Update comment for struct type's length field, introduce type_length_units
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include "nat/gdb_ptrace.h"
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "buffer.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
68 #include "objfiles.h"
69 #include "nat/linux-namespaces.h"
70 #include "fileio.h"
71
72 #ifndef SPUFS_MAGIC
73 #define SPUFS_MAGIC 0x23c9b64e
74 #endif
75
76 /* This comment documents high-level logic of this file.
77
78 Waiting for events in sync mode
79 ===============================
80
81 When waiting for an event in a specific thread, we just use waitpid, passing
82 the specific pid, and not passing WNOHANG.
83
84 When waiting for an event in all threads, waitpid is not quite good. Prior to
85 version 2.4, Linux can either wait for event in main thread, or in secondary
86 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
87 miss an event. The solution is to use non-blocking waitpid, together with
88 sigsuspend. First, we use non-blocking waitpid to get an event in the main
89 process, if any. Second, we use non-blocking waitpid with the __WCLONED
90 flag to check for events in cloned processes. If nothing is found, we use
91 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
92 happened to a child process -- and SIGCHLD will be delivered both for events
93 in main debugged process and in cloned processes. As soon as we know there's
94 an event, we get back to calling nonblocking waitpid with and without
95 __WCLONED.
96
97 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
98 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
99 blocked, the signal becomes pending and sigsuspend immediately
100 notices it and returns.
101
102 Waiting for events in async mode
103 ================================
104
105 In async mode, GDB should always be ready to handle both user input
106 and target events, so neither blocking waitpid nor sigsuspend are
107 viable options. Instead, we should asynchronously notify the GDB main
108 event loop whenever there's an unprocessed event from the target. We
109 detect asynchronous target events by handling SIGCHLD signals. To
110 notify the event loop about target events, the self-pipe trick is used
111 --- a pipe is registered as waitable event source in the event loop,
112 the event loop select/poll's on the read end of this pipe (as well on
113 other event sources, e.g., stdin), and the SIGCHLD handler writes a
114 byte to this pipe. This is more portable than relying on
115 pselect/ppoll, since on kernels that lack those syscalls, libc
116 emulates them with select/poll+sigprocmask, and that is racy
117 (a.k.a. plain broken).
118
119 Obviously, if we fail to notify the event loop if there's a target
120 event, it's bad. OTOH, if we notify the event loop when there's no
121 event from the target, linux_nat_wait will detect that there's no real
122 event to report, and return event of type TARGET_WAITKIND_IGNORE.
123 This is mostly harmless, but it will waste time and is better avoided.
124
125 The main design point is that every time GDB is outside linux-nat.c,
126 we have a SIGCHLD handler installed that is called when something
127 happens to the target and notifies the GDB event loop. Whenever GDB
128 core decides to handle the event, and calls into linux-nat.c, we
129 process things as in sync mode, except that the we never block in
130 sigsuspend.
131
132 While processing an event, we may end up momentarily blocked in
133 waitpid calls. Those waitpid calls, while blocking, are guarantied to
134 return quickly. E.g., in all-stop mode, before reporting to the core
135 that an LWP hit a breakpoint, all LWPs are stopped by sending them
136 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
137 Note that this is different from blocking indefinitely waiting for the
138 next event --- here, we're already handling an event.
139
140 Use of signals
141 ==============
142
143 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
144 signal is not entirely significant; we just need for a signal to be delivered,
145 so that we can intercept it. SIGSTOP's advantage is that it can not be
146 blocked. A disadvantage is that it is not a real-time signal, so it can only
147 be queued once; we do not keep track of other sources of SIGSTOP.
148
149 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
150 use them, because they have special behavior when the signal is generated -
151 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
152 kills the entire thread group.
153
154 A delivered SIGSTOP would stop the entire thread group, not just the thread we
155 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
156 cancel it (by PTRACE_CONT without passing SIGSTOP).
157
158 We could use a real-time signal instead. This would solve those problems; we
159 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
160 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
161 generates it, and there are races with trying to find a signal that is not
162 blocked. */
163
164 #ifndef O_LARGEFILE
165 #define O_LARGEFILE 0
166 #endif
167
168 /* Does the current host support PTRACE_GETREGSET? */
169 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
170
171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
172 the use of the multi-threaded target. */
173 static struct target_ops *linux_ops;
174 static struct target_ops linux_ops_saved;
175
176 /* The method to call, if any, when a new thread is attached. */
177 static void (*linux_nat_new_thread) (struct lwp_info *);
178
179 /* The method to call, if any, when a new fork is attached. */
180 static linux_nat_new_fork_ftype *linux_nat_new_fork;
181
182 /* The method to call, if any, when a process is no longer
183 attached. */
184 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
185
186 /* Hook to call prior to resuming a thread. */
187 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
188
189 /* The method to call, if any, when the siginfo object needs to be
190 converted between the layout returned by ptrace, and the layout in
191 the architecture of the inferior. */
192 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
193 gdb_byte *,
194 int);
195
196 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
197 Called by our to_xfer_partial. */
198 static target_xfer_partial_ftype *super_xfer_partial;
199
200 /* The saved to_close method, inherited from inf-ptrace.c.
201 Called by our to_close. */
202 static void (*super_close) (struct target_ops *);
203
204 static unsigned int debug_linux_nat;
205 static void
206 show_debug_linux_nat (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
210 value);
211 }
212
213 struct simple_pid_list
214 {
215 int pid;
216 int status;
217 struct simple_pid_list *next;
218 };
219 struct simple_pid_list *stopped_pids;
220
221 /* Async mode support. */
222
223 /* The read/write ends of the pipe registered as waitable file in the
224 event loop. */
225 static int linux_nat_event_pipe[2] = { -1, -1 };
226
227 /* True if we're currently in async mode. */
228 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
229
230 /* Flush the event pipe. */
231
232 static void
233 async_file_flush (void)
234 {
235 int ret;
236 char buf;
237
238 do
239 {
240 ret = read (linux_nat_event_pipe[0], &buf, 1);
241 }
242 while (ret >= 0 || (ret == -1 && errno == EINTR));
243 }
244
245 /* Put something (anything, doesn't matter what, or how much) in event
246 pipe, so that the select/poll in the event-loop realizes we have
247 something to process. */
248
249 static void
250 async_file_mark (void)
251 {
252 int ret;
253
254 /* It doesn't really matter what the pipe contains, as long we end
255 up with something in it. Might as well flush the previous
256 left-overs. */
257 async_file_flush ();
258
259 do
260 {
261 ret = write (linux_nat_event_pipe[1], "+", 1);
262 }
263 while (ret == -1 && errno == EINTR);
264
265 /* Ignore EAGAIN. If the pipe is full, the event loop will already
266 be awakened anyway. */
267 }
268
269 static int kill_lwp (int lwpid, int signo);
270
271 static int stop_callback (struct lwp_info *lp, void *data);
272 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
273
274 static void block_child_signals (sigset_t *prev_mask);
275 static void restore_child_signals_mask (sigset_t *prev_mask);
276
277 struct lwp_info;
278 static struct lwp_info *add_lwp (ptid_t ptid);
279 static void purge_lwp_list (int pid);
280 static void delete_lwp (ptid_t ptid);
281 static struct lwp_info *find_lwp_pid (ptid_t ptid);
282
283 static int lwp_status_pending_p (struct lwp_info *lp);
284
285 static int check_stopped_by_breakpoint (struct lwp_info *lp);
286 static int sigtrap_is_event (int status);
287 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
288
289 \f
290 /* LWP accessors. */
291
292 /* See nat/linux-nat.h. */
293
294 ptid_t
295 ptid_of_lwp (struct lwp_info *lwp)
296 {
297 return lwp->ptid;
298 }
299
300 /* See nat/linux-nat.h. */
301
302 void
303 lwp_set_arch_private_info (struct lwp_info *lwp,
304 struct arch_lwp_info *info)
305 {
306 lwp->arch_private = info;
307 }
308
309 /* See nat/linux-nat.h. */
310
311 struct arch_lwp_info *
312 lwp_arch_private_info (struct lwp_info *lwp)
313 {
314 return lwp->arch_private;
315 }
316
317 /* See nat/linux-nat.h. */
318
319 int
320 lwp_is_stopped (struct lwp_info *lwp)
321 {
322 return lwp->stopped;
323 }
324
325 /* See nat/linux-nat.h. */
326
327 enum target_stop_reason
328 lwp_stop_reason (struct lwp_info *lwp)
329 {
330 return lwp->stop_reason;
331 }
332
333 \f
334 /* Trivial list manipulation functions to keep track of a list of
335 new stopped processes. */
336 static void
337 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
338 {
339 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
340
341 new_pid->pid = pid;
342 new_pid->status = status;
343 new_pid->next = *listp;
344 *listp = new_pid;
345 }
346
347 static int
348 in_pid_list_p (struct simple_pid_list *list, int pid)
349 {
350 struct simple_pid_list *p;
351
352 for (p = list; p != NULL; p = p->next)
353 if (p->pid == pid)
354 return 1;
355 return 0;
356 }
357
358 static int
359 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
360 {
361 struct simple_pid_list **p;
362
363 for (p = listp; *p != NULL; p = &(*p)->next)
364 if ((*p)->pid == pid)
365 {
366 struct simple_pid_list *next = (*p)->next;
367
368 *statusp = (*p)->status;
369 xfree (*p);
370 *p = next;
371 return 1;
372 }
373 return 0;
374 }
375
376 /* Return the ptrace options that we want to try to enable. */
377
378 static int
379 linux_nat_ptrace_options (int attached)
380 {
381 int options = 0;
382
383 if (!attached)
384 options |= PTRACE_O_EXITKILL;
385
386 options |= (PTRACE_O_TRACESYSGOOD
387 | PTRACE_O_TRACEVFORKDONE
388 | PTRACE_O_TRACEVFORK
389 | PTRACE_O_TRACEFORK
390 | PTRACE_O_TRACEEXEC);
391
392 return options;
393 }
394
395 /* Initialize ptrace warnings and check for supported ptrace
396 features given PID.
397
398 ATTACHED should be nonzero iff we attached to the inferior. */
399
400 static void
401 linux_init_ptrace (pid_t pid, int attached)
402 {
403 int options = linux_nat_ptrace_options (attached);
404
405 linux_enable_event_reporting (pid, options);
406 linux_ptrace_init_warnings ();
407 }
408
409 static void
410 linux_child_post_attach (struct target_ops *self, int pid)
411 {
412 linux_init_ptrace (pid, 1);
413 }
414
415 static void
416 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
417 {
418 linux_init_ptrace (ptid_get_pid (ptid), 0);
419 }
420
421 /* Return the number of known LWPs in the tgid given by PID. */
422
423 static int
424 num_lwps (int pid)
425 {
426 int count = 0;
427 struct lwp_info *lp;
428
429 for (lp = lwp_list; lp; lp = lp->next)
430 if (ptid_get_pid (lp->ptid) == pid)
431 count++;
432
433 return count;
434 }
435
436 /* Call delete_lwp with prototype compatible for make_cleanup. */
437
438 static void
439 delete_lwp_cleanup (void *lp_voidp)
440 {
441 struct lwp_info *lp = lp_voidp;
442
443 delete_lwp (lp->ptid);
444 }
445
446 /* Target hook for follow_fork. On entry inferior_ptid must be the
447 ptid of the followed inferior. At return, inferior_ptid will be
448 unchanged. */
449
450 static int
451 linux_child_follow_fork (struct target_ops *ops, int follow_child,
452 int detach_fork)
453 {
454 if (!follow_child)
455 {
456 struct lwp_info *child_lp = NULL;
457 int status = W_STOPCODE (0);
458 struct cleanup *old_chain;
459 int has_vforked;
460 ptid_t parent_ptid, child_ptid;
461 int parent_pid, child_pid;
462
463 has_vforked = (inferior_thread ()->pending_follow.kind
464 == TARGET_WAITKIND_VFORKED);
465 parent_ptid = inferior_ptid;
466 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
467 parent_pid = ptid_get_lwp (parent_ptid);
468 child_pid = ptid_get_lwp (child_ptid);
469
470 /* We're already attached to the parent, by default. */
471 old_chain = save_inferior_ptid ();
472 inferior_ptid = child_ptid;
473 child_lp = add_lwp (inferior_ptid);
474 child_lp->stopped = 1;
475 child_lp->last_resume_kind = resume_stop;
476
477 /* Detach new forked process? */
478 if (detach_fork)
479 {
480 make_cleanup (delete_lwp_cleanup, child_lp);
481
482 if (linux_nat_prepare_to_resume != NULL)
483 linux_nat_prepare_to_resume (child_lp);
484
485 /* When debugging an inferior in an architecture that supports
486 hardware single stepping on a kernel without commit
487 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
488 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
489 set if the parent process had them set.
490 To work around this, single step the child process
491 once before detaching to clear the flags. */
492
493 if (!gdbarch_software_single_step_p (target_thread_architecture
494 (child_lp->ptid)))
495 {
496 linux_disable_event_reporting (child_pid);
497 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
498 perror_with_name (_("Couldn't do single step"));
499 if (my_waitpid (child_pid, &status, 0) < 0)
500 perror_with_name (_("Couldn't wait vfork process"));
501 }
502
503 if (WIFSTOPPED (status))
504 {
505 int signo;
506
507 signo = WSTOPSIG (status);
508 if (signo != 0
509 && !signal_pass_state (gdb_signal_from_host (signo)))
510 signo = 0;
511 ptrace (PTRACE_DETACH, child_pid, 0, signo);
512 }
513
514 /* Resets value of inferior_ptid to parent ptid. */
515 do_cleanups (old_chain);
516 }
517 else
518 {
519 /* Let the thread_db layer learn about this new process. */
520 check_for_thread_db ();
521 }
522
523 do_cleanups (old_chain);
524
525 if (has_vforked)
526 {
527 struct lwp_info *parent_lp;
528
529 parent_lp = find_lwp_pid (parent_ptid);
530 gdb_assert (linux_supports_tracefork () >= 0);
531
532 if (linux_supports_tracevforkdone ())
533 {
534 if (debug_linux_nat)
535 fprintf_unfiltered (gdb_stdlog,
536 "LCFF: waiting for VFORK_DONE on %d\n",
537 parent_pid);
538 parent_lp->stopped = 1;
539
540 /* We'll handle the VFORK_DONE event like any other
541 event, in target_wait. */
542 }
543 else
544 {
545 /* We can't insert breakpoints until the child has
546 finished with the shared memory region. We need to
547 wait until that happens. Ideal would be to just
548 call:
549 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
550 - waitpid (parent_pid, &status, __WALL);
551 However, most architectures can't handle a syscall
552 being traced on the way out if it wasn't traced on
553 the way in.
554
555 We might also think to loop, continuing the child
556 until it exits or gets a SIGTRAP. One problem is
557 that the child might call ptrace with PTRACE_TRACEME.
558
559 There's no simple and reliable way to figure out when
560 the vforked child will be done with its copy of the
561 shared memory. We could step it out of the syscall,
562 two instructions, let it go, and then single-step the
563 parent once. When we have hardware single-step, this
564 would work; with software single-step it could still
565 be made to work but we'd have to be able to insert
566 single-step breakpoints in the child, and we'd have
567 to insert -just- the single-step breakpoint in the
568 parent. Very awkward.
569
570 In the end, the best we can do is to make sure it
571 runs for a little while. Hopefully it will be out of
572 range of any breakpoints we reinsert. Usually this
573 is only the single-step breakpoint at vfork's return
574 point. */
575
576 if (debug_linux_nat)
577 fprintf_unfiltered (gdb_stdlog,
578 "LCFF: no VFORK_DONE "
579 "support, sleeping a bit\n");
580
581 usleep (10000);
582
583 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
584 and leave it pending. The next linux_nat_resume call
585 will notice a pending event, and bypasses actually
586 resuming the inferior. */
587 parent_lp->status = 0;
588 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
589 parent_lp->stopped = 1;
590
591 /* If we're in async mode, need to tell the event loop
592 there's something here to process. */
593 if (target_is_async_p ())
594 async_file_mark ();
595 }
596 }
597 }
598 else
599 {
600 struct lwp_info *child_lp;
601
602 child_lp = add_lwp (inferior_ptid);
603 child_lp->stopped = 1;
604 child_lp->last_resume_kind = resume_stop;
605
606 /* Let the thread_db layer learn about this new process. */
607 check_for_thread_db ();
608 }
609
610 return 0;
611 }
612
613 \f
614 static int
615 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
616 {
617 return !linux_supports_tracefork ();
618 }
619
620 static int
621 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
622 {
623 return 0;
624 }
625
626 static int
627 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
628 {
629 return !linux_supports_tracefork ();
630 }
631
632 static int
633 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
634 {
635 return 0;
636 }
637
638 static int
639 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
640 {
641 return !linux_supports_tracefork ();
642 }
643
644 static int
645 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
646 {
647 return 0;
648 }
649
650 static int
651 linux_child_set_syscall_catchpoint (struct target_ops *self,
652 int pid, int needed, int any_count,
653 int table_size, int *table)
654 {
655 if (!linux_supports_tracesysgood ())
656 return 1;
657
658 /* On GNU/Linux, we ignore the arguments. It means that we only
659 enable the syscall catchpoints, but do not disable them.
660
661 Also, we do not use the `table' information because we do not
662 filter system calls here. We let GDB do the logic for us. */
663 return 0;
664 }
665
666 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
667 are processes sharing the same VM space. A multi-threaded process
668 is basically a group of such processes. However, such a grouping
669 is almost entirely a user-space issue; the kernel doesn't enforce
670 such a grouping at all (this might change in the future). In
671 general, we'll rely on the threads library (i.e. the GNU/Linux
672 Threads library) to provide such a grouping.
673
674 It is perfectly well possible to write a multi-threaded application
675 without the assistance of a threads library, by using the clone
676 system call directly. This module should be able to give some
677 rudimentary support for debugging such applications if developers
678 specify the CLONE_PTRACE flag in the clone system call, and are
679 using the Linux kernel 2.4 or above.
680
681 Note that there are some peculiarities in GNU/Linux that affect
682 this code:
683
684 - In general one should specify the __WCLONE flag to waitpid in
685 order to make it report events for any of the cloned processes
686 (and leave it out for the initial process). However, if a cloned
687 process has exited the exit status is only reported if the
688 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
689 we cannot use it since GDB must work on older systems too.
690
691 - When a traced, cloned process exits and is waited for by the
692 debugger, the kernel reassigns it to the original parent and
693 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
694 library doesn't notice this, which leads to the "zombie problem":
695 When debugged a multi-threaded process that spawns a lot of
696 threads will run out of processes, even if the threads exit,
697 because the "zombies" stay around. */
698
699 /* List of known LWPs. */
700 struct lwp_info *lwp_list;
701 \f
702
703 /* Original signal mask. */
704 static sigset_t normal_mask;
705
706 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
707 _initialize_linux_nat. */
708 static sigset_t suspend_mask;
709
710 /* Signals to block to make that sigsuspend work. */
711 static sigset_t blocked_mask;
712
713 /* SIGCHLD action. */
714 struct sigaction sigchld_action;
715
716 /* Block child signals (SIGCHLD and linux threads signals), and store
717 the previous mask in PREV_MASK. */
718
719 static void
720 block_child_signals (sigset_t *prev_mask)
721 {
722 /* Make sure SIGCHLD is blocked. */
723 if (!sigismember (&blocked_mask, SIGCHLD))
724 sigaddset (&blocked_mask, SIGCHLD);
725
726 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
727 }
728
729 /* Restore child signals mask, previously returned by
730 block_child_signals. */
731
732 static void
733 restore_child_signals_mask (sigset_t *prev_mask)
734 {
735 sigprocmask (SIG_SETMASK, prev_mask, NULL);
736 }
737
738 /* Mask of signals to pass directly to the inferior. */
739 static sigset_t pass_mask;
740
741 /* Update signals to pass to the inferior. */
742 static void
743 linux_nat_pass_signals (struct target_ops *self,
744 int numsigs, unsigned char *pass_signals)
745 {
746 int signo;
747
748 sigemptyset (&pass_mask);
749
750 for (signo = 1; signo < NSIG; signo++)
751 {
752 int target_signo = gdb_signal_from_host (signo);
753 if (target_signo < numsigs && pass_signals[target_signo])
754 sigaddset (&pass_mask, signo);
755 }
756 }
757
758 \f
759
760 /* Prototypes for local functions. */
761 static int stop_wait_callback (struct lwp_info *lp, void *data);
762 static int linux_thread_alive (ptid_t ptid);
763 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
764 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
765
766 \f
767
768 /* Destroy and free LP. */
769
770 static void
771 lwp_free (struct lwp_info *lp)
772 {
773 xfree (lp->arch_private);
774 xfree (lp);
775 }
776
777 /* Remove all LWPs belong to PID from the lwp list. */
778
779 static void
780 purge_lwp_list (int pid)
781 {
782 struct lwp_info *lp, *lpprev, *lpnext;
783
784 lpprev = NULL;
785
786 for (lp = lwp_list; lp; lp = lpnext)
787 {
788 lpnext = lp->next;
789
790 if (ptid_get_pid (lp->ptid) == pid)
791 {
792 if (lp == lwp_list)
793 lwp_list = lp->next;
794 else
795 lpprev->next = lp->next;
796
797 lwp_free (lp);
798 }
799 else
800 lpprev = lp;
801 }
802 }
803
804 /* Add the LWP specified by PTID to the list. PTID is the first LWP
805 in the process. Return a pointer to the structure describing the
806 new LWP.
807
808 This differs from add_lwp in that we don't let the arch specific
809 bits know about this new thread. Current clients of this callback
810 take the opportunity to install watchpoints in the new thread, and
811 we shouldn't do that for the first thread. If we're spawning a
812 child ("run"), the thread executes the shell wrapper first, and we
813 shouldn't touch it until it execs the program we want to debug.
814 For "attach", it'd be okay to call the callback, but it's not
815 necessary, because watchpoints can't yet have been inserted into
816 the inferior. */
817
818 static struct lwp_info *
819 add_initial_lwp (ptid_t ptid)
820 {
821 struct lwp_info *lp;
822
823 gdb_assert (ptid_lwp_p (ptid));
824
825 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
826
827 memset (lp, 0, sizeof (struct lwp_info));
828
829 lp->last_resume_kind = resume_continue;
830 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
831
832 lp->ptid = ptid;
833 lp->core = -1;
834
835 lp->next = lwp_list;
836 lwp_list = lp;
837
838 return lp;
839 }
840
841 /* Add the LWP specified by PID to the list. Return a pointer to the
842 structure describing the new LWP. The LWP should already be
843 stopped. */
844
845 static struct lwp_info *
846 add_lwp (ptid_t ptid)
847 {
848 struct lwp_info *lp;
849
850 lp = add_initial_lwp (ptid);
851
852 /* Let the arch specific bits know about this new thread. Current
853 clients of this callback take the opportunity to install
854 watchpoints in the new thread. We don't do this for the first
855 thread though. See add_initial_lwp. */
856 if (linux_nat_new_thread != NULL)
857 linux_nat_new_thread (lp);
858
859 return lp;
860 }
861
862 /* Remove the LWP specified by PID from the list. */
863
864 static void
865 delete_lwp (ptid_t ptid)
866 {
867 struct lwp_info *lp, *lpprev;
868
869 lpprev = NULL;
870
871 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
872 if (ptid_equal (lp->ptid, ptid))
873 break;
874
875 if (!lp)
876 return;
877
878 if (lpprev)
879 lpprev->next = lp->next;
880 else
881 lwp_list = lp->next;
882
883 lwp_free (lp);
884 }
885
886 /* Return a pointer to the structure describing the LWP corresponding
887 to PID. If no corresponding LWP could be found, return NULL. */
888
889 static struct lwp_info *
890 find_lwp_pid (ptid_t ptid)
891 {
892 struct lwp_info *lp;
893 int lwp;
894
895 if (ptid_lwp_p (ptid))
896 lwp = ptid_get_lwp (ptid);
897 else
898 lwp = ptid_get_pid (ptid);
899
900 for (lp = lwp_list; lp; lp = lp->next)
901 if (lwp == ptid_get_lwp (lp->ptid))
902 return lp;
903
904 return NULL;
905 }
906
907 /* See nat/linux-nat.h. */
908
909 struct lwp_info *
910 iterate_over_lwps (ptid_t filter,
911 iterate_over_lwps_ftype callback,
912 void *data)
913 {
914 struct lwp_info *lp, *lpnext;
915
916 for (lp = lwp_list; lp; lp = lpnext)
917 {
918 lpnext = lp->next;
919
920 if (ptid_match (lp->ptid, filter))
921 {
922 if ((*callback) (lp, data) != 0)
923 return lp;
924 }
925 }
926
927 return NULL;
928 }
929
930 /* Update our internal state when changing from one checkpoint to
931 another indicated by NEW_PTID. We can only switch single-threaded
932 applications, so we only create one new LWP, and the previous list
933 is discarded. */
934
935 void
936 linux_nat_switch_fork (ptid_t new_ptid)
937 {
938 struct lwp_info *lp;
939
940 purge_lwp_list (ptid_get_pid (inferior_ptid));
941
942 lp = add_lwp (new_ptid);
943 lp->stopped = 1;
944
945 /* This changes the thread's ptid while preserving the gdb thread
946 num. Also changes the inferior pid, while preserving the
947 inferior num. */
948 thread_change_ptid (inferior_ptid, new_ptid);
949
950 /* We've just told GDB core that the thread changed target id, but,
951 in fact, it really is a different thread, with different register
952 contents. */
953 registers_changed ();
954 }
955
956 /* Handle the exit of a single thread LP. */
957
958 static void
959 exit_lwp (struct lwp_info *lp)
960 {
961 struct thread_info *th = find_thread_ptid (lp->ptid);
962
963 if (th)
964 {
965 if (print_thread_events)
966 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
967
968 delete_thread (lp->ptid);
969 }
970
971 delete_lwp (lp->ptid);
972 }
973
974 /* Wait for the LWP specified by LP, which we have just attached to.
975 Returns a wait status for that LWP, to cache. */
976
977 static int
978 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
979 int *signalled)
980 {
981 pid_t new_pid, pid = ptid_get_lwp (ptid);
982 int status;
983
984 if (linux_proc_pid_is_stopped (pid))
985 {
986 if (debug_linux_nat)
987 fprintf_unfiltered (gdb_stdlog,
988 "LNPAW: Attaching to a stopped process\n");
989
990 /* The process is definitely stopped. It is in a job control
991 stop, unless the kernel predates the TASK_STOPPED /
992 TASK_TRACED distinction, in which case it might be in a
993 ptrace stop. Make sure it is in a ptrace stop; from there we
994 can kill it, signal it, et cetera.
995
996 First make sure there is a pending SIGSTOP. Since we are
997 already attached, the process can not transition from stopped
998 to running without a PTRACE_CONT; so we know this signal will
999 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1000 probably already in the queue (unless this kernel is old
1001 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1002 is not an RT signal, it can only be queued once. */
1003 kill_lwp (pid, SIGSTOP);
1004
1005 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1006 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1007 ptrace (PTRACE_CONT, pid, 0, 0);
1008 }
1009
1010 /* Make sure the initial process is stopped. The user-level threads
1011 layer might want to poke around in the inferior, and that won't
1012 work if things haven't stabilized yet. */
1013 new_pid = my_waitpid (pid, &status, 0);
1014 if (new_pid == -1 && errno == ECHILD)
1015 {
1016 if (first)
1017 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1018
1019 /* Try again with __WCLONE to check cloned processes. */
1020 new_pid = my_waitpid (pid, &status, __WCLONE);
1021 *cloned = 1;
1022 }
1023
1024 gdb_assert (pid == new_pid);
1025
1026 if (!WIFSTOPPED (status))
1027 {
1028 /* The pid we tried to attach has apparently just exited. */
1029 if (debug_linux_nat)
1030 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1031 pid, status_to_str (status));
1032 return status;
1033 }
1034
1035 if (WSTOPSIG (status) != SIGSTOP)
1036 {
1037 *signalled = 1;
1038 if (debug_linux_nat)
1039 fprintf_unfiltered (gdb_stdlog,
1040 "LNPAW: Received %s after attaching\n",
1041 status_to_str (status));
1042 }
1043
1044 return status;
1045 }
1046
1047 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1048 the new LWP could not be attached, or 1 if we're already auto
1049 attached to this thread, but haven't processed the
1050 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1051 its existance, without considering it an error. */
1052
1053 int
1054 lin_lwp_attach_lwp (ptid_t ptid)
1055 {
1056 struct lwp_info *lp;
1057 int lwpid;
1058
1059 gdb_assert (ptid_lwp_p (ptid));
1060
1061 lp = find_lwp_pid (ptid);
1062 lwpid = ptid_get_lwp (ptid);
1063
1064 /* We assume that we're already attached to any LWP that is already
1065 in our list of LWPs. If we're not seeing exit events from threads
1066 and we've had PID wraparound since we last tried to stop all threads,
1067 this assumption might be wrong; fortunately, this is very unlikely
1068 to happen. */
1069 if (lp == NULL)
1070 {
1071 int status, cloned = 0, signalled = 0;
1072
1073 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1074 {
1075 if (linux_supports_tracefork ())
1076 {
1077 /* If we haven't stopped all threads when we get here,
1078 we may have seen a thread listed in thread_db's list,
1079 but not processed the PTRACE_EVENT_CLONE yet. If
1080 that's the case, ignore this new thread, and let
1081 normal event handling discover it later. */
1082 if (in_pid_list_p (stopped_pids, lwpid))
1083 {
1084 /* We've already seen this thread stop, but we
1085 haven't seen the PTRACE_EVENT_CLONE extended
1086 event yet. */
1087 if (debug_linux_nat)
1088 fprintf_unfiltered (gdb_stdlog,
1089 "LLAL: attach failed, but already seen "
1090 "this thread %s stop\n",
1091 target_pid_to_str (ptid));
1092 return 1;
1093 }
1094 else
1095 {
1096 int new_pid;
1097 int status;
1098
1099 if (debug_linux_nat)
1100 fprintf_unfiltered (gdb_stdlog,
1101 "LLAL: attach failed, and haven't seen "
1102 "this thread %s stop yet\n",
1103 target_pid_to_str (ptid));
1104
1105 /* We may or may not be attached to the LWP already.
1106 Try waitpid on it. If that errors, we're not
1107 attached to the LWP yet. Otherwise, we're
1108 already attached. */
1109 gdb_assert (lwpid > 0);
1110 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1111 if (new_pid == -1 && errno == ECHILD)
1112 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1113 if (new_pid != -1)
1114 {
1115 if (new_pid == 0)
1116 {
1117 /* The child hasn't stopped for its initial
1118 SIGSTOP stop yet. */
1119 if (debug_linux_nat)
1120 fprintf_unfiltered (gdb_stdlog,
1121 "LLAL: child hasn't "
1122 "stopped yet\n");
1123 }
1124 else if (WIFSTOPPED (status))
1125 {
1126 if (debug_linux_nat)
1127 fprintf_unfiltered (gdb_stdlog,
1128 "LLAL: adding to stopped_pids\n");
1129 add_to_pid_list (&stopped_pids, lwpid, status);
1130 }
1131 return 1;
1132 }
1133 }
1134 }
1135
1136 /* If we fail to attach to the thread, issue a warning,
1137 but continue. One way this can happen is if thread
1138 creation is interrupted; as of Linux kernel 2.6.19, a
1139 bug may place threads in the thread list and then fail
1140 to create them. */
1141 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1142 safe_strerror (errno));
1143 return -1;
1144 }
1145
1146 if (debug_linux_nat)
1147 fprintf_unfiltered (gdb_stdlog,
1148 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1149 target_pid_to_str (ptid));
1150
1151 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1152 if (!WIFSTOPPED (status))
1153 return 1;
1154
1155 lp = add_lwp (ptid);
1156 lp->stopped = 1;
1157 lp->last_resume_kind = resume_stop;
1158 lp->cloned = cloned;
1159 lp->signalled = signalled;
1160 if (WSTOPSIG (status) != SIGSTOP)
1161 {
1162 lp->resumed = 1;
1163 lp->status = status;
1164 }
1165
1166 target_post_attach (ptid_get_lwp (lp->ptid));
1167
1168 if (debug_linux_nat)
1169 {
1170 fprintf_unfiltered (gdb_stdlog,
1171 "LLAL: waitpid %s received %s\n",
1172 target_pid_to_str (ptid),
1173 status_to_str (status));
1174 }
1175 }
1176
1177 return 0;
1178 }
1179
1180 static void
1181 linux_nat_create_inferior (struct target_ops *ops,
1182 char *exec_file, char *allargs, char **env,
1183 int from_tty)
1184 {
1185 struct cleanup *restore_personality
1186 = maybe_disable_address_space_randomization (disable_randomization);
1187
1188 /* The fork_child mechanism is synchronous and calls target_wait, so
1189 we have to mask the async mode. */
1190
1191 /* Make sure we report all signals during startup. */
1192 linux_nat_pass_signals (ops, 0, NULL);
1193
1194 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1195
1196 do_cleanups (restore_personality);
1197 }
1198
1199 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1200 already attached. Returns true if a new LWP is found, false
1201 otherwise. */
1202
1203 static int
1204 attach_proc_task_lwp_callback (ptid_t ptid)
1205 {
1206 struct lwp_info *lp;
1207
1208 /* Ignore LWPs we're already attached to. */
1209 lp = find_lwp_pid (ptid);
1210 if (lp == NULL)
1211 {
1212 int lwpid = ptid_get_lwp (ptid);
1213
1214 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1215 {
1216 int err = errno;
1217
1218 /* Be quiet if we simply raced with the thread exiting.
1219 EPERM is returned if the thread's task still exists, and
1220 is marked as exited or zombie, as well as other
1221 conditions, so in that case, confirm the status in
1222 /proc/PID/status. */
1223 if (err == ESRCH
1224 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1225 {
1226 if (debug_linux_nat)
1227 {
1228 fprintf_unfiltered (gdb_stdlog,
1229 "Cannot attach to lwp %d: "
1230 "thread is gone (%d: %s)\n",
1231 lwpid, err, safe_strerror (err));
1232 }
1233 }
1234 else
1235 {
1236 warning (_("Cannot attach to lwp %d: %s"),
1237 lwpid,
1238 linux_ptrace_attach_fail_reason_string (ptid,
1239 err));
1240 }
1241 }
1242 else
1243 {
1244 if (debug_linux_nat)
1245 fprintf_unfiltered (gdb_stdlog,
1246 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1247 target_pid_to_str (ptid));
1248
1249 lp = add_lwp (ptid);
1250 lp->cloned = 1;
1251
1252 /* The next time we wait for this LWP we'll see a SIGSTOP as
1253 PTRACE_ATTACH brings it to a halt. */
1254 lp->signalled = 1;
1255
1256 /* We need to wait for a stop before being able to make the
1257 next ptrace call on this LWP. */
1258 lp->must_set_ptrace_flags = 1;
1259 }
1260
1261 return 1;
1262 }
1263 return 0;
1264 }
1265
1266 static void
1267 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1268 {
1269 struct lwp_info *lp;
1270 int status;
1271 ptid_t ptid;
1272
1273 /* Make sure we report all signals during attach. */
1274 linux_nat_pass_signals (ops, 0, NULL);
1275
1276 TRY
1277 {
1278 linux_ops->to_attach (ops, args, from_tty);
1279 }
1280 CATCH (ex, RETURN_MASK_ERROR)
1281 {
1282 pid_t pid = parse_pid_to_attach (args);
1283 struct buffer buffer;
1284 char *message, *buffer_s;
1285
1286 message = xstrdup (ex.message);
1287 make_cleanup (xfree, message);
1288
1289 buffer_init (&buffer);
1290 linux_ptrace_attach_fail_reason (pid, &buffer);
1291
1292 buffer_grow_str0 (&buffer, "");
1293 buffer_s = buffer_finish (&buffer);
1294 make_cleanup (xfree, buffer_s);
1295
1296 if (*buffer_s != '\0')
1297 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1298 else
1299 throw_error (ex.error, "%s", message);
1300 }
1301 END_CATCH
1302
1303 /* The ptrace base target adds the main thread with (pid,0,0)
1304 format. Decorate it with lwp info. */
1305 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1306 ptid_get_pid (inferior_ptid),
1307 0);
1308 thread_change_ptid (inferior_ptid, ptid);
1309
1310 /* Add the initial process as the first LWP to the list. */
1311 lp = add_initial_lwp (ptid);
1312
1313 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1314 &lp->signalled);
1315 if (!WIFSTOPPED (status))
1316 {
1317 if (WIFEXITED (status))
1318 {
1319 int exit_code = WEXITSTATUS (status);
1320
1321 target_terminal_ours ();
1322 target_mourn_inferior ();
1323 if (exit_code == 0)
1324 error (_("Unable to attach: program exited normally."));
1325 else
1326 error (_("Unable to attach: program exited with code %d."),
1327 exit_code);
1328 }
1329 else if (WIFSIGNALED (status))
1330 {
1331 enum gdb_signal signo;
1332
1333 target_terminal_ours ();
1334 target_mourn_inferior ();
1335
1336 signo = gdb_signal_from_host (WTERMSIG (status));
1337 error (_("Unable to attach: program terminated with signal "
1338 "%s, %s."),
1339 gdb_signal_to_name (signo),
1340 gdb_signal_to_string (signo));
1341 }
1342
1343 internal_error (__FILE__, __LINE__,
1344 _("unexpected status %d for PID %ld"),
1345 status, (long) ptid_get_lwp (ptid));
1346 }
1347
1348 lp->stopped = 1;
1349
1350 /* Save the wait status to report later. */
1351 lp->resumed = 1;
1352 if (debug_linux_nat)
1353 fprintf_unfiltered (gdb_stdlog,
1354 "LNA: waitpid %ld, saving status %s\n",
1355 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1356
1357 lp->status = status;
1358
1359 /* We must attach to every LWP. If /proc is mounted, use that to
1360 find them now. The inferior may be using raw clone instead of
1361 using pthreads. But even if it is using pthreads, thread_db
1362 walks structures in the inferior's address space to find the list
1363 of threads/LWPs, and those structures may well be corrupted.
1364 Note that once thread_db is loaded, we'll still use it to list
1365 threads and associate pthread info with each LWP. */
1366 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1367 attach_proc_task_lwp_callback);
1368
1369 if (target_can_async_p ())
1370 target_async (1);
1371 }
1372
1373 /* Get pending status of LP. */
1374 static int
1375 get_pending_status (struct lwp_info *lp, int *status)
1376 {
1377 enum gdb_signal signo = GDB_SIGNAL_0;
1378
1379 /* If we paused threads momentarily, we may have stored pending
1380 events in lp->status or lp->waitstatus (see stop_wait_callback),
1381 and GDB core hasn't seen any signal for those threads.
1382 Otherwise, the last signal reported to the core is found in the
1383 thread object's stop_signal.
1384
1385 There's a corner case that isn't handled here at present. Only
1386 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1387 stop_signal make sense as a real signal to pass to the inferior.
1388 Some catchpoint related events, like
1389 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1390 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1391 those traps are debug API (ptrace in our case) related and
1392 induced; the inferior wouldn't see them if it wasn't being
1393 traced. Hence, we should never pass them to the inferior, even
1394 when set to pass state. Since this corner case isn't handled by
1395 infrun.c when proceeding with a signal, for consistency, neither
1396 do we handle it here (or elsewhere in the file we check for
1397 signal pass state). Normally SIGTRAP isn't set to pass state, so
1398 this is really a corner case. */
1399
1400 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1401 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1402 else if (lp->status)
1403 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1404 else if (non_stop && !is_executing (lp->ptid))
1405 {
1406 struct thread_info *tp = find_thread_ptid (lp->ptid);
1407
1408 signo = tp->suspend.stop_signal;
1409 }
1410 else if (!non_stop)
1411 {
1412 struct target_waitstatus last;
1413 ptid_t last_ptid;
1414
1415 get_last_target_status (&last_ptid, &last);
1416
1417 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1418 {
1419 struct thread_info *tp = find_thread_ptid (lp->ptid);
1420
1421 signo = tp->suspend.stop_signal;
1422 }
1423 }
1424
1425 *status = 0;
1426
1427 if (signo == GDB_SIGNAL_0)
1428 {
1429 if (debug_linux_nat)
1430 fprintf_unfiltered (gdb_stdlog,
1431 "GPT: lwp %s has no pending signal\n",
1432 target_pid_to_str (lp->ptid));
1433 }
1434 else if (!signal_pass_state (signo))
1435 {
1436 if (debug_linux_nat)
1437 fprintf_unfiltered (gdb_stdlog,
1438 "GPT: lwp %s had signal %s, "
1439 "but it is in no pass state\n",
1440 target_pid_to_str (lp->ptid),
1441 gdb_signal_to_string (signo));
1442 }
1443 else
1444 {
1445 *status = W_STOPCODE (gdb_signal_to_host (signo));
1446
1447 if (debug_linux_nat)
1448 fprintf_unfiltered (gdb_stdlog,
1449 "GPT: lwp %s has pending signal %s\n",
1450 target_pid_to_str (lp->ptid),
1451 gdb_signal_to_string (signo));
1452 }
1453
1454 return 0;
1455 }
1456
1457 static int
1458 detach_callback (struct lwp_info *lp, void *data)
1459 {
1460 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1461
1462 if (debug_linux_nat && lp->status)
1463 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1464 strsignal (WSTOPSIG (lp->status)),
1465 target_pid_to_str (lp->ptid));
1466
1467 /* If there is a pending SIGSTOP, get rid of it. */
1468 if (lp->signalled)
1469 {
1470 if (debug_linux_nat)
1471 fprintf_unfiltered (gdb_stdlog,
1472 "DC: Sending SIGCONT to %s\n",
1473 target_pid_to_str (lp->ptid));
1474
1475 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1476 lp->signalled = 0;
1477 }
1478
1479 /* We don't actually detach from the LWP that has an id equal to the
1480 overall process id just yet. */
1481 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1482 {
1483 int status = 0;
1484
1485 /* Pass on any pending signal for this LWP. */
1486 get_pending_status (lp, &status);
1487
1488 if (linux_nat_prepare_to_resume != NULL)
1489 linux_nat_prepare_to_resume (lp);
1490 errno = 0;
1491 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1492 WSTOPSIG (status)) < 0)
1493 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1494 safe_strerror (errno));
1495
1496 if (debug_linux_nat)
1497 fprintf_unfiltered (gdb_stdlog,
1498 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1499 target_pid_to_str (lp->ptid),
1500 strsignal (WSTOPSIG (status)));
1501
1502 delete_lwp (lp->ptid);
1503 }
1504
1505 return 0;
1506 }
1507
1508 static void
1509 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1510 {
1511 int pid;
1512 int status;
1513 struct lwp_info *main_lwp;
1514
1515 pid = ptid_get_pid (inferior_ptid);
1516
1517 /* Don't unregister from the event loop, as there may be other
1518 inferiors running. */
1519
1520 /* Stop all threads before detaching. ptrace requires that the
1521 thread is stopped to sucessfully detach. */
1522 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1523 /* ... and wait until all of them have reported back that
1524 they're no longer running. */
1525 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1526
1527 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1528
1529 /* Only the initial process should be left right now. */
1530 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1531
1532 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1533
1534 /* Pass on any pending signal for the last LWP. */
1535 if ((args == NULL || *args == '\0')
1536 && get_pending_status (main_lwp, &status) != -1
1537 && WIFSTOPPED (status))
1538 {
1539 char *tem;
1540
1541 /* Put the signal number in ARGS so that inf_ptrace_detach will
1542 pass it along with PTRACE_DETACH. */
1543 tem = alloca (8);
1544 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1545 args = tem;
1546 if (debug_linux_nat)
1547 fprintf_unfiltered (gdb_stdlog,
1548 "LND: Sending signal %s to %s\n",
1549 args,
1550 target_pid_to_str (main_lwp->ptid));
1551 }
1552
1553 if (linux_nat_prepare_to_resume != NULL)
1554 linux_nat_prepare_to_resume (main_lwp);
1555 delete_lwp (main_lwp->ptid);
1556
1557 if (forks_exist_p ())
1558 {
1559 /* Multi-fork case. The current inferior_ptid is being detached
1560 from, but there are other viable forks to debug. Detach from
1561 the current fork, and context-switch to the first
1562 available. */
1563 linux_fork_detach (args, from_tty);
1564 }
1565 else
1566 linux_ops->to_detach (ops, args, from_tty);
1567 }
1568
1569 /* Resume execution of the inferior process. If STEP is nonzero,
1570 single-step it. If SIGNAL is nonzero, give it that signal. */
1571
1572 static void
1573 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1574 enum gdb_signal signo)
1575 {
1576 lp->step = step;
1577
1578 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1579 We only presently need that if the LWP is stepped though (to
1580 handle the case of stepping a breakpoint instruction). */
1581 if (step)
1582 {
1583 struct regcache *regcache = get_thread_regcache (lp->ptid);
1584
1585 lp->stop_pc = regcache_read_pc (regcache);
1586 }
1587 else
1588 lp->stop_pc = 0;
1589
1590 if (linux_nat_prepare_to_resume != NULL)
1591 linux_nat_prepare_to_resume (lp);
1592 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1593
1594 /* Successfully resumed. Clear state that no longer makes sense,
1595 and mark the LWP as running. Must not do this before resuming
1596 otherwise if that fails other code will be confused. E.g., we'd
1597 later try to stop the LWP and hang forever waiting for a stop
1598 status. Note that we must not throw after this is cleared,
1599 otherwise handle_zombie_lwp_error would get confused. */
1600 lp->stopped = 0;
1601 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1602 registers_changed_ptid (lp->ptid);
1603 }
1604
1605 /* Called when we try to resume a stopped LWP and that errors out. If
1606 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1607 or about to become), discard the error, clear any pending status
1608 the LWP may have, and return true (we'll collect the exit status
1609 soon enough). Otherwise, return false. */
1610
1611 static int
1612 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1613 {
1614 /* If we get an error after resuming the LWP successfully, we'd
1615 confuse !T state for the LWP being gone. */
1616 gdb_assert (lp->stopped);
1617
1618 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1619 because even if ptrace failed with ESRCH, the tracee may be "not
1620 yet fully dead", but already refusing ptrace requests. In that
1621 case the tracee has 'R (Running)' state for a little bit
1622 (observed in Linux 3.18). See also the note on ESRCH in the
1623 ptrace(2) man page. Instead, check whether the LWP has any state
1624 other than ptrace-stopped. */
1625
1626 /* Don't assume anything if /proc/PID/status can't be read. */
1627 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1628 {
1629 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1630 lp->status = 0;
1631 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1632 return 1;
1633 }
1634 return 0;
1635 }
1636
1637 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1638 disappears while we try to resume it. */
1639
1640 static void
1641 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1642 {
1643 TRY
1644 {
1645 linux_resume_one_lwp_throw (lp, step, signo);
1646 }
1647 CATCH (ex, RETURN_MASK_ERROR)
1648 {
1649 if (!check_ptrace_stopped_lwp_gone (lp))
1650 throw_exception (ex);
1651 }
1652 END_CATCH
1653 }
1654
1655 /* Resume LP. */
1656
1657 static void
1658 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1659 {
1660 if (lp->stopped)
1661 {
1662 struct inferior *inf = find_inferior_ptid (lp->ptid);
1663
1664 if (inf->vfork_child != NULL)
1665 {
1666 if (debug_linux_nat)
1667 fprintf_unfiltered (gdb_stdlog,
1668 "RC: Not resuming %s (vfork parent)\n",
1669 target_pid_to_str (lp->ptid));
1670 }
1671 else if (!lwp_status_pending_p (lp))
1672 {
1673 if (debug_linux_nat)
1674 fprintf_unfiltered (gdb_stdlog,
1675 "RC: Resuming sibling %s, %s, %s\n",
1676 target_pid_to_str (lp->ptid),
1677 (signo != GDB_SIGNAL_0
1678 ? strsignal (gdb_signal_to_host (signo))
1679 : "0"),
1680 step ? "step" : "resume");
1681
1682 linux_resume_one_lwp (lp, step, signo);
1683 }
1684 else
1685 {
1686 if (debug_linux_nat)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "RC: Not resuming sibling %s (has pending)\n",
1689 target_pid_to_str (lp->ptid));
1690 }
1691 }
1692 else
1693 {
1694 if (debug_linux_nat)
1695 fprintf_unfiltered (gdb_stdlog,
1696 "RC: Not resuming sibling %s (not stopped)\n",
1697 target_pid_to_str (lp->ptid));
1698 }
1699 }
1700
1701 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1702 Resume LWP with the last stop signal, if it is in pass state. */
1703
1704 static int
1705 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1706 {
1707 enum gdb_signal signo = GDB_SIGNAL_0;
1708
1709 if (lp == except)
1710 return 0;
1711
1712 if (lp->stopped)
1713 {
1714 struct thread_info *thread;
1715
1716 thread = find_thread_ptid (lp->ptid);
1717 if (thread != NULL)
1718 {
1719 signo = thread->suspend.stop_signal;
1720 thread->suspend.stop_signal = GDB_SIGNAL_0;
1721 }
1722 }
1723
1724 resume_lwp (lp, 0, signo);
1725 return 0;
1726 }
1727
1728 static int
1729 resume_clear_callback (struct lwp_info *lp, void *data)
1730 {
1731 lp->resumed = 0;
1732 lp->last_resume_kind = resume_stop;
1733 return 0;
1734 }
1735
1736 static int
1737 resume_set_callback (struct lwp_info *lp, void *data)
1738 {
1739 lp->resumed = 1;
1740 lp->last_resume_kind = resume_continue;
1741 return 0;
1742 }
1743
1744 static void
1745 linux_nat_resume (struct target_ops *ops,
1746 ptid_t ptid, int step, enum gdb_signal signo)
1747 {
1748 struct lwp_info *lp;
1749 int resume_many;
1750
1751 if (debug_linux_nat)
1752 fprintf_unfiltered (gdb_stdlog,
1753 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1754 step ? "step" : "resume",
1755 target_pid_to_str (ptid),
1756 (signo != GDB_SIGNAL_0
1757 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1758 target_pid_to_str (inferior_ptid));
1759
1760 /* A specific PTID means `step only this process id'. */
1761 resume_many = (ptid_equal (minus_one_ptid, ptid)
1762 || ptid_is_pid (ptid));
1763
1764 /* Mark the lwps we're resuming as resumed. */
1765 iterate_over_lwps (ptid, resume_set_callback, NULL);
1766
1767 /* See if it's the current inferior that should be handled
1768 specially. */
1769 if (resume_many)
1770 lp = find_lwp_pid (inferior_ptid);
1771 else
1772 lp = find_lwp_pid (ptid);
1773 gdb_assert (lp != NULL);
1774
1775 /* Remember if we're stepping. */
1776 lp->last_resume_kind = step ? resume_step : resume_continue;
1777
1778 /* If we have a pending wait status for this thread, there is no
1779 point in resuming the process. But first make sure that
1780 linux_nat_wait won't preemptively handle the event - we
1781 should never take this short-circuit if we are going to
1782 leave LP running, since we have skipped resuming all the
1783 other threads. This bit of code needs to be synchronized
1784 with linux_nat_wait. */
1785
1786 if (lp->status && WIFSTOPPED (lp->status))
1787 {
1788 if (!lp->step
1789 && WSTOPSIG (lp->status)
1790 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1791 {
1792 if (debug_linux_nat)
1793 fprintf_unfiltered (gdb_stdlog,
1794 "LLR: Not short circuiting for ignored "
1795 "status 0x%x\n", lp->status);
1796
1797 /* FIXME: What should we do if we are supposed to continue
1798 this thread with a signal? */
1799 gdb_assert (signo == GDB_SIGNAL_0);
1800 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1801 lp->status = 0;
1802 }
1803 }
1804
1805 if (lwp_status_pending_p (lp))
1806 {
1807 /* FIXME: What should we do if we are supposed to continue
1808 this thread with a signal? */
1809 gdb_assert (signo == GDB_SIGNAL_0);
1810
1811 if (debug_linux_nat)
1812 fprintf_unfiltered (gdb_stdlog,
1813 "LLR: Short circuiting for status 0x%x\n",
1814 lp->status);
1815
1816 if (target_can_async_p ())
1817 {
1818 target_async (1);
1819 /* Tell the event loop we have something to process. */
1820 async_file_mark ();
1821 }
1822 return;
1823 }
1824
1825 if (resume_many)
1826 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1827
1828 if (debug_linux_nat)
1829 fprintf_unfiltered (gdb_stdlog,
1830 "LLR: %s %s, %s (resume event thread)\n",
1831 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1832 target_pid_to_str (lp->ptid),
1833 (signo != GDB_SIGNAL_0
1834 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1835
1836 linux_resume_one_lwp (lp, step, signo);
1837
1838 if (target_can_async_p ())
1839 target_async (1);
1840 }
1841
1842 /* Send a signal to an LWP. */
1843
1844 static int
1845 kill_lwp (int lwpid, int signo)
1846 {
1847 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1848 fails, then we are not using nptl threads and we should be using kill. */
1849
1850 #ifdef HAVE_TKILL_SYSCALL
1851 {
1852 static int tkill_failed;
1853
1854 if (!tkill_failed)
1855 {
1856 int ret;
1857
1858 errno = 0;
1859 ret = syscall (__NR_tkill, lwpid, signo);
1860 if (errno != ENOSYS)
1861 return ret;
1862 tkill_failed = 1;
1863 }
1864 }
1865 #endif
1866
1867 return kill (lwpid, signo);
1868 }
1869
1870 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1871 event, check if the core is interested in it: if not, ignore the
1872 event, and keep waiting; otherwise, we need to toggle the LWP's
1873 syscall entry/exit status, since the ptrace event itself doesn't
1874 indicate it, and report the trap to higher layers. */
1875
1876 static int
1877 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1878 {
1879 struct target_waitstatus *ourstatus = &lp->waitstatus;
1880 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1881 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1882
1883 if (stopping)
1884 {
1885 /* If we're stopping threads, there's a SIGSTOP pending, which
1886 makes it so that the LWP reports an immediate syscall return,
1887 followed by the SIGSTOP. Skip seeing that "return" using
1888 PTRACE_CONT directly, and let stop_wait_callback collect the
1889 SIGSTOP. Later when the thread is resumed, a new syscall
1890 entry event. If we didn't do this (and returned 0), we'd
1891 leave a syscall entry pending, and our caller, by using
1892 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1893 itself. Later, when the user re-resumes this LWP, we'd see
1894 another syscall entry event and we'd mistake it for a return.
1895
1896 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1897 (leaving immediately with LWP->signalled set, without issuing
1898 a PTRACE_CONT), it would still be problematic to leave this
1899 syscall enter pending, as later when the thread is resumed,
1900 it would then see the same syscall exit mentioned above,
1901 followed by the delayed SIGSTOP, while the syscall didn't
1902 actually get to execute. It seems it would be even more
1903 confusing to the user. */
1904
1905 if (debug_linux_nat)
1906 fprintf_unfiltered (gdb_stdlog,
1907 "LHST: ignoring syscall %d "
1908 "for LWP %ld (stopping threads), "
1909 "resuming with PTRACE_CONT for SIGSTOP\n",
1910 syscall_number,
1911 ptid_get_lwp (lp->ptid));
1912
1913 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1914 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1915 lp->stopped = 0;
1916 return 1;
1917 }
1918
1919 if (catch_syscall_enabled ())
1920 {
1921 /* Always update the entry/return state, even if this particular
1922 syscall isn't interesting to the core now. In async mode,
1923 the user could install a new catchpoint for this syscall
1924 between syscall enter/return, and we'll need to know to
1925 report a syscall return if that happens. */
1926 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1927 ? TARGET_WAITKIND_SYSCALL_RETURN
1928 : TARGET_WAITKIND_SYSCALL_ENTRY);
1929
1930 if (catching_syscall_number (syscall_number))
1931 {
1932 /* Alright, an event to report. */
1933 ourstatus->kind = lp->syscall_state;
1934 ourstatus->value.syscall_number = syscall_number;
1935
1936 if (debug_linux_nat)
1937 fprintf_unfiltered (gdb_stdlog,
1938 "LHST: stopping for %s of syscall %d"
1939 " for LWP %ld\n",
1940 lp->syscall_state
1941 == TARGET_WAITKIND_SYSCALL_ENTRY
1942 ? "entry" : "return",
1943 syscall_number,
1944 ptid_get_lwp (lp->ptid));
1945 return 0;
1946 }
1947
1948 if (debug_linux_nat)
1949 fprintf_unfiltered (gdb_stdlog,
1950 "LHST: ignoring %s of syscall %d "
1951 "for LWP %ld\n",
1952 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1953 ? "entry" : "return",
1954 syscall_number,
1955 ptid_get_lwp (lp->ptid));
1956 }
1957 else
1958 {
1959 /* If we had been syscall tracing, and hence used PT_SYSCALL
1960 before on this LWP, it could happen that the user removes all
1961 syscall catchpoints before we get to process this event.
1962 There are two noteworthy issues here:
1963
1964 - When stopped at a syscall entry event, resuming with
1965 PT_STEP still resumes executing the syscall and reports a
1966 syscall return.
1967
1968 - Only PT_SYSCALL catches syscall enters. If we last
1969 single-stepped this thread, then this event can't be a
1970 syscall enter. If we last single-stepped this thread, this
1971 has to be a syscall exit.
1972
1973 The points above mean that the next resume, be it PT_STEP or
1974 PT_CONTINUE, can not trigger a syscall trace event. */
1975 if (debug_linux_nat)
1976 fprintf_unfiltered (gdb_stdlog,
1977 "LHST: caught syscall event "
1978 "with no syscall catchpoints."
1979 " %d for LWP %ld, ignoring\n",
1980 syscall_number,
1981 ptid_get_lwp (lp->ptid));
1982 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1983 }
1984
1985 /* The core isn't interested in this event. For efficiency, avoid
1986 stopping all threads only to have the core resume them all again.
1987 Since we're not stopping threads, if we're still syscall tracing
1988 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1989 subsequent syscall. Simply resume using the inf-ptrace layer,
1990 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1991
1992 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1993 return 1;
1994 }
1995
1996 /* Handle a GNU/Linux extended wait response. If we see a clone
1997 event, we need to add the new LWP to our list (and not report the
1998 trap to higher layers). This function returns non-zero if the
1999 event should be ignored and we should wait again. If STOPPING is
2000 true, the new LWP remains stopped, otherwise it is continued. */
2001
2002 static int
2003 linux_handle_extended_wait (struct lwp_info *lp, int status,
2004 int stopping)
2005 {
2006 int pid = ptid_get_lwp (lp->ptid);
2007 struct target_waitstatus *ourstatus = &lp->waitstatus;
2008 int event = linux_ptrace_get_extended_event (status);
2009
2010 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2011 || event == PTRACE_EVENT_CLONE)
2012 {
2013 unsigned long new_pid;
2014 int ret;
2015
2016 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2017
2018 /* If we haven't already seen the new PID stop, wait for it now. */
2019 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2020 {
2021 /* The new child has a pending SIGSTOP. We can't affect it until it
2022 hits the SIGSTOP, but we're already attached. */
2023 ret = my_waitpid (new_pid, &status,
2024 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2025 if (ret == -1)
2026 perror_with_name (_("waiting for new child"));
2027 else if (ret != new_pid)
2028 internal_error (__FILE__, __LINE__,
2029 _("wait returned unexpected PID %d"), ret);
2030 else if (!WIFSTOPPED (status))
2031 internal_error (__FILE__, __LINE__,
2032 _("wait returned unexpected status 0x%x"), status);
2033 }
2034
2035 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2036
2037 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2038 {
2039 /* The arch-specific native code may need to know about new
2040 forks even if those end up never mapped to an
2041 inferior. */
2042 if (linux_nat_new_fork != NULL)
2043 linux_nat_new_fork (lp, new_pid);
2044 }
2045
2046 if (event == PTRACE_EVENT_FORK
2047 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2048 {
2049 /* Handle checkpointing by linux-fork.c here as a special
2050 case. We don't want the follow-fork-mode or 'catch fork'
2051 to interfere with this. */
2052
2053 /* This won't actually modify the breakpoint list, but will
2054 physically remove the breakpoints from the child. */
2055 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2056
2057 /* Retain child fork in ptrace (stopped) state. */
2058 if (!find_fork_pid (new_pid))
2059 add_fork (new_pid);
2060
2061 /* Report as spurious, so that infrun doesn't want to follow
2062 this fork. We're actually doing an infcall in
2063 linux-fork.c. */
2064 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2065
2066 /* Report the stop to the core. */
2067 return 0;
2068 }
2069
2070 if (event == PTRACE_EVENT_FORK)
2071 ourstatus->kind = TARGET_WAITKIND_FORKED;
2072 else if (event == PTRACE_EVENT_VFORK)
2073 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2074 else
2075 {
2076 struct lwp_info *new_lp;
2077
2078 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2079
2080 if (debug_linux_nat)
2081 fprintf_unfiltered (gdb_stdlog,
2082 "LHEW: Got clone event "
2083 "from LWP %d, new child is LWP %ld\n",
2084 pid, new_pid);
2085
2086 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2087 new_lp->cloned = 1;
2088 new_lp->stopped = 1;
2089
2090 if (WSTOPSIG (status) != SIGSTOP)
2091 {
2092 /* This can happen if someone starts sending signals to
2093 the new thread before it gets a chance to run, which
2094 have a lower number than SIGSTOP (e.g. SIGUSR1).
2095 This is an unlikely case, and harder to handle for
2096 fork / vfork than for clone, so we do not try - but
2097 we handle it for clone events here. We'll send
2098 the other signal on to the thread below. */
2099
2100 new_lp->signalled = 1;
2101 }
2102 else
2103 {
2104 struct thread_info *tp;
2105
2106 /* When we stop for an event in some other thread, and
2107 pull the thread list just as this thread has cloned,
2108 we'll have seen the new thread in the thread_db list
2109 before handling the CLONE event (glibc's
2110 pthread_create adds the new thread to the thread list
2111 before clone'ing, and has the kernel fill in the
2112 thread's tid on the clone call with
2113 CLONE_PARENT_SETTID). If that happened, and the core
2114 had requested the new thread to stop, we'll have
2115 killed it with SIGSTOP. But since SIGSTOP is not an
2116 RT signal, it can only be queued once. We need to be
2117 careful to not resume the LWP if we wanted it to
2118 stop. In that case, we'll leave the SIGSTOP pending.
2119 It will later be reported as GDB_SIGNAL_0. */
2120 tp = find_thread_ptid (new_lp->ptid);
2121 if (tp != NULL && tp->stop_requested)
2122 new_lp->last_resume_kind = resume_stop;
2123 else
2124 status = 0;
2125 }
2126
2127 /* If the thread_db layer is active, let it record the user
2128 level thread id and status, and add the thread to GDB's
2129 list. */
2130 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2131 {
2132 /* The process is not using thread_db. Add the LWP to
2133 GDB's list. */
2134 target_post_attach (ptid_get_lwp (new_lp->ptid));
2135 add_thread (new_lp->ptid);
2136 }
2137
2138 /* Even if we're stopping the thread for some reason
2139 internal to this module, from the user/frontend's
2140 perspective, this new thread is running. */
2141 set_running (new_lp->ptid, 1);
2142 if (!stopping)
2143 {
2144 set_executing (new_lp->ptid, 1);
2145 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2146 resume_stop. */
2147 new_lp->last_resume_kind = resume_continue;
2148 }
2149
2150 if (status != 0)
2151 {
2152 /* We created NEW_LP so it cannot yet contain STATUS. */
2153 gdb_assert (new_lp->status == 0);
2154
2155 /* Save the wait status to report later. */
2156 if (debug_linux_nat)
2157 fprintf_unfiltered (gdb_stdlog,
2158 "LHEW: waitpid of new LWP %ld, "
2159 "saving status %s\n",
2160 (long) ptid_get_lwp (new_lp->ptid),
2161 status_to_str (status));
2162 new_lp->status = status;
2163 }
2164
2165 new_lp->resumed = !stopping;
2166 return 1;
2167 }
2168
2169 return 0;
2170 }
2171
2172 if (event == PTRACE_EVENT_EXEC)
2173 {
2174 if (debug_linux_nat)
2175 fprintf_unfiltered (gdb_stdlog,
2176 "LHEW: Got exec event from LWP %ld\n",
2177 ptid_get_lwp (lp->ptid));
2178
2179 ourstatus->kind = TARGET_WAITKIND_EXECD;
2180 ourstatus->value.execd_pathname
2181 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2182
2183 /* The thread that execed must have been resumed, but, when a
2184 thread execs, it changes its tid to the tgid, and the old
2185 tgid thread might have not been resumed. */
2186 lp->resumed = 1;
2187 return 0;
2188 }
2189
2190 if (event == PTRACE_EVENT_VFORK_DONE)
2191 {
2192 if (current_inferior ()->waiting_for_vfork_done)
2193 {
2194 if (debug_linux_nat)
2195 fprintf_unfiltered (gdb_stdlog,
2196 "LHEW: Got expected PTRACE_EVENT_"
2197 "VFORK_DONE from LWP %ld: stopping\n",
2198 ptid_get_lwp (lp->ptid));
2199
2200 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2201 return 0;
2202 }
2203
2204 if (debug_linux_nat)
2205 fprintf_unfiltered (gdb_stdlog,
2206 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2207 "from LWP %ld: ignoring\n",
2208 ptid_get_lwp (lp->ptid));
2209 return 1;
2210 }
2211
2212 internal_error (__FILE__, __LINE__,
2213 _("unknown ptrace event %d"), event);
2214 }
2215
2216 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2217 exited. */
2218
2219 static int
2220 wait_lwp (struct lwp_info *lp)
2221 {
2222 pid_t pid;
2223 int status = 0;
2224 int thread_dead = 0;
2225 sigset_t prev_mask;
2226
2227 gdb_assert (!lp->stopped);
2228 gdb_assert (lp->status == 0);
2229
2230 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2231 block_child_signals (&prev_mask);
2232
2233 for (;;)
2234 {
2235 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2236 was right and we should just call sigsuspend. */
2237
2238 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2239 if (pid == -1 && errno == ECHILD)
2240 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2241 if (pid == -1 && errno == ECHILD)
2242 {
2243 /* The thread has previously exited. We need to delete it
2244 now because, for some vendor 2.4 kernels with NPTL
2245 support backported, there won't be an exit event unless
2246 it is the main thread. 2.6 kernels will report an exit
2247 event for each thread that exits, as expected. */
2248 thread_dead = 1;
2249 if (debug_linux_nat)
2250 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2251 target_pid_to_str (lp->ptid));
2252 }
2253 if (pid != 0)
2254 break;
2255
2256 /* Bugs 10970, 12702.
2257 Thread group leader may have exited in which case we'll lock up in
2258 waitpid if there are other threads, even if they are all zombies too.
2259 Basically, we're not supposed to use waitpid this way.
2260 __WCLONE is not applicable for the leader so we can't use that.
2261 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2262 process; it gets ESRCH both for the zombie and for running processes.
2263
2264 As a workaround, check if we're waiting for the thread group leader and
2265 if it's a zombie, and avoid calling waitpid if it is.
2266
2267 This is racy, what if the tgl becomes a zombie right after we check?
2268 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2269 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2270
2271 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2272 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2273 {
2274 thread_dead = 1;
2275 if (debug_linux_nat)
2276 fprintf_unfiltered (gdb_stdlog,
2277 "WL: Thread group leader %s vanished.\n",
2278 target_pid_to_str (lp->ptid));
2279 break;
2280 }
2281
2282 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2283 get invoked despite our caller had them intentionally blocked by
2284 block_child_signals. This is sensitive only to the loop of
2285 linux_nat_wait_1 and there if we get called my_waitpid gets called
2286 again before it gets to sigsuspend so we can safely let the handlers
2287 get executed here. */
2288
2289 if (debug_linux_nat)
2290 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2291 sigsuspend (&suspend_mask);
2292 }
2293
2294 restore_child_signals_mask (&prev_mask);
2295
2296 if (!thread_dead)
2297 {
2298 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2299
2300 if (debug_linux_nat)
2301 {
2302 fprintf_unfiltered (gdb_stdlog,
2303 "WL: waitpid %s received %s\n",
2304 target_pid_to_str (lp->ptid),
2305 status_to_str (status));
2306 }
2307
2308 /* Check if the thread has exited. */
2309 if (WIFEXITED (status) || WIFSIGNALED (status))
2310 {
2311 thread_dead = 1;
2312 if (debug_linux_nat)
2313 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2314 target_pid_to_str (lp->ptid));
2315 }
2316 }
2317
2318 if (thread_dead)
2319 {
2320 exit_lwp (lp);
2321 return 0;
2322 }
2323
2324 gdb_assert (WIFSTOPPED (status));
2325 lp->stopped = 1;
2326
2327 if (lp->must_set_ptrace_flags)
2328 {
2329 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2330 int options = linux_nat_ptrace_options (inf->attach_flag);
2331
2332 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2333 lp->must_set_ptrace_flags = 0;
2334 }
2335
2336 /* Handle GNU/Linux's syscall SIGTRAPs. */
2337 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2338 {
2339 /* No longer need the sysgood bit. The ptrace event ends up
2340 recorded in lp->waitstatus if we care for it. We can carry
2341 on handling the event like a regular SIGTRAP from here
2342 on. */
2343 status = W_STOPCODE (SIGTRAP);
2344 if (linux_handle_syscall_trap (lp, 1))
2345 return wait_lwp (lp);
2346 }
2347
2348 /* Handle GNU/Linux's extended waitstatus for trace events. */
2349 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2350 && linux_is_extended_waitstatus (status))
2351 {
2352 if (debug_linux_nat)
2353 fprintf_unfiltered (gdb_stdlog,
2354 "WL: Handling extended status 0x%06x\n",
2355 status);
2356 linux_handle_extended_wait (lp, status, 1);
2357 return 0;
2358 }
2359
2360 return status;
2361 }
2362
2363 /* Send a SIGSTOP to LP. */
2364
2365 static int
2366 stop_callback (struct lwp_info *lp, void *data)
2367 {
2368 if (!lp->stopped && !lp->signalled)
2369 {
2370 int ret;
2371
2372 if (debug_linux_nat)
2373 {
2374 fprintf_unfiltered (gdb_stdlog,
2375 "SC: kill %s **<SIGSTOP>**\n",
2376 target_pid_to_str (lp->ptid));
2377 }
2378 errno = 0;
2379 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2380 if (debug_linux_nat)
2381 {
2382 fprintf_unfiltered (gdb_stdlog,
2383 "SC: lwp kill %d %s\n",
2384 ret,
2385 errno ? safe_strerror (errno) : "ERRNO-OK");
2386 }
2387
2388 lp->signalled = 1;
2389 gdb_assert (lp->status == 0);
2390 }
2391
2392 return 0;
2393 }
2394
2395 /* Request a stop on LWP. */
2396
2397 void
2398 linux_stop_lwp (struct lwp_info *lwp)
2399 {
2400 stop_callback (lwp, NULL);
2401 }
2402
2403 /* See linux-nat.h */
2404
2405 void
2406 linux_stop_and_wait_all_lwps (void)
2407 {
2408 /* Stop all LWP's ... */
2409 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2410
2411 /* ... and wait until all of them have reported back that
2412 they're no longer running. */
2413 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2414 }
2415
2416 /* See linux-nat.h */
2417
2418 void
2419 linux_unstop_all_lwps (void)
2420 {
2421 iterate_over_lwps (minus_one_ptid,
2422 resume_stopped_resumed_lwps, &minus_one_ptid);
2423 }
2424
2425 /* Return non-zero if LWP PID has a pending SIGINT. */
2426
2427 static int
2428 linux_nat_has_pending_sigint (int pid)
2429 {
2430 sigset_t pending, blocked, ignored;
2431
2432 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2433
2434 if (sigismember (&pending, SIGINT)
2435 && !sigismember (&ignored, SIGINT))
2436 return 1;
2437
2438 return 0;
2439 }
2440
2441 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2442
2443 static int
2444 set_ignore_sigint (struct lwp_info *lp, void *data)
2445 {
2446 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2447 flag to consume the next one. */
2448 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2449 && WSTOPSIG (lp->status) == SIGINT)
2450 lp->status = 0;
2451 else
2452 lp->ignore_sigint = 1;
2453
2454 return 0;
2455 }
2456
2457 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2458 This function is called after we know the LWP has stopped; if the LWP
2459 stopped before the expected SIGINT was delivered, then it will never have
2460 arrived. Also, if the signal was delivered to a shared queue and consumed
2461 by a different thread, it will never be delivered to this LWP. */
2462
2463 static void
2464 maybe_clear_ignore_sigint (struct lwp_info *lp)
2465 {
2466 if (!lp->ignore_sigint)
2467 return;
2468
2469 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2470 {
2471 if (debug_linux_nat)
2472 fprintf_unfiltered (gdb_stdlog,
2473 "MCIS: Clearing bogus flag for %s\n",
2474 target_pid_to_str (lp->ptid));
2475 lp->ignore_sigint = 0;
2476 }
2477 }
2478
2479 /* Fetch the possible triggered data watchpoint info and store it in
2480 LP.
2481
2482 On some archs, like x86, that use debug registers to set
2483 watchpoints, it's possible that the way to know which watched
2484 address trapped, is to check the register that is used to select
2485 which address to watch. Problem is, between setting the watchpoint
2486 and reading back which data address trapped, the user may change
2487 the set of watchpoints, and, as a consequence, GDB changes the
2488 debug registers in the inferior. To avoid reading back a stale
2489 stopped-data-address when that happens, we cache in LP the fact
2490 that a watchpoint trapped, and the corresponding data address, as
2491 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2492 registers meanwhile, we have the cached data we can rely on. */
2493
2494 static int
2495 check_stopped_by_watchpoint (struct lwp_info *lp)
2496 {
2497 struct cleanup *old_chain;
2498
2499 if (linux_ops->to_stopped_by_watchpoint == NULL)
2500 return 0;
2501
2502 old_chain = save_inferior_ptid ();
2503 inferior_ptid = lp->ptid;
2504
2505 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2506 {
2507 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2508
2509 if (linux_ops->to_stopped_data_address != NULL)
2510 lp->stopped_data_address_p =
2511 linux_ops->to_stopped_data_address (&current_target,
2512 &lp->stopped_data_address);
2513 else
2514 lp->stopped_data_address_p = 0;
2515 }
2516
2517 do_cleanups (old_chain);
2518
2519 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2520 }
2521
2522 /* Called when the LWP stopped for a trap that could be explained by a
2523 watchpoint or a breakpoint. */
2524
2525 static void
2526 save_sigtrap (struct lwp_info *lp)
2527 {
2528 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2529 gdb_assert (lp->status != 0);
2530
2531 /* Check first if this was a SW/HW breakpoint before checking
2532 watchpoints, because at least s390 can't tell the data address of
2533 hardware watchpoint hits, and the kernel returns
2534 stopped-by-watchpoint as long as there's a watchpoint set. */
2535 if (linux_nat_status_is_event (lp->status))
2536 check_stopped_by_breakpoint (lp);
2537
2538 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2539 or hardware watchpoint. Check which is which if we got
2540 TARGET_STOPPED_BY_HW_BREAKPOINT. */
2541 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON
2542 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2543 check_stopped_by_watchpoint (lp);
2544 }
2545
2546 /* Returns true if the LWP had stopped for a watchpoint. */
2547
2548 static int
2549 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2550 {
2551 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2552
2553 gdb_assert (lp != NULL);
2554
2555 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2556 }
2557
2558 static int
2559 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2560 {
2561 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2562
2563 gdb_assert (lp != NULL);
2564
2565 *addr_p = lp->stopped_data_address;
2566
2567 return lp->stopped_data_address_p;
2568 }
2569
2570 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2571
2572 static int
2573 sigtrap_is_event (int status)
2574 {
2575 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2576 }
2577
2578 /* Set alternative SIGTRAP-like events recognizer. If
2579 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2580 applied. */
2581
2582 void
2583 linux_nat_set_status_is_event (struct target_ops *t,
2584 int (*status_is_event) (int status))
2585 {
2586 linux_nat_status_is_event = status_is_event;
2587 }
2588
2589 /* Wait until LP is stopped. */
2590
2591 static int
2592 stop_wait_callback (struct lwp_info *lp, void *data)
2593 {
2594 struct inferior *inf = find_inferior_ptid (lp->ptid);
2595
2596 /* If this is a vfork parent, bail out, it is not going to report
2597 any SIGSTOP until the vfork is done with. */
2598 if (inf->vfork_child != NULL)
2599 return 0;
2600
2601 if (!lp->stopped)
2602 {
2603 int status;
2604
2605 status = wait_lwp (lp);
2606 if (status == 0)
2607 return 0;
2608
2609 if (lp->ignore_sigint && WIFSTOPPED (status)
2610 && WSTOPSIG (status) == SIGINT)
2611 {
2612 lp->ignore_sigint = 0;
2613
2614 errno = 0;
2615 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2616 lp->stopped = 0;
2617 if (debug_linux_nat)
2618 fprintf_unfiltered (gdb_stdlog,
2619 "PTRACE_CONT %s, 0, 0 (%s) "
2620 "(discarding SIGINT)\n",
2621 target_pid_to_str (lp->ptid),
2622 errno ? safe_strerror (errno) : "OK");
2623
2624 return stop_wait_callback (lp, NULL);
2625 }
2626
2627 maybe_clear_ignore_sigint (lp);
2628
2629 if (WSTOPSIG (status) != SIGSTOP)
2630 {
2631 /* The thread was stopped with a signal other than SIGSTOP. */
2632
2633 if (debug_linux_nat)
2634 fprintf_unfiltered (gdb_stdlog,
2635 "SWC: Pending event %s in %s\n",
2636 status_to_str ((int) status),
2637 target_pid_to_str (lp->ptid));
2638
2639 /* Save the sigtrap event. */
2640 lp->status = status;
2641 gdb_assert (lp->signalled);
2642 save_sigtrap (lp);
2643 }
2644 else
2645 {
2646 /* We caught the SIGSTOP that we intended to catch, so
2647 there's no SIGSTOP pending. */
2648
2649 if (debug_linux_nat)
2650 fprintf_unfiltered (gdb_stdlog,
2651 "SWC: Expected SIGSTOP caught for %s.\n",
2652 target_pid_to_str (lp->ptid));
2653
2654 /* Reset SIGNALLED only after the stop_wait_callback call
2655 above as it does gdb_assert on SIGNALLED. */
2656 lp->signalled = 0;
2657 }
2658 }
2659
2660 return 0;
2661 }
2662
2663 /* Return non-zero if LP has a wait status pending. Discard the
2664 pending event and resume the LWP if the event that originally
2665 caused the stop became uninteresting. */
2666
2667 static int
2668 status_callback (struct lwp_info *lp, void *data)
2669 {
2670 /* Only report a pending wait status if we pretend that this has
2671 indeed been resumed. */
2672 if (!lp->resumed)
2673 return 0;
2674
2675 if (!lwp_status_pending_p (lp))
2676 return 0;
2677
2678 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2679 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2680 {
2681 struct regcache *regcache = get_thread_regcache (lp->ptid);
2682 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2683 CORE_ADDR pc;
2684 int discard = 0;
2685
2686 pc = regcache_read_pc (regcache);
2687
2688 if (pc != lp->stop_pc)
2689 {
2690 if (debug_linux_nat)
2691 fprintf_unfiltered (gdb_stdlog,
2692 "SC: PC of %s changed. was=%s, now=%s\n",
2693 target_pid_to_str (lp->ptid),
2694 paddress (target_gdbarch (), lp->stop_pc),
2695 paddress (target_gdbarch (), pc));
2696 discard = 1;
2697 }
2698
2699 #if !USE_SIGTRAP_SIGINFO
2700 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2701 {
2702 if (debug_linux_nat)
2703 fprintf_unfiltered (gdb_stdlog,
2704 "SC: previous breakpoint of %s, at %s gone\n",
2705 target_pid_to_str (lp->ptid),
2706 paddress (target_gdbarch (), lp->stop_pc));
2707
2708 discard = 1;
2709 }
2710 #endif
2711
2712 if (discard)
2713 {
2714 if (debug_linux_nat)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "SC: pending event of %s cancelled.\n",
2717 target_pid_to_str (lp->ptid));
2718
2719 lp->status = 0;
2720 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2721 return 0;
2722 }
2723 }
2724
2725 return 1;
2726 }
2727
2728 /* Return non-zero if LP isn't stopped. */
2729
2730 static int
2731 running_callback (struct lwp_info *lp, void *data)
2732 {
2733 return (!lp->stopped
2734 || (lwp_status_pending_p (lp) && lp->resumed));
2735 }
2736
2737 /* Count the LWP's that have had events. */
2738
2739 static int
2740 count_events_callback (struct lwp_info *lp, void *data)
2741 {
2742 int *count = data;
2743
2744 gdb_assert (count != NULL);
2745
2746 /* Select only resumed LWPs that have an event pending. */
2747 if (lp->resumed && lwp_status_pending_p (lp))
2748 (*count)++;
2749
2750 return 0;
2751 }
2752
2753 /* Select the LWP (if any) that is currently being single-stepped. */
2754
2755 static int
2756 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2757 {
2758 if (lp->last_resume_kind == resume_step
2759 && lp->status != 0)
2760 return 1;
2761 else
2762 return 0;
2763 }
2764
2765 /* Returns true if LP has a status pending. */
2766
2767 static int
2768 lwp_status_pending_p (struct lwp_info *lp)
2769 {
2770 /* We check for lp->waitstatus in addition to lp->status, because we
2771 can have pending process exits recorded in lp->status and
2772 W_EXITCODE(0,0) happens to be 0. */
2773 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2774 }
2775
2776 /* Select the Nth LWP that has had an event. */
2777
2778 static int
2779 select_event_lwp_callback (struct lwp_info *lp, void *data)
2780 {
2781 int *selector = data;
2782
2783 gdb_assert (selector != NULL);
2784
2785 /* Select only resumed LWPs that have an event pending. */
2786 if (lp->resumed && lwp_status_pending_p (lp))
2787 if ((*selector)-- == 0)
2788 return 1;
2789
2790 return 0;
2791 }
2792
2793 /* Called when the LWP got a signal/trap that could be explained by a
2794 software or hardware breakpoint. */
2795
2796 static int
2797 check_stopped_by_breakpoint (struct lwp_info *lp)
2798 {
2799 /* Arrange for a breakpoint to be hit again later. We don't keep
2800 the SIGTRAP status and don't forward the SIGTRAP signal to the
2801 LWP. We will handle the current event, eventually we will resume
2802 this LWP, and this breakpoint will trap again.
2803
2804 If we do not do this, then we run the risk that the user will
2805 delete or disable the breakpoint, but the LWP will have already
2806 tripped on it. */
2807
2808 struct regcache *regcache = get_thread_regcache (lp->ptid);
2809 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2810 CORE_ADDR pc;
2811 CORE_ADDR sw_bp_pc;
2812 #if USE_SIGTRAP_SIGINFO
2813 siginfo_t siginfo;
2814 #endif
2815
2816 pc = regcache_read_pc (regcache);
2817 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2818
2819 #if USE_SIGTRAP_SIGINFO
2820 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2821 {
2822 if (siginfo.si_signo == SIGTRAP)
2823 {
2824 if (siginfo.si_code == GDB_ARCH_TRAP_BRKPT)
2825 {
2826 if (debug_linux_nat)
2827 fprintf_unfiltered (gdb_stdlog,
2828 "CSBB: %s stopped by software "
2829 "breakpoint\n",
2830 target_pid_to_str (lp->ptid));
2831
2832 /* Back up the PC if necessary. */
2833 if (pc != sw_bp_pc)
2834 regcache_write_pc (regcache, sw_bp_pc);
2835
2836 lp->stop_pc = sw_bp_pc;
2837 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2838 return 1;
2839 }
2840 else if (siginfo.si_code == TRAP_HWBKPT)
2841 {
2842 if (debug_linux_nat)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "CSBB: %s stopped by hardware "
2845 "breakpoint/watchpoint\n",
2846 target_pid_to_str (lp->ptid));
2847
2848 lp->stop_pc = pc;
2849 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2850 return 1;
2851 }
2852 else if (siginfo.si_code == TRAP_TRACE)
2853 {
2854 if (debug_linux_nat)
2855 fprintf_unfiltered (gdb_stdlog,
2856 "CSBB: %s stopped by trace\n",
2857 target_pid_to_str (lp->ptid));
2858 }
2859 }
2860 }
2861 #else
2862 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2863 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2864 sw_bp_pc))
2865 {
2866 /* The LWP was either continued, or stepped a software
2867 breakpoint instruction. */
2868 if (debug_linux_nat)
2869 fprintf_unfiltered (gdb_stdlog,
2870 "CSBB: %s stopped by software breakpoint\n",
2871 target_pid_to_str (lp->ptid));
2872
2873 /* Back up the PC if necessary. */
2874 if (pc != sw_bp_pc)
2875 regcache_write_pc (regcache, sw_bp_pc);
2876
2877 lp->stop_pc = sw_bp_pc;
2878 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2879 return 1;
2880 }
2881
2882 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2883 {
2884 if (debug_linux_nat)
2885 fprintf_unfiltered (gdb_stdlog,
2886 "CSBB: stopped by hardware breakpoint %s\n",
2887 target_pid_to_str (lp->ptid));
2888
2889 lp->stop_pc = pc;
2890 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2891 return 1;
2892 }
2893 #endif
2894
2895 return 0;
2896 }
2897
2898
2899 /* Returns true if the LWP had stopped for a software breakpoint. */
2900
2901 static int
2902 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2903 {
2904 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2905
2906 gdb_assert (lp != NULL);
2907
2908 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2909 }
2910
2911 /* Implement the supports_stopped_by_sw_breakpoint method. */
2912
2913 static int
2914 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2915 {
2916 return USE_SIGTRAP_SIGINFO;
2917 }
2918
2919 /* Returns true if the LWP had stopped for a hardware
2920 breakpoint/watchpoint. */
2921
2922 static int
2923 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2924 {
2925 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2926
2927 gdb_assert (lp != NULL);
2928
2929 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2930 }
2931
2932 /* Implement the supports_stopped_by_hw_breakpoint method. */
2933
2934 static int
2935 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2936 {
2937 return USE_SIGTRAP_SIGINFO;
2938 }
2939
2940 /* Select one LWP out of those that have events pending. */
2941
2942 static void
2943 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2944 {
2945 int num_events = 0;
2946 int random_selector;
2947 struct lwp_info *event_lp = NULL;
2948
2949 /* Record the wait status for the original LWP. */
2950 (*orig_lp)->status = *status;
2951
2952 /* In all-stop, give preference to the LWP that is being
2953 single-stepped. There will be at most one, and it will be the
2954 LWP that the core is most interested in. If we didn't do this,
2955 then we'd have to handle pending step SIGTRAPs somehow in case
2956 the core later continues the previously-stepped thread, as
2957 otherwise we'd report the pending SIGTRAP then, and the core, not
2958 having stepped the thread, wouldn't understand what the trap was
2959 for, and therefore would report it to the user as a random
2960 signal. */
2961 if (!non_stop)
2962 {
2963 event_lp = iterate_over_lwps (filter,
2964 select_singlestep_lwp_callback, NULL);
2965 if (event_lp != NULL)
2966 {
2967 if (debug_linux_nat)
2968 fprintf_unfiltered (gdb_stdlog,
2969 "SEL: Select single-step %s\n",
2970 target_pid_to_str (event_lp->ptid));
2971 }
2972 }
2973
2974 if (event_lp == NULL)
2975 {
2976 /* Pick one at random, out of those which have had events. */
2977
2978 /* First see how many events we have. */
2979 iterate_over_lwps (filter, count_events_callback, &num_events);
2980 gdb_assert (num_events > 0);
2981
2982 /* Now randomly pick a LWP out of those that have had
2983 events. */
2984 random_selector = (int)
2985 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2986
2987 if (debug_linux_nat && num_events > 1)
2988 fprintf_unfiltered (gdb_stdlog,
2989 "SEL: Found %d events, selecting #%d\n",
2990 num_events, random_selector);
2991
2992 event_lp = iterate_over_lwps (filter,
2993 select_event_lwp_callback,
2994 &random_selector);
2995 }
2996
2997 if (event_lp != NULL)
2998 {
2999 /* Switch the event LWP. */
3000 *orig_lp = event_lp;
3001 *status = event_lp->status;
3002 }
3003
3004 /* Flush the wait status for the event LWP. */
3005 (*orig_lp)->status = 0;
3006 }
3007
3008 /* Return non-zero if LP has been resumed. */
3009
3010 static int
3011 resumed_callback (struct lwp_info *lp, void *data)
3012 {
3013 return lp->resumed;
3014 }
3015
3016 /* Stop an active thread, verify it still exists, then resume it. If
3017 the thread ends up with a pending status, then it is not resumed,
3018 and *DATA (really a pointer to int), is set. */
3019
3020 static int
3021 stop_and_resume_callback (struct lwp_info *lp, void *data)
3022 {
3023 if (!lp->stopped)
3024 {
3025 ptid_t ptid = lp->ptid;
3026
3027 stop_callback (lp, NULL);
3028 stop_wait_callback (lp, NULL);
3029
3030 /* Resume if the lwp still exists, and the core wanted it
3031 running. */
3032 lp = find_lwp_pid (ptid);
3033 if (lp != NULL)
3034 {
3035 if (lp->last_resume_kind == resume_stop
3036 && !lwp_status_pending_p (lp))
3037 {
3038 /* The core wanted the LWP to stop. Even if it stopped
3039 cleanly (with SIGSTOP), leave the event pending. */
3040 if (debug_linux_nat)
3041 fprintf_unfiltered (gdb_stdlog,
3042 "SARC: core wanted LWP %ld stopped "
3043 "(leaving SIGSTOP pending)\n",
3044 ptid_get_lwp (lp->ptid));
3045 lp->status = W_STOPCODE (SIGSTOP);
3046 }
3047
3048 if (!lwp_status_pending_p (lp))
3049 {
3050 if (debug_linux_nat)
3051 fprintf_unfiltered (gdb_stdlog,
3052 "SARC: re-resuming LWP %ld\n",
3053 ptid_get_lwp (lp->ptid));
3054 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
3055 }
3056 else
3057 {
3058 if (debug_linux_nat)
3059 fprintf_unfiltered (gdb_stdlog,
3060 "SARC: not re-resuming LWP %ld "
3061 "(has pending)\n",
3062 ptid_get_lwp (lp->ptid));
3063 }
3064 }
3065 }
3066 return 0;
3067 }
3068
3069 /* Check if we should go on and pass this event to common code.
3070 Return the affected lwp if we are, or NULL otherwise. */
3071
3072 static struct lwp_info *
3073 linux_nat_filter_event (int lwpid, int status)
3074 {
3075 struct lwp_info *lp;
3076 int event = linux_ptrace_get_extended_event (status);
3077
3078 lp = find_lwp_pid (pid_to_ptid (lwpid));
3079
3080 /* Check for stop events reported by a process we didn't already
3081 know about - anything not already in our LWP list.
3082
3083 If we're expecting to receive stopped processes after
3084 fork, vfork, and clone events, then we'll just add the
3085 new one to our list and go back to waiting for the event
3086 to be reported - the stopped process might be returned
3087 from waitpid before or after the event is.
3088
3089 But note the case of a non-leader thread exec'ing after the
3090 leader having exited, and gone from our lists. The non-leader
3091 thread changes its tid to the tgid. */
3092
3093 if (WIFSTOPPED (status) && lp == NULL
3094 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
3095 {
3096 /* A multi-thread exec after we had seen the leader exiting. */
3097 if (debug_linux_nat)
3098 fprintf_unfiltered (gdb_stdlog,
3099 "LLW: Re-adding thread group leader LWP %d.\n",
3100 lwpid);
3101
3102 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
3103 lp->stopped = 1;
3104 lp->resumed = 1;
3105 add_thread (lp->ptid);
3106 }
3107
3108 if (WIFSTOPPED (status) && !lp)
3109 {
3110 if (debug_linux_nat)
3111 fprintf_unfiltered (gdb_stdlog,
3112 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3113 (long) lwpid, status_to_str (status));
3114 add_to_pid_list (&stopped_pids, lwpid, status);
3115 return NULL;
3116 }
3117
3118 /* Make sure we don't report an event for the exit of an LWP not in
3119 our list, i.e. not part of the current process. This can happen
3120 if we detach from a program we originally forked and then it
3121 exits. */
3122 if (!WIFSTOPPED (status) && !lp)
3123 return NULL;
3124
3125 /* This LWP is stopped now. (And if dead, this prevents it from
3126 ever being continued.) */
3127 lp->stopped = 1;
3128
3129 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3130 {
3131 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3132 int options = linux_nat_ptrace_options (inf->attach_flag);
3133
3134 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3135 lp->must_set_ptrace_flags = 0;
3136 }
3137
3138 /* Handle GNU/Linux's syscall SIGTRAPs. */
3139 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3140 {
3141 /* No longer need the sysgood bit. The ptrace event ends up
3142 recorded in lp->waitstatus if we care for it. We can carry
3143 on handling the event like a regular SIGTRAP from here
3144 on. */
3145 status = W_STOPCODE (SIGTRAP);
3146 if (linux_handle_syscall_trap (lp, 0))
3147 return NULL;
3148 }
3149
3150 /* Handle GNU/Linux's extended waitstatus for trace events. */
3151 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3152 && linux_is_extended_waitstatus (status))
3153 {
3154 if (debug_linux_nat)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "LLW: Handling extended status 0x%06x\n",
3157 status);
3158 if (linux_handle_extended_wait (lp, status, 0))
3159 return NULL;
3160 }
3161
3162 /* Check if the thread has exited. */
3163 if (WIFEXITED (status) || WIFSIGNALED (status))
3164 {
3165 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3166 {
3167 /* If this is the main thread, we must stop all threads and
3168 verify if they are still alive. This is because in the
3169 nptl thread model on Linux 2.4, there is no signal issued
3170 for exiting LWPs other than the main thread. We only get
3171 the main thread exit signal once all child threads have
3172 already exited. If we stop all the threads and use the
3173 stop_wait_callback to check if they have exited we can
3174 determine whether this signal should be ignored or
3175 whether it means the end of the debugged application,
3176 regardless of which threading model is being used. */
3177 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3178 {
3179 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3180 stop_and_resume_callback, NULL);
3181 }
3182
3183 if (debug_linux_nat)
3184 fprintf_unfiltered (gdb_stdlog,
3185 "LLW: %s exited.\n",
3186 target_pid_to_str (lp->ptid));
3187
3188 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3189 {
3190 /* If there is at least one more LWP, then the exit signal
3191 was not the end of the debugged application and should be
3192 ignored. */
3193 exit_lwp (lp);
3194 return NULL;
3195 }
3196 }
3197
3198 /* Note that even if the leader was ptrace-stopped, it can still
3199 exit, if e.g., some other thread brings down the whole
3200 process (calls `exit'). So don't assert that the lwp is
3201 resumed. */
3202 if (debug_linux_nat)
3203 fprintf_unfiltered (gdb_stdlog,
3204 "Process %ld exited (resumed=%d)\n",
3205 ptid_get_lwp (lp->ptid), lp->resumed);
3206
3207 /* This was the last lwp in the process. Since events are
3208 serialized to GDB core, we may not be able report this one
3209 right now, but GDB core and the other target layers will want
3210 to be notified about the exit code/signal, leave the status
3211 pending for the next time we're able to report it. */
3212
3213 /* Dead LWP's aren't expected to reported a pending sigstop. */
3214 lp->signalled = 0;
3215
3216 /* Store the pending event in the waitstatus, because
3217 W_EXITCODE(0,0) == 0. */
3218 store_waitstatus (&lp->waitstatus, status);
3219 return lp;
3220 }
3221
3222 /* Check if the current LWP has previously exited. In the nptl
3223 thread model, LWPs other than the main thread do not issue
3224 signals when they exit so we must check whenever the thread has
3225 stopped. A similar check is made in stop_wait_callback(). */
3226 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3227 {
3228 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3229
3230 if (debug_linux_nat)
3231 fprintf_unfiltered (gdb_stdlog,
3232 "LLW: %s exited.\n",
3233 target_pid_to_str (lp->ptid));
3234
3235 exit_lwp (lp);
3236
3237 /* Make sure there is at least one thread running. */
3238 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3239
3240 /* Discard the event. */
3241 return NULL;
3242 }
3243
3244 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3245 an attempt to stop an LWP. */
3246 if (lp->signalled
3247 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3248 {
3249 lp->signalled = 0;
3250
3251 if (lp->last_resume_kind == resume_stop)
3252 {
3253 if (debug_linux_nat)
3254 fprintf_unfiltered (gdb_stdlog,
3255 "LLW: resume_stop SIGSTOP caught for %s.\n",
3256 target_pid_to_str (lp->ptid));
3257 }
3258 else
3259 {
3260 /* This is a delayed SIGSTOP. Filter out the event. */
3261
3262 if (debug_linux_nat)
3263 fprintf_unfiltered (gdb_stdlog,
3264 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3265 lp->step ?
3266 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3267 target_pid_to_str (lp->ptid));
3268
3269 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3270 gdb_assert (lp->resumed);
3271 return NULL;
3272 }
3273 }
3274
3275 /* Make sure we don't report a SIGINT that we have already displayed
3276 for another thread. */
3277 if (lp->ignore_sigint
3278 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3279 {
3280 if (debug_linux_nat)
3281 fprintf_unfiltered (gdb_stdlog,
3282 "LLW: Delayed SIGINT caught for %s.\n",
3283 target_pid_to_str (lp->ptid));
3284
3285 /* This is a delayed SIGINT. */
3286 lp->ignore_sigint = 0;
3287
3288 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3289 if (debug_linux_nat)
3290 fprintf_unfiltered (gdb_stdlog,
3291 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3292 lp->step ?
3293 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3294 target_pid_to_str (lp->ptid));
3295 gdb_assert (lp->resumed);
3296
3297 /* Discard the event. */
3298 return NULL;
3299 }
3300
3301 /* Don't report signals that GDB isn't interested in, such as
3302 signals that are neither printed nor stopped upon. Stopping all
3303 threads can be a bit time-consuming so if we want decent
3304 performance with heavily multi-threaded programs, especially when
3305 they're using a high frequency timer, we'd better avoid it if we
3306 can. */
3307 if (WIFSTOPPED (status))
3308 {
3309 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3310
3311 if (!non_stop)
3312 {
3313 /* Only do the below in all-stop, as we currently use SIGSTOP
3314 to implement target_stop (see linux_nat_stop) in
3315 non-stop. */
3316 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3317 {
3318 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3319 forwarded to the entire process group, that is, all LWPs
3320 will receive it - unless they're using CLONE_THREAD to
3321 share signals. Since we only want to report it once, we
3322 mark it as ignored for all LWPs except this one. */
3323 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3324 set_ignore_sigint, NULL);
3325 lp->ignore_sigint = 0;
3326 }
3327 else
3328 maybe_clear_ignore_sigint (lp);
3329 }
3330
3331 /* When using hardware single-step, we need to report every signal.
3332 Otherwise, signals in pass_mask may be short-circuited
3333 except signals that might be caused by a breakpoint. */
3334 if (!lp->step
3335 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3336 && !linux_wstatus_maybe_breakpoint (status))
3337 {
3338 linux_resume_one_lwp (lp, lp->step, signo);
3339 if (debug_linux_nat)
3340 fprintf_unfiltered (gdb_stdlog,
3341 "LLW: %s %s, %s (preempt 'handle')\n",
3342 lp->step ?
3343 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3344 target_pid_to_str (lp->ptid),
3345 (signo != GDB_SIGNAL_0
3346 ? strsignal (gdb_signal_to_host (signo))
3347 : "0"));
3348 return NULL;
3349 }
3350 }
3351
3352 /* An interesting event. */
3353 gdb_assert (lp);
3354 lp->status = status;
3355 save_sigtrap (lp);
3356 return lp;
3357 }
3358
3359 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3360 their exits until all other threads in the group have exited. */
3361
3362 static void
3363 check_zombie_leaders (void)
3364 {
3365 struct inferior *inf;
3366
3367 ALL_INFERIORS (inf)
3368 {
3369 struct lwp_info *leader_lp;
3370
3371 if (inf->pid == 0)
3372 continue;
3373
3374 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3375 if (leader_lp != NULL
3376 /* Check if there are other threads in the group, as we may
3377 have raced with the inferior simply exiting. */
3378 && num_lwps (inf->pid) > 1
3379 && linux_proc_pid_is_zombie (inf->pid))
3380 {
3381 if (debug_linux_nat)
3382 fprintf_unfiltered (gdb_stdlog,
3383 "CZL: Thread group leader %d zombie "
3384 "(it exited, or another thread execd).\n",
3385 inf->pid);
3386
3387 /* A leader zombie can mean one of two things:
3388
3389 - It exited, and there's an exit status pending
3390 available, or only the leader exited (not the whole
3391 program). In the latter case, we can't waitpid the
3392 leader's exit status until all other threads are gone.
3393
3394 - There are 3 or more threads in the group, and a thread
3395 other than the leader exec'd. On an exec, the Linux
3396 kernel destroys all other threads (except the execing
3397 one) in the thread group, and resets the execing thread's
3398 tid to the tgid. No exit notification is sent for the
3399 execing thread -- from the ptracer's perspective, it
3400 appears as though the execing thread just vanishes.
3401 Until we reap all other threads except the leader and the
3402 execing thread, the leader will be zombie, and the
3403 execing thread will be in `D (disc sleep)'. As soon as
3404 all other threads are reaped, the execing thread changes
3405 it's tid to the tgid, and the previous (zombie) leader
3406 vanishes, giving place to the "new" leader. We could try
3407 distinguishing the exit and exec cases, by waiting once
3408 more, and seeing if something comes out, but it doesn't
3409 sound useful. The previous leader _does_ go away, and
3410 we'll re-add the new one once we see the exec event
3411 (which is just the same as what would happen if the
3412 previous leader did exit voluntarily before some other
3413 thread execs). */
3414
3415 if (debug_linux_nat)
3416 fprintf_unfiltered (gdb_stdlog,
3417 "CZL: Thread group leader %d vanished.\n",
3418 inf->pid);
3419 exit_lwp (leader_lp);
3420 }
3421 }
3422 }
3423
3424 static ptid_t
3425 linux_nat_wait_1 (struct target_ops *ops,
3426 ptid_t ptid, struct target_waitstatus *ourstatus,
3427 int target_options)
3428 {
3429 sigset_t prev_mask;
3430 enum resume_kind last_resume_kind;
3431 struct lwp_info *lp;
3432 int status;
3433
3434 if (debug_linux_nat)
3435 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3436
3437 /* The first time we get here after starting a new inferior, we may
3438 not have added it to the LWP list yet - this is the earliest
3439 moment at which we know its PID. */
3440 if (ptid_is_pid (inferior_ptid))
3441 {
3442 /* Upgrade the main thread's ptid. */
3443 thread_change_ptid (inferior_ptid,
3444 ptid_build (ptid_get_pid (inferior_ptid),
3445 ptid_get_pid (inferior_ptid), 0));
3446
3447 lp = add_initial_lwp (inferior_ptid);
3448 lp->resumed = 1;
3449 }
3450
3451 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3452 block_child_signals (&prev_mask);
3453
3454 /* First check if there is a LWP with a wait status pending. */
3455 lp = iterate_over_lwps (ptid, status_callback, NULL);
3456 if (lp != NULL)
3457 {
3458 if (debug_linux_nat)
3459 fprintf_unfiltered (gdb_stdlog,
3460 "LLW: Using pending wait status %s for %s.\n",
3461 status_to_str (lp->status),
3462 target_pid_to_str (lp->ptid));
3463 }
3464
3465 if (!target_is_async_p ())
3466 {
3467 /* Causes SIGINT to be passed on to the attached process. */
3468 set_sigint_trap ();
3469 }
3470
3471 /* But if we don't find a pending event, we'll have to wait. Always
3472 pull all events out of the kernel. We'll randomly select an
3473 event LWP out of all that have events, to prevent starvation. */
3474
3475 while (lp == NULL)
3476 {
3477 pid_t lwpid;
3478
3479 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3480 quirks:
3481
3482 - If the thread group leader exits while other threads in the
3483 thread group still exist, waitpid(TGID, ...) hangs. That
3484 waitpid won't return an exit status until the other threads
3485 in the group are reapped.
3486
3487 - When a non-leader thread execs, that thread just vanishes
3488 without reporting an exit (so we'd hang if we waited for it
3489 explicitly in that case). The exec event is reported to
3490 the TGID pid. */
3491
3492 errno = 0;
3493 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3494 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3495 lwpid = my_waitpid (-1, &status, WNOHANG);
3496
3497 if (debug_linux_nat)
3498 fprintf_unfiltered (gdb_stdlog,
3499 "LNW: waitpid(-1, ...) returned %d, %s\n",
3500 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3501
3502 if (lwpid > 0)
3503 {
3504 if (debug_linux_nat)
3505 {
3506 fprintf_unfiltered (gdb_stdlog,
3507 "LLW: waitpid %ld received %s\n",
3508 (long) lwpid, status_to_str (status));
3509 }
3510
3511 linux_nat_filter_event (lwpid, status);
3512 /* Retry until nothing comes out of waitpid. A single
3513 SIGCHLD can indicate more than one child stopped. */
3514 continue;
3515 }
3516
3517 /* Now that we've pulled all events out of the kernel, resume
3518 LWPs that don't have an interesting event to report. */
3519 iterate_over_lwps (minus_one_ptid,
3520 resume_stopped_resumed_lwps, &minus_one_ptid);
3521
3522 /* ... and find an LWP with a status to report to the core, if
3523 any. */
3524 lp = iterate_over_lwps (ptid, status_callback, NULL);
3525 if (lp != NULL)
3526 break;
3527
3528 /* Check for zombie thread group leaders. Those can't be reaped
3529 until all other threads in the thread group are. */
3530 check_zombie_leaders ();
3531
3532 /* If there are no resumed children left, bail. We'd be stuck
3533 forever in the sigsuspend call below otherwise. */
3534 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3535 {
3536 if (debug_linux_nat)
3537 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3538
3539 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3540
3541 if (!target_is_async_p ())
3542 clear_sigint_trap ();
3543
3544 restore_child_signals_mask (&prev_mask);
3545 return minus_one_ptid;
3546 }
3547
3548 /* No interesting event to report to the core. */
3549
3550 if (target_options & TARGET_WNOHANG)
3551 {
3552 if (debug_linux_nat)
3553 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3554
3555 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3556 restore_child_signals_mask (&prev_mask);
3557 return minus_one_ptid;
3558 }
3559
3560 /* We shouldn't end up here unless we want to try again. */
3561 gdb_assert (lp == NULL);
3562
3563 /* Block until we get an event reported with SIGCHLD. */
3564 if (debug_linux_nat)
3565 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3566 sigsuspend (&suspend_mask);
3567 }
3568
3569 if (!target_is_async_p ())
3570 clear_sigint_trap ();
3571
3572 gdb_assert (lp);
3573
3574 status = lp->status;
3575 lp->status = 0;
3576
3577 if (!non_stop)
3578 {
3579 /* Now stop all other LWP's ... */
3580 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3581
3582 /* ... and wait until all of them have reported back that
3583 they're no longer running. */
3584 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3585 }
3586
3587 /* If we're not waiting for a specific LWP, choose an event LWP from
3588 among those that have had events. Giving equal priority to all
3589 LWPs that have had events helps prevent starvation. */
3590 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3591 select_event_lwp (ptid, &lp, &status);
3592
3593 gdb_assert (lp != NULL);
3594
3595 /* Now that we've selected our final event LWP, un-adjust its PC if
3596 it was a software breakpoint, and we can't reliably support the
3597 "stopped by software breakpoint" stop reason. */
3598 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3599 && !USE_SIGTRAP_SIGINFO)
3600 {
3601 struct regcache *regcache = get_thread_regcache (lp->ptid);
3602 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3603 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3604
3605 if (decr_pc != 0)
3606 {
3607 CORE_ADDR pc;
3608
3609 pc = regcache_read_pc (regcache);
3610 regcache_write_pc (regcache, pc + decr_pc);
3611 }
3612 }
3613
3614 /* We'll need this to determine whether to report a SIGSTOP as
3615 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3616 clears it. */
3617 last_resume_kind = lp->last_resume_kind;
3618
3619 if (!non_stop)
3620 {
3621 /* In all-stop, from the core's perspective, all LWPs are now
3622 stopped until a new resume action is sent over. */
3623 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3624 }
3625 else
3626 {
3627 resume_clear_callback (lp, NULL);
3628 }
3629
3630 if (linux_nat_status_is_event (status))
3631 {
3632 if (debug_linux_nat)
3633 fprintf_unfiltered (gdb_stdlog,
3634 "LLW: trap ptid is %s.\n",
3635 target_pid_to_str (lp->ptid));
3636 }
3637
3638 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3639 {
3640 *ourstatus = lp->waitstatus;
3641 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3642 }
3643 else
3644 store_waitstatus (ourstatus, status);
3645
3646 if (debug_linux_nat)
3647 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3648
3649 restore_child_signals_mask (&prev_mask);
3650
3651 if (last_resume_kind == resume_stop
3652 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3653 && WSTOPSIG (status) == SIGSTOP)
3654 {
3655 /* A thread that has been requested to stop by GDB with
3656 target_stop, and it stopped cleanly, so report as SIG0. The
3657 use of SIGSTOP is an implementation detail. */
3658 ourstatus->value.sig = GDB_SIGNAL_0;
3659 }
3660
3661 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3662 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3663 lp->core = -1;
3664 else
3665 lp->core = linux_common_core_of_thread (lp->ptid);
3666
3667 return lp->ptid;
3668 }
3669
3670 /* Resume LWPs that are currently stopped without any pending status
3671 to report, but are resumed from the core's perspective. */
3672
3673 static int
3674 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3675 {
3676 ptid_t *wait_ptid_p = data;
3677
3678 if (lp->stopped
3679 && lp->resumed
3680 && !lwp_status_pending_p (lp))
3681 {
3682 struct regcache *regcache = get_thread_regcache (lp->ptid);
3683 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3684
3685 TRY
3686 {
3687 CORE_ADDR pc = regcache_read_pc (regcache);
3688 int leave_stopped = 0;
3689
3690 /* Don't bother if there's a breakpoint at PC that we'd hit
3691 immediately, and we're not waiting for this LWP. */
3692 if (!ptid_match (lp->ptid, *wait_ptid_p))
3693 {
3694 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3695 leave_stopped = 1;
3696 }
3697
3698 if (!leave_stopped)
3699 {
3700 if (debug_linux_nat)
3701 fprintf_unfiltered (gdb_stdlog,
3702 "RSRL: resuming stopped-resumed LWP %s at "
3703 "%s: step=%d\n",
3704 target_pid_to_str (lp->ptid),
3705 paddress (gdbarch, pc),
3706 lp->step);
3707
3708 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3709 }
3710 }
3711 CATCH (ex, RETURN_MASK_ERROR)
3712 {
3713 if (!check_ptrace_stopped_lwp_gone (lp))
3714 throw_exception (ex);
3715 }
3716 END_CATCH
3717 }
3718
3719 return 0;
3720 }
3721
3722 static ptid_t
3723 linux_nat_wait (struct target_ops *ops,
3724 ptid_t ptid, struct target_waitstatus *ourstatus,
3725 int target_options)
3726 {
3727 ptid_t event_ptid;
3728
3729 if (debug_linux_nat)
3730 {
3731 char *options_string;
3732
3733 options_string = target_options_to_string (target_options);
3734 fprintf_unfiltered (gdb_stdlog,
3735 "linux_nat_wait: [%s], [%s]\n",
3736 target_pid_to_str (ptid),
3737 options_string);
3738 xfree (options_string);
3739 }
3740
3741 /* Flush the async file first. */
3742 if (target_is_async_p ())
3743 async_file_flush ();
3744
3745 /* Resume LWPs that are currently stopped without any pending status
3746 to report, but are resumed from the core's perspective. LWPs get
3747 in this state if we find them stopping at a time we're not
3748 interested in reporting the event (target_wait on a
3749 specific_process, for example, see linux_nat_wait_1), and
3750 meanwhile the event became uninteresting. Don't bother resuming
3751 LWPs we're not going to wait for if they'd stop immediately. */
3752 if (non_stop)
3753 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3754
3755 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3756
3757 /* If we requested any event, and something came out, assume there
3758 may be more. If we requested a specific lwp or process, also
3759 assume there may be more. */
3760 if (target_is_async_p ()
3761 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3762 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3763 || !ptid_equal (ptid, minus_one_ptid)))
3764 async_file_mark ();
3765
3766 return event_ptid;
3767 }
3768
3769 static int
3770 kill_callback (struct lwp_info *lp, void *data)
3771 {
3772 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3773
3774 errno = 0;
3775 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3776 if (debug_linux_nat)
3777 {
3778 int save_errno = errno;
3779
3780 fprintf_unfiltered (gdb_stdlog,
3781 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3782 target_pid_to_str (lp->ptid),
3783 save_errno ? safe_strerror (save_errno) : "OK");
3784 }
3785
3786 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3787
3788 errno = 0;
3789 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3790 if (debug_linux_nat)
3791 {
3792 int save_errno = errno;
3793
3794 fprintf_unfiltered (gdb_stdlog,
3795 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3796 target_pid_to_str (lp->ptid),
3797 save_errno ? safe_strerror (save_errno) : "OK");
3798 }
3799
3800 return 0;
3801 }
3802
3803 static int
3804 kill_wait_callback (struct lwp_info *lp, void *data)
3805 {
3806 pid_t pid;
3807
3808 /* We must make sure that there are no pending events (delayed
3809 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3810 program doesn't interfere with any following debugging session. */
3811
3812 /* For cloned processes we must check both with __WCLONE and
3813 without, since the exit status of a cloned process isn't reported
3814 with __WCLONE. */
3815 if (lp->cloned)
3816 {
3817 do
3818 {
3819 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3820 if (pid != (pid_t) -1)
3821 {
3822 if (debug_linux_nat)
3823 fprintf_unfiltered (gdb_stdlog,
3824 "KWC: wait %s received unknown.\n",
3825 target_pid_to_str (lp->ptid));
3826 /* The Linux kernel sometimes fails to kill a thread
3827 completely after PTRACE_KILL; that goes from the stop
3828 point in do_fork out to the one in
3829 get_signal_to_deliever and waits again. So kill it
3830 again. */
3831 kill_callback (lp, NULL);
3832 }
3833 }
3834 while (pid == ptid_get_lwp (lp->ptid));
3835
3836 gdb_assert (pid == -1 && errno == ECHILD);
3837 }
3838
3839 do
3840 {
3841 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3842 if (pid != (pid_t) -1)
3843 {
3844 if (debug_linux_nat)
3845 fprintf_unfiltered (gdb_stdlog,
3846 "KWC: wait %s received unk.\n",
3847 target_pid_to_str (lp->ptid));
3848 /* See the call to kill_callback above. */
3849 kill_callback (lp, NULL);
3850 }
3851 }
3852 while (pid == ptid_get_lwp (lp->ptid));
3853
3854 gdb_assert (pid == -1 && errno == ECHILD);
3855 return 0;
3856 }
3857
3858 static void
3859 linux_nat_kill (struct target_ops *ops)
3860 {
3861 struct target_waitstatus last;
3862 ptid_t last_ptid;
3863 int status;
3864
3865 /* If we're stopped while forking and we haven't followed yet,
3866 kill the other task. We need to do this first because the
3867 parent will be sleeping if this is a vfork. */
3868
3869 get_last_target_status (&last_ptid, &last);
3870
3871 if (last.kind == TARGET_WAITKIND_FORKED
3872 || last.kind == TARGET_WAITKIND_VFORKED)
3873 {
3874 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3875 wait (&status);
3876
3877 /* Let the arch-specific native code know this process is
3878 gone. */
3879 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3880 }
3881
3882 if (forks_exist_p ())
3883 linux_fork_killall ();
3884 else
3885 {
3886 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3887
3888 /* Stop all threads before killing them, since ptrace requires
3889 that the thread is stopped to sucessfully PTRACE_KILL. */
3890 iterate_over_lwps (ptid, stop_callback, NULL);
3891 /* ... and wait until all of them have reported back that
3892 they're no longer running. */
3893 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3894
3895 /* Kill all LWP's ... */
3896 iterate_over_lwps (ptid, kill_callback, NULL);
3897
3898 /* ... and wait until we've flushed all events. */
3899 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3900 }
3901
3902 target_mourn_inferior ();
3903 }
3904
3905 static void
3906 linux_nat_mourn_inferior (struct target_ops *ops)
3907 {
3908 int pid = ptid_get_pid (inferior_ptid);
3909
3910 purge_lwp_list (pid);
3911
3912 if (! forks_exist_p ())
3913 /* Normal case, no other forks available. */
3914 linux_ops->to_mourn_inferior (ops);
3915 else
3916 /* Multi-fork case. The current inferior_ptid has exited, but
3917 there are other viable forks to debug. Delete the exiting
3918 one and context-switch to the first available. */
3919 linux_fork_mourn_inferior ();
3920
3921 /* Let the arch-specific native code know this process is gone. */
3922 linux_nat_forget_process (pid);
3923 }
3924
3925 /* Convert a native/host siginfo object, into/from the siginfo in the
3926 layout of the inferiors' architecture. */
3927
3928 static void
3929 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3930 {
3931 int done = 0;
3932
3933 if (linux_nat_siginfo_fixup != NULL)
3934 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3935
3936 /* If there was no callback, or the callback didn't do anything,
3937 then just do a straight memcpy. */
3938 if (!done)
3939 {
3940 if (direction == 1)
3941 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3942 else
3943 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3944 }
3945 }
3946
3947 static enum target_xfer_status
3948 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3949 const char *annex, gdb_byte *readbuf,
3950 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3951 ULONGEST *xfered_len)
3952 {
3953 int pid;
3954 siginfo_t siginfo;
3955 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3956
3957 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3958 gdb_assert (readbuf || writebuf);
3959
3960 pid = ptid_get_lwp (inferior_ptid);
3961 if (pid == 0)
3962 pid = ptid_get_pid (inferior_ptid);
3963
3964 if (offset > sizeof (siginfo))
3965 return TARGET_XFER_E_IO;
3966
3967 errno = 0;
3968 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3969 if (errno != 0)
3970 return TARGET_XFER_E_IO;
3971
3972 /* When GDB is built as a 64-bit application, ptrace writes into
3973 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3974 inferior with a 64-bit GDB should look the same as debugging it
3975 with a 32-bit GDB, we need to convert it. GDB core always sees
3976 the converted layout, so any read/write will have to be done
3977 post-conversion. */
3978 siginfo_fixup (&siginfo, inf_siginfo, 0);
3979
3980 if (offset + len > sizeof (siginfo))
3981 len = sizeof (siginfo) - offset;
3982
3983 if (readbuf != NULL)
3984 memcpy (readbuf, inf_siginfo + offset, len);
3985 else
3986 {
3987 memcpy (inf_siginfo + offset, writebuf, len);
3988
3989 /* Convert back to ptrace layout before flushing it out. */
3990 siginfo_fixup (&siginfo, inf_siginfo, 1);
3991
3992 errno = 0;
3993 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3994 if (errno != 0)
3995 return TARGET_XFER_E_IO;
3996 }
3997
3998 *xfered_len = len;
3999 return TARGET_XFER_OK;
4000 }
4001
4002 static enum target_xfer_status
4003 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4004 const char *annex, gdb_byte *readbuf,
4005 const gdb_byte *writebuf,
4006 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4007 {
4008 struct cleanup *old_chain;
4009 enum target_xfer_status xfer;
4010
4011 if (object == TARGET_OBJECT_SIGNAL_INFO)
4012 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4013 offset, len, xfered_len);
4014
4015 /* The target is connected but no live inferior is selected. Pass
4016 this request down to a lower stratum (e.g., the executable
4017 file). */
4018 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4019 return TARGET_XFER_EOF;
4020
4021 old_chain = save_inferior_ptid ();
4022
4023 if (ptid_lwp_p (inferior_ptid))
4024 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
4025
4026 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4027 offset, len, xfered_len);
4028
4029 do_cleanups (old_chain);
4030 return xfer;
4031 }
4032
4033 static int
4034 linux_thread_alive (ptid_t ptid)
4035 {
4036 int err, tmp_errno;
4037
4038 gdb_assert (ptid_lwp_p (ptid));
4039
4040 /* Send signal 0 instead of anything ptrace, because ptracing a
4041 running thread errors out claiming that the thread doesn't
4042 exist. */
4043 err = kill_lwp (ptid_get_lwp (ptid), 0);
4044 tmp_errno = errno;
4045 if (debug_linux_nat)
4046 fprintf_unfiltered (gdb_stdlog,
4047 "LLTA: KILL(SIG0) %s (%s)\n",
4048 target_pid_to_str (ptid),
4049 err ? safe_strerror (tmp_errno) : "OK");
4050
4051 if (err != 0)
4052 return 0;
4053
4054 return 1;
4055 }
4056
4057 static int
4058 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4059 {
4060 return linux_thread_alive (ptid);
4061 }
4062
4063 /* Implement the to_update_thread_list target method for this
4064 target. */
4065
4066 static void
4067 linux_nat_update_thread_list (struct target_ops *ops)
4068 {
4069 if (linux_supports_traceclone ())
4070 {
4071 /* With support for clone events, we add/delete threads from the
4072 list as clone/exit events are processed, so just try deleting
4073 exited threads still in the thread list. */
4074 delete_exited_threads ();
4075 }
4076 else
4077 prune_threads ();
4078 }
4079
4080 static char *
4081 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4082 {
4083 static char buf[64];
4084
4085 if (ptid_lwp_p (ptid)
4086 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
4087 || num_lwps (ptid_get_pid (ptid)) > 1))
4088 {
4089 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
4090 return buf;
4091 }
4092
4093 return normal_pid_to_str (ptid);
4094 }
4095
4096 static char *
4097 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
4098 {
4099 int pid = ptid_get_pid (thr->ptid);
4100 long lwp = ptid_get_lwp (thr->ptid);
4101 #define FORMAT "/proc/%d/task/%ld/comm"
4102 char buf[sizeof (FORMAT) + 30];
4103 FILE *comm_file;
4104 char *result = NULL;
4105
4106 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4107 comm_file = gdb_fopen_cloexec (buf, "r");
4108 if (comm_file)
4109 {
4110 /* Not exported by the kernel, so we define it here. */
4111 #define COMM_LEN 16
4112 static char line[COMM_LEN + 1];
4113
4114 if (fgets (line, sizeof (line), comm_file))
4115 {
4116 char *nl = strchr (line, '\n');
4117
4118 if (nl)
4119 *nl = '\0';
4120 if (*line != '\0')
4121 result = line;
4122 }
4123
4124 fclose (comm_file);
4125 }
4126
4127 #undef COMM_LEN
4128 #undef FORMAT
4129
4130 return result;
4131 }
4132
4133 /* Accepts an integer PID; Returns a string representing a file that
4134 can be opened to get the symbols for the child process. */
4135
4136 static char *
4137 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4138 {
4139 return linux_proc_pid_to_exec_file (pid);
4140 }
4141
4142 /* Implement the to_xfer_partial interface for memory reads using the /proc
4143 filesystem. Because we can use a single read() call for /proc, this
4144 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4145 but it doesn't support writes. */
4146
4147 static enum target_xfer_status
4148 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4149 const char *annex, gdb_byte *readbuf,
4150 const gdb_byte *writebuf,
4151 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4152 {
4153 LONGEST ret;
4154 int fd;
4155 char filename[64];
4156
4157 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4158 return 0;
4159
4160 /* Don't bother for one word. */
4161 if (len < 3 * sizeof (long))
4162 return TARGET_XFER_EOF;
4163
4164 /* We could keep this file open and cache it - possibly one per
4165 thread. That requires some juggling, but is even faster. */
4166 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4167 ptid_get_pid (inferior_ptid));
4168 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4169 if (fd == -1)
4170 return TARGET_XFER_EOF;
4171
4172 /* If pread64 is available, use it. It's faster if the kernel
4173 supports it (only one syscall), and it's 64-bit safe even on
4174 32-bit platforms (for instance, SPARC debugging a SPARC64
4175 application). */
4176 #ifdef HAVE_PREAD64
4177 if (pread64 (fd, readbuf, len, offset) != len)
4178 #else
4179 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4180 #endif
4181 ret = 0;
4182 else
4183 ret = len;
4184
4185 close (fd);
4186
4187 if (ret == 0)
4188 return TARGET_XFER_EOF;
4189 else
4190 {
4191 *xfered_len = ret;
4192 return TARGET_XFER_OK;
4193 }
4194 }
4195
4196
4197 /* Enumerate spufs IDs for process PID. */
4198 static LONGEST
4199 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4200 {
4201 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4202 LONGEST pos = 0;
4203 LONGEST written = 0;
4204 char path[128];
4205 DIR *dir;
4206 struct dirent *entry;
4207
4208 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4209 dir = opendir (path);
4210 if (!dir)
4211 return -1;
4212
4213 rewinddir (dir);
4214 while ((entry = readdir (dir)) != NULL)
4215 {
4216 struct stat st;
4217 struct statfs stfs;
4218 int fd;
4219
4220 fd = atoi (entry->d_name);
4221 if (!fd)
4222 continue;
4223
4224 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4225 if (stat (path, &st) != 0)
4226 continue;
4227 if (!S_ISDIR (st.st_mode))
4228 continue;
4229
4230 if (statfs (path, &stfs) != 0)
4231 continue;
4232 if (stfs.f_type != SPUFS_MAGIC)
4233 continue;
4234
4235 if (pos >= offset && pos + 4 <= offset + len)
4236 {
4237 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4238 written += 4;
4239 }
4240 pos += 4;
4241 }
4242
4243 closedir (dir);
4244 return written;
4245 }
4246
4247 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4248 object type, using the /proc file system. */
4249
4250 static enum target_xfer_status
4251 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4252 const char *annex, gdb_byte *readbuf,
4253 const gdb_byte *writebuf,
4254 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4255 {
4256 char buf[128];
4257 int fd = 0;
4258 int ret = -1;
4259 int pid = ptid_get_pid (inferior_ptid);
4260
4261 if (!annex)
4262 {
4263 if (!readbuf)
4264 return TARGET_XFER_E_IO;
4265 else
4266 {
4267 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4268
4269 if (l < 0)
4270 return TARGET_XFER_E_IO;
4271 else if (l == 0)
4272 return TARGET_XFER_EOF;
4273 else
4274 {
4275 *xfered_len = (ULONGEST) l;
4276 return TARGET_XFER_OK;
4277 }
4278 }
4279 }
4280
4281 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4282 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4283 if (fd <= 0)
4284 return TARGET_XFER_E_IO;
4285
4286 if (offset != 0
4287 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4288 {
4289 close (fd);
4290 return TARGET_XFER_EOF;
4291 }
4292
4293 if (writebuf)
4294 ret = write (fd, writebuf, (size_t) len);
4295 else if (readbuf)
4296 ret = read (fd, readbuf, (size_t) len);
4297
4298 close (fd);
4299
4300 if (ret < 0)
4301 return TARGET_XFER_E_IO;
4302 else if (ret == 0)
4303 return TARGET_XFER_EOF;
4304 else
4305 {
4306 *xfered_len = (ULONGEST) ret;
4307 return TARGET_XFER_OK;
4308 }
4309 }
4310
4311
4312 /* Parse LINE as a signal set and add its set bits to SIGS. */
4313
4314 static void
4315 add_line_to_sigset (const char *line, sigset_t *sigs)
4316 {
4317 int len = strlen (line) - 1;
4318 const char *p;
4319 int signum;
4320
4321 if (line[len] != '\n')
4322 error (_("Could not parse signal set: %s"), line);
4323
4324 p = line;
4325 signum = len * 4;
4326 while (len-- > 0)
4327 {
4328 int digit;
4329
4330 if (*p >= '0' && *p <= '9')
4331 digit = *p - '0';
4332 else if (*p >= 'a' && *p <= 'f')
4333 digit = *p - 'a' + 10;
4334 else
4335 error (_("Could not parse signal set: %s"), line);
4336
4337 signum -= 4;
4338
4339 if (digit & 1)
4340 sigaddset (sigs, signum + 1);
4341 if (digit & 2)
4342 sigaddset (sigs, signum + 2);
4343 if (digit & 4)
4344 sigaddset (sigs, signum + 3);
4345 if (digit & 8)
4346 sigaddset (sigs, signum + 4);
4347
4348 p++;
4349 }
4350 }
4351
4352 /* Find process PID's pending signals from /proc/pid/status and set
4353 SIGS to match. */
4354
4355 void
4356 linux_proc_pending_signals (int pid, sigset_t *pending,
4357 sigset_t *blocked, sigset_t *ignored)
4358 {
4359 FILE *procfile;
4360 char buffer[PATH_MAX], fname[PATH_MAX];
4361 struct cleanup *cleanup;
4362
4363 sigemptyset (pending);
4364 sigemptyset (blocked);
4365 sigemptyset (ignored);
4366 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4367 procfile = gdb_fopen_cloexec (fname, "r");
4368 if (procfile == NULL)
4369 error (_("Could not open %s"), fname);
4370 cleanup = make_cleanup_fclose (procfile);
4371
4372 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4373 {
4374 /* Normal queued signals are on the SigPnd line in the status
4375 file. However, 2.6 kernels also have a "shared" pending
4376 queue for delivering signals to a thread group, so check for
4377 a ShdPnd line also.
4378
4379 Unfortunately some Red Hat kernels include the shared pending
4380 queue but not the ShdPnd status field. */
4381
4382 if (startswith (buffer, "SigPnd:\t"))
4383 add_line_to_sigset (buffer + 8, pending);
4384 else if (startswith (buffer, "ShdPnd:\t"))
4385 add_line_to_sigset (buffer + 8, pending);
4386 else if (startswith (buffer, "SigBlk:\t"))
4387 add_line_to_sigset (buffer + 8, blocked);
4388 else if (startswith (buffer, "SigIgn:\t"))
4389 add_line_to_sigset (buffer + 8, ignored);
4390 }
4391
4392 do_cleanups (cleanup);
4393 }
4394
4395 static enum target_xfer_status
4396 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4397 const char *annex, gdb_byte *readbuf,
4398 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4399 ULONGEST *xfered_len)
4400 {
4401 gdb_assert (object == TARGET_OBJECT_OSDATA);
4402
4403 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4404 if (*xfered_len == 0)
4405 return TARGET_XFER_EOF;
4406 else
4407 return TARGET_XFER_OK;
4408 }
4409
4410 static enum target_xfer_status
4411 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4412 const char *annex, gdb_byte *readbuf,
4413 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4414 ULONGEST *xfered_len)
4415 {
4416 enum target_xfer_status xfer;
4417
4418 if (object == TARGET_OBJECT_AUXV)
4419 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4420 offset, len, xfered_len);
4421
4422 if (object == TARGET_OBJECT_OSDATA)
4423 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4424 offset, len, xfered_len);
4425
4426 if (object == TARGET_OBJECT_SPU)
4427 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4428 offset, len, xfered_len);
4429
4430 /* GDB calculates all the addresses in possibly larget width of the address.
4431 Address width needs to be masked before its final use - either by
4432 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4433
4434 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4435
4436 if (object == TARGET_OBJECT_MEMORY)
4437 {
4438 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4439
4440 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4441 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4442 }
4443
4444 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4445 offset, len, xfered_len);
4446 if (xfer != TARGET_XFER_EOF)
4447 return xfer;
4448
4449 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4450 offset, len, xfered_len);
4451 }
4452
4453 static void
4454 cleanup_target_stop (void *arg)
4455 {
4456 ptid_t *ptid = (ptid_t *) arg;
4457
4458 gdb_assert (arg != NULL);
4459
4460 /* Unpause all */
4461 target_resume (*ptid, 0, GDB_SIGNAL_0);
4462 }
4463
4464 static VEC(static_tracepoint_marker_p) *
4465 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4466 const char *strid)
4467 {
4468 char s[IPA_CMD_BUF_SIZE];
4469 struct cleanup *old_chain;
4470 int pid = ptid_get_pid (inferior_ptid);
4471 VEC(static_tracepoint_marker_p) *markers = NULL;
4472 struct static_tracepoint_marker *marker = NULL;
4473 char *p = s;
4474 ptid_t ptid = ptid_build (pid, 0, 0);
4475
4476 /* Pause all */
4477 target_stop (ptid);
4478
4479 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4480 s[sizeof ("qTfSTM")] = 0;
4481
4482 agent_run_command (pid, s, strlen (s) + 1);
4483
4484 old_chain = make_cleanup (free_current_marker, &marker);
4485 make_cleanup (cleanup_target_stop, &ptid);
4486
4487 while (*p++ == 'm')
4488 {
4489 if (marker == NULL)
4490 marker = XCNEW (struct static_tracepoint_marker);
4491
4492 do
4493 {
4494 parse_static_tracepoint_marker_definition (p, &p, marker);
4495
4496 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4497 {
4498 VEC_safe_push (static_tracepoint_marker_p,
4499 markers, marker);
4500 marker = NULL;
4501 }
4502 else
4503 {
4504 release_static_tracepoint_marker (marker);
4505 memset (marker, 0, sizeof (*marker));
4506 }
4507 }
4508 while (*p++ == ','); /* comma-separated list */
4509
4510 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4511 s[sizeof ("qTsSTM")] = 0;
4512 agent_run_command (pid, s, strlen (s) + 1);
4513 p = s;
4514 }
4515
4516 do_cleanups (old_chain);
4517
4518 return markers;
4519 }
4520
4521 /* Create a prototype generic GNU/Linux target. The client can override
4522 it with local methods. */
4523
4524 static void
4525 linux_target_install_ops (struct target_ops *t)
4526 {
4527 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4528 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4529 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4530 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4531 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4532 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4533 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4534 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4535 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4536 t->to_post_attach = linux_child_post_attach;
4537 t->to_follow_fork = linux_child_follow_fork;
4538
4539 super_xfer_partial = t->to_xfer_partial;
4540 t->to_xfer_partial = linux_xfer_partial;
4541
4542 t->to_static_tracepoint_markers_by_strid
4543 = linux_child_static_tracepoint_markers_by_strid;
4544 }
4545
4546 struct target_ops *
4547 linux_target (void)
4548 {
4549 struct target_ops *t;
4550
4551 t = inf_ptrace_target ();
4552 linux_target_install_ops (t);
4553
4554 return t;
4555 }
4556
4557 struct target_ops *
4558 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4559 {
4560 struct target_ops *t;
4561
4562 t = inf_ptrace_trad_target (register_u_offset);
4563 linux_target_install_ops (t);
4564
4565 return t;
4566 }
4567
4568 /* target_is_async_p implementation. */
4569
4570 static int
4571 linux_nat_is_async_p (struct target_ops *ops)
4572 {
4573 return linux_is_async_p ();
4574 }
4575
4576 /* target_can_async_p implementation. */
4577
4578 static int
4579 linux_nat_can_async_p (struct target_ops *ops)
4580 {
4581 /* NOTE: palves 2008-03-21: We're only async when the user requests
4582 it explicitly with the "set target-async" command.
4583 Someday, linux will always be async. */
4584 return target_async_permitted;
4585 }
4586
4587 static int
4588 linux_nat_supports_non_stop (struct target_ops *self)
4589 {
4590 return 1;
4591 }
4592
4593 /* True if we want to support multi-process. To be removed when GDB
4594 supports multi-exec. */
4595
4596 int linux_multi_process = 1;
4597
4598 static int
4599 linux_nat_supports_multi_process (struct target_ops *self)
4600 {
4601 return linux_multi_process;
4602 }
4603
4604 static int
4605 linux_nat_supports_disable_randomization (struct target_ops *self)
4606 {
4607 #ifdef HAVE_PERSONALITY
4608 return 1;
4609 #else
4610 return 0;
4611 #endif
4612 }
4613
4614 static int async_terminal_is_ours = 1;
4615
4616 /* target_terminal_inferior implementation.
4617
4618 This is a wrapper around child_terminal_inferior to add async support. */
4619
4620 static void
4621 linux_nat_terminal_inferior (struct target_ops *self)
4622 {
4623 /* Like target_terminal_inferior, use target_can_async_p, not
4624 target_is_async_p, since at this point the target is not async
4625 yet. If it can async, then we know it will become async prior to
4626 resume. */
4627 if (!target_can_async_p ())
4628 {
4629 /* Async mode is disabled. */
4630 child_terminal_inferior (self);
4631 return;
4632 }
4633
4634 child_terminal_inferior (self);
4635
4636 /* Calls to target_terminal_*() are meant to be idempotent. */
4637 if (!async_terminal_is_ours)
4638 return;
4639
4640 delete_file_handler (input_fd);
4641 async_terminal_is_ours = 0;
4642 set_sigint_trap ();
4643 }
4644
4645 /* target_terminal_ours implementation.
4646
4647 This is a wrapper around child_terminal_ours to add async support (and
4648 implement the target_terminal_ours vs target_terminal_ours_for_output
4649 distinction). child_terminal_ours is currently no different than
4650 child_terminal_ours_for_output.
4651 We leave target_terminal_ours_for_output alone, leaving it to
4652 child_terminal_ours_for_output. */
4653
4654 static void
4655 linux_nat_terminal_ours (struct target_ops *self)
4656 {
4657 /* GDB should never give the terminal to the inferior if the
4658 inferior is running in the background (run&, continue&, etc.),
4659 but claiming it sure should. */
4660 child_terminal_ours (self);
4661
4662 if (async_terminal_is_ours)
4663 return;
4664
4665 clear_sigint_trap ();
4666 add_file_handler (input_fd, stdin_event_handler, 0);
4667 async_terminal_is_ours = 1;
4668 }
4669
4670 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4671 so we notice when any child changes state, and notify the
4672 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4673 above to wait for the arrival of a SIGCHLD. */
4674
4675 static void
4676 sigchld_handler (int signo)
4677 {
4678 int old_errno = errno;
4679
4680 if (debug_linux_nat)
4681 ui_file_write_async_safe (gdb_stdlog,
4682 "sigchld\n", sizeof ("sigchld\n") - 1);
4683
4684 if (signo == SIGCHLD
4685 && linux_nat_event_pipe[0] != -1)
4686 async_file_mark (); /* Let the event loop know that there are
4687 events to handle. */
4688
4689 errno = old_errno;
4690 }
4691
4692 /* Callback registered with the target events file descriptor. */
4693
4694 static void
4695 handle_target_event (int error, gdb_client_data client_data)
4696 {
4697 inferior_event_handler (INF_REG_EVENT, NULL);
4698 }
4699
4700 /* Create/destroy the target events pipe. Returns previous state. */
4701
4702 static int
4703 linux_async_pipe (int enable)
4704 {
4705 int previous = linux_is_async_p ();
4706
4707 if (previous != enable)
4708 {
4709 sigset_t prev_mask;
4710
4711 /* Block child signals while we create/destroy the pipe, as
4712 their handler writes to it. */
4713 block_child_signals (&prev_mask);
4714
4715 if (enable)
4716 {
4717 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4718 internal_error (__FILE__, __LINE__,
4719 "creating event pipe failed.");
4720
4721 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4722 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4723 }
4724 else
4725 {
4726 close (linux_nat_event_pipe[0]);
4727 close (linux_nat_event_pipe[1]);
4728 linux_nat_event_pipe[0] = -1;
4729 linux_nat_event_pipe[1] = -1;
4730 }
4731
4732 restore_child_signals_mask (&prev_mask);
4733 }
4734
4735 return previous;
4736 }
4737
4738 /* target_async implementation. */
4739
4740 static void
4741 linux_nat_async (struct target_ops *ops, int enable)
4742 {
4743 if (enable)
4744 {
4745 if (!linux_async_pipe (1))
4746 {
4747 add_file_handler (linux_nat_event_pipe[0],
4748 handle_target_event, NULL);
4749 /* There may be pending events to handle. Tell the event loop
4750 to poll them. */
4751 async_file_mark ();
4752 }
4753 }
4754 else
4755 {
4756 delete_file_handler (linux_nat_event_pipe[0]);
4757 linux_async_pipe (0);
4758 }
4759 return;
4760 }
4761
4762 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4763 event came out. */
4764
4765 static int
4766 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4767 {
4768 if (!lwp->stopped)
4769 {
4770 if (debug_linux_nat)
4771 fprintf_unfiltered (gdb_stdlog,
4772 "LNSL: running -> suspending %s\n",
4773 target_pid_to_str (lwp->ptid));
4774
4775
4776 if (lwp->last_resume_kind == resume_stop)
4777 {
4778 if (debug_linux_nat)
4779 fprintf_unfiltered (gdb_stdlog,
4780 "linux-nat: already stopping LWP %ld at "
4781 "GDB's request\n",
4782 ptid_get_lwp (lwp->ptid));
4783 return 0;
4784 }
4785
4786 stop_callback (lwp, NULL);
4787 lwp->last_resume_kind = resume_stop;
4788 }
4789 else
4790 {
4791 /* Already known to be stopped; do nothing. */
4792
4793 if (debug_linux_nat)
4794 {
4795 if (find_thread_ptid (lwp->ptid)->stop_requested)
4796 fprintf_unfiltered (gdb_stdlog,
4797 "LNSL: already stopped/stop_requested %s\n",
4798 target_pid_to_str (lwp->ptid));
4799 else
4800 fprintf_unfiltered (gdb_stdlog,
4801 "LNSL: already stopped/no "
4802 "stop_requested yet %s\n",
4803 target_pid_to_str (lwp->ptid));
4804 }
4805 }
4806 return 0;
4807 }
4808
4809 static void
4810 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4811 {
4812 if (non_stop)
4813 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4814 else
4815 linux_ops->to_stop (linux_ops, ptid);
4816 }
4817
4818 static void
4819 linux_nat_close (struct target_ops *self)
4820 {
4821 /* Unregister from the event loop. */
4822 if (linux_nat_is_async_p (self))
4823 linux_nat_async (self, 0);
4824
4825 if (linux_ops->to_close)
4826 linux_ops->to_close (linux_ops);
4827
4828 super_close (self);
4829 }
4830
4831 /* When requests are passed down from the linux-nat layer to the
4832 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4833 used. The address space pointer is stored in the inferior object,
4834 but the common code that is passed such ptid can't tell whether
4835 lwpid is a "main" process id or not (it assumes so). We reverse
4836 look up the "main" process id from the lwp here. */
4837
4838 static struct address_space *
4839 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4840 {
4841 struct lwp_info *lwp;
4842 struct inferior *inf;
4843 int pid;
4844
4845 if (ptid_get_lwp (ptid) == 0)
4846 {
4847 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4848 tgid. */
4849 lwp = find_lwp_pid (ptid);
4850 pid = ptid_get_pid (lwp->ptid);
4851 }
4852 else
4853 {
4854 /* A (pid,lwpid,0) ptid. */
4855 pid = ptid_get_pid (ptid);
4856 }
4857
4858 inf = find_inferior_pid (pid);
4859 gdb_assert (inf != NULL);
4860 return inf->aspace;
4861 }
4862
4863 /* Return the cached value of the processor core for thread PTID. */
4864
4865 static int
4866 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4867 {
4868 struct lwp_info *info = find_lwp_pid (ptid);
4869
4870 if (info)
4871 return info->core;
4872 return -1;
4873 }
4874
4875 /* Implementation of to_filesystem_is_local. */
4876
4877 static int
4878 linux_nat_filesystem_is_local (struct target_ops *ops)
4879 {
4880 struct inferior *inf = current_inferior ();
4881
4882 if (inf->fake_pid_p || inf->pid == 0)
4883 return 1;
4884
4885 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4886 }
4887
4888 /* Convert the INF argument passed to a to_fileio_* method
4889 to a process ID suitable for passing to its corresponding
4890 linux_mntns_* function. If INF is non-NULL then the
4891 caller is requesting the filesystem seen by INF. If INF
4892 is NULL then the caller is requesting the filesystem seen
4893 by the GDB. We fall back to GDB's filesystem in the case
4894 that INF is non-NULL but its PID is unknown. */
4895
4896 static pid_t
4897 linux_nat_fileio_pid_of (struct inferior *inf)
4898 {
4899 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4900 return getpid ();
4901 else
4902 return inf->pid;
4903 }
4904
4905 /* Implementation of to_fileio_open. */
4906
4907 static int
4908 linux_nat_fileio_open (struct target_ops *self,
4909 struct inferior *inf, const char *filename,
4910 int flags, int mode, int *target_errno)
4911 {
4912 int nat_flags;
4913 mode_t nat_mode;
4914 int fd;
4915
4916 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4917 || fileio_to_host_mode (mode, &nat_mode) == -1)
4918 {
4919 *target_errno = FILEIO_EINVAL;
4920 return -1;
4921 }
4922
4923 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4924 filename, nat_flags, nat_mode);
4925 if (fd == -1)
4926 *target_errno = host_to_fileio_error (errno);
4927
4928 return fd;
4929 }
4930
4931 /* Implementation of to_fileio_readlink. */
4932
4933 static char *
4934 linux_nat_fileio_readlink (struct target_ops *self,
4935 struct inferior *inf, const char *filename,
4936 int *target_errno)
4937 {
4938 char buf[PATH_MAX];
4939 int len;
4940 char *ret;
4941
4942 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4943 filename, buf, sizeof (buf));
4944 if (len < 0)
4945 {
4946 *target_errno = host_to_fileio_error (errno);
4947 return NULL;
4948 }
4949
4950 ret = xmalloc (len + 1);
4951 memcpy (ret, buf, len);
4952 ret[len] = '\0';
4953 return ret;
4954 }
4955
4956 /* Implementation of to_fileio_unlink. */
4957
4958 static int
4959 linux_nat_fileio_unlink (struct target_ops *self,
4960 struct inferior *inf, const char *filename,
4961 int *target_errno)
4962 {
4963 int ret;
4964
4965 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4966 filename);
4967 if (ret == -1)
4968 *target_errno = host_to_fileio_error (errno);
4969
4970 return ret;
4971 }
4972
4973 void
4974 linux_nat_add_target (struct target_ops *t)
4975 {
4976 /* Save the provided single-threaded target. We save this in a separate
4977 variable because another target we've inherited from (e.g. inf-ptrace)
4978 may have saved a pointer to T; we want to use it for the final
4979 process stratum target. */
4980 linux_ops_saved = *t;
4981 linux_ops = &linux_ops_saved;
4982
4983 /* Override some methods for multithreading. */
4984 t->to_create_inferior = linux_nat_create_inferior;
4985 t->to_attach = linux_nat_attach;
4986 t->to_detach = linux_nat_detach;
4987 t->to_resume = linux_nat_resume;
4988 t->to_wait = linux_nat_wait;
4989 t->to_pass_signals = linux_nat_pass_signals;
4990 t->to_xfer_partial = linux_nat_xfer_partial;
4991 t->to_kill = linux_nat_kill;
4992 t->to_mourn_inferior = linux_nat_mourn_inferior;
4993 t->to_thread_alive = linux_nat_thread_alive;
4994 t->to_update_thread_list = linux_nat_update_thread_list;
4995 t->to_pid_to_str = linux_nat_pid_to_str;
4996 t->to_thread_name = linux_nat_thread_name;
4997 t->to_has_thread_control = tc_schedlock;
4998 t->to_thread_address_space = linux_nat_thread_address_space;
4999 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5000 t->to_stopped_data_address = linux_nat_stopped_data_address;
5001 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
5002 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
5003 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
5004 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
5005
5006 t->to_can_async_p = linux_nat_can_async_p;
5007 t->to_is_async_p = linux_nat_is_async_p;
5008 t->to_supports_non_stop = linux_nat_supports_non_stop;
5009 t->to_async = linux_nat_async;
5010 t->to_terminal_inferior = linux_nat_terminal_inferior;
5011 t->to_terminal_ours = linux_nat_terminal_ours;
5012
5013 super_close = t->to_close;
5014 t->to_close = linux_nat_close;
5015
5016 /* Methods for non-stop support. */
5017 t->to_stop = linux_nat_stop;
5018
5019 t->to_supports_multi_process = linux_nat_supports_multi_process;
5020
5021 t->to_supports_disable_randomization
5022 = linux_nat_supports_disable_randomization;
5023
5024 t->to_core_of_thread = linux_nat_core_of_thread;
5025
5026 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
5027 t->to_fileio_open = linux_nat_fileio_open;
5028 t->to_fileio_readlink = linux_nat_fileio_readlink;
5029 t->to_fileio_unlink = linux_nat_fileio_unlink;
5030
5031 /* We don't change the stratum; this target will sit at
5032 process_stratum and thread_db will set at thread_stratum. This
5033 is a little strange, since this is a multi-threaded-capable
5034 target, but we want to be on the stack below thread_db, and we
5035 also want to be used for single-threaded processes. */
5036
5037 add_target (t);
5038 }
5039
5040 /* Register a method to call whenever a new thread is attached. */
5041 void
5042 linux_nat_set_new_thread (struct target_ops *t,
5043 void (*new_thread) (struct lwp_info *))
5044 {
5045 /* Save the pointer. We only support a single registered instance
5046 of the GNU/Linux native target, so we do not need to map this to
5047 T. */
5048 linux_nat_new_thread = new_thread;
5049 }
5050
5051 /* See declaration in linux-nat.h. */
5052
5053 void
5054 linux_nat_set_new_fork (struct target_ops *t,
5055 linux_nat_new_fork_ftype *new_fork)
5056 {
5057 /* Save the pointer. */
5058 linux_nat_new_fork = new_fork;
5059 }
5060
5061 /* See declaration in linux-nat.h. */
5062
5063 void
5064 linux_nat_set_forget_process (struct target_ops *t,
5065 linux_nat_forget_process_ftype *fn)
5066 {
5067 /* Save the pointer. */
5068 linux_nat_forget_process_hook = fn;
5069 }
5070
5071 /* See declaration in linux-nat.h. */
5072
5073 void
5074 linux_nat_forget_process (pid_t pid)
5075 {
5076 if (linux_nat_forget_process_hook != NULL)
5077 linux_nat_forget_process_hook (pid);
5078 }
5079
5080 /* Register a method that converts a siginfo object between the layout
5081 that ptrace returns, and the layout in the architecture of the
5082 inferior. */
5083 void
5084 linux_nat_set_siginfo_fixup (struct target_ops *t,
5085 int (*siginfo_fixup) (siginfo_t *,
5086 gdb_byte *,
5087 int))
5088 {
5089 /* Save the pointer. */
5090 linux_nat_siginfo_fixup = siginfo_fixup;
5091 }
5092
5093 /* Register a method to call prior to resuming a thread. */
5094
5095 void
5096 linux_nat_set_prepare_to_resume (struct target_ops *t,
5097 void (*prepare_to_resume) (struct lwp_info *))
5098 {
5099 /* Save the pointer. */
5100 linux_nat_prepare_to_resume = prepare_to_resume;
5101 }
5102
5103 /* See linux-nat.h. */
5104
5105 int
5106 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
5107 {
5108 int pid;
5109
5110 pid = ptid_get_lwp (ptid);
5111 if (pid == 0)
5112 pid = ptid_get_pid (ptid);
5113
5114 errno = 0;
5115 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
5116 if (errno != 0)
5117 {
5118 memset (siginfo, 0, sizeof (*siginfo));
5119 return 0;
5120 }
5121 return 1;
5122 }
5123
5124 /* See nat/linux-nat.h. */
5125
5126 ptid_t
5127 current_lwp_ptid (void)
5128 {
5129 gdb_assert (ptid_lwp_p (inferior_ptid));
5130 return inferior_ptid;
5131 }
5132
5133 /* Provide a prototype to silence -Wmissing-prototypes. */
5134 extern initialize_file_ftype _initialize_linux_nat;
5135
5136 void
5137 _initialize_linux_nat (void)
5138 {
5139 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
5140 &debug_linux_nat, _("\
5141 Set debugging of GNU/Linux lwp module."), _("\
5142 Show debugging of GNU/Linux lwp module."), _("\
5143 Enables printf debugging output."),
5144 NULL,
5145 show_debug_linux_nat,
5146 &setdebuglist, &showdebuglist);
5147
5148 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
5149 &debug_linux_namespaces, _("\
5150 Set debugging of GNU/Linux namespaces module."), _("\
5151 Show debugging of GNU/Linux namespaces module."), _("\
5152 Enables printf debugging output."),
5153 NULL,
5154 NULL,
5155 &setdebuglist, &showdebuglist);
5156
5157 /* Save this mask as the default. */
5158 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5159
5160 /* Install a SIGCHLD handler. */
5161 sigchld_action.sa_handler = sigchld_handler;
5162 sigemptyset (&sigchld_action.sa_mask);
5163 sigchld_action.sa_flags = SA_RESTART;
5164
5165 /* Make it the default. */
5166 sigaction (SIGCHLD, &sigchld_action, NULL);
5167
5168 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5169 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5170 sigdelset (&suspend_mask, SIGCHLD);
5171
5172 sigemptyset (&blocked_mask);
5173 }
5174 \f
5175
5176 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5177 the GNU/Linux Threads library and therefore doesn't really belong
5178 here. */
5179
5180 /* Read variable NAME in the target and return its value if found.
5181 Otherwise return zero. It is assumed that the type of the variable
5182 is `int'. */
5183
5184 static int
5185 get_signo (const char *name)
5186 {
5187 struct bound_minimal_symbol ms;
5188 int signo;
5189
5190 ms = lookup_minimal_symbol (name, NULL, NULL);
5191 if (ms.minsym == NULL)
5192 return 0;
5193
5194 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5195 sizeof (signo)) != 0)
5196 return 0;
5197
5198 return signo;
5199 }
5200
5201 /* Return the set of signals used by the threads library in *SET. */
5202
5203 void
5204 lin_thread_get_thread_signals (sigset_t *set)
5205 {
5206 struct sigaction action;
5207 int restart, cancel;
5208
5209 sigemptyset (&blocked_mask);
5210 sigemptyset (set);
5211
5212 restart = get_signo ("__pthread_sig_restart");
5213 cancel = get_signo ("__pthread_sig_cancel");
5214
5215 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5216 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5217 not provide any way for the debugger to query the signal numbers -
5218 fortunately they don't change! */
5219
5220 if (restart == 0)
5221 restart = __SIGRTMIN;
5222
5223 if (cancel == 0)
5224 cancel = __SIGRTMIN + 1;
5225
5226 sigaddset (set, restart);
5227 sigaddset (set, cancel);
5228
5229 /* The GNU/Linux Threads library makes terminating threads send a
5230 special "cancel" signal instead of SIGCHLD. Make sure we catch
5231 those (to prevent them from terminating GDB itself, which is
5232 likely to be their default action) and treat them the same way as
5233 SIGCHLD. */
5234
5235 action.sa_handler = sigchld_handler;
5236 sigemptyset (&action.sa_mask);
5237 action.sa_flags = SA_RESTART;
5238 sigaction (cancel, &action, NULL);
5239
5240 /* We block the "cancel" signal throughout this code ... */
5241 sigaddset (&blocked_mask, cancel);
5242 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5243
5244 /* ... except during a sigsuspend. */
5245 sigdelset (&suspend_mask, cancel);
5246 }
This page took 0.183729 seconds and 4 git commands to generate.