and gone from our lists. The non-leader
3282 thread changes its tid to the tgid. */
3283
3284 if (WIFSTOPPED (status) && lp == NULL
3285 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
3286 {
3287 /* A multi-thread exec after we had seen the leader exiting. */
3288 if (debug_linux_nat)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "LLW: Re-adding thread group leader LWP %d.\n",
3291 lwpid);
3292
3293 lp = add_lwp (BUILD_LWP (lwpid, lwpid));
3294 lp->stopped = 1;
3295 lp->resumed = 1;
3296 add_thread (lp->ptid);
3297 }
3298
3299 if (WIFSTOPPED (status) && !lp)
3300 {
3301 add_to_pid_list (&stopped_pids, lwpid, status);
3302 return NULL;
3303 }
3304
3305 /* Make sure we don't report an event for the exit of an LWP not in
3306 our list, i.e. not part of the current process. This can happen
3307 if we detach from a program we originally forked and then it
3308 exits. */
3309 if (!WIFSTOPPED (status) && !lp)
3310 return NULL;
3311
3312 /* Handle GNU/Linux's syscall SIGTRAPs. */
3313 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3314 {
3315 /* No longer need the sysgood bit. The ptrace event ends up
3316 recorded in lp->waitstatus if we care for it. We can carry
3317 on handling the event like a regular SIGTRAP from here
3318 on. */
3319 status = W_STOPCODE (SIGTRAP);
3320 if (linux_handle_syscall_trap (lp, 0))
3321 return NULL;
3322 }
3323
3324 /* Handle GNU/Linux's extended waitstatus for trace events. */
3325 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3326 {
3327 if (debug_linux_nat)
3328 fprintf_unfiltered (gdb_stdlog,
3329 "LLW: Handling extended status 0x%06x\n",
3330 status);
3331 if (linux_handle_extended_wait (lp, status, 0))
3332 return NULL;
3333 }
3334
3335 if (linux_nat_status_is_event (status))
3336 {
3337 /* Save the trap's siginfo in case we need it later. */
3338 save_siginfo (lp);
3339
3340 save_sigtrap (lp);
3341 }
3342
3343 /* Check if the thread has exited. */
3344 if ((WIFEXITED (status) || WIFSIGNALED (status))
3345 && num_lwps (GET_PID (lp->ptid)) > 1)
3346 {
3347 /* If this is the main thread, we must stop all threads and verify
3348 if they are still alive. This is because in the nptl thread model
3349 on Linux 2.4, there is no signal issued for exiting LWPs
3350 other than the main thread. We only get the main thread exit
3351 signal once all child threads have already exited. If we
3352 stop all the threads and use the stop_wait_callback to check
3353 if they have exited we can determine whether this signal
3354 should be ignored or whether it means the end of the debugged
3355 application, regardless of which threading model is being
3356 used. */
3357 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3358 {
3359 lp->stopped = 1;
3360 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3361 stop_and_resume_callback, new_pending_p);
3362 }
3363
3364 if (debug_linux_nat)
3365 fprintf_unfiltered (gdb_stdlog,
3366 "LLW: %s exited.\n",
3367 target_pid_to_str (lp->ptid));
3368
3369 if (num_lwps (GET_PID (lp->ptid)) > 1)
3370 {
3371 /* If there is at least one more LWP, then the exit signal
3372 was not the end of the debugged application and should be
3373 ignored. */
3374 exit_lwp (lp);
3375 return NULL;
3376 }
3377 }
3378
3379 /* Check if the current LWP has previously exited. In the nptl
3380 thread model, LWPs other than the main thread do not issue
3381 signals when they exit so we must check whenever the thread has
3382 stopped. A similar check is made in stop_wait_callback(). */
3383 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3384 {
3385 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3386
3387 if (debug_linux_nat)
3388 fprintf_unfiltered (gdb_stdlog,
3389 "LLW: %s exited.\n",
3390 target_pid_to_str (lp->ptid));
3391
3392 exit_lwp (lp);
3393
3394 /* Make sure there is at least one thread running. */
3395 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3396
3397 /* Discard the event. */
3398 return NULL;
3399 }
3400
3401 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3402 an attempt to stop an LWP. */
3403 if (lp->signalled
3404 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3405 {
3406 if (debug_linux_nat)
3407 fprintf_unfiltered (gdb_stdlog,
3408 "LLW: Delayed SIGSTOP caught for %s.\n",
3409 target_pid_to_str (lp->ptid));
3410
3411 lp->signalled = 0;
3412
3413 if (lp->last_resume_kind != resume_stop)
3414 {
3415 /* This is a delayed SIGSTOP. */
3416
3417 registers_changed ();
3418
3419 if (linux_nat_prepare_to_resume != NULL)
3420 linux_nat_prepare_to_resume (lp);
3421 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3422 lp->step, TARGET_SIGNAL_0);
3423 if (debug_linux_nat)
3424 fprintf_unfiltered (gdb_stdlog,
3425 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3426 lp->step ?
3427 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3428 target_pid_to_str (lp->ptid));
3429
3430 lp->stopped = 0;
3431 gdb_assert (lp->resumed);
3432
3433 /* Discard the event. */
3434 return NULL;
3435 }
3436 }
3437
3438 /* Make sure we don't report a SIGINT that we have already displayed
3439 for another thread. */
3440 if (lp->ignore_sigint
3441 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3442 {
3443 if (debug_linux_nat)
3444 fprintf_unfiltered (gdb_stdlog,
3445 "LLW: Delayed SIGINT caught for %s.\n",
3446 target_pid_to_str (lp->ptid));
3447
3448 /* This is a delayed SIGINT. */
3449 lp->ignore_sigint = 0;
3450
3451 registers_changed ();
3452 if (linux_nat_prepare_to_resume != NULL)
3453 linux_nat_prepare_to_resume (lp);
3454 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3455 lp->step, TARGET_SIGNAL_0);
3456 if (debug_linux_nat)
3457 fprintf_unfiltered (gdb_stdlog,
3458 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3459 lp->step ?
3460 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3461 target_pid_to_str (lp->ptid));
3462
3463 lp->stopped = 0;
3464 gdb_assert (lp->resumed);
3465
3466 /* Discard the event. */
3467 return NULL;
3468 }
3469
3470 /* An interesting event. */
3471 gdb_assert (lp);
3472 lp->status = status;
3473 return lp;
3474 }
3475
3476 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3477 their exits until all other threads in the group have exited. */
3478
3479 static void
3480 check_zombie_leaders (void)
3481 {
3482 struct inferior *inf;
3483
3484 ALL_INFERIORS (inf)
3485 {
3486 struct lwp_info *leader_lp;
3487
3488 if (inf->pid == 0)
3489 continue;
3490
3491 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3492 if (leader_lp != NULL
3493 /* Check if there are other threads in the group, as we may
3494 have raced with the inferior simply exiting. */
3495 && num_lwps (inf->pid) > 1
3496 && linux_proc_pid_is_zombie (inf->pid))
3497 {
3498 if (debug_linux_nat)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "CZL: Thread group leader %d zombie "
3501 "(it exited, or another thread execd).\n",
3502 inf->pid);
3503
3504 /* A leader zombie can mean one of two things:
3505
3506 - It exited, and there's an exit status pending
3507 available, or only the leader exited (not the whole
3508 program). In the latter case, we can't waitpid the
3509 leader's exit status until all other threads are gone.
3510
3511 - There are 3 or more threads in the group, and a thread
3512 other than the leader exec'd. On an exec, the Linux
3513 kernel destroys all other threads (except the execing
3514 one) in the thread group, and resets the execing thread's
3515 tid to the tgid. No exit notification is sent for the
3516 execing thread -- from the ptracer's perspective, it
3517 appears as though the execing thread just vanishes.
3518 Until we reap all other threads except the leader and the
3519 execing thread, the leader will be zombie, and the
3520 execing thread will be in `D (disc sleep)'. As soon as
3521 all other threads are reaped, the execing thread changes
3522 it's tid to the tgid, and the previous (zombie) leader
3523 vanishes, giving place to the "new" leader. We could try
3524 distinguishing the exit and exec cases, by waiting once
3525 more, and seeing if something comes out, but it doesn't
3526 sound useful. The previous leader _does_ go away, and
3527 we'll re-add the new one once we see the exec event
3528 (which is just the same as what would happen if the
3529 previous leader did exit voluntarily before some other
3530 thread execs). */
3531
3532 if (debug_linux_nat)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "CZL: Thread group leader %d vanished.\n",
3535 inf->pid);
3536 exit_lwp (leader_lp);
3537 }
3538 }
3539 }
3540
3541 static ptid_t
3542 linux_nat_wait_1 (struct target_ops *ops,
3543 ptid_t ptid, struct target_waitstatus *ourstatus,
3544 int target_options)
3545 {
3546 static sigset_t prev_mask;
3547 enum resume_kind last_resume_kind;
3548 struct lwp_info *lp;
3549 int status;
3550
3551 if (debug_linux_nat)
3552 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3553
3554 /* The first time we get here after starting a new inferior, we may
3555 not have added it to the LWP list yet - this is the earliest
3556 moment at which we know its PID. */
3557 if (ptid_is_pid (inferior_ptid))
3558 {
3559 /* Upgrade the main thread's ptid. */
3560 thread_change_ptid (inferior_ptid,
3561 BUILD_LWP (GET_PID (inferior_ptid),
3562 GET_PID (inferior_ptid)));
3563
3564 lp = add_lwp (inferior_ptid);
3565 lp->resumed = 1;
3566 }
3567
3568 /* Make sure SIGCHLD is blocked. */
3569 block_child_signals (&prev_mask);
3570
3571 retry:
3572 lp = NULL;
3573 status = 0;
3574
3575 /* First check if there is a LWP with a wait status pending. */
3576 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3577 {
3578 /* Any LWP in the PTID group that's been resumed will do. */
3579 lp = iterate_over_lwps (ptid, status_callback, NULL);
3580 if (lp)
3581 {
3582 if (debug_linux_nat && lp->status)
3583 fprintf_unfiltered (gdb_stdlog,
3584 "LLW: Using pending wait status %s for %s.\n",
3585 status_to_str (lp->status),
3586 target_pid_to_str (lp->ptid));
3587 }
3588 }
3589 else if (is_lwp (ptid))
3590 {
3591 if (debug_linux_nat)
3592 fprintf_unfiltered (gdb_stdlog,
3593 "LLW: Waiting for specific LWP %s.\n",
3594 target_pid_to_str (ptid));
3595
3596 /* We have a specific LWP to check. */
3597 lp = find_lwp_pid (ptid);
3598 gdb_assert (lp);
3599
3600 if (debug_linux_nat && lp->status)
3601 fprintf_unfiltered (gdb_stdlog,
3602 "LLW: Using pending wait status %s for %s.\n",
3603 status_to_str (lp->status),
3604 target_pid_to_str (lp->ptid));
3605
3606 /* We check for lp->waitstatus in addition to lp->status,
3607 because we can have pending process exits recorded in
3608 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3609 an additional lp->status_p flag. */
3610 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3611 lp = NULL;
3612 }
3613
3614 if (lp && lp->signalled && lp->last_resume_kind != resume_stop)
3615 {
3616 /* A pending SIGSTOP may interfere with the normal stream of
3617 events. In a typical case where interference is a problem,
3618 we have a SIGSTOP signal pending for LWP A while
3619 single-stepping it, encounter an event in LWP B, and take the
3620 pending SIGSTOP while trying to stop LWP A. After processing
3621 the event in LWP B, LWP A is continued, and we'll never see
3622 the SIGTRAP associated with the last time we were
3623 single-stepping LWP A. */
3624
3625 /* Resume the thread. It should halt immediately returning the
3626 pending SIGSTOP. */
3627 registers_changed ();
3628 if (linux_nat_prepare_to_resume != NULL)
3629 linux_nat_prepare_to_resume (lp);
3630 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3631 lp->step, TARGET_SIGNAL_0);
3632 if (debug_linux_nat)
3633 fprintf_unfiltered (gdb_stdlog,
3634 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3635 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3636 target_pid_to_str (lp->ptid));
3637 lp->stopped = 0;
3638 gdb_assert (lp->resumed);
3639
3640 /* Catch the pending SIGSTOP. */
3641 status = lp->status;
3642 lp->status = 0;
3643
3644 stop_wait_callback (lp, NULL);
3645
3646 /* If the lp->status field isn't empty, we caught another signal
3647 while flushing the SIGSTOP. Return it back to the event
3648 queue of the LWP, as we already have an event to handle. */
3649 if (lp->status)
3650 {
3651 if (debug_linux_nat)
3652 fprintf_unfiltered (gdb_stdlog,
3653 "LLW: kill %s, %s\n",
3654 target_pid_to_str (lp->ptid),
3655 status_to_str (lp->status));
3656 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3657 }
3658
3659 lp->status = status;
3660 }
3661
3662 if (!target_can_async_p ())
3663 {
3664 /* Causes SIGINT to be passed on to the attached process. */
3665 set_sigint_trap ();
3666 }
3667
3668 /* But if we don't find a pending event, we'll have to wait. */
3669
3670 while (lp == NULL)
3671 {
3672 pid_t lwpid;
3673
3674 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3675 quirks:
3676
3677 - If the thread group leader exits while other threads in the
3678 thread group still exist, waitpid(TGID, ...) hangs. That
3679 waitpid won't return an exit status until the other threads
3680 in the group are reapped.
3681
3682 - When a non-leader thread execs, that thread just vanishes
3683 without reporting an exit (so we'd hang if we waited for it
3684 explicitly in that case). The exec event is reported to
3685 the TGID pid. */
3686
3687 errno = 0;
3688 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3689 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3690 lwpid = my_waitpid (-1, &status, WNOHANG);
3691
3692 if (debug_linux_nat)
3693 fprintf_unfiltered (gdb_stdlog,
3694 "LNW: waitpid(-1, ...) returned %d, %s\n",
3695 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3696
3697 if (lwpid > 0)
3698 {
3699 /* If this is true, then we paused LWPs momentarily, and may
3700 now have pending events to handle. */
3701 int new_pending;
3702
3703 if (debug_linux_nat)
3704 {
3705 fprintf_unfiltered (gdb_stdlog,
3706 "LLW: waitpid %ld received %s\n",
3707 (long) lwpid, status_to_str (status));
3708 }
3709
3710 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3711
3712 /* STATUS is now no longer valid, use LP->STATUS instead. */
3713 status = 0;
3714
3715 if (lp && !ptid_match (lp->ptid, ptid))
3716 {
3717 gdb_assert (lp->resumed);
3718
3719 if (debug_linux_nat)
3720 fprintf (stderr,
3721 "LWP %ld got an event %06x, leaving pending.\n",
3722 ptid_get_lwp (lp->ptid), lp->status);
3723
3724 if (WIFSTOPPED (lp->status))
3725 {
3726 if (WSTOPSIG (lp->status) != SIGSTOP)
3727 {
3728 /* Cancel breakpoint hits. The breakpoint may
3729 be removed before we fetch events from this
3730 process to report to the core. It is best
3731 not to assume the moribund breakpoints
3732 heuristic always handles these cases --- it
3733 could be too many events go through to the
3734 core before this one is handled. All-stop
3735 always cancels breakpoint hits in all
3736 threads. */
3737 if (non_stop
3738 && linux_nat_lp_status_is_event (lp)
3739 && cancel_breakpoint (lp))
3740 {
3741 /* Throw away the SIGTRAP. */
3742 lp->status = 0;
3743
3744 if (debug_linux_nat)
3745 fprintf (stderr,
3746 "LLW: LWP %ld hit a breakpoint while"
3747 " waiting for another process;"
3748 " cancelled it\n",
3749 ptid_get_lwp (lp->ptid));
3750 }
3751 lp->stopped = 1;
3752 }
3753 else
3754 {
3755 lp->stopped = 1;
3756 lp->signalled = 0;
3757 }
3758 }
3759 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3760 {
3761 if (debug_linux_nat)
3762 fprintf (stderr,
3763 "Process %ld exited while stopping LWPs\n",
3764 ptid_get_lwp (lp->ptid));
3765
3766 /* This was the last lwp in the process. Since
3767 events are serialized to GDB core, and we can't
3768 report this one right now, but GDB core and the
3769 other target layers will want to be notified
3770 about the exit code/signal, leave the status
3771 pending for the next time we're able to report
3772 it. */
3773
3774 /* Prevent trying to stop this thread again. We'll
3775 never try to resume it because it has a pending
3776 status. */
3777 lp->stopped = 1;
3778
3779 /* Dead LWP's aren't expected to reported a pending
3780 sigstop. */
3781 lp->signalled = 0;
3782
3783 /* Store the pending event in the waitstatus as
3784 well, because W_EXITCODE(0,0) == 0. */
3785 store_waitstatus (&lp->waitstatus, lp->status);
3786 }
3787
3788 /* Keep looking. */
3789 lp = NULL;
3790 }
3791
3792 if (new_pending)
3793 {
3794 /* Some LWP now has a pending event. Go all the way
3795 back to check it. */
3796 goto retry;
3797 }
3798
3799 if (lp)
3800 {
3801 /* We got an event to report to the core. */
3802 break;
3803 }
3804
3805 /* Retry until nothing comes out of waitpid. A single
3806 SIGCHLD can indicate more than one child stopped. */
3807 continue;
3808 }
3809
3810 /* Check for zombie thread group leaders. Those can't be reaped
3811 until all other threads in the thread group are. */
3812 check_zombie_leaders ();
3813
3814 /* If there are no resumed children left, bail. We'd be stuck
3815 forever in the sigsuspend call below otherwise. */
3816 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3817 {
3818 if (debug_linux_nat)
3819 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3820
3821 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3822
3823 if (!target_can_async_p ())
3824 clear_sigint_trap ();
3825
3826 restore_child_signals_mask (&prev_mask);
3827 return minus_one_ptid;
3828 }
3829
3830 /* No interesting event to report to the core. */
3831
3832 if (target_options & TARGET_WNOHANG)
3833 {
3834 if (debug_linux_nat)
3835 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3836
3837 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3838 restore_child_signals_mask (&prev_mask);
3839 return minus_one_ptid;
3840 }
3841
3842 /* We shouldn't end up here unless we want to try again. */
3843 gdb_assert (lp == NULL);
3844
3845 /* Block until we get an event reported with SIGCHLD. */
3846 sigsuspend (&suspend_mask);
3847 }
3848
3849 if (!target_can_async_p ())
3850 clear_sigint_trap ();
3851
3852 gdb_assert (lp);
3853
3854 status = lp->status;
3855 lp->status = 0;
3856
3857 /* Don't report signals that GDB isn't interested in, such as
3858 signals that are neither printed nor stopped upon. Stopping all
3859 threads can be a bit time-consuming so if we want decent
3860 performance with heavily multi-threaded programs, especially when
3861 they're using a high frequency timer, we'd better avoid it if we
3862 can. */
3863
3864 if (WIFSTOPPED (status))
3865 {
3866 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3867
3868 /* When using hardware single-step, we need to report every signal.
3869 Otherwise, signals in pass_mask may be short-circuited. */
3870 if (!lp->step
3871 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3872 {
3873 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3874 here? It is not clear we should. GDB may not expect
3875 other threads to run. On the other hand, not resuming
3876 newly attached threads may cause an unwanted delay in
3877 getting them running. */
3878 registers_changed ();
3879 if (linux_nat_prepare_to_resume != NULL)
3880 linux_nat_prepare_to_resume (lp);
3881 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3882 lp->step, signo);
3883 if (debug_linux_nat)
3884 fprintf_unfiltered (gdb_stdlog,
3885 "LLW: %s %s, %s (preempt 'handle')\n",
3886 lp->step ?
3887 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3888 target_pid_to_str (lp->ptid),
3889 (signo != TARGET_SIGNAL_0
3890 ? strsignal (target_signal_to_host (signo))
3891 : "0"));
3892 lp->stopped = 0;
3893 goto retry;
3894 }
3895
3896 if (!non_stop)
3897 {
3898 /* Only do the below in all-stop, as we currently use SIGINT
3899 to implement target_stop (see linux_nat_stop) in
3900 non-stop. */
3901 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3902 {
3903 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3904 forwarded to the entire process group, that is, all LWPs
3905 will receive it - unless they're using CLONE_THREAD to
3906 share signals. Since we only want to report it once, we
3907 mark it as ignored for all LWPs except this one. */
3908 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3909 set_ignore_sigint, NULL);
3910 lp->ignore_sigint = 0;
3911 }
3912 else
3913 maybe_clear_ignore_sigint (lp);
3914 }
3915 }
3916
3917 /* This LWP is stopped now. */
3918 lp->stopped = 1;
3919
3920 if (debug_linux_nat)
3921 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3922 status_to_str (status), target_pid_to_str (lp->ptid));
3923
3924 if (!non_stop)
3925 {
3926 /* Now stop all other LWP's ... */
3927 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3928
3929 /* ... and wait until all of them have reported back that
3930 they're no longer running. */
3931 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3932
3933 /* If we're not waiting for a specific LWP, choose an event LWP
3934 from among those that have had events. Giving equal priority
3935 to all LWPs that have had events helps prevent
3936 starvation. */
3937 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3938 select_event_lwp (ptid, &lp, &status);
3939
3940 /* Now that we've selected our final event LWP, cancel any
3941 breakpoints in other LWPs that have hit a GDB breakpoint.
3942 See the comment in cancel_breakpoints_callback to find out
3943 why. */
3944 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3945
3946 /* We'll need this to determine whether to report a SIGSTOP as
3947 TARGET_WAITKIND_0. Need to take a copy because
3948 resume_clear_callback clears it. */
3949 last_resume_kind = lp->last_resume_kind;
3950
3951 /* In all-stop, from the core's perspective, all LWPs are now
3952 stopped until a new resume action is sent over. */
3953 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3954 }
3955 else
3956 {
3957 /* See above. */
3958 last_resume_kind = lp->last_resume_kind;
3959 resume_clear_callback (lp, NULL);
3960 }
3961
3962 if (linux_nat_status_is_event (status))
3963 {
3964 if (debug_linux_nat)
3965 fprintf_unfiltered (gdb_stdlog,
3966 "LLW: trap ptid is %s.\n",
3967 target_pid_to_str (lp->ptid));
3968 }
3969
3970 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3971 {
3972 *ourstatus = lp->waitstatus;
3973 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3974 }
3975 else
3976 store_waitstatus (ourstatus, status);
3977
3978 if (debug_linux_nat)
3979 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3980
3981 restore_child_signals_mask (&prev_mask);
3982
3983 if (last_resume_kind == resume_stop
3984 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3985 && WSTOPSIG (status) == SIGSTOP)
3986 {
3987 /* A thread that has been requested to stop by GDB with
3988 target_stop, and it stopped cleanly, so report as SIG0. The
3989 use of SIGSTOP is an implementation detail. */
3990 ourstatus->value.sig = TARGET_SIGNAL_0;
3991 }
3992
3993 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3994 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3995 lp->core = -1;
3996 else
3997 lp->core = linux_common_core_of_thread (lp->ptid);
3998
3999 return lp->ptid;
4000 }
4001
4002 /* Resume LWPs that are currently stopped without any pending status
4003 to report, but are resumed from the core's perspective. */
4004
4005 static int
4006 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
4007 {
4008 ptid_t *wait_ptid_p = data;
4009
4010 if (lp->stopped
4011 && lp->resumed
4012 && lp->status == 0
4013 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
4014 {
4015 struct regcache *regcache = get_thread_regcache (lp->ptid);
4016 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4017 CORE_ADDR pc = regcache_read_pc (regcache);
4018
4019 gdb_assert (is_executing (lp->ptid));
4020
4021 /* Don't bother if there's a breakpoint at PC that we'd hit
4022 immediately, and we're not waiting for this LWP. */
4023 if (!ptid_match (lp->ptid, *wait_ptid_p))
4024 {
4025 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
4026 return 0;
4027 }
4028
4029 if (debug_linux_nat)
4030 fprintf_unfiltered (gdb_stdlog,
4031 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
4032 target_pid_to_str (lp->ptid),
4033 paddress (gdbarch, pc),
4034 lp->step);
4035
4036 registers_changed ();
4037 if (linux_nat_prepare_to_resume != NULL)
4038 linux_nat_prepare_to_resume (lp);
4039 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
4040 lp->step, TARGET_SIGNAL_0);
4041 lp->stopped = 0;
4042 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
4043 lp->stopped_by_watchpoint = 0;
4044 }
4045
4046 return 0;
4047 }
4048
4049 static ptid_t
4050 linux_nat_wait (struct target_ops *ops,
4051 ptid_t ptid, struct target_waitstatus *ourstatus,
4052 int target_options)
4053 {
4054 ptid_t event_ptid;
4055
4056 if (debug_linux_nat)
4057 fprintf_unfiltered (gdb_stdlog,
4058 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
4059
4060 /* Flush the async file first. */
4061 if (target_can_async_p ())
4062 async_file_flush ();
4063
4064 /* Resume LWPs that are currently stopped without any pending status
4065 to report, but are resumed from the core's perspective. LWPs get
4066 in this state if we find them stopping at a time we're not
4067 interested in reporting the event (target_wait on a
4068 specific_process, for example, see linux_nat_wait_1), and
4069 meanwhile the event became uninteresting. Don't bother resuming
4070 LWPs we're not going to wait for if they'd stop immediately. */
4071 if (non_stop)
4072 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
4073
4074 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
4075
4076 /* If we requested any event, and something came out, assume there
4077 may be more. If we requested a specific lwp or process, also
4078 assume there may be more. */
4079 if (target_can_async_p ()
4080 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
4081 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
4082 || !ptid_equal (ptid, minus_one_ptid)))
4083 async_file_mark ();
4084
4085 /* Get ready for the next event. */
4086 if (target_can_async_p ())
4087 target_async (inferior_event_handler, 0);
4088
4089 return event_ptid;
4090 }
4091
4092 static int
4093 kill_callback (struct lwp_info *lp, void *data)
4094 {
4095 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
4096
4097 errno = 0;
4098 kill (GET_LWP (lp->ptid), SIGKILL);
4099 if (debug_linux_nat)
4100 fprintf_unfiltered (gdb_stdlog,
4101 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
4102 target_pid_to_str (lp->ptid),
4103 errno ? safe_strerror (errno) : "OK");
4104
4105 /* Some kernels ignore even SIGKILL for processes under ptrace. */
4106
4107 errno = 0;
4108 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
4109 if (debug_linux_nat)
4110 fprintf_unfiltered (gdb_stdlog,
4111 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
4112 target_pid_to_str (lp->ptid),
4113 errno ? safe_strerror (errno) : "OK");
4114
4115 return 0;
4116 }
4117
4118 static int
4119 kill_wait_callback (struct lwp_info *lp, void *data)
4120 {
4121 pid_t pid;
4122
4123 /* We must make sure that there are no pending events (delayed
4124 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
4125 program doesn't interfere with any following debugging session. */
4126
4127 /* For cloned processes we must check both with __WCLONE and
4128 without, since the exit status of a cloned process isn't reported
4129 with __WCLONE. */
4130 if (lp->cloned)
4131 {
4132 do
4133 {
4134 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
4135 if (pid != (pid_t) -1)
4136 {
4137 if (debug_linux_nat)
4138 fprintf_unfiltered (gdb_stdlog,
4139 "KWC: wait %s received unknown.\n",
4140 target_pid_to_str (lp->ptid));
4141 /* The Linux kernel sometimes fails to kill a thread
4142 completely after PTRACE_KILL; that goes from the stop
4143 point in do_fork out to the one in
4144 get_signal_to_deliever and waits again. So kill it
4145 again. */
4146 kill_callback (lp, NULL);
4147 }
4148 }
4149 while (pid == GET_LWP (lp->ptid));
4150
4151 gdb_assert (pid == -1 && errno == ECHILD);
4152 }
4153
4154 do
4155 {
4156 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
4157 if (pid != (pid_t) -1)
4158 {
4159 if (debug_linux_nat)
4160 fprintf_unfiltered (gdb_stdlog,
4161 "KWC: wait %s received unk.\n",
4162 target_pid_to_str (lp->ptid));
4163 /* See the call to kill_callback above. */
4164 kill_callback (lp, NULL);
4165 }
4166 }
4167 while (pid == GET_LWP (lp->ptid));
4168
4169 gdb_assert (pid == -1 && errno == ECHILD);
4170 return 0;
4171 }
4172
4173 static void
4174 linux_nat_kill (struct target_ops *ops)
4175 {
4176 struct target_waitstatus last;
4177 ptid_t last_ptid;
4178 int status;
4179
4180 /* If we're stopped while forking and we haven't followed yet,
4181 kill the other task. We need to do this first because the
4182 parent will be sleeping if this is a vfork. */
4183
4184 get_last_target_status (&last_ptid, &last);
4185
4186 if (last.kind == TARGET_WAITKIND_FORKED
4187 || last.kind == TARGET_WAITKIND_VFORKED)
4188 {
4189 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4190 wait (&status);
4191 }
4192
4193 if (forks_exist_p ())
4194 linux_fork_killall ();
4195 else
4196 {
4197 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4198
4199 /* Stop all threads before killing them, since ptrace requires
4200 that the thread is stopped to sucessfully PTRACE_KILL. */
4201 iterate_over_lwps (ptid, stop_callback, NULL);
4202 /* ... and wait until all of them have reported back that
4203 they're no longer running. */
4204 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4205
4206 /* Kill all LWP's ... */
4207 iterate_over_lwps (ptid, kill_callback, NULL);
4208
4209 /* ... and wait until we've flushed all events. */
4210 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4211 }
4212
4213 target_mourn_inferior ();
4214 }
4215
4216 static void
4217 linux_nat_mourn_inferior (struct target_ops *ops)
4218 {
4219 purge_lwp_list (ptid_get_pid (inferior_ptid));
4220
4221 if (! forks_exist_p ())
4222 /* Normal case, no other forks available. */
4223 linux_ops->to_mourn_inferior (ops);
4224 else
4225 /* Multi-fork case. The current inferior_ptid has exited, but
4226 there are other viable forks to debug. Delete the exiting
4227 one and context-switch to the first available. */
4228 linux_fork_mourn_inferior ();
4229 }
4230
4231 /* Convert a native/host siginfo object, into/from the siginfo in the
4232 layout of the inferiors' architecture. */
4233
4234 static void
4235 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
4236 {
4237 int done = 0;
4238
4239 if (linux_nat_siginfo_fixup != NULL)
4240 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4241
4242 /* If there was no callback, or the callback didn't do anything,
4243 then just do a straight memcpy. */
4244 if (!done)
4245 {
4246 if (direction == 1)
4247 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
4248 else
4249 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
4250 }
4251 }
4252
4253 static LONGEST
4254 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4255 const char *annex, gdb_byte *readbuf,
4256 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4257 {
4258 int pid;
4259 siginfo_t siginfo;
4260 gdb_byte inf_siginfo[sizeof (siginfo_t)];
4261
4262 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4263 gdb_assert (readbuf || writebuf);
4264
4265 pid = GET_LWP (inferior_ptid);
4266 if (pid == 0)
4267 pid = GET_PID (inferior_ptid);
4268
4269 if (offset > sizeof (siginfo))
4270 return -1;
4271
4272 errno = 0;
4273 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4274 if (errno != 0)
4275 return -1;
4276
4277 /* When GDB is built as a 64-bit application, ptrace writes into
4278 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4279 inferior with a 64-bit GDB should look the same as debugging it
4280 with a 32-bit GDB, we need to convert it. GDB core always sees
4281 the converted layout, so any read/write will have to be done
4282 post-conversion. */
4283 siginfo_fixup (&siginfo, inf_siginfo, 0);
4284
4285 if (offset + len > sizeof (siginfo))
4286 len = sizeof (siginfo) - offset;
4287
4288 if (readbuf != NULL)
4289 memcpy (readbuf, inf_siginfo + offset, len);
4290 else
4291 {
4292 memcpy (inf_siginfo + offset, writebuf, len);
4293
4294 /* Convert back to ptrace layout before flushing it out. */
4295 siginfo_fixup (&siginfo, inf_siginfo, 1);
4296
4297 errno = 0;
4298 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4299 if (errno != 0)
4300 return -1;
4301 }
4302
4303 return len;
4304 }
4305
4306 static LONGEST
4307 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4308 const char *annex, gdb_byte *readbuf,
4309 const gdb_byte *writebuf,
4310 ULONGEST offset, LONGEST len)
4311 {
4312 struct cleanup *old_chain;
4313 LONGEST xfer;
4314
4315 if (object == TARGET_OBJECT_SIGNAL_INFO)
4316 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4317 offset, len);
4318
4319 /* The target is connected but no live inferior is selected. Pass
4320 this request down to a lower stratum (e.g., the executable
4321 file). */
4322 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4323 return 0;
4324
4325 old_chain = save_inferior_ptid ();
4326
4327 if (is_lwp (inferior_ptid))
4328 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4329
4330 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4331 offset, len);
4332
4333 do_cleanups (old_chain);
4334 return xfer;
4335 }
4336
4337 static int
4338 linux_thread_alive (ptid_t ptid)
4339 {
4340 int err, tmp_errno;
4341
4342 gdb_assert (is_lwp (ptid));
4343
4344 /* Send signal 0 instead of anything ptrace, because ptracing a
4345 running thread errors out claiming that the thread doesn't
4346 exist. */
4347 err = kill_lwp (GET_LWP (ptid), 0);
4348 tmp_errno = errno;
4349 if (debug_linux_nat)
4350 fprintf_unfiltered (gdb_stdlog,
4351 "LLTA: KILL(SIG0) %s (%s)\n",
4352 target_pid_to_str (ptid),
4353 err ? safe_strerror (tmp_errno) : "OK");
4354
4355 if (err != 0)
4356 return 0;
4357
4358 return 1;
4359 }
4360
4361 static int
4362 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4363 {
4364 return linux_thread_alive (ptid);
4365 }
4366
4367 static char *
4368 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4369 {
4370 static char buf[64];
4371
4372 if (is_lwp (ptid)
4373 && (GET_PID (ptid) != GET_LWP (ptid)
4374 || num_lwps (GET_PID (ptid)) > 1))
4375 {
4376 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4377 return buf;
4378 }
4379
4380 return normal_pid_to_str (ptid);
4381 }
4382
4383 static char *
4384 linux_nat_thread_name (struct thread_info *thr)
4385 {
4386 int pid = ptid_get_pid (thr->ptid);
4387 long lwp = ptid_get_lwp (thr->ptid);
4388 #define FORMAT "/proc/%d/task/%ld/comm"
4389 char buf[sizeof (FORMAT) + 30];
4390 FILE *comm_file;
4391 char *result = NULL;
4392
4393 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4394 comm_file = fopen (buf, "r");
4395 if (comm_file)
4396 {
4397 /* Not exported by the kernel, so we define it here. */
4398 #define COMM_LEN 16
4399 static char line[COMM_LEN + 1];
4400
4401 if (fgets (line, sizeof (line), comm_file))
4402 {
4403 char *nl = strchr (line, '\n');
4404
4405 if (nl)
4406 *nl = '\0';
4407 if (*line != '\0')
4408 result = line;
4409 }
4410
4411 fclose (comm_file);
4412 }
4413
4414 #undef COMM_LEN
4415 #undef FORMAT
4416
4417 return result;
4418 }
4419
4420 /* Accepts an integer PID; Returns a string representing a file that
4421 can be opened to get the symbols for the child process. */
4422
4423 static char *
4424 linux_child_pid_to_exec_file (int pid)
4425 {
4426 char *name1, *name2;
4427
4428 name1 = xmalloc (MAXPATHLEN);
4429 name2 = xmalloc (MAXPATHLEN);
4430 make_cleanup (xfree, name1);
4431 make_cleanup (xfree, name2);
4432 memset (name2, 0, MAXPATHLEN);
4433
4434 sprintf (name1, "/proc/%d/exe", pid);
4435 if (readlink (name1, name2, MAXPATHLEN) > 0)
4436 return name2;
4437 else
4438 return name1;
4439 }
4440
4441 /* Records the thread's register state for the corefile note
4442 section. */
4443
4444 static char *
4445 linux_nat_collect_thread_registers (const struct regcache *regcache,
4446 ptid_t ptid, bfd *obfd,
4447 char *note_data, int *note_size,
4448 enum target_signal stop_signal)
4449 {
4450 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4451 const struct regset *regset;
4452 int core_regset_p;
4453 gdb_gregset_t gregs;
4454 gdb_fpregset_t fpregs;
4455
4456 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4457
4458 if (core_regset_p
4459 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4460 sizeof (gregs)))
4461 != NULL && regset->collect_regset != NULL)
4462 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4463 else
4464 fill_gregset (regcache, &gregs, -1);
4465
4466 note_data = (char *) elfcore_write_prstatus
4467 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4468 target_signal_to_host (stop_signal), &gregs);
4469
4470 if (core_regset_p
4471 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4472 sizeof (fpregs)))
4473 != NULL && regset->collect_regset != NULL)
4474 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4475 else
4476 fill_fpregset (regcache, &fpregs, -1);
4477
4478 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4479 &fpregs, sizeof (fpregs));
4480
4481 return note_data;
4482 }
4483
4484 /* Fills the "to_make_corefile_note" target vector. Builds the note
4485 section for a corefile, and returns it in a malloc buffer. */
4486
4487 static char *
4488 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4489 {
4490 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4491 converted to gdbarch_core_regset_sections, this function can go away. */
4492 return linux_make_corefile_notes (target_gdbarch, obfd, note_size,
4493 linux_nat_collect_thread_registers);
4494 }
4495
4496 /* Implement the to_xfer_partial interface for memory reads using the /proc
4497 filesystem. Because we can use a single read() call for /proc, this
4498 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4499 but it doesn't support writes. */
4500
4501 static LONGEST
4502 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4503 const char *annex, gdb_byte *readbuf,
4504 const gdb_byte *writebuf,
4505 ULONGEST offset, LONGEST len)
4506 {
4507 LONGEST ret;
4508 int fd;
4509 char filename[64];
4510
4511 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4512 return 0;
4513
4514 /* Don't bother for one word. */
4515 if (len < 3 * sizeof (long))
4516 return 0;
4517
4518 /* We could keep this file open and cache it - possibly one per
4519 thread. That requires some juggling, but is even faster. */
4520 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4521 fd = open (filename, O_RDONLY | O_LARGEFILE);
4522 if (fd == -1)
4523 return 0;
4524
4525 /* If pread64 is available, use it. It's faster if the kernel
4526 supports it (only one syscall), and it's 64-bit safe even on
4527 32-bit platforms (for instance, SPARC debugging a SPARC64
4528 application). */
4529 #ifdef HAVE_PREAD64
4530 if (pread64 (fd, readbuf, len, offset) != len)
4531 #else
4532 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4533 #endif
4534 ret = 0;
4535 else
4536 ret = len;
4537
4538 close (fd);
4539 return ret;
4540 }
4541
4542
4543 /* Enumerate spufs IDs for process PID. */
4544 static LONGEST
4545 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4546 {
4547 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4548 LONGEST pos = 0;
4549 LONGEST written = 0;
4550 char path[128];
4551 DIR *dir;
4552 struct dirent *entry;
4553
4554 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4555 dir = opendir (path);
4556 if (!dir)
4557 return -1;
4558
4559 rewinddir (dir);
4560 while ((entry = readdir (dir)) != NULL)
4561 {
4562 struct stat st;
4563 struct statfs stfs;
4564 int fd;
4565
4566 fd = atoi (entry->d_name);
4567 if (!fd)
4568 continue;
4569
4570 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4571 if (stat (path, &st) != 0)
4572 continue;
4573 if (!S_ISDIR (st.st_mode))
4574 continue;
4575
4576 if (statfs (path, &stfs) != 0)
4577 continue;
4578 if (stfs.f_type != SPUFS_MAGIC)
4579 continue;
4580
4581 if (pos >= offset && pos + 4 <= offset + len)
4582 {
4583 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4584 written += 4;
4585 }
4586 pos += 4;
4587 }
4588
4589 closedir (dir);
4590 return written;
4591 }
4592
4593 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4594 object type, using the /proc file system. */
4595 static LONGEST
4596 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4597 const char *annex, gdb_byte *readbuf,
4598 const gdb_byte *writebuf,
4599 ULONGEST offset, LONGEST len)
4600 {
4601 char buf[128];
4602 int fd = 0;
4603 int ret = -1;
4604 int pid = PIDGET (inferior_ptid);
4605
4606 if (!annex)
4607 {
4608 if (!readbuf)
4609 return -1;
4610 else
4611 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4612 }
4613
4614 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4615 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4616 if (fd <= 0)
4617 return -1;
4618
4619 if (offset != 0
4620 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4621 {
4622 close (fd);
4623 return 0;
4624 }
4625
4626 if (writebuf)
4627 ret = write (fd, writebuf, (size_t) len);
4628 else if (readbuf)
4629 ret = read (fd, readbuf, (size_t) len);
4630
4631 close (fd);
4632 return ret;
4633 }
4634
4635
4636 /* Parse LINE as a signal set and add its set bits to SIGS. */
4637
4638 static void
4639 add_line_to_sigset (const char *line, sigset_t *sigs)
4640 {
4641 int len = strlen (line) - 1;
4642 const char *p;
4643 int signum;
4644
4645 if (line[len] != '\n')
4646 error (_("Could not parse signal set: %s"), line);
4647
4648 p = line;
4649 signum = len * 4;
4650 while (len-- > 0)
4651 {
4652 int digit;
4653
4654 if (*p >= '0' && *p <= '9')
4655 digit = *p - '0';
4656 else if (*p >= 'a' && *p <= 'f')
4657 digit = *p - 'a' + 10;
4658 else
4659 error (_("Could not parse signal set: %s"), line);
4660
4661 signum -= 4;
4662
4663 if (digit & 1)
4664 sigaddset (sigs, signum + 1);
4665 if (digit & 2)
4666 sigaddset (sigs, signum + 2);
4667 if (digit & 4)
4668 sigaddset (sigs, signum + 3);
4669 if (digit & 8)
4670 sigaddset (sigs, signum + 4);
4671
4672 p++;
4673 }
4674 }
4675
4676 /* Find process PID's pending signals from /proc/pid/status and set
4677 SIGS to match. */
4678
4679 void
4680 linux_proc_pending_signals (int pid, sigset_t *pending,
4681 sigset_t *blocked, sigset_t *ignored)
4682 {
4683 FILE *procfile;
4684 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4685 struct cleanup *cleanup;
4686
4687 sigemptyset (pending);
4688 sigemptyset (blocked);
4689 sigemptyset (ignored);
4690 sprintf (fname, "/proc/%d/status", pid);
4691 procfile = fopen (fname, "r");
4692 if (procfile == NULL)
4693 error (_("Could not open %s"), fname);
4694 cleanup = make_cleanup_fclose (procfile);
4695
4696 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4697 {
4698 /* Normal queued signals are on the SigPnd line in the status
4699 file. However, 2.6 kernels also have a "shared" pending
4700 queue for delivering signals to a thread group, so check for
4701 a ShdPnd line also.
4702
4703 Unfortunately some Red Hat kernels include the shared pending
4704 queue but not the ShdPnd status field. */
4705
4706 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4707 add_line_to_sigset (buffer + 8, pending);
4708 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4709 add_line_to_sigset (buffer + 8, pending);
4710 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4711 add_line_to_sigset (buffer + 8, blocked);
4712 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4713 add_line_to_sigset (buffer + 8, ignored);
4714 }
4715
4716 do_cleanups (cleanup);
4717 }
4718
4719 static LONGEST
4720 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4721 const char *annex, gdb_byte *readbuf,
4722 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4723 {
4724 gdb_assert (object == TARGET_OBJECT_OSDATA);
4725
4726 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4727 }
4728
4729 static LONGEST
4730 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4731 const char *annex, gdb_byte *readbuf,
4732 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4733 {
4734 LONGEST xfer;
4735
4736 if (object == TARGET_OBJECT_AUXV)
4737 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4738 offset, len);
4739
4740 if (object == TARGET_OBJECT_OSDATA)
4741 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4742 offset, len);
4743
4744 if (object == TARGET_OBJECT_SPU)
4745 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4746 offset, len);
4747
4748 /* GDB calculates all the addresses in possibly larget width of the address.
4749 Address width needs to be masked before its final use - either by
4750 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4751
4752 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4753
4754 if (object == TARGET_OBJECT_MEMORY)
4755 {
4756 int addr_bit = gdbarch_addr_bit (target_gdbarch);
4757
4758 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4759 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4760 }
4761
4762 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4763 offset, len);
4764 if (xfer != 0)
4765 return xfer;
4766
4767 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4768 offset, len);
4769 }
4770
4771 static void
4772 cleanup_target_stop (void *arg)
4773 {
4774 ptid_t *ptid = (ptid_t *) arg;
4775
4776 gdb_assert (arg != NULL);
4777
4778 /* Unpause all */
4779 target_resume (*ptid, 0, TARGET_SIGNAL_0);
4780 }
4781
4782 static VEC(static_tracepoint_marker_p) *
4783 linux_child_static_tracepoint_markers_by_strid (const char *strid)
4784 {
4785 char s[IPA_CMD_BUF_SIZE];
4786 struct cleanup *old_chain;
4787 int pid = ptid_get_pid (inferior_ptid);
4788 VEC(static_tracepoint_marker_p) *markers = NULL;
4789 struct static_tracepoint_marker *marker = NULL;
4790 char *p = s;
4791 ptid_t ptid = ptid_build (pid, 0, 0);
4792
4793 /* Pause all */
4794 target_stop (ptid);
4795
4796 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4797 s[sizeof ("qTfSTM")] = 0;
4798
4799 agent_run_command (pid, s, strlen (s) + 1);
4800
4801 old_chain = make_cleanup (free_current_marker, &marker);
4802 make_cleanup (cleanup_target_stop, &ptid);
4803
4804 while (*p++ == 'm')
4805 {
4806 if (marker == NULL)
4807 marker = XCNEW (struct static_tracepoint_marker);
4808
4809 do
4810 {
4811 parse_static_tracepoint_marker_definition (p, &p, marker);
4812
4813 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4814 {
4815 VEC_safe_push (static_tracepoint_marker_p,
4816 markers, marker);
4817 marker = NULL;
4818 }
4819 else
4820 {
4821 release_static_tracepoint_marker (marker);
4822 memset (marker, 0, sizeof (*marker));
4823 }
4824 }
4825 while (*p++ == ','); /* comma-separated list */
4826
4827 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4828 s[sizeof ("qTsSTM")] = 0;
4829 agent_run_command (pid, s, strlen (s) + 1);
4830 p = s;
4831 }
4832
4833 do_cleanups (old_chain);
4834
4835 return markers;
4836 }
4837
4838 /* Create a prototype generic GNU/Linux target. The client can override
4839 it with local methods. */
4840
4841 static void
4842 linux_target_install_ops (struct target_ops *t)
4843 {
4844 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4845 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4846 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4847 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4848 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4849 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4850 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4851 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4852 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4853 t->to_post_attach = linux_child_post_attach;
4854 t->to_follow_fork = linux_child_follow_fork;
4855 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4856
4857 super_xfer_partial = t->to_xfer_partial;
4858 t->to_xfer_partial = linux_xfer_partial;
4859
4860 t->to_static_tracepoint_markers_by_strid
4861 = linux_child_static_tracepoint_markers_by_strid;
4862 }
4863
4864 struct target_ops *
4865 linux_target (void)
4866 {
4867 struct target_ops *t;
4868
4869 t = inf_ptrace_target ();
4870 linux_target_install_ops (t);
4871
4872 return t;
4873 }
4874
4875 struct target_ops *
4876 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4877 {
4878 struct target_ops *t;
4879
4880 t = inf_ptrace_trad_target (register_u_offset);
4881 linux_target_install_ops (t);
4882
4883 return t;
4884 }
4885
4886 /* target_is_async_p implementation. */
4887
4888 static int
4889 linux_nat_is_async_p (void)
4890 {
4891 /* NOTE: palves 2008-03-21: We're only async when the user requests
4892 it explicitly with the "set target-async" command.
4893 Someday, linux will always be async. */
4894 return target_async_permitted;
4895 }
4896
4897 /* target_can_async_p implementation. */
4898
4899 static int
4900 linux_nat_can_async_p (void)
4901 {
4902 /* NOTE: palves 2008-03-21: We're only async when the user requests
4903 it explicitly with the "set target-async" command.
4904 Someday, linux will always be async. */
4905 return target_async_permitted;
4906 }
4907
4908 static int
4909 linux_nat_supports_non_stop (void)
4910 {
4911 return 1;
4912 }
4913
4914 /* True if we want to support multi-process. To be removed when GDB
4915 supports multi-exec. */
4916
4917 int linux_multi_process = 1;
4918
4919 static int
4920 linux_nat_supports_multi_process (void)
4921 {
4922 return linux_multi_process;
4923 }
4924
4925 static int
4926 linux_nat_supports_disable_randomization (void)
4927 {
4928 #ifdef HAVE_PERSONALITY
4929 return 1;
4930 #else
4931 return 0;
4932 #endif
4933 }
4934
4935 static int async_terminal_is_ours = 1;
4936
4937 /* target_terminal_inferior implementation. */
4938
4939 static void
4940 linux_nat_terminal_inferior (void)
4941 {
4942 if (!target_is_async_p ())
4943 {
4944 /* Async mode is disabled. */
4945 terminal_inferior ();
4946 return;
4947 }
4948
4949 terminal_inferior ();
4950
4951 /* Calls to target_terminal_*() are meant to be idempotent. */
4952 if (!async_terminal_is_ours)
4953 return;
4954
4955 delete_file_handler (input_fd);
4956 async_terminal_is_ours = 0;
4957 set_sigint_trap ();
4958 }
4959
4960 /* target_terminal_ours implementation. */
4961
4962 static void
4963 linux_nat_terminal_ours (void)
4964 {
4965 if (!target_is_async_p ())
4966 {
4967 /* Async mode is disabled. */
4968 terminal_ours ();
4969 return;
4970 }
4971
4972 /* GDB should never give the terminal to the inferior if the
4973 inferior is running in the background (run&, continue&, etc.),
4974 but claiming it sure should. */
4975 terminal_ours ();
4976
4977 if (async_terminal_is_ours)
4978 return;
4979
4980 clear_sigint_trap ();
4981 add_file_handler (input_fd, stdin_event_handler, 0);
4982 async_terminal_is_ours = 1;
4983 }
4984
4985 static void (*async_client_callback) (enum inferior_event_type event_type,
4986 void *context);
4987 static void *async_client_context;
4988
4989 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4990 so we notice when any child changes state, and notify the
4991 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4992 above to wait for the arrival of a SIGCHLD. */
4993
4994 static void
4995 sigchld_handler (int signo)
4996 {
4997 int old_errno = errno;
4998
4999 if (debug_linux_nat)
5000 ui_file_write_async_safe (gdb_stdlog,
5001 "sigchld\n", sizeof ("sigchld\n") - 1);
5002
5003 if (signo == SIGCHLD
5004 && linux_nat_event_pipe[0] != -1)
5005 async_file_mark (); /* Let the event loop know that there are
5006 events to handle. */
5007
5008 errno = old_errno;
5009 }
5010
5011 /* Callback registered with the target events file descriptor. */
5012
5013 static void
5014 handle_target_event (int error, gdb_client_data client_data)
5015 {
5016 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5017 }
5018
5019 /* Create/destroy the target events pipe. Returns previous state. */
5020
5021 static int
5022 linux_async_pipe (int enable)
5023 {
5024 int previous = (linux_nat_event_pipe[0] != -1);
5025
5026 if (previous != enable)
5027 {
5028 sigset_t prev_mask;
5029
5030 block_child_signals (&prev_mask);
5031
5032 if (enable)
5033 {
5034 if (pipe (linux_nat_event_pipe) == -1)
5035 internal_error (__FILE__, __LINE__,
5036 "creating event pipe failed.");
5037
5038 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5039 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5040 }
5041 else
5042 {
5043 close (linux_nat_event_pipe[0]);
5044 close (linux_nat_event_pipe[1]);
5045 linux_nat_event_pipe[0] = -1;
5046 linux_nat_event_pipe[1] = -1;
5047 }
5048
5049 restore_child_signals_mask (&prev_mask);
5050 }
5051
5052 return previous;
5053 }
5054
5055 /* target_async implementation. */
5056
5057 static void
5058 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5059 void *context), void *context)
5060 {
5061 if (callback != NULL)
5062 {
5063 async_client_callback = callback;
5064 async_client_context = context;
5065 if (!linux_async_pipe (1))
5066 {
5067 add_file_handler (linux_nat_event_pipe[0],
5068 handle_target_event, NULL);
5069 /* There may be pending events to handle. Tell the event loop
5070 to poll them. */
5071 async_file_mark ();
5072 }
5073 }
5074 else
5075 {
5076 async_client_callback = callback;
5077 async_client_context = context;
5078 delete_file_handler (linux_nat_event_pipe[0]);
5079 linux_async_pipe (0);
5080 }
5081 return;
5082 }
5083
5084 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5085 event came out. */
5086
5087 static int
5088 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5089 {
5090 if (!lwp->stopped)
5091 {
5092 ptid_t ptid = lwp->ptid;
5093
5094 if (debug_linux_nat)
5095 fprintf_unfiltered (gdb_stdlog,
5096 "LNSL: running -> suspending %s\n",
5097 target_pid_to_str (lwp->ptid));
5098
5099
5100 if (lwp->last_resume_kind == resume_stop)
5101 {
5102 if (debug_linux_nat)
5103 fprintf_unfiltered (gdb_stdlog,
5104 "linux-nat: already stopping LWP %ld at "
5105 "GDB's request\n",
5106 ptid_get_lwp (lwp->ptid));
5107 return 0;
5108 }
5109
5110 stop_callback (lwp, NULL);
5111 lwp->last_resume_kind = resume_stop;
5112 }
5113 else
5114 {
5115 /* Already known to be stopped; do nothing. */
5116
5117 if (debug_linux_nat)
5118 {
5119 if (find_thread_ptid (lwp->ptid)->stop_requested)
5120 fprintf_unfiltered (gdb_stdlog,
5121 "LNSL: already stopped/stop_requested %s\n",
5122 target_pid_to_str (lwp->ptid));
5123 else
5124 fprintf_unfiltered (gdb_stdlog,
5125 "LNSL: already stopped/no "
5126 "stop_requested yet %s\n",
5127 target_pid_to_str (lwp->ptid));
5128 }
5129 }
5130 return 0;
5131 }
5132
5133 static void
5134 linux_nat_stop (ptid_t ptid)
5135 {
5136 if (non_stop)
5137 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5138 else
5139 linux_ops->to_stop (ptid);
5140 }
5141
5142 static void
5143 linux_nat_close (int quitting)
5144 {
5145 /* Unregister from the event loop. */
5146 if (linux_nat_is_async_p ())
5147 linux_nat_async (NULL, 0);
5148
5149 if (linux_ops->to_close)
5150 linux_ops->to_close (quitting);
5151 }
5152
5153 /* When requests are passed down from the linux-nat layer to the
5154 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5155 used. The address space pointer is stored in the inferior object,
5156 but the common code that is passed such ptid can't tell whether
5157 lwpid is a "main" process id or not (it assumes so). We reverse
5158 look up the "main" process id from the lwp here. */
5159
5160 static struct address_space *
5161 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5162 {
5163 struct lwp_info *lwp;
5164 struct inferior *inf;
5165 int pid;
5166
5167 pid = GET_LWP (ptid);
5168 if (GET_LWP (ptid) == 0)
5169 {
5170 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5171 tgid. */
5172 lwp = find_lwp_pid (ptid);
5173 pid = GET_PID (lwp->ptid);
5174 }
5175 else
5176 {
5177 /* A (pid,lwpid,0) ptid. */
5178 pid = GET_PID (ptid);
5179 }
5180
5181 inf = find_inferior_pid (pid);
5182 gdb_assert (inf != NULL);
5183 return inf->aspace;
5184 }
5185
5186 /* Return the cached value of the processor core for thread PTID. */
5187
5188 static int
5189 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5190 {
5191 struct lwp_info *info = find_lwp_pid (ptid);
5192
5193 if (info)
5194 return info->core;
5195 return -1;
5196 }
5197
5198 void
5199 linux_nat_add_target (struct target_ops *t)
5200 {
5201 /* Save the provided single-threaded target. We save this in a separate
5202 variable because another target we've inherited from (e.g. inf-ptrace)
5203 may have saved a pointer to T; we want to use it for the final
5204 process stratum target. */
5205 linux_ops_saved = *t;
5206 linux_ops = &linux_ops_saved;
5207
5208 /* Override some methods for multithreading. */
5209 t->to_create_inferior = linux_nat_create_inferior;
5210 t->to_attach = linux_nat_attach;
5211 t->to_detach = linux_nat_detach;
5212 t->to_resume = linux_nat_resume;
5213 t->to_wait = linux_nat_wait;
5214 t->to_pass_signals = linux_nat_pass_signals;
5215 t->to_xfer_partial = linux_nat_xfer_partial;
5216 t->to_kill = linux_nat_kill;
5217 t->to_mourn_inferior = linux_nat_mourn_inferior;
5218 t->to_thread_alive = linux_nat_thread_alive;
5219 t->to_pid_to_str = linux_nat_pid_to_str;
5220 t->to_thread_name = linux_nat_thread_name;
5221 t->to_has_thread_control = tc_schedlock;
5222 t->to_thread_address_space = linux_nat_thread_address_space;
5223 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5224 t->to_stopped_data_address = linux_nat_stopped_data_address;
5225
5226 t->to_can_async_p = linux_nat_can_async_p;
5227 t->to_is_async_p = linux_nat_is_async_p;
5228 t->to_supports_non_stop = linux_nat_supports_non_stop;
5229 t->to_async = linux_nat_async;
5230 t->to_terminal_inferior = linux_nat_terminal_inferior;
5231 t->to_terminal_ours = linux_nat_terminal_ours;
5232 t->to_close = linux_nat_close;
5233
5234 /* Methods for non-stop support. */
5235 t->to_stop = linux_nat_stop;
5236
5237 t->to_supports_multi_process = linux_nat_supports_multi_process;
5238
5239 t->to_supports_disable_randomization
5240 = linux_nat_supports_disable_randomization;
5241
5242 t->to_core_of_thread = linux_nat_core_of_thread;
5243
5244 /* We don't change the stratum; this target will sit at
5245 process_stratum and thread_db will set at thread_stratum. This
5246 is a little strange, since this is a multi-threaded-capable
5247 target, but we want to be on the stack below thread_db, and we
5248 also want to be used for single-threaded processes. */
5249
5250 add_target (t);
5251 }
5252
5253 /* Register a method to call whenever a new thread is attached. */
5254 void
5255 linux_nat_set_new_thread (struct target_ops *t,
5256 void (*new_thread) (struct lwp_info *))
5257 {
5258 /* Save the pointer. We only support a single registered instance
5259 of the GNU/Linux native target, so we do not need to map this to
5260 T. */
5261 linux_nat_new_thread = new_thread;
5262 }
5263
5264 /* Register a method that converts a siginfo object between the layout
5265 that ptrace returns, and the layout in the architecture of the
5266 inferior. */
5267 void
5268 linux_nat_set_siginfo_fixup (struct target_ops *t,
5269 int (*siginfo_fixup) (siginfo_t *,
5270 gdb_byte *,
5271 int))
5272 {
5273 /* Save the pointer. */
5274 linux_nat_siginfo_fixup = siginfo_fixup;
5275 }
5276
5277 /* Register a method to call prior to resuming a thread. */
5278
5279 void
5280 linux_nat_set_prepare_to_resume (struct target_ops *t,
5281 void (*prepare_to_resume) (struct lwp_info *))
5282 {
5283 /* Save the pointer. */
5284 linux_nat_prepare_to_resume = prepare_to_resume;
5285 }
5286
5287 /* Return the saved siginfo associated with PTID. */
5288 siginfo_t *
5289 linux_nat_get_siginfo (ptid_t ptid)
5290 {
5291 struct lwp_info *lp = find_lwp_pid (ptid);
5292
5293 gdb_assert (lp != NULL);
5294
5295 return &lp->siginfo;
5296 }
5297
5298 /* Provide a prototype to silence -Wmissing-prototypes. */
5299 extern initialize_file_ftype _initialize_linux_nat;
5300
5301 void
5302 _initialize_linux_nat (void)
5303 {
5304 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5305 &debug_linux_nat, _("\
5306 Set debugging of GNU/Linux lwp module."), _("\
5307 Show debugging of GNU/Linux lwp module."), _("\
5308 Enables printf debugging output."),
5309 NULL,
5310 show_debug_linux_nat,
5311 &setdebuglist, &showdebuglist);
5312
5313 /* Save this mask as the default. */
5314 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5315
5316 /* Install a SIGCHLD handler. */
5317 sigchld_action.sa_handler = sigchld_handler;
5318 sigemptyset (&sigchld_action.sa_mask);
5319 sigchld_action.sa_flags = SA_RESTART;
5320
5321 /* Make it the default. */
5322 sigaction (SIGCHLD, &sigchld_action, NULL);
5323
5324 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5325 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5326 sigdelset (&suspend_mask, SIGCHLD);
5327
5328 sigemptyset (&blocked_mask);
5329 }
5330 \f
5331
5332 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5333 the GNU/Linux Threads library and therefore doesn't really belong
5334 here. */
5335
5336 /* Read variable NAME in the target and return its value if found.
5337 Otherwise return zero. It is assumed that the type of the variable
5338 is `int'. */
5339
5340 static int
5341 get_signo (const char *name)
5342 {
5343 struct minimal_symbol *ms;
5344 int signo;
5345
5346 ms = lookup_minimal_symbol (name, NULL, NULL);
5347 if (ms == NULL)
5348 return 0;
5349
5350 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5351 sizeof (signo)) != 0)
5352 return 0;
5353
5354 return signo;
5355 }
5356
5357 /* Return the set of signals used by the threads library in *SET. */
5358
5359 void
5360 lin_thread_get_thread_signals (sigset_t *set)
5361 {
5362 struct sigaction action;
5363 int restart, cancel;
5364
5365 sigemptyset (&blocked_mask);
5366 sigemptyset (set);
5367
5368 restart = get_signo ("__pthread_sig_restart");
5369 cancel = get_signo ("__pthread_sig_cancel");
5370
5371 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5372 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5373 not provide any way for the debugger to query the signal numbers -
5374 fortunately they don't change! */
5375
5376 if (restart == 0)
5377 restart = __SIGRTMIN;
5378
5379 if (cancel == 0)
5380 cancel = __SIGRTMIN + 1;
5381
5382 sigaddset (set, restart);
5383 sigaddset (set, cancel);
5384
5385 /* The GNU/Linux Threads library makes terminating threads send a
5386 special "cancel" signal instead of SIGCHLD. Make sure we catch
5387 those (to prevent them from terminating GDB itself, which is
5388 likely to be their default action) and treat them the same way as
5389 SIGCHLD. */
5390
5391 action.sa_handler = sigchld_handler;
5392 sigemptyset (&action.sa_mask);
5393 action.sa_flags = SA_RESTART;
5394 sigaction (cancel, &action, NULL);
5395
5396 /* We block the "cancel" signal throughout this code ... */
5397 sigaddset (&blocked_mask, cancel);
5398 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5399
5400 /* ... except during a sigsuspend. */
5401 sigdelset (&suspend_mask, cancel);
5402 }
This page took 0.33732 seconds and 4 git commands to generate.